]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wan/fsl_ucc_hdlc.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wan / fsl_ucc_hdlc.c
1 /* Freescale QUICC Engine HDLC Device Driver
2 *
3 * Copyright 2016 Freescale Semiconductor Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/hdlc.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sched.h>
26 #include <linux/skbuff.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/stddef.h>
30 #include <soc/fsl/qe/qe_tdm.h>
31 #include <uapi/linux/if_arp.h>
32
33 #include "fsl_ucc_hdlc.h"
34
35 #define DRV_DESC "Freescale QE UCC HDLC Driver"
36 #define DRV_NAME "ucc_hdlc"
37
38 #define TDM_PPPOHT_SLIC_MAXIN
39 #define BROKEN_FRAME_INFO
40
41 static struct ucc_tdm_info utdm_primary_info = {
42 .uf_info = {
43 .tsa = 0,
44 .cdp = 0,
45 .cds = 1,
46 .ctsp = 1,
47 .ctss = 1,
48 .revd = 0,
49 .urfs = 256,
50 .utfs = 256,
51 .urfet = 128,
52 .urfset = 192,
53 .utfet = 128,
54 .utftt = 0x40,
55 .ufpt = 256,
56 .mode = UCC_FAST_PROTOCOL_MODE_HDLC,
57 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
58 .tenc = UCC_FAST_TX_ENCODING_NRZ,
59 .renc = UCC_FAST_RX_ENCODING_NRZ,
60 .tcrc = UCC_FAST_16_BIT_CRC,
61 .synl = UCC_FAST_SYNC_LEN_NOT_USED,
62 },
63
64 .si_info = {
65 #ifdef TDM_PPPOHT_SLIC_MAXIN
66 .simr_rfsd = 1,
67 .simr_tfsd = 2,
68 #else
69 .simr_rfsd = 0,
70 .simr_tfsd = 0,
71 #endif
72 .simr_crt = 0,
73 .simr_sl = 0,
74 .simr_ce = 1,
75 .simr_fe = 1,
76 .simr_gm = 0,
77 },
78 };
79
80 static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];
81
82 static int uhdlc_init(struct ucc_hdlc_private *priv)
83 {
84 struct ucc_tdm_info *ut_info;
85 struct ucc_fast_info *uf_info;
86 u32 cecr_subblock;
87 u16 bd_status;
88 int ret, i;
89 void *bd_buffer;
90 dma_addr_t bd_dma_addr;
91 u32 riptr;
92 u32 tiptr;
93 u32 gumr;
94
95 ut_info = priv->ut_info;
96 uf_info = &ut_info->uf_info;
97
98 if (priv->tsa) {
99 uf_info->tsa = 1;
100 uf_info->ctsp = 1;
101 }
102 uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
103 UCC_HDLC_UCCE_TXB) << 16);
104
105 ret = ucc_fast_init(uf_info, &priv->uccf);
106 if (ret) {
107 dev_err(priv->dev, "Failed to init uccf.");
108 return ret;
109 }
110
111 priv->uf_regs = priv->uccf->uf_regs;
112 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
113
114 /* Loopback mode */
115 if (priv->loopback) {
116 dev_info(priv->dev, "Loopback Mode\n");
117 gumr = ioread32be(&priv->uf_regs->gumr);
118 gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
119 UCC_FAST_GUMR_TCI);
120 gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
121 iowrite32be(gumr, &priv->uf_regs->gumr);
122 }
123
124 /* Initialize SI */
125 if (priv->tsa)
126 ucc_tdm_init(priv->utdm, priv->ut_info);
127
128 /* Write to QE CECR, UCCx channel to Stop Transmission */
129 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
130 ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
131 QE_CR_PROTOCOL_UNSPECIFIED, 0);
132
133 /* Set UPSMR normal mode (need fixed)*/
134 iowrite32be(0, &priv->uf_regs->upsmr);
135
136 priv->rx_ring_size = RX_BD_RING_LEN;
137 priv->tx_ring_size = TX_BD_RING_LEN;
138 /* Alloc Rx BD */
139 priv->rx_bd_base = dma_alloc_coherent(priv->dev,
140 RX_BD_RING_LEN * sizeof(struct qe_bd *),
141 &priv->dma_rx_bd, GFP_KERNEL);
142
143 if (!priv->rx_bd_base) {
144 dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
145 ret = -ENOMEM;
146 goto free_uccf;
147 }
148
149 /* Alloc Tx BD */
150 priv->tx_bd_base = dma_alloc_coherent(priv->dev,
151 TX_BD_RING_LEN * sizeof(struct qe_bd *),
152 &priv->dma_tx_bd, GFP_KERNEL);
153
154 if (!priv->tx_bd_base) {
155 dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
156 ret = -ENOMEM;
157 goto free_rx_bd;
158 }
159
160 /* Alloc parameter ram for ucc hdlc */
161 priv->ucc_pram_offset = qe_muram_alloc(sizeof(priv->ucc_pram),
162 ALIGNMENT_OF_UCC_HDLC_PRAM);
163
164 if (priv->ucc_pram_offset < 0) {
165 dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
166 ret = -ENOMEM;
167 goto free_tx_bd;
168 }
169
170 priv->rx_skbuff = kzalloc(priv->rx_ring_size * sizeof(*priv->rx_skbuff),
171 GFP_KERNEL);
172 if (!priv->rx_skbuff)
173 goto free_ucc_pram;
174
175 priv->tx_skbuff = kzalloc(priv->tx_ring_size * sizeof(*priv->tx_skbuff),
176 GFP_KERNEL);
177 if (!priv->tx_skbuff)
178 goto free_rx_skbuff;
179
180 priv->skb_curtx = 0;
181 priv->skb_dirtytx = 0;
182 priv->curtx_bd = priv->tx_bd_base;
183 priv->dirty_tx = priv->tx_bd_base;
184 priv->currx_bd = priv->rx_bd_base;
185 priv->currx_bdnum = 0;
186
187 /* init parameter base */
188 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
189 ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
190 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
191
192 priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
193 qe_muram_addr(priv->ucc_pram_offset);
194
195 /* Zero out parameter ram */
196 memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
197
198 /* Alloc riptr, tiptr */
199 riptr = qe_muram_alloc(32, 32);
200 if (riptr < 0) {
201 dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
202 ret = -ENOMEM;
203 goto free_tx_skbuff;
204 }
205
206 tiptr = qe_muram_alloc(32, 32);
207 if (tiptr < 0) {
208 dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
209 ret = -ENOMEM;
210 goto free_riptr;
211 }
212
213 /* Set RIPTR, TIPTR */
214 iowrite16be(riptr, &priv->ucc_pram->riptr);
215 iowrite16be(tiptr, &priv->ucc_pram->tiptr);
216
217 /* Set MRBLR */
218 iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
219
220 /* Set RBASE, TBASE */
221 iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
222 iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
223
224 /* Set RSTATE, TSTATE */
225 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
226 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
227
228 /* Set C_MASK, C_PRES for 16bit CRC */
229 iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
230 iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
231
232 iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
233 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
234 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
235 iowrite16be(DEFAULT_ADDR_MASK, &priv->ucc_pram->hmask);
236 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
237 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
238 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
239 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
240
241 /* Get BD buffer */
242 bd_buffer = dma_alloc_coherent(priv->dev,
243 (RX_BD_RING_LEN + TX_BD_RING_LEN) *
244 MAX_RX_BUF_LENGTH,
245 &bd_dma_addr, GFP_KERNEL);
246
247 if (!bd_buffer) {
248 dev_err(priv->dev, "Could not allocate buffer descriptors\n");
249 ret = -ENOMEM;
250 goto free_tiptr;
251 }
252
253 memset(bd_buffer, 0, (RX_BD_RING_LEN + TX_BD_RING_LEN)
254 * MAX_RX_BUF_LENGTH);
255
256 priv->rx_buffer = bd_buffer;
257 priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
258
259 priv->dma_rx_addr = bd_dma_addr;
260 priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
261
262 for (i = 0; i < RX_BD_RING_LEN; i++) {
263 if (i < (RX_BD_RING_LEN - 1))
264 bd_status = R_E_S | R_I_S;
265 else
266 bd_status = R_E_S | R_I_S | R_W_S;
267
268 iowrite16be(bd_status, &priv->rx_bd_base[i].status);
269 iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
270 &priv->rx_bd_base[i].buf);
271 }
272
273 for (i = 0; i < TX_BD_RING_LEN; i++) {
274 if (i < (TX_BD_RING_LEN - 1))
275 bd_status = T_I_S | T_TC_S;
276 else
277 bd_status = T_I_S | T_TC_S | T_W_S;
278
279 iowrite16be(bd_status, &priv->tx_bd_base[i].status);
280 iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
281 &priv->tx_bd_base[i].buf);
282 }
283
284 return 0;
285
286 free_tiptr:
287 qe_muram_free(tiptr);
288 free_riptr:
289 qe_muram_free(riptr);
290 free_tx_skbuff:
291 kfree(priv->tx_skbuff);
292 free_rx_skbuff:
293 kfree(priv->rx_skbuff);
294 free_ucc_pram:
295 qe_muram_free(priv->ucc_pram_offset);
296 free_tx_bd:
297 dma_free_coherent(priv->dev,
298 TX_BD_RING_LEN * sizeof(struct qe_bd *),
299 priv->tx_bd_base, priv->dma_tx_bd);
300 free_rx_bd:
301 dma_free_coherent(priv->dev,
302 RX_BD_RING_LEN * sizeof(struct qe_bd *),
303 priv->rx_bd_base, priv->dma_rx_bd);
304 free_uccf:
305 ucc_fast_free(priv->uccf);
306
307 return ret;
308 }
309
310 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
311 {
312 hdlc_device *hdlc = dev_to_hdlc(dev);
313 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
314 struct qe_bd __iomem *bd;
315 u16 bd_status;
316 unsigned long flags;
317 u8 *send_buf;
318 int i;
319 u16 *proto_head;
320
321 switch (dev->type) {
322 case ARPHRD_RAWHDLC:
323 if (skb_headroom(skb) < HDLC_HEAD_LEN) {
324 dev->stats.tx_dropped++;
325 dev_kfree_skb(skb);
326 netdev_err(dev, "No enough space for hdlc head\n");
327 return -ENOMEM;
328 }
329
330 skb_push(skb, HDLC_HEAD_LEN);
331
332 proto_head = (u16 *)skb->data;
333 *proto_head = htons(DEFAULT_HDLC_HEAD);
334
335 dev->stats.tx_bytes += skb->len;
336 break;
337
338 case ARPHRD_PPP:
339 proto_head = (u16 *)skb->data;
340 if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
341 dev->stats.tx_dropped++;
342 dev_kfree_skb(skb);
343 netdev_err(dev, "Wrong ppp header\n");
344 return -ENOMEM;
345 }
346
347 dev->stats.tx_bytes += skb->len;
348 break;
349
350 default:
351 dev->stats.tx_dropped++;
352 dev_kfree_skb(skb);
353 return -ENOMEM;
354 }
355
356 pr_info("Tx data skb->len:%d ", skb->len);
357 send_buf = (u8 *)skb->data;
358 pr_info("\nTransmitted data:\n");
359 for (i = 0; i < 16; i++) {
360 if (i == skb->len)
361 pr_info("++++");
362 else
363 pr_info("%02x\n", send_buf[i]);
364 }
365 spin_lock_irqsave(&priv->lock, flags);
366
367 /* Start from the next BD that should be filled */
368 bd = priv->curtx_bd;
369 bd_status = ioread16be(&bd->status);
370 /* Save the skb pointer so we can free it later */
371 priv->tx_skbuff[priv->skb_curtx] = skb;
372
373 /* Update the current skb pointer (wrapping if this was the last) */
374 priv->skb_curtx =
375 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
376
377 /* copy skb data to tx buffer for sdma processing */
378 memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
379 skb->data, skb->len);
380
381 /* set bd status and length */
382 bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
383
384 iowrite16be(bd_status, &bd->status);
385 iowrite16be(skb->len, &bd->length);
386
387 /* Move to next BD in the ring */
388 if (!(bd_status & T_W_S))
389 bd += 1;
390 else
391 bd = priv->tx_bd_base;
392
393 if (bd == priv->dirty_tx) {
394 if (!netif_queue_stopped(dev))
395 netif_stop_queue(dev);
396 }
397
398 priv->curtx_bd = bd;
399
400 spin_unlock_irqrestore(&priv->lock, flags);
401
402 return NETDEV_TX_OK;
403 }
404
405 static int hdlc_tx_done(struct ucc_hdlc_private *priv)
406 {
407 /* Start from the next BD that should be filled */
408 struct net_device *dev = priv->ndev;
409 struct qe_bd *bd; /* BD pointer */
410 u16 bd_status;
411
412 bd = priv->dirty_tx;
413 bd_status = ioread16be(&bd->status);
414
415 /* Normal processing. */
416 while ((bd_status & T_R_S) == 0) {
417 struct sk_buff *skb;
418
419 /* BD contains already transmitted buffer. */
420 /* Handle the transmitted buffer and release */
421 /* the BD to be used with the current frame */
422
423 skb = priv->tx_skbuff[priv->skb_dirtytx];
424 if (!skb)
425 break;
426 pr_info("TxBD: %x\n", bd_status);
427 dev->stats.tx_packets++;
428 memset(priv->tx_buffer +
429 (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
430 0, skb->len);
431 dev_kfree_skb_irq(skb);
432
433 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
434 priv->skb_dirtytx =
435 (priv->skb_dirtytx +
436 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
437
438 /* We freed a buffer, so now we can restart transmission */
439 if (netif_queue_stopped(dev))
440 netif_wake_queue(dev);
441
442 /* Advance the confirmation BD pointer */
443 if (!(bd_status & T_W_S))
444 bd += 1;
445 else
446 bd = priv->tx_bd_base;
447 bd_status = ioread16be(&bd->status);
448 }
449 priv->dirty_tx = bd;
450
451 return 0;
452 }
453
454 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
455 {
456 struct net_device *dev = priv->ndev;
457 struct sk_buff *skb;
458 hdlc_device *hdlc = dev_to_hdlc(dev);
459 struct qe_bd *bd;
460 u32 bd_status;
461 u16 length, howmany = 0;
462 u8 *bdbuffer;
463 int i;
464 static int entry;
465
466 bd = priv->currx_bd;
467 bd_status = ioread16be(&bd->status);
468
469 /* while there are received buffers and BD is full (~R_E) */
470 while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
471 if (bd_status & R_OV_S)
472 dev->stats.rx_over_errors++;
473 if (bd_status & R_CR_S) {
474 #ifdef BROKEN_FRAME_INFO
475 pr_info("Broken Frame with RxBD: %x\n", bd_status);
476 #endif
477 dev->stats.rx_crc_errors++;
478 dev->stats.rx_dropped++;
479 goto recycle;
480 }
481 bdbuffer = priv->rx_buffer +
482 (priv->currx_bdnum * MAX_RX_BUF_LENGTH);
483 length = ioread16be(&bd->length);
484
485 pr_info("Received data length:%d", length);
486 pr_info("while entry times:%d", entry++);
487
488 pr_info("\nReceived data:\n");
489 for (i = 0; (i < 16); i++) {
490 if (i == length)
491 pr_info("++++");
492 else
493 pr_info("%02x\n", bdbuffer[i]);
494 }
495
496 switch (dev->type) {
497 case ARPHRD_RAWHDLC:
498 bdbuffer += HDLC_HEAD_LEN;
499 length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
500
501 skb = dev_alloc_skb(length);
502 if (!skb) {
503 dev->stats.rx_dropped++;
504 return -ENOMEM;
505 }
506
507 skb_put(skb, length);
508 skb->len = length;
509 skb->dev = dev;
510 memcpy(skb->data, bdbuffer, length);
511 break;
512
513 case ARPHRD_PPP:
514 length -= HDLC_CRC_SIZE;
515
516 skb = dev_alloc_skb(length);
517 if (!skb) {
518 dev->stats.rx_dropped++;
519 return -ENOMEM;
520 }
521
522 skb_put(skb, length);
523 skb->len = length;
524 skb->dev = dev;
525 memcpy(skb->data, bdbuffer, length);
526 break;
527 }
528
529 dev->stats.rx_packets++;
530 dev->stats.rx_bytes += skb->len;
531 howmany++;
532 if (hdlc->proto)
533 skb->protocol = hdlc_type_trans(skb, dev);
534 pr_info("skb->protocol:%x\n", skb->protocol);
535 netif_receive_skb(skb);
536
537 recycle:
538 iowrite16be(bd_status | R_E_S | R_I_S, &bd->status);
539
540 /* update to point at the next bd */
541 if (bd_status & R_W_S) {
542 priv->currx_bdnum = 0;
543 bd = priv->rx_bd_base;
544 } else {
545 if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
546 priv->currx_bdnum += 1;
547 else
548 priv->currx_bdnum = RX_BD_RING_LEN - 1;
549
550 bd += 1;
551 }
552
553 bd_status = ioread16be(&bd->status);
554 }
555
556 priv->currx_bd = bd;
557 return howmany;
558 }
559
560 static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
561 {
562 struct ucc_hdlc_private *priv = container_of(napi,
563 struct ucc_hdlc_private,
564 napi);
565 int howmany;
566
567 /* Tx event processing */
568 spin_lock(&priv->lock);
569 hdlc_tx_done(priv);
570 spin_unlock(&priv->lock);
571
572 howmany = 0;
573 howmany += hdlc_rx_done(priv, budget - howmany);
574
575 if (howmany < budget) {
576 napi_complete_done(napi, howmany);
577 qe_setbits32(priv->uccf->p_uccm,
578 (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
579 }
580
581 return howmany;
582 }
583
584 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
585 {
586 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
587 struct net_device *dev = priv->ndev;
588 struct ucc_fast_private *uccf;
589 struct ucc_tdm_info *ut_info;
590 u32 ucce;
591 u32 uccm;
592
593 ut_info = priv->ut_info;
594 uccf = priv->uccf;
595
596 ucce = ioread32be(uccf->p_ucce);
597 uccm = ioread32be(uccf->p_uccm);
598 ucce &= uccm;
599 iowrite32be(ucce, uccf->p_ucce);
600 pr_info("irq ucce:%x\n", ucce);
601 if (!ucce)
602 return IRQ_NONE;
603
604 if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
605 if (napi_schedule_prep(&priv->napi)) {
606 uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
607 << 16);
608 iowrite32be(uccm, uccf->p_uccm);
609 __napi_schedule(&priv->napi);
610 }
611 }
612
613 /* Errors and other events */
614 if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
615 dev->stats.rx_errors++;
616 if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
617 dev->stats.tx_errors++;
618
619 return IRQ_HANDLED;
620 }
621
622 static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
623 {
624 const size_t size = sizeof(te1_settings);
625 te1_settings line;
626 struct ucc_hdlc_private *priv = netdev_priv(dev);
627
628 if (cmd != SIOCWANDEV)
629 return hdlc_ioctl(dev, ifr, cmd);
630
631 switch (ifr->ifr_settings.type) {
632 case IF_GET_IFACE:
633 ifr->ifr_settings.type = IF_IFACE_E1;
634 if (ifr->ifr_settings.size < size) {
635 ifr->ifr_settings.size = size; /* data size wanted */
636 return -ENOBUFS;
637 }
638 memset(&line, 0, sizeof(line));
639 line.clock_type = priv->clocking;
640
641 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
642 return -EFAULT;
643 return 0;
644
645 default:
646 return hdlc_ioctl(dev, ifr, cmd);
647 }
648 }
649
650 static int uhdlc_open(struct net_device *dev)
651 {
652 u32 cecr_subblock;
653 hdlc_device *hdlc = dev_to_hdlc(dev);
654 struct ucc_hdlc_private *priv = hdlc->priv;
655 struct ucc_tdm *utdm = priv->utdm;
656
657 if (priv->hdlc_busy != 1) {
658 if (request_irq(priv->ut_info->uf_info.irq,
659 ucc_hdlc_irq_handler, 0, "hdlc", priv))
660 return -ENODEV;
661
662 cecr_subblock = ucc_fast_get_qe_cr_subblock(
663 priv->ut_info->uf_info.ucc_num);
664
665 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
666 QE_CR_PROTOCOL_UNSPECIFIED, 0);
667
668 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
669
670 /* Enable the TDM port */
671 if (priv->tsa)
672 utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
673
674 priv->hdlc_busy = 1;
675 netif_device_attach(priv->ndev);
676 napi_enable(&priv->napi);
677 netif_start_queue(dev);
678 hdlc_open(dev);
679 }
680
681 return 0;
682 }
683
684 static void uhdlc_memclean(struct ucc_hdlc_private *priv)
685 {
686 qe_muram_free(priv->ucc_pram->riptr);
687 qe_muram_free(priv->ucc_pram->tiptr);
688
689 if (priv->rx_bd_base) {
690 dma_free_coherent(priv->dev,
691 RX_BD_RING_LEN * sizeof(struct qe_bd *),
692 priv->rx_bd_base, priv->dma_rx_bd);
693
694 priv->rx_bd_base = NULL;
695 priv->dma_rx_bd = 0;
696 }
697
698 if (priv->tx_bd_base) {
699 dma_free_coherent(priv->dev,
700 TX_BD_RING_LEN * sizeof(struct qe_bd *),
701 priv->tx_bd_base, priv->dma_tx_bd);
702
703 priv->tx_bd_base = NULL;
704 priv->dma_tx_bd = 0;
705 }
706
707 if (priv->ucc_pram) {
708 qe_muram_free(priv->ucc_pram_offset);
709 priv->ucc_pram = NULL;
710 priv->ucc_pram_offset = 0;
711 }
712
713 kfree(priv->rx_skbuff);
714 priv->rx_skbuff = NULL;
715
716 kfree(priv->tx_skbuff);
717 priv->tx_skbuff = NULL;
718
719 if (priv->uf_regs) {
720 iounmap(priv->uf_regs);
721 priv->uf_regs = NULL;
722 }
723
724 if (priv->uccf) {
725 ucc_fast_free(priv->uccf);
726 priv->uccf = NULL;
727 }
728
729 if (priv->rx_buffer) {
730 dma_free_coherent(priv->dev,
731 RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
732 priv->rx_buffer, priv->dma_rx_addr);
733 priv->rx_buffer = NULL;
734 priv->dma_rx_addr = 0;
735 }
736
737 if (priv->tx_buffer) {
738 dma_free_coherent(priv->dev,
739 TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
740 priv->tx_buffer, priv->dma_tx_addr);
741 priv->tx_buffer = NULL;
742 priv->dma_tx_addr = 0;
743 }
744 }
745
746 static int uhdlc_close(struct net_device *dev)
747 {
748 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
749 struct ucc_tdm *utdm = priv->utdm;
750 u32 cecr_subblock;
751
752 napi_disable(&priv->napi);
753 cecr_subblock = ucc_fast_get_qe_cr_subblock(
754 priv->ut_info->uf_info.ucc_num);
755
756 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
757 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
758 qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
759 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
760
761 if (priv->tsa)
762 utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
763
764 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
765
766 free_irq(priv->ut_info->uf_info.irq, priv);
767 netif_stop_queue(dev);
768 priv->hdlc_busy = 0;
769
770 return 0;
771 }
772
773 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
774 unsigned short parity)
775 {
776 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
777
778 if (encoding != ENCODING_NRZ &&
779 encoding != ENCODING_NRZI)
780 return -EINVAL;
781
782 if (parity != PARITY_NONE &&
783 parity != PARITY_CRC32_PR1_CCITT &&
784 parity != PARITY_CRC16_PR1_CCITT)
785 return -EINVAL;
786
787 priv->encoding = encoding;
788 priv->parity = parity;
789
790 return 0;
791 }
792
793 #ifdef CONFIG_PM
794 static void store_clk_config(struct ucc_hdlc_private *priv)
795 {
796 struct qe_mux *qe_mux_reg = &qe_immr->qmx;
797
798 /* store si clk */
799 priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
800 priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
801
802 /* store si sync */
803 priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
804
805 /* store ucc clk */
806 memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
807 }
808
809 static void resume_clk_config(struct ucc_hdlc_private *priv)
810 {
811 struct qe_mux *qe_mux_reg = &qe_immr->qmx;
812
813 memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
814
815 iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
816 iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
817
818 iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
819 }
820
821 static int uhdlc_suspend(struct device *dev)
822 {
823 struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
824 struct ucc_tdm_info *ut_info;
825 struct ucc_fast __iomem *uf_regs;
826
827 if (!priv)
828 return -EINVAL;
829
830 if (!netif_running(priv->ndev))
831 return 0;
832
833 netif_device_detach(priv->ndev);
834 napi_disable(&priv->napi);
835
836 ut_info = priv->ut_info;
837 uf_regs = priv->uf_regs;
838
839 /* backup gumr guemr*/
840 priv->gumr = ioread32be(&uf_regs->gumr);
841 priv->guemr = ioread8(&uf_regs->guemr);
842
843 priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
844 GFP_KERNEL);
845 if (!priv->ucc_pram_bak)
846 return -ENOMEM;
847
848 /* backup HDLC parameter */
849 memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
850 sizeof(struct ucc_hdlc_param));
851
852 /* store the clk configuration */
853 store_clk_config(priv);
854
855 /* save power */
856 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
857
858 dev_dbg(dev, "ucc hdlc suspend\n");
859 return 0;
860 }
861
862 static int uhdlc_resume(struct device *dev)
863 {
864 struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
865 struct ucc_tdm *utdm;
866 struct ucc_tdm_info *ut_info;
867 struct ucc_fast __iomem *uf_regs;
868 struct ucc_fast_private *uccf;
869 struct ucc_fast_info *uf_info;
870 int ret, i;
871 u32 cecr_subblock;
872 u16 bd_status;
873
874 if (!priv)
875 return -EINVAL;
876
877 if (!netif_running(priv->ndev))
878 return 0;
879
880 utdm = priv->utdm;
881 ut_info = priv->ut_info;
882 uf_info = &ut_info->uf_info;
883 uf_regs = priv->uf_regs;
884 uccf = priv->uccf;
885
886 /* restore gumr guemr */
887 iowrite8(priv->guemr, &uf_regs->guemr);
888 iowrite32be(priv->gumr, &uf_regs->gumr);
889
890 /* Set Virtual Fifo registers */
891 iowrite16be(uf_info->urfs, &uf_regs->urfs);
892 iowrite16be(uf_info->urfet, &uf_regs->urfet);
893 iowrite16be(uf_info->urfset, &uf_regs->urfset);
894 iowrite16be(uf_info->utfs, &uf_regs->utfs);
895 iowrite16be(uf_info->utfet, &uf_regs->utfet);
896 iowrite16be(uf_info->utftt, &uf_regs->utftt);
897 /* utfb, urfb are offsets from MURAM base */
898 iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
899 iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
900
901 /* Rx Tx and sync clock routing */
902 resume_clk_config(priv);
903
904 iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
905 iowrite32be(0xffffffff, &uf_regs->ucce);
906
907 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
908
909 /* rebuild SIRAM */
910 if (priv->tsa)
911 ucc_tdm_init(priv->utdm, priv->ut_info);
912
913 /* Write to QE CECR, UCCx channel to Stop Transmission */
914 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
915 ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
916 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
917
918 /* Set UPSMR normal mode */
919 iowrite32be(0, &uf_regs->upsmr);
920
921 /* init parameter base */
922 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
923 ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
924 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
925
926 priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
927 qe_muram_addr(priv->ucc_pram_offset);
928
929 /* restore ucc parameter */
930 memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
931 sizeof(struct ucc_hdlc_param));
932 kfree(priv->ucc_pram_bak);
933
934 /* rebuild BD entry */
935 for (i = 0; i < RX_BD_RING_LEN; i++) {
936 if (i < (RX_BD_RING_LEN - 1))
937 bd_status = R_E_S | R_I_S;
938 else
939 bd_status = R_E_S | R_I_S | R_W_S;
940
941 iowrite16be(bd_status, &priv->rx_bd_base[i].status);
942 iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
943 &priv->rx_bd_base[i].buf);
944 }
945
946 for (i = 0; i < TX_BD_RING_LEN; i++) {
947 if (i < (TX_BD_RING_LEN - 1))
948 bd_status = T_I_S | T_TC_S;
949 else
950 bd_status = T_I_S | T_TC_S | T_W_S;
951
952 iowrite16be(bd_status, &priv->tx_bd_base[i].status);
953 iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
954 &priv->tx_bd_base[i].buf);
955 }
956
957 /* if hdlc is busy enable TX and RX */
958 if (priv->hdlc_busy == 1) {
959 cecr_subblock = ucc_fast_get_qe_cr_subblock(
960 priv->ut_info->uf_info.ucc_num);
961
962 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
963 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
964
965 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
966
967 /* Enable the TDM port */
968 if (priv->tsa)
969 utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
970 }
971
972 napi_enable(&priv->napi);
973 netif_device_attach(priv->ndev);
974
975 return 0;
976 }
977
978 static const struct dev_pm_ops uhdlc_pm_ops = {
979 .suspend = uhdlc_suspend,
980 .resume = uhdlc_resume,
981 .freeze = uhdlc_suspend,
982 .thaw = uhdlc_resume,
983 };
984
985 #define HDLC_PM_OPS (&uhdlc_pm_ops)
986
987 #else
988
989 #define HDLC_PM_OPS NULL
990
991 #endif
992 static const struct net_device_ops uhdlc_ops = {
993 .ndo_open = uhdlc_open,
994 .ndo_stop = uhdlc_close,
995 .ndo_start_xmit = hdlc_start_xmit,
996 .ndo_do_ioctl = uhdlc_ioctl,
997 };
998
999 static int ucc_hdlc_probe(struct platform_device *pdev)
1000 {
1001 struct device_node *np = pdev->dev.of_node;
1002 struct ucc_hdlc_private *uhdlc_priv = NULL;
1003 struct ucc_tdm_info *ut_info;
1004 struct ucc_tdm *utdm;
1005 struct resource res;
1006 struct net_device *dev;
1007 hdlc_device *hdlc;
1008 int ucc_num;
1009 const char *sprop;
1010 int ret;
1011 u32 val;
1012
1013 ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1014 if (ret) {
1015 dev_err(&pdev->dev, "Invalid ucc property\n");
1016 return -ENODEV;
1017 }
1018
1019 ucc_num = val - 1;
1020 if ((ucc_num > 3) || (ucc_num < 0)) {
1021 dev_err(&pdev->dev, ": Invalid UCC num\n");
1022 return -EINVAL;
1023 }
1024
1025 memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1026 sizeof(utdm_primary_info));
1027
1028 ut_info = &utdm_info[ucc_num];
1029 ut_info->uf_info.ucc_num = ucc_num;
1030
1031 sprop = of_get_property(np, "rx-clock-name", NULL);
1032 if (sprop) {
1033 ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1034 if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1035 (ut_info->uf_info.rx_clock > QE_CLK24)) {
1036 dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1037 return -EINVAL;
1038 }
1039 } else {
1040 dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1041 return -EINVAL;
1042 }
1043
1044 sprop = of_get_property(np, "tx-clock-name", NULL);
1045 if (sprop) {
1046 ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1047 if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1048 (ut_info->uf_info.tx_clock > QE_CLK24)) {
1049 dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1050 return -EINVAL;
1051 }
1052 } else {
1053 dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1054 return -EINVAL;
1055 }
1056
1057 /* use the same clock when work in loopback */
1058 if (ut_info->uf_info.rx_clock == ut_info->uf_info.tx_clock)
1059 qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
1060
1061 ret = of_address_to_resource(np, 0, &res);
1062 if (ret)
1063 return -EINVAL;
1064
1065 ut_info->uf_info.regs = res.start;
1066 ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1067
1068 uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1069 if (!uhdlc_priv) {
1070 return -ENOMEM;
1071 }
1072
1073 dev_set_drvdata(&pdev->dev, uhdlc_priv);
1074 uhdlc_priv->dev = &pdev->dev;
1075 uhdlc_priv->ut_info = ut_info;
1076
1077 if (of_get_property(np, "fsl,tdm-interface", NULL))
1078 uhdlc_priv->tsa = 1;
1079
1080 if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
1081 uhdlc_priv->loopback = 1;
1082
1083 if (uhdlc_priv->tsa == 1) {
1084 utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1085 if (!utdm) {
1086 ret = -ENOMEM;
1087 dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1088 goto free_uhdlc_priv;
1089 }
1090 uhdlc_priv->utdm = utdm;
1091 ret = ucc_of_parse_tdm(np, utdm, ut_info);
1092 if (ret)
1093 goto free_utdm;
1094 }
1095
1096 ret = uhdlc_init(uhdlc_priv);
1097 if (ret) {
1098 dev_err(&pdev->dev, "Failed to init uhdlc\n");
1099 goto free_utdm;
1100 }
1101
1102 dev = alloc_hdlcdev(uhdlc_priv);
1103 if (!dev) {
1104 ret = -ENOMEM;
1105 pr_err("ucc_hdlc: unable to allocate memory\n");
1106 goto undo_uhdlc_init;
1107 }
1108
1109 uhdlc_priv->ndev = dev;
1110 hdlc = dev_to_hdlc(dev);
1111 dev->tx_queue_len = 16;
1112 dev->netdev_ops = &uhdlc_ops;
1113 hdlc->attach = ucc_hdlc_attach;
1114 hdlc->xmit = ucc_hdlc_tx;
1115 netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1116 if (register_hdlc_device(dev)) {
1117 ret = -ENOBUFS;
1118 pr_err("ucc_hdlc: unable to register hdlc device\n");
1119 free_netdev(dev);
1120 goto free_dev;
1121 }
1122
1123 return 0;
1124
1125 free_dev:
1126 free_netdev(dev);
1127 undo_uhdlc_init:
1128 free_utdm:
1129 if (uhdlc_priv->tsa)
1130 kfree(utdm);
1131 free_uhdlc_priv:
1132 kfree(uhdlc_priv);
1133 return ret;
1134 }
1135
1136 static int ucc_hdlc_remove(struct platform_device *pdev)
1137 {
1138 struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1139
1140 uhdlc_memclean(priv);
1141
1142 if (priv->utdm->si_regs) {
1143 iounmap(priv->utdm->si_regs);
1144 priv->utdm->si_regs = NULL;
1145 }
1146
1147 if (priv->utdm->siram) {
1148 iounmap(priv->utdm->siram);
1149 priv->utdm->siram = NULL;
1150 }
1151 kfree(priv);
1152
1153 dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1154
1155 return 0;
1156 }
1157
1158 static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1159 {
1160 .compatible = "fsl,ucc-hdlc",
1161 },
1162 {},
1163 };
1164
1165 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1166
1167 static struct platform_driver ucc_hdlc_driver = {
1168 .probe = ucc_hdlc_probe,
1169 .remove = ucc_hdlc_remove,
1170 .driver = {
1171 .name = DRV_NAME,
1172 .pm = HDLC_PM_OPS,
1173 .of_match_table = fsl_ucc_hdlc_of_match,
1174 },
1175 };
1176
1177 module_platform_driver(ucc_hdlc_driver);
1178 MODULE_LICENSE("GPL");