]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wimax/i2400m/rx.c
bridge: update sysfs link names if port device names have changed
[mirror_ubuntu-artful-kernel.git] / drivers / net / wimax / i2400m / rx.c
1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Handle incoming traffic and deliver it to the control or data planes
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * - Initial implementation
38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39 * - Use skb_clone(), break up processing in chunks
40 * - Split transport/device specific
41 * - Make buffer size dynamic to exert less memory pressure
42 * - RX reorder support
43 *
44 * This handles the RX path.
45 *
46 * We receive an RX message from the bus-specific driver, which
47 * contains one or more payloads that have potentially different
48 * destinataries (data or control paths).
49 *
50 * So we just take that payload from the transport specific code in
51 * the form of an skb, break it up in chunks (a cloned skb each in the
52 * case of network packets) and pass it to netdev or to the
53 * command/ack handler (and from there to the WiMAX stack).
54 *
55 * PROTOCOL FORMAT
56 *
57 * The format of the buffer is:
58 *
59 * HEADER (struct i2400m_msg_hdr)
60 * PAYLOAD DESCRIPTOR 0 (struct i2400m_pld)
61 * PAYLOAD DESCRIPTOR 1
62 * ...
63 * PAYLOAD DESCRIPTOR N
64 * PAYLOAD 0 (raw bytes)
65 * PAYLOAD 1
66 * ...
67 * PAYLOAD N
68 *
69 * See tx.c for a deeper description on alignment requirements and
70 * other fun facts of it.
71 *
72 * DATA PACKETS
73 *
74 * In firmwares <= v1.3, data packets have no header for RX, but they
75 * do for TX (currently unused).
76 *
77 * In firmware >= 1.4, RX packets have an extended header (16
78 * bytes). This header conveys information for management of host
79 * reordering of packets (the device offloads storage of the packets
80 * for reordering to the host). Read below for more information.
81 *
82 * The header is used as dummy space to emulate an ethernet header and
83 * thus be able to act as an ethernet device without having to reallocate.
84 *
85 * DATA RX REORDERING
86 *
87 * Starting in firmware v1.4, the device can deliver packets for
88 * delivery with special reordering information; this allows it to
89 * more effectively do packet management when some frames were lost in
90 * the radio traffic.
91 *
92 * Thus, for RX packets that come out of order, the device gives the
93 * driver enough information to queue them properly and then at some
94 * point, the signal to deliver the whole (or part) of the queued
95 * packets to the networking stack. There are 16 such queues.
96 *
97 * This only happens when a packet comes in with the "need reorder"
98 * flag set in the RX header. When such bit is set, the following
99 * operations might be indicated:
100 *
101 * - reset queue: send all queued packets to the OS
102 *
103 * - queue: queue a packet
104 *
105 * - update ws: update the queue's window start and deliver queued
106 * packets that meet the criteria
107 *
108 * - queue & update ws: queue a packet, update the window start and
109 * deliver queued packets that meet the criteria
110 *
111 * (delivery criteria: the packet's [normalized] sequence number is
112 * lower than the new [normalized] window start).
113 *
114 * See the i2400m_roq_*() functions for details.
115 *
116 * ROADMAP
117 *
118 * i2400m_rx
119 * i2400m_rx_msg_hdr_check
120 * i2400m_rx_pl_descr_check
121 * i2400m_rx_payload
122 * i2400m_net_rx
123 * i2400m_rx_edata
124 * i2400m_net_erx
125 * i2400m_roq_reset
126 * i2400m_net_erx
127 * i2400m_roq_queue
128 * __i2400m_roq_queue
129 * i2400m_roq_update_ws
130 * __i2400m_roq_update_ws
131 * i2400m_net_erx
132 * i2400m_roq_queue_update_ws
133 * __i2400m_roq_queue
134 * __i2400m_roq_update_ws
135 * i2400m_net_erx
136 * i2400m_rx_ctl
137 * i2400m_msg_size_check
138 * i2400m_report_hook_work [in a workqueue]
139 * i2400m_report_hook
140 * wimax_msg_to_user
141 * i2400m_rx_ctl_ack
142 * wimax_msg_to_user_alloc
143 * i2400m_rx_trace
144 * i2400m_msg_size_check
145 * wimax_msg
146 */
147 #include <linux/slab.h>
148 #include <linux/kernel.h>
149 #include <linux/if_arp.h>
150 #include <linux/netdevice.h>
151 #include <linux/workqueue.h>
152 #include "i2400m.h"
153
154
155 #define D_SUBMODULE rx
156 #include "debug-levels.h"
157
158 struct i2400m_report_hook_args {
159 struct sk_buff *skb_rx;
160 const struct i2400m_l3l4_hdr *l3l4_hdr;
161 size_t size;
162 struct list_head list_node;
163 };
164
165
166 /*
167 * Execute i2400m_report_hook in a workqueue
168 *
169 * Goes over the list of queued reports in i2400m->rx_reports and
170 * processes them.
171 *
172 * NOTE: refcounts on i2400m are not needed because we flush the
173 * workqueue this runs on (i2400m->work_queue) before destroying
174 * i2400m.
175 */
176 void i2400m_report_hook_work(struct work_struct *ws)
177 {
178 struct i2400m *i2400m = container_of(ws, struct i2400m, rx_report_ws);
179 struct device *dev = i2400m_dev(i2400m);
180 struct i2400m_report_hook_args *args, *args_next;
181 LIST_HEAD(list);
182 unsigned long flags;
183
184 while (1) {
185 spin_lock_irqsave(&i2400m->rx_lock, flags);
186 list_splice_init(&i2400m->rx_reports, &list);
187 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
188 if (list_empty(&list))
189 break;
190 else
191 d_printf(1, dev, "processing queued reports\n");
192 list_for_each_entry_safe(args, args_next, &list, list_node) {
193 d_printf(2, dev, "processing queued report %p\n", args);
194 i2400m_report_hook(i2400m, args->l3l4_hdr, args->size);
195 kfree_skb(args->skb_rx);
196 list_del(&args->list_node);
197 kfree(args);
198 }
199 }
200 }
201
202
203 /*
204 * Flush the list of queued reports
205 */
206 static
207 void i2400m_report_hook_flush(struct i2400m *i2400m)
208 {
209 struct device *dev = i2400m_dev(i2400m);
210 struct i2400m_report_hook_args *args, *args_next;
211 LIST_HEAD(list);
212 unsigned long flags;
213
214 d_printf(1, dev, "flushing queued reports\n");
215 spin_lock_irqsave(&i2400m->rx_lock, flags);
216 list_splice_init(&i2400m->rx_reports, &list);
217 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
218 list_for_each_entry_safe(args, args_next, &list, list_node) {
219 d_printf(2, dev, "flushing queued report %p\n", args);
220 kfree_skb(args->skb_rx);
221 list_del(&args->list_node);
222 kfree(args);
223 }
224 }
225
226
227 /*
228 * Queue a report for later processing
229 *
230 * @i2400m: device descriptor
231 * @skb_rx: skb that contains the payload (for reference counting)
232 * @l3l4_hdr: pointer to the control
233 * @size: size of the message
234 */
235 static
236 void i2400m_report_hook_queue(struct i2400m *i2400m, struct sk_buff *skb_rx,
237 const void *l3l4_hdr, size_t size)
238 {
239 struct device *dev = i2400m_dev(i2400m);
240 unsigned long flags;
241 struct i2400m_report_hook_args *args;
242
243 args = kzalloc(sizeof(*args), GFP_NOIO);
244 if (args) {
245 args->skb_rx = skb_get(skb_rx);
246 args->l3l4_hdr = l3l4_hdr;
247 args->size = size;
248 spin_lock_irqsave(&i2400m->rx_lock, flags);
249 list_add_tail(&args->list_node, &i2400m->rx_reports);
250 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
251 d_printf(2, dev, "queued report %p\n", args);
252 rmb(); /* see i2400m->ready's documentation */
253 if (likely(i2400m->ready)) /* only send if up */
254 queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
255 } else {
256 if (printk_ratelimit())
257 dev_err(dev, "%s:%u: Can't allocate %zu B\n",
258 __func__, __LINE__, sizeof(*args));
259 }
260 }
261
262
263 /*
264 * Process an ack to a command
265 *
266 * @i2400m: device descriptor
267 * @payload: pointer to message
268 * @size: size of the message
269 *
270 * Pass the acknodledgment (in an skb) to the thread that is waiting
271 * for it in i2400m->msg_completion.
272 *
273 * We need to coordinate properly with the thread waiting for the
274 * ack. Check if it is waiting or if it is gone. We loose the spinlock
275 * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
276 * but this is not so speed critical).
277 */
278 static
279 void i2400m_rx_ctl_ack(struct i2400m *i2400m,
280 const void *payload, size_t size)
281 {
282 struct device *dev = i2400m_dev(i2400m);
283 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
284 unsigned long flags;
285 struct sk_buff *ack_skb;
286
287 /* Anyone waiting for an answer? */
288 spin_lock_irqsave(&i2400m->rx_lock, flags);
289 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
290 dev_err(dev, "Huh? reply to command with no waiters\n");
291 goto error_no_waiter;
292 }
293 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
294
295 ack_skb = wimax_msg_alloc(wimax_dev, NULL, payload, size, GFP_KERNEL);
296
297 /* Check waiter didn't time out waiting for the answer... */
298 spin_lock_irqsave(&i2400m->rx_lock, flags);
299 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
300 d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
301 goto error_waiter_cancelled;
302 }
303 if (ack_skb == NULL) {
304 dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
305 i2400m->ack_skb = ERR_PTR(-ENOMEM);
306 } else
307 i2400m->ack_skb = ack_skb;
308 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
309 complete(&i2400m->msg_completion);
310 return;
311
312 error_waiter_cancelled:
313 kfree_skb(ack_skb);
314 error_no_waiter:
315 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
316 }
317
318
319 /*
320 * Receive and process a control payload
321 *
322 * @i2400m: device descriptor
323 * @skb_rx: skb that contains the payload (for reference counting)
324 * @payload: pointer to message
325 * @size: size of the message
326 *
327 * There are two types of control RX messages: reports (asynchronous,
328 * like your every day interrupts) and 'acks' (reponses to a command,
329 * get or set request).
330 *
331 * If it is a report, we run hooks on it (to extract information for
332 * things we need to do in the driver) and then pass it over to the
333 * WiMAX stack to send it to user space.
334 *
335 * NOTE: report processing is done in a workqueue specific to the
336 * generic driver, to avoid deadlocks in the system.
337 *
338 * If it is not a report, it is an ack to a previously executed
339 * command, set or get, so wake up whoever is waiting for it from
340 * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
341 *
342 * Note that the sizes we pass to other functions from here are the
343 * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
344 * verified in _msg_size_check() that they are congruent.
345 *
346 * For reports: We can't clone the original skb where the data is
347 * because we need to send this up via netlink; netlink has to add
348 * headers and we can't overwrite what's preceeding the payload...as
349 * it is another message. So we just dup them.
350 */
351 static
352 void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
353 const void *payload, size_t size)
354 {
355 int result;
356 struct device *dev = i2400m_dev(i2400m);
357 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
358 unsigned msg_type;
359
360 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
361 if (result < 0) {
362 dev_err(dev, "HW BUG? device sent a bad message: %d\n",
363 result);
364 goto error_check;
365 }
366 msg_type = le16_to_cpu(l3l4_hdr->type);
367 d_printf(1, dev, "%s 0x%04x: %zu bytes\n",
368 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
369 msg_type, size);
370 d_dump(2, dev, l3l4_hdr, size);
371 if (msg_type & I2400M_MT_REPORT_MASK) {
372 /*
373 * Process each report
374 *
375 * - has to be ran serialized as well
376 *
377 * - the handling might force the execution of
378 * commands. That might cause reentrancy issues with
379 * bus-specific subdrivers and workqueues, so the we
380 * run it in a separate workqueue.
381 *
382 * - when the driver is not yet ready to handle them,
383 * they are queued and at some point the queue is
384 * restarted [NOTE: we can't queue SKBs directly, as
385 * this might be a piece of a SKB, not the whole
386 * thing, and this is cheaper than cloning the
387 * SKB].
388 *
389 * Note we don't do refcounting for the device
390 * structure; this is because before destroying
391 * 'i2400m', we make sure to flush the
392 * i2400m->work_queue, so there are no issues.
393 */
394 i2400m_report_hook_queue(i2400m, skb_rx, l3l4_hdr, size);
395 if (unlikely(i2400m->trace_msg_from_user))
396 wimax_msg(&i2400m->wimax_dev, "echo",
397 l3l4_hdr, size, GFP_KERNEL);
398 result = wimax_msg(&i2400m->wimax_dev, NULL, l3l4_hdr, size,
399 GFP_KERNEL);
400 if (result < 0)
401 dev_err(dev, "error sending report to userspace: %d\n",
402 result);
403 } else /* an ack to a CMD, GET or SET */
404 i2400m_rx_ctl_ack(i2400m, payload, size);
405 error_check:
406 return;
407 }
408
409
410 /*
411 * Receive and send up a trace
412 *
413 * @i2400m: device descriptor
414 * @skb_rx: skb that contains the trace (for reference counting)
415 * @payload: pointer to trace message inside the skb
416 * @size: size of the message
417 *
418 * THe i2400m might produce trace information (diagnostics) and we
419 * send them through a different kernel-to-user pipe (to avoid
420 * clogging it).
421 *
422 * As in i2400m_rx_ctl(), we can't clone the original skb where the
423 * data is because we need to send this up via netlink; netlink has to
424 * add headers and we can't overwrite what's preceeding the
425 * payload...as it is another message. So we just dup them.
426 */
427 static
428 void i2400m_rx_trace(struct i2400m *i2400m,
429 const void *payload, size_t size)
430 {
431 int result;
432 struct device *dev = i2400m_dev(i2400m);
433 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
434 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
435 unsigned msg_type;
436
437 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
438 if (result < 0) {
439 dev_err(dev, "HW BUG? device sent a bad trace message: %d\n",
440 result);
441 goto error_check;
442 }
443 msg_type = le16_to_cpu(l3l4_hdr->type);
444 d_printf(1, dev, "Trace %s 0x%04x: %zu bytes\n",
445 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
446 msg_type, size);
447 d_dump(2, dev, l3l4_hdr, size);
448 result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
449 if (result < 0)
450 dev_err(dev, "error sending trace to userspace: %d\n",
451 result);
452 error_check:
453 return;
454 }
455
456
457 /*
458 * Reorder queue data stored on skb->cb while the skb is queued in the
459 * reorder queues.
460 */
461 struct i2400m_roq_data {
462 unsigned sn; /* Serial number for the skb */
463 enum i2400m_cs cs; /* packet type for the skb */
464 };
465
466
467 /*
468 * ReOrder Queue
469 *
470 * @ws: Window Start; sequence number where the current window start
471 * is for this queue
472 * @queue: the skb queue itself
473 * @log: circular ring buffer used to log information about the
474 * reorder process in this queue that can be displayed in case of
475 * error to help diagnose it.
476 *
477 * This is the head for a list of skbs. In the skb->cb member of the
478 * skb when queued here contains a 'struct i2400m_roq_data' were we
479 * store the sequence number (sn) and the cs (packet type) coming from
480 * the RX payload header from the device.
481 */
482 struct i2400m_roq
483 {
484 unsigned ws;
485 struct sk_buff_head queue;
486 struct i2400m_roq_log *log;
487 };
488
489
490 static
491 void __i2400m_roq_init(struct i2400m_roq *roq)
492 {
493 roq->ws = 0;
494 skb_queue_head_init(&roq->queue);
495 }
496
497
498 static
499 unsigned __i2400m_roq_index(struct i2400m *i2400m, struct i2400m_roq *roq)
500 {
501 return ((unsigned long) roq - (unsigned long) i2400m->rx_roq)
502 / sizeof(*roq);
503 }
504
505
506 /*
507 * Normalize a sequence number based on the queue's window start
508 *
509 * nsn = (sn - ws) % 2048
510 *
511 * Note that if @sn < @roq->ws, we still need a positive number; %'s
512 * sign is implementation specific, so we normalize it by adding 2048
513 * to bring it to be positive.
514 */
515 static
516 unsigned __i2400m_roq_nsn(struct i2400m_roq *roq, unsigned sn)
517 {
518 int r;
519 r = ((int) sn - (int) roq->ws) % 2048;
520 if (r < 0)
521 r += 2048;
522 return r;
523 }
524
525
526 /*
527 * Circular buffer to keep the last N reorder operations
528 *
529 * In case something fails, dumb then to try to come up with what
530 * happened.
531 */
532 enum {
533 I2400M_ROQ_LOG_LENGTH = 32,
534 };
535
536 struct i2400m_roq_log {
537 struct i2400m_roq_log_entry {
538 enum i2400m_ro_type type;
539 unsigned ws, count, sn, nsn, new_ws;
540 } entry[I2400M_ROQ_LOG_LENGTH];
541 unsigned in, out;
542 };
543
544
545 /* Print a log entry */
546 static
547 void i2400m_roq_log_entry_print(struct i2400m *i2400m, unsigned index,
548 unsigned e_index,
549 struct i2400m_roq_log_entry *e)
550 {
551 struct device *dev = i2400m_dev(i2400m);
552
553 switch(e->type) {
554 case I2400M_RO_TYPE_RESET:
555 dev_err(dev, "q#%d reset ws %u cnt %u sn %u/%u"
556 " - new nws %u\n",
557 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
558 break;
559 case I2400M_RO_TYPE_PACKET:
560 dev_err(dev, "q#%d queue ws %u cnt %u sn %u/%u\n",
561 index, e->ws, e->count, e->sn, e->nsn);
562 break;
563 case I2400M_RO_TYPE_WS:
564 dev_err(dev, "q#%d update_ws ws %u cnt %u sn %u/%u"
565 " - new nws %u\n",
566 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
567 break;
568 case I2400M_RO_TYPE_PACKET_WS:
569 dev_err(dev, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
570 " - new nws %u\n",
571 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
572 break;
573 default:
574 dev_err(dev, "q#%d BUG? entry %u - unknown type %u\n",
575 index, e_index, e->type);
576 break;
577 }
578 }
579
580
581 static
582 void i2400m_roq_log_add(struct i2400m *i2400m,
583 struct i2400m_roq *roq, enum i2400m_ro_type type,
584 unsigned ws, unsigned count, unsigned sn,
585 unsigned nsn, unsigned new_ws)
586 {
587 struct i2400m_roq_log_entry *e;
588 unsigned cnt_idx;
589 int index = __i2400m_roq_index(i2400m, roq);
590
591 /* if we run out of space, we eat from the end */
592 if (roq->log->in - roq->log->out == I2400M_ROQ_LOG_LENGTH)
593 roq->log->out++;
594 cnt_idx = roq->log->in++ % I2400M_ROQ_LOG_LENGTH;
595 e = &roq->log->entry[cnt_idx];
596
597 e->type = type;
598 e->ws = ws;
599 e->count = count;
600 e->sn = sn;
601 e->nsn = nsn;
602 e->new_ws = new_ws;
603
604 if (d_test(1))
605 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
606 }
607
608
609 /* Dump all the entries in the FIFO and reinitialize it */
610 static
611 void i2400m_roq_log_dump(struct i2400m *i2400m, struct i2400m_roq *roq)
612 {
613 unsigned cnt, cnt_idx;
614 struct i2400m_roq_log_entry *e;
615 int index = __i2400m_roq_index(i2400m, roq);
616
617 BUG_ON(roq->log->out > roq->log->in);
618 for (cnt = roq->log->out; cnt < roq->log->in; cnt++) {
619 cnt_idx = cnt % I2400M_ROQ_LOG_LENGTH;
620 e = &roq->log->entry[cnt_idx];
621 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
622 memset(e, 0, sizeof(*e));
623 }
624 roq->log->in = roq->log->out = 0;
625 }
626
627
628 /*
629 * Backbone for the queuing of an skb (by normalized sequence number)
630 *
631 * @i2400m: device descriptor
632 * @roq: reorder queue where to add
633 * @skb: the skb to add
634 * @sn: the sequence number of the skb
635 * @nsn: the normalized sequence number of the skb (pre-computed by the
636 * caller from the @sn and @roq->ws).
637 *
638 * We try first a couple of quick cases:
639 *
640 * - the queue is empty
641 * - the skb would be appended to the queue
642 *
643 * These will be the most common operations.
644 *
645 * If these fail, then we have to do a sorted insertion in the queue,
646 * which is the slowest path.
647 *
648 * We don't have to acquire a reference count as we are going to own it.
649 */
650 static
651 void __i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
652 struct sk_buff *skb, unsigned sn, unsigned nsn)
653 {
654 struct device *dev = i2400m_dev(i2400m);
655 struct sk_buff *skb_itr;
656 struct i2400m_roq_data *roq_data_itr, *roq_data;
657 unsigned nsn_itr;
658
659 d_fnstart(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
660 i2400m, roq, skb, sn, nsn);
661
662 roq_data = (struct i2400m_roq_data *) &skb->cb;
663 BUILD_BUG_ON(sizeof(*roq_data) > sizeof(skb->cb));
664 roq_data->sn = sn;
665 d_printf(3, dev, "ERX: roq %p [ws %u] nsn %d sn %u\n",
666 roq, roq->ws, nsn, roq_data->sn);
667
668 /* Queues will be empty on not-so-bad environments, so try
669 * that first */
670 if (skb_queue_empty(&roq->queue)) {
671 d_printf(2, dev, "ERX: roq %p - first one\n", roq);
672 __skb_queue_head(&roq->queue, skb);
673 goto out;
674 }
675 /* Now try append, as most of the operations will be that */
676 skb_itr = skb_peek_tail(&roq->queue);
677 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
678 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
679 /* NSN bounds assumed correct (checked when it was queued) */
680 if (nsn >= nsn_itr) {
681 d_printf(2, dev, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
682 roq, skb_itr, nsn_itr, roq_data_itr->sn);
683 __skb_queue_tail(&roq->queue, skb);
684 goto out;
685 }
686 /* None of the fast paths option worked. Iterate to find the
687 * right spot where to insert the packet; we know the queue is
688 * not empty, so we are not the first ones; we also know we
689 * are not going to be the last ones. The list is sorted, so
690 * we have to insert before the the first guy with an nsn_itr
691 * greater that our nsn. */
692 skb_queue_walk(&roq->queue, skb_itr) {
693 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
694 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
695 /* NSN bounds assumed correct (checked when it was queued) */
696 if (nsn_itr > nsn) {
697 d_printf(2, dev, "ERX: roq %p - queued before %p "
698 "(nsn %d sn %u)\n", roq, skb_itr, nsn_itr,
699 roq_data_itr->sn);
700 __skb_queue_before(&roq->queue, skb_itr, skb);
701 goto out;
702 }
703 }
704 /* If we get here, that is VERY bad -- print info to help
705 * diagnose and crash it */
706 dev_err(dev, "SW BUG? failed to insert packet\n");
707 dev_err(dev, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
708 roq, roq->ws, skb, nsn, roq_data->sn);
709 skb_queue_walk(&roq->queue, skb_itr) {
710 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
711 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
712 /* NSN bounds assumed correct (checked when it was queued) */
713 dev_err(dev, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
714 roq, skb_itr, nsn_itr, roq_data_itr->sn);
715 }
716 BUG();
717 out:
718 d_fnend(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
719 i2400m, roq, skb, sn, nsn);
720 }
721
722
723 /*
724 * Backbone for the update window start operation
725 *
726 * @i2400m: device descriptor
727 * @roq: Reorder queue
728 * @sn: New sequence number
729 *
730 * Updates the window start of a queue; when doing so, it must deliver
731 * to the networking stack all the queued skb's whose normalized
732 * sequence number is lower than the new normalized window start.
733 */
734 static
735 unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
736 unsigned sn)
737 {
738 struct device *dev = i2400m_dev(i2400m);
739 struct sk_buff *skb_itr, *tmp_itr;
740 struct i2400m_roq_data *roq_data_itr;
741 unsigned new_nws, nsn_itr;
742
743 new_nws = __i2400m_roq_nsn(roq, sn);
744 if (unlikely(new_nws >= 1024) && d_test(1)) {
745 dev_err(dev, "SW BUG? __update_ws new_nws %u (sn %u ws %u)\n",
746 new_nws, sn, roq->ws);
747 WARN_ON(1);
748 i2400m_roq_log_dump(i2400m, roq);
749 }
750 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
751 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
752 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
753 /* NSN bounds assumed correct (checked when it was queued) */
754 if (nsn_itr < new_nws) {
755 d_printf(2, dev, "ERX: roq %p - release skb %p "
756 "(nsn %u/%u new nws %u)\n",
757 roq, skb_itr, nsn_itr, roq_data_itr->sn,
758 new_nws);
759 __skb_unlink(skb_itr, &roq->queue);
760 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
761 }
762 else
763 break; /* rest of packets all nsn_itr > nws */
764 }
765 roq->ws = sn;
766 return new_nws;
767 }
768
769
770 /*
771 * Reset a queue
772 *
773 * @i2400m: device descriptor
774 * @cin: Queue Index
775 *
776 * Deliver all the packets and reset the window-start to zero. Name is
777 * kind of misleading.
778 */
779 static
780 void i2400m_roq_reset(struct i2400m *i2400m, struct i2400m_roq *roq)
781 {
782 struct device *dev = i2400m_dev(i2400m);
783 struct sk_buff *skb_itr, *tmp_itr;
784 struct i2400m_roq_data *roq_data_itr;
785
786 d_fnstart(2, dev, "(i2400m %p roq %p)\n", i2400m, roq);
787 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_RESET,
788 roq->ws, skb_queue_len(&roq->queue),
789 ~0, ~0, 0);
790 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
791 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
792 d_printf(2, dev, "ERX: roq %p - release skb %p (sn %u)\n",
793 roq, skb_itr, roq_data_itr->sn);
794 __skb_unlink(skb_itr, &roq->queue);
795 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
796 }
797 roq->ws = 0;
798 d_fnend(2, dev, "(i2400m %p roq %p) = void\n", i2400m, roq);
799 }
800
801
802 /*
803 * Queue a packet
804 *
805 * @i2400m: device descriptor
806 * @cin: Queue Index
807 * @skb: containing the packet data
808 * @fbn: First block number of the packet in @skb
809 * @lbn: Last block number of the packet in @skb
810 *
811 * The hardware is asking the driver to queue a packet for later
812 * delivery to the networking stack.
813 */
814 static
815 void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
816 struct sk_buff * skb, unsigned lbn)
817 {
818 struct device *dev = i2400m_dev(i2400m);
819 unsigned nsn, len;
820
821 d_fnstart(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
822 i2400m, roq, skb, lbn);
823 len = skb_queue_len(&roq->queue);
824 nsn = __i2400m_roq_nsn(roq, lbn);
825 if (unlikely(nsn >= 1024)) {
826 dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
827 nsn, lbn, roq->ws);
828 i2400m_roq_log_dump(i2400m, roq);
829 i2400m_reset(i2400m, I2400M_RT_WARM);
830 } else {
831 __i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
832 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
833 roq->ws, len, lbn, nsn, ~0);
834 }
835 d_fnend(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
836 i2400m, roq, skb, lbn);
837 }
838
839
840 /*
841 * Update the window start in a reorder queue and deliver all skbs
842 * with a lower window start
843 *
844 * @i2400m: device descriptor
845 * @roq: Reorder queue
846 * @sn: New sequence number
847 */
848 static
849 void i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
850 unsigned sn)
851 {
852 struct device *dev = i2400m_dev(i2400m);
853 unsigned old_ws, nsn, len;
854
855 d_fnstart(2, dev, "(i2400m %p roq %p sn %u)\n", i2400m, roq, sn);
856 old_ws = roq->ws;
857 len = skb_queue_len(&roq->queue);
858 nsn = __i2400m_roq_update_ws(i2400m, roq, sn);
859 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_WS,
860 old_ws, len, sn, nsn, roq->ws);
861 d_fnstart(2, dev, "(i2400m %p roq %p sn %u) = void\n", i2400m, roq, sn);
862 }
863
864
865 /*
866 * Queue a packet and update the window start
867 *
868 * @i2400m: device descriptor
869 * @cin: Queue Index
870 * @skb: containing the packet data
871 * @fbn: First block number of the packet in @skb
872 * @sn: Last block number of the packet in @skb
873 *
874 * Note that unlike i2400m_roq_update_ws(), which sets the new window
875 * start to @sn, in here we'll set it to @sn + 1.
876 */
877 static
878 void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
879 struct sk_buff * skb, unsigned sn)
880 {
881 struct device *dev = i2400m_dev(i2400m);
882 unsigned nsn, old_ws, len;
883
884 d_fnstart(2, dev, "(i2400m %p roq %p skb %p sn %u)\n",
885 i2400m, roq, skb, sn);
886 len = skb_queue_len(&roq->queue);
887 nsn = __i2400m_roq_nsn(roq, sn);
888 old_ws = roq->ws;
889 if (unlikely(nsn >= 1024)) {
890 dev_err(dev, "SW BUG? queue_update_ws nsn %u (sn %u ws %u)\n",
891 nsn, sn, roq->ws);
892 i2400m_roq_log_dump(i2400m, roq);
893 i2400m_reset(i2400m, I2400M_RT_WARM);
894 } else {
895 /* if the queue is empty, don't bother as we'd queue
896 * it and inmediately unqueue it -- just deliver it */
897 if (len == 0) {
898 struct i2400m_roq_data *roq_data;
899 roq_data = (struct i2400m_roq_data *) &skb->cb;
900 i2400m_net_erx(i2400m, skb, roq_data->cs);
901 }
902 else
903 __i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
904 __i2400m_roq_update_ws(i2400m, roq, sn + 1);
905 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
906 old_ws, len, sn, nsn, roq->ws);
907 }
908 d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
909 i2400m, roq, skb, sn);
910 }
911
912
913 /*
914 * Receive and send up an extended data packet
915 *
916 * @i2400m: device descriptor
917 * @skb_rx: skb that contains the extended data packet
918 * @single_last: 1 if the payload is the only one or the last one of
919 * the skb.
920 * @payload: pointer to the packet's data inside the skb
921 * @size: size of the payload
922 *
923 * Starting in v1.4 of the i2400m's firmware, the device can send data
924 * packets to the host in an extended format that; this incudes a 16
925 * byte header (struct i2400m_pl_edata_hdr). Using this header's space
926 * we can fake ethernet headers for ethernet device emulation without
927 * having to copy packets around.
928 *
929 * This function handles said path.
930 *
931 *
932 * Receive and send up an extended data packet that requires no reordering
933 *
934 * @i2400m: device descriptor
935 * @skb_rx: skb that contains the extended data packet
936 * @single_last: 1 if the payload is the only one or the last one of
937 * the skb.
938 * @payload: pointer to the packet's data (past the actual extended
939 * data payload header).
940 * @size: size of the payload
941 *
942 * Pass over to the networking stack a data packet that might have
943 * reordering requirements.
944 *
945 * This needs to the decide if the skb in which the packet is
946 * contained can be reused or if it needs to be cloned. Then it has to
947 * be trimmed in the edges so that the beginning is the space for eth
948 * header and then pass it to i2400m_net_erx() for the stack
949 *
950 * Assumes the caller has verified the sanity of the payload (size,
951 * etc) already.
952 */
953 static
954 void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
955 unsigned single_last, const void *payload, size_t size)
956 {
957 struct device *dev = i2400m_dev(i2400m);
958 const struct i2400m_pl_edata_hdr *hdr = payload;
959 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
960 struct sk_buff *skb;
961 enum i2400m_cs cs;
962 u32 reorder;
963 unsigned ro_needed, ro_type, ro_cin, ro_sn;
964 struct i2400m_roq *roq;
965 struct i2400m_roq_data *roq_data;
966
967 BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
968
969 d_fnstart(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
970 "size %zu)\n", i2400m, skb_rx, single_last, payload, size);
971 if (size < sizeof(*hdr)) {
972 dev_err(dev, "ERX: HW BUG? message with short header (%zu "
973 "vs %zu bytes expected)\n", size, sizeof(*hdr));
974 goto error;
975 }
976
977 if (single_last) {
978 skb = skb_get(skb_rx);
979 d_printf(3, dev, "ERX: skb %p reusing\n", skb);
980 } else {
981 skb = skb_clone(skb_rx, GFP_KERNEL);
982 if (skb == NULL) {
983 dev_err(dev, "ERX: no memory to clone skb\n");
984 net_dev->stats.rx_dropped++;
985 goto error_skb_clone;
986 }
987 d_printf(3, dev, "ERX: skb %p cloned from %p\n", skb, skb_rx);
988 }
989 /* now we have to pull and trim so that the skb points to the
990 * beginning of the IP packet; the netdev part will add the
991 * ethernet header as needed - we know there is enough space
992 * because we checked in i2400m_rx_edata(). */
993 skb_pull(skb, payload + sizeof(*hdr) - (void *) skb->data);
994 skb_trim(skb, (void *) skb_end_pointer(skb) - payload - sizeof(*hdr));
995
996 reorder = le32_to_cpu(hdr->reorder);
997 ro_needed = reorder & I2400M_RO_NEEDED;
998 cs = hdr->cs;
999 if (ro_needed) {
1000 ro_type = (reorder >> I2400M_RO_TYPE_SHIFT) & I2400M_RO_TYPE;
1001 ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
1002 ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
1003
1004 roq = &i2400m->rx_roq[ro_cin];
1005 roq_data = (struct i2400m_roq_data *) &skb->cb;
1006 roq_data->sn = ro_sn;
1007 roq_data->cs = cs;
1008 d_printf(2, dev, "ERX: reorder needed: "
1009 "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
1010 ro_type, ro_cin, roq->ws, ro_sn,
1011 __i2400m_roq_nsn(roq, ro_sn), size);
1012 d_dump(2, dev, payload, size);
1013 switch(ro_type) {
1014 case I2400M_RO_TYPE_RESET:
1015 i2400m_roq_reset(i2400m, roq);
1016 kfree_skb(skb); /* no data here */
1017 break;
1018 case I2400M_RO_TYPE_PACKET:
1019 i2400m_roq_queue(i2400m, roq, skb, ro_sn);
1020 break;
1021 case I2400M_RO_TYPE_WS:
1022 i2400m_roq_update_ws(i2400m, roq, ro_sn);
1023 kfree_skb(skb); /* no data here */
1024 break;
1025 case I2400M_RO_TYPE_PACKET_WS:
1026 i2400m_roq_queue_update_ws(i2400m, roq, skb, ro_sn);
1027 break;
1028 default:
1029 dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
1030 }
1031 }
1032 else
1033 i2400m_net_erx(i2400m, skb, cs);
1034 error_skb_clone:
1035 error:
1036 d_fnend(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
1037 "size %zu) = void\n", i2400m, skb_rx, single_last, payload, size);
1038 }
1039
1040
1041 /*
1042 * Act on a received payload
1043 *
1044 * @i2400m: device instance
1045 * @skb_rx: skb where the transaction was received
1046 * @single_last: 1 this is the only payload or the last one (so the
1047 * skb can be reused instead of cloned).
1048 * @pld: payload descriptor
1049 * @payload: payload data
1050 *
1051 * Upon reception of a payload, look at its guts in the payload
1052 * descriptor and decide what to do with it. If it is a single payload
1053 * skb or if the last skb is a data packet, the skb will be referenced
1054 * and modified (so it doesn't have to be cloned).
1055 */
1056 static
1057 void i2400m_rx_payload(struct i2400m *i2400m, struct sk_buff *skb_rx,
1058 unsigned single_last, const struct i2400m_pld *pld,
1059 const void *payload)
1060 {
1061 struct device *dev = i2400m_dev(i2400m);
1062 size_t pl_size = i2400m_pld_size(pld);
1063 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1064
1065 d_printf(7, dev, "RX: received payload type %u, %zu bytes\n",
1066 pl_type, pl_size);
1067 d_dump(8, dev, payload, pl_size);
1068
1069 switch (pl_type) {
1070 case I2400M_PT_DATA:
1071 d_printf(3, dev, "RX: data payload %zu bytes\n", pl_size);
1072 i2400m_net_rx(i2400m, skb_rx, single_last, payload, pl_size);
1073 break;
1074 case I2400M_PT_CTRL:
1075 i2400m_rx_ctl(i2400m, skb_rx, payload, pl_size);
1076 break;
1077 case I2400M_PT_TRACE:
1078 i2400m_rx_trace(i2400m, payload, pl_size);
1079 break;
1080 case I2400M_PT_EDATA:
1081 d_printf(3, dev, "ERX: data payload %zu bytes\n", pl_size);
1082 i2400m_rx_edata(i2400m, skb_rx, single_last, payload, pl_size);
1083 break;
1084 default: /* Anything else shouldn't come to the host */
1085 if (printk_ratelimit())
1086 dev_err(dev, "RX: HW BUG? unexpected payload type %u\n",
1087 pl_type);
1088 }
1089 }
1090
1091
1092 /*
1093 * Check a received transaction's message header
1094 *
1095 * @i2400m: device descriptor
1096 * @msg_hdr: message header
1097 * @buf_size: size of the received buffer
1098 *
1099 * Check that the declarations done by a RX buffer message header are
1100 * sane and consistent with the amount of data that was received.
1101 */
1102 static
1103 int i2400m_rx_msg_hdr_check(struct i2400m *i2400m,
1104 const struct i2400m_msg_hdr *msg_hdr,
1105 size_t buf_size)
1106 {
1107 int result = -EIO;
1108 struct device *dev = i2400m_dev(i2400m);
1109 if (buf_size < sizeof(*msg_hdr)) {
1110 dev_err(dev, "RX: HW BUG? message with short header (%zu "
1111 "vs %zu bytes expected)\n", buf_size, sizeof(*msg_hdr));
1112 goto error;
1113 }
1114 if (msg_hdr->barker != cpu_to_le32(I2400M_D2H_MSG_BARKER)) {
1115 dev_err(dev, "RX: HW BUG? message received with unknown "
1116 "barker 0x%08x (buf_size %zu bytes)\n",
1117 le32_to_cpu(msg_hdr->barker), buf_size);
1118 goto error;
1119 }
1120 if (msg_hdr->num_pls == 0) {
1121 dev_err(dev, "RX: HW BUG? zero payload packets in message\n");
1122 goto error;
1123 }
1124 if (le16_to_cpu(msg_hdr->num_pls) > I2400M_MAX_PLS_IN_MSG) {
1125 dev_err(dev, "RX: HW BUG? message contains more payload "
1126 "than maximum; ignoring.\n");
1127 goto error;
1128 }
1129 result = 0;
1130 error:
1131 return result;
1132 }
1133
1134
1135 /*
1136 * Check a payload descriptor against the received data
1137 *
1138 * @i2400m: device descriptor
1139 * @pld: payload descriptor
1140 * @pl_itr: offset (in bytes) in the received buffer the payload is
1141 * located
1142 * @buf_size: size of the received buffer
1143 *
1144 * Given a payload descriptor (part of a RX buffer), check it is sane
1145 * and that the data it declares fits in the buffer.
1146 */
1147 static
1148 int i2400m_rx_pl_descr_check(struct i2400m *i2400m,
1149 const struct i2400m_pld *pld,
1150 size_t pl_itr, size_t buf_size)
1151 {
1152 int result = -EIO;
1153 struct device *dev = i2400m_dev(i2400m);
1154 size_t pl_size = i2400m_pld_size(pld);
1155 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1156
1157 if (pl_size > i2400m->bus_pl_size_max) {
1158 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu is "
1159 "bigger than maximum %zu; ignoring message\n",
1160 pl_itr, pl_size, i2400m->bus_pl_size_max);
1161 goto error;
1162 }
1163 if (pl_itr + pl_size > buf_size) { /* enough? */
1164 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu "
1165 "goes beyond the received buffer "
1166 "size (%zu bytes); ignoring message\n",
1167 pl_itr, pl_size, buf_size);
1168 goto error;
1169 }
1170 if (pl_type >= I2400M_PT_ILLEGAL) {
1171 dev_err(dev, "RX: HW BUG? illegal payload type %u; "
1172 "ignoring message\n", pl_type);
1173 goto error;
1174 }
1175 result = 0;
1176 error:
1177 return result;
1178 }
1179
1180
1181 /**
1182 * i2400m_rx - Receive a buffer of data from the device
1183 *
1184 * @i2400m: device descriptor
1185 * @skb: skbuff where the data has been received
1186 *
1187 * Parse in a buffer of data that contains an RX message sent from the
1188 * device. See the file header for the format. Run all checks on the
1189 * buffer header, then run over each payload's descriptors, verify
1190 * their consistency and act on each payload's contents. If
1191 * everything is successful, update the device's statistics.
1192 *
1193 * Note: You need to set the skb to contain only the length of the
1194 * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1195 *
1196 * Returns:
1197 *
1198 * 0 if ok, < 0 errno on error
1199 *
1200 * If ok, this function owns now the skb and the caller DOESN'T have
1201 * to run kfree_skb() on it. However, on error, the caller still owns
1202 * the skb and it is responsible for releasing it.
1203 */
1204 int i2400m_rx(struct i2400m *i2400m, struct sk_buff *skb)
1205 {
1206 int i, result;
1207 struct device *dev = i2400m_dev(i2400m);
1208 const struct i2400m_msg_hdr *msg_hdr;
1209 size_t pl_itr, pl_size, skb_len;
1210 unsigned long flags;
1211 unsigned num_pls, single_last;
1212
1213 skb_len = skb->len;
1214 d_fnstart(4, dev, "(i2400m %p skb %p [size %zu])\n",
1215 i2400m, skb, skb_len);
1216 result = -EIO;
1217 msg_hdr = (void *) skb->data;
1218 result = i2400m_rx_msg_hdr_check(i2400m, msg_hdr, skb->len);
1219 if (result < 0)
1220 goto error_msg_hdr_check;
1221 result = -EIO;
1222 num_pls = le16_to_cpu(msg_hdr->num_pls);
1223 pl_itr = sizeof(*msg_hdr) + /* Check payload descriptor(s) */
1224 num_pls * sizeof(msg_hdr->pld[0]);
1225 pl_itr = ALIGN(pl_itr, I2400M_PL_ALIGN);
1226 if (pl_itr > skb->len) { /* got all the payload descriptors? */
1227 dev_err(dev, "RX: HW BUG? message too short (%u bytes) for "
1228 "%u payload descriptors (%zu each, total %zu)\n",
1229 skb->len, num_pls, sizeof(msg_hdr->pld[0]), pl_itr);
1230 goto error_pl_descr_short;
1231 }
1232 /* Walk each payload payload--check we really got it */
1233 for (i = 0; i < num_pls; i++) {
1234 /* work around old gcc warnings */
1235 pl_size = i2400m_pld_size(&msg_hdr->pld[i]);
1236 result = i2400m_rx_pl_descr_check(i2400m, &msg_hdr->pld[i],
1237 pl_itr, skb->len);
1238 if (result < 0)
1239 goto error_pl_descr_check;
1240 single_last = num_pls == 1 || i == num_pls - 1;
1241 i2400m_rx_payload(i2400m, skb, single_last, &msg_hdr->pld[i],
1242 skb->data + pl_itr);
1243 pl_itr += ALIGN(pl_size, I2400M_PL_ALIGN);
1244 cond_resched(); /* Don't monopolize */
1245 }
1246 kfree_skb(skb);
1247 /* Update device statistics */
1248 spin_lock_irqsave(&i2400m->rx_lock, flags);
1249 i2400m->rx_pl_num += i;
1250 if (i > i2400m->rx_pl_max)
1251 i2400m->rx_pl_max = i;
1252 if (i < i2400m->rx_pl_min)
1253 i2400m->rx_pl_min = i;
1254 i2400m->rx_num++;
1255 i2400m->rx_size_acc += skb->len;
1256 if (skb->len < i2400m->rx_size_min)
1257 i2400m->rx_size_min = skb->len;
1258 if (skb->len > i2400m->rx_size_max)
1259 i2400m->rx_size_max = skb->len;
1260 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1261 error_pl_descr_check:
1262 error_pl_descr_short:
1263 error_msg_hdr_check:
1264 d_fnend(4, dev, "(i2400m %p skb %p [size %zu]) = %d\n",
1265 i2400m, skb, skb_len, result);
1266 return result;
1267 }
1268 EXPORT_SYMBOL_GPL(i2400m_rx);
1269
1270
1271 void i2400m_unknown_barker(struct i2400m *i2400m,
1272 const void *buf, size_t size)
1273 {
1274 struct device *dev = i2400m_dev(i2400m);
1275 char prefix[64];
1276 const __le32 *barker = buf;
1277 dev_err(dev, "RX: HW BUG? unknown barker %08x, "
1278 "dropping %zu bytes\n", le32_to_cpu(*barker), size);
1279 snprintf(prefix, sizeof(prefix), "%s %s: ",
1280 dev_driver_string(dev), dev_name(dev));
1281 if (size > 64) {
1282 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1283 8, 4, buf, 64, 0);
1284 printk(KERN_ERR "%s... (only first 64 bytes "
1285 "dumped)\n", prefix);
1286 } else
1287 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1288 8, 4, buf, size, 0);
1289 }
1290 EXPORT_SYMBOL(i2400m_unknown_barker);
1291
1292
1293 /*
1294 * Initialize the RX queue and infrastructure
1295 *
1296 * This sets up all the RX reordering infrastructures, which will not
1297 * be used if reordering is not enabled or if the firmware does not
1298 * support it. The device is told to do reordering in
1299 * i2400m_dev_initialize(), where it also looks at the value of the
1300 * i2400m->rx_reorder switch before taking a decission.
1301 *
1302 * Note we allocate the roq queues in one chunk and the actual logging
1303 * support for it (logging) in another one and then we setup the
1304 * pointers from the first to the last.
1305 */
1306 int i2400m_rx_setup(struct i2400m *i2400m)
1307 {
1308 int result = 0;
1309 struct device *dev = i2400m_dev(i2400m);
1310
1311 i2400m->rx_reorder = i2400m_rx_reorder_disabled? 0 : 1;
1312 if (i2400m->rx_reorder) {
1313 unsigned itr;
1314 size_t size;
1315 struct i2400m_roq_log *rd;
1316
1317 result = -ENOMEM;
1318
1319 size = sizeof(i2400m->rx_roq[0]) * (I2400M_RO_CIN + 1);
1320 i2400m->rx_roq = kzalloc(size, GFP_KERNEL);
1321 if (i2400m->rx_roq == NULL) {
1322 dev_err(dev, "RX: cannot allocate %zu bytes for "
1323 "reorder queues\n", size);
1324 goto error_roq_alloc;
1325 }
1326
1327 size = sizeof(*i2400m->rx_roq[0].log) * (I2400M_RO_CIN + 1);
1328 rd = kzalloc(size, GFP_KERNEL);
1329 if (rd == NULL) {
1330 dev_err(dev, "RX: cannot allocate %zu bytes for "
1331 "reorder queues log areas\n", size);
1332 result = -ENOMEM;
1333 goto error_roq_log_alloc;
1334 }
1335
1336 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++) {
1337 __i2400m_roq_init(&i2400m->rx_roq[itr]);
1338 i2400m->rx_roq[itr].log = &rd[itr];
1339 }
1340 }
1341 return 0;
1342
1343 error_roq_log_alloc:
1344 kfree(i2400m->rx_roq);
1345 error_roq_alloc:
1346 return result;
1347 }
1348
1349
1350 /* Tear down the RX queue and infrastructure */
1351 void i2400m_rx_release(struct i2400m *i2400m)
1352 {
1353 if (i2400m->rx_reorder) {
1354 unsigned itr;
1355 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++)
1356 __skb_queue_purge(&i2400m->rx_roq[itr].queue);
1357 kfree(i2400m->rx_roq[0].log);
1358 kfree(i2400m->rx_roq);
1359 }
1360 /* at this point, nothing can be received... */
1361 i2400m_report_hook_flush(i2400m);
1362 }