]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath10k/pci.c
ath10k: remove redundant error check
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath10k / pci.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23
24 #include "core.h"
25 #include "debug.h"
26
27 #include "targaddrs.h"
28 #include "bmi.h"
29
30 #include "hif.h"
31 #include "htc.h"
32
33 #include "ce.h"
34 #include "pci.h"
35
36 enum ath10k_pci_reset_mode {
37 ATH10K_PCI_RESET_AUTO = 0,
38 ATH10K_PCI_RESET_WARM_ONLY = 1,
39 };
40
41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
43
44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
46
47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
49
50 /* how long wait to wait for target to initialise, in ms */
51 #define ATH10K_PCI_TARGET_WAIT 3000
52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
53
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
60 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
61 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
62 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
63 {0}
64 };
65
66 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
67 /* QCA988X pre 2.0 chips are not supported because they need some nasty
68 * hacks. ath10k doesn't have them and these devices crash horribly
69 * because of that.
70 */
71 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
72
73 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
74 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
75 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
76 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
78
79 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
84
85 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
86
87 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
88
89 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
90
91 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
92 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
93
94 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
95 };
96
97 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
98 static int ath10k_pci_cold_reset(struct ath10k *ar);
99 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
100 static int ath10k_pci_init_irq(struct ath10k *ar);
101 static int ath10k_pci_deinit_irq(struct ath10k *ar);
102 static int ath10k_pci_request_irq(struct ath10k *ar);
103 static void ath10k_pci_free_irq(struct ath10k *ar);
104 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
105 struct ath10k_ce_pipe *rx_pipe,
106 struct bmi_xfer *xfer);
107 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
108 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
109 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
111 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
112 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
114
115 static struct ce_attr host_ce_config_wlan[] = {
116 /* CE0: host->target HTC control and raw streams */
117 {
118 .flags = CE_ATTR_FLAGS,
119 .src_nentries = 16,
120 .src_sz_max = 256,
121 .dest_nentries = 0,
122 .send_cb = ath10k_pci_htc_tx_cb,
123 },
124
125 /* CE1: target->host HTT + HTC control */
126 {
127 .flags = CE_ATTR_FLAGS,
128 .src_nentries = 0,
129 .src_sz_max = 2048,
130 .dest_nentries = 512,
131 .recv_cb = ath10k_pci_htt_htc_rx_cb,
132 },
133
134 /* CE2: target->host WMI */
135 {
136 .flags = CE_ATTR_FLAGS,
137 .src_nentries = 0,
138 .src_sz_max = 2048,
139 .dest_nentries = 128,
140 .recv_cb = ath10k_pci_htc_rx_cb,
141 },
142
143 /* CE3: host->target WMI */
144 {
145 .flags = CE_ATTR_FLAGS,
146 .src_nentries = 32,
147 .src_sz_max = 2048,
148 .dest_nentries = 0,
149 .send_cb = ath10k_pci_htc_tx_cb,
150 },
151
152 /* CE4: host->target HTT */
153 {
154 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
155 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
156 .src_sz_max = 256,
157 .dest_nentries = 0,
158 .send_cb = ath10k_pci_htt_tx_cb,
159 },
160
161 /* CE5: target->host HTT (HIF->HTT) */
162 {
163 .flags = CE_ATTR_FLAGS,
164 .src_nentries = 0,
165 .src_sz_max = 512,
166 .dest_nentries = 512,
167 .recv_cb = ath10k_pci_htt_rx_cb,
168 },
169
170 /* CE6: target autonomous hif_memcpy */
171 {
172 .flags = CE_ATTR_FLAGS,
173 .src_nentries = 0,
174 .src_sz_max = 0,
175 .dest_nentries = 0,
176 },
177
178 /* CE7: ce_diag, the Diagnostic Window */
179 {
180 .flags = CE_ATTR_FLAGS,
181 .src_nentries = 2,
182 .src_sz_max = DIAG_TRANSFER_LIMIT,
183 .dest_nentries = 2,
184 },
185
186 /* CE8: target->host pktlog */
187 {
188 .flags = CE_ATTR_FLAGS,
189 .src_nentries = 0,
190 .src_sz_max = 2048,
191 .dest_nentries = 128,
192 .recv_cb = ath10k_pci_pktlog_rx_cb,
193 },
194
195 /* CE9 target autonomous qcache memcpy */
196 {
197 .flags = CE_ATTR_FLAGS,
198 .src_nentries = 0,
199 .src_sz_max = 0,
200 .dest_nentries = 0,
201 },
202
203 /* CE10: target autonomous hif memcpy */
204 {
205 .flags = CE_ATTR_FLAGS,
206 .src_nentries = 0,
207 .src_sz_max = 0,
208 .dest_nentries = 0,
209 },
210
211 /* CE11: target autonomous hif memcpy */
212 {
213 .flags = CE_ATTR_FLAGS,
214 .src_nentries = 0,
215 .src_sz_max = 0,
216 .dest_nentries = 0,
217 },
218 };
219
220 /* Target firmware's Copy Engine configuration. */
221 static struct ce_pipe_config target_ce_config_wlan[] = {
222 /* CE0: host->target HTC control and raw streams */
223 {
224 .pipenum = __cpu_to_le32(0),
225 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
226 .nentries = __cpu_to_le32(32),
227 .nbytes_max = __cpu_to_le32(256),
228 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
229 .reserved = __cpu_to_le32(0),
230 },
231
232 /* CE1: target->host HTT + HTC control */
233 {
234 .pipenum = __cpu_to_le32(1),
235 .pipedir = __cpu_to_le32(PIPEDIR_IN),
236 .nentries = __cpu_to_le32(32),
237 .nbytes_max = __cpu_to_le32(2048),
238 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
239 .reserved = __cpu_to_le32(0),
240 },
241
242 /* CE2: target->host WMI */
243 {
244 .pipenum = __cpu_to_le32(2),
245 .pipedir = __cpu_to_le32(PIPEDIR_IN),
246 .nentries = __cpu_to_le32(64),
247 .nbytes_max = __cpu_to_le32(2048),
248 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
249 .reserved = __cpu_to_le32(0),
250 },
251
252 /* CE3: host->target WMI */
253 {
254 .pipenum = __cpu_to_le32(3),
255 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
256 .nentries = __cpu_to_le32(32),
257 .nbytes_max = __cpu_to_le32(2048),
258 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
259 .reserved = __cpu_to_le32(0),
260 },
261
262 /* CE4: host->target HTT */
263 {
264 .pipenum = __cpu_to_le32(4),
265 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
266 .nentries = __cpu_to_le32(256),
267 .nbytes_max = __cpu_to_le32(256),
268 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
269 .reserved = __cpu_to_le32(0),
270 },
271
272 /* NB: 50% of src nentries, since tx has 2 frags */
273
274 /* CE5: target->host HTT (HIF->HTT) */
275 {
276 .pipenum = __cpu_to_le32(5),
277 .pipedir = __cpu_to_le32(PIPEDIR_IN),
278 .nentries = __cpu_to_le32(32),
279 .nbytes_max = __cpu_to_le32(512),
280 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
281 .reserved = __cpu_to_le32(0),
282 },
283
284 /* CE6: Reserved for target autonomous hif_memcpy */
285 {
286 .pipenum = __cpu_to_le32(6),
287 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
288 .nentries = __cpu_to_le32(32),
289 .nbytes_max = __cpu_to_le32(4096),
290 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
291 .reserved = __cpu_to_le32(0),
292 },
293
294 /* CE7 used only by Host */
295 {
296 .pipenum = __cpu_to_le32(7),
297 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
298 .nentries = __cpu_to_le32(0),
299 .nbytes_max = __cpu_to_le32(0),
300 .flags = __cpu_to_le32(0),
301 .reserved = __cpu_to_le32(0),
302 },
303
304 /* CE8 target->host packtlog */
305 {
306 .pipenum = __cpu_to_le32(8),
307 .pipedir = __cpu_to_le32(PIPEDIR_IN),
308 .nentries = __cpu_to_le32(64),
309 .nbytes_max = __cpu_to_le32(2048),
310 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
311 .reserved = __cpu_to_le32(0),
312 },
313
314 /* CE9 target autonomous qcache memcpy */
315 {
316 .pipenum = __cpu_to_le32(9),
317 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
318 .nentries = __cpu_to_le32(32),
319 .nbytes_max = __cpu_to_le32(2048),
320 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
321 .reserved = __cpu_to_le32(0),
322 },
323
324 /* It not necessary to send target wlan configuration for CE10 & CE11
325 * as these CEs are not actively used in target.
326 */
327 };
328
329 /*
330 * Map from service/endpoint to Copy Engine.
331 * This table is derived from the CE_PCI TABLE, above.
332 * It is passed to the Target at startup for use by firmware.
333 */
334 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
335 {
336 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
337 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
338 __cpu_to_le32(3),
339 },
340 {
341 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
342 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
343 __cpu_to_le32(2),
344 },
345 {
346 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
347 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
348 __cpu_to_le32(3),
349 },
350 {
351 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
352 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
353 __cpu_to_le32(2),
354 },
355 {
356 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
357 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
358 __cpu_to_le32(3),
359 },
360 {
361 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
362 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
363 __cpu_to_le32(2),
364 },
365 {
366 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
367 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
368 __cpu_to_le32(3),
369 },
370 {
371 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
372 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
373 __cpu_to_le32(2),
374 },
375 {
376 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
377 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
378 __cpu_to_le32(3),
379 },
380 {
381 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
382 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
383 __cpu_to_le32(2),
384 },
385 {
386 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
387 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
388 __cpu_to_le32(0),
389 },
390 {
391 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
392 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
393 __cpu_to_le32(1),
394 },
395 { /* not used */
396 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
397 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
398 __cpu_to_le32(0),
399 },
400 { /* not used */
401 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
402 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
403 __cpu_to_le32(1),
404 },
405 {
406 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
407 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
408 __cpu_to_le32(4),
409 },
410 {
411 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
412 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
413 __cpu_to_le32(5),
414 },
415
416 /* (Additions here) */
417
418 { /* must be last */
419 __cpu_to_le32(0),
420 __cpu_to_le32(0),
421 __cpu_to_le32(0),
422 },
423 };
424
425 static bool ath10k_pci_is_awake(struct ath10k *ar)
426 {
427 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
428 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
429 RTC_STATE_ADDRESS);
430
431 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
432 }
433
434 static void __ath10k_pci_wake(struct ath10k *ar)
435 {
436 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
437
438 lockdep_assert_held(&ar_pci->ps_lock);
439
440 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
441 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
442
443 iowrite32(PCIE_SOC_WAKE_V_MASK,
444 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
445 PCIE_SOC_WAKE_ADDRESS);
446 }
447
448 static void __ath10k_pci_sleep(struct ath10k *ar)
449 {
450 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
451
452 lockdep_assert_held(&ar_pci->ps_lock);
453
454 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
455 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
456
457 iowrite32(PCIE_SOC_WAKE_RESET,
458 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
459 PCIE_SOC_WAKE_ADDRESS);
460 ar_pci->ps_awake = false;
461 }
462
463 static int ath10k_pci_wake_wait(struct ath10k *ar)
464 {
465 int tot_delay = 0;
466 int curr_delay = 5;
467
468 while (tot_delay < PCIE_WAKE_TIMEOUT) {
469 if (ath10k_pci_is_awake(ar)) {
470 if (tot_delay > PCIE_WAKE_LATE_US)
471 ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
472 tot_delay / 1000);
473 return 0;
474 }
475
476 udelay(curr_delay);
477 tot_delay += curr_delay;
478
479 if (curr_delay < 50)
480 curr_delay += 5;
481 }
482
483 return -ETIMEDOUT;
484 }
485
486 static int ath10k_pci_force_wake(struct ath10k *ar)
487 {
488 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
489 unsigned long flags;
490 int ret = 0;
491
492 if (ar_pci->pci_ps)
493 return ret;
494
495 spin_lock_irqsave(&ar_pci->ps_lock, flags);
496
497 if (!ar_pci->ps_awake) {
498 iowrite32(PCIE_SOC_WAKE_V_MASK,
499 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
500 PCIE_SOC_WAKE_ADDRESS);
501
502 ret = ath10k_pci_wake_wait(ar);
503 if (ret == 0)
504 ar_pci->ps_awake = true;
505 }
506
507 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
508
509 return ret;
510 }
511
512 static void ath10k_pci_force_sleep(struct ath10k *ar)
513 {
514 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
515 unsigned long flags;
516
517 spin_lock_irqsave(&ar_pci->ps_lock, flags);
518
519 iowrite32(PCIE_SOC_WAKE_RESET,
520 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
521 PCIE_SOC_WAKE_ADDRESS);
522 ar_pci->ps_awake = false;
523
524 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
525 }
526
527 static int ath10k_pci_wake(struct ath10k *ar)
528 {
529 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
530 unsigned long flags;
531 int ret = 0;
532
533 if (ar_pci->pci_ps == 0)
534 return ret;
535
536 spin_lock_irqsave(&ar_pci->ps_lock, flags);
537
538 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
539 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
540
541 /* This function can be called very frequently. To avoid excessive
542 * CPU stalls for MMIO reads use a cache var to hold the device state.
543 */
544 if (!ar_pci->ps_awake) {
545 __ath10k_pci_wake(ar);
546
547 ret = ath10k_pci_wake_wait(ar);
548 if (ret == 0)
549 ar_pci->ps_awake = true;
550 }
551
552 if (ret == 0) {
553 ar_pci->ps_wake_refcount++;
554 WARN_ON(ar_pci->ps_wake_refcount == 0);
555 }
556
557 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
558
559 return ret;
560 }
561
562 static void ath10k_pci_sleep(struct ath10k *ar)
563 {
564 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
565 unsigned long flags;
566
567 if (ar_pci->pci_ps == 0)
568 return;
569
570 spin_lock_irqsave(&ar_pci->ps_lock, flags);
571
572 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
573 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
574
575 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
576 goto skip;
577
578 ar_pci->ps_wake_refcount--;
579
580 mod_timer(&ar_pci->ps_timer, jiffies +
581 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
582
583 skip:
584 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
585 }
586
587 static void ath10k_pci_ps_timer(unsigned long ptr)
588 {
589 struct ath10k *ar = (void *)ptr;
590 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
591 unsigned long flags;
592
593 spin_lock_irqsave(&ar_pci->ps_lock, flags);
594
595 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
596 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
597
598 if (ar_pci->ps_wake_refcount > 0)
599 goto skip;
600
601 __ath10k_pci_sleep(ar);
602
603 skip:
604 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
605 }
606
607 static void ath10k_pci_sleep_sync(struct ath10k *ar)
608 {
609 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
610 unsigned long flags;
611
612 if (ar_pci->pci_ps == 0) {
613 ath10k_pci_force_sleep(ar);
614 return;
615 }
616
617 del_timer_sync(&ar_pci->ps_timer);
618
619 spin_lock_irqsave(&ar_pci->ps_lock, flags);
620 WARN_ON(ar_pci->ps_wake_refcount > 0);
621 __ath10k_pci_sleep(ar);
622 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
623 }
624
625 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
626 {
627 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
628 int ret;
629
630 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
631 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
632 offset, offset + sizeof(value), ar_pci->mem_len);
633 return;
634 }
635
636 ret = ath10k_pci_wake(ar);
637 if (ret) {
638 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
639 value, offset, ret);
640 return;
641 }
642
643 iowrite32(value, ar_pci->mem + offset);
644 ath10k_pci_sleep(ar);
645 }
646
647 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
648 {
649 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
650 u32 val;
651 int ret;
652
653 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
654 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
655 offset, offset + sizeof(val), ar_pci->mem_len);
656 return 0;
657 }
658
659 ret = ath10k_pci_wake(ar);
660 if (ret) {
661 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
662 offset, ret);
663 return 0xffffffff;
664 }
665
666 val = ioread32(ar_pci->mem + offset);
667 ath10k_pci_sleep(ar);
668
669 return val;
670 }
671
672 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
673 {
674 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
675
676 ar_pci->bus_ops->write32(ar, offset, value);
677 }
678
679 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
680 {
681 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
682
683 return ar_pci->bus_ops->read32(ar, offset);
684 }
685
686 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
687 {
688 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
689 }
690
691 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
692 {
693 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
694 }
695
696 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
697 {
698 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
699 }
700
701 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
702 {
703 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
704 }
705
706 bool ath10k_pci_irq_pending(struct ath10k *ar)
707 {
708 u32 cause;
709
710 /* Check if the shared legacy irq is for us */
711 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
712 PCIE_INTR_CAUSE_ADDRESS);
713 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
714 return true;
715
716 return false;
717 }
718
719 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
720 {
721 /* IMPORTANT: INTR_CLR register has to be set after
722 * INTR_ENABLE is set to 0, otherwise interrupt can not be
723 * really cleared. */
724 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
725 0);
726 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
727 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
728
729 /* IMPORTANT: this extra read transaction is required to
730 * flush the posted write buffer. */
731 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
732 PCIE_INTR_ENABLE_ADDRESS);
733 }
734
735 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
736 {
737 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
738 PCIE_INTR_ENABLE_ADDRESS,
739 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
740
741 /* IMPORTANT: this extra read transaction is required to
742 * flush the posted write buffer. */
743 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
744 PCIE_INTR_ENABLE_ADDRESS);
745 }
746
747 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
748 {
749 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
750
751 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
752 return "msi";
753
754 return "legacy";
755 }
756
757 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
758 {
759 struct ath10k *ar = pipe->hif_ce_state;
760 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
761 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
762 struct sk_buff *skb;
763 dma_addr_t paddr;
764 int ret;
765
766 skb = dev_alloc_skb(pipe->buf_sz);
767 if (!skb)
768 return -ENOMEM;
769
770 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
771
772 paddr = dma_map_single(ar->dev, skb->data,
773 skb->len + skb_tailroom(skb),
774 DMA_FROM_DEVICE);
775 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
776 ath10k_warn(ar, "failed to dma map pci rx buf\n");
777 dev_kfree_skb_any(skb);
778 return -EIO;
779 }
780
781 ATH10K_SKB_RXCB(skb)->paddr = paddr;
782
783 spin_lock_bh(&ar_pci->ce_lock);
784 ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
785 spin_unlock_bh(&ar_pci->ce_lock);
786 if (ret) {
787 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
788 DMA_FROM_DEVICE);
789 dev_kfree_skb_any(skb);
790 return ret;
791 }
792
793 return 0;
794 }
795
796 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
797 {
798 struct ath10k *ar = pipe->hif_ce_state;
799 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
800 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
801 int ret, num;
802
803 if (pipe->buf_sz == 0)
804 return;
805
806 if (!ce_pipe->dest_ring)
807 return;
808
809 spin_lock_bh(&ar_pci->ce_lock);
810 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
811 spin_unlock_bh(&ar_pci->ce_lock);
812
813 while (num >= 0) {
814 ret = __ath10k_pci_rx_post_buf(pipe);
815 if (ret) {
816 if (ret == -ENOSPC)
817 break;
818 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
819 mod_timer(&ar_pci->rx_post_retry, jiffies +
820 ATH10K_PCI_RX_POST_RETRY_MS);
821 break;
822 }
823 num--;
824 }
825 }
826
827 void ath10k_pci_rx_post(struct ath10k *ar)
828 {
829 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
830 int i;
831
832 for (i = 0; i < CE_COUNT; i++)
833 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
834 }
835
836 void ath10k_pci_rx_replenish_retry(unsigned long ptr)
837 {
838 struct ath10k *ar = (void *)ptr;
839
840 ath10k_pci_rx_post(ar);
841 }
842
843 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
844 {
845 u32 val = 0, region = addr & 0xfffff;
846
847 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
848 & 0x7ff) << 21;
849 val |= 0x100000 | region;
850 return val;
851 }
852
853 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
854 {
855 u32 val = 0, region = addr & 0xfffff;
856
857 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
858 val |= 0x100000 | region;
859 return val;
860 }
861
862 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
863 {
864 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
865
866 if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
867 return -ENOTSUPP;
868
869 return ar_pci->targ_cpu_to_ce_addr(ar, addr);
870 }
871
872 /*
873 * Diagnostic read/write access is provided for startup/config/debug usage.
874 * Caller must guarantee proper alignment, when applicable, and single user
875 * at any moment.
876 */
877 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
878 int nbytes)
879 {
880 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
881 int ret = 0;
882 u32 *buf;
883 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
884 struct ath10k_ce_pipe *ce_diag;
885 /* Host buffer address in CE space */
886 u32 ce_data;
887 dma_addr_t ce_data_base = 0;
888 void *data_buf = NULL;
889 int i;
890
891 spin_lock_bh(&ar_pci->ce_lock);
892
893 ce_diag = ar_pci->ce_diag;
894
895 /*
896 * Allocate a temporary bounce buffer to hold caller's data
897 * to be DMA'ed from Target. This guarantees
898 * 1) 4-byte alignment
899 * 2) Buffer in DMA-able space
900 */
901 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
902
903 data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
904 alloc_nbytes,
905 &ce_data_base,
906 GFP_ATOMIC);
907
908 if (!data_buf) {
909 ret = -ENOMEM;
910 goto done;
911 }
912
913 remaining_bytes = nbytes;
914 ce_data = ce_data_base;
915 while (remaining_bytes) {
916 nbytes = min_t(unsigned int, remaining_bytes,
917 DIAG_TRANSFER_LIMIT);
918
919 ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
920 if (ret != 0)
921 goto done;
922
923 /* Request CE to send from Target(!) address to Host buffer */
924 /*
925 * The address supplied by the caller is in the
926 * Target CPU virtual address space.
927 *
928 * In order to use this address with the diagnostic CE,
929 * convert it from Target CPU virtual address space
930 * to CE address space
931 */
932 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
933
934 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
935 0);
936 if (ret)
937 goto done;
938
939 i = 0;
940 while (ath10k_ce_completed_send_next_nolock(ce_diag,
941 NULL) != 0) {
942 mdelay(1);
943 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
944 ret = -EBUSY;
945 goto done;
946 }
947 }
948
949 i = 0;
950 while (ath10k_ce_completed_recv_next_nolock(ce_diag,
951 (void **)&buf,
952 &completed_nbytes)
953 != 0) {
954 mdelay(1);
955
956 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
957 ret = -EBUSY;
958 goto done;
959 }
960 }
961
962 if (nbytes != completed_nbytes) {
963 ret = -EIO;
964 goto done;
965 }
966
967 if (*buf != ce_data) {
968 ret = -EIO;
969 goto done;
970 }
971
972 remaining_bytes -= nbytes;
973 memcpy(data, data_buf, nbytes);
974
975 address += nbytes;
976 data += nbytes;
977 }
978
979 done:
980
981 if (data_buf)
982 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
983 ce_data_base);
984
985 spin_unlock_bh(&ar_pci->ce_lock);
986
987 return ret;
988 }
989
990 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
991 {
992 __le32 val = 0;
993 int ret;
994
995 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
996 *value = __le32_to_cpu(val);
997
998 return ret;
999 }
1000
1001 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1002 u32 src, u32 len)
1003 {
1004 u32 host_addr, addr;
1005 int ret;
1006
1007 host_addr = host_interest_item_address(src);
1008
1009 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1010 if (ret != 0) {
1011 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1012 src, ret);
1013 return ret;
1014 }
1015
1016 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1017 if (ret != 0) {
1018 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1019 addr, len, ret);
1020 return ret;
1021 }
1022
1023 return 0;
1024 }
1025
1026 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \
1027 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1028
1029 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1030 const void *data, int nbytes)
1031 {
1032 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1033 int ret = 0;
1034 u32 *buf;
1035 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1036 struct ath10k_ce_pipe *ce_diag;
1037 void *data_buf = NULL;
1038 u32 ce_data; /* Host buffer address in CE space */
1039 dma_addr_t ce_data_base = 0;
1040 int i;
1041
1042 spin_lock_bh(&ar_pci->ce_lock);
1043
1044 ce_diag = ar_pci->ce_diag;
1045
1046 /*
1047 * Allocate a temporary bounce buffer to hold caller's data
1048 * to be DMA'ed to Target. This guarantees
1049 * 1) 4-byte alignment
1050 * 2) Buffer in DMA-able space
1051 */
1052 orig_nbytes = nbytes;
1053 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1054 orig_nbytes,
1055 &ce_data_base,
1056 GFP_ATOMIC);
1057 if (!data_buf) {
1058 ret = -ENOMEM;
1059 goto done;
1060 }
1061
1062 /* Copy caller's data to allocated DMA buf */
1063 memcpy(data_buf, data, orig_nbytes);
1064
1065 /*
1066 * The address supplied by the caller is in the
1067 * Target CPU virtual address space.
1068 *
1069 * In order to use this address with the diagnostic CE,
1070 * convert it from
1071 * Target CPU virtual address space
1072 * to
1073 * CE address space
1074 */
1075 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1076
1077 remaining_bytes = orig_nbytes;
1078 ce_data = ce_data_base;
1079 while (remaining_bytes) {
1080 /* FIXME: check cast */
1081 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1082
1083 /* Set up to receive directly into Target(!) address */
1084 ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1085 if (ret != 0)
1086 goto done;
1087
1088 /*
1089 * Request CE to send caller-supplied data that
1090 * was copied to bounce buffer to Target(!) address.
1091 */
1092 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1093 nbytes, 0, 0);
1094 if (ret != 0)
1095 goto done;
1096
1097 i = 0;
1098 while (ath10k_ce_completed_send_next_nolock(ce_diag,
1099 NULL) != 0) {
1100 mdelay(1);
1101
1102 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1103 ret = -EBUSY;
1104 goto done;
1105 }
1106 }
1107
1108 i = 0;
1109 while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1110 (void **)&buf,
1111 &completed_nbytes)
1112 != 0) {
1113 mdelay(1);
1114
1115 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1116 ret = -EBUSY;
1117 goto done;
1118 }
1119 }
1120
1121 if (nbytes != completed_nbytes) {
1122 ret = -EIO;
1123 goto done;
1124 }
1125
1126 if (*buf != address) {
1127 ret = -EIO;
1128 goto done;
1129 }
1130
1131 remaining_bytes -= nbytes;
1132 address += nbytes;
1133 ce_data += nbytes;
1134 }
1135
1136 done:
1137 if (data_buf) {
1138 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1139 ce_data_base);
1140 }
1141
1142 if (ret != 0)
1143 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1144 address, ret);
1145
1146 spin_unlock_bh(&ar_pci->ce_lock);
1147
1148 return ret;
1149 }
1150
1151 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1152 {
1153 __le32 val = __cpu_to_le32(value);
1154
1155 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1156 }
1157
1158 /* Called by lower (CE) layer when a send to Target completes. */
1159 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1160 {
1161 struct ath10k *ar = ce_state->ar;
1162 struct sk_buff_head list;
1163 struct sk_buff *skb;
1164
1165 __skb_queue_head_init(&list);
1166 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1167 /* no need to call tx completion for NULL pointers */
1168 if (skb == NULL)
1169 continue;
1170
1171 __skb_queue_tail(&list, skb);
1172 }
1173
1174 while ((skb = __skb_dequeue(&list)))
1175 ath10k_htc_tx_completion_handler(ar, skb);
1176 }
1177
1178 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1179 void (*callback)(struct ath10k *ar,
1180 struct sk_buff *skb))
1181 {
1182 struct ath10k *ar = ce_state->ar;
1183 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1184 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1185 struct sk_buff *skb;
1186 struct sk_buff_head list;
1187 void *transfer_context;
1188 unsigned int nbytes, max_nbytes;
1189
1190 __skb_queue_head_init(&list);
1191 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1192 &nbytes) == 0) {
1193 skb = transfer_context;
1194 max_nbytes = skb->len + skb_tailroom(skb);
1195 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1196 max_nbytes, DMA_FROM_DEVICE);
1197
1198 if (unlikely(max_nbytes < nbytes)) {
1199 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1200 nbytes, max_nbytes);
1201 dev_kfree_skb_any(skb);
1202 continue;
1203 }
1204
1205 skb_put(skb, nbytes);
1206 __skb_queue_tail(&list, skb);
1207 }
1208
1209 while ((skb = __skb_dequeue(&list))) {
1210 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1211 ce_state->id, skb->len);
1212 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1213 skb->data, skb->len);
1214
1215 callback(ar, skb);
1216 }
1217
1218 ath10k_pci_rx_post_pipe(pipe_info);
1219 }
1220
1221 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1222 void (*callback)(struct ath10k *ar,
1223 struct sk_buff *skb))
1224 {
1225 struct ath10k *ar = ce_state->ar;
1226 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1227 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1228 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1229 struct sk_buff *skb;
1230 struct sk_buff_head list;
1231 void *transfer_context;
1232 unsigned int nbytes, max_nbytes, nentries;
1233 int orig_len;
1234
1235 /* No need to aquire ce_lock for CE5, since this is the only place CE5
1236 * is processed other than init and deinit. Before releasing CE5
1237 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1238 */
1239 __skb_queue_head_init(&list);
1240 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1241 &nbytes) == 0) {
1242 skb = transfer_context;
1243 max_nbytes = skb->len + skb_tailroom(skb);
1244
1245 if (unlikely(max_nbytes < nbytes)) {
1246 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1247 nbytes, max_nbytes);
1248 continue;
1249 }
1250
1251 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1252 max_nbytes, DMA_FROM_DEVICE);
1253 skb_put(skb, nbytes);
1254 __skb_queue_tail(&list, skb);
1255 }
1256
1257 nentries = skb_queue_len(&list);
1258 while ((skb = __skb_dequeue(&list))) {
1259 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1260 ce_state->id, skb->len);
1261 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1262 skb->data, skb->len);
1263
1264 orig_len = skb->len;
1265 callback(ar, skb);
1266 skb_push(skb, orig_len - skb->len);
1267 skb_reset_tail_pointer(skb);
1268 skb_trim(skb, 0);
1269
1270 /*let device gain the buffer again*/
1271 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1272 skb->len + skb_tailroom(skb),
1273 DMA_FROM_DEVICE);
1274 }
1275 ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1276 }
1277
1278 /* Called by lower (CE) layer when data is received from the Target. */
1279 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1280 {
1281 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1282 }
1283
1284 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1285 {
1286 /* CE4 polling needs to be done whenever CE pipe which transports
1287 * HTT Rx (target->host) is processed.
1288 */
1289 ath10k_ce_per_engine_service(ce_state->ar, 4);
1290
1291 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1292 }
1293
1294 /* Called by lower (CE) layer when data is received from the Target.
1295 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1296 */
1297 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1298 {
1299 ath10k_pci_process_rx_cb(ce_state,
1300 ath10k_htt_rx_pktlog_completion_handler);
1301 }
1302
1303 /* Called by lower (CE) layer when a send to HTT Target completes. */
1304 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1305 {
1306 struct ath10k *ar = ce_state->ar;
1307 struct sk_buff *skb;
1308
1309 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1310 /* no need to call tx completion for NULL pointers */
1311 if (!skb)
1312 continue;
1313
1314 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1315 skb->len, DMA_TO_DEVICE);
1316 ath10k_htt_hif_tx_complete(ar, skb);
1317 }
1318 }
1319
1320 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1321 {
1322 skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1323 ath10k_htt_t2h_msg_handler(ar, skb);
1324 }
1325
1326 /* Called by lower (CE) layer when HTT data is received from the Target. */
1327 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1328 {
1329 /* CE4 polling needs to be done whenever CE pipe which transports
1330 * HTT Rx (target->host) is processed.
1331 */
1332 ath10k_ce_per_engine_service(ce_state->ar, 4);
1333
1334 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1335 }
1336
1337 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1338 struct ath10k_hif_sg_item *items, int n_items)
1339 {
1340 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1341 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1342 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1343 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1344 unsigned int nentries_mask;
1345 unsigned int sw_index;
1346 unsigned int write_index;
1347 int err, i = 0;
1348
1349 spin_lock_bh(&ar_pci->ce_lock);
1350
1351 nentries_mask = src_ring->nentries_mask;
1352 sw_index = src_ring->sw_index;
1353 write_index = src_ring->write_index;
1354
1355 if (unlikely(CE_RING_DELTA(nentries_mask,
1356 write_index, sw_index - 1) < n_items)) {
1357 err = -ENOBUFS;
1358 goto err;
1359 }
1360
1361 for (i = 0; i < n_items - 1; i++) {
1362 ath10k_dbg(ar, ATH10K_DBG_PCI,
1363 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1364 i, items[i].paddr, items[i].len, n_items);
1365 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1366 items[i].vaddr, items[i].len);
1367
1368 err = ath10k_ce_send_nolock(ce_pipe,
1369 items[i].transfer_context,
1370 items[i].paddr,
1371 items[i].len,
1372 items[i].transfer_id,
1373 CE_SEND_FLAG_GATHER);
1374 if (err)
1375 goto err;
1376 }
1377
1378 /* `i` is equal to `n_items -1` after for() */
1379
1380 ath10k_dbg(ar, ATH10K_DBG_PCI,
1381 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1382 i, items[i].paddr, items[i].len, n_items);
1383 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1384 items[i].vaddr, items[i].len);
1385
1386 err = ath10k_ce_send_nolock(ce_pipe,
1387 items[i].transfer_context,
1388 items[i].paddr,
1389 items[i].len,
1390 items[i].transfer_id,
1391 0);
1392 if (err)
1393 goto err;
1394
1395 spin_unlock_bh(&ar_pci->ce_lock);
1396 return 0;
1397
1398 err:
1399 for (; i > 0; i--)
1400 __ath10k_ce_send_revert(ce_pipe);
1401
1402 spin_unlock_bh(&ar_pci->ce_lock);
1403 return err;
1404 }
1405
1406 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1407 size_t buf_len)
1408 {
1409 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1410 }
1411
1412 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1413 {
1414 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1415
1416 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1417
1418 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1419 }
1420
1421 static void ath10k_pci_dump_registers(struct ath10k *ar,
1422 struct ath10k_fw_crash_data *crash_data)
1423 {
1424 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1425 int i, ret;
1426
1427 lockdep_assert_held(&ar->data_lock);
1428
1429 ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1430 hi_failure_state,
1431 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1432 if (ret) {
1433 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1434 return;
1435 }
1436
1437 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1438
1439 ath10k_err(ar, "firmware register dump:\n");
1440 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1441 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1442 i,
1443 __le32_to_cpu(reg_dump_values[i]),
1444 __le32_to_cpu(reg_dump_values[i + 1]),
1445 __le32_to_cpu(reg_dump_values[i + 2]),
1446 __le32_to_cpu(reg_dump_values[i + 3]));
1447
1448 if (!crash_data)
1449 return;
1450
1451 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1452 crash_data->registers[i] = reg_dump_values[i];
1453 }
1454
1455 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1456 {
1457 struct ath10k_fw_crash_data *crash_data;
1458 char uuid[50];
1459
1460 spin_lock_bh(&ar->data_lock);
1461
1462 ar->stats.fw_crash_counter++;
1463
1464 crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1465
1466 if (crash_data)
1467 scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1468 else
1469 scnprintf(uuid, sizeof(uuid), "n/a");
1470
1471 ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1472 ath10k_print_driver_info(ar);
1473 ath10k_pci_dump_registers(ar, crash_data);
1474 ath10k_ce_dump_registers(ar, crash_data);
1475
1476 spin_unlock_bh(&ar->data_lock);
1477
1478 queue_work(ar->workqueue, &ar->restart_work);
1479 }
1480
1481 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1482 int force)
1483 {
1484 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1485
1486 if (!force) {
1487 int resources;
1488 /*
1489 * Decide whether to actually poll for completions, or just
1490 * wait for a later chance.
1491 * If there seem to be plenty of resources left, then just wait
1492 * since checking involves reading a CE register, which is a
1493 * relatively expensive operation.
1494 */
1495 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1496
1497 /*
1498 * If at least 50% of the total resources are still available,
1499 * don't bother checking again yet.
1500 */
1501 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1502 return;
1503 }
1504 ath10k_ce_per_engine_service(ar, pipe);
1505 }
1506
1507 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1508 {
1509 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1510
1511 del_timer_sync(&ar_pci->rx_post_retry);
1512 }
1513
1514 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1515 u8 *ul_pipe, u8 *dl_pipe)
1516 {
1517 const struct service_to_pipe *entry;
1518 bool ul_set = false, dl_set = false;
1519 int i;
1520
1521 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1522
1523 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1524 entry = &target_service_to_ce_map_wlan[i];
1525
1526 if (__le32_to_cpu(entry->service_id) != service_id)
1527 continue;
1528
1529 switch (__le32_to_cpu(entry->pipedir)) {
1530 case PIPEDIR_NONE:
1531 break;
1532 case PIPEDIR_IN:
1533 WARN_ON(dl_set);
1534 *dl_pipe = __le32_to_cpu(entry->pipenum);
1535 dl_set = true;
1536 break;
1537 case PIPEDIR_OUT:
1538 WARN_ON(ul_set);
1539 *ul_pipe = __le32_to_cpu(entry->pipenum);
1540 ul_set = true;
1541 break;
1542 case PIPEDIR_INOUT:
1543 WARN_ON(dl_set);
1544 WARN_ON(ul_set);
1545 *dl_pipe = __le32_to_cpu(entry->pipenum);
1546 *ul_pipe = __le32_to_cpu(entry->pipenum);
1547 dl_set = true;
1548 ul_set = true;
1549 break;
1550 }
1551 }
1552
1553 if (WARN_ON(!ul_set || !dl_set))
1554 return -ENOENT;
1555
1556 return 0;
1557 }
1558
1559 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1560 u8 *ul_pipe, u8 *dl_pipe)
1561 {
1562 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1563
1564 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1565 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1566 ul_pipe, dl_pipe);
1567 }
1568
1569 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1570 {
1571 u32 val;
1572
1573 switch (ar->hw_rev) {
1574 case ATH10K_HW_QCA988X:
1575 case ATH10K_HW_QCA9887:
1576 case ATH10K_HW_QCA6174:
1577 case ATH10K_HW_QCA9377:
1578 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1579 CORE_CTRL_ADDRESS);
1580 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1581 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1582 CORE_CTRL_ADDRESS, val);
1583 break;
1584 case ATH10K_HW_QCA99X0:
1585 case ATH10K_HW_QCA9984:
1586 case ATH10K_HW_QCA9888:
1587 case ATH10K_HW_QCA4019:
1588 /* TODO: Find appropriate register configuration for QCA99X0
1589 * to mask irq/MSI.
1590 */
1591 break;
1592 }
1593 }
1594
1595 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1596 {
1597 u32 val;
1598
1599 switch (ar->hw_rev) {
1600 case ATH10K_HW_QCA988X:
1601 case ATH10K_HW_QCA9887:
1602 case ATH10K_HW_QCA6174:
1603 case ATH10K_HW_QCA9377:
1604 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1605 CORE_CTRL_ADDRESS);
1606 val |= CORE_CTRL_PCIE_REG_31_MASK;
1607 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1608 CORE_CTRL_ADDRESS, val);
1609 break;
1610 case ATH10K_HW_QCA99X0:
1611 case ATH10K_HW_QCA9984:
1612 case ATH10K_HW_QCA9888:
1613 case ATH10K_HW_QCA4019:
1614 /* TODO: Find appropriate register configuration for QCA99X0
1615 * to unmask irq/MSI.
1616 */
1617 break;
1618 }
1619 }
1620
1621 static void ath10k_pci_irq_disable(struct ath10k *ar)
1622 {
1623 ath10k_ce_disable_interrupts(ar);
1624 ath10k_pci_disable_and_clear_legacy_irq(ar);
1625 ath10k_pci_irq_msi_fw_mask(ar);
1626 }
1627
1628 static void ath10k_pci_irq_sync(struct ath10k *ar)
1629 {
1630 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1631
1632 synchronize_irq(ar_pci->pdev->irq);
1633 }
1634
1635 static void ath10k_pci_irq_enable(struct ath10k *ar)
1636 {
1637 ath10k_ce_enable_interrupts(ar);
1638 ath10k_pci_enable_legacy_irq(ar);
1639 ath10k_pci_irq_msi_fw_unmask(ar);
1640 }
1641
1642 static int ath10k_pci_hif_start(struct ath10k *ar)
1643 {
1644 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1645
1646 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1647
1648 napi_enable(&ar->napi);
1649
1650 ath10k_pci_irq_enable(ar);
1651 ath10k_pci_rx_post(ar);
1652
1653 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1654 ar_pci->link_ctl);
1655
1656 return 0;
1657 }
1658
1659 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1660 {
1661 struct ath10k *ar;
1662 struct ath10k_ce_pipe *ce_pipe;
1663 struct ath10k_ce_ring *ce_ring;
1664 struct sk_buff *skb;
1665 int i;
1666
1667 ar = pci_pipe->hif_ce_state;
1668 ce_pipe = pci_pipe->ce_hdl;
1669 ce_ring = ce_pipe->dest_ring;
1670
1671 if (!ce_ring)
1672 return;
1673
1674 if (!pci_pipe->buf_sz)
1675 return;
1676
1677 for (i = 0; i < ce_ring->nentries; i++) {
1678 skb = ce_ring->per_transfer_context[i];
1679 if (!skb)
1680 continue;
1681
1682 ce_ring->per_transfer_context[i] = NULL;
1683
1684 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1685 skb->len + skb_tailroom(skb),
1686 DMA_FROM_DEVICE);
1687 dev_kfree_skb_any(skb);
1688 }
1689 }
1690
1691 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1692 {
1693 struct ath10k *ar;
1694 struct ath10k_ce_pipe *ce_pipe;
1695 struct ath10k_ce_ring *ce_ring;
1696 struct sk_buff *skb;
1697 int i;
1698
1699 ar = pci_pipe->hif_ce_state;
1700 ce_pipe = pci_pipe->ce_hdl;
1701 ce_ring = ce_pipe->src_ring;
1702
1703 if (!ce_ring)
1704 return;
1705
1706 if (!pci_pipe->buf_sz)
1707 return;
1708
1709 for (i = 0; i < ce_ring->nentries; i++) {
1710 skb = ce_ring->per_transfer_context[i];
1711 if (!skb)
1712 continue;
1713
1714 ce_ring->per_transfer_context[i] = NULL;
1715
1716 ath10k_htc_tx_completion_handler(ar, skb);
1717 }
1718 }
1719
1720 /*
1721 * Cleanup residual buffers for device shutdown:
1722 * buffers that were enqueued for receive
1723 * buffers that were to be sent
1724 * Note: Buffers that had completed but which were
1725 * not yet processed are on a completion queue. They
1726 * are handled when the completion thread shuts down.
1727 */
1728 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1729 {
1730 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1731 int pipe_num;
1732
1733 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1734 struct ath10k_pci_pipe *pipe_info;
1735
1736 pipe_info = &ar_pci->pipe_info[pipe_num];
1737 ath10k_pci_rx_pipe_cleanup(pipe_info);
1738 ath10k_pci_tx_pipe_cleanup(pipe_info);
1739 }
1740 }
1741
1742 void ath10k_pci_ce_deinit(struct ath10k *ar)
1743 {
1744 int i;
1745
1746 for (i = 0; i < CE_COUNT; i++)
1747 ath10k_ce_deinit_pipe(ar, i);
1748 }
1749
1750 void ath10k_pci_flush(struct ath10k *ar)
1751 {
1752 ath10k_pci_rx_retry_sync(ar);
1753 ath10k_pci_buffer_cleanup(ar);
1754 }
1755
1756 static void ath10k_pci_hif_stop(struct ath10k *ar)
1757 {
1758 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1759 unsigned long flags;
1760
1761 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1762
1763 /* Most likely the device has HTT Rx ring configured. The only way to
1764 * prevent the device from accessing (and possible corrupting) host
1765 * memory is to reset the chip now.
1766 *
1767 * There's also no known way of masking MSI interrupts on the device.
1768 * For ranged MSI the CE-related interrupts can be masked. However
1769 * regardless how many MSI interrupts are assigned the first one
1770 * is always used for firmware indications (crashes) and cannot be
1771 * masked. To prevent the device from asserting the interrupt reset it
1772 * before proceeding with cleanup.
1773 */
1774 ath10k_pci_safe_chip_reset(ar);
1775
1776 ath10k_pci_irq_disable(ar);
1777 ath10k_pci_irq_sync(ar);
1778 ath10k_pci_flush(ar);
1779 napi_synchronize(&ar->napi);
1780 napi_disable(&ar->napi);
1781
1782 spin_lock_irqsave(&ar_pci->ps_lock, flags);
1783 WARN_ON(ar_pci->ps_wake_refcount > 0);
1784 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1785 }
1786
1787 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1788 void *req, u32 req_len,
1789 void *resp, u32 *resp_len)
1790 {
1791 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1792 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1793 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1794 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1795 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1796 dma_addr_t req_paddr = 0;
1797 dma_addr_t resp_paddr = 0;
1798 struct bmi_xfer xfer = {};
1799 void *treq, *tresp = NULL;
1800 int ret = 0;
1801
1802 might_sleep();
1803
1804 if (resp && !resp_len)
1805 return -EINVAL;
1806
1807 if (resp && resp_len && *resp_len == 0)
1808 return -EINVAL;
1809
1810 treq = kmemdup(req, req_len, GFP_KERNEL);
1811 if (!treq)
1812 return -ENOMEM;
1813
1814 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1815 ret = dma_mapping_error(ar->dev, req_paddr);
1816 if (ret) {
1817 ret = -EIO;
1818 goto err_dma;
1819 }
1820
1821 if (resp && resp_len) {
1822 tresp = kzalloc(*resp_len, GFP_KERNEL);
1823 if (!tresp) {
1824 ret = -ENOMEM;
1825 goto err_req;
1826 }
1827
1828 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1829 DMA_FROM_DEVICE);
1830 ret = dma_mapping_error(ar->dev, resp_paddr);
1831 if (ret) {
1832 ret = -EIO;
1833 goto err_req;
1834 }
1835
1836 xfer.wait_for_resp = true;
1837 xfer.resp_len = 0;
1838
1839 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1840 }
1841
1842 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1843 if (ret)
1844 goto err_resp;
1845
1846 ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1847 if (ret) {
1848 u32 unused_buffer;
1849 unsigned int unused_nbytes;
1850 unsigned int unused_id;
1851
1852 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1853 &unused_nbytes, &unused_id);
1854 } else {
1855 /* non-zero means we did not time out */
1856 ret = 0;
1857 }
1858
1859 err_resp:
1860 if (resp) {
1861 u32 unused_buffer;
1862
1863 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1864 dma_unmap_single(ar->dev, resp_paddr,
1865 *resp_len, DMA_FROM_DEVICE);
1866 }
1867 err_req:
1868 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1869
1870 if (ret == 0 && resp_len) {
1871 *resp_len = min(*resp_len, xfer.resp_len);
1872 memcpy(resp, tresp, xfer.resp_len);
1873 }
1874 err_dma:
1875 kfree(treq);
1876 kfree(tresp);
1877
1878 return ret;
1879 }
1880
1881 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1882 {
1883 struct bmi_xfer *xfer;
1884
1885 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1886 return;
1887
1888 xfer->tx_done = true;
1889 }
1890
1891 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1892 {
1893 struct ath10k *ar = ce_state->ar;
1894 struct bmi_xfer *xfer;
1895 unsigned int nbytes;
1896
1897 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1898 &nbytes))
1899 return;
1900
1901 if (WARN_ON_ONCE(!xfer))
1902 return;
1903
1904 if (!xfer->wait_for_resp) {
1905 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1906 return;
1907 }
1908
1909 xfer->resp_len = nbytes;
1910 xfer->rx_done = true;
1911 }
1912
1913 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1914 struct ath10k_ce_pipe *rx_pipe,
1915 struct bmi_xfer *xfer)
1916 {
1917 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1918
1919 while (time_before_eq(jiffies, timeout)) {
1920 ath10k_pci_bmi_send_done(tx_pipe);
1921 ath10k_pci_bmi_recv_data(rx_pipe);
1922
1923 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1924 return 0;
1925
1926 schedule();
1927 }
1928
1929 return -ETIMEDOUT;
1930 }
1931
1932 /*
1933 * Send an interrupt to the device to wake up the Target CPU
1934 * so it has an opportunity to notice any changed state.
1935 */
1936 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1937 {
1938 u32 addr, val;
1939
1940 addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
1941 val = ath10k_pci_read32(ar, addr);
1942 val |= CORE_CTRL_CPU_INTR_MASK;
1943 ath10k_pci_write32(ar, addr, val);
1944
1945 return 0;
1946 }
1947
1948 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1949 {
1950 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1951
1952 switch (ar_pci->pdev->device) {
1953 case QCA988X_2_0_DEVICE_ID:
1954 case QCA99X0_2_0_DEVICE_ID:
1955 case QCA9888_2_0_DEVICE_ID:
1956 case QCA9984_1_0_DEVICE_ID:
1957 case QCA9887_1_0_DEVICE_ID:
1958 return 1;
1959 case QCA6164_2_1_DEVICE_ID:
1960 case QCA6174_2_1_DEVICE_ID:
1961 switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1962 case QCA6174_HW_1_0_CHIP_ID_REV:
1963 case QCA6174_HW_1_1_CHIP_ID_REV:
1964 case QCA6174_HW_2_1_CHIP_ID_REV:
1965 case QCA6174_HW_2_2_CHIP_ID_REV:
1966 return 3;
1967 case QCA6174_HW_1_3_CHIP_ID_REV:
1968 return 2;
1969 case QCA6174_HW_3_0_CHIP_ID_REV:
1970 case QCA6174_HW_3_1_CHIP_ID_REV:
1971 case QCA6174_HW_3_2_CHIP_ID_REV:
1972 return 9;
1973 }
1974 break;
1975 case QCA9377_1_0_DEVICE_ID:
1976 return 4;
1977 }
1978
1979 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1980 return 1;
1981 }
1982
1983 static int ath10k_bus_get_num_banks(struct ath10k *ar)
1984 {
1985 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1986
1987 return ar_pci->bus_ops->get_num_banks(ar);
1988 }
1989
1990 int ath10k_pci_init_config(struct ath10k *ar)
1991 {
1992 u32 interconnect_targ_addr;
1993 u32 pcie_state_targ_addr = 0;
1994 u32 pipe_cfg_targ_addr = 0;
1995 u32 svc_to_pipe_map = 0;
1996 u32 pcie_config_flags = 0;
1997 u32 ealloc_value;
1998 u32 ealloc_targ_addr;
1999 u32 flag2_value;
2000 u32 flag2_targ_addr;
2001 int ret = 0;
2002
2003 /* Download to Target the CE Config and the service-to-CE map */
2004 interconnect_targ_addr =
2005 host_interest_item_address(HI_ITEM(hi_interconnect_state));
2006
2007 /* Supply Target-side CE configuration */
2008 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2009 &pcie_state_targ_addr);
2010 if (ret != 0) {
2011 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2012 return ret;
2013 }
2014
2015 if (pcie_state_targ_addr == 0) {
2016 ret = -EIO;
2017 ath10k_err(ar, "Invalid pcie state addr\n");
2018 return ret;
2019 }
2020
2021 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2022 offsetof(struct pcie_state,
2023 pipe_cfg_addr)),
2024 &pipe_cfg_targ_addr);
2025 if (ret != 0) {
2026 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2027 return ret;
2028 }
2029
2030 if (pipe_cfg_targ_addr == 0) {
2031 ret = -EIO;
2032 ath10k_err(ar, "Invalid pipe cfg addr\n");
2033 return ret;
2034 }
2035
2036 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2037 target_ce_config_wlan,
2038 sizeof(struct ce_pipe_config) *
2039 NUM_TARGET_CE_CONFIG_WLAN);
2040
2041 if (ret != 0) {
2042 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2043 return ret;
2044 }
2045
2046 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2047 offsetof(struct pcie_state,
2048 svc_to_pipe_map)),
2049 &svc_to_pipe_map);
2050 if (ret != 0) {
2051 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2052 return ret;
2053 }
2054
2055 if (svc_to_pipe_map == 0) {
2056 ret = -EIO;
2057 ath10k_err(ar, "Invalid svc_to_pipe map\n");
2058 return ret;
2059 }
2060
2061 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2062 target_service_to_ce_map_wlan,
2063 sizeof(target_service_to_ce_map_wlan));
2064 if (ret != 0) {
2065 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2066 return ret;
2067 }
2068
2069 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2070 offsetof(struct pcie_state,
2071 config_flags)),
2072 &pcie_config_flags);
2073 if (ret != 0) {
2074 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2075 return ret;
2076 }
2077
2078 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2079
2080 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2081 offsetof(struct pcie_state,
2082 config_flags)),
2083 pcie_config_flags);
2084 if (ret != 0) {
2085 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2086 return ret;
2087 }
2088
2089 /* configure early allocation */
2090 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2091
2092 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2093 if (ret != 0) {
2094 ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2095 return ret;
2096 }
2097
2098 /* first bank is switched to IRAM */
2099 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2100 HI_EARLY_ALLOC_MAGIC_MASK);
2101 ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2102 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2103 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2104
2105 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2106 if (ret != 0) {
2107 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2108 return ret;
2109 }
2110
2111 /* Tell Target to proceed with initialization */
2112 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2113
2114 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2115 if (ret != 0) {
2116 ath10k_err(ar, "Failed to get option val: %d\n", ret);
2117 return ret;
2118 }
2119
2120 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2121
2122 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2123 if (ret != 0) {
2124 ath10k_err(ar, "Failed to set option val: %d\n", ret);
2125 return ret;
2126 }
2127
2128 return 0;
2129 }
2130
2131 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2132 {
2133 struct ce_attr *attr;
2134 struct ce_pipe_config *config;
2135
2136 /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2137 * since it is currently used for other feature.
2138 */
2139
2140 /* Override Host's Copy Engine 5 configuration */
2141 attr = &host_ce_config_wlan[5];
2142 attr->src_sz_max = 0;
2143 attr->dest_nentries = 0;
2144
2145 /* Override Target firmware's Copy Engine configuration */
2146 config = &target_ce_config_wlan[5];
2147 config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2148 config->nbytes_max = __cpu_to_le32(2048);
2149
2150 /* Map from service/endpoint to Copy Engine */
2151 target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2152 }
2153
2154 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2155 {
2156 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2157 struct ath10k_pci_pipe *pipe;
2158 int i, ret;
2159
2160 for (i = 0; i < CE_COUNT; i++) {
2161 pipe = &ar_pci->pipe_info[i];
2162 pipe->ce_hdl = &ar_pci->ce_states[i];
2163 pipe->pipe_num = i;
2164 pipe->hif_ce_state = ar;
2165
2166 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2167 if (ret) {
2168 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2169 i, ret);
2170 return ret;
2171 }
2172
2173 /* Last CE is Diagnostic Window */
2174 if (i == CE_DIAG_PIPE) {
2175 ar_pci->ce_diag = pipe->ce_hdl;
2176 continue;
2177 }
2178
2179 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2180 }
2181
2182 return 0;
2183 }
2184
2185 void ath10k_pci_free_pipes(struct ath10k *ar)
2186 {
2187 int i;
2188
2189 for (i = 0; i < CE_COUNT; i++)
2190 ath10k_ce_free_pipe(ar, i);
2191 }
2192
2193 int ath10k_pci_init_pipes(struct ath10k *ar)
2194 {
2195 int i, ret;
2196
2197 for (i = 0; i < CE_COUNT; i++) {
2198 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2199 if (ret) {
2200 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2201 i, ret);
2202 return ret;
2203 }
2204 }
2205
2206 return 0;
2207 }
2208
2209 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2210 {
2211 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2212 FW_IND_EVENT_PENDING;
2213 }
2214
2215 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2216 {
2217 u32 val;
2218
2219 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2220 val &= ~FW_IND_EVENT_PENDING;
2221 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2222 }
2223
2224 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2225 {
2226 u32 val;
2227
2228 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2229 return (val == 0xffffffff);
2230 }
2231
2232 /* this function effectively clears target memory controller assert line */
2233 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2234 {
2235 u32 val;
2236
2237 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2238 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2239 val | SOC_RESET_CONTROL_SI0_RST_MASK);
2240 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2241
2242 msleep(10);
2243
2244 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2245 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2246 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2247 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2248
2249 msleep(10);
2250 }
2251
2252 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2253 {
2254 u32 val;
2255
2256 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2257
2258 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2259 SOC_RESET_CONTROL_ADDRESS);
2260 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2261 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2262 }
2263
2264 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2265 {
2266 u32 val;
2267
2268 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2269 SOC_RESET_CONTROL_ADDRESS);
2270
2271 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2272 val | SOC_RESET_CONTROL_CE_RST_MASK);
2273 msleep(10);
2274 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2275 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2276 }
2277
2278 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2279 {
2280 u32 val;
2281
2282 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2283 SOC_LF_TIMER_CONTROL0_ADDRESS);
2284 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2285 SOC_LF_TIMER_CONTROL0_ADDRESS,
2286 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2287 }
2288
2289 static int ath10k_pci_warm_reset(struct ath10k *ar)
2290 {
2291 int ret;
2292
2293 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2294
2295 spin_lock_bh(&ar->data_lock);
2296 ar->stats.fw_warm_reset_counter++;
2297 spin_unlock_bh(&ar->data_lock);
2298
2299 ath10k_pci_irq_disable(ar);
2300
2301 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2302 * were to access copy engine while host performs copy engine reset
2303 * then it is possible for the device to confuse pci-e controller to
2304 * the point of bringing host system to a complete stop (i.e. hang).
2305 */
2306 ath10k_pci_warm_reset_si0(ar);
2307 ath10k_pci_warm_reset_cpu(ar);
2308 ath10k_pci_init_pipes(ar);
2309 ath10k_pci_wait_for_target_init(ar);
2310
2311 ath10k_pci_warm_reset_clear_lf(ar);
2312 ath10k_pci_warm_reset_ce(ar);
2313 ath10k_pci_warm_reset_cpu(ar);
2314 ath10k_pci_init_pipes(ar);
2315
2316 ret = ath10k_pci_wait_for_target_init(ar);
2317 if (ret) {
2318 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2319 return ret;
2320 }
2321
2322 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2323
2324 return 0;
2325 }
2326
2327 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2328 {
2329 ath10k_pci_irq_disable(ar);
2330 return ath10k_pci_qca99x0_chip_reset(ar);
2331 }
2332
2333 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2334 {
2335 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2336
2337 if (!ar_pci->pci_soft_reset)
2338 return -ENOTSUPP;
2339
2340 return ar_pci->pci_soft_reset(ar);
2341 }
2342
2343 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2344 {
2345 int i, ret;
2346 u32 val;
2347
2348 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2349
2350 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2351 * It is thus preferred to use warm reset which is safer but may not be
2352 * able to recover the device from all possible fail scenarios.
2353 *
2354 * Warm reset doesn't always work on first try so attempt it a few
2355 * times before giving up.
2356 */
2357 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2358 ret = ath10k_pci_warm_reset(ar);
2359 if (ret) {
2360 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2361 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2362 ret);
2363 continue;
2364 }
2365
2366 /* FIXME: Sometimes copy engine doesn't recover after warm
2367 * reset. In most cases this needs cold reset. In some of these
2368 * cases the device is in such a state that a cold reset may
2369 * lock up the host.
2370 *
2371 * Reading any host interest register via copy engine is
2372 * sufficient to verify if device is capable of booting
2373 * firmware blob.
2374 */
2375 ret = ath10k_pci_init_pipes(ar);
2376 if (ret) {
2377 ath10k_warn(ar, "failed to init copy engine: %d\n",
2378 ret);
2379 continue;
2380 }
2381
2382 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2383 &val);
2384 if (ret) {
2385 ath10k_warn(ar, "failed to poke copy engine: %d\n",
2386 ret);
2387 continue;
2388 }
2389
2390 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2391 return 0;
2392 }
2393
2394 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2395 ath10k_warn(ar, "refusing cold reset as requested\n");
2396 return -EPERM;
2397 }
2398
2399 ret = ath10k_pci_cold_reset(ar);
2400 if (ret) {
2401 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2402 return ret;
2403 }
2404
2405 ret = ath10k_pci_wait_for_target_init(ar);
2406 if (ret) {
2407 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2408 ret);
2409 return ret;
2410 }
2411
2412 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2413
2414 return 0;
2415 }
2416
2417 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2418 {
2419 int ret;
2420
2421 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2422
2423 /* FIXME: QCA6174 requires cold + warm reset to work. */
2424
2425 ret = ath10k_pci_cold_reset(ar);
2426 if (ret) {
2427 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2428 return ret;
2429 }
2430
2431 ret = ath10k_pci_wait_for_target_init(ar);
2432 if (ret) {
2433 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2434 ret);
2435 return ret;
2436 }
2437
2438 ret = ath10k_pci_warm_reset(ar);
2439 if (ret) {
2440 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2441 return ret;
2442 }
2443
2444 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2445
2446 return 0;
2447 }
2448
2449 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2450 {
2451 int ret;
2452
2453 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2454
2455 ret = ath10k_pci_cold_reset(ar);
2456 if (ret) {
2457 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2458 return ret;
2459 }
2460
2461 ret = ath10k_pci_wait_for_target_init(ar);
2462 if (ret) {
2463 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2464 ret);
2465 return ret;
2466 }
2467
2468 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2469
2470 return 0;
2471 }
2472
2473 static int ath10k_pci_chip_reset(struct ath10k *ar)
2474 {
2475 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2476
2477 if (WARN_ON(!ar_pci->pci_hard_reset))
2478 return -ENOTSUPP;
2479
2480 return ar_pci->pci_hard_reset(ar);
2481 }
2482
2483 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2484 {
2485 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2486 int ret;
2487
2488 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2489
2490 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2491 &ar_pci->link_ctl);
2492 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2493 ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2494
2495 /*
2496 * Bring the target up cleanly.
2497 *
2498 * The target may be in an undefined state with an AUX-powered Target
2499 * and a Host in WoW mode. If the Host crashes, loses power, or is
2500 * restarted (without unloading the driver) then the Target is left
2501 * (aux) powered and running. On a subsequent driver load, the Target
2502 * is in an unexpected state. We try to catch that here in order to
2503 * reset the Target and retry the probe.
2504 */
2505 ret = ath10k_pci_chip_reset(ar);
2506 if (ret) {
2507 if (ath10k_pci_has_fw_crashed(ar)) {
2508 ath10k_warn(ar, "firmware crashed during chip reset\n");
2509 ath10k_pci_fw_crashed_clear(ar);
2510 ath10k_pci_fw_crashed_dump(ar);
2511 }
2512
2513 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2514 goto err_sleep;
2515 }
2516
2517 ret = ath10k_pci_init_pipes(ar);
2518 if (ret) {
2519 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2520 goto err_sleep;
2521 }
2522
2523 ret = ath10k_pci_init_config(ar);
2524 if (ret) {
2525 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2526 goto err_ce;
2527 }
2528
2529 ret = ath10k_pci_wake_target_cpu(ar);
2530 if (ret) {
2531 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2532 goto err_ce;
2533 }
2534
2535 return 0;
2536
2537 err_ce:
2538 ath10k_pci_ce_deinit(ar);
2539
2540 err_sleep:
2541 return ret;
2542 }
2543
2544 void ath10k_pci_hif_power_down(struct ath10k *ar)
2545 {
2546 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2547
2548 /* Currently hif_power_up performs effectively a reset and hif_stop
2549 * resets the chip as well so there's no point in resetting here.
2550 */
2551 }
2552
2553 #ifdef CONFIG_PM
2554
2555 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2556 {
2557 /* The grace timer can still be counting down and ar->ps_awake be true.
2558 * It is known that the device may be asleep after resuming regardless
2559 * of the SoC powersave state before suspending. Hence make sure the
2560 * device is asleep before proceeding.
2561 */
2562 ath10k_pci_sleep_sync(ar);
2563
2564 return 0;
2565 }
2566
2567 static int ath10k_pci_hif_resume(struct ath10k *ar)
2568 {
2569 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2570 struct pci_dev *pdev = ar_pci->pdev;
2571 u32 val;
2572 int ret = 0;
2573
2574 ret = ath10k_pci_force_wake(ar);
2575 if (ret) {
2576 ath10k_err(ar, "failed to wake up target: %d\n", ret);
2577 return ret;
2578 }
2579
2580 /* Suspend/Resume resets the PCI configuration space, so we have to
2581 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2582 * from interfering with C3 CPU state. pci_restore_state won't help
2583 * here since it only restores the first 64 bytes pci config header.
2584 */
2585 pci_read_config_dword(pdev, 0x40, &val);
2586 if ((val & 0x0000ff00) != 0)
2587 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2588
2589 return ret;
2590 }
2591 #endif
2592
2593 static bool ath10k_pci_validate_cal(void *data, size_t size)
2594 {
2595 __le16 *cal_words = data;
2596 u16 checksum = 0;
2597 size_t i;
2598
2599 if (size % 2 != 0)
2600 return false;
2601
2602 for (i = 0; i < size / 2; i++)
2603 checksum ^= le16_to_cpu(cal_words[i]);
2604
2605 return checksum == 0xffff;
2606 }
2607
2608 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2609 {
2610 /* Enable SI clock */
2611 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2612
2613 /* Configure GPIOs for I2C operation */
2614 ath10k_pci_write32(ar,
2615 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2616 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2617 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2618 GPIO_PIN0_CONFIG) |
2619 SM(1, GPIO_PIN0_PAD_PULL));
2620
2621 ath10k_pci_write32(ar,
2622 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2623 4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2624 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2625 SM(1, GPIO_PIN0_PAD_PULL));
2626
2627 ath10k_pci_write32(ar,
2628 GPIO_BASE_ADDRESS +
2629 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2630 1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2631
2632 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2633 ath10k_pci_write32(ar,
2634 SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2635 SM(1, SI_CONFIG_ERR_INT) |
2636 SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2637 SM(1, SI_CONFIG_I2C) |
2638 SM(1, SI_CONFIG_POS_SAMPLE) |
2639 SM(1, SI_CONFIG_INACTIVE_DATA) |
2640 SM(1, SI_CONFIG_INACTIVE_CLK) |
2641 SM(8, SI_CONFIG_DIVIDER));
2642 }
2643
2644 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2645 {
2646 u32 reg;
2647 int wait_limit;
2648
2649 /* set device select byte and for the read operation */
2650 reg = QCA9887_EEPROM_SELECT_READ |
2651 SM(addr, QCA9887_EEPROM_ADDR_LO) |
2652 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2653 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2654
2655 /* write transmit data, transfer length, and START bit */
2656 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2657 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2658 SM(4, SI_CS_TX_CNT));
2659
2660 /* wait max 1 sec */
2661 wait_limit = 100000;
2662
2663 /* wait for SI_CS_DONE_INT */
2664 do {
2665 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2666 if (MS(reg, SI_CS_DONE_INT))
2667 break;
2668
2669 wait_limit--;
2670 udelay(10);
2671 } while (wait_limit > 0);
2672
2673 if (!MS(reg, SI_CS_DONE_INT)) {
2674 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2675 addr);
2676 return -ETIMEDOUT;
2677 }
2678
2679 /* clear SI_CS_DONE_INT */
2680 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2681
2682 if (MS(reg, SI_CS_DONE_ERR)) {
2683 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2684 return -EIO;
2685 }
2686
2687 /* extract receive data */
2688 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2689 *out = reg;
2690
2691 return 0;
2692 }
2693
2694 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2695 size_t *data_len)
2696 {
2697 u8 *caldata = NULL;
2698 size_t calsize, i;
2699 int ret;
2700
2701 if (!QCA_REV_9887(ar))
2702 return -EOPNOTSUPP;
2703
2704 calsize = ar->hw_params.cal_data_len;
2705 caldata = kmalloc(calsize, GFP_KERNEL);
2706 if (!caldata)
2707 return -ENOMEM;
2708
2709 ath10k_pci_enable_eeprom(ar);
2710
2711 for (i = 0; i < calsize; i++) {
2712 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2713 if (ret)
2714 goto err_free;
2715 }
2716
2717 if (!ath10k_pci_validate_cal(caldata, calsize))
2718 goto err_free;
2719
2720 *data = caldata;
2721 *data_len = calsize;
2722
2723 return 0;
2724
2725 err_free:
2726 kfree(caldata);
2727
2728 return -EINVAL;
2729 }
2730
2731 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2732 .tx_sg = ath10k_pci_hif_tx_sg,
2733 .diag_read = ath10k_pci_hif_diag_read,
2734 .diag_write = ath10k_pci_diag_write_mem,
2735 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
2736 .start = ath10k_pci_hif_start,
2737 .stop = ath10k_pci_hif_stop,
2738 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
2739 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
2740 .send_complete_check = ath10k_pci_hif_send_complete_check,
2741 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
2742 .power_up = ath10k_pci_hif_power_up,
2743 .power_down = ath10k_pci_hif_power_down,
2744 .read32 = ath10k_pci_read32,
2745 .write32 = ath10k_pci_write32,
2746 #ifdef CONFIG_PM
2747 .suspend = ath10k_pci_hif_suspend,
2748 .resume = ath10k_pci_hif_resume,
2749 #endif
2750 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom,
2751 };
2752
2753 /*
2754 * Top-level interrupt handler for all PCI interrupts from a Target.
2755 * When a block of MSI interrupts is allocated, this top-level handler
2756 * is not used; instead, we directly call the correct sub-handler.
2757 */
2758 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2759 {
2760 struct ath10k *ar = arg;
2761 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2762 int ret;
2763
2764 if (ath10k_pci_has_device_gone(ar))
2765 return IRQ_NONE;
2766
2767 ret = ath10k_pci_force_wake(ar);
2768 if (ret) {
2769 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2770 return IRQ_NONE;
2771 }
2772
2773 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
2774 !ath10k_pci_irq_pending(ar))
2775 return IRQ_NONE;
2776
2777 ath10k_pci_disable_and_clear_legacy_irq(ar);
2778 ath10k_pci_irq_msi_fw_mask(ar);
2779 napi_schedule(&ar->napi);
2780
2781 return IRQ_HANDLED;
2782 }
2783
2784 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
2785 {
2786 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2787 int done = 0;
2788
2789 if (ath10k_pci_has_fw_crashed(ar)) {
2790 ath10k_pci_fw_crashed_clear(ar);
2791 ath10k_pci_fw_crashed_dump(ar);
2792 napi_complete(ctx);
2793 return done;
2794 }
2795
2796 ath10k_ce_per_engine_service_any(ar);
2797
2798 done = ath10k_htt_txrx_compl_task(ar, budget);
2799
2800 if (done < budget) {
2801 napi_complete_done(ctx, done);
2802 /* In case of MSI, it is possible that interrupts are received
2803 * while NAPI poll is inprogress. So pending interrupts that are
2804 * received after processing all copy engine pipes by NAPI poll
2805 * will not be handled again. This is causing failure to
2806 * complete boot sequence in x86 platform. So before enabling
2807 * interrupts safer to check for pending interrupts for
2808 * immediate servicing.
2809 */
2810 if (CE_INTERRUPT_SUMMARY(ar)) {
2811 napi_reschedule(ctx);
2812 goto out;
2813 }
2814 ath10k_pci_enable_legacy_irq(ar);
2815 ath10k_pci_irq_msi_fw_unmask(ar);
2816 }
2817
2818 out:
2819 return done;
2820 }
2821
2822 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2823 {
2824 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2825 int ret;
2826
2827 ret = request_irq(ar_pci->pdev->irq,
2828 ath10k_pci_interrupt_handler,
2829 IRQF_SHARED, "ath10k_pci", ar);
2830 if (ret) {
2831 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2832 ar_pci->pdev->irq, ret);
2833 return ret;
2834 }
2835
2836 return 0;
2837 }
2838
2839 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2840 {
2841 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2842 int ret;
2843
2844 ret = request_irq(ar_pci->pdev->irq,
2845 ath10k_pci_interrupt_handler,
2846 IRQF_SHARED, "ath10k_pci", ar);
2847 if (ret) {
2848 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2849 ar_pci->pdev->irq, ret);
2850 return ret;
2851 }
2852
2853 return 0;
2854 }
2855
2856 static int ath10k_pci_request_irq(struct ath10k *ar)
2857 {
2858 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2859
2860 switch (ar_pci->oper_irq_mode) {
2861 case ATH10K_PCI_IRQ_LEGACY:
2862 return ath10k_pci_request_irq_legacy(ar);
2863 case ATH10K_PCI_IRQ_MSI:
2864 return ath10k_pci_request_irq_msi(ar);
2865 default:
2866 return -EINVAL;
2867 }
2868 }
2869
2870 static void ath10k_pci_free_irq(struct ath10k *ar)
2871 {
2872 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2873
2874 free_irq(ar_pci->pdev->irq, ar);
2875 }
2876
2877 void ath10k_pci_init_napi(struct ath10k *ar)
2878 {
2879 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
2880 ATH10K_NAPI_BUDGET);
2881 }
2882
2883 static int ath10k_pci_init_irq(struct ath10k *ar)
2884 {
2885 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2886 int ret;
2887
2888 ath10k_pci_init_napi(ar);
2889
2890 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2891 ath10k_info(ar, "limiting irq mode to: %d\n",
2892 ath10k_pci_irq_mode);
2893
2894 /* Try MSI */
2895 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2896 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2897 ret = pci_enable_msi(ar_pci->pdev);
2898 if (ret == 0)
2899 return 0;
2900
2901 /* fall-through */
2902 }
2903
2904 /* Try legacy irq
2905 *
2906 * A potential race occurs here: The CORE_BASE write
2907 * depends on target correctly decoding AXI address but
2908 * host won't know when target writes BAR to CORE_CTRL.
2909 * This write might get lost if target has NOT written BAR.
2910 * For now, fix the race by repeating the write in below
2911 * synchronization checking. */
2912 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2913
2914 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2915 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2916
2917 return 0;
2918 }
2919
2920 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2921 {
2922 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2923 0);
2924 }
2925
2926 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2927 {
2928 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2929
2930 switch (ar_pci->oper_irq_mode) {
2931 case ATH10K_PCI_IRQ_LEGACY:
2932 ath10k_pci_deinit_irq_legacy(ar);
2933 break;
2934 default:
2935 pci_disable_msi(ar_pci->pdev);
2936 break;
2937 }
2938
2939 return 0;
2940 }
2941
2942 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2943 {
2944 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2945 unsigned long timeout;
2946 u32 val;
2947
2948 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2949
2950 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2951
2952 do {
2953 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2954
2955 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2956 val);
2957
2958 /* target should never return this */
2959 if (val == 0xffffffff)
2960 continue;
2961
2962 /* the device has crashed so don't bother trying anymore */
2963 if (val & FW_IND_EVENT_PENDING)
2964 break;
2965
2966 if (val & FW_IND_INITIALIZED)
2967 break;
2968
2969 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2970 /* Fix potential race by repeating CORE_BASE writes */
2971 ath10k_pci_enable_legacy_irq(ar);
2972
2973 mdelay(10);
2974 } while (time_before(jiffies, timeout));
2975
2976 ath10k_pci_disable_and_clear_legacy_irq(ar);
2977 ath10k_pci_irq_msi_fw_mask(ar);
2978
2979 if (val == 0xffffffff) {
2980 ath10k_err(ar, "failed to read device register, device is gone\n");
2981 return -EIO;
2982 }
2983
2984 if (val & FW_IND_EVENT_PENDING) {
2985 ath10k_warn(ar, "device has crashed during init\n");
2986 return -ECOMM;
2987 }
2988
2989 if (!(val & FW_IND_INITIALIZED)) {
2990 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2991 val);
2992 return -ETIMEDOUT;
2993 }
2994
2995 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2996 return 0;
2997 }
2998
2999 static int ath10k_pci_cold_reset(struct ath10k *ar)
3000 {
3001 u32 val;
3002
3003 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3004
3005 spin_lock_bh(&ar->data_lock);
3006
3007 ar->stats.fw_cold_reset_counter++;
3008
3009 spin_unlock_bh(&ar->data_lock);
3010
3011 /* Put Target, including PCIe, into RESET. */
3012 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3013 val |= 1;
3014 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3015
3016 /* After writing into SOC_GLOBAL_RESET to put device into
3017 * reset and pulling out of reset pcie may not be stable
3018 * for any immediate pcie register access and cause bus error,
3019 * add delay before any pcie access request to fix this issue.
3020 */
3021 msleep(20);
3022
3023 /* Pull Target, including PCIe, out of RESET. */
3024 val &= ~1;
3025 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3026
3027 msleep(20);
3028
3029 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3030
3031 return 0;
3032 }
3033
3034 static int ath10k_pci_claim(struct ath10k *ar)
3035 {
3036 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3037 struct pci_dev *pdev = ar_pci->pdev;
3038 int ret;
3039
3040 pci_set_drvdata(pdev, ar);
3041
3042 ret = pci_enable_device(pdev);
3043 if (ret) {
3044 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3045 return ret;
3046 }
3047
3048 ret = pci_request_region(pdev, BAR_NUM, "ath");
3049 if (ret) {
3050 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3051 ret);
3052 goto err_device;
3053 }
3054
3055 /* Target expects 32 bit DMA. Enforce it. */
3056 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3057 if (ret) {
3058 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3059 goto err_region;
3060 }
3061
3062 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3063 if (ret) {
3064 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3065 ret);
3066 goto err_region;
3067 }
3068
3069 pci_set_master(pdev);
3070
3071 /* Arrange for access to Target SoC registers. */
3072 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3073 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3074 if (!ar_pci->mem) {
3075 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3076 ret = -EIO;
3077 goto err_master;
3078 }
3079
3080 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3081 return 0;
3082
3083 err_master:
3084 pci_clear_master(pdev);
3085
3086 err_region:
3087 pci_release_region(pdev, BAR_NUM);
3088
3089 err_device:
3090 pci_disable_device(pdev);
3091
3092 return ret;
3093 }
3094
3095 static void ath10k_pci_release(struct ath10k *ar)
3096 {
3097 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3098 struct pci_dev *pdev = ar_pci->pdev;
3099
3100 pci_iounmap(pdev, ar_pci->mem);
3101 pci_release_region(pdev, BAR_NUM);
3102 pci_clear_master(pdev);
3103 pci_disable_device(pdev);
3104 }
3105
3106 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3107 {
3108 const struct ath10k_pci_supp_chip *supp_chip;
3109 int i;
3110 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3111
3112 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3113 supp_chip = &ath10k_pci_supp_chips[i];
3114
3115 if (supp_chip->dev_id == dev_id &&
3116 supp_chip->rev_id == rev_id)
3117 return true;
3118 }
3119
3120 return false;
3121 }
3122
3123 int ath10k_pci_setup_resource(struct ath10k *ar)
3124 {
3125 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3126 int ret;
3127
3128 spin_lock_init(&ar_pci->ce_lock);
3129 spin_lock_init(&ar_pci->ps_lock);
3130
3131 setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3132 (unsigned long)ar);
3133
3134 if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3135 ath10k_pci_override_ce_config(ar);
3136
3137 ret = ath10k_pci_alloc_pipes(ar);
3138 if (ret) {
3139 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3140 ret);
3141 return ret;
3142 }
3143
3144 return 0;
3145 }
3146
3147 void ath10k_pci_release_resource(struct ath10k *ar)
3148 {
3149 ath10k_pci_rx_retry_sync(ar);
3150 netif_napi_del(&ar->napi);
3151 ath10k_pci_ce_deinit(ar);
3152 ath10k_pci_free_pipes(ar);
3153 }
3154
3155 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3156 .read32 = ath10k_bus_pci_read32,
3157 .write32 = ath10k_bus_pci_write32,
3158 .get_num_banks = ath10k_pci_get_num_banks,
3159 };
3160
3161 static int ath10k_pci_probe(struct pci_dev *pdev,
3162 const struct pci_device_id *pci_dev)
3163 {
3164 int ret = 0;
3165 struct ath10k *ar;
3166 struct ath10k_pci *ar_pci;
3167 enum ath10k_hw_rev hw_rev;
3168 u32 chip_id;
3169 bool pci_ps;
3170 int (*pci_soft_reset)(struct ath10k *ar);
3171 int (*pci_hard_reset)(struct ath10k *ar);
3172 u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3173
3174 switch (pci_dev->device) {
3175 case QCA988X_2_0_DEVICE_ID:
3176 hw_rev = ATH10K_HW_QCA988X;
3177 pci_ps = false;
3178 pci_soft_reset = ath10k_pci_warm_reset;
3179 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3180 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3181 break;
3182 case QCA9887_1_0_DEVICE_ID:
3183 hw_rev = ATH10K_HW_QCA9887;
3184 pci_ps = false;
3185 pci_soft_reset = ath10k_pci_warm_reset;
3186 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3187 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3188 break;
3189 case QCA6164_2_1_DEVICE_ID:
3190 case QCA6174_2_1_DEVICE_ID:
3191 hw_rev = ATH10K_HW_QCA6174;
3192 pci_ps = true;
3193 pci_soft_reset = ath10k_pci_warm_reset;
3194 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3195 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3196 break;
3197 case QCA99X0_2_0_DEVICE_ID:
3198 hw_rev = ATH10K_HW_QCA99X0;
3199 pci_ps = false;
3200 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3201 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3202 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3203 break;
3204 case QCA9984_1_0_DEVICE_ID:
3205 hw_rev = ATH10K_HW_QCA9984;
3206 pci_ps = false;
3207 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3208 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3209 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3210 break;
3211 case QCA9888_2_0_DEVICE_ID:
3212 hw_rev = ATH10K_HW_QCA9888;
3213 pci_ps = false;
3214 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3215 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3216 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3217 break;
3218 case QCA9377_1_0_DEVICE_ID:
3219 hw_rev = ATH10K_HW_QCA9377;
3220 pci_ps = true;
3221 pci_soft_reset = NULL;
3222 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3223 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3224 break;
3225 default:
3226 WARN_ON(1);
3227 return -ENOTSUPP;
3228 }
3229
3230 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3231 hw_rev, &ath10k_pci_hif_ops);
3232 if (!ar) {
3233 dev_err(&pdev->dev, "failed to allocate core\n");
3234 return -ENOMEM;
3235 }
3236
3237 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3238 pdev->vendor, pdev->device,
3239 pdev->subsystem_vendor, pdev->subsystem_device);
3240
3241 ar_pci = ath10k_pci_priv(ar);
3242 ar_pci->pdev = pdev;
3243 ar_pci->dev = &pdev->dev;
3244 ar_pci->ar = ar;
3245 ar->dev_id = pci_dev->device;
3246 ar_pci->pci_ps = pci_ps;
3247 ar_pci->bus_ops = &ath10k_pci_bus_ops;
3248 ar_pci->pci_soft_reset = pci_soft_reset;
3249 ar_pci->pci_hard_reset = pci_hard_reset;
3250 ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3251
3252 ar->id.vendor = pdev->vendor;
3253 ar->id.device = pdev->device;
3254 ar->id.subsystem_vendor = pdev->subsystem_vendor;
3255 ar->id.subsystem_device = pdev->subsystem_device;
3256
3257 setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3258 (unsigned long)ar);
3259
3260 ret = ath10k_pci_setup_resource(ar);
3261 if (ret) {
3262 ath10k_err(ar, "failed to setup resource: %d\n", ret);
3263 goto err_core_destroy;
3264 }
3265
3266 ret = ath10k_pci_claim(ar);
3267 if (ret) {
3268 ath10k_err(ar, "failed to claim device: %d\n", ret);
3269 goto err_free_pipes;
3270 }
3271
3272 ret = ath10k_pci_force_wake(ar);
3273 if (ret) {
3274 ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3275 goto err_sleep;
3276 }
3277
3278 ath10k_pci_ce_deinit(ar);
3279 ath10k_pci_irq_disable(ar);
3280
3281 ret = ath10k_pci_init_irq(ar);
3282 if (ret) {
3283 ath10k_err(ar, "failed to init irqs: %d\n", ret);
3284 goto err_sleep;
3285 }
3286
3287 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3288 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3289 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3290
3291 ret = ath10k_pci_request_irq(ar);
3292 if (ret) {
3293 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3294 goto err_deinit_irq;
3295 }
3296
3297 ret = ath10k_pci_chip_reset(ar);
3298 if (ret) {
3299 ath10k_err(ar, "failed to reset chip: %d\n", ret);
3300 goto err_free_irq;
3301 }
3302
3303 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3304 if (chip_id == 0xffffffff) {
3305 ath10k_err(ar, "failed to get chip id\n");
3306 goto err_free_irq;
3307 }
3308
3309 if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3310 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3311 pdev->device, chip_id);
3312 goto err_free_irq;
3313 }
3314
3315 ret = ath10k_core_register(ar, chip_id);
3316 if (ret) {
3317 ath10k_err(ar, "failed to register driver core: %d\n", ret);
3318 goto err_free_irq;
3319 }
3320
3321 return 0;
3322
3323 err_free_irq:
3324 ath10k_pci_free_irq(ar);
3325 ath10k_pci_rx_retry_sync(ar);
3326
3327 err_deinit_irq:
3328 ath10k_pci_deinit_irq(ar);
3329
3330 err_sleep:
3331 ath10k_pci_sleep_sync(ar);
3332 ath10k_pci_release(ar);
3333
3334 err_free_pipes:
3335 ath10k_pci_free_pipes(ar);
3336
3337 err_core_destroy:
3338 ath10k_core_destroy(ar);
3339
3340 return ret;
3341 }
3342
3343 static void ath10k_pci_remove(struct pci_dev *pdev)
3344 {
3345 struct ath10k *ar = pci_get_drvdata(pdev);
3346 struct ath10k_pci *ar_pci;
3347
3348 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3349
3350 if (!ar)
3351 return;
3352
3353 ar_pci = ath10k_pci_priv(ar);
3354
3355 if (!ar_pci)
3356 return;
3357
3358 ath10k_core_unregister(ar);
3359 ath10k_pci_free_irq(ar);
3360 ath10k_pci_deinit_irq(ar);
3361 ath10k_pci_release_resource(ar);
3362 ath10k_pci_sleep_sync(ar);
3363 ath10k_pci_release(ar);
3364 ath10k_core_destroy(ar);
3365 }
3366
3367 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3368
3369 static struct pci_driver ath10k_pci_driver = {
3370 .name = "ath10k_pci",
3371 .id_table = ath10k_pci_id_table,
3372 .probe = ath10k_pci_probe,
3373 .remove = ath10k_pci_remove,
3374 };
3375
3376 static int __init ath10k_pci_init(void)
3377 {
3378 int ret;
3379
3380 ret = pci_register_driver(&ath10k_pci_driver);
3381 if (ret)
3382 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3383 ret);
3384
3385 ret = ath10k_ahb_init();
3386 if (ret)
3387 printk(KERN_ERR "ahb init failed: %d\n", ret);
3388
3389 return ret;
3390 }
3391 module_init(ath10k_pci_init);
3392
3393 static void __exit ath10k_pci_exit(void)
3394 {
3395 pci_unregister_driver(&ath10k_pci_driver);
3396 ath10k_ahb_exit();
3397 }
3398
3399 module_exit(ath10k_pci_exit);
3400
3401 MODULE_AUTHOR("Qualcomm Atheros");
3402 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3403 MODULE_LICENSE("Dual BSD/GPL");
3404
3405 /* QCA988x 2.0 firmware files */
3406 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3407 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3408 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3409 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3410 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3411 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3412
3413 /* QCA9887 1.0 firmware files */
3414 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3415 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3416 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3417
3418 /* QCA6174 2.1 firmware files */
3419 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3420 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3421 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3422 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3423
3424 /* QCA6174 3.1 firmware files */
3425 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3426 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3427 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3428 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3429
3430 /* QCA9377 1.0 firmware files */
3431 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3432 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);