]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath10k/pci.c
ath10k: defer irq registration until hif start()
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath10k / pci.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23
24 #include "core.h"
25 #include "debug.h"
26
27 #include "targaddrs.h"
28 #include "bmi.h"
29
30 #include "hif.h"
31 #include "htc.h"
32
33 #include "ce.h"
34 #include "pci.h"
35
36 static unsigned int ath10k_target_ps;
37 module_param(ath10k_target_ps, uint, 0644);
38 MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option");
39
40 #define QCA988X_2_0_DEVICE_ID (0x003c)
41
42 static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = {
43 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
44 {0}
45 };
46
47 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
48 u32 *data);
49
50 static void ath10k_pci_process_ce(struct ath10k *ar);
51 static int ath10k_pci_post_rx(struct ath10k *ar);
52 static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info,
53 int num);
54 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info);
55 static void ath10k_pci_stop_ce(struct ath10k *ar);
56 static int ath10k_pci_device_reset(struct ath10k *ar);
57 static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
58 static int ath10k_pci_init_irq(struct ath10k *ar);
59 static int ath10k_pci_deinit_irq(struct ath10k *ar);
60 static int ath10k_pci_request_irq(struct ath10k *ar);
61 static void ath10k_pci_free_irq(struct ath10k *ar);
62 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
63 struct ath10k_ce_pipe *rx_pipe,
64 struct bmi_xfer *xfer);
65 static void ath10k_pci_cleanup_ce(struct ath10k *ar);
66
67 static const struct ce_attr host_ce_config_wlan[] = {
68 /* CE0: host->target HTC control and raw streams */
69 {
70 .flags = CE_ATTR_FLAGS,
71 .src_nentries = 16,
72 .src_sz_max = 256,
73 .dest_nentries = 0,
74 },
75
76 /* CE1: target->host HTT + HTC control */
77 {
78 .flags = CE_ATTR_FLAGS,
79 .src_nentries = 0,
80 .src_sz_max = 512,
81 .dest_nentries = 512,
82 },
83
84 /* CE2: target->host WMI */
85 {
86 .flags = CE_ATTR_FLAGS,
87 .src_nentries = 0,
88 .src_sz_max = 2048,
89 .dest_nentries = 32,
90 },
91
92 /* CE3: host->target WMI */
93 {
94 .flags = CE_ATTR_FLAGS,
95 .src_nentries = 32,
96 .src_sz_max = 2048,
97 .dest_nentries = 0,
98 },
99
100 /* CE4: host->target HTT */
101 {
102 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
103 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
104 .src_sz_max = 256,
105 .dest_nentries = 0,
106 },
107
108 /* CE5: unused */
109 {
110 .flags = CE_ATTR_FLAGS,
111 .src_nentries = 0,
112 .src_sz_max = 0,
113 .dest_nentries = 0,
114 },
115
116 /* CE6: target autonomous hif_memcpy */
117 {
118 .flags = CE_ATTR_FLAGS,
119 .src_nentries = 0,
120 .src_sz_max = 0,
121 .dest_nentries = 0,
122 },
123
124 /* CE7: ce_diag, the Diagnostic Window */
125 {
126 .flags = CE_ATTR_FLAGS,
127 .src_nentries = 2,
128 .src_sz_max = DIAG_TRANSFER_LIMIT,
129 .dest_nentries = 2,
130 },
131 };
132
133 /* Target firmware's Copy Engine configuration. */
134 static const struct ce_pipe_config target_ce_config_wlan[] = {
135 /* CE0: host->target HTC control and raw streams */
136 {
137 .pipenum = 0,
138 .pipedir = PIPEDIR_OUT,
139 .nentries = 32,
140 .nbytes_max = 256,
141 .flags = CE_ATTR_FLAGS,
142 .reserved = 0,
143 },
144
145 /* CE1: target->host HTT + HTC control */
146 {
147 .pipenum = 1,
148 .pipedir = PIPEDIR_IN,
149 .nentries = 32,
150 .nbytes_max = 512,
151 .flags = CE_ATTR_FLAGS,
152 .reserved = 0,
153 },
154
155 /* CE2: target->host WMI */
156 {
157 .pipenum = 2,
158 .pipedir = PIPEDIR_IN,
159 .nentries = 32,
160 .nbytes_max = 2048,
161 .flags = CE_ATTR_FLAGS,
162 .reserved = 0,
163 },
164
165 /* CE3: host->target WMI */
166 {
167 .pipenum = 3,
168 .pipedir = PIPEDIR_OUT,
169 .nentries = 32,
170 .nbytes_max = 2048,
171 .flags = CE_ATTR_FLAGS,
172 .reserved = 0,
173 },
174
175 /* CE4: host->target HTT */
176 {
177 .pipenum = 4,
178 .pipedir = PIPEDIR_OUT,
179 .nentries = 256,
180 .nbytes_max = 256,
181 .flags = CE_ATTR_FLAGS,
182 .reserved = 0,
183 },
184
185 /* NB: 50% of src nentries, since tx has 2 frags */
186
187 /* CE5: unused */
188 {
189 .pipenum = 5,
190 .pipedir = PIPEDIR_OUT,
191 .nentries = 32,
192 .nbytes_max = 2048,
193 .flags = CE_ATTR_FLAGS,
194 .reserved = 0,
195 },
196
197 /* CE6: Reserved for target autonomous hif_memcpy */
198 {
199 .pipenum = 6,
200 .pipedir = PIPEDIR_INOUT,
201 .nentries = 32,
202 .nbytes_max = 4096,
203 .flags = CE_ATTR_FLAGS,
204 .reserved = 0,
205 },
206
207 /* CE7 used only by Host */
208 };
209
210 static bool ath10k_pci_irq_pending(struct ath10k *ar)
211 {
212 u32 cause;
213
214 /* Check if the shared legacy irq is for us */
215 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
216 PCIE_INTR_CAUSE_ADDRESS);
217 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
218 return true;
219
220 return false;
221 }
222
223 /*
224 * Diagnostic read/write access is provided for startup/config/debug usage.
225 * Caller must guarantee proper alignment, when applicable, and single user
226 * at any moment.
227 */
228 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
229 int nbytes)
230 {
231 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
232 int ret = 0;
233 u32 buf;
234 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
235 unsigned int id;
236 unsigned int flags;
237 struct ath10k_ce_pipe *ce_diag;
238 /* Host buffer address in CE space */
239 u32 ce_data;
240 dma_addr_t ce_data_base = 0;
241 void *data_buf = NULL;
242 int i;
243
244 /*
245 * This code cannot handle reads to non-memory space. Redirect to the
246 * register read fn but preserve the multi word read capability of
247 * this fn
248 */
249 if (address < DRAM_BASE_ADDRESS) {
250 if (!IS_ALIGNED(address, 4) ||
251 !IS_ALIGNED((unsigned long)data, 4))
252 return -EIO;
253
254 while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access(
255 ar, address, (u32 *)data)) == 0)) {
256 nbytes -= sizeof(u32);
257 address += sizeof(u32);
258 data += sizeof(u32);
259 }
260 return ret;
261 }
262
263 ce_diag = ar_pci->ce_diag;
264
265 /*
266 * Allocate a temporary bounce buffer to hold caller's data
267 * to be DMA'ed from Target. This guarantees
268 * 1) 4-byte alignment
269 * 2) Buffer in DMA-able space
270 */
271 orig_nbytes = nbytes;
272 data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
273 orig_nbytes,
274 &ce_data_base);
275
276 if (!data_buf) {
277 ret = -ENOMEM;
278 goto done;
279 }
280 memset(data_buf, 0, orig_nbytes);
281
282 remaining_bytes = orig_nbytes;
283 ce_data = ce_data_base;
284 while (remaining_bytes) {
285 nbytes = min_t(unsigned int, remaining_bytes,
286 DIAG_TRANSFER_LIMIT);
287
288 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data);
289 if (ret != 0)
290 goto done;
291
292 /* Request CE to send from Target(!) address to Host buffer */
293 /*
294 * The address supplied by the caller is in the
295 * Target CPU virtual address space.
296 *
297 * In order to use this address with the diagnostic CE,
298 * convert it from Target CPU virtual address space
299 * to CE address space
300 */
301 ath10k_pci_wake(ar);
302 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
303 address);
304 ath10k_pci_sleep(ar);
305
306 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
307 0);
308 if (ret)
309 goto done;
310
311 i = 0;
312 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
313 &completed_nbytes,
314 &id) != 0) {
315 mdelay(1);
316 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
317 ret = -EBUSY;
318 goto done;
319 }
320 }
321
322 if (nbytes != completed_nbytes) {
323 ret = -EIO;
324 goto done;
325 }
326
327 if (buf != (u32) address) {
328 ret = -EIO;
329 goto done;
330 }
331
332 i = 0;
333 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
334 &completed_nbytes,
335 &id, &flags) != 0) {
336 mdelay(1);
337
338 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
339 ret = -EBUSY;
340 goto done;
341 }
342 }
343
344 if (nbytes != completed_nbytes) {
345 ret = -EIO;
346 goto done;
347 }
348
349 if (buf != ce_data) {
350 ret = -EIO;
351 goto done;
352 }
353
354 remaining_bytes -= nbytes;
355 address += nbytes;
356 ce_data += nbytes;
357 }
358
359 done:
360 if (ret == 0) {
361 /* Copy data from allocated DMA buf to caller's buf */
362 WARN_ON_ONCE(orig_nbytes & 3);
363 for (i = 0; i < orig_nbytes / sizeof(__le32); i++) {
364 ((u32 *)data)[i] =
365 __le32_to_cpu(((__le32 *)data_buf)[i]);
366 }
367 } else
368 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n",
369 __func__, address);
370
371 if (data_buf)
372 pci_free_consistent(ar_pci->pdev, orig_nbytes,
373 data_buf, ce_data_base);
374
375 return ret;
376 }
377
378 /* Read 4-byte aligned data from Target memory or register */
379 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
380 u32 *data)
381 {
382 /* Assume range doesn't cross this boundary */
383 if (address >= DRAM_BASE_ADDRESS)
384 return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32));
385
386 ath10k_pci_wake(ar);
387 *data = ath10k_pci_read32(ar, address);
388 ath10k_pci_sleep(ar);
389 return 0;
390 }
391
392 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
393 const void *data, int nbytes)
394 {
395 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
396 int ret = 0;
397 u32 buf;
398 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
399 unsigned int id;
400 unsigned int flags;
401 struct ath10k_ce_pipe *ce_diag;
402 void *data_buf = NULL;
403 u32 ce_data; /* Host buffer address in CE space */
404 dma_addr_t ce_data_base = 0;
405 int i;
406
407 ce_diag = ar_pci->ce_diag;
408
409 /*
410 * Allocate a temporary bounce buffer to hold caller's data
411 * to be DMA'ed to Target. This guarantees
412 * 1) 4-byte alignment
413 * 2) Buffer in DMA-able space
414 */
415 orig_nbytes = nbytes;
416 data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
417 orig_nbytes,
418 &ce_data_base);
419 if (!data_buf) {
420 ret = -ENOMEM;
421 goto done;
422 }
423
424 /* Copy caller's data to allocated DMA buf */
425 WARN_ON_ONCE(orig_nbytes & 3);
426 for (i = 0; i < orig_nbytes / sizeof(__le32); i++)
427 ((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]);
428
429 /*
430 * The address supplied by the caller is in the
431 * Target CPU virtual address space.
432 *
433 * In order to use this address with the diagnostic CE,
434 * convert it from
435 * Target CPU virtual address space
436 * to
437 * CE address space
438 */
439 ath10k_pci_wake(ar);
440 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
441 ath10k_pci_sleep(ar);
442
443 remaining_bytes = orig_nbytes;
444 ce_data = ce_data_base;
445 while (remaining_bytes) {
446 /* FIXME: check cast */
447 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
448
449 /* Set up to receive directly into Target(!) address */
450 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address);
451 if (ret != 0)
452 goto done;
453
454 /*
455 * Request CE to send caller-supplied data that
456 * was copied to bounce buffer to Target(!) address.
457 */
458 ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
459 nbytes, 0, 0);
460 if (ret != 0)
461 goto done;
462
463 i = 0;
464 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
465 &completed_nbytes,
466 &id) != 0) {
467 mdelay(1);
468
469 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
470 ret = -EBUSY;
471 goto done;
472 }
473 }
474
475 if (nbytes != completed_nbytes) {
476 ret = -EIO;
477 goto done;
478 }
479
480 if (buf != ce_data) {
481 ret = -EIO;
482 goto done;
483 }
484
485 i = 0;
486 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
487 &completed_nbytes,
488 &id, &flags) != 0) {
489 mdelay(1);
490
491 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
492 ret = -EBUSY;
493 goto done;
494 }
495 }
496
497 if (nbytes != completed_nbytes) {
498 ret = -EIO;
499 goto done;
500 }
501
502 if (buf != address) {
503 ret = -EIO;
504 goto done;
505 }
506
507 remaining_bytes -= nbytes;
508 address += nbytes;
509 ce_data += nbytes;
510 }
511
512 done:
513 if (data_buf) {
514 pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf,
515 ce_data_base);
516 }
517
518 if (ret != 0)
519 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__,
520 address);
521
522 return ret;
523 }
524
525 /* Write 4B data to Target memory or register */
526 static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
527 u32 data)
528 {
529 /* Assume range doesn't cross this boundary */
530 if (address >= DRAM_BASE_ADDRESS)
531 return ath10k_pci_diag_write_mem(ar, address, &data,
532 sizeof(u32));
533
534 ath10k_pci_wake(ar);
535 ath10k_pci_write32(ar, address, data);
536 ath10k_pci_sleep(ar);
537 return 0;
538 }
539
540 static bool ath10k_pci_target_is_awake(struct ath10k *ar)
541 {
542 void __iomem *mem = ath10k_pci_priv(ar)->mem;
543 u32 val;
544 val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS +
545 RTC_STATE_ADDRESS);
546 return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON);
547 }
548
549 int ath10k_do_pci_wake(struct ath10k *ar)
550 {
551 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
552 void __iomem *pci_addr = ar_pci->mem;
553 int tot_delay = 0;
554 int curr_delay = 5;
555
556 if (atomic_read(&ar_pci->keep_awake_count) == 0) {
557 /* Force AWAKE */
558 iowrite32(PCIE_SOC_WAKE_V_MASK,
559 pci_addr + PCIE_LOCAL_BASE_ADDRESS +
560 PCIE_SOC_WAKE_ADDRESS);
561 }
562 atomic_inc(&ar_pci->keep_awake_count);
563
564 if (ar_pci->verified_awake)
565 return 0;
566
567 for (;;) {
568 if (ath10k_pci_target_is_awake(ar)) {
569 ar_pci->verified_awake = true;
570 return 0;
571 }
572
573 if (tot_delay > PCIE_WAKE_TIMEOUT) {
574 ath10k_warn("target took longer %d us to wake up (awake count %d)\n",
575 PCIE_WAKE_TIMEOUT,
576 atomic_read(&ar_pci->keep_awake_count));
577 return -ETIMEDOUT;
578 }
579
580 udelay(curr_delay);
581 tot_delay += curr_delay;
582
583 if (curr_delay < 50)
584 curr_delay += 5;
585 }
586 }
587
588 void ath10k_do_pci_sleep(struct ath10k *ar)
589 {
590 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
591 void __iomem *pci_addr = ar_pci->mem;
592
593 if (atomic_dec_and_test(&ar_pci->keep_awake_count)) {
594 /* Allow sleep */
595 ar_pci->verified_awake = false;
596 iowrite32(PCIE_SOC_WAKE_RESET,
597 pci_addr + PCIE_LOCAL_BASE_ADDRESS +
598 PCIE_SOC_WAKE_ADDRESS);
599 }
600 }
601
602 /*
603 * FIXME: Handle OOM properly.
604 */
605 static inline
606 struct ath10k_pci_compl *get_free_compl(struct ath10k_pci_pipe *pipe_info)
607 {
608 struct ath10k_pci_compl *compl = NULL;
609
610 spin_lock_bh(&pipe_info->pipe_lock);
611 if (list_empty(&pipe_info->compl_free)) {
612 ath10k_warn("Completion buffers are full\n");
613 goto exit;
614 }
615 compl = list_first_entry(&pipe_info->compl_free,
616 struct ath10k_pci_compl, list);
617 list_del(&compl->list);
618 exit:
619 spin_unlock_bh(&pipe_info->pipe_lock);
620 return compl;
621 }
622
623 /* Called by lower (CE) layer when a send to Target completes. */
624 static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state)
625 {
626 struct ath10k *ar = ce_state->ar;
627 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
628 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
629 struct ath10k_pci_compl *compl;
630 void *transfer_context;
631 u32 ce_data;
632 unsigned int nbytes;
633 unsigned int transfer_id;
634
635 while (ath10k_ce_completed_send_next(ce_state, &transfer_context,
636 &ce_data, &nbytes,
637 &transfer_id) == 0) {
638 compl = get_free_compl(pipe_info);
639 if (!compl)
640 break;
641
642 compl->state = ATH10K_PCI_COMPL_SEND;
643 compl->ce_state = ce_state;
644 compl->pipe_info = pipe_info;
645 compl->skb = transfer_context;
646 compl->nbytes = nbytes;
647 compl->transfer_id = transfer_id;
648 compl->flags = 0;
649
650 /*
651 * Add the completion to the processing queue.
652 */
653 spin_lock_bh(&ar_pci->compl_lock);
654 list_add_tail(&compl->list, &ar_pci->compl_process);
655 spin_unlock_bh(&ar_pci->compl_lock);
656 }
657
658 ath10k_pci_process_ce(ar);
659 }
660
661 /* Called by lower (CE) layer when data is received from the Target. */
662 static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state)
663 {
664 struct ath10k *ar = ce_state->ar;
665 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
666 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
667 struct ath10k_pci_compl *compl;
668 struct sk_buff *skb;
669 void *transfer_context;
670 u32 ce_data;
671 unsigned int nbytes;
672 unsigned int transfer_id;
673 unsigned int flags;
674
675 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
676 &ce_data, &nbytes, &transfer_id,
677 &flags) == 0) {
678 compl = get_free_compl(pipe_info);
679 if (!compl)
680 break;
681
682 compl->state = ATH10K_PCI_COMPL_RECV;
683 compl->ce_state = ce_state;
684 compl->pipe_info = pipe_info;
685 compl->skb = transfer_context;
686 compl->nbytes = nbytes;
687 compl->transfer_id = transfer_id;
688 compl->flags = flags;
689
690 skb = transfer_context;
691 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
692 skb->len + skb_tailroom(skb),
693 DMA_FROM_DEVICE);
694 /*
695 * Add the completion to the processing queue.
696 */
697 spin_lock_bh(&ar_pci->compl_lock);
698 list_add_tail(&compl->list, &ar_pci->compl_process);
699 spin_unlock_bh(&ar_pci->compl_lock);
700 }
701
702 ath10k_pci_process_ce(ar);
703 }
704
705 /* Send the first nbytes bytes of the buffer */
706 static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id,
707 unsigned int transfer_id,
708 unsigned int bytes, struct sk_buff *nbuf)
709 {
710 struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf);
711 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
712 struct ath10k_pci_pipe *pipe_info = &(ar_pci->pipe_info[pipe_id]);
713 struct ath10k_ce_pipe *ce_hdl = pipe_info->ce_hdl;
714 unsigned int len;
715 u32 flags = 0;
716 int ret;
717
718 len = min(bytes, nbuf->len);
719 bytes -= len;
720
721 if (len & 3)
722 ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len);
723
724 ath10k_dbg(ATH10K_DBG_PCI,
725 "pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n",
726 nbuf->data, (unsigned long long) skb_cb->paddr,
727 nbuf->len, len);
728 ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
729 "ath10k tx: data: ",
730 nbuf->data, nbuf->len);
731
732 ret = ath10k_ce_send(ce_hdl, nbuf, skb_cb->paddr, len, transfer_id,
733 flags);
734 if (ret)
735 ath10k_warn("failed to send sk_buff to CE: %p\n", nbuf);
736
737 return ret;
738 }
739
740 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
741 {
742 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
743 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
744 }
745
746 static void ath10k_pci_hif_dump_area(struct ath10k *ar)
747 {
748 u32 reg_dump_area = 0;
749 u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
750 u32 host_addr;
751 int ret;
752 u32 i;
753
754 ath10k_err("firmware crashed!\n");
755 ath10k_err("hardware name %s version 0x%x\n",
756 ar->hw_params.name, ar->target_version);
757 ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major,
758 ar->fw_version_minor, ar->fw_version_release,
759 ar->fw_version_build);
760
761 host_addr = host_interest_item_address(HI_ITEM(hi_failure_state));
762 ret = ath10k_pci_diag_read_mem(ar, host_addr,
763 &reg_dump_area, sizeof(u32));
764 if (ret) {
765 ath10k_err("failed to read FW dump area address: %d\n", ret);
766 return;
767 }
768
769 ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area);
770
771 ret = ath10k_pci_diag_read_mem(ar, reg_dump_area,
772 &reg_dump_values[0],
773 REG_DUMP_COUNT_QCA988X * sizeof(u32));
774 if (ret != 0) {
775 ath10k_err("failed to read FW dump area: %d\n", ret);
776 return;
777 }
778
779 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
780
781 ath10k_err("target Register Dump\n");
782 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
783 ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
784 i,
785 reg_dump_values[i],
786 reg_dump_values[i + 1],
787 reg_dump_values[i + 2],
788 reg_dump_values[i + 3]);
789
790 queue_work(ar->workqueue, &ar->restart_work);
791 }
792
793 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
794 int force)
795 {
796 if (!force) {
797 int resources;
798 /*
799 * Decide whether to actually poll for completions, or just
800 * wait for a later chance.
801 * If there seem to be plenty of resources left, then just wait
802 * since checking involves reading a CE register, which is a
803 * relatively expensive operation.
804 */
805 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
806
807 /*
808 * If at least 50% of the total resources are still available,
809 * don't bother checking again yet.
810 */
811 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
812 return;
813 }
814 ath10k_ce_per_engine_service(ar, pipe);
815 }
816
817 static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
818 struct ath10k_hif_cb *callbacks)
819 {
820 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
821
822 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
823
824 memcpy(&ar_pci->msg_callbacks_current, callbacks,
825 sizeof(ar_pci->msg_callbacks_current));
826 }
827
828 static int ath10k_pci_alloc_compl(struct ath10k *ar)
829 {
830 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
831 const struct ce_attr *attr;
832 struct ath10k_pci_pipe *pipe_info;
833 struct ath10k_pci_compl *compl;
834 int i, pipe_num, completions;
835
836 spin_lock_init(&ar_pci->compl_lock);
837 INIT_LIST_HEAD(&ar_pci->compl_process);
838
839 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
840 pipe_info = &ar_pci->pipe_info[pipe_num];
841
842 spin_lock_init(&pipe_info->pipe_lock);
843 INIT_LIST_HEAD(&pipe_info->compl_free);
844
845 /* Handle Diagnostic CE specially */
846 if (pipe_info->ce_hdl == ar_pci->ce_diag)
847 continue;
848
849 attr = &host_ce_config_wlan[pipe_num];
850 completions = 0;
851
852 if (attr->src_nentries)
853 completions += attr->src_nentries;
854
855 if (attr->dest_nentries)
856 completions += attr->dest_nentries;
857
858 for (i = 0; i < completions; i++) {
859 compl = kmalloc(sizeof(*compl), GFP_KERNEL);
860 if (!compl) {
861 ath10k_warn("No memory for completion state\n");
862 ath10k_pci_cleanup_ce(ar);
863 return -ENOMEM;
864 }
865
866 compl->state = ATH10K_PCI_COMPL_FREE;
867 list_add_tail(&compl->list, &pipe_info->compl_free);
868 }
869 }
870
871 return 0;
872 }
873
874 static int ath10k_pci_setup_ce_irq(struct ath10k *ar)
875 {
876 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
877 const struct ce_attr *attr;
878 struct ath10k_pci_pipe *pipe_info;
879 int pipe_num, disable_interrupts;
880
881 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
882 pipe_info = &ar_pci->pipe_info[pipe_num];
883
884 /* Handle Diagnostic CE specially */
885 if (pipe_info->ce_hdl == ar_pci->ce_diag)
886 continue;
887
888 attr = &host_ce_config_wlan[pipe_num];
889
890 if (attr->src_nentries) {
891 disable_interrupts = attr->flags & CE_ATTR_DIS_INTR;
892 ath10k_ce_send_cb_register(pipe_info->ce_hdl,
893 ath10k_pci_ce_send_done,
894 disable_interrupts);
895 }
896
897 if (attr->dest_nentries)
898 ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
899 ath10k_pci_ce_recv_data);
900 }
901
902 return 0;
903 }
904
905 static void ath10k_pci_kill_tasklet(struct ath10k *ar)
906 {
907 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
908 int i;
909
910 tasklet_kill(&ar_pci->intr_tq);
911 tasklet_kill(&ar_pci->msi_fw_err);
912
913 for (i = 0; i < CE_COUNT; i++)
914 tasklet_kill(&ar_pci->pipe_info[i].intr);
915 }
916
917 static void ath10k_pci_stop_ce(struct ath10k *ar)
918 {
919 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
920 struct ath10k_pci_compl *compl;
921 struct sk_buff *skb;
922
923 /* Mark pending completions as aborted, so that upper layers free up
924 * their associated resources */
925 spin_lock_bh(&ar_pci->compl_lock);
926 list_for_each_entry(compl, &ar_pci->compl_process, list) {
927 skb = compl->skb;
928 ATH10K_SKB_CB(skb)->is_aborted = true;
929 }
930 spin_unlock_bh(&ar_pci->compl_lock);
931 }
932
933 static void ath10k_pci_cleanup_ce(struct ath10k *ar)
934 {
935 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
936 struct ath10k_pci_compl *compl, *tmp;
937 struct ath10k_pci_pipe *pipe_info;
938 struct sk_buff *netbuf;
939 int pipe_num;
940
941 /* Free pending completions. */
942 spin_lock_bh(&ar_pci->compl_lock);
943 if (!list_empty(&ar_pci->compl_process))
944 ath10k_warn("pending completions still present! possible memory leaks.\n");
945
946 list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) {
947 list_del(&compl->list);
948 netbuf = compl->skb;
949 dev_kfree_skb_any(netbuf);
950 kfree(compl);
951 }
952 spin_unlock_bh(&ar_pci->compl_lock);
953
954 /* Free unused completions for each pipe. */
955 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
956 pipe_info = &ar_pci->pipe_info[pipe_num];
957
958 spin_lock_bh(&pipe_info->pipe_lock);
959 list_for_each_entry_safe(compl, tmp,
960 &pipe_info->compl_free, list) {
961 list_del(&compl->list);
962 kfree(compl);
963 }
964 spin_unlock_bh(&pipe_info->pipe_lock);
965 }
966 }
967
968 static void ath10k_pci_process_ce(struct ath10k *ar)
969 {
970 struct ath10k_pci *ar_pci = ar->hif.priv;
971 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
972 struct ath10k_pci_compl *compl;
973 struct sk_buff *skb;
974 unsigned int nbytes;
975 int ret, send_done = 0;
976
977 /* Upper layers aren't ready to handle tx/rx completions in parallel so
978 * we must serialize all completion processing. */
979
980 spin_lock_bh(&ar_pci->compl_lock);
981 if (ar_pci->compl_processing) {
982 spin_unlock_bh(&ar_pci->compl_lock);
983 return;
984 }
985 ar_pci->compl_processing = true;
986 spin_unlock_bh(&ar_pci->compl_lock);
987
988 for (;;) {
989 spin_lock_bh(&ar_pci->compl_lock);
990 if (list_empty(&ar_pci->compl_process)) {
991 spin_unlock_bh(&ar_pci->compl_lock);
992 break;
993 }
994 compl = list_first_entry(&ar_pci->compl_process,
995 struct ath10k_pci_compl, list);
996 list_del(&compl->list);
997 spin_unlock_bh(&ar_pci->compl_lock);
998
999 switch (compl->state) {
1000 case ATH10K_PCI_COMPL_SEND:
1001 cb->tx_completion(ar,
1002 compl->skb,
1003 compl->transfer_id);
1004 send_done = 1;
1005 break;
1006 case ATH10K_PCI_COMPL_RECV:
1007 ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1);
1008 if (ret) {
1009 ath10k_warn("failed to post RX buffer for pipe %d: %d\n",
1010 compl->pipe_info->pipe_num, ret);
1011 break;
1012 }
1013
1014 skb = compl->skb;
1015 nbytes = compl->nbytes;
1016
1017 ath10k_dbg(ATH10K_DBG_PCI,
1018 "ath10k_pci_ce_recv_data netbuf=%p nbytes=%d\n",
1019 skb, nbytes);
1020 ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
1021 "ath10k rx: ", skb->data, nbytes);
1022
1023 if (skb->len + skb_tailroom(skb) >= nbytes) {
1024 skb_trim(skb, 0);
1025 skb_put(skb, nbytes);
1026 cb->rx_completion(ar, skb,
1027 compl->pipe_info->pipe_num);
1028 } else {
1029 ath10k_warn("rxed more than expected (nbytes %d, max %d)",
1030 nbytes,
1031 skb->len + skb_tailroom(skb));
1032 }
1033 break;
1034 case ATH10K_PCI_COMPL_FREE:
1035 ath10k_warn("free completion cannot be processed\n");
1036 break;
1037 default:
1038 ath10k_warn("invalid completion state (%d)\n",
1039 compl->state);
1040 break;
1041 }
1042
1043 compl->state = ATH10K_PCI_COMPL_FREE;
1044
1045 /*
1046 * Add completion back to the pipe's free list.
1047 */
1048 spin_lock_bh(&compl->pipe_info->pipe_lock);
1049 list_add_tail(&compl->list, &compl->pipe_info->compl_free);
1050 spin_unlock_bh(&compl->pipe_info->pipe_lock);
1051 }
1052
1053 spin_lock_bh(&ar_pci->compl_lock);
1054 ar_pci->compl_processing = false;
1055 spin_unlock_bh(&ar_pci->compl_lock);
1056 }
1057
1058 /* TODO - temporary mapping while we have too few CE's */
1059 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
1060 u16 service_id, u8 *ul_pipe,
1061 u8 *dl_pipe, int *ul_is_polled,
1062 int *dl_is_polled)
1063 {
1064 int ret = 0;
1065
1066 /* polling for received messages not supported */
1067 *dl_is_polled = 0;
1068
1069 switch (service_id) {
1070 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
1071 /*
1072 * Host->target HTT gets its own pipe, so it can be polled
1073 * while other pipes are interrupt driven.
1074 */
1075 *ul_pipe = 4;
1076 /*
1077 * Use the same target->host pipe for HTC ctrl, HTC raw
1078 * streams, and HTT.
1079 */
1080 *dl_pipe = 1;
1081 break;
1082
1083 case ATH10K_HTC_SVC_ID_RSVD_CTRL:
1084 case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS:
1085 /*
1086 * Note: HTC_RAW_STREAMS_SVC is currently unused, and
1087 * HTC_CTRL_RSVD_SVC could share the same pipe as the
1088 * WMI services. So, if another CE is needed, change
1089 * this to *ul_pipe = 3, which frees up CE 0.
1090 */
1091 /* *ul_pipe = 3; */
1092 *ul_pipe = 0;
1093 *dl_pipe = 1;
1094 break;
1095
1096 case ATH10K_HTC_SVC_ID_WMI_DATA_BK:
1097 case ATH10K_HTC_SVC_ID_WMI_DATA_BE:
1098 case ATH10K_HTC_SVC_ID_WMI_DATA_VI:
1099 case ATH10K_HTC_SVC_ID_WMI_DATA_VO:
1100
1101 case ATH10K_HTC_SVC_ID_WMI_CONTROL:
1102 *ul_pipe = 3;
1103 *dl_pipe = 2;
1104 break;
1105
1106 /* pipe 5 unused */
1107 /* pipe 6 reserved */
1108 /* pipe 7 reserved */
1109
1110 default:
1111 ret = -1;
1112 break;
1113 }
1114 *ul_is_polled =
1115 (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1116
1117 return ret;
1118 }
1119
1120 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1121 u8 *ul_pipe, u8 *dl_pipe)
1122 {
1123 int ul_is_polled, dl_is_polled;
1124
1125 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1126 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1127 ul_pipe,
1128 dl_pipe,
1129 &ul_is_polled,
1130 &dl_is_polled);
1131 }
1132
1133 static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info,
1134 int num)
1135 {
1136 struct ath10k *ar = pipe_info->hif_ce_state;
1137 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1138 struct ath10k_ce_pipe *ce_state = pipe_info->ce_hdl;
1139 struct sk_buff *skb;
1140 dma_addr_t ce_data;
1141 int i, ret = 0;
1142
1143 if (pipe_info->buf_sz == 0)
1144 return 0;
1145
1146 for (i = 0; i < num; i++) {
1147 skb = dev_alloc_skb(pipe_info->buf_sz);
1148 if (!skb) {
1149 ath10k_warn("failed to allocate skbuff for pipe %d\n",
1150 num);
1151 ret = -ENOMEM;
1152 goto err;
1153 }
1154
1155 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
1156
1157 ce_data = dma_map_single(ar->dev, skb->data,
1158 skb->len + skb_tailroom(skb),
1159 DMA_FROM_DEVICE);
1160
1161 if (unlikely(dma_mapping_error(ar->dev, ce_data))) {
1162 ath10k_warn("failed to DMA map sk_buff\n");
1163 dev_kfree_skb_any(skb);
1164 ret = -EIO;
1165 goto err;
1166 }
1167
1168 ATH10K_SKB_CB(skb)->paddr = ce_data;
1169
1170 pci_dma_sync_single_for_device(ar_pci->pdev, ce_data,
1171 pipe_info->buf_sz,
1172 PCI_DMA_FROMDEVICE);
1173
1174 ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb,
1175 ce_data);
1176 if (ret) {
1177 ath10k_warn("failed to enqueue to pipe %d: %d\n",
1178 num, ret);
1179 goto err;
1180 }
1181 }
1182
1183 return ret;
1184
1185 err:
1186 ath10k_pci_rx_pipe_cleanup(pipe_info);
1187 return ret;
1188 }
1189
1190 static int ath10k_pci_post_rx(struct ath10k *ar)
1191 {
1192 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1193 struct ath10k_pci_pipe *pipe_info;
1194 const struct ce_attr *attr;
1195 int pipe_num, ret = 0;
1196
1197 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1198 pipe_info = &ar_pci->pipe_info[pipe_num];
1199 attr = &host_ce_config_wlan[pipe_num];
1200
1201 if (attr->dest_nentries == 0)
1202 continue;
1203
1204 ret = ath10k_pci_post_rx_pipe(pipe_info,
1205 attr->dest_nentries - 1);
1206 if (ret) {
1207 ath10k_warn("failed to post RX buffer for pipe %d: %d\n",
1208 pipe_num, ret);
1209
1210 for (; pipe_num >= 0; pipe_num--) {
1211 pipe_info = &ar_pci->pipe_info[pipe_num];
1212 ath10k_pci_rx_pipe_cleanup(pipe_info);
1213 }
1214 return ret;
1215 }
1216 }
1217
1218 return 0;
1219 }
1220
1221 static int ath10k_pci_hif_start(struct ath10k *ar)
1222 {
1223 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1224 int ret;
1225
1226 ret = ath10k_pci_alloc_compl(ar);
1227 if (ret) {
1228 ath10k_warn("failed to allocate CE completions: %d\n", ret);
1229 return ret;
1230 }
1231
1232 ret = ath10k_pci_request_irq(ar);
1233 if (ret) {
1234 ath10k_warn("failed to post RX buffers for all pipes: %d\n",
1235 ret);
1236 goto err_free_compl;
1237 }
1238
1239 ret = ath10k_pci_setup_ce_irq(ar);
1240 if (ret) {
1241 ath10k_warn("failed to setup CE interrupts: %d\n", ret);
1242 goto err_stop;
1243 }
1244
1245 /* Post buffers once to start things off. */
1246 ret = ath10k_pci_post_rx(ar);
1247 if (ret) {
1248 ath10k_warn("failed to post RX buffers for all pipes: %d\n",
1249 ret);
1250 goto err_stop;
1251 }
1252
1253 ar_pci->started = 1;
1254 return 0;
1255
1256 err_stop:
1257 ath10k_ce_disable_interrupts(ar);
1258 ath10k_pci_free_irq(ar);
1259 ath10k_pci_kill_tasklet(ar);
1260 ath10k_pci_stop_ce(ar);
1261 ath10k_pci_process_ce(ar);
1262 err_free_compl:
1263 ath10k_pci_cleanup_ce(ar);
1264 return ret;
1265 }
1266
1267 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
1268 {
1269 struct ath10k *ar;
1270 struct ath10k_pci *ar_pci;
1271 struct ath10k_ce_pipe *ce_hdl;
1272 u32 buf_sz;
1273 struct sk_buff *netbuf;
1274 u32 ce_data;
1275
1276 buf_sz = pipe_info->buf_sz;
1277
1278 /* Unused Copy Engine */
1279 if (buf_sz == 0)
1280 return;
1281
1282 ar = pipe_info->hif_ce_state;
1283 ar_pci = ath10k_pci_priv(ar);
1284
1285 if (!ar_pci->started)
1286 return;
1287
1288 ce_hdl = pipe_info->ce_hdl;
1289
1290 while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
1291 &ce_data) == 0) {
1292 dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
1293 netbuf->len + skb_tailroom(netbuf),
1294 DMA_FROM_DEVICE);
1295 dev_kfree_skb_any(netbuf);
1296 }
1297 }
1298
1299 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
1300 {
1301 struct ath10k *ar;
1302 struct ath10k_pci *ar_pci;
1303 struct ath10k_ce_pipe *ce_hdl;
1304 struct sk_buff *netbuf;
1305 u32 ce_data;
1306 unsigned int nbytes;
1307 unsigned int id;
1308 u32 buf_sz;
1309
1310 buf_sz = pipe_info->buf_sz;
1311
1312 /* Unused Copy Engine */
1313 if (buf_sz == 0)
1314 return;
1315
1316 ar = pipe_info->hif_ce_state;
1317 ar_pci = ath10k_pci_priv(ar);
1318
1319 if (!ar_pci->started)
1320 return;
1321
1322 ce_hdl = pipe_info->ce_hdl;
1323
1324 while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
1325 &ce_data, &nbytes, &id) == 0) {
1326 /*
1327 * Indicate the completion to higer layer to free
1328 * the buffer
1329 */
1330
1331 if (!netbuf) {
1332 ath10k_warn("invalid sk_buff on CE %d - NULL pointer. firmware crashed?\n",
1333 ce_hdl->id);
1334 continue;
1335 }
1336
1337 ATH10K_SKB_CB(netbuf)->is_aborted = true;
1338 ar_pci->msg_callbacks_current.tx_completion(ar,
1339 netbuf,
1340 id);
1341 }
1342 }
1343
1344 /*
1345 * Cleanup residual buffers for device shutdown:
1346 * buffers that were enqueued for receive
1347 * buffers that were to be sent
1348 * Note: Buffers that had completed but which were
1349 * not yet processed are on a completion queue. They
1350 * are handled when the completion thread shuts down.
1351 */
1352 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1353 {
1354 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1355 int pipe_num;
1356
1357 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1358 struct ath10k_pci_pipe *pipe_info;
1359
1360 pipe_info = &ar_pci->pipe_info[pipe_num];
1361 ath10k_pci_rx_pipe_cleanup(pipe_info);
1362 ath10k_pci_tx_pipe_cleanup(pipe_info);
1363 }
1364 }
1365
1366 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1367 {
1368 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1369 struct ath10k_pci_pipe *pipe_info;
1370 int pipe_num;
1371
1372 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1373 pipe_info = &ar_pci->pipe_info[pipe_num];
1374 if (pipe_info->ce_hdl) {
1375 ath10k_ce_deinit(pipe_info->ce_hdl);
1376 pipe_info->ce_hdl = NULL;
1377 pipe_info->buf_sz = 0;
1378 }
1379 }
1380 }
1381
1382 static void ath10k_pci_hif_stop(struct ath10k *ar)
1383 {
1384 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1385 int ret;
1386
1387 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
1388
1389 ret = ath10k_ce_disable_interrupts(ar);
1390 if (ret)
1391 ath10k_warn("failed to disable CE interrupts: %d\n", ret);
1392
1393 ath10k_pci_free_irq(ar);
1394 ath10k_pci_kill_tasklet(ar);
1395 ath10k_pci_stop_ce(ar);
1396
1397 /* At this point, asynchronous threads are stopped, the target should
1398 * not DMA nor interrupt. We process the leftovers and then free
1399 * everything else up. */
1400
1401 ath10k_pci_process_ce(ar);
1402 ath10k_pci_cleanup_ce(ar);
1403 ath10k_pci_buffer_cleanup(ar);
1404
1405 /* Make the sure the device won't access any structures on the host by
1406 * resetting it. The device was fed with PCI CE ringbuffer
1407 * configuration during init. If ringbuffers are freed and the device
1408 * were to access them this could lead to memory corruption on the
1409 * host. */
1410 ath10k_pci_device_reset(ar);
1411
1412 ar_pci->started = 0;
1413 }
1414
1415 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1416 void *req, u32 req_len,
1417 void *resp, u32 *resp_len)
1418 {
1419 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1420 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1421 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1422 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1423 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1424 dma_addr_t req_paddr = 0;
1425 dma_addr_t resp_paddr = 0;
1426 struct bmi_xfer xfer = {};
1427 void *treq, *tresp = NULL;
1428 int ret = 0;
1429
1430 might_sleep();
1431
1432 if (resp && !resp_len)
1433 return -EINVAL;
1434
1435 if (resp && resp_len && *resp_len == 0)
1436 return -EINVAL;
1437
1438 treq = kmemdup(req, req_len, GFP_KERNEL);
1439 if (!treq)
1440 return -ENOMEM;
1441
1442 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1443 ret = dma_mapping_error(ar->dev, req_paddr);
1444 if (ret)
1445 goto err_dma;
1446
1447 if (resp && resp_len) {
1448 tresp = kzalloc(*resp_len, GFP_KERNEL);
1449 if (!tresp) {
1450 ret = -ENOMEM;
1451 goto err_req;
1452 }
1453
1454 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1455 DMA_FROM_DEVICE);
1456 ret = dma_mapping_error(ar->dev, resp_paddr);
1457 if (ret)
1458 goto err_req;
1459
1460 xfer.wait_for_resp = true;
1461 xfer.resp_len = 0;
1462
1463 ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr);
1464 }
1465
1466 init_completion(&xfer.done);
1467
1468 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1469 if (ret)
1470 goto err_resp;
1471
1472 ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1473 if (ret) {
1474 u32 unused_buffer;
1475 unsigned int unused_nbytes;
1476 unsigned int unused_id;
1477
1478 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1479 &unused_nbytes, &unused_id);
1480 } else {
1481 /* non-zero means we did not time out */
1482 ret = 0;
1483 }
1484
1485 err_resp:
1486 if (resp) {
1487 u32 unused_buffer;
1488
1489 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1490 dma_unmap_single(ar->dev, resp_paddr,
1491 *resp_len, DMA_FROM_DEVICE);
1492 }
1493 err_req:
1494 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1495
1496 if (ret == 0 && resp_len) {
1497 *resp_len = min(*resp_len, xfer.resp_len);
1498 memcpy(resp, tresp, xfer.resp_len);
1499 }
1500 err_dma:
1501 kfree(treq);
1502 kfree(tresp);
1503
1504 return ret;
1505 }
1506
1507 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1508 {
1509 struct bmi_xfer *xfer;
1510 u32 ce_data;
1511 unsigned int nbytes;
1512 unsigned int transfer_id;
1513
1514 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data,
1515 &nbytes, &transfer_id))
1516 return;
1517
1518 if (xfer->wait_for_resp)
1519 return;
1520
1521 complete(&xfer->done);
1522 }
1523
1524 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1525 {
1526 struct bmi_xfer *xfer;
1527 u32 ce_data;
1528 unsigned int nbytes;
1529 unsigned int transfer_id;
1530 unsigned int flags;
1531
1532 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1533 &nbytes, &transfer_id, &flags))
1534 return;
1535
1536 if (!xfer->wait_for_resp) {
1537 ath10k_warn("unexpected: BMI data received; ignoring\n");
1538 return;
1539 }
1540
1541 xfer->resp_len = nbytes;
1542 complete(&xfer->done);
1543 }
1544
1545 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1546 struct ath10k_ce_pipe *rx_pipe,
1547 struct bmi_xfer *xfer)
1548 {
1549 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1550
1551 while (time_before_eq(jiffies, timeout)) {
1552 ath10k_pci_bmi_send_done(tx_pipe);
1553 ath10k_pci_bmi_recv_data(rx_pipe);
1554
1555 if (completion_done(&xfer->done))
1556 return 0;
1557
1558 schedule();
1559 }
1560
1561 return -ETIMEDOUT;
1562 }
1563
1564 /*
1565 * Map from service/endpoint to Copy Engine.
1566 * This table is derived from the CE_PCI TABLE, above.
1567 * It is passed to the Target at startup for use by firmware.
1568 */
1569 static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
1570 {
1571 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1572 PIPEDIR_OUT, /* out = UL = host -> target */
1573 3,
1574 },
1575 {
1576 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1577 PIPEDIR_IN, /* in = DL = target -> host */
1578 2,
1579 },
1580 {
1581 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1582 PIPEDIR_OUT, /* out = UL = host -> target */
1583 3,
1584 },
1585 {
1586 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1587 PIPEDIR_IN, /* in = DL = target -> host */
1588 2,
1589 },
1590 {
1591 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1592 PIPEDIR_OUT, /* out = UL = host -> target */
1593 3,
1594 },
1595 {
1596 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1597 PIPEDIR_IN, /* in = DL = target -> host */
1598 2,
1599 },
1600 {
1601 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1602 PIPEDIR_OUT, /* out = UL = host -> target */
1603 3,
1604 },
1605 {
1606 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1607 PIPEDIR_IN, /* in = DL = target -> host */
1608 2,
1609 },
1610 {
1611 ATH10K_HTC_SVC_ID_WMI_CONTROL,
1612 PIPEDIR_OUT, /* out = UL = host -> target */
1613 3,
1614 },
1615 {
1616 ATH10K_HTC_SVC_ID_WMI_CONTROL,
1617 PIPEDIR_IN, /* in = DL = target -> host */
1618 2,
1619 },
1620 {
1621 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1622 PIPEDIR_OUT, /* out = UL = host -> target */
1623 0, /* could be moved to 3 (share with WMI) */
1624 },
1625 {
1626 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1627 PIPEDIR_IN, /* in = DL = target -> host */
1628 1,
1629 },
1630 {
1631 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
1632 PIPEDIR_OUT, /* out = UL = host -> target */
1633 0,
1634 },
1635 {
1636 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
1637 PIPEDIR_IN, /* in = DL = target -> host */
1638 1,
1639 },
1640 {
1641 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1642 PIPEDIR_OUT, /* out = UL = host -> target */
1643 4,
1644 },
1645 {
1646 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1647 PIPEDIR_IN, /* in = DL = target -> host */
1648 1,
1649 },
1650
1651 /* (Additions here) */
1652
1653 { /* Must be last */
1654 0,
1655 0,
1656 0,
1657 },
1658 };
1659
1660 /*
1661 * Send an interrupt to the device to wake up the Target CPU
1662 * so it has an opportunity to notice any changed state.
1663 */
1664 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1665 {
1666 int ret;
1667 u32 core_ctrl;
1668
1669 ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
1670 CORE_CTRL_ADDRESS,
1671 &core_ctrl);
1672 if (ret) {
1673 ath10k_warn("failed to read core_ctrl: %d\n", ret);
1674 return ret;
1675 }
1676
1677 /* A_INUM_FIRMWARE interrupt to Target CPU */
1678 core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
1679
1680 ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
1681 CORE_CTRL_ADDRESS,
1682 core_ctrl);
1683 if (ret) {
1684 ath10k_warn("failed to set target CPU interrupt mask: %d\n",
1685 ret);
1686 return ret;
1687 }
1688
1689 return 0;
1690 }
1691
1692 static int ath10k_pci_init_config(struct ath10k *ar)
1693 {
1694 u32 interconnect_targ_addr;
1695 u32 pcie_state_targ_addr = 0;
1696 u32 pipe_cfg_targ_addr = 0;
1697 u32 svc_to_pipe_map = 0;
1698 u32 pcie_config_flags = 0;
1699 u32 ealloc_value;
1700 u32 ealloc_targ_addr;
1701 u32 flag2_value;
1702 u32 flag2_targ_addr;
1703 int ret = 0;
1704
1705 /* Download to Target the CE Config and the service-to-CE map */
1706 interconnect_targ_addr =
1707 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1708
1709 /* Supply Target-side CE configuration */
1710 ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
1711 &pcie_state_targ_addr);
1712 if (ret != 0) {
1713 ath10k_err("Failed to get pcie state addr: %d\n", ret);
1714 return ret;
1715 }
1716
1717 if (pcie_state_targ_addr == 0) {
1718 ret = -EIO;
1719 ath10k_err("Invalid pcie state addr\n");
1720 return ret;
1721 }
1722
1723 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1724 offsetof(struct pcie_state,
1725 pipe_cfg_addr),
1726 &pipe_cfg_targ_addr);
1727 if (ret != 0) {
1728 ath10k_err("Failed to get pipe cfg addr: %d\n", ret);
1729 return ret;
1730 }
1731
1732 if (pipe_cfg_targ_addr == 0) {
1733 ret = -EIO;
1734 ath10k_err("Invalid pipe cfg addr\n");
1735 return ret;
1736 }
1737
1738 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1739 target_ce_config_wlan,
1740 sizeof(target_ce_config_wlan));
1741
1742 if (ret != 0) {
1743 ath10k_err("Failed to write pipe cfg: %d\n", ret);
1744 return ret;
1745 }
1746
1747 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1748 offsetof(struct pcie_state,
1749 svc_to_pipe_map),
1750 &svc_to_pipe_map);
1751 if (ret != 0) {
1752 ath10k_err("Failed to get svc/pipe map: %d\n", ret);
1753 return ret;
1754 }
1755
1756 if (svc_to_pipe_map == 0) {
1757 ret = -EIO;
1758 ath10k_err("Invalid svc_to_pipe map\n");
1759 return ret;
1760 }
1761
1762 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1763 target_service_to_ce_map_wlan,
1764 sizeof(target_service_to_ce_map_wlan));
1765 if (ret != 0) {
1766 ath10k_err("Failed to write svc/pipe map: %d\n", ret);
1767 return ret;
1768 }
1769
1770 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1771 offsetof(struct pcie_state,
1772 config_flags),
1773 &pcie_config_flags);
1774 if (ret != 0) {
1775 ath10k_err("Failed to get pcie config_flags: %d\n", ret);
1776 return ret;
1777 }
1778
1779 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1780
1781 ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr +
1782 offsetof(struct pcie_state, config_flags),
1783 &pcie_config_flags,
1784 sizeof(pcie_config_flags));
1785 if (ret != 0) {
1786 ath10k_err("Failed to write pcie config_flags: %d\n", ret);
1787 return ret;
1788 }
1789
1790 /* configure early allocation */
1791 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1792
1793 ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
1794 if (ret != 0) {
1795 ath10k_err("Faile to get early alloc val: %d\n", ret);
1796 return ret;
1797 }
1798
1799 /* first bank is switched to IRAM */
1800 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1801 HI_EARLY_ALLOC_MAGIC_MASK);
1802 ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1803 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1804
1805 ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
1806 if (ret != 0) {
1807 ath10k_err("Failed to set early alloc val: %d\n", ret);
1808 return ret;
1809 }
1810
1811 /* Tell Target to proceed with initialization */
1812 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1813
1814 ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
1815 if (ret != 0) {
1816 ath10k_err("Failed to get option val: %d\n", ret);
1817 return ret;
1818 }
1819
1820 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1821
1822 ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
1823 if (ret != 0) {
1824 ath10k_err("Failed to set option val: %d\n", ret);
1825 return ret;
1826 }
1827
1828 return 0;
1829 }
1830
1831
1832
1833 static int ath10k_pci_ce_init(struct ath10k *ar)
1834 {
1835 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1836 struct ath10k_pci_pipe *pipe_info;
1837 const struct ce_attr *attr;
1838 int pipe_num;
1839
1840 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1841 pipe_info = &ar_pci->pipe_info[pipe_num];
1842 pipe_info->pipe_num = pipe_num;
1843 pipe_info->hif_ce_state = ar;
1844 attr = &host_ce_config_wlan[pipe_num];
1845
1846 pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr);
1847 if (pipe_info->ce_hdl == NULL) {
1848 ath10k_err("failed to initialize CE for pipe: %d\n",
1849 pipe_num);
1850
1851 /* It is safe to call it here. It checks if ce_hdl is
1852 * valid for each pipe */
1853 ath10k_pci_ce_deinit(ar);
1854 return -1;
1855 }
1856
1857 if (pipe_num == CE_COUNT - 1) {
1858 /*
1859 * Reserve the ultimate CE for
1860 * diagnostic Window support
1861 */
1862 ar_pci->ce_diag = pipe_info->ce_hdl;
1863 continue;
1864 }
1865
1866 pipe_info->buf_sz = (size_t) (attr->src_sz_max);
1867 }
1868
1869 return 0;
1870 }
1871
1872 static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar)
1873 {
1874 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1875 u32 fw_indicator_address, fw_indicator;
1876
1877 ath10k_pci_wake(ar);
1878
1879 fw_indicator_address = ar_pci->fw_indicator_address;
1880 fw_indicator = ath10k_pci_read32(ar, fw_indicator_address);
1881
1882 if (fw_indicator & FW_IND_EVENT_PENDING) {
1883 /* ACK: clear Target-side pending event */
1884 ath10k_pci_write32(ar, fw_indicator_address,
1885 fw_indicator & ~FW_IND_EVENT_PENDING);
1886
1887 if (ar_pci->started) {
1888 ath10k_pci_hif_dump_area(ar);
1889 } else {
1890 /*
1891 * Probable Target failure before we're prepared
1892 * to handle it. Generally unexpected.
1893 */
1894 ath10k_warn("early firmware event indicated\n");
1895 }
1896 }
1897
1898 ath10k_pci_sleep(ar);
1899 }
1900
1901 static int ath10k_pci_hif_power_up(struct ath10k *ar)
1902 {
1903 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1904 const char *irq_mode;
1905 int ret;
1906
1907 /*
1908 * Bring the target up cleanly.
1909 *
1910 * The target may be in an undefined state with an AUX-powered Target
1911 * and a Host in WoW mode. If the Host crashes, loses power, or is
1912 * restarted (without unloading the driver) then the Target is left
1913 * (aux) powered and running. On a subsequent driver load, the Target
1914 * is in an unexpected state. We try to catch that here in order to
1915 * reset the Target and retry the probe.
1916 */
1917 ret = ath10k_pci_device_reset(ar);
1918 if (ret) {
1919 ath10k_err("failed to reset target: %d\n", ret);
1920 goto err;
1921 }
1922
1923 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1924 /* Force AWAKE forever */
1925 ath10k_do_pci_wake(ar);
1926
1927 ret = ath10k_pci_ce_init(ar);
1928 if (ret) {
1929 ath10k_err("failed to initialize CE: %d\n", ret);
1930 goto err_ps;
1931 }
1932
1933 ret = ath10k_ce_disable_interrupts(ar);
1934 if (ret) {
1935 ath10k_err("failed to disable CE interrupts: %d\n", ret);
1936 goto err_ce;
1937 }
1938
1939 ret = ath10k_pci_init_irq(ar);
1940 if (ret) {
1941 ath10k_err("failed to init irqs: %d\n", ret);
1942 goto err_ce;
1943 }
1944
1945 ret = ath10k_pci_wait_for_target_init(ar);
1946 if (ret) {
1947 ath10k_err("failed to wait for target to init: %d\n", ret);
1948 goto err_deinit_irq;
1949 }
1950
1951 ret = ath10k_pci_init_config(ar);
1952 if (ret) {
1953 ath10k_err("failed to setup init config: %d\n", ret);
1954 goto err_deinit_irq;
1955 }
1956
1957 ret = ath10k_pci_wake_target_cpu(ar);
1958 if (ret) {
1959 ath10k_err("could not wake up target CPU: %d\n", ret);
1960 goto err_deinit_irq;
1961 }
1962
1963 if (ar_pci->num_msi_intrs > 1)
1964 irq_mode = "MSI-X";
1965 else if (ar_pci->num_msi_intrs == 1)
1966 irq_mode = "MSI";
1967 else
1968 irq_mode = "legacy";
1969
1970 if (!test_bit(ATH10K_FLAG_FIRST_BOOT_DONE, &ar->dev_flags))
1971 ath10k_info("pci irq %s\n", irq_mode);
1972
1973 return 0;
1974
1975 err_deinit_irq:
1976 ath10k_pci_deinit_irq(ar);
1977 err_ce:
1978 ath10k_pci_ce_deinit(ar);
1979 ath10k_pci_device_reset(ar);
1980 err_ps:
1981 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1982 ath10k_do_pci_sleep(ar);
1983 err:
1984 return ret;
1985 }
1986
1987 static void ath10k_pci_hif_power_down(struct ath10k *ar)
1988 {
1989 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1990
1991 ath10k_pci_deinit_irq(ar);
1992 ath10k_pci_device_reset(ar);
1993
1994 ath10k_pci_ce_deinit(ar);
1995 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1996 ath10k_do_pci_sleep(ar);
1997 }
1998
1999 #ifdef CONFIG_PM
2000
2001 #define ATH10K_PCI_PM_CONTROL 0x44
2002
2003 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2004 {
2005 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2006 struct pci_dev *pdev = ar_pci->pdev;
2007 u32 val;
2008
2009 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
2010
2011 if ((val & 0x000000ff) != 0x3) {
2012 pci_save_state(pdev);
2013 pci_disable_device(pdev);
2014 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
2015 (val & 0xffffff00) | 0x03);
2016 }
2017
2018 return 0;
2019 }
2020
2021 static int ath10k_pci_hif_resume(struct ath10k *ar)
2022 {
2023 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2024 struct pci_dev *pdev = ar_pci->pdev;
2025 u32 val;
2026
2027 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
2028
2029 if ((val & 0x000000ff) != 0) {
2030 pci_restore_state(pdev);
2031 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
2032 val & 0xffffff00);
2033 /*
2034 * Suspend/Resume resets the PCI configuration space,
2035 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
2036 * to keep PCI Tx retries from interfering with C3 CPU state
2037 */
2038 pci_read_config_dword(pdev, 0x40, &val);
2039
2040 if ((val & 0x0000ff00) != 0)
2041 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2042 }
2043
2044 return 0;
2045 }
2046 #endif
2047
2048 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2049 .send_head = ath10k_pci_hif_send_head,
2050 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
2051 .start = ath10k_pci_hif_start,
2052 .stop = ath10k_pci_hif_stop,
2053 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
2054 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
2055 .send_complete_check = ath10k_pci_hif_send_complete_check,
2056 .set_callbacks = ath10k_pci_hif_set_callbacks,
2057 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
2058 .power_up = ath10k_pci_hif_power_up,
2059 .power_down = ath10k_pci_hif_power_down,
2060 #ifdef CONFIG_PM
2061 .suspend = ath10k_pci_hif_suspend,
2062 .resume = ath10k_pci_hif_resume,
2063 #endif
2064 };
2065
2066 static void ath10k_pci_ce_tasklet(unsigned long ptr)
2067 {
2068 struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2069 struct ath10k_pci *ar_pci = pipe->ar_pci;
2070
2071 ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2072 }
2073
2074 static void ath10k_msi_err_tasklet(unsigned long data)
2075 {
2076 struct ath10k *ar = (struct ath10k *)data;
2077
2078 ath10k_pci_fw_interrupt_handler(ar);
2079 }
2080
2081 /*
2082 * Handler for a per-engine interrupt on a PARTICULAR CE.
2083 * This is used in cases where each CE has a private MSI interrupt.
2084 */
2085 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2086 {
2087 struct ath10k *ar = arg;
2088 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2089 int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2090
2091 if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2092 ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id);
2093 return IRQ_HANDLED;
2094 }
2095
2096 /*
2097 * NOTE: We are able to derive ce_id from irq because we
2098 * use a one-to-one mapping for CE's 0..5.
2099 * CE's 6 & 7 do not use interrupts at all.
2100 *
2101 * This mapping must be kept in sync with the mapping
2102 * used by firmware.
2103 */
2104 tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2105 return IRQ_HANDLED;
2106 }
2107
2108 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2109 {
2110 struct ath10k *ar = arg;
2111 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2112
2113 tasklet_schedule(&ar_pci->msi_fw_err);
2114 return IRQ_HANDLED;
2115 }
2116
2117 /*
2118 * Top-level interrupt handler for all PCI interrupts from a Target.
2119 * When a block of MSI interrupts is allocated, this top-level handler
2120 * is not used; instead, we directly call the correct sub-handler.
2121 */
2122 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2123 {
2124 struct ath10k *ar = arg;
2125 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2126
2127 if (ar_pci->num_msi_intrs == 0) {
2128 if (!ath10k_pci_irq_pending(ar))
2129 return IRQ_NONE;
2130
2131 /*
2132 * IMPORTANT: INTR_CLR regiser has to be set after
2133 * INTR_ENABLE is set to 0, otherwise interrupt can not be
2134 * really cleared.
2135 */
2136 iowrite32(0, ar_pci->mem +
2137 (SOC_CORE_BASE_ADDRESS |
2138 PCIE_INTR_ENABLE_ADDRESS));
2139 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2140 PCIE_INTR_CE_MASK_ALL,
2141 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2142 PCIE_INTR_CLR_ADDRESS));
2143 /*
2144 * IMPORTANT: this extra read transaction is required to
2145 * flush the posted write buffer.
2146 */
2147 (void) ioread32(ar_pci->mem +
2148 (SOC_CORE_BASE_ADDRESS |
2149 PCIE_INTR_ENABLE_ADDRESS));
2150 }
2151
2152 tasklet_schedule(&ar_pci->intr_tq);
2153
2154 return IRQ_HANDLED;
2155 }
2156
2157 static void ath10k_pci_tasklet(unsigned long data)
2158 {
2159 struct ath10k *ar = (struct ath10k *)data;
2160 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2161
2162 ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */
2163 ath10k_ce_per_engine_service_any(ar);
2164
2165 if (ar_pci->num_msi_intrs == 0) {
2166 /* Enable Legacy PCI line interrupts */
2167 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2168 PCIE_INTR_CE_MASK_ALL,
2169 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2170 PCIE_INTR_ENABLE_ADDRESS));
2171 /*
2172 * IMPORTANT: this extra read transaction is required to
2173 * flush the posted write buffer
2174 */
2175 (void) ioread32(ar_pci->mem +
2176 (SOC_CORE_BASE_ADDRESS |
2177 PCIE_INTR_ENABLE_ADDRESS));
2178 }
2179 }
2180
2181 static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2182 {
2183 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2184 int ret, i;
2185
2186 ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2187 ath10k_pci_msi_fw_handler,
2188 IRQF_SHARED, "ath10k_pci", ar);
2189 if (ret) {
2190 ath10k_warn("failed to request MSI-X fw irq %d: %d\n",
2191 ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2192 return ret;
2193 }
2194
2195 for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2196 ret = request_irq(ar_pci->pdev->irq + i,
2197 ath10k_pci_per_engine_handler,
2198 IRQF_SHARED, "ath10k_pci", ar);
2199 if (ret) {
2200 ath10k_warn("failed to request MSI-X ce irq %d: %d\n",
2201 ar_pci->pdev->irq + i, ret);
2202
2203 for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2204 free_irq(ar_pci->pdev->irq + i, ar);
2205
2206 free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2207 return ret;
2208 }
2209 }
2210
2211 return 0;
2212 }
2213
2214 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2215 {
2216 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2217 int ret;
2218
2219 ret = request_irq(ar_pci->pdev->irq,
2220 ath10k_pci_interrupt_handler,
2221 IRQF_SHARED, "ath10k_pci", ar);
2222 if (ret) {
2223 ath10k_warn("failed to request MSI irq %d: %d\n",
2224 ar_pci->pdev->irq, ret);
2225 return ret;
2226 }
2227
2228 return 0;
2229 }
2230
2231 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2232 {
2233 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2234 int ret;
2235
2236 ret = request_irq(ar_pci->pdev->irq,
2237 ath10k_pci_interrupt_handler,
2238 IRQF_SHARED, "ath10k_pci", ar);
2239 if (ret) {
2240 ath10k_warn("failed to request legacy irq %d: %d\n",
2241 ar_pci->pdev->irq, ret);
2242 return ret;
2243 }
2244
2245 return 0;
2246 }
2247
2248 static int ath10k_pci_request_irq(struct ath10k *ar)
2249 {
2250 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2251
2252 switch (ar_pci->num_msi_intrs) {
2253 case 0:
2254 return ath10k_pci_request_irq_legacy(ar);
2255 case 1:
2256 return ath10k_pci_request_irq_msi(ar);
2257 case MSI_NUM_REQUEST:
2258 return ath10k_pci_request_irq_msix(ar);
2259 }
2260
2261 ath10k_warn("unknown irq configuration upon request\n");
2262 return -EINVAL;
2263 }
2264
2265 static void ath10k_pci_free_irq(struct ath10k *ar)
2266 {
2267 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2268 int i;
2269
2270 /* There's at least one interrupt irregardless whether its legacy INTR
2271 * or MSI or MSI-X */
2272 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2273 free_irq(ar_pci->pdev->irq + i, ar);
2274 }
2275
2276 static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2277 {
2278 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2279 int i;
2280
2281 tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2282 tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2283 (unsigned long)ar);
2284
2285 for (i = 0; i < CE_COUNT; i++) {
2286 ar_pci->pipe_info[i].ar_pci = ar_pci;
2287 tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2288 (unsigned long)&ar_pci->pipe_info[i]);
2289 }
2290 }
2291
2292 static int ath10k_pci_init_irq(struct ath10k *ar)
2293 {
2294 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2295 int ret;
2296
2297 ath10k_pci_init_irq_tasklets(ar);
2298
2299 if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features))
2300 goto msi;
2301
2302 /* Try MSI-X */
2303 ar_pci->num_msi_intrs = MSI_NUM_REQUEST;
2304 ret = pci_enable_msi_block(ar_pci->pdev, ar_pci->num_msi_intrs);
2305 if (ret == 0)
2306 return 0;
2307 if (ret > 0)
2308 pci_disable_msi(ar_pci->pdev);
2309
2310 msi:
2311 /* Try MSI */
2312 ar_pci->num_msi_intrs = 1;
2313 ret = pci_enable_msi(ar_pci->pdev);
2314 if (ret == 0)
2315 return 0;
2316
2317 /* Try legacy irq
2318 *
2319 * A potential race occurs here: The CORE_BASE write
2320 * depends on target correctly decoding AXI address but
2321 * host won't know when target writes BAR to CORE_CTRL.
2322 * This write might get lost if target has NOT written BAR.
2323 * For now, fix the race by repeating the write in below
2324 * synchronization checking. */
2325 ar_pci->num_msi_intrs = 0;
2326
2327 ret = ath10k_pci_wake(ar);
2328 if (ret) {
2329 ath10k_warn("failed to wake target: %d\n", ret);
2330 return ret;
2331 }
2332
2333 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2334 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2335 ath10k_pci_sleep(ar);
2336
2337 return 0;
2338 }
2339
2340 static int ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2341 {
2342 int ret;
2343
2344 ret = ath10k_pci_wake(ar);
2345 if (ret) {
2346 ath10k_warn("failed to wake target: %d\n", ret);
2347 return ret;
2348 }
2349
2350 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2351 0);
2352 ath10k_pci_sleep(ar);
2353
2354 return 0;
2355 }
2356
2357 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2358 {
2359 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2360
2361 switch (ar_pci->num_msi_intrs) {
2362 case 0:
2363 return ath10k_pci_deinit_irq_legacy(ar);
2364 case 1:
2365 /* fall-through */
2366 case MSI_NUM_REQUEST:
2367 pci_disable_msi(ar_pci->pdev);
2368 return 0;
2369 }
2370
2371 ath10k_warn("unknown irq configuration upon deinit\n");
2372 return -EINVAL;
2373 }
2374
2375 static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2376 {
2377 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2378 int wait_limit = 300; /* 3 sec */
2379 int ret;
2380
2381 ret = ath10k_pci_wake(ar);
2382 if (ret) {
2383 ath10k_err("failed to wake up target: %d\n", ret);
2384 return ret;
2385 }
2386
2387 while (wait_limit-- &&
2388 !(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) &
2389 FW_IND_INITIALIZED)) {
2390 if (ar_pci->num_msi_intrs == 0)
2391 /* Fix potential race by repeating CORE_BASE writes */
2392 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2393 PCIE_INTR_CE_MASK_ALL,
2394 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2395 PCIE_INTR_ENABLE_ADDRESS));
2396 mdelay(10);
2397 }
2398
2399 if (wait_limit < 0) {
2400 ath10k_err("target stalled\n");
2401 ret = -EIO;
2402 goto out;
2403 }
2404
2405 out:
2406 ath10k_pci_sleep(ar);
2407 return ret;
2408 }
2409
2410 static int ath10k_pci_device_reset(struct ath10k *ar)
2411 {
2412 int i, ret;
2413 u32 val;
2414
2415 ret = ath10k_do_pci_wake(ar);
2416 if (ret) {
2417 ath10k_err("failed to wake up target: %d\n",
2418 ret);
2419 return ret;
2420 }
2421
2422 /* Put Target, including PCIe, into RESET. */
2423 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2424 val |= 1;
2425 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2426
2427 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2428 if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2429 RTC_STATE_COLD_RESET_MASK)
2430 break;
2431 msleep(1);
2432 }
2433
2434 /* Pull Target, including PCIe, out of RESET. */
2435 val &= ~1;
2436 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2437
2438 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2439 if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2440 RTC_STATE_COLD_RESET_MASK))
2441 break;
2442 msleep(1);
2443 }
2444
2445 ath10k_do_pci_sleep(ar);
2446 return 0;
2447 }
2448
2449 static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci)
2450 {
2451 int i;
2452
2453 for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) {
2454 if (!test_bit(i, ar_pci->features))
2455 continue;
2456
2457 switch (i) {
2458 case ATH10K_PCI_FEATURE_MSI_X:
2459 ath10k_dbg(ATH10K_DBG_BOOT, "device supports MSI-X\n");
2460 break;
2461 case ATH10K_PCI_FEATURE_SOC_POWER_SAVE:
2462 ath10k_dbg(ATH10K_DBG_BOOT, "QCA98XX SoC power save enabled\n");
2463 break;
2464 }
2465 }
2466 }
2467
2468 static int ath10k_pci_probe(struct pci_dev *pdev,
2469 const struct pci_device_id *pci_dev)
2470 {
2471 void __iomem *mem;
2472 int ret = 0;
2473 struct ath10k *ar;
2474 struct ath10k_pci *ar_pci;
2475 u32 lcr_val, chip_id;
2476
2477 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2478
2479 ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL);
2480 if (ar_pci == NULL)
2481 return -ENOMEM;
2482
2483 ar_pci->pdev = pdev;
2484 ar_pci->dev = &pdev->dev;
2485
2486 switch (pci_dev->device) {
2487 case QCA988X_2_0_DEVICE_ID:
2488 set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features);
2489 break;
2490 default:
2491 ret = -ENODEV;
2492 ath10k_err("Unkown device ID: %d\n", pci_dev->device);
2493 goto err_ar_pci;
2494 }
2495
2496 if (ath10k_target_ps)
2497 set_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features);
2498
2499 ath10k_pci_dump_features(ar_pci);
2500
2501 ar = ath10k_core_create(ar_pci, ar_pci->dev, &ath10k_pci_hif_ops);
2502 if (!ar) {
2503 ath10k_err("failed to create driver core\n");
2504 ret = -EINVAL;
2505 goto err_ar_pci;
2506 }
2507
2508 ar_pci->ar = ar;
2509 ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS;
2510 atomic_set(&ar_pci->keep_awake_count, 0);
2511
2512 pci_set_drvdata(pdev, ar);
2513
2514 /*
2515 * Without any knowledge of the Host, the Target may have been reset or
2516 * power cycled and its Config Space may no longer reflect the PCI
2517 * address space that was assigned earlier by the PCI infrastructure.
2518 * Refresh it now.
2519 */
2520 ret = pci_assign_resource(pdev, BAR_NUM);
2521 if (ret) {
2522 ath10k_err("failed to assign PCI space: %d\n", ret);
2523 goto err_ar;
2524 }
2525
2526 ret = pci_enable_device(pdev);
2527 if (ret) {
2528 ath10k_err("failed to enable PCI device: %d\n", ret);
2529 goto err_ar;
2530 }
2531
2532 /* Request MMIO resources */
2533 ret = pci_request_region(pdev, BAR_NUM, "ath");
2534 if (ret) {
2535 ath10k_err("failed to request MMIO region: %d\n", ret);
2536 goto err_device;
2537 }
2538
2539 /*
2540 * Target structures have a limit of 32 bit DMA pointers.
2541 * DMA pointers can be wider than 32 bits by default on some systems.
2542 */
2543 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2544 if (ret) {
2545 ath10k_err("failed to set DMA mask to 32-bit: %d\n", ret);
2546 goto err_region;
2547 }
2548
2549 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2550 if (ret) {
2551 ath10k_err("failed to set consistent DMA mask to 32-bit\n");
2552 goto err_region;
2553 }
2554
2555 /* Set bus master bit in PCI_COMMAND to enable DMA */
2556 pci_set_master(pdev);
2557
2558 /*
2559 * Temporary FIX: disable ASPM
2560 * Will be removed after the OTP is programmed
2561 */
2562 pci_read_config_dword(pdev, 0x80, &lcr_val);
2563 pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2564
2565 /* Arrange for access to Target SoC registers. */
2566 mem = pci_iomap(pdev, BAR_NUM, 0);
2567 if (!mem) {
2568 ath10k_err("failed to perform IOMAP for BAR%d\n", BAR_NUM);
2569 ret = -EIO;
2570 goto err_master;
2571 }
2572
2573 ar_pci->mem = mem;
2574
2575 spin_lock_init(&ar_pci->ce_lock);
2576
2577 ret = ath10k_do_pci_wake(ar);
2578 if (ret) {
2579 ath10k_err("Failed to get chip id: %d\n", ret);
2580 goto err_iomap;
2581 }
2582
2583 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
2584
2585 ath10k_do_pci_sleep(ar);
2586
2587 ath10k_dbg(ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2588
2589 ret = ath10k_core_register(ar, chip_id);
2590 if (ret) {
2591 ath10k_err("failed to register driver core: %d\n", ret);
2592 goto err_iomap;
2593 }
2594
2595 return 0;
2596
2597 err_iomap:
2598 pci_iounmap(pdev, mem);
2599 err_master:
2600 pci_clear_master(pdev);
2601 err_region:
2602 pci_release_region(pdev, BAR_NUM);
2603 err_device:
2604 pci_disable_device(pdev);
2605 err_ar:
2606 ath10k_core_destroy(ar);
2607 err_ar_pci:
2608 /* call HIF PCI free here */
2609 kfree(ar_pci);
2610
2611 return ret;
2612 }
2613
2614 static void ath10k_pci_remove(struct pci_dev *pdev)
2615 {
2616 struct ath10k *ar = pci_get_drvdata(pdev);
2617 struct ath10k_pci *ar_pci;
2618
2619 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2620
2621 if (!ar)
2622 return;
2623
2624 ar_pci = ath10k_pci_priv(ar);
2625
2626 if (!ar_pci)
2627 return;
2628
2629 tasklet_kill(&ar_pci->msi_fw_err);
2630
2631 ath10k_core_unregister(ar);
2632
2633 pci_iounmap(pdev, ar_pci->mem);
2634 pci_release_region(pdev, BAR_NUM);
2635 pci_clear_master(pdev);
2636 pci_disable_device(pdev);
2637
2638 ath10k_core_destroy(ar);
2639 kfree(ar_pci);
2640 }
2641
2642 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2643
2644 static struct pci_driver ath10k_pci_driver = {
2645 .name = "ath10k_pci",
2646 .id_table = ath10k_pci_id_table,
2647 .probe = ath10k_pci_probe,
2648 .remove = ath10k_pci_remove,
2649 };
2650
2651 static int __init ath10k_pci_init(void)
2652 {
2653 int ret;
2654
2655 ret = pci_register_driver(&ath10k_pci_driver);
2656 if (ret)
2657 ath10k_err("failed to register PCI driver: %d\n", ret);
2658
2659 return ret;
2660 }
2661 module_init(ath10k_pci_init);
2662
2663 static void __exit ath10k_pci_exit(void)
2664 {
2665 pci_unregister_driver(&ath10k_pci_driver);
2666 }
2667
2668 module_exit(ath10k_pci_exit);
2669
2670 MODULE_AUTHOR("Qualcomm Atheros");
2671 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2672 MODULE_LICENSE("Dual BSD/GPL");
2673 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2674 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE);
2675 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);