]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath5k/base.c
ath5k: remove last references to "softc"
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath5k / base.c
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/hardirq.h>
47 #include <linux/if.h>
48 #include <linux/io.h>
49 #include <linux/netdevice.h>
50 #include <linux/cache.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 #include <linux/slab.h>
54 #include <linux/etherdevice.h>
55 #include <linux/nl80211.h>
56
57 #include <net/ieee80211_radiotap.h>
58
59 #include <asm/unaligned.h>
60
61 #include "base.h"
62 #include "reg.h"
63 #include "debug.h"
64 #include "ani.h"
65 #include "ath5k.h"
66 #include "../regd.h"
67
68 #define CREATE_TRACE_POINTS
69 #include "trace.h"
70
71 int ath5k_modparam_nohwcrypt;
72 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
73 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
74
75 static int modparam_all_channels;
76 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
77 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
78
79 static int modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82
83
84 /* Module info */
85 MODULE_AUTHOR("Jiri Slaby");
86 MODULE_AUTHOR("Nick Kossifidis");
87 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
88 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
89 MODULE_LICENSE("Dual BSD/GPL");
90
91 static int ath5k_init(struct ieee80211_hw *hw);
92 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
93 bool skip_pcu);
94
95 /* Known SREVs */
96 static const struct ath5k_srev_name srev_names[] = {
97 #ifdef CONFIG_ATHEROS_AR231X
98 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
99 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
100 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
101 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
102 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
103 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
104 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
105 #else
106 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
107 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
108 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
109 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
110 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
111 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
112 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
113 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
114 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
115 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
116 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
117 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
118 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
119 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
120 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
121 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
122 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
123 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
124 #endif
125 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
126 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
127 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
128 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
129 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
130 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
131 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
132 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
133 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
134 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
135 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
136 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
137 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
138 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
139 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
140 #ifdef CONFIG_ATHEROS_AR231X
141 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
142 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
143 #endif
144 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
145 };
146
147 static const struct ieee80211_rate ath5k_rates[] = {
148 { .bitrate = 10,
149 .hw_value = ATH5K_RATE_CODE_1M, },
150 { .bitrate = 20,
151 .hw_value = ATH5K_RATE_CODE_2M,
152 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
153 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
154 { .bitrate = 55,
155 .hw_value = ATH5K_RATE_CODE_5_5M,
156 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
157 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
158 { .bitrate = 110,
159 .hw_value = ATH5K_RATE_CODE_11M,
160 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
161 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
162 { .bitrate = 60,
163 .hw_value = ATH5K_RATE_CODE_6M,
164 .flags = 0 },
165 { .bitrate = 90,
166 .hw_value = ATH5K_RATE_CODE_9M,
167 .flags = 0 },
168 { .bitrate = 120,
169 .hw_value = ATH5K_RATE_CODE_12M,
170 .flags = 0 },
171 { .bitrate = 180,
172 .hw_value = ATH5K_RATE_CODE_18M,
173 .flags = 0 },
174 { .bitrate = 240,
175 .hw_value = ATH5K_RATE_CODE_24M,
176 .flags = 0 },
177 { .bitrate = 360,
178 .hw_value = ATH5K_RATE_CODE_36M,
179 .flags = 0 },
180 { .bitrate = 480,
181 .hw_value = ATH5K_RATE_CODE_48M,
182 .flags = 0 },
183 { .bitrate = 540,
184 .hw_value = ATH5K_RATE_CODE_54M,
185 .flags = 0 },
186 /* XR missing */
187 };
188
189 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
190 {
191 u64 tsf = ath5k_hw_get_tsf64(ah);
192
193 if ((tsf & 0x7fff) < rstamp)
194 tsf -= 0x8000;
195
196 return (tsf & ~0x7fff) | rstamp;
197 }
198
199 const char *
200 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
201 {
202 const char *name = "xxxxx";
203 unsigned int i;
204
205 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
206 if (srev_names[i].sr_type != type)
207 continue;
208
209 if ((val & 0xf0) == srev_names[i].sr_val)
210 name = srev_names[i].sr_name;
211
212 if ((val & 0xff) == srev_names[i].sr_val) {
213 name = srev_names[i].sr_name;
214 break;
215 }
216 }
217
218 return name;
219 }
220 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
221 {
222 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
223 return ath5k_hw_reg_read(ah, reg_offset);
224 }
225
226 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
227 {
228 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
229 ath5k_hw_reg_write(ah, val, reg_offset);
230 }
231
232 static const struct ath_ops ath5k_common_ops = {
233 .read = ath5k_ioread32,
234 .write = ath5k_iowrite32,
235 };
236
237 /***********************\
238 * Driver Initialization *
239 \***********************/
240
241 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
242 {
243 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
244 struct ath5k_hw *ah = hw->priv;
245 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
246
247 return ath_reg_notifier_apply(wiphy, request, regulatory);
248 }
249
250 /********************\
251 * Channel/mode setup *
252 \********************/
253
254 /*
255 * Returns true for the channel numbers used without all_channels modparam.
256 */
257 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
258 {
259 if (band == IEEE80211_BAND_2GHZ && chan <= 14)
260 return true;
261
262 return /* UNII 1,2 */
263 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
264 /* midband */
265 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
266 /* UNII-3 */
267 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
268 /* 802.11j 5.030-5.080 GHz (20MHz) */
269 (chan == 8 || chan == 12 || chan == 16) ||
270 /* 802.11j 4.9GHz (20MHz) */
271 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
272 }
273
274 static unsigned int
275 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
276 unsigned int mode, unsigned int max)
277 {
278 unsigned int count, size, freq, ch;
279 enum ieee80211_band band;
280
281 switch (mode) {
282 case AR5K_MODE_11A:
283 /* 1..220, but 2GHz frequencies are filtered by check_channel */
284 size = 220;
285 band = IEEE80211_BAND_5GHZ;
286 break;
287 case AR5K_MODE_11B:
288 case AR5K_MODE_11G:
289 size = 26;
290 band = IEEE80211_BAND_2GHZ;
291 break;
292 default:
293 ATH5K_WARN(ah, "bad mode, not copying channels\n");
294 return 0;
295 }
296
297 count = 0;
298 for (ch = 1; ch <= size && count < max; ch++) {
299 freq = ieee80211_channel_to_frequency(ch, band);
300
301 if (freq == 0) /* mapping failed - not a standard channel */
302 continue;
303
304 /* Write channel info, needed for ath5k_channel_ok() */
305 channels[count].center_freq = freq;
306 channels[count].band = band;
307 channels[count].hw_value = mode;
308
309 /* Check if channel is supported by the chipset */
310 if (!ath5k_channel_ok(ah, &channels[count]))
311 continue;
312
313 if (!modparam_all_channels &&
314 !ath5k_is_standard_channel(ch, band))
315 continue;
316
317 count++;
318 }
319
320 return count;
321 }
322
323 static void
324 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
325 {
326 u8 i;
327
328 for (i = 0; i < AR5K_MAX_RATES; i++)
329 ah->rate_idx[b->band][i] = -1;
330
331 for (i = 0; i < b->n_bitrates; i++) {
332 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
333 if (b->bitrates[i].hw_value_short)
334 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
335 }
336 }
337
338 static int
339 ath5k_setup_bands(struct ieee80211_hw *hw)
340 {
341 struct ath5k_hw *ah = hw->priv;
342 struct ieee80211_supported_band *sband;
343 int max_c, count_c = 0;
344 int i;
345
346 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
347 max_c = ARRAY_SIZE(ah->channels);
348
349 /* 2GHz band */
350 sband = &ah->sbands[IEEE80211_BAND_2GHZ];
351 sband->band = IEEE80211_BAND_2GHZ;
352 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
353
354 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
355 /* G mode */
356 memcpy(sband->bitrates, &ath5k_rates[0],
357 sizeof(struct ieee80211_rate) * 12);
358 sband->n_bitrates = 12;
359
360 sband->channels = ah->channels;
361 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
362 AR5K_MODE_11G, max_c);
363
364 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
365 count_c = sband->n_channels;
366 max_c -= count_c;
367 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
368 /* B mode */
369 memcpy(sband->bitrates, &ath5k_rates[0],
370 sizeof(struct ieee80211_rate) * 4);
371 sband->n_bitrates = 4;
372
373 /* 5211 only supports B rates and uses 4bit rate codes
374 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
375 * fix them up here:
376 */
377 if (ah->ah_version == AR5K_AR5211) {
378 for (i = 0; i < 4; i++) {
379 sband->bitrates[i].hw_value =
380 sband->bitrates[i].hw_value & 0xF;
381 sband->bitrates[i].hw_value_short =
382 sband->bitrates[i].hw_value_short & 0xF;
383 }
384 }
385
386 sband->channels = ah->channels;
387 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
388 AR5K_MODE_11B, max_c);
389
390 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
391 count_c = sband->n_channels;
392 max_c -= count_c;
393 }
394 ath5k_setup_rate_idx(ah, sband);
395
396 /* 5GHz band, A mode */
397 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
398 sband = &ah->sbands[IEEE80211_BAND_5GHZ];
399 sband->band = IEEE80211_BAND_5GHZ;
400 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
401
402 memcpy(sband->bitrates, &ath5k_rates[4],
403 sizeof(struct ieee80211_rate) * 8);
404 sband->n_bitrates = 8;
405
406 sband->channels = &ah->channels[count_c];
407 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
408 AR5K_MODE_11A, max_c);
409
410 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
411 }
412 ath5k_setup_rate_idx(ah, sband);
413
414 ath5k_debug_dump_bands(ah);
415
416 return 0;
417 }
418
419 /*
420 * Set/change channels. We always reset the chip.
421 * To accomplish this we must first cleanup any pending DMA,
422 * then restart stuff after a la ath5k_init.
423 *
424 * Called with ah->lock.
425 */
426 int
427 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
428 {
429 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
430 "channel set, resetting (%u -> %u MHz)\n",
431 ah->curchan->center_freq, chan->center_freq);
432
433 /*
434 * To switch channels clear any pending DMA operations;
435 * wait long enough for the RX fifo to drain, reset the
436 * hardware at the new frequency, and then re-enable
437 * the relevant bits of the h/w.
438 */
439 return ath5k_reset(ah, chan, true);
440 }
441
442 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
443 {
444 struct ath5k_vif_iter_data *iter_data = data;
445 int i;
446 struct ath5k_vif *avf = (void *)vif->drv_priv;
447
448 if (iter_data->hw_macaddr)
449 for (i = 0; i < ETH_ALEN; i++)
450 iter_data->mask[i] &=
451 ~(iter_data->hw_macaddr[i] ^ mac[i]);
452
453 if (!iter_data->found_active) {
454 iter_data->found_active = true;
455 memcpy(iter_data->active_mac, mac, ETH_ALEN);
456 }
457
458 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
459 if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
460 iter_data->need_set_hw_addr = false;
461
462 if (!iter_data->any_assoc) {
463 if (avf->assoc)
464 iter_data->any_assoc = true;
465 }
466
467 /* Calculate combined mode - when APs are active, operate in AP mode.
468 * Otherwise use the mode of the new interface. This can currently
469 * only deal with combinations of APs and STAs. Only one ad-hoc
470 * interfaces is allowed.
471 */
472 if (avf->opmode == NL80211_IFTYPE_AP)
473 iter_data->opmode = NL80211_IFTYPE_AP;
474 else {
475 if (avf->opmode == NL80211_IFTYPE_STATION)
476 iter_data->n_stas++;
477 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
478 iter_data->opmode = avf->opmode;
479 }
480 }
481
482 void
483 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
484 struct ieee80211_vif *vif)
485 {
486 struct ath_common *common = ath5k_hw_common(ah);
487 struct ath5k_vif_iter_data iter_data;
488 u32 rfilt;
489
490 /*
491 * Use the hardware MAC address as reference, the hardware uses it
492 * together with the BSSID mask when matching addresses.
493 */
494 iter_data.hw_macaddr = common->macaddr;
495 memset(&iter_data.mask, 0xff, ETH_ALEN);
496 iter_data.found_active = false;
497 iter_data.need_set_hw_addr = true;
498 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
499 iter_data.n_stas = 0;
500
501 if (vif)
502 ath5k_vif_iter(&iter_data, vif->addr, vif);
503
504 /* Get list of all active MAC addresses */
505 ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
506 &iter_data);
507 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
508
509 ah->opmode = iter_data.opmode;
510 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
511 /* Nothing active, default to station mode */
512 ah->opmode = NL80211_IFTYPE_STATION;
513
514 ath5k_hw_set_opmode(ah, ah->opmode);
515 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
516 ah->opmode, ath_opmode_to_string(ah->opmode));
517
518 if (iter_data.need_set_hw_addr && iter_data.found_active)
519 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
520
521 if (ath5k_hw_hasbssidmask(ah))
522 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
523
524 /* Set up RX Filter */
525 if (iter_data.n_stas > 1) {
526 /* If you have multiple STA interfaces connected to
527 * different APs, ARPs are not received (most of the time?)
528 * Enabling PROMISC appears to fix that problem.
529 */
530 ah->filter_flags |= AR5K_RX_FILTER_PROM;
531 }
532
533 rfilt = ah->filter_flags;
534 ath5k_hw_set_rx_filter(ah, rfilt);
535 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
536 }
537
538 static inline int
539 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
540 {
541 int rix;
542
543 /* return base rate on errors */
544 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
545 "hw_rix out of bounds: %x\n", hw_rix))
546 return 0;
547
548 rix = ah->rate_idx[ah->curchan->band][hw_rix];
549 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
550 rix = 0;
551
552 return rix;
553 }
554
555 /***************\
556 * Buffers setup *
557 \***************/
558
559 static
560 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
561 {
562 struct ath_common *common = ath5k_hw_common(ah);
563 struct sk_buff *skb;
564
565 /*
566 * Allocate buffer with headroom_needed space for the
567 * fake physical layer header at the start.
568 */
569 skb = ath_rxbuf_alloc(common,
570 common->rx_bufsize,
571 GFP_ATOMIC);
572
573 if (!skb) {
574 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
575 common->rx_bufsize);
576 return NULL;
577 }
578
579 *skb_addr = dma_map_single(ah->dev,
580 skb->data, common->rx_bufsize,
581 DMA_FROM_DEVICE);
582
583 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
584 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
585 dev_kfree_skb(skb);
586 return NULL;
587 }
588 return skb;
589 }
590
591 static int
592 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
593 {
594 struct sk_buff *skb = bf->skb;
595 struct ath5k_desc *ds;
596 int ret;
597
598 if (!skb) {
599 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
600 if (!skb)
601 return -ENOMEM;
602 bf->skb = skb;
603 }
604
605 /*
606 * Setup descriptors. For receive we always terminate
607 * the descriptor list with a self-linked entry so we'll
608 * not get overrun under high load (as can happen with a
609 * 5212 when ANI processing enables PHY error frames).
610 *
611 * To ensure the last descriptor is self-linked we create
612 * each descriptor as self-linked and add it to the end. As
613 * each additional descriptor is added the previous self-linked
614 * entry is "fixed" naturally. This should be safe even
615 * if DMA is happening. When processing RX interrupts we
616 * never remove/process the last, self-linked, entry on the
617 * descriptor list. This ensures the hardware always has
618 * someplace to write a new frame.
619 */
620 ds = bf->desc;
621 ds->ds_link = bf->daddr; /* link to self */
622 ds->ds_data = bf->skbaddr;
623 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
624 if (ret) {
625 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
626 return ret;
627 }
628
629 if (ah->rxlink != NULL)
630 *ah->rxlink = bf->daddr;
631 ah->rxlink = &ds->ds_link;
632 return 0;
633 }
634
635 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
636 {
637 struct ieee80211_hdr *hdr;
638 enum ath5k_pkt_type htype;
639 __le16 fc;
640
641 hdr = (struct ieee80211_hdr *)skb->data;
642 fc = hdr->frame_control;
643
644 if (ieee80211_is_beacon(fc))
645 htype = AR5K_PKT_TYPE_BEACON;
646 else if (ieee80211_is_probe_resp(fc))
647 htype = AR5K_PKT_TYPE_PROBE_RESP;
648 else if (ieee80211_is_atim(fc))
649 htype = AR5K_PKT_TYPE_ATIM;
650 else if (ieee80211_is_pspoll(fc))
651 htype = AR5K_PKT_TYPE_PSPOLL;
652 else
653 htype = AR5K_PKT_TYPE_NORMAL;
654
655 return htype;
656 }
657
658 static int
659 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
660 struct ath5k_txq *txq, int padsize)
661 {
662 struct ath5k_desc *ds = bf->desc;
663 struct sk_buff *skb = bf->skb;
664 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
665 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
666 struct ieee80211_rate *rate;
667 unsigned int mrr_rate[3], mrr_tries[3];
668 int i, ret;
669 u16 hw_rate;
670 u16 cts_rate = 0;
671 u16 duration = 0;
672 u8 rc_flags;
673
674 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
675
676 /* XXX endianness */
677 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
678 DMA_TO_DEVICE);
679
680 rate = ieee80211_get_tx_rate(ah->hw, info);
681 if (!rate) {
682 ret = -EINVAL;
683 goto err_unmap;
684 }
685
686 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
687 flags |= AR5K_TXDESC_NOACK;
688
689 rc_flags = info->control.rates[0].flags;
690 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
691 rate->hw_value_short : rate->hw_value;
692
693 pktlen = skb->len;
694
695 /* FIXME: If we are in g mode and rate is a CCK rate
696 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
697 * from tx power (value is in dB units already) */
698 if (info->control.hw_key) {
699 keyidx = info->control.hw_key->hw_key_idx;
700 pktlen += info->control.hw_key->icv_len;
701 }
702 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
703 flags |= AR5K_TXDESC_RTSENA;
704 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
705 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
706 info->control.vif, pktlen, info));
707 }
708 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
709 flags |= AR5K_TXDESC_CTSENA;
710 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
711 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
712 info->control.vif, pktlen, info));
713 }
714 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
715 ieee80211_get_hdrlen_from_skb(skb), padsize,
716 get_hw_packet_type(skb),
717 (ah->power_level * 2),
718 hw_rate,
719 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
720 cts_rate, duration);
721 if (ret)
722 goto err_unmap;
723
724 memset(mrr_rate, 0, sizeof(mrr_rate));
725 memset(mrr_tries, 0, sizeof(mrr_tries));
726 for (i = 0; i < 3; i++) {
727 rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
728 if (!rate)
729 break;
730
731 mrr_rate[i] = rate->hw_value;
732 mrr_tries[i] = info->control.rates[i + 1].count;
733 }
734
735 ath5k_hw_setup_mrr_tx_desc(ah, ds,
736 mrr_rate[0], mrr_tries[0],
737 mrr_rate[1], mrr_tries[1],
738 mrr_rate[2], mrr_tries[2]);
739
740 ds->ds_link = 0;
741 ds->ds_data = bf->skbaddr;
742
743 spin_lock_bh(&txq->lock);
744 list_add_tail(&bf->list, &txq->q);
745 txq->txq_len++;
746 if (txq->link == NULL) /* is this first packet? */
747 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
748 else /* no, so only link it */
749 *txq->link = bf->daddr;
750
751 txq->link = &ds->ds_link;
752 ath5k_hw_start_tx_dma(ah, txq->qnum);
753 mmiowb();
754 spin_unlock_bh(&txq->lock);
755
756 return 0;
757 err_unmap:
758 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
759 return ret;
760 }
761
762 /*******************\
763 * Descriptors setup *
764 \*******************/
765
766 static int
767 ath5k_desc_alloc(struct ath5k_hw *ah)
768 {
769 struct ath5k_desc *ds;
770 struct ath5k_buf *bf;
771 dma_addr_t da;
772 unsigned int i;
773 int ret;
774
775 /* allocate descriptors */
776 ah->desc_len = sizeof(struct ath5k_desc) *
777 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
778
779 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
780 &ah->desc_daddr, GFP_KERNEL);
781 if (ah->desc == NULL) {
782 ATH5K_ERR(ah, "can't allocate descriptors\n");
783 ret = -ENOMEM;
784 goto err;
785 }
786 ds = ah->desc;
787 da = ah->desc_daddr;
788 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
789 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
790
791 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
792 sizeof(struct ath5k_buf), GFP_KERNEL);
793 if (bf == NULL) {
794 ATH5K_ERR(ah, "can't allocate bufptr\n");
795 ret = -ENOMEM;
796 goto err_free;
797 }
798 ah->bufptr = bf;
799
800 INIT_LIST_HEAD(&ah->rxbuf);
801 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
802 bf->desc = ds;
803 bf->daddr = da;
804 list_add_tail(&bf->list, &ah->rxbuf);
805 }
806
807 INIT_LIST_HEAD(&ah->txbuf);
808 ah->txbuf_len = ATH_TXBUF;
809 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
810 bf->desc = ds;
811 bf->daddr = da;
812 list_add_tail(&bf->list, &ah->txbuf);
813 }
814
815 /* beacon buffers */
816 INIT_LIST_HEAD(&ah->bcbuf);
817 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
818 bf->desc = ds;
819 bf->daddr = da;
820 list_add_tail(&bf->list, &ah->bcbuf);
821 }
822
823 return 0;
824 err_free:
825 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
826 err:
827 ah->desc = NULL;
828 return ret;
829 }
830
831 void
832 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
833 {
834 BUG_ON(!bf);
835 if (!bf->skb)
836 return;
837 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
838 DMA_TO_DEVICE);
839 dev_kfree_skb_any(bf->skb);
840 bf->skb = NULL;
841 bf->skbaddr = 0;
842 bf->desc->ds_data = 0;
843 }
844
845 void
846 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
847 {
848 struct ath_common *common = ath5k_hw_common(ah);
849
850 BUG_ON(!bf);
851 if (!bf->skb)
852 return;
853 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
854 DMA_FROM_DEVICE);
855 dev_kfree_skb_any(bf->skb);
856 bf->skb = NULL;
857 bf->skbaddr = 0;
858 bf->desc->ds_data = 0;
859 }
860
861 static void
862 ath5k_desc_free(struct ath5k_hw *ah)
863 {
864 struct ath5k_buf *bf;
865
866 list_for_each_entry(bf, &ah->txbuf, list)
867 ath5k_txbuf_free_skb(ah, bf);
868 list_for_each_entry(bf, &ah->rxbuf, list)
869 ath5k_rxbuf_free_skb(ah, bf);
870 list_for_each_entry(bf, &ah->bcbuf, list)
871 ath5k_txbuf_free_skb(ah, bf);
872
873 /* Free memory associated with all descriptors */
874 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
875 ah->desc = NULL;
876 ah->desc_daddr = 0;
877
878 kfree(ah->bufptr);
879 ah->bufptr = NULL;
880 }
881
882
883 /**************\
884 * Queues setup *
885 \**************/
886
887 static struct ath5k_txq *
888 ath5k_txq_setup(struct ath5k_hw *ah,
889 int qtype, int subtype)
890 {
891 struct ath5k_txq *txq;
892 struct ath5k_txq_info qi = {
893 .tqi_subtype = subtype,
894 /* XXX: default values not correct for B and XR channels,
895 * but who cares? */
896 .tqi_aifs = AR5K_TUNE_AIFS,
897 .tqi_cw_min = AR5K_TUNE_CWMIN,
898 .tqi_cw_max = AR5K_TUNE_CWMAX
899 };
900 int qnum;
901
902 /*
903 * Enable interrupts only for EOL and DESC conditions.
904 * We mark tx descriptors to receive a DESC interrupt
905 * when a tx queue gets deep; otherwise we wait for the
906 * EOL to reap descriptors. Note that this is done to
907 * reduce interrupt load and this only defers reaping
908 * descriptors, never transmitting frames. Aside from
909 * reducing interrupts this also permits more concurrency.
910 * The only potential downside is if the tx queue backs
911 * up in which case the top half of the kernel may backup
912 * due to a lack of tx descriptors.
913 */
914 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
915 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
916 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
917 if (qnum < 0) {
918 /*
919 * NB: don't print a message, this happens
920 * normally on parts with too few tx queues
921 */
922 return ERR_PTR(qnum);
923 }
924 if (qnum >= ARRAY_SIZE(ah->txqs)) {
925 ATH5K_ERR(ah, "hw qnum %u out of range, max %tu!\n",
926 qnum, ARRAY_SIZE(ah->txqs));
927 ath5k_hw_release_tx_queue(ah, qnum);
928 return ERR_PTR(-EINVAL);
929 }
930 txq = &ah->txqs[qnum];
931 if (!txq->setup) {
932 txq->qnum = qnum;
933 txq->link = NULL;
934 INIT_LIST_HEAD(&txq->q);
935 spin_lock_init(&txq->lock);
936 txq->setup = true;
937 txq->txq_len = 0;
938 txq->txq_max = ATH5K_TXQ_LEN_MAX;
939 txq->txq_poll_mark = false;
940 txq->txq_stuck = 0;
941 }
942 return &ah->txqs[qnum];
943 }
944
945 static int
946 ath5k_beaconq_setup(struct ath5k_hw *ah)
947 {
948 struct ath5k_txq_info qi = {
949 /* XXX: default values not correct for B and XR channels,
950 * but who cares? */
951 .tqi_aifs = AR5K_TUNE_AIFS,
952 .tqi_cw_min = AR5K_TUNE_CWMIN,
953 .tqi_cw_max = AR5K_TUNE_CWMAX,
954 /* NB: for dynamic turbo, don't enable any other interrupts */
955 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
956 };
957
958 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
959 }
960
961 static int
962 ath5k_beaconq_config(struct ath5k_hw *ah)
963 {
964 struct ath5k_txq_info qi;
965 int ret;
966
967 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
968 if (ret)
969 goto err;
970
971 if (ah->opmode == NL80211_IFTYPE_AP ||
972 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
973 /*
974 * Always burst out beacon and CAB traffic
975 * (aifs = cwmin = cwmax = 0)
976 */
977 qi.tqi_aifs = 0;
978 qi.tqi_cw_min = 0;
979 qi.tqi_cw_max = 0;
980 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
981 /*
982 * Adhoc mode; backoff between 0 and (2 * cw_min).
983 */
984 qi.tqi_aifs = 0;
985 qi.tqi_cw_min = 0;
986 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
987 }
988
989 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
990 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
991 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
992
993 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
994 if (ret) {
995 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
996 "hardware queue!\n", __func__);
997 goto err;
998 }
999 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1000 if (ret)
1001 goto err;
1002
1003 /* reconfigure cabq with ready time to 80% of beacon_interval */
1004 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1005 if (ret)
1006 goto err;
1007
1008 qi.tqi_ready_time = (ah->bintval * 80) / 100;
1009 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1010 if (ret)
1011 goto err;
1012
1013 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1014 err:
1015 return ret;
1016 }
1017
1018 /**
1019 * ath5k_drain_tx_buffs - Empty tx buffers
1020 *
1021 * @ah The &struct ath5k_hw
1022 *
1023 * Empty tx buffers from all queues in preparation
1024 * of a reset or during shutdown.
1025 *
1026 * NB: this assumes output has been stopped and
1027 * we do not need to block ath5k_tx_tasklet
1028 */
1029 static void
1030 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1031 {
1032 struct ath5k_txq *txq;
1033 struct ath5k_buf *bf, *bf0;
1034 int i;
1035
1036 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1037 if (ah->txqs[i].setup) {
1038 txq = &ah->txqs[i];
1039 spin_lock_bh(&txq->lock);
1040 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1041 ath5k_debug_printtxbuf(ah, bf);
1042
1043 ath5k_txbuf_free_skb(ah, bf);
1044
1045 spin_lock_bh(&ah->txbuflock);
1046 list_move_tail(&bf->list, &ah->txbuf);
1047 ah->txbuf_len++;
1048 txq->txq_len--;
1049 spin_unlock_bh(&ah->txbuflock);
1050 }
1051 txq->link = NULL;
1052 txq->txq_poll_mark = false;
1053 spin_unlock_bh(&txq->lock);
1054 }
1055 }
1056 }
1057
1058 static void
1059 ath5k_txq_release(struct ath5k_hw *ah)
1060 {
1061 struct ath5k_txq *txq = ah->txqs;
1062 unsigned int i;
1063
1064 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1065 if (txq->setup) {
1066 ath5k_hw_release_tx_queue(ah, txq->qnum);
1067 txq->setup = false;
1068 }
1069 }
1070
1071
1072 /*************\
1073 * RX Handling *
1074 \*************/
1075
1076 /*
1077 * Enable the receive h/w following a reset.
1078 */
1079 static int
1080 ath5k_rx_start(struct ath5k_hw *ah)
1081 {
1082 struct ath_common *common = ath5k_hw_common(ah);
1083 struct ath5k_buf *bf;
1084 int ret;
1085
1086 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1087
1088 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1089 common->cachelsz, common->rx_bufsize);
1090
1091 spin_lock_bh(&ah->rxbuflock);
1092 ah->rxlink = NULL;
1093 list_for_each_entry(bf, &ah->rxbuf, list) {
1094 ret = ath5k_rxbuf_setup(ah, bf);
1095 if (ret != 0) {
1096 spin_unlock_bh(&ah->rxbuflock);
1097 goto err;
1098 }
1099 }
1100 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1101 ath5k_hw_set_rxdp(ah, bf->daddr);
1102 spin_unlock_bh(&ah->rxbuflock);
1103
1104 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1105 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1106 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1107
1108 return 0;
1109 err:
1110 return ret;
1111 }
1112
1113 /*
1114 * Disable the receive logic on PCU (DRU)
1115 * In preparation for a shutdown.
1116 *
1117 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1118 * does.
1119 */
1120 static void
1121 ath5k_rx_stop(struct ath5k_hw *ah)
1122 {
1123
1124 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1125 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1126
1127 ath5k_debug_printrxbuffs(ah);
1128 }
1129
1130 static unsigned int
1131 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1132 struct ath5k_rx_status *rs)
1133 {
1134 struct ath_common *common = ath5k_hw_common(ah);
1135 struct ieee80211_hdr *hdr = (void *)skb->data;
1136 unsigned int keyix, hlen;
1137
1138 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1139 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1140 return RX_FLAG_DECRYPTED;
1141
1142 /* Apparently when a default key is used to decrypt the packet
1143 the hw does not set the index used to decrypt. In such cases
1144 get the index from the packet. */
1145 hlen = ieee80211_hdrlen(hdr->frame_control);
1146 if (ieee80211_has_protected(hdr->frame_control) &&
1147 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1148 skb->len >= hlen + 4) {
1149 keyix = skb->data[hlen + 3] >> 6;
1150
1151 if (test_bit(keyix, common->keymap))
1152 return RX_FLAG_DECRYPTED;
1153 }
1154
1155 return 0;
1156 }
1157
1158
1159 static void
1160 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1161 struct ieee80211_rx_status *rxs)
1162 {
1163 struct ath_common *common = ath5k_hw_common(ah);
1164 u64 tsf, bc_tstamp;
1165 u32 hw_tu;
1166 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1167
1168 if (ieee80211_is_beacon(mgmt->frame_control) &&
1169 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1170 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1171 /*
1172 * Received an IBSS beacon with the same BSSID. Hardware *must*
1173 * have updated the local TSF. We have to work around various
1174 * hardware bugs, though...
1175 */
1176 tsf = ath5k_hw_get_tsf64(ah);
1177 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1178 hw_tu = TSF_TO_TU(tsf);
1179
1180 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1181 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1182 (unsigned long long)bc_tstamp,
1183 (unsigned long long)rxs->mactime,
1184 (unsigned long long)(rxs->mactime - bc_tstamp),
1185 (unsigned long long)tsf);
1186
1187 /*
1188 * Sometimes the HW will give us a wrong tstamp in the rx
1189 * status, causing the timestamp extension to go wrong.
1190 * (This seems to happen especially with beacon frames bigger
1191 * than 78 byte (incl. FCS))
1192 * But we know that the receive timestamp must be later than the
1193 * timestamp of the beacon since HW must have synced to that.
1194 *
1195 * NOTE: here we assume mactime to be after the frame was
1196 * received, not like mac80211 which defines it at the start.
1197 */
1198 if (bc_tstamp > rxs->mactime) {
1199 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1200 "fixing mactime from %llx to %llx\n",
1201 (unsigned long long)rxs->mactime,
1202 (unsigned long long)tsf);
1203 rxs->mactime = tsf;
1204 }
1205
1206 /*
1207 * Local TSF might have moved higher than our beacon timers,
1208 * in that case we have to update them to continue sending
1209 * beacons. This also takes care of synchronizing beacon sending
1210 * times with other stations.
1211 */
1212 if (hw_tu >= ah->nexttbtt)
1213 ath5k_beacon_update_timers(ah, bc_tstamp);
1214
1215 /* Check if the beacon timers are still correct, because a TSF
1216 * update might have created a window between them - for a
1217 * longer description see the comment of this function: */
1218 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1219 ath5k_beacon_update_timers(ah, bc_tstamp);
1220 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1221 "fixed beacon timers after beacon receive\n");
1222 }
1223 }
1224 }
1225
1226 static void
1227 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1228 {
1229 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1230 struct ath_common *common = ath5k_hw_common(ah);
1231
1232 /* only beacons from our BSSID */
1233 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1234 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1235 return;
1236
1237 ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1238
1239 /* in IBSS mode we should keep RSSI statistics per neighbour */
1240 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1241 }
1242
1243 /*
1244 * Compute padding position. skb must contain an IEEE 802.11 frame
1245 */
1246 static int ath5k_common_padpos(struct sk_buff *skb)
1247 {
1248 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1249 __le16 frame_control = hdr->frame_control;
1250 int padpos = 24;
1251
1252 if (ieee80211_has_a4(frame_control))
1253 padpos += ETH_ALEN;
1254
1255 if (ieee80211_is_data_qos(frame_control))
1256 padpos += IEEE80211_QOS_CTL_LEN;
1257
1258 return padpos;
1259 }
1260
1261 /*
1262 * This function expects an 802.11 frame and returns the number of
1263 * bytes added, or -1 if we don't have enough header room.
1264 */
1265 static int ath5k_add_padding(struct sk_buff *skb)
1266 {
1267 int padpos = ath5k_common_padpos(skb);
1268 int padsize = padpos & 3;
1269
1270 if (padsize && skb->len > padpos) {
1271
1272 if (skb_headroom(skb) < padsize)
1273 return -1;
1274
1275 skb_push(skb, padsize);
1276 memmove(skb->data, skb->data + padsize, padpos);
1277 return padsize;
1278 }
1279
1280 return 0;
1281 }
1282
1283 /*
1284 * The MAC header is padded to have 32-bit boundary if the
1285 * packet payload is non-zero. The general calculation for
1286 * padsize would take into account odd header lengths:
1287 * padsize = 4 - (hdrlen & 3); however, since only
1288 * even-length headers are used, padding can only be 0 or 2
1289 * bytes and we can optimize this a bit. We must not try to
1290 * remove padding from short control frames that do not have a
1291 * payload.
1292 *
1293 * This function expects an 802.11 frame and returns the number of
1294 * bytes removed.
1295 */
1296 static int ath5k_remove_padding(struct sk_buff *skb)
1297 {
1298 int padpos = ath5k_common_padpos(skb);
1299 int padsize = padpos & 3;
1300
1301 if (padsize && skb->len >= padpos + padsize) {
1302 memmove(skb->data + padsize, skb->data, padpos);
1303 skb_pull(skb, padsize);
1304 return padsize;
1305 }
1306
1307 return 0;
1308 }
1309
1310 static void
1311 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1312 struct ath5k_rx_status *rs)
1313 {
1314 struct ieee80211_rx_status *rxs;
1315
1316 ath5k_remove_padding(skb);
1317
1318 rxs = IEEE80211_SKB_RXCB(skb);
1319
1320 rxs->flag = 0;
1321 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1322 rxs->flag |= RX_FLAG_MMIC_ERROR;
1323
1324 /*
1325 * always extend the mac timestamp, since this information is
1326 * also needed for proper IBSS merging.
1327 *
1328 * XXX: it might be too late to do it here, since rs_tstamp is
1329 * 15bit only. that means TSF extension has to be done within
1330 * 32768usec (about 32ms). it might be necessary to move this to
1331 * the interrupt handler, like it is done in madwifi.
1332 *
1333 * Unfortunately we don't know when the hardware takes the rx
1334 * timestamp (beginning of phy frame, data frame, end of rx?).
1335 * The only thing we know is that it is hardware specific...
1336 * On AR5213 it seems the rx timestamp is at the end of the
1337 * frame, but I'm not sure.
1338 *
1339 * NOTE: mac80211 defines mactime at the beginning of the first
1340 * data symbol. Since we don't have any time references it's
1341 * impossible to comply to that. This affects IBSS merge only
1342 * right now, so it's not too bad...
1343 */
1344 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1345 rxs->flag |= RX_FLAG_MACTIME_MPDU;
1346
1347 rxs->freq = ah->curchan->center_freq;
1348 rxs->band = ah->curchan->band;
1349
1350 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1351
1352 rxs->antenna = rs->rs_antenna;
1353
1354 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1355 ah->stats.antenna_rx[rs->rs_antenna]++;
1356 else
1357 ah->stats.antenna_rx[0]++; /* invalid */
1358
1359 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1360 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1361
1362 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1363 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1364 rxs->flag |= RX_FLAG_SHORTPRE;
1365
1366 trace_ath5k_rx(ah, skb);
1367
1368 ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1369
1370 /* check beacons in IBSS mode */
1371 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1372 ath5k_check_ibss_tsf(ah, skb, rxs);
1373
1374 ieee80211_rx(ah->hw, skb);
1375 }
1376
1377 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1378 *
1379 * Check if we want to further process this frame or not. Also update
1380 * statistics. Return true if we want this frame, false if not.
1381 */
1382 static bool
1383 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1384 {
1385 ah->stats.rx_all_count++;
1386 ah->stats.rx_bytes_count += rs->rs_datalen;
1387
1388 if (unlikely(rs->rs_status)) {
1389 if (rs->rs_status & AR5K_RXERR_CRC)
1390 ah->stats.rxerr_crc++;
1391 if (rs->rs_status & AR5K_RXERR_FIFO)
1392 ah->stats.rxerr_fifo++;
1393 if (rs->rs_status & AR5K_RXERR_PHY) {
1394 ah->stats.rxerr_phy++;
1395 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1396 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1397 return false;
1398 }
1399 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1400 /*
1401 * Decrypt error. If the error occurred
1402 * because there was no hardware key, then
1403 * let the frame through so the upper layers
1404 * can process it. This is necessary for 5210
1405 * parts which have no way to setup a ``clear''
1406 * key cache entry.
1407 *
1408 * XXX do key cache faulting
1409 */
1410 ah->stats.rxerr_decrypt++;
1411 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1412 !(rs->rs_status & AR5K_RXERR_CRC))
1413 return true;
1414 }
1415 if (rs->rs_status & AR5K_RXERR_MIC) {
1416 ah->stats.rxerr_mic++;
1417 return true;
1418 }
1419
1420 /* reject any frames with non-crypto errors */
1421 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1422 return false;
1423 }
1424
1425 if (unlikely(rs->rs_more)) {
1426 ah->stats.rxerr_jumbo++;
1427 return false;
1428 }
1429 return true;
1430 }
1431
1432 static void
1433 ath5k_set_current_imask(struct ath5k_hw *ah)
1434 {
1435 enum ath5k_int imask;
1436 unsigned long flags;
1437
1438 spin_lock_irqsave(&ah->irqlock, flags);
1439 imask = ah->imask;
1440 if (ah->rx_pending)
1441 imask &= ~AR5K_INT_RX_ALL;
1442 if (ah->tx_pending)
1443 imask &= ~AR5K_INT_TX_ALL;
1444 ath5k_hw_set_imr(ah, imask);
1445 spin_unlock_irqrestore(&ah->irqlock, flags);
1446 }
1447
1448 static void
1449 ath5k_tasklet_rx(unsigned long data)
1450 {
1451 struct ath5k_rx_status rs = {};
1452 struct sk_buff *skb, *next_skb;
1453 dma_addr_t next_skb_addr;
1454 struct ath5k_hw *ah = (void *)data;
1455 struct ath_common *common = ath5k_hw_common(ah);
1456 struct ath5k_buf *bf;
1457 struct ath5k_desc *ds;
1458 int ret;
1459
1460 spin_lock(&ah->rxbuflock);
1461 if (list_empty(&ah->rxbuf)) {
1462 ATH5K_WARN(ah, "empty rx buf pool\n");
1463 goto unlock;
1464 }
1465 do {
1466 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1467 BUG_ON(bf->skb == NULL);
1468 skb = bf->skb;
1469 ds = bf->desc;
1470
1471 /* bail if HW is still using self-linked descriptor */
1472 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1473 break;
1474
1475 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1476 if (unlikely(ret == -EINPROGRESS))
1477 break;
1478 else if (unlikely(ret)) {
1479 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1480 ah->stats.rxerr_proc++;
1481 break;
1482 }
1483
1484 if (ath5k_receive_frame_ok(ah, &rs)) {
1485 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1486
1487 /*
1488 * If we can't replace bf->skb with a new skb under
1489 * memory pressure, just skip this packet
1490 */
1491 if (!next_skb)
1492 goto next;
1493
1494 dma_unmap_single(ah->dev, bf->skbaddr,
1495 common->rx_bufsize,
1496 DMA_FROM_DEVICE);
1497
1498 skb_put(skb, rs.rs_datalen);
1499
1500 ath5k_receive_frame(ah, skb, &rs);
1501
1502 bf->skb = next_skb;
1503 bf->skbaddr = next_skb_addr;
1504 }
1505 next:
1506 list_move_tail(&bf->list, &ah->rxbuf);
1507 } while (ath5k_rxbuf_setup(ah, bf) == 0);
1508 unlock:
1509 spin_unlock(&ah->rxbuflock);
1510 ah->rx_pending = false;
1511 ath5k_set_current_imask(ah);
1512 }
1513
1514
1515 /*************\
1516 * TX Handling *
1517 \*************/
1518
1519 void
1520 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1521 struct ath5k_txq *txq)
1522 {
1523 struct ath5k_hw *ah = hw->priv;
1524 struct ath5k_buf *bf;
1525 unsigned long flags;
1526 int padsize;
1527
1528 trace_ath5k_tx(ah, skb, txq);
1529
1530 /*
1531 * The hardware expects the header padded to 4 byte boundaries.
1532 * If this is not the case, we add the padding after the header.
1533 */
1534 padsize = ath5k_add_padding(skb);
1535 if (padsize < 0) {
1536 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1537 " headroom to pad");
1538 goto drop_packet;
1539 }
1540
1541 if (txq->txq_len >= txq->txq_max &&
1542 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1543 ieee80211_stop_queue(hw, txq->qnum);
1544
1545 spin_lock_irqsave(&ah->txbuflock, flags);
1546 if (list_empty(&ah->txbuf)) {
1547 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1548 spin_unlock_irqrestore(&ah->txbuflock, flags);
1549 ieee80211_stop_queues(hw);
1550 goto drop_packet;
1551 }
1552 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1553 list_del(&bf->list);
1554 ah->txbuf_len--;
1555 if (list_empty(&ah->txbuf))
1556 ieee80211_stop_queues(hw);
1557 spin_unlock_irqrestore(&ah->txbuflock, flags);
1558
1559 bf->skb = skb;
1560
1561 if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1562 bf->skb = NULL;
1563 spin_lock_irqsave(&ah->txbuflock, flags);
1564 list_add_tail(&bf->list, &ah->txbuf);
1565 ah->txbuf_len++;
1566 spin_unlock_irqrestore(&ah->txbuflock, flags);
1567 goto drop_packet;
1568 }
1569 return;
1570
1571 drop_packet:
1572 dev_kfree_skb_any(skb);
1573 }
1574
1575 static void
1576 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1577 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1578 {
1579 struct ieee80211_tx_info *info;
1580 u8 tries[3];
1581 int i;
1582
1583 ah->stats.tx_all_count++;
1584 ah->stats.tx_bytes_count += skb->len;
1585 info = IEEE80211_SKB_CB(skb);
1586
1587 tries[0] = info->status.rates[0].count;
1588 tries[1] = info->status.rates[1].count;
1589 tries[2] = info->status.rates[2].count;
1590
1591 ieee80211_tx_info_clear_status(info);
1592
1593 for (i = 0; i < ts->ts_final_idx; i++) {
1594 struct ieee80211_tx_rate *r =
1595 &info->status.rates[i];
1596
1597 r->count = tries[i];
1598 }
1599
1600 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1601 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1602
1603 if (unlikely(ts->ts_status)) {
1604 ah->stats.ack_fail++;
1605 if (ts->ts_status & AR5K_TXERR_FILT) {
1606 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1607 ah->stats.txerr_filt++;
1608 }
1609 if (ts->ts_status & AR5K_TXERR_XRETRY)
1610 ah->stats.txerr_retry++;
1611 if (ts->ts_status & AR5K_TXERR_FIFO)
1612 ah->stats.txerr_fifo++;
1613 } else {
1614 info->flags |= IEEE80211_TX_STAT_ACK;
1615 info->status.ack_signal = ts->ts_rssi;
1616
1617 /* count the successful attempt as well */
1618 info->status.rates[ts->ts_final_idx].count++;
1619 }
1620
1621 /*
1622 * Remove MAC header padding before giving the frame
1623 * back to mac80211.
1624 */
1625 ath5k_remove_padding(skb);
1626
1627 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1628 ah->stats.antenna_tx[ts->ts_antenna]++;
1629 else
1630 ah->stats.antenna_tx[0]++; /* invalid */
1631
1632 trace_ath5k_tx_complete(ah, skb, txq, ts);
1633 ieee80211_tx_status(ah->hw, skb);
1634 }
1635
1636 static void
1637 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1638 {
1639 struct ath5k_tx_status ts = {};
1640 struct ath5k_buf *bf, *bf0;
1641 struct ath5k_desc *ds;
1642 struct sk_buff *skb;
1643 int ret;
1644
1645 spin_lock(&txq->lock);
1646 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1647
1648 txq->txq_poll_mark = false;
1649
1650 /* skb might already have been processed last time. */
1651 if (bf->skb != NULL) {
1652 ds = bf->desc;
1653
1654 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1655 if (unlikely(ret == -EINPROGRESS))
1656 break;
1657 else if (unlikely(ret)) {
1658 ATH5K_ERR(ah,
1659 "error %d while processing "
1660 "queue %u\n", ret, txq->qnum);
1661 break;
1662 }
1663
1664 skb = bf->skb;
1665 bf->skb = NULL;
1666
1667 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1668 DMA_TO_DEVICE);
1669 ath5k_tx_frame_completed(ah, skb, txq, &ts);
1670 }
1671
1672 /*
1673 * It's possible that the hardware can say the buffer is
1674 * completed when it hasn't yet loaded the ds_link from
1675 * host memory and moved on.
1676 * Always keep the last descriptor to avoid HW races...
1677 */
1678 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1679 spin_lock(&ah->txbuflock);
1680 list_move_tail(&bf->list, &ah->txbuf);
1681 ah->txbuf_len++;
1682 txq->txq_len--;
1683 spin_unlock(&ah->txbuflock);
1684 }
1685 }
1686 spin_unlock(&txq->lock);
1687 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1688 ieee80211_wake_queue(ah->hw, txq->qnum);
1689 }
1690
1691 static void
1692 ath5k_tasklet_tx(unsigned long data)
1693 {
1694 int i;
1695 struct ath5k_hw *ah = (void *)data;
1696
1697 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1698 if (ah->txqs[i].setup && (ah->ah_txq_isr & BIT(i)))
1699 ath5k_tx_processq(ah, &ah->txqs[i]);
1700
1701 ah->tx_pending = false;
1702 ath5k_set_current_imask(ah);
1703 }
1704
1705
1706 /*****************\
1707 * Beacon handling *
1708 \*****************/
1709
1710 /*
1711 * Setup the beacon frame for transmit.
1712 */
1713 static int
1714 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1715 {
1716 struct sk_buff *skb = bf->skb;
1717 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1718 struct ath5k_desc *ds;
1719 int ret = 0;
1720 u8 antenna;
1721 u32 flags;
1722 const int padsize = 0;
1723
1724 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1725 DMA_TO_DEVICE);
1726 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1727 "skbaddr %llx\n", skb, skb->data, skb->len,
1728 (unsigned long long)bf->skbaddr);
1729
1730 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1731 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1732 return -EIO;
1733 }
1734
1735 ds = bf->desc;
1736 antenna = ah->ah_tx_ant;
1737
1738 flags = AR5K_TXDESC_NOACK;
1739 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1740 ds->ds_link = bf->daddr; /* self-linked */
1741 flags |= AR5K_TXDESC_VEOL;
1742 } else
1743 ds->ds_link = 0;
1744
1745 /*
1746 * If we use multiple antennas on AP and use
1747 * the Sectored AP scenario, switch antenna every
1748 * 4 beacons to make sure everybody hears our AP.
1749 * When a client tries to associate, hw will keep
1750 * track of the tx antenna to be used for this client
1751 * automatically, based on ACKed packets.
1752 *
1753 * Note: AP still listens and transmits RTS on the
1754 * default antenna which is supposed to be an omni.
1755 *
1756 * Note2: On sectored scenarios it's possible to have
1757 * multiple antennas (1 omni -- the default -- and 14
1758 * sectors), so if we choose to actually support this
1759 * mode, we need to allow the user to set how many antennas
1760 * we have and tweak the code below to send beacons
1761 * on all of them.
1762 */
1763 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1764 antenna = ah->bsent & 4 ? 2 : 1;
1765
1766
1767 /* FIXME: If we are in g mode and rate is a CCK rate
1768 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1769 * from tx power (value is in dB units already) */
1770 ds->ds_data = bf->skbaddr;
1771 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1772 ieee80211_get_hdrlen_from_skb(skb), padsize,
1773 AR5K_PKT_TYPE_BEACON, (ah->power_level * 2),
1774 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1775 1, AR5K_TXKEYIX_INVALID,
1776 antenna, flags, 0, 0);
1777 if (ret)
1778 goto err_unmap;
1779
1780 return 0;
1781 err_unmap:
1782 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1783 return ret;
1784 }
1785
1786 /*
1787 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1788 * this is called only once at config_bss time, for AP we do it every
1789 * SWBA interrupt so that the TIM will reflect buffered frames.
1790 *
1791 * Called with the beacon lock.
1792 */
1793 int
1794 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1795 {
1796 int ret;
1797 struct ath5k_hw *ah = hw->priv;
1798 struct ath5k_vif *avf = (void *)vif->drv_priv;
1799 struct sk_buff *skb;
1800
1801 if (WARN_ON(!vif)) {
1802 ret = -EINVAL;
1803 goto out;
1804 }
1805
1806 skb = ieee80211_beacon_get(hw, vif);
1807
1808 if (!skb) {
1809 ret = -ENOMEM;
1810 goto out;
1811 }
1812
1813 ath5k_txbuf_free_skb(ah, avf->bbuf);
1814 avf->bbuf->skb = skb;
1815 ret = ath5k_beacon_setup(ah, avf->bbuf);
1816 if (ret)
1817 avf->bbuf->skb = NULL;
1818 out:
1819 return ret;
1820 }
1821
1822 /*
1823 * Transmit a beacon frame at SWBA. Dynamic updates to the
1824 * frame contents are done as needed and the slot time is
1825 * also adjusted based on current state.
1826 *
1827 * This is called from software irq context (beacontq tasklets)
1828 * or user context from ath5k_beacon_config.
1829 */
1830 static void
1831 ath5k_beacon_send(struct ath5k_hw *ah)
1832 {
1833 struct ieee80211_vif *vif;
1834 struct ath5k_vif *avf;
1835 struct ath5k_buf *bf;
1836 struct sk_buff *skb;
1837
1838 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1839
1840 /*
1841 * Check if the previous beacon has gone out. If
1842 * not, don't don't try to post another: skip this
1843 * period and wait for the next. Missed beacons
1844 * indicate a problem and should not occur. If we
1845 * miss too many consecutive beacons reset the device.
1846 */
1847 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1848 ah->bmisscount++;
1849 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1850 "missed %u consecutive beacons\n", ah->bmisscount);
1851 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1852 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1853 "stuck beacon time (%u missed)\n",
1854 ah->bmisscount);
1855 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1856 "stuck beacon, resetting\n");
1857 ieee80211_queue_work(ah->hw, &ah->reset_work);
1858 }
1859 return;
1860 }
1861 if (unlikely(ah->bmisscount != 0)) {
1862 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1863 "resume beacon xmit after %u misses\n",
1864 ah->bmisscount);
1865 ah->bmisscount = 0;
1866 }
1867
1868 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) ||
1869 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1870 u64 tsf = ath5k_hw_get_tsf64(ah);
1871 u32 tsftu = TSF_TO_TU(tsf);
1872 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1873 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1874 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1875 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1876 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1877 } else /* only one interface */
1878 vif = ah->bslot[0];
1879
1880 if (!vif)
1881 return;
1882
1883 avf = (void *)vif->drv_priv;
1884 bf = avf->bbuf;
1885 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1886 ah->opmode == NL80211_IFTYPE_MONITOR)) {
1887 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1888 return;
1889 }
1890
1891 /*
1892 * Stop any current dma and put the new frame on the queue.
1893 * This should never fail since we check above that no frames
1894 * are still pending on the queue.
1895 */
1896 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1897 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1898 /* NB: hw still stops DMA, so proceed */
1899 }
1900
1901 /* refresh the beacon for AP or MESH mode */
1902 if (ah->opmode == NL80211_IFTYPE_AP ||
1903 ah->opmode == NL80211_IFTYPE_MESH_POINT)
1904 ath5k_beacon_update(ah->hw, vif);
1905
1906 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1907
1908 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1909 ath5k_hw_start_tx_dma(ah, ah->bhalq);
1910 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1911 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1912
1913 skb = ieee80211_get_buffered_bc(ah->hw, vif);
1914 while (skb) {
1915 ath5k_tx_queue(ah->hw, skb, ah->cabq);
1916
1917 if (ah->cabq->txq_len >= ah->cabq->txq_max)
1918 break;
1919
1920 skb = ieee80211_get_buffered_bc(ah->hw, vif);
1921 }
1922
1923 ah->bsent++;
1924 }
1925
1926 /**
1927 * ath5k_beacon_update_timers - update beacon timers
1928 *
1929 * @ah: struct ath5k_hw pointer we are operating on
1930 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1931 * beacon timer update based on the current HW TSF.
1932 *
1933 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1934 * of a received beacon or the current local hardware TSF and write it to the
1935 * beacon timer registers.
1936 *
1937 * This is called in a variety of situations, e.g. when a beacon is received,
1938 * when a TSF update has been detected, but also when an new IBSS is created or
1939 * when we otherwise know we have to update the timers, but we keep it in this
1940 * function to have it all together in one place.
1941 */
1942 void
1943 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1944 {
1945 u32 nexttbtt, intval, hw_tu, bc_tu;
1946 u64 hw_tsf;
1947
1948 intval = ah->bintval & AR5K_BEACON_PERIOD;
1949 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) {
1950 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
1951 if (intval < 15)
1952 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1953 intval);
1954 }
1955 if (WARN_ON(!intval))
1956 return;
1957
1958 /* beacon TSF converted to TU */
1959 bc_tu = TSF_TO_TU(bc_tsf);
1960
1961 /* current TSF converted to TU */
1962 hw_tsf = ath5k_hw_get_tsf64(ah);
1963 hw_tu = TSF_TO_TU(hw_tsf);
1964
1965 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1966 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1967 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1968 * configuration we need to make sure it is bigger than that. */
1969
1970 if (bc_tsf == -1) {
1971 /*
1972 * no beacons received, called internally.
1973 * just need to refresh timers based on HW TSF.
1974 */
1975 nexttbtt = roundup(hw_tu + FUDGE, intval);
1976 } else if (bc_tsf == 0) {
1977 /*
1978 * no beacon received, probably called by ath5k_reset_tsf().
1979 * reset TSF to start with 0.
1980 */
1981 nexttbtt = intval;
1982 intval |= AR5K_BEACON_RESET_TSF;
1983 } else if (bc_tsf > hw_tsf) {
1984 /*
1985 * beacon received, SW merge happened but HW TSF not yet updated.
1986 * not possible to reconfigure timers yet, but next time we
1987 * receive a beacon with the same BSSID, the hardware will
1988 * automatically update the TSF and then we need to reconfigure
1989 * the timers.
1990 */
1991 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1992 "need to wait for HW TSF sync\n");
1993 return;
1994 } else {
1995 /*
1996 * most important case for beacon synchronization between STA.
1997 *
1998 * beacon received and HW TSF has been already updated by HW.
1999 * update next TBTT based on the TSF of the beacon, but make
2000 * sure it is ahead of our local TSF timer.
2001 */
2002 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2003 }
2004 #undef FUDGE
2005
2006 ah->nexttbtt = nexttbtt;
2007
2008 intval |= AR5K_BEACON_ENA;
2009 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2010
2011 /*
2012 * debugging output last in order to preserve the time critical aspect
2013 * of this function
2014 */
2015 if (bc_tsf == -1)
2016 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2017 "reconfigured timers based on HW TSF\n");
2018 else if (bc_tsf == 0)
2019 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2020 "reset HW TSF and timers\n");
2021 else
2022 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2023 "updated timers based on beacon TSF\n");
2024
2025 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2026 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2027 (unsigned long long) bc_tsf,
2028 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2029 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2030 intval & AR5K_BEACON_PERIOD,
2031 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2032 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2033 }
2034
2035 /**
2036 * ath5k_beacon_config - Configure the beacon queues and interrupts
2037 *
2038 * @ah: struct ath5k_hw pointer we are operating on
2039 *
2040 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2041 * interrupts to detect TSF updates only.
2042 */
2043 void
2044 ath5k_beacon_config(struct ath5k_hw *ah)
2045 {
2046 unsigned long flags;
2047
2048 spin_lock_irqsave(&ah->block, flags);
2049 ah->bmisscount = 0;
2050 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2051
2052 if (ah->enable_beacon) {
2053 /*
2054 * In IBSS mode we use a self-linked tx descriptor and let the
2055 * hardware send the beacons automatically. We have to load it
2056 * only once here.
2057 * We use the SWBA interrupt only to keep track of the beacon
2058 * timers in order to detect automatic TSF updates.
2059 */
2060 ath5k_beaconq_config(ah);
2061
2062 ah->imask |= AR5K_INT_SWBA;
2063
2064 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2065 if (ath5k_hw_hasveol(ah))
2066 ath5k_beacon_send(ah);
2067 } else
2068 ath5k_beacon_update_timers(ah, -1);
2069 } else {
2070 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2071 }
2072
2073 ath5k_hw_set_imr(ah, ah->imask);
2074 mmiowb();
2075 spin_unlock_irqrestore(&ah->block, flags);
2076 }
2077
2078 static void ath5k_tasklet_beacon(unsigned long data)
2079 {
2080 struct ath5k_hw *ah = (struct ath5k_hw *) data;
2081
2082 /*
2083 * Software beacon alert--time to send a beacon.
2084 *
2085 * In IBSS mode we use this interrupt just to
2086 * keep track of the next TBTT (target beacon
2087 * transmission time) in order to detect whether
2088 * automatic TSF updates happened.
2089 */
2090 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2091 /* XXX: only if VEOL supported */
2092 u64 tsf = ath5k_hw_get_tsf64(ah);
2093 ah->nexttbtt += ah->bintval;
2094 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2095 "SWBA nexttbtt: %x hw_tu: %x "
2096 "TSF: %llx\n",
2097 ah->nexttbtt,
2098 TSF_TO_TU(tsf),
2099 (unsigned long long) tsf);
2100 } else {
2101 spin_lock(&ah->block);
2102 ath5k_beacon_send(ah);
2103 spin_unlock(&ah->block);
2104 }
2105 }
2106
2107
2108 /********************\
2109 * Interrupt handling *
2110 \********************/
2111
2112 static void
2113 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2114 {
2115 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2116 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2117 /* run ANI only when full calibration is not active */
2118 ah->ah_cal_next_ani = jiffies +
2119 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2120 tasklet_schedule(&ah->ani_tasklet);
2121
2122 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2123 ah->ah_cal_next_full = jiffies +
2124 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2125 tasklet_schedule(&ah->calib);
2126 }
2127 /* we could use SWI to generate enough interrupts to meet our
2128 * calibration interval requirements, if necessary:
2129 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2130 }
2131
2132 static void
2133 ath5k_schedule_rx(struct ath5k_hw *ah)
2134 {
2135 ah->rx_pending = true;
2136 tasklet_schedule(&ah->rxtq);
2137 }
2138
2139 static void
2140 ath5k_schedule_tx(struct ath5k_hw *ah)
2141 {
2142 ah->tx_pending = true;
2143 tasklet_schedule(&ah->txtq);
2144 }
2145
2146 static irqreturn_t
2147 ath5k_intr(int irq, void *dev_id)
2148 {
2149 struct ath5k_hw *ah = dev_id;
2150 enum ath5k_int status;
2151 unsigned int counter = 1000;
2152
2153 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2154 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2155 !ath5k_hw_is_intr_pending(ah))))
2156 return IRQ_NONE;
2157
2158 do {
2159 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2160 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2161 status, ah->imask);
2162 if (unlikely(status & AR5K_INT_FATAL)) {
2163 /*
2164 * Fatal errors are unrecoverable.
2165 * Typically these are caused by DMA errors.
2166 */
2167 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2168 "fatal int, resetting\n");
2169 ieee80211_queue_work(ah->hw, &ah->reset_work);
2170 } else if (unlikely(status & AR5K_INT_RXORN)) {
2171 /*
2172 * Receive buffers are full. Either the bus is busy or
2173 * the CPU is not fast enough to process all received
2174 * frames.
2175 * Older chipsets need a reset to come out of this
2176 * condition, but we treat it as RX for newer chips.
2177 * We don't know exactly which versions need a reset -
2178 * this guess is copied from the HAL.
2179 */
2180 ah->stats.rxorn_intr++;
2181 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2182 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2183 "rx overrun, resetting\n");
2184 ieee80211_queue_work(ah->hw, &ah->reset_work);
2185 } else
2186 ath5k_schedule_rx(ah);
2187 } else {
2188 if (status & AR5K_INT_SWBA)
2189 tasklet_hi_schedule(&ah->beacontq);
2190
2191 if (status & AR5K_INT_RXEOL) {
2192 /*
2193 * NB: the hardware should re-read the link when
2194 * RXE bit is written, but it doesn't work at
2195 * least on older hardware revs.
2196 */
2197 ah->stats.rxeol_intr++;
2198 }
2199 if (status & AR5K_INT_TXURN) {
2200 /* bump tx trigger level */
2201 ath5k_hw_update_tx_triglevel(ah, true);
2202 }
2203 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2204 ath5k_schedule_rx(ah);
2205 if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2206 | AR5K_INT_TXERR | AR5K_INT_TXEOL))
2207 ath5k_schedule_tx(ah);
2208 if (status & AR5K_INT_BMISS) {
2209 /* TODO */
2210 }
2211 if (status & AR5K_INT_MIB) {
2212 ah->stats.mib_intr++;
2213 ath5k_hw_update_mib_counters(ah);
2214 ath5k_ani_mib_intr(ah);
2215 }
2216 if (status & AR5K_INT_GPIO)
2217 tasklet_schedule(&ah->rf_kill.toggleq);
2218
2219 }
2220
2221 if (ath5k_get_bus_type(ah) == ATH_AHB)
2222 break;
2223
2224 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2225
2226 if (ah->rx_pending || ah->tx_pending)
2227 ath5k_set_current_imask(ah);
2228
2229 if (unlikely(!counter))
2230 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2231
2232 ath5k_intr_calibration_poll(ah);
2233
2234 return IRQ_HANDLED;
2235 }
2236
2237 /*
2238 * Periodically recalibrate the PHY to account
2239 * for temperature/environment changes.
2240 */
2241 static void
2242 ath5k_tasklet_calibrate(unsigned long data)
2243 {
2244 struct ath5k_hw *ah = (void *)data;
2245
2246 /* Only full calibration for now */
2247 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2248
2249 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2250 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2251 ah->curchan->hw_value);
2252
2253 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2254 /*
2255 * Rfgain is out of bounds, reset the chip
2256 * to load new gain values.
2257 */
2258 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2259 ieee80211_queue_work(ah->hw, &ah->reset_work);
2260 }
2261 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2262 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2263 ieee80211_frequency_to_channel(
2264 ah->curchan->center_freq));
2265
2266 /* Noise floor calibration interrupts rx/tx path while I/Q calibration
2267 * doesn't.
2268 * TODO: We should stop TX here, so that it doesn't interfere.
2269 * Note that stopping the queues is not enough to stop TX! */
2270 if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2271 ah->ah_cal_next_nf = jiffies +
2272 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2273 ath5k_hw_update_noise_floor(ah);
2274 }
2275
2276 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2277 }
2278
2279
2280 static void
2281 ath5k_tasklet_ani(unsigned long data)
2282 {
2283 struct ath5k_hw *ah = (void *)data;
2284
2285 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2286 ath5k_ani_calibration(ah);
2287 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2288 }
2289
2290
2291 static void
2292 ath5k_tx_complete_poll_work(struct work_struct *work)
2293 {
2294 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2295 tx_complete_work.work);
2296 struct ath5k_txq *txq;
2297 int i;
2298 bool needreset = false;
2299
2300 mutex_lock(&ah->lock);
2301
2302 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2303 if (ah->txqs[i].setup) {
2304 txq = &ah->txqs[i];
2305 spin_lock_bh(&txq->lock);
2306 if (txq->txq_len > 1) {
2307 if (txq->txq_poll_mark) {
2308 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2309 "TX queue stuck %d\n",
2310 txq->qnum);
2311 needreset = true;
2312 txq->txq_stuck++;
2313 spin_unlock_bh(&txq->lock);
2314 break;
2315 } else {
2316 txq->txq_poll_mark = true;
2317 }
2318 }
2319 spin_unlock_bh(&txq->lock);
2320 }
2321 }
2322
2323 if (needreset) {
2324 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2325 "TX queues stuck, resetting\n");
2326 ath5k_reset(ah, NULL, true);
2327 }
2328
2329 mutex_unlock(&ah->lock);
2330
2331 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2332 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2333 }
2334
2335
2336 /*************************\
2337 * Initialization routines *
2338 \*************************/
2339
2340 int __devinit
2341 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2342 {
2343 struct ieee80211_hw *hw = ah->hw;
2344 struct ath_common *common;
2345 int ret;
2346 int csz;
2347
2348 /* Initialize driver private data */
2349 SET_IEEE80211_DEV(hw, ah->dev);
2350 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2351 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2352 IEEE80211_HW_SIGNAL_DBM |
2353 IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2354
2355 hw->wiphy->interface_modes =
2356 BIT(NL80211_IFTYPE_AP) |
2357 BIT(NL80211_IFTYPE_STATION) |
2358 BIT(NL80211_IFTYPE_ADHOC) |
2359 BIT(NL80211_IFTYPE_MESH_POINT);
2360
2361 /* both antennas can be configured as RX or TX */
2362 hw->wiphy->available_antennas_tx = 0x3;
2363 hw->wiphy->available_antennas_rx = 0x3;
2364
2365 hw->extra_tx_headroom = 2;
2366 hw->channel_change_time = 5000;
2367
2368 /*
2369 * Mark the device as detached to avoid processing
2370 * interrupts until setup is complete.
2371 */
2372 __set_bit(ATH_STAT_INVALID, ah->status);
2373
2374 ah->opmode = NL80211_IFTYPE_STATION;
2375 ah->bintval = 1000;
2376 mutex_init(&ah->lock);
2377 spin_lock_init(&ah->rxbuflock);
2378 spin_lock_init(&ah->txbuflock);
2379 spin_lock_init(&ah->block);
2380 spin_lock_init(&ah->irqlock);
2381
2382 /* Setup interrupt handler */
2383 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2384 if (ret) {
2385 ATH5K_ERR(ah, "request_irq failed\n");
2386 goto err;
2387 }
2388
2389 common = ath5k_hw_common(ah);
2390 common->ops = &ath5k_common_ops;
2391 common->bus_ops = bus_ops;
2392 common->ah = ah;
2393 common->hw = hw;
2394 common->priv = ah;
2395 common->clockrate = 40;
2396
2397 /*
2398 * Cache line size is used to size and align various
2399 * structures used to communicate with the hardware.
2400 */
2401 ath5k_read_cachesize(common, &csz);
2402 common->cachelsz = csz << 2; /* convert to bytes */
2403
2404 spin_lock_init(&common->cc_lock);
2405
2406 /* Initialize device */
2407 ret = ath5k_hw_init(ah);
2408 if (ret)
2409 goto err_irq;
2410
2411 /* set up multi-rate retry capabilities */
2412 if (ah->ah_version == AR5K_AR5212) {
2413 hw->max_rates = 4;
2414 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2415 AR5K_INIT_RETRY_LONG);
2416 }
2417
2418 hw->vif_data_size = sizeof(struct ath5k_vif);
2419
2420 /* Finish private driver data initialization */
2421 ret = ath5k_init(hw);
2422 if (ret)
2423 goto err_ah;
2424
2425 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2426 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2427 ah->ah_mac_srev,
2428 ah->ah_phy_revision);
2429
2430 if (!ah->ah_single_chip) {
2431 /* Single chip radio (!RF5111) */
2432 if (ah->ah_radio_5ghz_revision &&
2433 !ah->ah_radio_2ghz_revision) {
2434 /* No 5GHz support -> report 2GHz radio */
2435 if (!test_bit(AR5K_MODE_11A,
2436 ah->ah_capabilities.cap_mode)) {
2437 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2438 ath5k_chip_name(AR5K_VERSION_RAD,
2439 ah->ah_radio_5ghz_revision),
2440 ah->ah_radio_5ghz_revision);
2441 /* No 2GHz support (5110 and some
2442 * 5GHz only cards) -> report 5GHz radio */
2443 } else if (!test_bit(AR5K_MODE_11B,
2444 ah->ah_capabilities.cap_mode)) {
2445 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2446 ath5k_chip_name(AR5K_VERSION_RAD,
2447 ah->ah_radio_5ghz_revision),
2448 ah->ah_radio_5ghz_revision);
2449 /* Multiband radio */
2450 } else {
2451 ATH5K_INFO(ah, "RF%s multiband radio found"
2452 " (0x%x)\n",
2453 ath5k_chip_name(AR5K_VERSION_RAD,
2454 ah->ah_radio_5ghz_revision),
2455 ah->ah_radio_5ghz_revision);
2456 }
2457 }
2458 /* Multi chip radio (RF5111 - RF2111) ->
2459 * report both 2GHz/5GHz radios */
2460 else if (ah->ah_radio_5ghz_revision &&
2461 ah->ah_radio_2ghz_revision) {
2462 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2463 ath5k_chip_name(AR5K_VERSION_RAD,
2464 ah->ah_radio_5ghz_revision),
2465 ah->ah_radio_5ghz_revision);
2466 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2467 ath5k_chip_name(AR5K_VERSION_RAD,
2468 ah->ah_radio_2ghz_revision),
2469 ah->ah_radio_2ghz_revision);
2470 }
2471 }
2472
2473 ath5k_debug_init_device(ah);
2474
2475 /* ready to process interrupts */
2476 __clear_bit(ATH_STAT_INVALID, ah->status);
2477
2478 return 0;
2479 err_ah:
2480 ath5k_hw_deinit(ah);
2481 err_irq:
2482 free_irq(ah->irq, ah);
2483 err:
2484 return ret;
2485 }
2486
2487 static int
2488 ath5k_stop_locked(struct ath5k_hw *ah)
2489 {
2490
2491 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2492 test_bit(ATH_STAT_INVALID, ah->status));
2493
2494 /*
2495 * Shutdown the hardware and driver:
2496 * stop output from above
2497 * disable interrupts
2498 * turn off timers
2499 * turn off the radio
2500 * clear transmit machinery
2501 * clear receive machinery
2502 * drain and release tx queues
2503 * reclaim beacon resources
2504 * power down hardware
2505 *
2506 * Note that some of this work is not possible if the
2507 * hardware is gone (invalid).
2508 */
2509 ieee80211_stop_queues(ah->hw);
2510
2511 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2512 ath5k_led_off(ah);
2513 ath5k_hw_set_imr(ah, 0);
2514 synchronize_irq(ah->irq);
2515 ath5k_rx_stop(ah);
2516 ath5k_hw_dma_stop(ah);
2517 ath5k_drain_tx_buffs(ah);
2518 ath5k_hw_phy_disable(ah);
2519 }
2520
2521 return 0;
2522 }
2523
2524 int ath5k_start(struct ieee80211_hw *hw)
2525 {
2526 struct ath5k_hw *ah = hw->priv;
2527 struct ath_common *common = ath5k_hw_common(ah);
2528 int ret, i;
2529
2530 mutex_lock(&ah->lock);
2531
2532 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2533
2534 /*
2535 * Stop anything previously setup. This is safe
2536 * no matter this is the first time through or not.
2537 */
2538 ath5k_stop_locked(ah);
2539
2540 /*
2541 * The basic interface to setting the hardware in a good
2542 * state is ``reset''. On return the hardware is known to
2543 * be powered up and with interrupts disabled. This must
2544 * be followed by initialization of the appropriate bits
2545 * and then setup of the interrupt mask.
2546 */
2547 ah->curchan = ah->hw->conf.channel;
2548 ah->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2549 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2550 AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2551
2552 ret = ath5k_reset(ah, NULL, false);
2553 if (ret)
2554 goto done;
2555
2556 ath5k_rfkill_hw_start(ah);
2557
2558 /*
2559 * Reset the key cache since some parts do not reset the
2560 * contents on initial power up or resume from suspend.
2561 */
2562 for (i = 0; i < common->keymax; i++)
2563 ath_hw_keyreset(common, (u16) i);
2564
2565 /* Use higher rates for acks instead of base
2566 * rate */
2567 ah->ah_ack_bitrate_high = true;
2568
2569 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2570 ah->bslot[i] = NULL;
2571
2572 ret = 0;
2573 done:
2574 mmiowb();
2575 mutex_unlock(&ah->lock);
2576
2577 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2578 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2579
2580 return ret;
2581 }
2582
2583 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2584 {
2585 ah->rx_pending = false;
2586 ah->tx_pending = false;
2587 tasklet_kill(&ah->rxtq);
2588 tasklet_kill(&ah->txtq);
2589 tasklet_kill(&ah->calib);
2590 tasklet_kill(&ah->beacontq);
2591 tasklet_kill(&ah->ani_tasklet);
2592 }
2593
2594 /*
2595 * Stop the device, grabbing the top-level lock to protect
2596 * against concurrent entry through ath5k_init (which can happen
2597 * if another thread does a system call and the thread doing the
2598 * stop is preempted).
2599 */
2600 void ath5k_stop(struct ieee80211_hw *hw)
2601 {
2602 struct ath5k_hw *ah = hw->priv;
2603 int ret;
2604
2605 mutex_lock(&ah->lock);
2606 ret = ath5k_stop_locked(ah);
2607 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2608 /*
2609 * Don't set the card in full sleep mode!
2610 *
2611 * a) When the device is in this state it must be carefully
2612 * woken up or references to registers in the PCI clock
2613 * domain may freeze the bus (and system). This varies
2614 * by chip and is mostly an issue with newer parts
2615 * (madwifi sources mentioned srev >= 0x78) that go to
2616 * sleep more quickly.
2617 *
2618 * b) On older chips full sleep results a weird behaviour
2619 * during wakeup. I tested various cards with srev < 0x78
2620 * and they don't wake up after module reload, a second
2621 * module reload is needed to bring the card up again.
2622 *
2623 * Until we figure out what's going on don't enable
2624 * full chip reset on any chip (this is what Legacy HAL
2625 * and Sam's HAL do anyway). Instead Perform a full reset
2626 * on the device (same as initial state after attach) and
2627 * leave it idle (keep MAC/BB on warm reset) */
2628 ret = ath5k_hw_on_hold(ah);
2629
2630 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2631 "putting device to sleep\n");
2632 }
2633
2634 mmiowb();
2635 mutex_unlock(&ah->lock);
2636
2637 ath5k_stop_tasklets(ah);
2638
2639 cancel_delayed_work_sync(&ah->tx_complete_work);
2640
2641 ath5k_rfkill_hw_stop(ah);
2642 }
2643
2644 /*
2645 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2646 * and change to the given channel.
2647 *
2648 * This should be called with ah->lock.
2649 */
2650 static int
2651 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2652 bool skip_pcu)
2653 {
2654 struct ath_common *common = ath5k_hw_common(ah);
2655 int ret, ani_mode;
2656 bool fast;
2657
2658 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2659
2660 ath5k_hw_set_imr(ah, 0);
2661 synchronize_irq(ah->irq);
2662 ath5k_stop_tasklets(ah);
2663
2664 /* Save ani mode and disable ANI during
2665 * reset. If we don't we might get false
2666 * PHY error interrupts. */
2667 ani_mode = ah->ani_state.ani_mode;
2668 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2669
2670 /* We are going to empty hw queues
2671 * so we should also free any remaining
2672 * tx buffers */
2673 ath5k_drain_tx_buffs(ah);
2674 if (chan)
2675 ah->curchan = chan;
2676
2677 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2678
2679 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2680 if (ret) {
2681 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2682 goto err;
2683 }
2684
2685 ret = ath5k_rx_start(ah);
2686 if (ret) {
2687 ATH5K_ERR(ah, "can't start recv logic\n");
2688 goto err;
2689 }
2690
2691 ath5k_ani_init(ah, ani_mode);
2692
2693 ah->ah_cal_next_full = jiffies + msecs_to_jiffies(100);
2694 ah->ah_cal_next_ani = jiffies;
2695 ah->ah_cal_next_nf = jiffies;
2696 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2697
2698 /* clear survey data and cycle counters */
2699 memset(&ah->survey, 0, sizeof(ah->survey));
2700 spin_lock_bh(&common->cc_lock);
2701 ath_hw_cycle_counters_update(common);
2702 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2703 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2704 spin_unlock_bh(&common->cc_lock);
2705
2706 /*
2707 * Change channels and update the h/w rate map if we're switching;
2708 * e.g. 11a to 11b/g.
2709 *
2710 * We may be doing a reset in response to an ioctl that changes the
2711 * channel so update any state that might change as a result.
2712 *
2713 * XXX needed?
2714 */
2715 /* ath5k_chan_change(ah, c); */
2716
2717 ath5k_beacon_config(ah);
2718 /* intrs are enabled by ath5k_beacon_config */
2719
2720 ieee80211_wake_queues(ah->hw);
2721
2722 return 0;
2723 err:
2724 return ret;
2725 }
2726
2727 static void ath5k_reset_work(struct work_struct *work)
2728 {
2729 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2730 reset_work);
2731
2732 mutex_lock(&ah->lock);
2733 ath5k_reset(ah, NULL, true);
2734 mutex_unlock(&ah->lock);
2735 }
2736
2737 static int __devinit
2738 ath5k_init(struct ieee80211_hw *hw)
2739 {
2740
2741 struct ath5k_hw *ah = hw->priv;
2742 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2743 struct ath5k_txq *txq;
2744 u8 mac[ETH_ALEN] = {};
2745 int ret;
2746
2747
2748 /*
2749 * Check if the MAC has multi-rate retry support.
2750 * We do this by trying to setup a fake extended
2751 * descriptor. MACs that don't have support will
2752 * return false w/o doing anything. MACs that do
2753 * support it will return true w/o doing anything.
2754 */
2755 ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2756
2757 if (ret < 0)
2758 goto err;
2759 if (ret > 0)
2760 __set_bit(ATH_STAT_MRRETRY, ah->status);
2761
2762 /*
2763 * Collect the channel list. The 802.11 layer
2764 * is responsible for filtering this list based
2765 * on settings like the phy mode and regulatory
2766 * domain restrictions.
2767 */
2768 ret = ath5k_setup_bands(hw);
2769 if (ret) {
2770 ATH5K_ERR(ah, "can't get channels\n");
2771 goto err;
2772 }
2773
2774 /*
2775 * Allocate tx+rx descriptors and populate the lists.
2776 */
2777 ret = ath5k_desc_alloc(ah);
2778 if (ret) {
2779 ATH5K_ERR(ah, "can't allocate descriptors\n");
2780 goto err;
2781 }
2782
2783 /*
2784 * Allocate hardware transmit queues: one queue for
2785 * beacon frames and one data queue for each QoS
2786 * priority. Note that hw functions handle resetting
2787 * these queues at the needed time.
2788 */
2789 ret = ath5k_beaconq_setup(ah);
2790 if (ret < 0) {
2791 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2792 goto err_desc;
2793 }
2794 ah->bhalq = ret;
2795 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2796 if (IS_ERR(ah->cabq)) {
2797 ATH5K_ERR(ah, "can't setup cab queue\n");
2798 ret = PTR_ERR(ah->cabq);
2799 goto err_bhal;
2800 }
2801
2802 /* 5211 and 5212 usually support 10 queues but we better rely on the
2803 * capability information */
2804 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2805 /* This order matches mac80211's queue priority, so we can
2806 * directly use the mac80211 queue number without any mapping */
2807 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2808 if (IS_ERR(txq)) {
2809 ATH5K_ERR(ah, "can't setup xmit queue\n");
2810 ret = PTR_ERR(txq);
2811 goto err_queues;
2812 }
2813 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2814 if (IS_ERR(txq)) {
2815 ATH5K_ERR(ah, "can't setup xmit queue\n");
2816 ret = PTR_ERR(txq);
2817 goto err_queues;
2818 }
2819 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2820 if (IS_ERR(txq)) {
2821 ATH5K_ERR(ah, "can't setup xmit queue\n");
2822 ret = PTR_ERR(txq);
2823 goto err_queues;
2824 }
2825 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2826 if (IS_ERR(txq)) {
2827 ATH5K_ERR(ah, "can't setup xmit queue\n");
2828 ret = PTR_ERR(txq);
2829 goto err_queues;
2830 }
2831 hw->queues = 4;
2832 } else {
2833 /* older hardware (5210) can only support one data queue */
2834 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2835 if (IS_ERR(txq)) {
2836 ATH5K_ERR(ah, "can't setup xmit queue\n");
2837 ret = PTR_ERR(txq);
2838 goto err_queues;
2839 }
2840 hw->queues = 1;
2841 }
2842
2843 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2844 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2845 tasklet_init(&ah->calib, ath5k_tasklet_calibrate, (unsigned long)ah);
2846 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2847 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2848
2849 INIT_WORK(&ah->reset_work, ath5k_reset_work);
2850 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2851
2852 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2853 if (ret) {
2854 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2855 goto err_queues;
2856 }
2857
2858 SET_IEEE80211_PERM_ADDR(hw, mac);
2859 /* All MAC address bits matter for ACKs */
2860 ath5k_update_bssid_mask_and_opmode(ah, NULL);
2861
2862 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2863 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2864 if (ret) {
2865 ATH5K_ERR(ah, "can't initialize regulatory system\n");
2866 goto err_queues;
2867 }
2868
2869 ret = ieee80211_register_hw(hw);
2870 if (ret) {
2871 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2872 goto err_queues;
2873 }
2874
2875 if (!ath_is_world_regd(regulatory))
2876 regulatory_hint(hw->wiphy, regulatory->alpha2);
2877
2878 ath5k_init_leds(ah);
2879
2880 ath5k_sysfs_register(ah);
2881
2882 return 0;
2883 err_queues:
2884 ath5k_txq_release(ah);
2885 err_bhal:
2886 ath5k_hw_release_tx_queue(ah, ah->bhalq);
2887 err_desc:
2888 ath5k_desc_free(ah);
2889 err:
2890 return ret;
2891 }
2892
2893 void
2894 ath5k_deinit_ah(struct ath5k_hw *ah)
2895 {
2896 struct ieee80211_hw *hw = ah->hw;
2897
2898 /*
2899 * NB: the order of these is important:
2900 * o call the 802.11 layer before detaching ath5k_hw to
2901 * ensure callbacks into the driver to delete global
2902 * key cache entries can be handled
2903 * o reclaim the tx queue data structures after calling
2904 * the 802.11 layer as we'll get called back to reclaim
2905 * node state and potentially want to use them
2906 * o to cleanup the tx queues the hal is called, so detach
2907 * it last
2908 * XXX: ??? detach ath5k_hw ???
2909 * Other than that, it's straightforward...
2910 */
2911 ieee80211_unregister_hw(hw);
2912 ath5k_desc_free(ah);
2913 ath5k_txq_release(ah);
2914 ath5k_hw_release_tx_queue(ah, ah->bhalq);
2915 ath5k_unregister_leds(ah);
2916
2917 ath5k_sysfs_unregister(ah);
2918 /*
2919 * NB: can't reclaim these until after ieee80211_ifdetach
2920 * returns because we'll get called back to reclaim node
2921 * state and potentially want to use them.
2922 */
2923 ath5k_hw_deinit(ah);
2924 free_irq(ah->irq, ah);
2925 }
2926
2927 bool
2928 ath5k_any_vif_assoc(struct ath5k_hw *ah)
2929 {
2930 struct ath5k_vif_iter_data iter_data;
2931 iter_data.hw_macaddr = NULL;
2932 iter_data.any_assoc = false;
2933 iter_data.need_set_hw_addr = false;
2934 iter_data.found_active = true;
2935
2936 ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
2937 &iter_data);
2938 return iter_data.any_assoc;
2939 }
2940
2941 void
2942 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2943 {
2944 struct ath5k_hw *ah = hw->priv;
2945 u32 rfilt;
2946 rfilt = ath5k_hw_get_rx_filter(ah);
2947 if (enable)
2948 rfilt |= AR5K_RX_FILTER_BEACON;
2949 else
2950 rfilt &= ~AR5K_RX_FILTER_BEACON;
2951 ath5k_hw_set_rx_filter(ah, rfilt);
2952 ah->filter_flags = rfilt;
2953 }