]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath5k/base.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath5k / base.c
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
46 #include <linux/if.h>
47 #include <linux/io.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
52 #include <linux/slab.h>
53 #include <linux/etherdevice.h>
54
55 #include <net/ieee80211_radiotap.h>
56
57 #include <asm/unaligned.h>
58
59 #include "base.h"
60 #include "reg.h"
61 #include "debug.h"
62 #include "ani.h"
63
64 #define CREATE_TRACE_POINTS
65 #include "trace.h"
66
67 int ath5k_modparam_nohwcrypt;
68 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
69 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
70
71 static int modparam_all_channels;
72 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
73 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
74
75 static int modparam_fastchanswitch;
76 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
77 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
78
79
80 /* Module info */
81 MODULE_AUTHOR("Jiri Slaby");
82 MODULE_AUTHOR("Nick Kossifidis");
83 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
84 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
85 MODULE_LICENSE("Dual BSD/GPL");
86
87 static int ath5k_init(struct ieee80211_hw *hw);
88 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
89 bool skip_pcu);
90 int ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
91 void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
92
93 /* Known SREVs */
94 static const struct ath5k_srev_name srev_names[] = {
95 #ifdef CONFIG_ATHEROS_AR231X
96 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
97 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
98 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
99 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
100 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
101 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
102 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
103 #else
104 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
105 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
106 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
107 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
108 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
109 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
110 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
111 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
112 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
113 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
114 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
115 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
116 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
117 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
118 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
119 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
120 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
121 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
122 #endif
123 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
124 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
125 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
126 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
127 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
128 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
129 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
130 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
131 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
132 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
133 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
134 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
135 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
136 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
137 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
138 #ifdef CONFIG_ATHEROS_AR231X
139 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
140 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
141 #endif
142 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
143 };
144
145 static const struct ieee80211_rate ath5k_rates[] = {
146 { .bitrate = 10,
147 .hw_value = ATH5K_RATE_CODE_1M, },
148 { .bitrate = 20,
149 .hw_value = ATH5K_RATE_CODE_2M,
150 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
151 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
152 { .bitrate = 55,
153 .hw_value = ATH5K_RATE_CODE_5_5M,
154 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
155 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
156 { .bitrate = 110,
157 .hw_value = ATH5K_RATE_CODE_11M,
158 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
159 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
160 { .bitrate = 60,
161 .hw_value = ATH5K_RATE_CODE_6M,
162 .flags = 0 },
163 { .bitrate = 90,
164 .hw_value = ATH5K_RATE_CODE_9M,
165 .flags = 0 },
166 { .bitrate = 120,
167 .hw_value = ATH5K_RATE_CODE_12M,
168 .flags = 0 },
169 { .bitrate = 180,
170 .hw_value = ATH5K_RATE_CODE_18M,
171 .flags = 0 },
172 { .bitrate = 240,
173 .hw_value = ATH5K_RATE_CODE_24M,
174 .flags = 0 },
175 { .bitrate = 360,
176 .hw_value = ATH5K_RATE_CODE_36M,
177 .flags = 0 },
178 { .bitrate = 480,
179 .hw_value = ATH5K_RATE_CODE_48M,
180 .flags = 0 },
181 { .bitrate = 540,
182 .hw_value = ATH5K_RATE_CODE_54M,
183 .flags = 0 },
184 /* XR missing */
185 };
186
187 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
188 {
189 u64 tsf = ath5k_hw_get_tsf64(ah);
190
191 if ((tsf & 0x7fff) < rstamp)
192 tsf -= 0x8000;
193
194 return (tsf & ~0x7fff) | rstamp;
195 }
196
197 const char *
198 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
199 {
200 const char *name = "xxxxx";
201 unsigned int i;
202
203 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
204 if (srev_names[i].sr_type != type)
205 continue;
206
207 if ((val & 0xf0) == srev_names[i].sr_val)
208 name = srev_names[i].sr_name;
209
210 if ((val & 0xff) == srev_names[i].sr_val) {
211 name = srev_names[i].sr_name;
212 break;
213 }
214 }
215
216 return name;
217 }
218 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
219 {
220 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
221 return ath5k_hw_reg_read(ah, reg_offset);
222 }
223
224 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
225 {
226 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
227 ath5k_hw_reg_write(ah, val, reg_offset);
228 }
229
230 static const struct ath_ops ath5k_common_ops = {
231 .read = ath5k_ioread32,
232 .write = ath5k_iowrite32,
233 };
234
235 /***********************\
236 * Driver Initialization *
237 \***********************/
238
239 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
240 {
241 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
242 struct ath5k_softc *sc = hw->priv;
243 struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
244
245 return ath_reg_notifier_apply(wiphy, request, regulatory);
246 }
247
248 /********************\
249 * Channel/mode setup *
250 \********************/
251
252 /*
253 * Returns true for the channel numbers used without all_channels modparam.
254 */
255 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
256 {
257 if (band == IEEE80211_BAND_2GHZ && chan <= 14)
258 return true;
259
260 return /* UNII 1,2 */
261 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
262 /* midband */
263 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
264 /* UNII-3 */
265 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
266 /* 802.11j 5.030-5.080 GHz (20MHz) */
267 (chan == 8 || chan == 12 || chan == 16) ||
268 /* 802.11j 4.9GHz (20MHz) */
269 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
270 }
271
272 static unsigned int
273 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
274 unsigned int mode, unsigned int max)
275 {
276 unsigned int count, size, chfreq, freq, ch;
277 enum ieee80211_band band;
278
279 switch (mode) {
280 case AR5K_MODE_11A:
281 /* 1..220, but 2GHz frequencies are filtered by check_channel */
282 size = 220;
283 chfreq = CHANNEL_5GHZ;
284 band = IEEE80211_BAND_5GHZ;
285 break;
286 case AR5K_MODE_11B:
287 case AR5K_MODE_11G:
288 size = 26;
289 chfreq = CHANNEL_2GHZ;
290 band = IEEE80211_BAND_2GHZ;
291 break;
292 default:
293 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
294 return 0;
295 }
296
297 count = 0;
298 for (ch = 1; ch <= size && count < max; ch++) {
299 freq = ieee80211_channel_to_frequency(ch, band);
300
301 if (freq == 0) /* mapping failed - not a standard channel */
302 continue;
303
304 /* Check if channel is supported by the chipset */
305 if (!ath5k_channel_ok(ah, freq, chfreq))
306 continue;
307
308 if (!modparam_all_channels &&
309 !ath5k_is_standard_channel(ch, band))
310 continue;
311
312 /* Write channel info and increment counter */
313 channels[count].center_freq = freq;
314 channels[count].band = band;
315 switch (mode) {
316 case AR5K_MODE_11A:
317 case AR5K_MODE_11G:
318 channels[count].hw_value = chfreq | CHANNEL_OFDM;
319 break;
320 case AR5K_MODE_11B:
321 channels[count].hw_value = CHANNEL_B;
322 }
323
324 count++;
325 }
326
327 return count;
328 }
329
330 static void
331 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
332 {
333 u8 i;
334
335 for (i = 0; i < AR5K_MAX_RATES; i++)
336 sc->rate_idx[b->band][i] = -1;
337
338 for (i = 0; i < b->n_bitrates; i++) {
339 sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
340 if (b->bitrates[i].hw_value_short)
341 sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
342 }
343 }
344
345 static int
346 ath5k_setup_bands(struct ieee80211_hw *hw)
347 {
348 struct ath5k_softc *sc = hw->priv;
349 struct ath5k_hw *ah = sc->ah;
350 struct ieee80211_supported_band *sband;
351 int max_c, count_c = 0;
352 int i;
353
354 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
355 max_c = ARRAY_SIZE(sc->channels);
356
357 /* 2GHz band */
358 sband = &sc->sbands[IEEE80211_BAND_2GHZ];
359 sband->band = IEEE80211_BAND_2GHZ;
360 sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
361
362 if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
363 /* G mode */
364 memcpy(sband->bitrates, &ath5k_rates[0],
365 sizeof(struct ieee80211_rate) * 12);
366 sband->n_bitrates = 12;
367
368 sband->channels = sc->channels;
369 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
370 AR5K_MODE_11G, max_c);
371
372 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
373 count_c = sband->n_channels;
374 max_c -= count_c;
375 } else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
376 /* B mode */
377 memcpy(sband->bitrates, &ath5k_rates[0],
378 sizeof(struct ieee80211_rate) * 4);
379 sband->n_bitrates = 4;
380
381 /* 5211 only supports B rates and uses 4bit rate codes
382 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
383 * fix them up here:
384 */
385 if (ah->ah_version == AR5K_AR5211) {
386 for (i = 0; i < 4; i++) {
387 sband->bitrates[i].hw_value =
388 sband->bitrates[i].hw_value & 0xF;
389 sband->bitrates[i].hw_value_short =
390 sband->bitrates[i].hw_value_short & 0xF;
391 }
392 }
393
394 sband->channels = sc->channels;
395 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
396 AR5K_MODE_11B, max_c);
397
398 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
399 count_c = sband->n_channels;
400 max_c -= count_c;
401 }
402 ath5k_setup_rate_idx(sc, sband);
403
404 /* 5GHz band, A mode */
405 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
406 sband = &sc->sbands[IEEE80211_BAND_5GHZ];
407 sband->band = IEEE80211_BAND_5GHZ;
408 sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
409
410 memcpy(sband->bitrates, &ath5k_rates[4],
411 sizeof(struct ieee80211_rate) * 8);
412 sband->n_bitrates = 8;
413
414 sband->channels = &sc->channels[count_c];
415 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
416 AR5K_MODE_11A, max_c);
417
418 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
419 }
420 ath5k_setup_rate_idx(sc, sband);
421
422 ath5k_debug_dump_bands(sc);
423
424 return 0;
425 }
426
427 /*
428 * Set/change channels. We always reset the chip.
429 * To accomplish this we must first cleanup any pending DMA,
430 * then restart stuff after a la ath5k_init.
431 *
432 * Called with sc->lock.
433 */
434 int
435 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
436 {
437 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
438 "channel set, resetting (%u -> %u MHz)\n",
439 sc->curchan->center_freq, chan->center_freq);
440
441 /*
442 * To switch channels clear any pending DMA operations;
443 * wait long enough for the RX fifo to drain, reset the
444 * hardware at the new frequency, and then re-enable
445 * the relevant bits of the h/w.
446 */
447 return ath5k_reset(sc, chan, true);
448 }
449
450 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
451 {
452 struct ath5k_vif_iter_data *iter_data = data;
453 int i;
454 struct ath5k_vif *avf = (void *)vif->drv_priv;
455
456 if (iter_data->hw_macaddr)
457 for (i = 0; i < ETH_ALEN; i++)
458 iter_data->mask[i] &=
459 ~(iter_data->hw_macaddr[i] ^ mac[i]);
460
461 if (!iter_data->found_active) {
462 iter_data->found_active = true;
463 memcpy(iter_data->active_mac, mac, ETH_ALEN);
464 }
465
466 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
467 if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
468 iter_data->need_set_hw_addr = false;
469
470 if (!iter_data->any_assoc) {
471 if (avf->assoc)
472 iter_data->any_assoc = true;
473 }
474
475 /* Calculate combined mode - when APs are active, operate in AP mode.
476 * Otherwise use the mode of the new interface. This can currently
477 * only deal with combinations of APs and STAs. Only one ad-hoc
478 * interfaces is allowed.
479 */
480 if (avf->opmode == NL80211_IFTYPE_AP)
481 iter_data->opmode = NL80211_IFTYPE_AP;
482 else {
483 if (avf->opmode == NL80211_IFTYPE_STATION)
484 iter_data->n_stas++;
485 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
486 iter_data->opmode = avf->opmode;
487 }
488 }
489
490 void
491 ath5k_update_bssid_mask_and_opmode(struct ath5k_softc *sc,
492 struct ieee80211_vif *vif)
493 {
494 struct ath_common *common = ath5k_hw_common(sc->ah);
495 struct ath5k_vif_iter_data iter_data;
496 u32 rfilt;
497
498 /*
499 * Use the hardware MAC address as reference, the hardware uses it
500 * together with the BSSID mask when matching addresses.
501 */
502 iter_data.hw_macaddr = common->macaddr;
503 memset(&iter_data.mask, 0xff, ETH_ALEN);
504 iter_data.found_active = false;
505 iter_data.need_set_hw_addr = true;
506 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
507 iter_data.n_stas = 0;
508
509 if (vif)
510 ath5k_vif_iter(&iter_data, vif->addr, vif);
511
512 /* Get list of all active MAC addresses */
513 ieee80211_iterate_active_interfaces_atomic(sc->hw, ath5k_vif_iter,
514 &iter_data);
515 memcpy(sc->bssidmask, iter_data.mask, ETH_ALEN);
516
517 sc->opmode = iter_data.opmode;
518 if (sc->opmode == NL80211_IFTYPE_UNSPECIFIED)
519 /* Nothing active, default to station mode */
520 sc->opmode = NL80211_IFTYPE_STATION;
521
522 ath5k_hw_set_opmode(sc->ah, sc->opmode);
523 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
524 sc->opmode, ath_opmode_to_string(sc->opmode));
525
526 if (iter_data.need_set_hw_addr && iter_data.found_active)
527 ath5k_hw_set_lladdr(sc->ah, iter_data.active_mac);
528
529 if (ath5k_hw_hasbssidmask(sc->ah))
530 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
531
532 /* Set up RX Filter */
533 if (iter_data.n_stas > 1) {
534 /* If you have multiple STA interfaces connected to
535 * different APs, ARPs are not received (most of the time?)
536 * Enabling PROMISC appears to fix that probem.
537 */
538 sc->filter_flags |= AR5K_RX_FILTER_PROM;
539 }
540
541 rfilt = sc->filter_flags;
542 ath5k_hw_set_rx_filter(sc->ah, rfilt);
543 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
544 }
545
546 static inline int
547 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
548 {
549 int rix;
550
551 /* return base rate on errors */
552 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
553 "hw_rix out of bounds: %x\n", hw_rix))
554 return 0;
555
556 rix = sc->rate_idx[sc->curchan->band][hw_rix];
557 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
558 rix = 0;
559
560 return rix;
561 }
562
563 /***************\
564 * Buffers setup *
565 \***************/
566
567 static
568 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
569 {
570 struct ath_common *common = ath5k_hw_common(sc->ah);
571 struct sk_buff *skb;
572
573 /*
574 * Allocate buffer with headroom_needed space for the
575 * fake physical layer header at the start.
576 */
577 skb = ath_rxbuf_alloc(common,
578 common->rx_bufsize,
579 GFP_ATOMIC);
580
581 if (!skb) {
582 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
583 common->rx_bufsize);
584 return NULL;
585 }
586
587 *skb_addr = dma_map_single(sc->dev,
588 skb->data, common->rx_bufsize,
589 DMA_FROM_DEVICE);
590
591 if (unlikely(dma_mapping_error(sc->dev, *skb_addr))) {
592 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
593 dev_kfree_skb(skb);
594 return NULL;
595 }
596 return skb;
597 }
598
599 static int
600 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
601 {
602 struct ath5k_hw *ah = sc->ah;
603 struct sk_buff *skb = bf->skb;
604 struct ath5k_desc *ds;
605 int ret;
606
607 if (!skb) {
608 skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
609 if (!skb)
610 return -ENOMEM;
611 bf->skb = skb;
612 }
613
614 /*
615 * Setup descriptors. For receive we always terminate
616 * the descriptor list with a self-linked entry so we'll
617 * not get overrun under high load (as can happen with a
618 * 5212 when ANI processing enables PHY error frames).
619 *
620 * To ensure the last descriptor is self-linked we create
621 * each descriptor as self-linked and add it to the end. As
622 * each additional descriptor is added the previous self-linked
623 * entry is "fixed" naturally. This should be safe even
624 * if DMA is happening. When processing RX interrupts we
625 * never remove/process the last, self-linked, entry on the
626 * descriptor list. This ensures the hardware always has
627 * someplace to write a new frame.
628 */
629 ds = bf->desc;
630 ds->ds_link = bf->daddr; /* link to self */
631 ds->ds_data = bf->skbaddr;
632 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
633 if (ret) {
634 ATH5K_ERR(sc, "%s: could not setup RX desc\n", __func__);
635 return ret;
636 }
637
638 if (sc->rxlink != NULL)
639 *sc->rxlink = bf->daddr;
640 sc->rxlink = &ds->ds_link;
641 return 0;
642 }
643
644 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
645 {
646 struct ieee80211_hdr *hdr;
647 enum ath5k_pkt_type htype;
648 __le16 fc;
649
650 hdr = (struct ieee80211_hdr *)skb->data;
651 fc = hdr->frame_control;
652
653 if (ieee80211_is_beacon(fc))
654 htype = AR5K_PKT_TYPE_BEACON;
655 else if (ieee80211_is_probe_resp(fc))
656 htype = AR5K_PKT_TYPE_PROBE_RESP;
657 else if (ieee80211_is_atim(fc))
658 htype = AR5K_PKT_TYPE_ATIM;
659 else if (ieee80211_is_pspoll(fc))
660 htype = AR5K_PKT_TYPE_PSPOLL;
661 else
662 htype = AR5K_PKT_TYPE_NORMAL;
663
664 return htype;
665 }
666
667 static int
668 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
669 struct ath5k_txq *txq, int padsize)
670 {
671 struct ath5k_hw *ah = sc->ah;
672 struct ath5k_desc *ds = bf->desc;
673 struct sk_buff *skb = bf->skb;
674 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
675 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
676 struct ieee80211_rate *rate;
677 unsigned int mrr_rate[3], mrr_tries[3];
678 int i, ret;
679 u16 hw_rate;
680 u16 cts_rate = 0;
681 u16 duration = 0;
682 u8 rc_flags;
683
684 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
685
686 /* XXX endianness */
687 bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
688 DMA_TO_DEVICE);
689
690 rate = ieee80211_get_tx_rate(sc->hw, info);
691 if (!rate) {
692 ret = -EINVAL;
693 goto err_unmap;
694 }
695
696 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
697 flags |= AR5K_TXDESC_NOACK;
698
699 rc_flags = info->control.rates[0].flags;
700 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
701 rate->hw_value_short : rate->hw_value;
702
703 pktlen = skb->len;
704
705 /* FIXME: If we are in g mode and rate is a CCK rate
706 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
707 * from tx power (value is in dB units already) */
708 if (info->control.hw_key) {
709 keyidx = info->control.hw_key->hw_key_idx;
710 pktlen += info->control.hw_key->icv_len;
711 }
712 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
713 flags |= AR5K_TXDESC_RTSENA;
714 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
715 duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
716 info->control.vif, pktlen, info));
717 }
718 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
719 flags |= AR5K_TXDESC_CTSENA;
720 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
721 duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
722 info->control.vif, pktlen, info));
723 }
724 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
725 ieee80211_get_hdrlen_from_skb(skb), padsize,
726 get_hw_packet_type(skb),
727 (sc->power_level * 2),
728 hw_rate,
729 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
730 cts_rate, duration);
731 if (ret)
732 goto err_unmap;
733
734 memset(mrr_rate, 0, sizeof(mrr_rate));
735 memset(mrr_tries, 0, sizeof(mrr_tries));
736 for (i = 0; i < 3; i++) {
737 rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
738 if (!rate)
739 break;
740
741 mrr_rate[i] = rate->hw_value;
742 mrr_tries[i] = info->control.rates[i + 1].count;
743 }
744
745 ath5k_hw_setup_mrr_tx_desc(ah, ds,
746 mrr_rate[0], mrr_tries[0],
747 mrr_rate[1], mrr_tries[1],
748 mrr_rate[2], mrr_tries[2]);
749
750 ds->ds_link = 0;
751 ds->ds_data = bf->skbaddr;
752
753 spin_lock_bh(&txq->lock);
754 list_add_tail(&bf->list, &txq->q);
755 txq->txq_len++;
756 if (txq->link == NULL) /* is this first packet? */
757 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
758 else /* no, so only link it */
759 *txq->link = bf->daddr;
760
761 txq->link = &ds->ds_link;
762 ath5k_hw_start_tx_dma(ah, txq->qnum);
763 mmiowb();
764 spin_unlock_bh(&txq->lock);
765
766 return 0;
767 err_unmap:
768 dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
769 return ret;
770 }
771
772 /*******************\
773 * Descriptors setup *
774 \*******************/
775
776 static int
777 ath5k_desc_alloc(struct ath5k_softc *sc)
778 {
779 struct ath5k_desc *ds;
780 struct ath5k_buf *bf;
781 dma_addr_t da;
782 unsigned int i;
783 int ret;
784
785 /* allocate descriptors */
786 sc->desc_len = sizeof(struct ath5k_desc) *
787 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
788
789 sc->desc = dma_alloc_coherent(sc->dev, sc->desc_len,
790 &sc->desc_daddr, GFP_KERNEL);
791 if (sc->desc == NULL) {
792 ATH5K_ERR(sc, "can't allocate descriptors\n");
793 ret = -ENOMEM;
794 goto err;
795 }
796 ds = sc->desc;
797 da = sc->desc_daddr;
798 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
799 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
800
801 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
802 sizeof(struct ath5k_buf), GFP_KERNEL);
803 if (bf == NULL) {
804 ATH5K_ERR(sc, "can't allocate bufptr\n");
805 ret = -ENOMEM;
806 goto err_free;
807 }
808 sc->bufptr = bf;
809
810 INIT_LIST_HEAD(&sc->rxbuf);
811 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
812 bf->desc = ds;
813 bf->daddr = da;
814 list_add_tail(&bf->list, &sc->rxbuf);
815 }
816
817 INIT_LIST_HEAD(&sc->txbuf);
818 sc->txbuf_len = ATH_TXBUF;
819 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
820 da += sizeof(*ds)) {
821 bf->desc = ds;
822 bf->daddr = da;
823 list_add_tail(&bf->list, &sc->txbuf);
824 }
825
826 /* beacon buffers */
827 INIT_LIST_HEAD(&sc->bcbuf);
828 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
829 bf->desc = ds;
830 bf->daddr = da;
831 list_add_tail(&bf->list, &sc->bcbuf);
832 }
833
834 return 0;
835 err_free:
836 dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
837 err:
838 sc->desc = NULL;
839 return ret;
840 }
841
842 void
843 ath5k_txbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
844 {
845 BUG_ON(!bf);
846 if (!bf->skb)
847 return;
848 dma_unmap_single(sc->dev, bf->skbaddr, bf->skb->len,
849 DMA_TO_DEVICE);
850 dev_kfree_skb_any(bf->skb);
851 bf->skb = NULL;
852 bf->skbaddr = 0;
853 bf->desc->ds_data = 0;
854 }
855
856 void
857 ath5k_rxbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
858 {
859 struct ath5k_hw *ah = sc->ah;
860 struct ath_common *common = ath5k_hw_common(ah);
861
862 BUG_ON(!bf);
863 if (!bf->skb)
864 return;
865 dma_unmap_single(sc->dev, bf->skbaddr, common->rx_bufsize,
866 DMA_FROM_DEVICE);
867 dev_kfree_skb_any(bf->skb);
868 bf->skb = NULL;
869 bf->skbaddr = 0;
870 bf->desc->ds_data = 0;
871 }
872
873 static void
874 ath5k_desc_free(struct ath5k_softc *sc)
875 {
876 struct ath5k_buf *bf;
877
878 list_for_each_entry(bf, &sc->txbuf, list)
879 ath5k_txbuf_free_skb(sc, bf);
880 list_for_each_entry(bf, &sc->rxbuf, list)
881 ath5k_rxbuf_free_skb(sc, bf);
882 list_for_each_entry(bf, &sc->bcbuf, list)
883 ath5k_txbuf_free_skb(sc, bf);
884
885 /* Free memory associated with all descriptors */
886 dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
887 sc->desc = NULL;
888 sc->desc_daddr = 0;
889
890 kfree(sc->bufptr);
891 sc->bufptr = NULL;
892 }
893
894
895 /**************\
896 * Queues setup *
897 \**************/
898
899 static struct ath5k_txq *
900 ath5k_txq_setup(struct ath5k_softc *sc,
901 int qtype, int subtype)
902 {
903 struct ath5k_hw *ah = sc->ah;
904 struct ath5k_txq *txq;
905 struct ath5k_txq_info qi = {
906 .tqi_subtype = subtype,
907 /* XXX: default values not correct for B and XR channels,
908 * but who cares? */
909 .tqi_aifs = AR5K_TUNE_AIFS,
910 .tqi_cw_min = AR5K_TUNE_CWMIN,
911 .tqi_cw_max = AR5K_TUNE_CWMAX
912 };
913 int qnum;
914
915 /*
916 * Enable interrupts only for EOL and DESC conditions.
917 * We mark tx descriptors to receive a DESC interrupt
918 * when a tx queue gets deep; otherwise we wait for the
919 * EOL to reap descriptors. Note that this is done to
920 * reduce interrupt load and this only defers reaping
921 * descriptors, never transmitting frames. Aside from
922 * reducing interrupts this also permits more concurrency.
923 * The only potential downside is if the tx queue backs
924 * up in which case the top half of the kernel may backup
925 * due to a lack of tx descriptors.
926 */
927 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
928 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
929 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
930 if (qnum < 0) {
931 /*
932 * NB: don't print a message, this happens
933 * normally on parts with too few tx queues
934 */
935 return ERR_PTR(qnum);
936 }
937 if (qnum >= ARRAY_SIZE(sc->txqs)) {
938 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
939 qnum, ARRAY_SIZE(sc->txqs));
940 ath5k_hw_release_tx_queue(ah, qnum);
941 return ERR_PTR(-EINVAL);
942 }
943 txq = &sc->txqs[qnum];
944 if (!txq->setup) {
945 txq->qnum = qnum;
946 txq->link = NULL;
947 INIT_LIST_HEAD(&txq->q);
948 spin_lock_init(&txq->lock);
949 txq->setup = true;
950 txq->txq_len = 0;
951 txq->txq_max = ATH5K_TXQ_LEN_MAX;
952 txq->txq_poll_mark = false;
953 txq->txq_stuck = 0;
954 }
955 return &sc->txqs[qnum];
956 }
957
958 static int
959 ath5k_beaconq_setup(struct ath5k_hw *ah)
960 {
961 struct ath5k_txq_info qi = {
962 /* XXX: default values not correct for B and XR channels,
963 * but who cares? */
964 .tqi_aifs = AR5K_TUNE_AIFS,
965 .tqi_cw_min = AR5K_TUNE_CWMIN,
966 .tqi_cw_max = AR5K_TUNE_CWMAX,
967 /* NB: for dynamic turbo, don't enable any other interrupts */
968 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
969 };
970
971 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
972 }
973
974 static int
975 ath5k_beaconq_config(struct ath5k_softc *sc)
976 {
977 struct ath5k_hw *ah = sc->ah;
978 struct ath5k_txq_info qi;
979 int ret;
980
981 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
982 if (ret)
983 goto err;
984
985 if (sc->opmode == NL80211_IFTYPE_AP ||
986 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
987 /*
988 * Always burst out beacon and CAB traffic
989 * (aifs = cwmin = cwmax = 0)
990 */
991 qi.tqi_aifs = 0;
992 qi.tqi_cw_min = 0;
993 qi.tqi_cw_max = 0;
994 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
995 /*
996 * Adhoc mode; backoff between 0 and (2 * cw_min).
997 */
998 qi.tqi_aifs = 0;
999 qi.tqi_cw_min = 0;
1000 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1001 }
1002
1003 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1004 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1005 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1006
1007 ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1008 if (ret) {
1009 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1010 "hardware queue!\n", __func__);
1011 goto err;
1012 }
1013 ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
1014 if (ret)
1015 goto err;
1016
1017 /* reconfigure cabq with ready time to 80% of beacon_interval */
1018 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1019 if (ret)
1020 goto err;
1021
1022 qi.tqi_ready_time = (sc->bintval * 80) / 100;
1023 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1024 if (ret)
1025 goto err;
1026
1027 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1028 err:
1029 return ret;
1030 }
1031
1032 /**
1033 * ath5k_drain_tx_buffs - Empty tx buffers
1034 *
1035 * @sc The &struct ath5k_softc
1036 *
1037 * Empty tx buffers from all queues in preparation
1038 * of a reset or during shutdown.
1039 *
1040 * NB: this assumes output has been stopped and
1041 * we do not need to block ath5k_tx_tasklet
1042 */
1043 static void
1044 ath5k_drain_tx_buffs(struct ath5k_softc *sc)
1045 {
1046 struct ath5k_txq *txq;
1047 struct ath5k_buf *bf, *bf0;
1048 int i;
1049
1050 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
1051 if (sc->txqs[i].setup) {
1052 txq = &sc->txqs[i];
1053 spin_lock_bh(&txq->lock);
1054 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1055 ath5k_debug_printtxbuf(sc, bf);
1056
1057 ath5k_txbuf_free_skb(sc, bf);
1058
1059 spin_lock_bh(&sc->txbuflock);
1060 list_move_tail(&bf->list, &sc->txbuf);
1061 sc->txbuf_len++;
1062 txq->txq_len--;
1063 spin_unlock_bh(&sc->txbuflock);
1064 }
1065 txq->link = NULL;
1066 txq->txq_poll_mark = false;
1067 spin_unlock_bh(&txq->lock);
1068 }
1069 }
1070 }
1071
1072 static void
1073 ath5k_txq_release(struct ath5k_softc *sc)
1074 {
1075 struct ath5k_txq *txq = sc->txqs;
1076 unsigned int i;
1077
1078 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1079 if (txq->setup) {
1080 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1081 txq->setup = false;
1082 }
1083 }
1084
1085
1086 /*************\
1087 * RX Handling *
1088 \*************/
1089
1090 /*
1091 * Enable the receive h/w following a reset.
1092 */
1093 static int
1094 ath5k_rx_start(struct ath5k_softc *sc)
1095 {
1096 struct ath5k_hw *ah = sc->ah;
1097 struct ath_common *common = ath5k_hw_common(ah);
1098 struct ath5k_buf *bf;
1099 int ret;
1100
1101 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1102
1103 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1104 common->cachelsz, common->rx_bufsize);
1105
1106 spin_lock_bh(&sc->rxbuflock);
1107 sc->rxlink = NULL;
1108 list_for_each_entry(bf, &sc->rxbuf, list) {
1109 ret = ath5k_rxbuf_setup(sc, bf);
1110 if (ret != 0) {
1111 spin_unlock_bh(&sc->rxbuflock);
1112 goto err;
1113 }
1114 }
1115 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1116 ath5k_hw_set_rxdp(ah, bf->daddr);
1117 spin_unlock_bh(&sc->rxbuflock);
1118
1119 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1120 ath5k_update_bssid_mask_and_opmode(sc, NULL); /* set filters, etc. */
1121 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1122
1123 return 0;
1124 err:
1125 return ret;
1126 }
1127
1128 /*
1129 * Disable the receive logic on PCU (DRU)
1130 * In preparation for a shutdown.
1131 *
1132 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1133 * does.
1134 */
1135 static void
1136 ath5k_rx_stop(struct ath5k_softc *sc)
1137 {
1138 struct ath5k_hw *ah = sc->ah;
1139
1140 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1141 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1142
1143 ath5k_debug_printrxbuffs(sc, ah);
1144 }
1145
1146 static unsigned int
1147 ath5k_rx_decrypted(struct ath5k_softc *sc, struct sk_buff *skb,
1148 struct ath5k_rx_status *rs)
1149 {
1150 struct ath5k_hw *ah = sc->ah;
1151 struct ath_common *common = ath5k_hw_common(ah);
1152 struct ieee80211_hdr *hdr = (void *)skb->data;
1153 unsigned int keyix, hlen;
1154
1155 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1156 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1157 return RX_FLAG_DECRYPTED;
1158
1159 /* Apparently when a default key is used to decrypt the packet
1160 the hw does not set the index used to decrypt. In such cases
1161 get the index from the packet. */
1162 hlen = ieee80211_hdrlen(hdr->frame_control);
1163 if (ieee80211_has_protected(hdr->frame_control) &&
1164 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1165 skb->len >= hlen + 4) {
1166 keyix = skb->data[hlen + 3] >> 6;
1167
1168 if (test_bit(keyix, common->keymap))
1169 return RX_FLAG_DECRYPTED;
1170 }
1171
1172 return 0;
1173 }
1174
1175
1176 static void
1177 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1178 struct ieee80211_rx_status *rxs)
1179 {
1180 struct ath_common *common = ath5k_hw_common(sc->ah);
1181 u64 tsf, bc_tstamp;
1182 u32 hw_tu;
1183 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1184
1185 if (ieee80211_is_beacon(mgmt->frame_control) &&
1186 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1187 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1188 /*
1189 * Received an IBSS beacon with the same BSSID. Hardware *must*
1190 * have updated the local TSF. We have to work around various
1191 * hardware bugs, though...
1192 */
1193 tsf = ath5k_hw_get_tsf64(sc->ah);
1194 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1195 hw_tu = TSF_TO_TU(tsf);
1196
1197 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1198 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1199 (unsigned long long)bc_tstamp,
1200 (unsigned long long)rxs->mactime,
1201 (unsigned long long)(rxs->mactime - bc_tstamp),
1202 (unsigned long long)tsf);
1203
1204 /*
1205 * Sometimes the HW will give us a wrong tstamp in the rx
1206 * status, causing the timestamp extension to go wrong.
1207 * (This seems to happen especially with beacon frames bigger
1208 * than 78 byte (incl. FCS))
1209 * But we know that the receive timestamp must be later than the
1210 * timestamp of the beacon since HW must have synced to that.
1211 *
1212 * NOTE: here we assume mactime to be after the frame was
1213 * received, not like mac80211 which defines it at the start.
1214 */
1215 if (bc_tstamp > rxs->mactime) {
1216 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1217 "fixing mactime from %llx to %llx\n",
1218 (unsigned long long)rxs->mactime,
1219 (unsigned long long)tsf);
1220 rxs->mactime = tsf;
1221 }
1222
1223 /*
1224 * Local TSF might have moved higher than our beacon timers,
1225 * in that case we have to update them to continue sending
1226 * beacons. This also takes care of synchronizing beacon sending
1227 * times with other stations.
1228 */
1229 if (hw_tu >= sc->nexttbtt)
1230 ath5k_beacon_update_timers(sc, bc_tstamp);
1231
1232 /* Check if the beacon timers are still correct, because a TSF
1233 * update might have created a window between them - for a
1234 * longer description see the comment of this function: */
1235 if (!ath5k_hw_check_beacon_timers(sc->ah, sc->bintval)) {
1236 ath5k_beacon_update_timers(sc, bc_tstamp);
1237 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1238 "fixed beacon timers after beacon receive\n");
1239 }
1240 }
1241 }
1242
1243 static void
1244 ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1245 {
1246 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1247 struct ath5k_hw *ah = sc->ah;
1248 struct ath_common *common = ath5k_hw_common(ah);
1249
1250 /* only beacons from our BSSID */
1251 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1252 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1253 return;
1254
1255 ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1256
1257 /* in IBSS mode we should keep RSSI statistics per neighbour */
1258 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1259 }
1260
1261 /*
1262 * Compute padding position. skb must contain an IEEE 802.11 frame
1263 */
1264 static int ath5k_common_padpos(struct sk_buff *skb)
1265 {
1266 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1267 __le16 frame_control = hdr->frame_control;
1268 int padpos = 24;
1269
1270 if (ieee80211_has_a4(frame_control)) {
1271 padpos += ETH_ALEN;
1272 }
1273 if (ieee80211_is_data_qos(frame_control)) {
1274 padpos += IEEE80211_QOS_CTL_LEN;
1275 }
1276
1277 return padpos;
1278 }
1279
1280 /*
1281 * This function expects an 802.11 frame and returns the number of
1282 * bytes added, or -1 if we don't have enough header room.
1283 */
1284 static int ath5k_add_padding(struct sk_buff *skb)
1285 {
1286 int padpos = ath5k_common_padpos(skb);
1287 int padsize = padpos & 3;
1288
1289 if (padsize && skb->len>padpos) {
1290
1291 if (skb_headroom(skb) < padsize)
1292 return -1;
1293
1294 skb_push(skb, padsize);
1295 memmove(skb->data, skb->data+padsize, padpos);
1296 return padsize;
1297 }
1298
1299 return 0;
1300 }
1301
1302 /*
1303 * The MAC header is padded to have 32-bit boundary if the
1304 * packet payload is non-zero. The general calculation for
1305 * padsize would take into account odd header lengths:
1306 * padsize = 4 - (hdrlen & 3); however, since only
1307 * even-length headers are used, padding can only be 0 or 2
1308 * bytes and we can optimize this a bit. We must not try to
1309 * remove padding from short control frames that do not have a
1310 * payload.
1311 *
1312 * This function expects an 802.11 frame and returns the number of
1313 * bytes removed.
1314 */
1315 static int ath5k_remove_padding(struct sk_buff *skb)
1316 {
1317 int padpos = ath5k_common_padpos(skb);
1318 int padsize = padpos & 3;
1319
1320 if (padsize && skb->len>=padpos+padsize) {
1321 memmove(skb->data + padsize, skb->data, padpos);
1322 skb_pull(skb, padsize);
1323 return padsize;
1324 }
1325
1326 return 0;
1327 }
1328
1329 static void
1330 ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1331 struct ath5k_rx_status *rs)
1332 {
1333 struct ieee80211_rx_status *rxs;
1334
1335 ath5k_remove_padding(skb);
1336
1337 rxs = IEEE80211_SKB_RXCB(skb);
1338
1339 rxs->flag = 0;
1340 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1341 rxs->flag |= RX_FLAG_MMIC_ERROR;
1342
1343 /*
1344 * always extend the mac timestamp, since this information is
1345 * also needed for proper IBSS merging.
1346 *
1347 * XXX: it might be too late to do it here, since rs_tstamp is
1348 * 15bit only. that means TSF extension has to be done within
1349 * 32768usec (about 32ms). it might be necessary to move this to
1350 * the interrupt handler, like it is done in madwifi.
1351 *
1352 * Unfortunately we don't know when the hardware takes the rx
1353 * timestamp (beginning of phy frame, data frame, end of rx?).
1354 * The only thing we know is that it is hardware specific...
1355 * On AR5213 it seems the rx timestamp is at the end of the
1356 * frame, but i'm not sure.
1357 *
1358 * NOTE: mac80211 defines mactime at the beginning of the first
1359 * data symbol. Since we don't have any time references it's
1360 * impossible to comply to that. This affects IBSS merge only
1361 * right now, so it's not too bad...
1362 */
1363 rxs->mactime = ath5k_extend_tsf(sc->ah, rs->rs_tstamp);
1364 rxs->flag |= RX_FLAG_MACTIME_MPDU;
1365
1366 rxs->freq = sc->curchan->center_freq;
1367 rxs->band = sc->curchan->band;
1368
1369 rxs->signal = sc->ah->ah_noise_floor + rs->rs_rssi;
1370
1371 rxs->antenna = rs->rs_antenna;
1372
1373 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1374 sc->stats.antenna_rx[rs->rs_antenna]++;
1375 else
1376 sc->stats.antenna_rx[0]++; /* invalid */
1377
1378 rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs->rs_rate);
1379 rxs->flag |= ath5k_rx_decrypted(sc, skb, rs);
1380
1381 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1382 sc->sbands[sc->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1383 rxs->flag |= RX_FLAG_SHORTPRE;
1384
1385 trace_ath5k_rx(sc, skb);
1386
1387 ath5k_update_beacon_rssi(sc, skb, rs->rs_rssi);
1388
1389 /* check beacons in IBSS mode */
1390 if (sc->opmode == NL80211_IFTYPE_ADHOC)
1391 ath5k_check_ibss_tsf(sc, skb, rxs);
1392
1393 ieee80211_rx(sc->hw, skb);
1394 }
1395
1396 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1397 *
1398 * Check if we want to further process this frame or not. Also update
1399 * statistics. Return true if we want this frame, false if not.
1400 */
1401 static bool
1402 ath5k_receive_frame_ok(struct ath5k_softc *sc, struct ath5k_rx_status *rs)
1403 {
1404 sc->stats.rx_all_count++;
1405 sc->stats.rx_bytes_count += rs->rs_datalen;
1406
1407 if (unlikely(rs->rs_status)) {
1408 if (rs->rs_status & AR5K_RXERR_CRC)
1409 sc->stats.rxerr_crc++;
1410 if (rs->rs_status & AR5K_RXERR_FIFO)
1411 sc->stats.rxerr_fifo++;
1412 if (rs->rs_status & AR5K_RXERR_PHY) {
1413 sc->stats.rxerr_phy++;
1414 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1415 sc->stats.rxerr_phy_code[rs->rs_phyerr]++;
1416 return false;
1417 }
1418 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1419 /*
1420 * Decrypt error. If the error occurred
1421 * because there was no hardware key, then
1422 * let the frame through so the upper layers
1423 * can process it. This is necessary for 5210
1424 * parts which have no way to setup a ``clear''
1425 * key cache entry.
1426 *
1427 * XXX do key cache faulting
1428 */
1429 sc->stats.rxerr_decrypt++;
1430 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1431 !(rs->rs_status & AR5K_RXERR_CRC))
1432 return true;
1433 }
1434 if (rs->rs_status & AR5K_RXERR_MIC) {
1435 sc->stats.rxerr_mic++;
1436 return true;
1437 }
1438
1439 /* reject any frames with non-crypto errors */
1440 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1441 return false;
1442 }
1443
1444 if (unlikely(rs->rs_more)) {
1445 sc->stats.rxerr_jumbo++;
1446 return false;
1447 }
1448 return true;
1449 }
1450
1451 static void
1452 ath5k_set_current_imask(struct ath5k_softc *sc)
1453 {
1454 enum ath5k_int imask = sc->imask;
1455 unsigned long flags;
1456
1457 spin_lock_irqsave(&sc->irqlock, flags);
1458 if (sc->rx_pending)
1459 imask &= ~AR5K_INT_RX_ALL;
1460 if (sc->tx_pending)
1461 imask &= ~AR5K_INT_TX_ALL;
1462 ath5k_hw_set_imr(sc->ah, imask);
1463 spin_unlock_irqrestore(&sc->irqlock, flags);
1464 }
1465
1466 static void
1467 ath5k_tasklet_rx(unsigned long data)
1468 {
1469 struct ath5k_rx_status rs = {};
1470 struct sk_buff *skb, *next_skb;
1471 dma_addr_t next_skb_addr;
1472 struct ath5k_softc *sc = (void *)data;
1473 struct ath5k_hw *ah = sc->ah;
1474 struct ath_common *common = ath5k_hw_common(ah);
1475 struct ath5k_buf *bf;
1476 struct ath5k_desc *ds;
1477 int ret;
1478
1479 spin_lock(&sc->rxbuflock);
1480 if (list_empty(&sc->rxbuf)) {
1481 ATH5K_WARN(sc, "empty rx buf pool\n");
1482 goto unlock;
1483 }
1484 do {
1485 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1486 BUG_ON(bf->skb == NULL);
1487 skb = bf->skb;
1488 ds = bf->desc;
1489
1490 /* bail if HW is still using self-linked descriptor */
1491 if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1492 break;
1493
1494 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1495 if (unlikely(ret == -EINPROGRESS))
1496 break;
1497 else if (unlikely(ret)) {
1498 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1499 sc->stats.rxerr_proc++;
1500 break;
1501 }
1502
1503 if (ath5k_receive_frame_ok(sc, &rs)) {
1504 next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1505
1506 /*
1507 * If we can't replace bf->skb with a new skb under
1508 * memory pressure, just skip this packet
1509 */
1510 if (!next_skb)
1511 goto next;
1512
1513 dma_unmap_single(sc->dev, bf->skbaddr,
1514 common->rx_bufsize,
1515 DMA_FROM_DEVICE);
1516
1517 skb_put(skb, rs.rs_datalen);
1518
1519 ath5k_receive_frame(sc, skb, &rs);
1520
1521 bf->skb = next_skb;
1522 bf->skbaddr = next_skb_addr;
1523 }
1524 next:
1525 list_move_tail(&bf->list, &sc->rxbuf);
1526 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1527 unlock:
1528 spin_unlock(&sc->rxbuflock);
1529 sc->rx_pending = false;
1530 ath5k_set_current_imask(sc);
1531 }
1532
1533
1534 /*************\
1535 * TX Handling *
1536 \*************/
1537
1538 void
1539 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1540 struct ath5k_txq *txq)
1541 {
1542 struct ath5k_softc *sc = hw->priv;
1543 struct ath5k_buf *bf;
1544 unsigned long flags;
1545 int padsize;
1546
1547 trace_ath5k_tx(sc, skb, txq);
1548
1549 /*
1550 * The hardware expects the header padded to 4 byte boundaries.
1551 * If this is not the case, we add the padding after the header.
1552 */
1553 padsize = ath5k_add_padding(skb);
1554 if (padsize < 0) {
1555 ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
1556 " headroom to pad");
1557 goto drop_packet;
1558 }
1559
1560 if (txq->txq_len >= txq->txq_max)
1561 ieee80211_stop_queue(hw, txq->qnum);
1562
1563 spin_lock_irqsave(&sc->txbuflock, flags);
1564 if (list_empty(&sc->txbuf)) {
1565 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
1566 spin_unlock_irqrestore(&sc->txbuflock, flags);
1567 ieee80211_stop_queues(hw);
1568 goto drop_packet;
1569 }
1570 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
1571 list_del(&bf->list);
1572 sc->txbuf_len--;
1573 if (list_empty(&sc->txbuf))
1574 ieee80211_stop_queues(hw);
1575 spin_unlock_irqrestore(&sc->txbuflock, flags);
1576
1577 bf->skb = skb;
1578
1579 if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
1580 bf->skb = NULL;
1581 spin_lock_irqsave(&sc->txbuflock, flags);
1582 list_add_tail(&bf->list, &sc->txbuf);
1583 sc->txbuf_len++;
1584 spin_unlock_irqrestore(&sc->txbuflock, flags);
1585 goto drop_packet;
1586 }
1587 return;
1588
1589 drop_packet:
1590 dev_kfree_skb_any(skb);
1591 }
1592
1593 static void
1594 ath5k_tx_frame_completed(struct ath5k_softc *sc, struct sk_buff *skb,
1595 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1596 {
1597 struct ieee80211_tx_info *info;
1598 u8 tries[3];
1599 int i;
1600
1601 sc->stats.tx_all_count++;
1602 sc->stats.tx_bytes_count += skb->len;
1603 info = IEEE80211_SKB_CB(skb);
1604
1605 tries[0] = info->status.rates[0].count;
1606 tries[1] = info->status.rates[1].count;
1607 tries[2] = info->status.rates[2].count;
1608
1609 ieee80211_tx_info_clear_status(info);
1610
1611 for (i = 0; i < ts->ts_final_idx; i++) {
1612 struct ieee80211_tx_rate *r =
1613 &info->status.rates[i];
1614
1615 r->count = tries[i];
1616 }
1617
1618 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1619 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1620
1621 if (unlikely(ts->ts_status)) {
1622 sc->stats.ack_fail++;
1623 if (ts->ts_status & AR5K_TXERR_FILT) {
1624 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1625 sc->stats.txerr_filt++;
1626 }
1627 if (ts->ts_status & AR5K_TXERR_XRETRY)
1628 sc->stats.txerr_retry++;
1629 if (ts->ts_status & AR5K_TXERR_FIFO)
1630 sc->stats.txerr_fifo++;
1631 } else {
1632 info->flags |= IEEE80211_TX_STAT_ACK;
1633 info->status.ack_signal = ts->ts_rssi;
1634
1635 /* count the successful attempt as well */
1636 info->status.rates[ts->ts_final_idx].count++;
1637 }
1638
1639 /*
1640 * Remove MAC header padding before giving the frame
1641 * back to mac80211.
1642 */
1643 ath5k_remove_padding(skb);
1644
1645 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1646 sc->stats.antenna_tx[ts->ts_antenna]++;
1647 else
1648 sc->stats.antenna_tx[0]++; /* invalid */
1649
1650 trace_ath5k_tx_complete(sc, skb, txq, ts);
1651 ieee80211_tx_status(sc->hw, skb);
1652 }
1653
1654 static void
1655 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1656 {
1657 struct ath5k_tx_status ts = {};
1658 struct ath5k_buf *bf, *bf0;
1659 struct ath5k_desc *ds;
1660 struct sk_buff *skb;
1661 int ret;
1662
1663 spin_lock(&txq->lock);
1664 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1665
1666 txq->txq_poll_mark = false;
1667
1668 /* skb might already have been processed last time. */
1669 if (bf->skb != NULL) {
1670 ds = bf->desc;
1671
1672 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1673 if (unlikely(ret == -EINPROGRESS))
1674 break;
1675 else if (unlikely(ret)) {
1676 ATH5K_ERR(sc,
1677 "error %d while processing "
1678 "queue %u\n", ret, txq->qnum);
1679 break;
1680 }
1681
1682 skb = bf->skb;
1683 bf->skb = NULL;
1684
1685 dma_unmap_single(sc->dev, bf->skbaddr, skb->len,
1686 DMA_TO_DEVICE);
1687 ath5k_tx_frame_completed(sc, skb, txq, &ts);
1688 }
1689
1690 /*
1691 * It's possible that the hardware can say the buffer is
1692 * completed when it hasn't yet loaded the ds_link from
1693 * host memory and moved on.
1694 * Always keep the last descriptor to avoid HW races...
1695 */
1696 if (ath5k_hw_get_txdp(sc->ah, txq->qnum) != bf->daddr) {
1697 spin_lock(&sc->txbuflock);
1698 list_move_tail(&bf->list, &sc->txbuf);
1699 sc->txbuf_len++;
1700 txq->txq_len--;
1701 spin_unlock(&sc->txbuflock);
1702 }
1703 }
1704 spin_unlock(&txq->lock);
1705 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1706 ieee80211_wake_queue(sc->hw, txq->qnum);
1707 }
1708
1709 static void
1710 ath5k_tasklet_tx(unsigned long data)
1711 {
1712 int i;
1713 struct ath5k_softc *sc = (void *)data;
1714
1715 for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
1716 if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
1717 ath5k_tx_processq(sc, &sc->txqs[i]);
1718
1719 sc->tx_pending = false;
1720 ath5k_set_current_imask(sc);
1721 }
1722
1723
1724 /*****************\
1725 * Beacon handling *
1726 \*****************/
1727
1728 /*
1729 * Setup the beacon frame for transmit.
1730 */
1731 static int
1732 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1733 {
1734 struct sk_buff *skb = bf->skb;
1735 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1736 struct ath5k_hw *ah = sc->ah;
1737 struct ath5k_desc *ds;
1738 int ret = 0;
1739 u8 antenna;
1740 u32 flags;
1741 const int padsize = 0;
1742
1743 bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
1744 DMA_TO_DEVICE);
1745 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1746 "skbaddr %llx\n", skb, skb->data, skb->len,
1747 (unsigned long long)bf->skbaddr);
1748
1749 if (dma_mapping_error(sc->dev, bf->skbaddr)) {
1750 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1751 return -EIO;
1752 }
1753
1754 ds = bf->desc;
1755 antenna = ah->ah_tx_ant;
1756
1757 flags = AR5K_TXDESC_NOACK;
1758 if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1759 ds->ds_link = bf->daddr; /* self-linked */
1760 flags |= AR5K_TXDESC_VEOL;
1761 } else
1762 ds->ds_link = 0;
1763
1764 /*
1765 * If we use multiple antennas on AP and use
1766 * the Sectored AP scenario, switch antenna every
1767 * 4 beacons to make sure everybody hears our AP.
1768 * When a client tries to associate, hw will keep
1769 * track of the tx antenna to be used for this client
1770 * automaticaly, based on ACKed packets.
1771 *
1772 * Note: AP still listens and transmits RTS on the
1773 * default antenna which is supposed to be an omni.
1774 *
1775 * Note2: On sectored scenarios it's possible to have
1776 * multiple antennas (1 omni -- the default -- and 14
1777 * sectors), so if we choose to actually support this
1778 * mode, we need to allow the user to set how many antennas
1779 * we have and tweak the code below to send beacons
1780 * on all of them.
1781 */
1782 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1783 antenna = sc->bsent & 4 ? 2 : 1;
1784
1785
1786 /* FIXME: If we are in g mode and rate is a CCK rate
1787 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1788 * from tx power (value is in dB units already) */
1789 ds->ds_data = bf->skbaddr;
1790 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1791 ieee80211_get_hdrlen_from_skb(skb), padsize,
1792 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1793 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1794 1, AR5K_TXKEYIX_INVALID,
1795 antenna, flags, 0, 0);
1796 if (ret)
1797 goto err_unmap;
1798
1799 return 0;
1800 err_unmap:
1801 dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1802 return ret;
1803 }
1804
1805 /*
1806 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1807 * this is called only once at config_bss time, for AP we do it every
1808 * SWBA interrupt so that the TIM will reflect buffered frames.
1809 *
1810 * Called with the beacon lock.
1811 */
1812 int
1813 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1814 {
1815 int ret;
1816 struct ath5k_softc *sc = hw->priv;
1817 struct ath5k_vif *avf = (void *)vif->drv_priv;
1818 struct sk_buff *skb;
1819
1820 if (WARN_ON(!vif)) {
1821 ret = -EINVAL;
1822 goto out;
1823 }
1824
1825 skb = ieee80211_beacon_get(hw, vif);
1826
1827 if (!skb) {
1828 ret = -ENOMEM;
1829 goto out;
1830 }
1831
1832 ath5k_txbuf_free_skb(sc, avf->bbuf);
1833 avf->bbuf->skb = skb;
1834 ret = ath5k_beacon_setup(sc, avf->bbuf);
1835 if (ret)
1836 avf->bbuf->skb = NULL;
1837 out:
1838 return ret;
1839 }
1840
1841 /*
1842 * Transmit a beacon frame at SWBA. Dynamic updates to the
1843 * frame contents are done as needed and the slot time is
1844 * also adjusted based on current state.
1845 *
1846 * This is called from software irq context (beacontq tasklets)
1847 * or user context from ath5k_beacon_config.
1848 */
1849 static void
1850 ath5k_beacon_send(struct ath5k_softc *sc)
1851 {
1852 struct ath5k_hw *ah = sc->ah;
1853 struct ieee80211_vif *vif;
1854 struct ath5k_vif *avf;
1855 struct ath5k_buf *bf;
1856 struct sk_buff *skb;
1857
1858 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1859
1860 /*
1861 * Check if the previous beacon has gone out. If
1862 * not, don't don't try to post another: skip this
1863 * period and wait for the next. Missed beacons
1864 * indicate a problem and should not occur. If we
1865 * miss too many consecutive beacons reset the device.
1866 */
1867 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1868 sc->bmisscount++;
1869 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1870 "missed %u consecutive beacons\n", sc->bmisscount);
1871 if (sc->bmisscount > 10) { /* NB: 10 is a guess */
1872 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1873 "stuck beacon time (%u missed)\n",
1874 sc->bmisscount);
1875 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
1876 "stuck beacon, resetting\n");
1877 ieee80211_queue_work(sc->hw, &sc->reset_work);
1878 }
1879 return;
1880 }
1881 if (unlikely(sc->bmisscount != 0)) {
1882 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1883 "resume beacon xmit after %u misses\n",
1884 sc->bmisscount);
1885 sc->bmisscount = 0;
1886 }
1887
1888 if ((sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) ||
1889 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1890 u64 tsf = ath5k_hw_get_tsf64(ah);
1891 u32 tsftu = TSF_TO_TU(tsf);
1892 int slot = ((tsftu % sc->bintval) * ATH_BCBUF) / sc->bintval;
1893 vif = sc->bslot[(slot + 1) % ATH_BCBUF];
1894 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1895 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1896 (unsigned long long)tsf, tsftu, sc->bintval, slot, vif);
1897 } else /* only one interface */
1898 vif = sc->bslot[0];
1899
1900 if (!vif)
1901 return;
1902
1903 avf = (void *)vif->drv_priv;
1904 bf = avf->bbuf;
1905 if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1906 sc->opmode == NL80211_IFTYPE_MONITOR)) {
1907 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1908 return;
1909 }
1910
1911 /*
1912 * Stop any current dma and put the new frame on the queue.
1913 * This should never fail since we check above that no frames
1914 * are still pending on the queue.
1915 */
1916 if (unlikely(ath5k_hw_stop_beacon_queue(ah, sc->bhalq))) {
1917 ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
1918 /* NB: hw still stops DMA, so proceed */
1919 }
1920
1921 /* refresh the beacon for AP or MESH mode */
1922 if (sc->opmode == NL80211_IFTYPE_AP ||
1923 sc->opmode == NL80211_IFTYPE_MESH_POINT)
1924 ath5k_beacon_update(sc->hw, vif);
1925
1926 trace_ath5k_tx(sc, bf->skb, &sc->txqs[sc->bhalq]);
1927
1928 ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
1929 ath5k_hw_start_tx_dma(ah, sc->bhalq);
1930 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1931 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
1932
1933 skb = ieee80211_get_buffered_bc(sc->hw, vif);
1934 while (skb) {
1935 ath5k_tx_queue(sc->hw, skb, sc->cabq);
1936 skb = ieee80211_get_buffered_bc(sc->hw, vif);
1937 }
1938
1939 sc->bsent++;
1940 }
1941
1942 /**
1943 * ath5k_beacon_update_timers - update beacon timers
1944 *
1945 * @sc: struct ath5k_softc pointer we are operating on
1946 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1947 * beacon timer update based on the current HW TSF.
1948 *
1949 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1950 * of a received beacon or the current local hardware TSF and write it to the
1951 * beacon timer registers.
1952 *
1953 * This is called in a variety of situations, e.g. when a beacon is received,
1954 * when a TSF update has been detected, but also when an new IBSS is created or
1955 * when we otherwise know we have to update the timers, but we keep it in this
1956 * function to have it all together in one place.
1957 */
1958 void
1959 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
1960 {
1961 struct ath5k_hw *ah = sc->ah;
1962 u32 nexttbtt, intval, hw_tu, bc_tu;
1963 u64 hw_tsf;
1964
1965 intval = sc->bintval & AR5K_BEACON_PERIOD;
1966 if (sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) {
1967 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
1968 if (intval < 15)
1969 ATH5K_WARN(sc, "intval %u is too low, min 15\n",
1970 intval);
1971 }
1972 if (WARN_ON(!intval))
1973 return;
1974
1975 /* beacon TSF converted to TU */
1976 bc_tu = TSF_TO_TU(bc_tsf);
1977
1978 /* current TSF converted to TU */
1979 hw_tsf = ath5k_hw_get_tsf64(ah);
1980 hw_tu = TSF_TO_TU(hw_tsf);
1981
1982 #define FUDGE AR5K_TUNE_SW_BEACON_RESP + 3
1983 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1984 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1985 * configuration we need to make sure it is bigger than that. */
1986
1987 if (bc_tsf == -1) {
1988 /*
1989 * no beacons received, called internally.
1990 * just need to refresh timers based on HW TSF.
1991 */
1992 nexttbtt = roundup(hw_tu + FUDGE, intval);
1993 } else if (bc_tsf == 0) {
1994 /*
1995 * no beacon received, probably called by ath5k_reset_tsf().
1996 * reset TSF to start with 0.
1997 */
1998 nexttbtt = intval;
1999 intval |= AR5K_BEACON_RESET_TSF;
2000 } else if (bc_tsf > hw_tsf) {
2001 /*
2002 * beacon received, SW merge happened but HW TSF not yet updated.
2003 * not possible to reconfigure timers yet, but next time we
2004 * receive a beacon with the same BSSID, the hardware will
2005 * automatically update the TSF and then we need to reconfigure
2006 * the timers.
2007 */
2008 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2009 "need to wait for HW TSF sync\n");
2010 return;
2011 } else {
2012 /*
2013 * most important case for beacon synchronization between STA.
2014 *
2015 * beacon received and HW TSF has been already updated by HW.
2016 * update next TBTT based on the TSF of the beacon, but make
2017 * sure it is ahead of our local TSF timer.
2018 */
2019 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2020 }
2021 #undef FUDGE
2022
2023 sc->nexttbtt = nexttbtt;
2024
2025 intval |= AR5K_BEACON_ENA;
2026 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2027
2028 /*
2029 * debugging output last in order to preserve the time critical aspect
2030 * of this function
2031 */
2032 if (bc_tsf == -1)
2033 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2034 "reconfigured timers based on HW TSF\n");
2035 else if (bc_tsf == 0)
2036 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2037 "reset HW TSF and timers\n");
2038 else
2039 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2040 "updated timers based on beacon TSF\n");
2041
2042 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2043 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2044 (unsigned long long) bc_tsf,
2045 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2046 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2047 intval & AR5K_BEACON_PERIOD,
2048 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2049 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2050 }
2051
2052 /**
2053 * ath5k_beacon_config - Configure the beacon queues and interrupts
2054 *
2055 * @sc: struct ath5k_softc pointer we are operating on
2056 *
2057 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2058 * interrupts to detect TSF updates only.
2059 */
2060 void
2061 ath5k_beacon_config(struct ath5k_softc *sc)
2062 {
2063 struct ath5k_hw *ah = sc->ah;
2064 unsigned long flags;
2065
2066 spin_lock_irqsave(&sc->block, flags);
2067 sc->bmisscount = 0;
2068 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2069
2070 if (sc->enable_beacon) {
2071 /*
2072 * In IBSS mode we use a self-linked tx descriptor and let the
2073 * hardware send the beacons automatically. We have to load it
2074 * only once here.
2075 * We use the SWBA interrupt only to keep track of the beacon
2076 * timers in order to detect automatic TSF updates.
2077 */
2078 ath5k_beaconq_config(sc);
2079
2080 sc->imask |= AR5K_INT_SWBA;
2081
2082 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2083 if (ath5k_hw_hasveol(ah))
2084 ath5k_beacon_send(sc);
2085 } else
2086 ath5k_beacon_update_timers(sc, -1);
2087 } else {
2088 ath5k_hw_stop_beacon_queue(sc->ah, sc->bhalq);
2089 }
2090
2091 ath5k_hw_set_imr(ah, sc->imask);
2092 mmiowb();
2093 spin_unlock_irqrestore(&sc->block, flags);
2094 }
2095
2096 static void ath5k_tasklet_beacon(unsigned long data)
2097 {
2098 struct ath5k_softc *sc = (struct ath5k_softc *) data;
2099
2100 /*
2101 * Software beacon alert--time to send a beacon.
2102 *
2103 * In IBSS mode we use this interrupt just to
2104 * keep track of the next TBTT (target beacon
2105 * transmission time) in order to detect wether
2106 * automatic TSF updates happened.
2107 */
2108 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2109 /* XXX: only if VEOL suppported */
2110 u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2111 sc->nexttbtt += sc->bintval;
2112 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2113 "SWBA nexttbtt: %x hw_tu: %x "
2114 "TSF: %llx\n",
2115 sc->nexttbtt,
2116 TSF_TO_TU(tsf),
2117 (unsigned long long) tsf);
2118 } else {
2119 spin_lock(&sc->block);
2120 ath5k_beacon_send(sc);
2121 spin_unlock(&sc->block);
2122 }
2123 }
2124
2125
2126 /********************\
2127 * Interrupt handling *
2128 \********************/
2129
2130 static void
2131 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2132 {
2133 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2134 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2135 /* run ANI only when full calibration is not active */
2136 ah->ah_cal_next_ani = jiffies +
2137 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2138 tasklet_schedule(&ah->ah_sc->ani_tasklet);
2139
2140 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2141 ah->ah_cal_next_full = jiffies +
2142 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2143 tasklet_schedule(&ah->ah_sc->calib);
2144 }
2145 /* we could use SWI to generate enough interrupts to meet our
2146 * calibration interval requirements, if necessary:
2147 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2148 }
2149
2150 static void
2151 ath5k_schedule_rx(struct ath5k_softc *sc)
2152 {
2153 sc->rx_pending = true;
2154 tasklet_schedule(&sc->rxtq);
2155 }
2156
2157 static void
2158 ath5k_schedule_tx(struct ath5k_softc *sc)
2159 {
2160 sc->tx_pending = true;
2161 tasklet_schedule(&sc->txtq);
2162 }
2163
2164 irqreturn_t
2165 ath5k_intr(int irq, void *dev_id)
2166 {
2167 struct ath5k_softc *sc = dev_id;
2168 struct ath5k_hw *ah = sc->ah;
2169 enum ath5k_int status;
2170 unsigned int counter = 1000;
2171
2172 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2173 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2174 !ath5k_hw_is_intr_pending(ah))))
2175 return IRQ_NONE;
2176
2177 do {
2178 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2179 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2180 status, sc->imask);
2181 if (unlikely(status & AR5K_INT_FATAL)) {
2182 /*
2183 * Fatal errors are unrecoverable.
2184 * Typically these are caused by DMA errors.
2185 */
2186 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2187 "fatal int, resetting\n");
2188 ieee80211_queue_work(sc->hw, &sc->reset_work);
2189 } else if (unlikely(status & AR5K_INT_RXORN)) {
2190 /*
2191 * Receive buffers are full. Either the bus is busy or
2192 * the CPU is not fast enough to process all received
2193 * frames.
2194 * Older chipsets need a reset to come out of this
2195 * condition, but we treat it as RX for newer chips.
2196 * We don't know exactly which versions need a reset -
2197 * this guess is copied from the HAL.
2198 */
2199 sc->stats.rxorn_intr++;
2200 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2201 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2202 "rx overrun, resetting\n");
2203 ieee80211_queue_work(sc->hw, &sc->reset_work);
2204 }
2205 else
2206 ath5k_schedule_rx(sc);
2207 } else {
2208 if (status & AR5K_INT_SWBA) {
2209 tasklet_hi_schedule(&sc->beacontq);
2210 }
2211 if (status & AR5K_INT_RXEOL) {
2212 /*
2213 * NB: the hardware should re-read the link when
2214 * RXE bit is written, but it doesn't work at
2215 * least on older hardware revs.
2216 */
2217 sc->stats.rxeol_intr++;
2218 }
2219 if (status & AR5K_INT_TXURN) {
2220 /* bump tx trigger level */
2221 ath5k_hw_update_tx_triglevel(ah, true);
2222 }
2223 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2224 ath5k_schedule_rx(sc);
2225 if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2226 | AR5K_INT_TXERR | AR5K_INT_TXEOL))
2227 ath5k_schedule_tx(sc);
2228 if (status & AR5K_INT_BMISS) {
2229 /* TODO */
2230 }
2231 if (status & AR5K_INT_MIB) {
2232 sc->stats.mib_intr++;
2233 ath5k_hw_update_mib_counters(ah);
2234 ath5k_ani_mib_intr(ah);
2235 }
2236 if (status & AR5K_INT_GPIO)
2237 tasklet_schedule(&sc->rf_kill.toggleq);
2238
2239 }
2240
2241 if (ath5k_get_bus_type(ah) == ATH_AHB)
2242 break;
2243
2244 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2245
2246 if (sc->rx_pending || sc->tx_pending)
2247 ath5k_set_current_imask(sc);
2248
2249 if (unlikely(!counter))
2250 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2251
2252 ath5k_intr_calibration_poll(ah);
2253
2254 return IRQ_HANDLED;
2255 }
2256
2257 /*
2258 * Periodically recalibrate the PHY to account
2259 * for temperature/environment changes.
2260 */
2261 static void
2262 ath5k_tasklet_calibrate(unsigned long data)
2263 {
2264 struct ath5k_softc *sc = (void *)data;
2265 struct ath5k_hw *ah = sc->ah;
2266
2267 /* Only full calibration for now */
2268 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2269
2270 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2271 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2272 sc->curchan->hw_value);
2273
2274 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2275 /*
2276 * Rfgain is out of bounds, reset the chip
2277 * to load new gain values.
2278 */
2279 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2280 ieee80211_queue_work(sc->hw, &sc->reset_work);
2281 }
2282 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2283 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2284 ieee80211_frequency_to_channel(
2285 sc->curchan->center_freq));
2286
2287 /* Noise floor calibration interrupts rx/tx path while I/Q calibration
2288 * doesn't.
2289 * TODO: We should stop TX here, so that it doesn't interfere.
2290 * Note that stopping the queues is not enough to stop TX! */
2291 if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2292 ah->ah_cal_next_nf = jiffies +
2293 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2294 ath5k_hw_update_noise_floor(ah);
2295 }
2296
2297 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2298 }
2299
2300
2301 static void
2302 ath5k_tasklet_ani(unsigned long data)
2303 {
2304 struct ath5k_softc *sc = (void *)data;
2305 struct ath5k_hw *ah = sc->ah;
2306
2307 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2308 ath5k_ani_calibration(ah);
2309 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2310 }
2311
2312
2313 static void
2314 ath5k_tx_complete_poll_work(struct work_struct *work)
2315 {
2316 struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2317 tx_complete_work.work);
2318 struct ath5k_txq *txq;
2319 int i;
2320 bool needreset = false;
2321
2322 mutex_lock(&sc->lock);
2323
2324 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
2325 if (sc->txqs[i].setup) {
2326 txq = &sc->txqs[i];
2327 spin_lock_bh(&txq->lock);
2328 if (txq->txq_len > 1) {
2329 if (txq->txq_poll_mark) {
2330 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT,
2331 "TX queue stuck %d\n",
2332 txq->qnum);
2333 needreset = true;
2334 txq->txq_stuck++;
2335 spin_unlock_bh(&txq->lock);
2336 break;
2337 } else {
2338 txq->txq_poll_mark = true;
2339 }
2340 }
2341 spin_unlock_bh(&txq->lock);
2342 }
2343 }
2344
2345 if (needreset) {
2346 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2347 "TX queues stuck, resetting\n");
2348 ath5k_reset(sc, NULL, true);
2349 }
2350
2351 mutex_unlock(&sc->lock);
2352
2353 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2354 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2355 }
2356
2357
2358 /*************************\
2359 * Initialization routines *
2360 \*************************/
2361
2362 int
2363 ath5k_init_softc(struct ath5k_softc *sc, const struct ath_bus_ops *bus_ops)
2364 {
2365 struct ieee80211_hw *hw = sc->hw;
2366 struct ath_common *common;
2367 int ret;
2368 int csz;
2369
2370 /* Initialize driver private data */
2371 SET_IEEE80211_DEV(hw, sc->dev);
2372 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2373 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2374 IEEE80211_HW_SIGNAL_DBM |
2375 IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2376
2377 hw->wiphy->interface_modes =
2378 BIT(NL80211_IFTYPE_AP) |
2379 BIT(NL80211_IFTYPE_STATION) |
2380 BIT(NL80211_IFTYPE_ADHOC) |
2381 BIT(NL80211_IFTYPE_MESH_POINT);
2382
2383 /* both antennas can be configured as RX or TX */
2384 hw->wiphy->available_antennas_tx = 0x3;
2385 hw->wiphy->available_antennas_rx = 0x3;
2386
2387 hw->extra_tx_headroom = 2;
2388 hw->channel_change_time = 5000;
2389
2390 /*
2391 * Mark the device as detached to avoid processing
2392 * interrupts until setup is complete.
2393 */
2394 __set_bit(ATH_STAT_INVALID, sc->status);
2395
2396 sc->opmode = NL80211_IFTYPE_STATION;
2397 sc->bintval = 1000;
2398 mutex_init(&sc->lock);
2399 spin_lock_init(&sc->rxbuflock);
2400 spin_lock_init(&sc->txbuflock);
2401 spin_lock_init(&sc->block);
2402 spin_lock_init(&sc->irqlock);
2403
2404 /* Setup interrupt handler */
2405 ret = request_irq(sc->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
2406 if (ret) {
2407 ATH5K_ERR(sc, "request_irq failed\n");
2408 goto err;
2409 }
2410
2411 /* If we passed the test, malloc an ath5k_hw struct */
2412 sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
2413 if (!sc->ah) {
2414 ret = -ENOMEM;
2415 ATH5K_ERR(sc, "out of memory\n");
2416 goto err_irq;
2417 }
2418
2419 sc->ah->ah_sc = sc;
2420 sc->ah->ah_iobase = sc->iobase;
2421 common = ath5k_hw_common(sc->ah);
2422 common->ops = &ath5k_common_ops;
2423 common->bus_ops = bus_ops;
2424 common->ah = sc->ah;
2425 common->hw = hw;
2426 common->priv = sc;
2427
2428 /*
2429 * Cache line size is used to size and align various
2430 * structures used to communicate with the hardware.
2431 */
2432 ath5k_read_cachesize(common, &csz);
2433 common->cachelsz = csz << 2; /* convert to bytes */
2434
2435 spin_lock_init(&common->cc_lock);
2436
2437 /* Initialize device */
2438 ret = ath5k_hw_init(sc);
2439 if (ret)
2440 goto err_free_ah;
2441
2442 /* set up multi-rate retry capabilities */
2443 if (sc->ah->ah_version == AR5K_AR5212) {
2444 hw->max_rates = 4;
2445 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2446 AR5K_INIT_RETRY_LONG);
2447 }
2448
2449 hw->vif_data_size = sizeof(struct ath5k_vif);
2450
2451 /* Finish private driver data initialization */
2452 ret = ath5k_init(hw);
2453 if (ret)
2454 goto err_ah;
2455
2456 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2457 ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
2458 sc->ah->ah_mac_srev,
2459 sc->ah->ah_phy_revision);
2460
2461 if (!sc->ah->ah_single_chip) {
2462 /* Single chip radio (!RF5111) */
2463 if (sc->ah->ah_radio_5ghz_revision &&
2464 !sc->ah->ah_radio_2ghz_revision) {
2465 /* No 5GHz support -> report 2GHz radio */
2466 if (!test_bit(AR5K_MODE_11A,
2467 sc->ah->ah_capabilities.cap_mode)) {
2468 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2469 ath5k_chip_name(AR5K_VERSION_RAD,
2470 sc->ah->ah_radio_5ghz_revision),
2471 sc->ah->ah_radio_5ghz_revision);
2472 /* No 2GHz support (5110 and some
2473 * 5Ghz only cards) -> report 5Ghz radio */
2474 } else if (!test_bit(AR5K_MODE_11B,
2475 sc->ah->ah_capabilities.cap_mode)) {
2476 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2477 ath5k_chip_name(AR5K_VERSION_RAD,
2478 sc->ah->ah_radio_5ghz_revision),
2479 sc->ah->ah_radio_5ghz_revision);
2480 /* Multiband radio */
2481 } else {
2482 ATH5K_INFO(sc, "RF%s multiband radio found"
2483 " (0x%x)\n",
2484 ath5k_chip_name(AR5K_VERSION_RAD,
2485 sc->ah->ah_radio_5ghz_revision),
2486 sc->ah->ah_radio_5ghz_revision);
2487 }
2488 }
2489 /* Multi chip radio (RF5111 - RF2111) ->
2490 * report both 2GHz/5GHz radios */
2491 else if (sc->ah->ah_radio_5ghz_revision &&
2492 sc->ah->ah_radio_2ghz_revision){
2493 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2494 ath5k_chip_name(AR5K_VERSION_RAD,
2495 sc->ah->ah_radio_5ghz_revision),
2496 sc->ah->ah_radio_5ghz_revision);
2497 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2498 ath5k_chip_name(AR5K_VERSION_RAD,
2499 sc->ah->ah_radio_2ghz_revision),
2500 sc->ah->ah_radio_2ghz_revision);
2501 }
2502 }
2503
2504 ath5k_debug_init_device(sc);
2505
2506 /* ready to process interrupts */
2507 __clear_bit(ATH_STAT_INVALID, sc->status);
2508
2509 return 0;
2510 err_ah:
2511 ath5k_hw_deinit(sc->ah);
2512 err_free_ah:
2513 kfree(sc->ah);
2514 err_irq:
2515 free_irq(sc->irq, sc);
2516 err:
2517 return ret;
2518 }
2519
2520 static int
2521 ath5k_stop_locked(struct ath5k_softc *sc)
2522 {
2523 struct ath5k_hw *ah = sc->ah;
2524
2525 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2526 test_bit(ATH_STAT_INVALID, sc->status));
2527
2528 /*
2529 * Shutdown the hardware and driver:
2530 * stop output from above
2531 * disable interrupts
2532 * turn off timers
2533 * turn off the radio
2534 * clear transmit machinery
2535 * clear receive machinery
2536 * drain and release tx queues
2537 * reclaim beacon resources
2538 * power down hardware
2539 *
2540 * Note that some of this work is not possible if the
2541 * hardware is gone (invalid).
2542 */
2543 ieee80211_stop_queues(sc->hw);
2544
2545 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2546 ath5k_led_off(sc);
2547 ath5k_hw_set_imr(ah, 0);
2548 synchronize_irq(sc->irq);
2549 ath5k_rx_stop(sc);
2550 ath5k_hw_dma_stop(ah);
2551 ath5k_drain_tx_buffs(sc);
2552 ath5k_hw_phy_disable(ah);
2553 }
2554
2555 return 0;
2556 }
2557
2558 int
2559 ath5k_init_hw(struct ath5k_softc *sc)
2560 {
2561 struct ath5k_hw *ah = sc->ah;
2562 struct ath_common *common = ath5k_hw_common(ah);
2563 int ret, i;
2564
2565 mutex_lock(&sc->lock);
2566
2567 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2568
2569 /*
2570 * Stop anything previously setup. This is safe
2571 * no matter this is the first time through or not.
2572 */
2573 ath5k_stop_locked(sc);
2574
2575 /*
2576 * The basic interface to setting the hardware in a good
2577 * state is ``reset''. On return the hardware is known to
2578 * be powered up and with interrupts disabled. This must
2579 * be followed by initialization of the appropriate bits
2580 * and then setup of the interrupt mask.
2581 */
2582 sc->curchan = sc->hw->conf.channel;
2583 sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2584 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2585 AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2586
2587 ret = ath5k_reset(sc, NULL, false);
2588 if (ret)
2589 goto done;
2590
2591 ath5k_rfkill_hw_start(ah);
2592
2593 /*
2594 * Reset the key cache since some parts do not reset the
2595 * contents on initial power up or resume from suspend.
2596 */
2597 for (i = 0; i < common->keymax; i++)
2598 ath_hw_keyreset(common, (u16) i);
2599
2600 /* Use higher rates for acks instead of base
2601 * rate */
2602 ah->ah_ack_bitrate_high = true;
2603
2604 for (i = 0; i < ARRAY_SIZE(sc->bslot); i++)
2605 sc->bslot[i] = NULL;
2606
2607 ret = 0;
2608 done:
2609 mmiowb();
2610 mutex_unlock(&sc->lock);
2611
2612 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2613 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2614
2615 return ret;
2616 }
2617
2618 static void stop_tasklets(struct ath5k_softc *sc)
2619 {
2620 sc->rx_pending = false;
2621 sc->tx_pending = false;
2622 tasklet_kill(&sc->rxtq);
2623 tasklet_kill(&sc->txtq);
2624 tasklet_kill(&sc->calib);
2625 tasklet_kill(&sc->beacontq);
2626 tasklet_kill(&sc->ani_tasklet);
2627 }
2628
2629 /*
2630 * Stop the device, grabbing the top-level lock to protect
2631 * against concurrent entry through ath5k_init (which can happen
2632 * if another thread does a system call and the thread doing the
2633 * stop is preempted).
2634 */
2635 int
2636 ath5k_stop_hw(struct ath5k_softc *sc)
2637 {
2638 int ret;
2639
2640 mutex_lock(&sc->lock);
2641 ret = ath5k_stop_locked(sc);
2642 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2643 /*
2644 * Don't set the card in full sleep mode!
2645 *
2646 * a) When the device is in this state it must be carefully
2647 * woken up or references to registers in the PCI clock
2648 * domain may freeze the bus (and system). This varies
2649 * by chip and is mostly an issue with newer parts
2650 * (madwifi sources mentioned srev >= 0x78) that go to
2651 * sleep more quickly.
2652 *
2653 * b) On older chips full sleep results a weird behaviour
2654 * during wakeup. I tested various cards with srev < 0x78
2655 * and they don't wake up after module reload, a second
2656 * module reload is needed to bring the card up again.
2657 *
2658 * Until we figure out what's going on don't enable
2659 * full chip reset on any chip (this is what Legacy HAL
2660 * and Sam's HAL do anyway). Instead Perform a full reset
2661 * on the device (same as initial state after attach) and
2662 * leave it idle (keep MAC/BB on warm reset) */
2663 ret = ath5k_hw_on_hold(sc->ah);
2664
2665 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2666 "putting device to sleep\n");
2667 }
2668
2669 mmiowb();
2670 mutex_unlock(&sc->lock);
2671
2672 stop_tasklets(sc);
2673
2674 cancel_delayed_work_sync(&sc->tx_complete_work);
2675
2676 ath5k_rfkill_hw_stop(sc->ah);
2677
2678 return ret;
2679 }
2680
2681 /*
2682 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2683 * and change to the given channel.
2684 *
2685 * This should be called with sc->lock.
2686 */
2687 static int
2688 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
2689 bool skip_pcu)
2690 {
2691 struct ath5k_hw *ah = sc->ah;
2692 struct ath_common *common = ath5k_hw_common(ah);
2693 int ret, ani_mode;
2694 bool fast;
2695
2696 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2697
2698 ath5k_hw_set_imr(ah, 0);
2699 synchronize_irq(sc->irq);
2700 stop_tasklets(sc);
2701
2702 /* Save ani mode and disable ANI during
2703 * reset. If we don't we might get false
2704 * PHY error interrupts. */
2705 ani_mode = ah->ah_sc->ani_state.ani_mode;
2706 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2707
2708 /* We are going to empty hw queues
2709 * so we should also free any remaining
2710 * tx buffers */
2711 ath5k_drain_tx_buffs(sc);
2712 if (chan)
2713 sc->curchan = chan;
2714
2715 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2716
2717 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, fast,
2718 skip_pcu);
2719 if (ret) {
2720 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2721 goto err;
2722 }
2723
2724 ret = ath5k_rx_start(sc);
2725 if (ret) {
2726 ATH5K_ERR(sc, "can't start recv logic\n");
2727 goto err;
2728 }
2729
2730 ath5k_ani_init(ah, ani_mode);
2731
2732 ah->ah_cal_next_full = jiffies;
2733 ah->ah_cal_next_ani = jiffies;
2734 ah->ah_cal_next_nf = jiffies;
2735 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2736
2737 /* clear survey data and cycle counters */
2738 memset(&sc->survey, 0, sizeof(sc->survey));
2739 spin_lock_bh(&common->cc_lock);
2740 ath_hw_cycle_counters_update(common);
2741 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2742 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2743 spin_unlock_bh(&common->cc_lock);
2744
2745 /*
2746 * Change channels and update the h/w rate map if we're switching;
2747 * e.g. 11a to 11b/g.
2748 *
2749 * We may be doing a reset in response to an ioctl that changes the
2750 * channel so update any state that might change as a result.
2751 *
2752 * XXX needed?
2753 */
2754 /* ath5k_chan_change(sc, c); */
2755
2756 ath5k_beacon_config(sc);
2757 /* intrs are enabled by ath5k_beacon_config */
2758
2759 ieee80211_wake_queues(sc->hw);
2760
2761 return 0;
2762 err:
2763 return ret;
2764 }
2765
2766 static void ath5k_reset_work(struct work_struct *work)
2767 {
2768 struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2769 reset_work);
2770
2771 mutex_lock(&sc->lock);
2772 ath5k_reset(sc, NULL, true);
2773 mutex_unlock(&sc->lock);
2774 }
2775
2776 static int
2777 ath5k_init(struct ieee80211_hw *hw)
2778 {
2779
2780 struct ath5k_softc *sc = hw->priv;
2781 struct ath5k_hw *ah = sc->ah;
2782 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2783 struct ath5k_txq *txq;
2784 u8 mac[ETH_ALEN] = {};
2785 int ret;
2786
2787
2788 /*
2789 * Check if the MAC has multi-rate retry support.
2790 * We do this by trying to setup a fake extended
2791 * descriptor. MACs that don't have support will
2792 * return false w/o doing anything. MACs that do
2793 * support it will return true w/o doing anything.
2794 */
2795 ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2796
2797 if (ret < 0)
2798 goto err;
2799 if (ret > 0)
2800 __set_bit(ATH_STAT_MRRETRY, sc->status);
2801
2802 /*
2803 * Collect the channel list. The 802.11 layer
2804 * is resposible for filtering this list based
2805 * on settings like the phy mode and regulatory
2806 * domain restrictions.
2807 */
2808 ret = ath5k_setup_bands(hw);
2809 if (ret) {
2810 ATH5K_ERR(sc, "can't get channels\n");
2811 goto err;
2812 }
2813
2814 /*
2815 * Allocate tx+rx descriptors and populate the lists.
2816 */
2817 ret = ath5k_desc_alloc(sc);
2818 if (ret) {
2819 ATH5K_ERR(sc, "can't allocate descriptors\n");
2820 goto err;
2821 }
2822
2823 /*
2824 * Allocate hardware transmit queues: one queue for
2825 * beacon frames and one data queue for each QoS
2826 * priority. Note that hw functions handle resetting
2827 * these queues at the needed time.
2828 */
2829 ret = ath5k_beaconq_setup(ah);
2830 if (ret < 0) {
2831 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
2832 goto err_desc;
2833 }
2834 sc->bhalq = ret;
2835 sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
2836 if (IS_ERR(sc->cabq)) {
2837 ATH5K_ERR(sc, "can't setup cab queue\n");
2838 ret = PTR_ERR(sc->cabq);
2839 goto err_bhal;
2840 }
2841
2842 /* 5211 and 5212 usually support 10 queues but we better rely on the
2843 * capability information */
2844 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2845 /* This order matches mac80211's queue priority, so we can
2846 * directly use the mac80211 queue number without any mapping */
2847 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2848 if (IS_ERR(txq)) {
2849 ATH5K_ERR(sc, "can't setup xmit queue\n");
2850 ret = PTR_ERR(txq);
2851 goto err_queues;
2852 }
2853 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2854 if (IS_ERR(txq)) {
2855 ATH5K_ERR(sc, "can't setup xmit queue\n");
2856 ret = PTR_ERR(txq);
2857 goto err_queues;
2858 }
2859 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2860 if (IS_ERR(txq)) {
2861 ATH5K_ERR(sc, "can't setup xmit queue\n");
2862 ret = PTR_ERR(txq);
2863 goto err_queues;
2864 }
2865 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2866 if (IS_ERR(txq)) {
2867 ATH5K_ERR(sc, "can't setup xmit queue\n");
2868 ret = PTR_ERR(txq);
2869 goto err_queues;
2870 }
2871 hw->queues = 4;
2872 } else {
2873 /* older hardware (5210) can only support one data queue */
2874 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2875 if (IS_ERR(txq)) {
2876 ATH5K_ERR(sc, "can't setup xmit queue\n");
2877 ret = PTR_ERR(txq);
2878 goto err_queues;
2879 }
2880 hw->queues = 1;
2881 }
2882
2883 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
2884 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
2885 tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
2886 tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
2887 tasklet_init(&sc->ani_tasklet, ath5k_tasklet_ani, (unsigned long)sc);
2888
2889 INIT_WORK(&sc->reset_work, ath5k_reset_work);
2890 INIT_DELAYED_WORK(&sc->tx_complete_work, ath5k_tx_complete_poll_work);
2891
2892 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2893 if (ret) {
2894 ATH5K_ERR(sc, "unable to read address from EEPROM\n");
2895 goto err_queues;
2896 }
2897
2898 SET_IEEE80211_PERM_ADDR(hw, mac);
2899 memcpy(&sc->lladdr, mac, ETH_ALEN);
2900 /* All MAC address bits matter for ACKs */
2901 ath5k_update_bssid_mask_and_opmode(sc, NULL);
2902
2903 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2904 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2905 if (ret) {
2906 ATH5K_ERR(sc, "can't initialize regulatory system\n");
2907 goto err_queues;
2908 }
2909
2910 ret = ieee80211_register_hw(hw);
2911 if (ret) {
2912 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
2913 goto err_queues;
2914 }
2915
2916 if (!ath_is_world_regd(regulatory))
2917 regulatory_hint(hw->wiphy, regulatory->alpha2);
2918
2919 ath5k_init_leds(sc);
2920
2921 ath5k_sysfs_register(sc);
2922
2923 return 0;
2924 err_queues:
2925 ath5k_txq_release(sc);
2926 err_bhal:
2927 ath5k_hw_release_tx_queue(ah, sc->bhalq);
2928 err_desc:
2929 ath5k_desc_free(sc);
2930 err:
2931 return ret;
2932 }
2933
2934 void
2935 ath5k_deinit_softc(struct ath5k_softc *sc)
2936 {
2937 struct ieee80211_hw *hw = sc->hw;
2938
2939 /*
2940 * NB: the order of these is important:
2941 * o call the 802.11 layer before detaching ath5k_hw to
2942 * ensure callbacks into the driver to delete global
2943 * key cache entries can be handled
2944 * o reclaim the tx queue data structures after calling
2945 * the 802.11 layer as we'll get called back to reclaim
2946 * node state and potentially want to use them
2947 * o to cleanup the tx queues the hal is called, so detach
2948 * it last
2949 * XXX: ??? detach ath5k_hw ???
2950 * Other than that, it's straightforward...
2951 */
2952 ieee80211_unregister_hw(hw);
2953 ath5k_desc_free(sc);
2954 ath5k_txq_release(sc);
2955 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
2956 ath5k_unregister_leds(sc);
2957
2958 ath5k_sysfs_unregister(sc);
2959 /*
2960 * NB: can't reclaim these until after ieee80211_ifdetach
2961 * returns because we'll get called back to reclaim node
2962 * state and potentially want to use them.
2963 */
2964 ath5k_hw_deinit(sc->ah);
2965 free_irq(sc->irq, sc);
2966 }
2967
2968 bool
2969 ath_any_vif_assoc(struct ath5k_softc *sc)
2970 {
2971 struct ath5k_vif_iter_data iter_data;
2972 iter_data.hw_macaddr = NULL;
2973 iter_data.any_assoc = false;
2974 iter_data.need_set_hw_addr = false;
2975 iter_data.found_active = true;
2976
2977 ieee80211_iterate_active_interfaces_atomic(sc->hw, ath5k_vif_iter,
2978 &iter_data);
2979 return iter_data.any_assoc;
2980 }
2981
2982 void
2983 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2984 {
2985 struct ath5k_softc *sc = hw->priv;
2986 struct ath5k_hw *ah = sc->ah;
2987 u32 rfilt;
2988 rfilt = ath5k_hw_get_rx_filter(ah);
2989 if (enable)
2990 rfilt |= AR5K_RX_FILTER_BEACON;
2991 else
2992 rfilt &= ~AR5K_RX_FILTER_BEACON;
2993 ath5k_hw_set_rx_filter(ah, rfilt);
2994 sc->filter_flags = rfilt;
2995 }