]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath6kl/sdio.c
Merge tag 'wireless-drivers-next-for-davem-2016-11-25' of git://git.kernel.org/pub...
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath6kl / sdio.c
1 /*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/module.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/mmc/host.h>
22 #include <linux/mmc/sdio_func.h>
23 #include <linux/mmc/sdio_ids.h>
24 #include <linux/mmc/sdio.h>
25 #include <linux/mmc/sd.h>
26 #include "hif.h"
27 #include "hif-ops.h"
28 #include "target.h"
29 #include "debug.h"
30 #include "cfg80211.h"
31 #include "trace.h"
32
33 struct ath6kl_sdio {
34 struct sdio_func *func;
35
36 /* protects access to bus_req_freeq */
37 spinlock_t lock;
38
39 /* free list */
40 struct list_head bus_req_freeq;
41
42 /* available bus requests */
43 struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
44
45 struct ath6kl *ar;
46
47 u8 *dma_buffer;
48
49 /* protects access to dma_buffer */
50 struct mutex dma_buffer_mutex;
51
52 /* scatter request list head */
53 struct list_head scat_req;
54
55 atomic_t irq_handling;
56 wait_queue_head_t irq_wq;
57
58 /* protects access to scat_req */
59 spinlock_t scat_lock;
60
61 bool scatter_enabled;
62
63 bool is_disabled;
64 const struct sdio_device_id *id;
65 struct work_struct wr_async_work;
66 struct list_head wr_asyncq;
67
68 /* protects access to wr_asyncq */
69 spinlock_t wr_async_lock;
70 };
71
72 #define CMD53_ARG_READ 0
73 #define CMD53_ARG_WRITE 1
74 #define CMD53_ARG_BLOCK_BASIS 1
75 #define CMD53_ARG_FIXED_ADDRESS 0
76 #define CMD53_ARG_INCR_ADDRESS 1
77
78 static int ath6kl_sdio_config(struct ath6kl *ar);
79
80 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
81 {
82 return ar->hif_priv;
83 }
84
85 /*
86 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
87 * Most host controllers assume the buffer is DMA'able and will
88 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
89 * check fails on stack memory.
90 */
91 static inline bool buf_needs_bounce(u8 *buf)
92 {
93 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
94 }
95
96 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
97 {
98 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
99
100 /* EP1 has an extended range */
101 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
102 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
103 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
104 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
105 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
106 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
107 }
108
109 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
110 u8 mode, u8 opcode, u32 addr,
111 u16 blksz)
112 {
113 *arg = (((rw & 1) << 31) |
114 ((func & 0x7) << 28) |
115 ((mode & 1) << 27) |
116 ((opcode & 1) << 26) |
117 ((addr & 0x1FFFF) << 9) |
118 (blksz & 0x1FF));
119 }
120
121 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
122 unsigned int address,
123 unsigned char val)
124 {
125 const u8 func = 0;
126
127 *arg = ((write & 1) << 31) |
128 ((func & 0x7) << 28) |
129 ((raw & 1) << 27) |
130 (1 << 26) |
131 ((address & 0x1FFFF) << 9) |
132 (1 << 8) |
133 (val & 0xFF);
134 }
135
136 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
137 unsigned int address,
138 unsigned char byte)
139 {
140 struct mmc_command io_cmd;
141
142 memset(&io_cmd, 0, sizeof(io_cmd));
143 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
144 io_cmd.opcode = SD_IO_RW_DIRECT;
145 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
146
147 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
148 }
149
150 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
151 u8 *buf, u32 len)
152 {
153 int ret = 0;
154
155 sdio_claim_host(func);
156
157 if (request & HIF_WRITE) {
158 /* FIXME: looks like ugly workaround for something */
159 if (addr >= HIF_MBOX_BASE_ADDR &&
160 addr <= HIF_MBOX_END_ADDR)
161 addr += (HIF_MBOX_WIDTH - len);
162
163 /* FIXME: this also looks like ugly workaround */
164 if (addr == HIF_MBOX0_EXT_BASE_ADDR)
165 addr += HIF_MBOX0_EXT_WIDTH - len;
166
167 if (request & HIF_FIXED_ADDRESS)
168 ret = sdio_writesb(func, addr, buf, len);
169 else
170 ret = sdio_memcpy_toio(func, addr, buf, len);
171 } else {
172 if (request & HIF_FIXED_ADDRESS)
173 ret = sdio_readsb(func, buf, addr, len);
174 else
175 ret = sdio_memcpy_fromio(func, buf, addr, len);
176 }
177
178 sdio_release_host(func);
179
180 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
181 request & HIF_WRITE ? "wr" : "rd", addr,
182 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
183 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
184
185 trace_ath6kl_sdio(addr, request, buf, len);
186
187 return ret;
188 }
189
190 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
191 {
192 struct bus_request *bus_req;
193
194 spin_lock_bh(&ar_sdio->lock);
195
196 if (list_empty(&ar_sdio->bus_req_freeq)) {
197 spin_unlock_bh(&ar_sdio->lock);
198 return NULL;
199 }
200
201 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
202 struct bus_request, list);
203 list_del(&bus_req->list);
204
205 spin_unlock_bh(&ar_sdio->lock);
206 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
207 __func__, bus_req);
208
209 return bus_req;
210 }
211
212 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
213 struct bus_request *bus_req)
214 {
215 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
216 __func__, bus_req);
217
218 spin_lock_bh(&ar_sdio->lock);
219 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
220 spin_unlock_bh(&ar_sdio->lock);
221 }
222
223 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
224 struct mmc_data *data)
225 {
226 struct scatterlist *sg;
227 int i;
228
229 data->blksz = HIF_MBOX_BLOCK_SIZE;
230 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
231
232 ath6kl_dbg(ATH6KL_DBG_SCATTER,
233 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
234 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
235 data->blksz, data->blocks, scat_req->len,
236 scat_req->scat_entries);
237
238 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
239 MMC_DATA_READ;
240
241 /* fill SG entries */
242 sg = scat_req->sgentries;
243 sg_init_table(sg, scat_req->scat_entries);
244
245 /* assemble SG list */
246 for (i = 0; i < scat_req->scat_entries; i++, sg++) {
247 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
248 i, scat_req->scat_list[i].buf,
249 scat_req->scat_list[i].len);
250
251 sg_set_buf(sg, scat_req->scat_list[i].buf,
252 scat_req->scat_list[i].len);
253 }
254
255 /* set scatter-gather table for request */
256 data->sg = scat_req->sgentries;
257 data->sg_len = scat_req->scat_entries;
258 }
259
260 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
261 struct bus_request *req)
262 {
263 struct mmc_request mmc_req;
264 struct mmc_command cmd;
265 struct mmc_data data;
266 struct hif_scatter_req *scat_req;
267 u8 opcode, rw;
268 int status, len;
269
270 scat_req = req->scat_req;
271
272 if (scat_req->virt_scat) {
273 len = scat_req->len;
274 if (scat_req->req & HIF_BLOCK_BASIS)
275 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
276
277 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
278 scat_req->addr, scat_req->virt_dma_buf,
279 len);
280 goto scat_complete;
281 }
282
283 memset(&mmc_req, 0, sizeof(struct mmc_request));
284 memset(&cmd, 0, sizeof(struct mmc_command));
285 memset(&data, 0, sizeof(struct mmc_data));
286
287 ath6kl_sdio_setup_scat_data(scat_req, &data);
288
289 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
290 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
291
292 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
293
294 /* Fixup the address so that the last byte will fall on MBOX EOM */
295 if (scat_req->req & HIF_WRITE) {
296 if (scat_req->addr == HIF_MBOX_BASE_ADDR)
297 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
298 else
299 /* Uses extended address range */
300 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
301 }
302
303 /* set command argument */
304 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
305 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
306 data.blocks);
307
308 cmd.opcode = SD_IO_RW_EXTENDED;
309 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
310
311 mmc_req.cmd = &cmd;
312 mmc_req.data = &data;
313
314 sdio_claim_host(ar_sdio->func);
315
316 mmc_set_data_timeout(&data, ar_sdio->func->card);
317
318 trace_ath6kl_sdio_scat(scat_req->addr,
319 scat_req->req,
320 scat_req->len,
321 scat_req->scat_entries,
322 scat_req->scat_list);
323
324 /* synchronous call to process request */
325 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
326
327 sdio_release_host(ar_sdio->func);
328
329 status = cmd.error ? cmd.error : data.error;
330
331 scat_complete:
332 scat_req->status = status;
333
334 if (scat_req->status)
335 ath6kl_err("Scatter write request failed:%d\n",
336 scat_req->status);
337
338 if (scat_req->req & HIF_ASYNCHRONOUS)
339 scat_req->complete(ar_sdio->ar->htc_target, scat_req);
340
341 return status;
342 }
343
344 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
345 int n_scat_entry, int n_scat_req,
346 bool virt_scat)
347 {
348 struct hif_scatter_req *s_req;
349 struct bus_request *bus_req;
350 int i, scat_req_sz, scat_list_sz, size;
351 u8 *virt_buf;
352
353 scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item);
354 scat_req_sz = sizeof(*s_req) + scat_list_sz;
355
356 if (!virt_scat)
357 size = sizeof(struct scatterlist) * n_scat_entry;
358 else
359 size = 2 * L1_CACHE_BYTES +
360 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
361
362 for (i = 0; i < n_scat_req; i++) {
363 /* allocate the scatter request */
364 s_req = kzalloc(scat_req_sz, GFP_KERNEL);
365 if (!s_req)
366 return -ENOMEM;
367
368 if (virt_scat) {
369 virt_buf = kzalloc(size, GFP_KERNEL);
370 if (!virt_buf) {
371 kfree(s_req);
372 return -ENOMEM;
373 }
374
375 s_req->virt_dma_buf =
376 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
377 } else {
378 /* allocate sglist */
379 s_req->sgentries = kzalloc(size, GFP_KERNEL);
380
381 if (!s_req->sgentries) {
382 kfree(s_req);
383 return -ENOMEM;
384 }
385 }
386
387 /* allocate a bus request for this scatter request */
388 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
389 if (!bus_req) {
390 kfree(s_req->sgentries);
391 kfree(s_req->virt_dma_buf);
392 kfree(s_req);
393 return -ENOMEM;
394 }
395
396 /* assign the scatter request to this bus request */
397 bus_req->scat_req = s_req;
398 s_req->busrequest = bus_req;
399
400 s_req->virt_scat = virt_scat;
401
402 /* add it to the scatter pool */
403 hif_scatter_req_add(ar_sdio->ar, s_req);
404 }
405
406 return 0;
407 }
408
409 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
410 u32 len, u32 request)
411 {
412 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
413 u8 *tbuf = NULL;
414 int ret;
415 bool bounced = false;
416
417 if (request & HIF_BLOCK_BASIS)
418 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
419
420 if (buf_needs_bounce(buf)) {
421 if (!ar_sdio->dma_buffer)
422 return -ENOMEM;
423 mutex_lock(&ar_sdio->dma_buffer_mutex);
424 tbuf = ar_sdio->dma_buffer;
425
426 if (request & HIF_WRITE)
427 memcpy(tbuf, buf, len);
428
429 bounced = true;
430 } else {
431 tbuf = buf;
432 }
433
434 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
435 if ((request & HIF_READ) && bounced)
436 memcpy(buf, tbuf, len);
437
438 if (bounced)
439 mutex_unlock(&ar_sdio->dma_buffer_mutex);
440
441 return ret;
442 }
443
444 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
445 struct bus_request *req)
446 {
447 if (req->scat_req) {
448 ath6kl_sdio_scat_rw(ar_sdio, req);
449 } else {
450 void *context;
451 int status;
452
453 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
454 req->buffer, req->length,
455 req->request);
456 context = req->packet;
457 ath6kl_sdio_free_bus_req(ar_sdio, req);
458 ath6kl_hif_rw_comp_handler(context, status);
459 }
460 }
461
462 static void ath6kl_sdio_write_async_work(struct work_struct *work)
463 {
464 struct ath6kl_sdio *ar_sdio;
465 struct bus_request *req, *tmp_req;
466
467 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
468
469 spin_lock_bh(&ar_sdio->wr_async_lock);
470 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
471 list_del(&req->list);
472 spin_unlock_bh(&ar_sdio->wr_async_lock);
473 __ath6kl_sdio_write_async(ar_sdio, req);
474 spin_lock_bh(&ar_sdio->wr_async_lock);
475 }
476 spin_unlock_bh(&ar_sdio->wr_async_lock);
477 }
478
479 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
480 {
481 int status;
482 struct ath6kl_sdio *ar_sdio;
483
484 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
485
486 ar_sdio = sdio_get_drvdata(func);
487 atomic_set(&ar_sdio->irq_handling, 1);
488 /*
489 * Release the host during interrups so we can pick it back up when
490 * we process commands.
491 */
492 sdio_release_host(ar_sdio->func);
493
494 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
495 sdio_claim_host(ar_sdio->func);
496
497 atomic_set(&ar_sdio->irq_handling, 0);
498 wake_up(&ar_sdio->irq_wq);
499
500 WARN_ON(status && status != -ECANCELED);
501 }
502
503 static int ath6kl_sdio_power_on(struct ath6kl *ar)
504 {
505 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
506 struct sdio_func *func = ar_sdio->func;
507 int ret = 0;
508
509 if (!ar_sdio->is_disabled)
510 return 0;
511
512 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
513
514 sdio_claim_host(func);
515
516 ret = sdio_enable_func(func);
517 if (ret) {
518 ath6kl_err("Unable to enable sdio func: %d)\n", ret);
519 sdio_release_host(func);
520 return ret;
521 }
522
523 sdio_release_host(func);
524
525 /*
526 * Wait for hardware to initialise. It should take a lot less than
527 * 10 ms but let's be conservative here.
528 */
529 msleep(10);
530
531 ret = ath6kl_sdio_config(ar);
532 if (ret) {
533 ath6kl_err("Failed to config sdio: %d\n", ret);
534 goto out;
535 }
536
537 ar_sdio->is_disabled = false;
538
539 out:
540 return ret;
541 }
542
543 static int ath6kl_sdio_power_off(struct ath6kl *ar)
544 {
545 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
546 int ret;
547
548 if (ar_sdio->is_disabled)
549 return 0;
550
551 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
552
553 /* Disable the card */
554 sdio_claim_host(ar_sdio->func);
555 ret = sdio_disable_func(ar_sdio->func);
556 sdio_release_host(ar_sdio->func);
557
558 if (ret)
559 return ret;
560
561 ar_sdio->is_disabled = true;
562
563 return ret;
564 }
565
566 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
567 u32 length, u32 request,
568 struct htc_packet *packet)
569 {
570 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
571 struct bus_request *bus_req;
572
573 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
574
575 if (WARN_ON_ONCE(!bus_req))
576 return -ENOMEM;
577
578 bus_req->address = address;
579 bus_req->buffer = buffer;
580 bus_req->length = length;
581 bus_req->request = request;
582 bus_req->packet = packet;
583
584 spin_lock_bh(&ar_sdio->wr_async_lock);
585 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
586 spin_unlock_bh(&ar_sdio->wr_async_lock);
587 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
588
589 return 0;
590 }
591
592 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
593 {
594 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
595 int ret;
596
597 sdio_claim_host(ar_sdio->func);
598
599 /* Register the isr */
600 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
601 if (ret)
602 ath6kl_err("Failed to claim sdio irq: %d\n", ret);
603
604 sdio_release_host(ar_sdio->func);
605 }
606
607 static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
608 {
609 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
610
611 return !atomic_read(&ar_sdio->irq_handling);
612 }
613
614 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
615 {
616 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
617 int ret;
618
619 sdio_claim_host(ar_sdio->func);
620
621 if (atomic_read(&ar_sdio->irq_handling)) {
622 sdio_release_host(ar_sdio->func);
623
624 ret = wait_event_interruptible(ar_sdio->irq_wq,
625 ath6kl_sdio_is_on_irq(ar));
626 if (ret)
627 return;
628
629 sdio_claim_host(ar_sdio->func);
630 }
631
632 ret = sdio_release_irq(ar_sdio->func);
633 if (ret)
634 ath6kl_err("Failed to release sdio irq: %d\n", ret);
635
636 sdio_release_host(ar_sdio->func);
637 }
638
639 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
640 {
641 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
642 struct hif_scatter_req *node = NULL;
643
644 spin_lock_bh(&ar_sdio->scat_lock);
645
646 if (!list_empty(&ar_sdio->scat_req)) {
647 node = list_first_entry(&ar_sdio->scat_req,
648 struct hif_scatter_req, list);
649 list_del(&node->list);
650
651 node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
652 }
653
654 spin_unlock_bh(&ar_sdio->scat_lock);
655
656 return node;
657 }
658
659 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
660 struct hif_scatter_req *s_req)
661 {
662 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
663
664 spin_lock_bh(&ar_sdio->scat_lock);
665
666 list_add_tail(&s_req->list, &ar_sdio->scat_req);
667
668 spin_unlock_bh(&ar_sdio->scat_lock);
669 }
670
671 /* scatter gather read write request */
672 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
673 struct hif_scatter_req *scat_req)
674 {
675 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
676 u32 request = scat_req->req;
677 int status = 0;
678
679 if (!scat_req->len)
680 return -EINVAL;
681
682 ath6kl_dbg(ATH6KL_DBG_SCATTER,
683 "hif-scatter: total len: %d scatter entries: %d\n",
684 scat_req->len, scat_req->scat_entries);
685
686 if (request & HIF_SYNCHRONOUS) {
687 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
688 } else {
689 spin_lock_bh(&ar_sdio->wr_async_lock);
690 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
691 spin_unlock_bh(&ar_sdio->wr_async_lock);
692 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
693 }
694
695 return status;
696 }
697
698 /* clean up scatter support */
699 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
700 {
701 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
702 struct hif_scatter_req *s_req, *tmp_req;
703
704 /* empty the free list */
705 spin_lock_bh(&ar_sdio->scat_lock);
706 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
707 list_del(&s_req->list);
708 spin_unlock_bh(&ar_sdio->scat_lock);
709
710 /*
711 * FIXME: should we also call completion handler with
712 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
713 * that the packet is properly freed?
714 */
715 if (s_req->busrequest) {
716 s_req->busrequest->scat_req = 0;
717 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
718 }
719 kfree(s_req->virt_dma_buf);
720 kfree(s_req->sgentries);
721 kfree(s_req);
722
723 spin_lock_bh(&ar_sdio->scat_lock);
724 }
725 spin_unlock_bh(&ar_sdio->scat_lock);
726
727 ar_sdio->scatter_enabled = false;
728 }
729
730 /* setup of HIF scatter resources */
731 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
732 {
733 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
734 struct htc_target *target = ar->htc_target;
735 int ret = 0;
736 bool virt_scat = false;
737
738 if (ar_sdio->scatter_enabled)
739 return 0;
740
741 ar_sdio->scatter_enabled = true;
742
743 /* check if host supports scatter and it meets our requirements */
744 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
745 ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
746 ar_sdio->func->card->host->max_segs,
747 MAX_SCATTER_ENTRIES_PER_REQ);
748 virt_scat = true;
749 }
750
751 if (!virt_scat) {
752 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
753 MAX_SCATTER_ENTRIES_PER_REQ,
754 MAX_SCATTER_REQUESTS, virt_scat);
755
756 if (!ret) {
757 ath6kl_dbg(ATH6KL_DBG_BOOT,
758 "hif-scatter enabled requests %d entries %d\n",
759 MAX_SCATTER_REQUESTS,
760 MAX_SCATTER_ENTRIES_PER_REQ);
761
762 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
763 target->max_xfer_szper_scatreq =
764 MAX_SCATTER_REQ_TRANSFER_SIZE;
765 } else {
766 ath6kl_sdio_cleanup_scatter(ar);
767 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
768 }
769 }
770
771 if (virt_scat || ret) {
772 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
773 ATH6KL_SCATTER_ENTRIES_PER_REQ,
774 ATH6KL_SCATTER_REQS, virt_scat);
775
776 if (ret) {
777 ath6kl_err("failed to alloc virtual scatter resources !\n");
778 ath6kl_sdio_cleanup_scatter(ar);
779 return ret;
780 }
781
782 ath6kl_dbg(ATH6KL_DBG_BOOT,
783 "virtual scatter enabled requests %d entries %d\n",
784 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
785
786 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
787 target->max_xfer_szper_scatreq =
788 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
789 }
790
791 return 0;
792 }
793
794 static int ath6kl_sdio_config(struct ath6kl *ar)
795 {
796 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
797 struct sdio_func *func = ar_sdio->func;
798 int ret;
799
800 sdio_claim_host(func);
801
802 if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
803 MANUFACTURER_ID_AR6003_BASE) {
804 /* enable 4-bit ASYNC interrupt on AR6003 or later */
805 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
806 CCCR_SDIO_IRQ_MODE_REG,
807 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
808 if (ret) {
809 ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
810 ret);
811 goto out;
812 }
813
814 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
815 }
816
817 /* give us some time to enable, in ms */
818 func->enable_timeout = 100;
819
820 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
821 if (ret) {
822 ath6kl_err("Set sdio block size %d failed: %d)\n",
823 HIF_MBOX_BLOCK_SIZE, ret);
824 goto out;
825 }
826
827 out:
828 sdio_release_host(func);
829
830 return ret;
831 }
832
833 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
834 {
835 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
836 struct sdio_func *func = ar_sdio->func;
837 mmc_pm_flag_t flags;
838 int ret;
839
840 flags = sdio_get_host_pm_caps(func);
841
842 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
843
844 if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
845 !(flags & MMC_PM_KEEP_POWER))
846 return -EINVAL;
847
848 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
849 if (ret) {
850 ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
851 return ret;
852 }
853
854 /* sdio irq wakes up host */
855 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
856 if (ret)
857 ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
858
859 return ret;
860 }
861
862 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
863 {
864 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
865 struct sdio_func *func = ar_sdio->func;
866 mmc_pm_flag_t flags;
867 bool try_deepsleep = false;
868 int ret;
869
870 if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
871 (!ar->suspend_mode && wow)) {
872 ret = ath6kl_set_sdio_pm_caps(ar);
873 if (ret)
874 goto cut_pwr;
875
876 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
877 if (ret && ret != -ENOTCONN)
878 ath6kl_err("wow suspend failed: %d\n", ret);
879
880 if (ret &&
881 (!ar->wow_suspend_mode ||
882 ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
883 try_deepsleep = true;
884 else if (ret &&
885 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
886 goto cut_pwr;
887 if (!ret)
888 return 0;
889 }
890
891 if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
892 !ar->suspend_mode || try_deepsleep) {
893 flags = sdio_get_host_pm_caps(func);
894 if (!(flags & MMC_PM_KEEP_POWER))
895 goto cut_pwr;
896
897 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
898 if (ret)
899 goto cut_pwr;
900
901 /*
902 * Workaround to support Deep Sleep with MSM, set the host pm
903 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
904 * the sdc2_clock and internally allows MSM to enter
905 * TCXO shutdown properly.
906 */
907 if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
908 ret = sdio_set_host_pm_flags(func,
909 MMC_PM_WAKE_SDIO_IRQ);
910 if (ret)
911 goto cut_pwr;
912 }
913
914 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
915 NULL);
916 if (ret)
917 goto cut_pwr;
918
919 return 0;
920 }
921
922 cut_pwr:
923 if (func->card && func->card->host)
924 func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
925
926 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
927 }
928
929 static int ath6kl_sdio_resume(struct ath6kl *ar)
930 {
931 switch (ar->state) {
932 case ATH6KL_STATE_OFF:
933 case ATH6KL_STATE_CUTPOWER:
934 ath6kl_dbg(ATH6KL_DBG_SUSPEND,
935 "sdio resume configuring sdio\n");
936
937 /* need to set sdio settings after power is cut from sdio */
938 ath6kl_sdio_config(ar);
939 break;
940
941 case ATH6KL_STATE_ON:
942 break;
943
944 case ATH6KL_STATE_DEEPSLEEP:
945 break;
946
947 case ATH6KL_STATE_WOW:
948 break;
949
950 case ATH6KL_STATE_SUSPENDING:
951 break;
952
953 case ATH6KL_STATE_RESUMING:
954 break;
955
956 case ATH6KL_STATE_RECOVERY:
957 break;
958 }
959
960 ath6kl_cfg80211_resume(ar);
961
962 return 0;
963 }
964
965 /* set the window address register (using 4-byte register access ). */
966 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
967 {
968 int status;
969 u8 addr_val[4];
970 s32 i;
971
972 /*
973 * Write bytes 1,2,3 of the register to set the upper address bytes,
974 * the LSB is written last to initiate the access cycle
975 */
976
977 for (i = 1; i <= 3; i++) {
978 /*
979 * Fill the buffer with the address byte value we want to
980 * hit 4 times.
981 */
982 memset(addr_val, ((u8 *)&addr)[i], 4);
983
984 /*
985 * Hit each byte of the register address with a 4-byte
986 * write operation to the same address, this is a harmless
987 * operation.
988 */
989 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
990 4, HIF_WR_SYNC_BYTE_FIX);
991 if (status)
992 break;
993 }
994
995 if (status) {
996 ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
997 __func__, addr, reg_addr);
998 return status;
999 }
1000
1001 /*
1002 * Write the address register again, this time write the whole
1003 * 4-byte value. The effect here is that the LSB write causes the
1004 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
1005 * effect since we are writing the same values again
1006 */
1007 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
1008 4, HIF_WR_SYNC_BYTE_INC);
1009
1010 if (status) {
1011 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1012 __func__, addr, reg_addr);
1013 return status;
1014 }
1015
1016 return 0;
1017 }
1018
1019 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1020 {
1021 int status;
1022
1023 /* set window register to start read cycle */
1024 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1025 address);
1026
1027 if (status)
1028 return status;
1029
1030 /* read the data */
1031 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1032 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1033 if (status) {
1034 ath6kl_err("%s: failed to read from window data addr\n",
1035 __func__);
1036 return status;
1037 }
1038
1039 return status;
1040 }
1041
1042 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1043 __le32 data)
1044 {
1045 int status;
1046 u32 val = (__force u32) data;
1047
1048 /* set write data */
1049 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1050 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1051 if (status) {
1052 ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1053 __func__, data);
1054 return status;
1055 }
1056
1057 /* set window register, which starts the write cycle */
1058 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1059 address);
1060 }
1061
1062 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1063 {
1064 u32 addr;
1065 unsigned long timeout;
1066 int ret;
1067
1068 ar->bmi.cmd_credits = 0;
1069
1070 /* Read the counter register to get the command credits */
1071 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1072
1073 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1074 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1075 /*
1076 * Hit the credit counter with a 4-byte access, the first byte
1077 * read will hit the counter and cause a decrement, while the
1078 * remaining 3 bytes has no effect. The rationale behind this
1079 * is to make all HIF accesses 4-byte aligned.
1080 */
1081 ret = ath6kl_sdio_read_write_sync(ar, addr,
1082 (u8 *)&ar->bmi.cmd_credits, 4,
1083 HIF_RD_SYNC_BYTE_INC);
1084 if (ret) {
1085 ath6kl_err("Unable to decrement the command credit count register: %d\n",
1086 ret);
1087 return ret;
1088 }
1089
1090 /* The counter is only 8 bits.
1091 * Ignore anything in the upper 3 bytes
1092 */
1093 ar->bmi.cmd_credits &= 0xFF;
1094 }
1095
1096 if (!ar->bmi.cmd_credits) {
1097 ath6kl_err("bmi communication timeout\n");
1098 return -ETIMEDOUT;
1099 }
1100
1101 return 0;
1102 }
1103
1104 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1105 {
1106 unsigned long timeout;
1107 u32 rx_word = 0;
1108 int ret = 0;
1109
1110 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1111 while ((time_before(jiffies, timeout)) && !rx_word) {
1112 ret = ath6kl_sdio_read_write_sync(ar,
1113 RX_LOOKAHEAD_VALID_ADDRESS,
1114 (u8 *)&rx_word, sizeof(rx_word),
1115 HIF_RD_SYNC_BYTE_INC);
1116 if (ret) {
1117 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1118 return ret;
1119 }
1120
1121 /* all we really want is one bit */
1122 rx_word &= (1 << ENDPOINT1);
1123 }
1124
1125 if (!rx_word) {
1126 ath6kl_err("bmi_recv_buf FIFO empty\n");
1127 return -EINVAL;
1128 }
1129
1130 return ret;
1131 }
1132
1133 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1134 {
1135 int ret;
1136 u32 addr;
1137
1138 ret = ath6kl_sdio_bmi_credits(ar);
1139 if (ret)
1140 return ret;
1141
1142 addr = ar->mbox_info.htc_addr;
1143
1144 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1145 HIF_WR_SYNC_BYTE_INC);
1146 if (ret) {
1147 ath6kl_err("unable to send the bmi data to the device\n");
1148 return ret;
1149 }
1150
1151 return 0;
1152 }
1153
1154 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1155 {
1156 int ret;
1157 u32 addr;
1158
1159 /*
1160 * During normal bootup, small reads may be required.
1161 * Rather than issue an HIF Read and then wait as the Target
1162 * adds successive bytes to the FIFO, we wait here until
1163 * we know that response data is available.
1164 *
1165 * This allows us to cleanly timeout on an unexpected
1166 * Target failure rather than risk problems at the HIF level.
1167 * In particular, this avoids SDIO timeouts and possibly garbage
1168 * data on some host controllers. And on an interconnect
1169 * such as Compact Flash (as well as some SDIO masters) which
1170 * does not provide any indication on data timeout, it avoids
1171 * a potential hang or garbage response.
1172 *
1173 * Synchronization is more difficult for reads larger than the
1174 * size of the MBOX FIFO (128B), because the Target is unable
1175 * to push the 129th byte of data until AFTER the Host posts an
1176 * HIF Read and removes some FIFO data. So for large reads the
1177 * Host proceeds to post an HIF Read BEFORE all the data is
1178 * actually available to read. Fortunately, large BMI reads do
1179 * not occur in practice -- they're supported for debug/development.
1180 *
1181 * So Host/Target BMI synchronization is divided into these cases:
1182 * CASE 1: length < 4
1183 * Should not happen
1184 *
1185 * CASE 2: 4 <= length <= 128
1186 * Wait for first 4 bytes to be in FIFO
1187 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1188 * a BMI command credit, which indicates that the ENTIRE
1189 * response is available in the the FIFO
1190 *
1191 * CASE 3: length > 128
1192 * Wait for the first 4 bytes to be in FIFO
1193 *
1194 * For most uses, a small timeout should be sufficient and we will
1195 * usually see a response quickly; but there may be some unusual
1196 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1197 * For now, we use an unbounded busy loop while waiting for
1198 * BMI_EXECUTE.
1199 *
1200 * If BMI_EXECUTE ever needs to support longer-latency execution,
1201 * especially in production, this code needs to be enhanced to sleep
1202 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1203 * a function of Host processor speed.
1204 */
1205 if (len >= 4) { /* NB: Currently, always true */
1206 ret = ath6kl_bmi_get_rx_lkahd(ar);
1207 if (ret)
1208 return ret;
1209 }
1210
1211 addr = ar->mbox_info.htc_addr;
1212 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1213 HIF_RD_SYNC_BYTE_INC);
1214 if (ret) {
1215 ath6kl_err("Unable to read the bmi data from the device: %d\n",
1216 ret);
1217 return ret;
1218 }
1219
1220 return 0;
1221 }
1222
1223 static void ath6kl_sdio_stop(struct ath6kl *ar)
1224 {
1225 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1226 struct bus_request *req, *tmp_req;
1227 void *context;
1228
1229 /* FIXME: make sure that wq is not queued again */
1230
1231 cancel_work_sync(&ar_sdio->wr_async_work);
1232
1233 spin_lock_bh(&ar_sdio->wr_async_lock);
1234
1235 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1236 list_del(&req->list);
1237
1238 if (req->scat_req) {
1239 /* this is a scatter gather request */
1240 req->scat_req->status = -ECANCELED;
1241 req->scat_req->complete(ar_sdio->ar->htc_target,
1242 req->scat_req);
1243 } else {
1244 context = req->packet;
1245 ath6kl_sdio_free_bus_req(ar_sdio, req);
1246 ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1247 }
1248 }
1249
1250 spin_unlock_bh(&ar_sdio->wr_async_lock);
1251
1252 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1253 }
1254
1255 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1256 .read_write_sync = ath6kl_sdio_read_write_sync,
1257 .write_async = ath6kl_sdio_write_async,
1258 .irq_enable = ath6kl_sdio_irq_enable,
1259 .irq_disable = ath6kl_sdio_irq_disable,
1260 .scatter_req_get = ath6kl_sdio_scatter_req_get,
1261 .scatter_req_add = ath6kl_sdio_scatter_req_add,
1262 .enable_scatter = ath6kl_sdio_enable_scatter,
1263 .scat_req_rw = ath6kl_sdio_async_rw_scatter,
1264 .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1265 .suspend = ath6kl_sdio_suspend,
1266 .resume = ath6kl_sdio_resume,
1267 .diag_read32 = ath6kl_sdio_diag_read32,
1268 .diag_write32 = ath6kl_sdio_diag_write32,
1269 .bmi_read = ath6kl_sdio_bmi_read,
1270 .bmi_write = ath6kl_sdio_bmi_write,
1271 .power_on = ath6kl_sdio_power_on,
1272 .power_off = ath6kl_sdio_power_off,
1273 .stop = ath6kl_sdio_stop,
1274 };
1275
1276 #ifdef CONFIG_PM_SLEEP
1277
1278 /*
1279 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1280 * suspend. We instead follow cfg80211 suspend/resume handlers.
1281 */
1282 static int ath6kl_sdio_pm_suspend(struct device *device)
1283 {
1284 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1285
1286 return 0;
1287 }
1288
1289 static int ath6kl_sdio_pm_resume(struct device *device)
1290 {
1291 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1292
1293 return 0;
1294 }
1295
1296 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1297 ath6kl_sdio_pm_resume);
1298
1299 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1300
1301 #else
1302
1303 #define ATH6KL_SDIO_PM_OPS NULL
1304
1305 #endif /* CONFIG_PM_SLEEP */
1306
1307 static int ath6kl_sdio_probe(struct sdio_func *func,
1308 const struct sdio_device_id *id)
1309 {
1310 int ret;
1311 struct ath6kl_sdio *ar_sdio;
1312 struct ath6kl *ar;
1313 int count;
1314
1315 ath6kl_dbg(ATH6KL_DBG_BOOT,
1316 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1317 func->num, func->vendor, func->device,
1318 func->max_blksize, func->cur_blksize);
1319
1320 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1321 if (!ar_sdio)
1322 return -ENOMEM;
1323
1324 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1325 if (!ar_sdio->dma_buffer) {
1326 ret = -ENOMEM;
1327 goto err_hif;
1328 }
1329
1330 ar_sdio->func = func;
1331 sdio_set_drvdata(func, ar_sdio);
1332
1333 ar_sdio->id = id;
1334 ar_sdio->is_disabled = true;
1335
1336 spin_lock_init(&ar_sdio->lock);
1337 spin_lock_init(&ar_sdio->scat_lock);
1338 spin_lock_init(&ar_sdio->wr_async_lock);
1339 mutex_init(&ar_sdio->dma_buffer_mutex);
1340
1341 INIT_LIST_HEAD(&ar_sdio->scat_req);
1342 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1343 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1344
1345 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1346
1347 init_waitqueue_head(&ar_sdio->irq_wq);
1348
1349 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1350 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1351
1352 ar = ath6kl_core_create(&ar_sdio->func->dev);
1353 if (!ar) {
1354 ath6kl_err("Failed to alloc ath6kl core\n");
1355 ret = -ENOMEM;
1356 goto err_dma;
1357 }
1358
1359 ar_sdio->ar = ar;
1360 ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1361 ar->hif_priv = ar_sdio;
1362 ar->hif_ops = &ath6kl_sdio_ops;
1363 ar->bmi.max_data_size = 256;
1364
1365 ath6kl_sdio_set_mbox_info(ar);
1366
1367 ret = ath6kl_sdio_config(ar);
1368 if (ret) {
1369 ath6kl_err("Failed to config sdio: %d\n", ret);
1370 goto err_core_alloc;
1371 }
1372
1373 ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1374 if (ret) {
1375 ath6kl_err("Failed to init ath6kl core\n");
1376 goto err_core_alloc;
1377 }
1378
1379 return ret;
1380
1381 err_core_alloc:
1382 ath6kl_core_destroy(ar_sdio->ar);
1383 err_dma:
1384 kfree(ar_sdio->dma_buffer);
1385 err_hif:
1386 kfree(ar_sdio);
1387
1388 return ret;
1389 }
1390
1391 static void ath6kl_sdio_remove(struct sdio_func *func)
1392 {
1393 struct ath6kl_sdio *ar_sdio;
1394
1395 ath6kl_dbg(ATH6KL_DBG_BOOT,
1396 "sdio removed func %d vendor 0x%x device 0x%x\n",
1397 func->num, func->vendor, func->device);
1398
1399 ar_sdio = sdio_get_drvdata(func);
1400
1401 ath6kl_stop_txrx(ar_sdio->ar);
1402 cancel_work_sync(&ar_sdio->wr_async_work);
1403
1404 ath6kl_core_cleanup(ar_sdio->ar);
1405 ath6kl_core_destroy(ar_sdio->ar);
1406
1407 kfree(ar_sdio->dma_buffer);
1408 kfree(ar_sdio);
1409 }
1410
1411 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1412 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1413 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1414 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1415 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1416 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x2))},
1417 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x18))},
1418 {},
1419 };
1420
1421 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1422
1423 static struct sdio_driver ath6kl_sdio_driver = {
1424 .name = "ath6kl_sdio",
1425 .id_table = ath6kl_sdio_devices,
1426 .probe = ath6kl_sdio_probe,
1427 .remove = ath6kl_sdio_remove,
1428 .drv.pm = ATH6KL_SDIO_PM_OPS,
1429 };
1430
1431 static int __init ath6kl_sdio_init(void)
1432 {
1433 int ret;
1434
1435 ret = sdio_register_driver(&ath6kl_sdio_driver);
1436 if (ret)
1437 ath6kl_err("sdio driver registration failed: %d\n", ret);
1438
1439 return ret;
1440 }
1441
1442 static void __exit ath6kl_sdio_exit(void)
1443 {
1444 sdio_unregister_driver(&ath6kl_sdio_driver);
1445 }
1446
1447 module_init(ath6kl_sdio_init);
1448 module_exit(ath6kl_sdio_exit);
1449
1450 MODULE_AUTHOR("Atheros Communications, Inc.");
1451 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1452 MODULE_LICENSE("Dual BSD/GPL");
1453
1454 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1455 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1456 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1457 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1458 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1459 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1460 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1461 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1462 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1463 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1464 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1465 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1466 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1467 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1468 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1469 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1470 MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1471 MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1472 MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
1473 MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
1474 MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
1475 MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);