]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath9k/ar9003_eeprom.c
5bbe5057ba18ae35408c2aa78dfbdf4d5cefdf0f
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath9k / ar9003_eeprom.c
1 /*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21
22 #define COMP_HDR_LEN 4
23 #define COMP_CKSUM_LEN 2
24
25 #define LE16(x) __constant_cpu_to_le16(x)
26 #define LE32(x) __constant_cpu_to_le32(x)
27
28 /* Local defines to distinguish between extension and control CTL's */
29 #define EXT_ADDITIVE (0x8000)
30 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
31 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
32 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
33
34 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
35 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
36
37 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
38
39 #define EEPROM_DATA_LEN_9485 1088
40
41 static int ar9003_hw_power_interpolate(int32_t x,
42 int32_t *px, int32_t *py, u_int16_t np);
43
44
45 static const struct ar9300_eeprom ar9300_default = {
46 .eepromVersion = 2,
47 .templateVersion = 2,
48 .macAddr = {0, 2, 3, 4, 5, 6},
49 .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
51 .baseEepHeader = {
52 .regDmn = { LE16(0), LE16(0x1f) },
53 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
54 .opCapFlags = {
55 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
56 .eepMisc = 0,
57 },
58 .rfSilent = 0,
59 .blueToothOptions = 0,
60 .deviceCap = 0,
61 .deviceType = 5, /* takes lower byte in eeprom location */
62 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
63 .params_for_tuning_caps = {0, 0},
64 .featureEnable = 0x0c,
65 /*
66 * bit0 - enable tx temp comp - disabled
67 * bit1 - enable tx volt comp - disabled
68 * bit2 - enable fastClock - enabled
69 * bit3 - enable doubling - enabled
70 * bit4 - enable internal regulator - disabled
71 * bit5 - enable pa predistortion - disabled
72 */
73 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
74 .eepromWriteEnableGpio = 3,
75 .wlanDisableGpio = 0,
76 .wlanLedGpio = 8,
77 .rxBandSelectGpio = 0xff,
78 .txrxgain = 0,
79 .swreg = 0,
80 },
81 .modalHeader2G = {
82 /* ar9300_modal_eep_header 2g */
83 /* 4 idle,t1,t2,b(4 bits per setting) */
84 .antCtrlCommon = LE32(0x110),
85 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86 .antCtrlCommon2 = LE32(0x22222),
87
88 /*
89 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
90 * rx1, rx12, b (2 bits each)
91 */
92 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
93
94 /*
95 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
96 * for ar9280 (0xa20c/b20c 5:0)
97 */
98 .xatten1DB = {0, 0, 0},
99
100 /*
101 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
102 * for ar9280 (0xa20c/b20c 16:12
103 */
104 .xatten1Margin = {0, 0, 0},
105 .tempSlope = 36,
106 .voltSlope = 0,
107
108 /*
109 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
110 * channels in usual fbin coding format
111 */
112 .spurChans = {0, 0, 0, 0, 0},
113
114 /*
115 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
116 * if the register is per chain
117 */
118 .noiseFloorThreshCh = {-1, 0, 0},
119 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
120 .quick_drop = 0,
121 .xpaBiasLvl = 0,
122 .txFrameToDataStart = 0x0e,
123 .txFrameToPaOn = 0x0e,
124 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
125 .antennaGain = 0,
126 .switchSettling = 0x2c,
127 .adcDesiredSize = -30,
128 .txEndToXpaOff = 0,
129 .txEndToRxOn = 0x2,
130 .txFrameToXpaOn = 0xe,
131 .thresh62 = 28,
132 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
133 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
134 .xlna_bias_strength = 0,
135 .futureModal = {
136 0, 0, 0, 0, 0, 0, 0,
137 },
138 },
139 .base_ext1 = {
140 .ant_div_control = 0,
141 .future = {0, 0, 0},
142 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
143 },
144 .calFreqPier2G = {
145 FREQ2FBIN(2412, 1),
146 FREQ2FBIN(2437, 1),
147 FREQ2FBIN(2472, 1),
148 },
149 /* ar9300_cal_data_per_freq_op_loop 2g */
150 .calPierData2G = {
151 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
152 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
153 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
154 },
155 .calTarget_freqbin_Cck = {
156 FREQ2FBIN(2412, 1),
157 FREQ2FBIN(2484, 1),
158 },
159 .calTarget_freqbin_2G = {
160 FREQ2FBIN(2412, 1),
161 FREQ2FBIN(2437, 1),
162 FREQ2FBIN(2472, 1)
163 },
164 .calTarget_freqbin_2GHT20 = {
165 FREQ2FBIN(2412, 1),
166 FREQ2FBIN(2437, 1),
167 FREQ2FBIN(2472, 1)
168 },
169 .calTarget_freqbin_2GHT40 = {
170 FREQ2FBIN(2412, 1),
171 FREQ2FBIN(2437, 1),
172 FREQ2FBIN(2472, 1)
173 },
174 .calTargetPowerCck = {
175 /* 1L-5L,5S,11L,11S */
176 { {36, 36, 36, 36} },
177 { {36, 36, 36, 36} },
178 },
179 .calTargetPower2G = {
180 /* 6-24,36,48,54 */
181 { {32, 32, 28, 24} },
182 { {32, 32, 28, 24} },
183 { {32, 32, 28, 24} },
184 },
185 .calTargetPower2GHT20 = {
186 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
187 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
188 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
189 },
190 .calTargetPower2GHT40 = {
191 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
193 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194 },
195 .ctlIndex_2G = {
196 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
197 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
198 },
199 .ctl_freqbin_2G = {
200 {
201 FREQ2FBIN(2412, 1),
202 FREQ2FBIN(2417, 1),
203 FREQ2FBIN(2457, 1),
204 FREQ2FBIN(2462, 1)
205 },
206 {
207 FREQ2FBIN(2412, 1),
208 FREQ2FBIN(2417, 1),
209 FREQ2FBIN(2462, 1),
210 0xFF,
211 },
212
213 {
214 FREQ2FBIN(2412, 1),
215 FREQ2FBIN(2417, 1),
216 FREQ2FBIN(2462, 1),
217 0xFF,
218 },
219 {
220 FREQ2FBIN(2422, 1),
221 FREQ2FBIN(2427, 1),
222 FREQ2FBIN(2447, 1),
223 FREQ2FBIN(2452, 1)
224 },
225
226 {
227 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
228 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
229 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
230 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
231 },
232
233 {
234 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
235 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
236 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
237 0,
238 },
239
240 {
241 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
242 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
243 FREQ2FBIN(2472, 1),
244 0,
245 },
246
247 {
248 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
249 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
250 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
251 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
252 },
253
254 {
255 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
256 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
257 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
258 },
259
260 {
261 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
262 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
263 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
264 0
265 },
266
267 {
268 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
269 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
270 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
271 0
272 },
273
274 {
275 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
276 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
277 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
278 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
279 }
280 },
281 .ctlPowerData_2G = {
282 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
283 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
284 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
285
286 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
287 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
288 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
289
290 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
291 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
292 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
293
294 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
296 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
297 },
298 .modalHeader5G = {
299 /* 4 idle,t1,t2,b (4 bits per setting) */
300 .antCtrlCommon = LE32(0x110),
301 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
302 .antCtrlCommon2 = LE32(0x22222),
303 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
304 .antCtrlChain = {
305 LE16(0x000), LE16(0x000), LE16(0x000),
306 },
307 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
308 .xatten1DB = {0, 0, 0},
309
310 /*
311 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
312 * for merlin (0xa20c/b20c 16:12
313 */
314 .xatten1Margin = {0, 0, 0},
315 .tempSlope = 68,
316 .voltSlope = 0,
317 /* spurChans spur channels in usual fbin coding format */
318 .spurChans = {0, 0, 0, 0, 0},
319 /* noiseFloorThreshCh Check if the register is per chain */
320 .noiseFloorThreshCh = {-1, 0, 0},
321 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
322 .quick_drop = 0,
323 .xpaBiasLvl = 0,
324 .txFrameToDataStart = 0x0e,
325 .txFrameToPaOn = 0x0e,
326 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
327 .antennaGain = 0,
328 .switchSettling = 0x2d,
329 .adcDesiredSize = -30,
330 .txEndToXpaOff = 0,
331 .txEndToRxOn = 0x2,
332 .txFrameToXpaOn = 0xe,
333 .thresh62 = 28,
334 .papdRateMaskHt20 = LE32(0x0c80c080),
335 .papdRateMaskHt40 = LE32(0x0080c080),
336 .xlna_bias_strength = 0,
337 .futureModal = {
338 0, 0, 0, 0, 0, 0, 0,
339 },
340 },
341 .base_ext2 = {
342 .tempSlopeLow = 0,
343 .tempSlopeHigh = 0,
344 .xatten1DBLow = {0, 0, 0},
345 .xatten1MarginLow = {0, 0, 0},
346 .xatten1DBHigh = {0, 0, 0},
347 .xatten1MarginHigh = {0, 0, 0}
348 },
349 .calFreqPier5G = {
350 FREQ2FBIN(5180, 0),
351 FREQ2FBIN(5220, 0),
352 FREQ2FBIN(5320, 0),
353 FREQ2FBIN(5400, 0),
354 FREQ2FBIN(5500, 0),
355 FREQ2FBIN(5600, 0),
356 FREQ2FBIN(5725, 0),
357 FREQ2FBIN(5825, 0)
358 },
359 .calPierData5G = {
360 {
361 {0, 0, 0, 0, 0},
362 {0, 0, 0, 0, 0},
363 {0, 0, 0, 0, 0},
364 {0, 0, 0, 0, 0},
365 {0, 0, 0, 0, 0},
366 {0, 0, 0, 0, 0},
367 {0, 0, 0, 0, 0},
368 {0, 0, 0, 0, 0},
369 },
370 {
371 {0, 0, 0, 0, 0},
372 {0, 0, 0, 0, 0},
373 {0, 0, 0, 0, 0},
374 {0, 0, 0, 0, 0},
375 {0, 0, 0, 0, 0},
376 {0, 0, 0, 0, 0},
377 {0, 0, 0, 0, 0},
378 {0, 0, 0, 0, 0},
379 },
380 {
381 {0, 0, 0, 0, 0},
382 {0, 0, 0, 0, 0},
383 {0, 0, 0, 0, 0},
384 {0, 0, 0, 0, 0},
385 {0, 0, 0, 0, 0},
386 {0, 0, 0, 0, 0},
387 {0, 0, 0, 0, 0},
388 {0, 0, 0, 0, 0},
389 },
390
391 },
392 .calTarget_freqbin_5G = {
393 FREQ2FBIN(5180, 0),
394 FREQ2FBIN(5220, 0),
395 FREQ2FBIN(5320, 0),
396 FREQ2FBIN(5400, 0),
397 FREQ2FBIN(5500, 0),
398 FREQ2FBIN(5600, 0),
399 FREQ2FBIN(5725, 0),
400 FREQ2FBIN(5825, 0)
401 },
402 .calTarget_freqbin_5GHT20 = {
403 FREQ2FBIN(5180, 0),
404 FREQ2FBIN(5240, 0),
405 FREQ2FBIN(5320, 0),
406 FREQ2FBIN(5500, 0),
407 FREQ2FBIN(5700, 0),
408 FREQ2FBIN(5745, 0),
409 FREQ2FBIN(5725, 0),
410 FREQ2FBIN(5825, 0)
411 },
412 .calTarget_freqbin_5GHT40 = {
413 FREQ2FBIN(5180, 0),
414 FREQ2FBIN(5240, 0),
415 FREQ2FBIN(5320, 0),
416 FREQ2FBIN(5500, 0),
417 FREQ2FBIN(5700, 0),
418 FREQ2FBIN(5745, 0),
419 FREQ2FBIN(5725, 0),
420 FREQ2FBIN(5825, 0)
421 },
422 .calTargetPower5G = {
423 /* 6-24,36,48,54 */
424 { {20, 20, 20, 10} },
425 { {20, 20, 20, 10} },
426 { {20, 20, 20, 10} },
427 { {20, 20, 20, 10} },
428 { {20, 20, 20, 10} },
429 { {20, 20, 20, 10} },
430 { {20, 20, 20, 10} },
431 { {20, 20, 20, 10} },
432 },
433 .calTargetPower5GHT20 = {
434 /*
435 * 0_8_16,1-3_9-11_17-19,
436 * 4,5,6,7,12,13,14,15,20,21,22,23
437 */
438 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
439 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
440 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 },
447 .calTargetPower5GHT40 = {
448 /*
449 * 0_8_16,1-3_9-11_17-19,
450 * 4,5,6,7,12,13,14,15,20,21,22,23
451 */
452 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
453 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
454 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 },
461 .ctlIndex_5G = {
462 0x10, 0x16, 0x18, 0x40, 0x46,
463 0x48, 0x30, 0x36, 0x38
464 },
465 .ctl_freqbin_5G = {
466 {
467 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
468 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
469 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
470 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
471 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
472 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
473 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
474 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
475 },
476 {
477 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
478 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
479 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
480 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
481 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
482 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
483 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
484 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
485 },
486
487 {
488 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
489 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
490 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
491 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
492 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
493 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
494 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
495 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
496 },
497
498 {
499 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
500 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
501 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
502 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
503 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
504 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
505 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
506 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
507 },
508
509 {
510 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
511 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
512 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
513 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
514 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
515 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
516 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
517 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
518 },
519
520 {
521 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
522 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
523 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
524 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
525 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
526 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
527 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
528 /* Data[5].ctlEdges[7].bChannel */ 0xFF
529 },
530
531 {
532 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
533 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
534 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
535 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
536 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
537 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
538 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
539 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
540 },
541
542 {
543 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
544 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
545 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
546 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
547 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
548 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
549 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
550 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
551 },
552
553 {
554 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
555 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
556 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
557 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
558 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
559 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
560 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
561 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
562 }
563 },
564 .ctlPowerData_5G = {
565 {
566 {
567 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
568 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
569 }
570 },
571 {
572 {
573 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
574 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
575 }
576 },
577 {
578 {
579 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
580 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
581 }
582 },
583 {
584 {
585 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
586 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
587 }
588 },
589 {
590 {
591 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
592 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
593 }
594 },
595 {
596 {
597 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
598 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
599 }
600 },
601 {
602 {
603 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
604 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
605 }
606 },
607 {
608 {
609 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
610 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
611 }
612 },
613 {
614 {
615 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
616 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
617 }
618 },
619 }
620 };
621
622 static const struct ar9300_eeprom ar9300_x113 = {
623 .eepromVersion = 2,
624 .templateVersion = 6,
625 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
626 .custData = {"x113-023-f0000"},
627 .baseEepHeader = {
628 .regDmn = { LE16(0), LE16(0x1f) },
629 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
630 .opCapFlags = {
631 .opFlags = AR5416_OPFLAGS_11A,
632 .eepMisc = 0,
633 },
634 .rfSilent = 0,
635 .blueToothOptions = 0,
636 .deviceCap = 0,
637 .deviceType = 5, /* takes lower byte in eeprom location */
638 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
639 .params_for_tuning_caps = {0, 0},
640 .featureEnable = 0x0d,
641 /*
642 * bit0 - enable tx temp comp - disabled
643 * bit1 - enable tx volt comp - disabled
644 * bit2 - enable fastClock - enabled
645 * bit3 - enable doubling - enabled
646 * bit4 - enable internal regulator - disabled
647 * bit5 - enable pa predistortion - disabled
648 */
649 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
650 .eepromWriteEnableGpio = 6,
651 .wlanDisableGpio = 0,
652 .wlanLedGpio = 8,
653 .rxBandSelectGpio = 0xff,
654 .txrxgain = 0x21,
655 .swreg = 0,
656 },
657 .modalHeader2G = {
658 /* ar9300_modal_eep_header 2g */
659 /* 4 idle,t1,t2,b(4 bits per setting) */
660 .antCtrlCommon = LE32(0x110),
661 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
662 .antCtrlCommon2 = LE32(0x44444),
663
664 /*
665 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
666 * rx1, rx12, b (2 bits each)
667 */
668 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
669
670 /*
671 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
672 * for ar9280 (0xa20c/b20c 5:0)
673 */
674 .xatten1DB = {0, 0, 0},
675
676 /*
677 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
678 * for ar9280 (0xa20c/b20c 16:12
679 */
680 .xatten1Margin = {0, 0, 0},
681 .tempSlope = 25,
682 .voltSlope = 0,
683
684 /*
685 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
686 * channels in usual fbin coding format
687 */
688 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
689
690 /*
691 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
692 * if the register is per chain
693 */
694 .noiseFloorThreshCh = {-1, 0, 0},
695 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
696 .quick_drop = 0,
697 .xpaBiasLvl = 0,
698 .txFrameToDataStart = 0x0e,
699 .txFrameToPaOn = 0x0e,
700 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
701 .antennaGain = 0,
702 .switchSettling = 0x2c,
703 .adcDesiredSize = -30,
704 .txEndToXpaOff = 0,
705 .txEndToRxOn = 0x2,
706 .txFrameToXpaOn = 0xe,
707 .thresh62 = 28,
708 .papdRateMaskHt20 = LE32(0x0c80c080),
709 .papdRateMaskHt40 = LE32(0x0080c080),
710 .xlna_bias_strength = 0,
711 .futureModal = {
712 0, 0, 0, 0, 0, 0, 0,
713 },
714 },
715 .base_ext1 = {
716 .ant_div_control = 0,
717 .future = {0, 0, 0},
718 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
719 },
720 .calFreqPier2G = {
721 FREQ2FBIN(2412, 1),
722 FREQ2FBIN(2437, 1),
723 FREQ2FBIN(2472, 1),
724 },
725 /* ar9300_cal_data_per_freq_op_loop 2g */
726 .calPierData2G = {
727 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
728 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
729 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
730 },
731 .calTarget_freqbin_Cck = {
732 FREQ2FBIN(2412, 1),
733 FREQ2FBIN(2472, 1),
734 },
735 .calTarget_freqbin_2G = {
736 FREQ2FBIN(2412, 1),
737 FREQ2FBIN(2437, 1),
738 FREQ2FBIN(2472, 1)
739 },
740 .calTarget_freqbin_2GHT20 = {
741 FREQ2FBIN(2412, 1),
742 FREQ2FBIN(2437, 1),
743 FREQ2FBIN(2472, 1)
744 },
745 .calTarget_freqbin_2GHT40 = {
746 FREQ2FBIN(2412, 1),
747 FREQ2FBIN(2437, 1),
748 FREQ2FBIN(2472, 1)
749 },
750 .calTargetPowerCck = {
751 /* 1L-5L,5S,11L,11S */
752 { {34, 34, 34, 34} },
753 { {34, 34, 34, 34} },
754 },
755 .calTargetPower2G = {
756 /* 6-24,36,48,54 */
757 { {34, 34, 32, 32} },
758 { {34, 34, 32, 32} },
759 { {34, 34, 32, 32} },
760 },
761 .calTargetPower2GHT20 = {
762 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
763 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
764 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
765 },
766 .calTargetPower2GHT40 = {
767 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
768 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
769 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
770 },
771 .ctlIndex_2G = {
772 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
773 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
774 },
775 .ctl_freqbin_2G = {
776 {
777 FREQ2FBIN(2412, 1),
778 FREQ2FBIN(2417, 1),
779 FREQ2FBIN(2457, 1),
780 FREQ2FBIN(2462, 1)
781 },
782 {
783 FREQ2FBIN(2412, 1),
784 FREQ2FBIN(2417, 1),
785 FREQ2FBIN(2462, 1),
786 0xFF,
787 },
788
789 {
790 FREQ2FBIN(2412, 1),
791 FREQ2FBIN(2417, 1),
792 FREQ2FBIN(2462, 1),
793 0xFF,
794 },
795 {
796 FREQ2FBIN(2422, 1),
797 FREQ2FBIN(2427, 1),
798 FREQ2FBIN(2447, 1),
799 FREQ2FBIN(2452, 1)
800 },
801
802 {
803 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
804 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
805 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
806 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
807 },
808
809 {
810 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
811 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
812 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
813 0,
814 },
815
816 {
817 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
818 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
819 FREQ2FBIN(2472, 1),
820 0,
821 },
822
823 {
824 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
825 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
826 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
827 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
828 },
829
830 {
831 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
832 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
833 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
834 },
835
836 {
837 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
838 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
839 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
840 0
841 },
842
843 {
844 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
845 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
846 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
847 0
848 },
849
850 {
851 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
852 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
853 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
854 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
855 }
856 },
857 .ctlPowerData_2G = {
858 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
859 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
860 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
861
862 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
863 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
865
866 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
867 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869
870 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
872 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
873 },
874 .modalHeader5G = {
875 /* 4 idle,t1,t2,b (4 bits per setting) */
876 .antCtrlCommon = LE32(0x220),
877 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
878 .antCtrlCommon2 = LE32(0x11111),
879 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
880 .antCtrlChain = {
881 LE16(0x150), LE16(0x150), LE16(0x150),
882 },
883 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
884 .xatten1DB = {0, 0, 0},
885
886 /*
887 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
888 * for merlin (0xa20c/b20c 16:12
889 */
890 .xatten1Margin = {0, 0, 0},
891 .tempSlope = 68,
892 .voltSlope = 0,
893 /* spurChans spur channels in usual fbin coding format */
894 .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
895 /* noiseFloorThreshCh Check if the register is per chain */
896 .noiseFloorThreshCh = {-1, 0, 0},
897 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
898 .quick_drop = 0,
899 .xpaBiasLvl = 0xf,
900 .txFrameToDataStart = 0x0e,
901 .txFrameToPaOn = 0x0e,
902 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
903 .antennaGain = 0,
904 .switchSettling = 0x2d,
905 .adcDesiredSize = -30,
906 .txEndToXpaOff = 0,
907 .txEndToRxOn = 0x2,
908 .txFrameToXpaOn = 0xe,
909 .thresh62 = 28,
910 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
911 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
912 .xlna_bias_strength = 0,
913 .futureModal = {
914 0, 0, 0, 0, 0, 0, 0,
915 },
916 },
917 .base_ext2 = {
918 .tempSlopeLow = 72,
919 .tempSlopeHigh = 105,
920 .xatten1DBLow = {0, 0, 0},
921 .xatten1MarginLow = {0, 0, 0},
922 .xatten1DBHigh = {0, 0, 0},
923 .xatten1MarginHigh = {0, 0, 0}
924 },
925 .calFreqPier5G = {
926 FREQ2FBIN(5180, 0),
927 FREQ2FBIN(5240, 0),
928 FREQ2FBIN(5320, 0),
929 FREQ2FBIN(5400, 0),
930 FREQ2FBIN(5500, 0),
931 FREQ2FBIN(5600, 0),
932 FREQ2FBIN(5745, 0),
933 FREQ2FBIN(5785, 0)
934 },
935 .calPierData5G = {
936 {
937 {0, 0, 0, 0, 0},
938 {0, 0, 0, 0, 0},
939 {0, 0, 0, 0, 0},
940 {0, 0, 0, 0, 0},
941 {0, 0, 0, 0, 0},
942 {0, 0, 0, 0, 0},
943 {0, 0, 0, 0, 0},
944 {0, 0, 0, 0, 0},
945 },
946 {
947 {0, 0, 0, 0, 0},
948 {0, 0, 0, 0, 0},
949 {0, 0, 0, 0, 0},
950 {0, 0, 0, 0, 0},
951 {0, 0, 0, 0, 0},
952 {0, 0, 0, 0, 0},
953 {0, 0, 0, 0, 0},
954 {0, 0, 0, 0, 0},
955 },
956 {
957 {0, 0, 0, 0, 0},
958 {0, 0, 0, 0, 0},
959 {0, 0, 0, 0, 0},
960 {0, 0, 0, 0, 0},
961 {0, 0, 0, 0, 0},
962 {0, 0, 0, 0, 0},
963 {0, 0, 0, 0, 0},
964 {0, 0, 0, 0, 0},
965 },
966
967 },
968 .calTarget_freqbin_5G = {
969 FREQ2FBIN(5180, 0),
970 FREQ2FBIN(5220, 0),
971 FREQ2FBIN(5320, 0),
972 FREQ2FBIN(5400, 0),
973 FREQ2FBIN(5500, 0),
974 FREQ2FBIN(5600, 0),
975 FREQ2FBIN(5745, 0),
976 FREQ2FBIN(5785, 0)
977 },
978 .calTarget_freqbin_5GHT20 = {
979 FREQ2FBIN(5180, 0),
980 FREQ2FBIN(5240, 0),
981 FREQ2FBIN(5320, 0),
982 FREQ2FBIN(5400, 0),
983 FREQ2FBIN(5500, 0),
984 FREQ2FBIN(5700, 0),
985 FREQ2FBIN(5745, 0),
986 FREQ2FBIN(5825, 0)
987 },
988 .calTarget_freqbin_5GHT40 = {
989 FREQ2FBIN(5190, 0),
990 FREQ2FBIN(5230, 0),
991 FREQ2FBIN(5320, 0),
992 FREQ2FBIN(5410, 0),
993 FREQ2FBIN(5510, 0),
994 FREQ2FBIN(5670, 0),
995 FREQ2FBIN(5755, 0),
996 FREQ2FBIN(5825, 0)
997 },
998 .calTargetPower5G = {
999 /* 6-24,36,48,54 */
1000 { {42, 40, 40, 34} },
1001 { {42, 40, 40, 34} },
1002 { {42, 40, 40, 34} },
1003 { {42, 40, 40, 34} },
1004 { {42, 40, 40, 34} },
1005 { {42, 40, 40, 34} },
1006 { {42, 40, 40, 34} },
1007 { {42, 40, 40, 34} },
1008 },
1009 .calTargetPower5GHT20 = {
1010 /*
1011 * 0_8_16,1-3_9-11_17-19,
1012 * 4,5,6,7,12,13,14,15,20,21,22,23
1013 */
1014 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1015 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1016 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1017 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1018 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020 { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1021 { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1022 },
1023 .calTargetPower5GHT40 = {
1024 /*
1025 * 0_8_16,1-3_9-11_17-19,
1026 * 4,5,6,7,12,13,14,15,20,21,22,23
1027 */
1028 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1029 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1030 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1031 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1032 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034 { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1035 { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1036 },
1037 .ctlIndex_5G = {
1038 0x10, 0x16, 0x18, 0x40, 0x46,
1039 0x48, 0x30, 0x36, 0x38
1040 },
1041 .ctl_freqbin_5G = {
1042 {
1043 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1044 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1045 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1046 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1047 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1048 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1049 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1050 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1051 },
1052 {
1053 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1054 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1055 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1056 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1057 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1058 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1059 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1060 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1061 },
1062
1063 {
1064 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1065 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1066 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1067 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1068 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1069 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1070 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1071 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1072 },
1073
1074 {
1075 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1076 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1077 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1078 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1079 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1080 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1081 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1082 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1083 },
1084
1085 {
1086 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1087 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1088 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1089 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1090 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1091 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1092 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1093 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1094 },
1095
1096 {
1097 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1098 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1099 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1100 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1101 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1102 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1103 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1104 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1105 },
1106
1107 {
1108 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1109 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1110 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1111 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1112 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1113 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1114 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1115 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1116 },
1117
1118 {
1119 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1120 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1121 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1122 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1123 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1124 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1125 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1126 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1127 },
1128
1129 {
1130 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1131 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1132 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1133 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1134 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1135 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1136 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1137 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1138 }
1139 },
1140 .ctlPowerData_5G = {
1141 {
1142 {
1143 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1144 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1145 }
1146 },
1147 {
1148 {
1149 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1150 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1151 }
1152 },
1153 {
1154 {
1155 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1156 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1157 }
1158 },
1159 {
1160 {
1161 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1162 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1163 }
1164 },
1165 {
1166 {
1167 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1168 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1169 }
1170 },
1171 {
1172 {
1173 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1174 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1175 }
1176 },
1177 {
1178 {
1179 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1180 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1181 }
1182 },
1183 {
1184 {
1185 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1186 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1187 }
1188 },
1189 {
1190 {
1191 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1192 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1193 }
1194 },
1195 }
1196 };
1197
1198
1199 static const struct ar9300_eeprom ar9300_h112 = {
1200 .eepromVersion = 2,
1201 .templateVersion = 3,
1202 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1203 .custData = {"h112-241-f0000"},
1204 .baseEepHeader = {
1205 .regDmn = { LE16(0), LE16(0x1f) },
1206 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1207 .opCapFlags = {
1208 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1209 .eepMisc = 0,
1210 },
1211 .rfSilent = 0,
1212 .blueToothOptions = 0,
1213 .deviceCap = 0,
1214 .deviceType = 5, /* takes lower byte in eeprom location */
1215 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1216 .params_for_tuning_caps = {0, 0},
1217 .featureEnable = 0x0d,
1218 /*
1219 * bit0 - enable tx temp comp - disabled
1220 * bit1 - enable tx volt comp - disabled
1221 * bit2 - enable fastClock - enabled
1222 * bit3 - enable doubling - enabled
1223 * bit4 - enable internal regulator - disabled
1224 * bit5 - enable pa predistortion - disabled
1225 */
1226 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1227 .eepromWriteEnableGpio = 6,
1228 .wlanDisableGpio = 0,
1229 .wlanLedGpio = 8,
1230 .rxBandSelectGpio = 0xff,
1231 .txrxgain = 0x10,
1232 .swreg = 0,
1233 },
1234 .modalHeader2G = {
1235 /* ar9300_modal_eep_header 2g */
1236 /* 4 idle,t1,t2,b(4 bits per setting) */
1237 .antCtrlCommon = LE32(0x110),
1238 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1239 .antCtrlCommon2 = LE32(0x44444),
1240
1241 /*
1242 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1243 * rx1, rx12, b (2 bits each)
1244 */
1245 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1246
1247 /*
1248 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
1249 * for ar9280 (0xa20c/b20c 5:0)
1250 */
1251 .xatten1DB = {0, 0, 0},
1252
1253 /*
1254 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1255 * for ar9280 (0xa20c/b20c 16:12
1256 */
1257 .xatten1Margin = {0, 0, 0},
1258 .tempSlope = 25,
1259 .voltSlope = 0,
1260
1261 /*
1262 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1263 * channels in usual fbin coding format
1264 */
1265 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1266
1267 /*
1268 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1269 * if the register is per chain
1270 */
1271 .noiseFloorThreshCh = {-1, 0, 0},
1272 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1273 .quick_drop = 0,
1274 .xpaBiasLvl = 0,
1275 .txFrameToDataStart = 0x0e,
1276 .txFrameToPaOn = 0x0e,
1277 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1278 .antennaGain = 0,
1279 .switchSettling = 0x2c,
1280 .adcDesiredSize = -30,
1281 .txEndToXpaOff = 0,
1282 .txEndToRxOn = 0x2,
1283 .txFrameToXpaOn = 0xe,
1284 .thresh62 = 28,
1285 .papdRateMaskHt20 = LE32(0x0c80c080),
1286 .papdRateMaskHt40 = LE32(0x0080c080),
1287 .xlna_bias_strength = 0,
1288 .futureModal = {
1289 0, 0, 0, 0, 0, 0, 0,
1290 },
1291 },
1292 .base_ext1 = {
1293 .ant_div_control = 0,
1294 .future = {0, 0, 0},
1295 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1296 },
1297 .calFreqPier2G = {
1298 FREQ2FBIN(2412, 1),
1299 FREQ2FBIN(2437, 1),
1300 FREQ2FBIN(2462, 1),
1301 },
1302 /* ar9300_cal_data_per_freq_op_loop 2g */
1303 .calPierData2G = {
1304 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1305 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1306 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1307 },
1308 .calTarget_freqbin_Cck = {
1309 FREQ2FBIN(2412, 1),
1310 FREQ2FBIN(2472, 1),
1311 },
1312 .calTarget_freqbin_2G = {
1313 FREQ2FBIN(2412, 1),
1314 FREQ2FBIN(2437, 1),
1315 FREQ2FBIN(2472, 1)
1316 },
1317 .calTarget_freqbin_2GHT20 = {
1318 FREQ2FBIN(2412, 1),
1319 FREQ2FBIN(2437, 1),
1320 FREQ2FBIN(2472, 1)
1321 },
1322 .calTarget_freqbin_2GHT40 = {
1323 FREQ2FBIN(2412, 1),
1324 FREQ2FBIN(2437, 1),
1325 FREQ2FBIN(2472, 1)
1326 },
1327 .calTargetPowerCck = {
1328 /* 1L-5L,5S,11L,11S */
1329 { {34, 34, 34, 34} },
1330 { {34, 34, 34, 34} },
1331 },
1332 .calTargetPower2G = {
1333 /* 6-24,36,48,54 */
1334 { {34, 34, 32, 32} },
1335 { {34, 34, 32, 32} },
1336 { {34, 34, 32, 32} },
1337 },
1338 .calTargetPower2GHT20 = {
1339 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1340 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1341 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1342 },
1343 .calTargetPower2GHT40 = {
1344 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1345 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1346 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1347 },
1348 .ctlIndex_2G = {
1349 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1350 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1351 },
1352 .ctl_freqbin_2G = {
1353 {
1354 FREQ2FBIN(2412, 1),
1355 FREQ2FBIN(2417, 1),
1356 FREQ2FBIN(2457, 1),
1357 FREQ2FBIN(2462, 1)
1358 },
1359 {
1360 FREQ2FBIN(2412, 1),
1361 FREQ2FBIN(2417, 1),
1362 FREQ2FBIN(2462, 1),
1363 0xFF,
1364 },
1365
1366 {
1367 FREQ2FBIN(2412, 1),
1368 FREQ2FBIN(2417, 1),
1369 FREQ2FBIN(2462, 1),
1370 0xFF,
1371 },
1372 {
1373 FREQ2FBIN(2422, 1),
1374 FREQ2FBIN(2427, 1),
1375 FREQ2FBIN(2447, 1),
1376 FREQ2FBIN(2452, 1)
1377 },
1378
1379 {
1380 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1381 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1382 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1383 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1384 },
1385
1386 {
1387 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1388 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1389 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1390 0,
1391 },
1392
1393 {
1394 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1395 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1396 FREQ2FBIN(2472, 1),
1397 0,
1398 },
1399
1400 {
1401 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1402 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1403 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1404 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1405 },
1406
1407 {
1408 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1409 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1410 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1411 },
1412
1413 {
1414 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1415 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1416 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1417 0
1418 },
1419
1420 {
1421 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1422 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1423 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1424 0
1425 },
1426
1427 {
1428 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1429 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1430 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1431 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1432 }
1433 },
1434 .ctlPowerData_2G = {
1435 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1436 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1437 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1438
1439 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1440 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1441 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442
1443 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1444 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1445 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1446
1447 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1448 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1449 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1450 },
1451 .modalHeader5G = {
1452 /* 4 idle,t1,t2,b (4 bits per setting) */
1453 .antCtrlCommon = LE32(0x220),
1454 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1455 .antCtrlCommon2 = LE32(0x44444),
1456 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1457 .antCtrlChain = {
1458 LE16(0x150), LE16(0x150), LE16(0x150),
1459 },
1460 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1461 .xatten1DB = {0, 0, 0},
1462
1463 /*
1464 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1465 * for merlin (0xa20c/b20c 16:12
1466 */
1467 .xatten1Margin = {0, 0, 0},
1468 .tempSlope = 45,
1469 .voltSlope = 0,
1470 /* spurChans spur channels in usual fbin coding format */
1471 .spurChans = {0, 0, 0, 0, 0},
1472 /* noiseFloorThreshCh Check if the register is per chain */
1473 .noiseFloorThreshCh = {-1, 0, 0},
1474 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1475 .quick_drop = 0,
1476 .xpaBiasLvl = 0,
1477 .txFrameToDataStart = 0x0e,
1478 .txFrameToPaOn = 0x0e,
1479 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1480 .antennaGain = 0,
1481 .switchSettling = 0x2d,
1482 .adcDesiredSize = -30,
1483 .txEndToXpaOff = 0,
1484 .txEndToRxOn = 0x2,
1485 .txFrameToXpaOn = 0xe,
1486 .thresh62 = 28,
1487 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
1488 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
1489 .xlna_bias_strength = 0,
1490 .futureModal = {
1491 0, 0, 0, 0, 0, 0, 0,
1492 },
1493 },
1494 .base_ext2 = {
1495 .tempSlopeLow = 40,
1496 .tempSlopeHigh = 50,
1497 .xatten1DBLow = {0, 0, 0},
1498 .xatten1MarginLow = {0, 0, 0},
1499 .xatten1DBHigh = {0, 0, 0},
1500 .xatten1MarginHigh = {0, 0, 0}
1501 },
1502 .calFreqPier5G = {
1503 FREQ2FBIN(5180, 0),
1504 FREQ2FBIN(5220, 0),
1505 FREQ2FBIN(5320, 0),
1506 FREQ2FBIN(5400, 0),
1507 FREQ2FBIN(5500, 0),
1508 FREQ2FBIN(5600, 0),
1509 FREQ2FBIN(5700, 0),
1510 FREQ2FBIN(5785, 0)
1511 },
1512 .calPierData5G = {
1513 {
1514 {0, 0, 0, 0, 0},
1515 {0, 0, 0, 0, 0},
1516 {0, 0, 0, 0, 0},
1517 {0, 0, 0, 0, 0},
1518 {0, 0, 0, 0, 0},
1519 {0, 0, 0, 0, 0},
1520 {0, 0, 0, 0, 0},
1521 {0, 0, 0, 0, 0},
1522 },
1523 {
1524 {0, 0, 0, 0, 0},
1525 {0, 0, 0, 0, 0},
1526 {0, 0, 0, 0, 0},
1527 {0, 0, 0, 0, 0},
1528 {0, 0, 0, 0, 0},
1529 {0, 0, 0, 0, 0},
1530 {0, 0, 0, 0, 0},
1531 {0, 0, 0, 0, 0},
1532 },
1533 {
1534 {0, 0, 0, 0, 0},
1535 {0, 0, 0, 0, 0},
1536 {0, 0, 0, 0, 0},
1537 {0, 0, 0, 0, 0},
1538 {0, 0, 0, 0, 0},
1539 {0, 0, 0, 0, 0},
1540 {0, 0, 0, 0, 0},
1541 {0, 0, 0, 0, 0},
1542 },
1543
1544 },
1545 .calTarget_freqbin_5G = {
1546 FREQ2FBIN(5180, 0),
1547 FREQ2FBIN(5240, 0),
1548 FREQ2FBIN(5320, 0),
1549 FREQ2FBIN(5400, 0),
1550 FREQ2FBIN(5500, 0),
1551 FREQ2FBIN(5600, 0),
1552 FREQ2FBIN(5700, 0),
1553 FREQ2FBIN(5825, 0)
1554 },
1555 .calTarget_freqbin_5GHT20 = {
1556 FREQ2FBIN(5180, 0),
1557 FREQ2FBIN(5240, 0),
1558 FREQ2FBIN(5320, 0),
1559 FREQ2FBIN(5400, 0),
1560 FREQ2FBIN(5500, 0),
1561 FREQ2FBIN(5700, 0),
1562 FREQ2FBIN(5745, 0),
1563 FREQ2FBIN(5825, 0)
1564 },
1565 .calTarget_freqbin_5GHT40 = {
1566 FREQ2FBIN(5180, 0),
1567 FREQ2FBIN(5240, 0),
1568 FREQ2FBIN(5320, 0),
1569 FREQ2FBIN(5400, 0),
1570 FREQ2FBIN(5500, 0),
1571 FREQ2FBIN(5700, 0),
1572 FREQ2FBIN(5745, 0),
1573 FREQ2FBIN(5825, 0)
1574 },
1575 .calTargetPower5G = {
1576 /* 6-24,36,48,54 */
1577 { {30, 30, 28, 24} },
1578 { {30, 30, 28, 24} },
1579 { {30, 30, 28, 24} },
1580 { {30, 30, 28, 24} },
1581 { {30, 30, 28, 24} },
1582 { {30, 30, 28, 24} },
1583 { {30, 30, 28, 24} },
1584 { {30, 30, 28, 24} },
1585 },
1586 .calTargetPower5GHT20 = {
1587 /*
1588 * 0_8_16,1-3_9-11_17-19,
1589 * 4,5,6,7,12,13,14,15,20,21,22,23
1590 */
1591 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1592 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1593 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1594 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1595 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1596 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1597 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1598 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1599 },
1600 .calTargetPower5GHT40 = {
1601 /*
1602 * 0_8_16,1-3_9-11_17-19,
1603 * 4,5,6,7,12,13,14,15,20,21,22,23
1604 */
1605 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1606 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1607 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1608 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1609 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1610 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1611 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1612 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1613 },
1614 .ctlIndex_5G = {
1615 0x10, 0x16, 0x18, 0x40, 0x46,
1616 0x48, 0x30, 0x36, 0x38
1617 },
1618 .ctl_freqbin_5G = {
1619 {
1620 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1621 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1622 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1623 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1624 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1625 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1626 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1627 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1628 },
1629 {
1630 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1631 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1632 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1633 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1634 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1635 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1636 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1637 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1638 },
1639
1640 {
1641 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1642 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1643 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1644 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1645 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1646 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1647 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1648 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1649 },
1650
1651 {
1652 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1653 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1654 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1655 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1656 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1657 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1658 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1659 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1660 },
1661
1662 {
1663 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1664 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1665 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1666 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1667 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1668 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1669 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1670 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1671 },
1672
1673 {
1674 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1675 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1676 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1677 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1678 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1679 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1680 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1681 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1682 },
1683
1684 {
1685 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1686 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1687 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1688 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1689 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1690 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1691 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1692 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1693 },
1694
1695 {
1696 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1697 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1698 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1699 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1700 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1701 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1702 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1703 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1704 },
1705
1706 {
1707 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1708 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1709 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1710 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1711 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1712 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1713 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1714 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1715 }
1716 },
1717 .ctlPowerData_5G = {
1718 {
1719 {
1720 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1721 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1722 }
1723 },
1724 {
1725 {
1726 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1727 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1728 }
1729 },
1730 {
1731 {
1732 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1733 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1734 }
1735 },
1736 {
1737 {
1738 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1739 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1740 }
1741 },
1742 {
1743 {
1744 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1745 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1746 }
1747 },
1748 {
1749 {
1750 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1751 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1752 }
1753 },
1754 {
1755 {
1756 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1757 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1758 }
1759 },
1760 {
1761 {
1762 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1763 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1764 }
1765 },
1766 {
1767 {
1768 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1769 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1770 }
1771 },
1772 }
1773 };
1774
1775
1776 static const struct ar9300_eeprom ar9300_x112 = {
1777 .eepromVersion = 2,
1778 .templateVersion = 5,
1779 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1780 .custData = {"x112-041-f0000"},
1781 .baseEepHeader = {
1782 .regDmn = { LE16(0), LE16(0x1f) },
1783 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1784 .opCapFlags = {
1785 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1786 .eepMisc = 0,
1787 },
1788 .rfSilent = 0,
1789 .blueToothOptions = 0,
1790 .deviceCap = 0,
1791 .deviceType = 5, /* takes lower byte in eeprom location */
1792 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1793 .params_for_tuning_caps = {0, 0},
1794 .featureEnable = 0x0d,
1795 /*
1796 * bit0 - enable tx temp comp - disabled
1797 * bit1 - enable tx volt comp - disabled
1798 * bit2 - enable fastclock - enabled
1799 * bit3 - enable doubling - enabled
1800 * bit4 - enable internal regulator - disabled
1801 * bit5 - enable pa predistortion - disabled
1802 */
1803 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1804 .eepromWriteEnableGpio = 6,
1805 .wlanDisableGpio = 0,
1806 .wlanLedGpio = 8,
1807 .rxBandSelectGpio = 0xff,
1808 .txrxgain = 0x0,
1809 .swreg = 0,
1810 },
1811 .modalHeader2G = {
1812 /* ar9300_modal_eep_header 2g */
1813 /* 4 idle,t1,t2,b(4 bits per setting) */
1814 .antCtrlCommon = LE32(0x110),
1815 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1816 .antCtrlCommon2 = LE32(0x22222),
1817
1818 /*
1819 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1820 * rx1, rx12, b (2 bits each)
1821 */
1822 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1823
1824 /*
1825 * xatten1DB[AR9300_max_chains]; 3 xatten1_db
1826 * for ar9280 (0xa20c/b20c 5:0)
1827 */
1828 .xatten1DB = {0x1b, 0x1b, 0x1b},
1829
1830 /*
1831 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1832 * for ar9280 (0xa20c/b20c 16:12
1833 */
1834 .xatten1Margin = {0x15, 0x15, 0x15},
1835 .tempSlope = 50,
1836 .voltSlope = 0,
1837
1838 /*
1839 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1840 * channels in usual fbin coding format
1841 */
1842 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1843
1844 /*
1845 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1846 * if the register is per chain
1847 */
1848 .noiseFloorThreshCh = {-1, 0, 0},
1849 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1850 .quick_drop = 0,
1851 .xpaBiasLvl = 0,
1852 .txFrameToDataStart = 0x0e,
1853 .txFrameToPaOn = 0x0e,
1854 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1855 .antennaGain = 0,
1856 .switchSettling = 0x2c,
1857 .adcDesiredSize = -30,
1858 .txEndToXpaOff = 0,
1859 .txEndToRxOn = 0x2,
1860 .txFrameToXpaOn = 0xe,
1861 .thresh62 = 28,
1862 .papdRateMaskHt20 = LE32(0x0c80c080),
1863 .papdRateMaskHt40 = LE32(0x0080c080),
1864 .xlna_bias_strength = 0,
1865 .futureModal = {
1866 0, 0, 0, 0, 0, 0, 0,
1867 },
1868 },
1869 .base_ext1 = {
1870 .ant_div_control = 0,
1871 .future = {0, 0, 0},
1872 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1873 },
1874 .calFreqPier2G = {
1875 FREQ2FBIN(2412, 1),
1876 FREQ2FBIN(2437, 1),
1877 FREQ2FBIN(2472, 1),
1878 },
1879 /* ar9300_cal_data_per_freq_op_loop 2g */
1880 .calPierData2G = {
1881 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1882 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1883 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1884 },
1885 .calTarget_freqbin_Cck = {
1886 FREQ2FBIN(2412, 1),
1887 FREQ2FBIN(2472, 1),
1888 },
1889 .calTarget_freqbin_2G = {
1890 FREQ2FBIN(2412, 1),
1891 FREQ2FBIN(2437, 1),
1892 FREQ2FBIN(2472, 1)
1893 },
1894 .calTarget_freqbin_2GHT20 = {
1895 FREQ2FBIN(2412, 1),
1896 FREQ2FBIN(2437, 1),
1897 FREQ2FBIN(2472, 1)
1898 },
1899 .calTarget_freqbin_2GHT40 = {
1900 FREQ2FBIN(2412, 1),
1901 FREQ2FBIN(2437, 1),
1902 FREQ2FBIN(2472, 1)
1903 },
1904 .calTargetPowerCck = {
1905 /* 1L-5L,5S,11L,11s */
1906 { {38, 38, 38, 38} },
1907 { {38, 38, 38, 38} },
1908 },
1909 .calTargetPower2G = {
1910 /* 6-24,36,48,54 */
1911 { {38, 38, 36, 34} },
1912 { {38, 38, 36, 34} },
1913 { {38, 38, 34, 32} },
1914 },
1915 .calTargetPower2GHT20 = {
1916 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1917 { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1918 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1919 },
1920 .calTargetPower2GHT40 = {
1921 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1922 { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1923 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1924 },
1925 .ctlIndex_2G = {
1926 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1927 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1928 },
1929 .ctl_freqbin_2G = {
1930 {
1931 FREQ2FBIN(2412, 1),
1932 FREQ2FBIN(2417, 1),
1933 FREQ2FBIN(2457, 1),
1934 FREQ2FBIN(2462, 1)
1935 },
1936 {
1937 FREQ2FBIN(2412, 1),
1938 FREQ2FBIN(2417, 1),
1939 FREQ2FBIN(2462, 1),
1940 0xFF,
1941 },
1942
1943 {
1944 FREQ2FBIN(2412, 1),
1945 FREQ2FBIN(2417, 1),
1946 FREQ2FBIN(2462, 1),
1947 0xFF,
1948 },
1949 {
1950 FREQ2FBIN(2422, 1),
1951 FREQ2FBIN(2427, 1),
1952 FREQ2FBIN(2447, 1),
1953 FREQ2FBIN(2452, 1)
1954 },
1955
1956 {
1957 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1958 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1959 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1960 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1961 },
1962
1963 {
1964 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1965 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1966 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1967 0,
1968 },
1969
1970 {
1971 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1972 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1973 FREQ2FBIN(2472, 1),
1974 0,
1975 },
1976
1977 {
1978 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1979 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1980 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1981 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1982 },
1983
1984 {
1985 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1986 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1987 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1988 },
1989
1990 {
1991 /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1992 /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1993 /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1994 0
1995 },
1996
1997 {
1998 /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1999 /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2000 /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2001 0
2002 },
2003
2004 {
2005 /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2006 /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2007 /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2008 /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2009 }
2010 },
2011 .ctlPowerData_2G = {
2012 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2013 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2014 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2015
2016 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2017 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2018 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2019
2020 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2021 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2022 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2023
2024 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2025 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2026 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2027 },
2028 .modalHeader5G = {
2029 /* 4 idle,t1,t2,b (4 bits per setting) */
2030 .antCtrlCommon = LE32(0x110),
2031 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2032 .antCtrlCommon2 = LE32(0x22222),
2033 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2034 .antCtrlChain = {
2035 LE16(0x0), LE16(0x0), LE16(0x0),
2036 },
2037 /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2038 .xatten1DB = {0x13, 0x19, 0x17},
2039
2040 /*
2041 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2042 * for merlin (0xa20c/b20c 16:12
2043 */
2044 .xatten1Margin = {0x19, 0x19, 0x19},
2045 .tempSlope = 70,
2046 .voltSlope = 15,
2047 /* spurChans spur channels in usual fbin coding format */
2048 .spurChans = {0, 0, 0, 0, 0},
2049 /* noiseFloorThreshch check if the register is per chain */
2050 .noiseFloorThreshCh = {-1, 0, 0},
2051 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2052 .quick_drop = 0,
2053 .xpaBiasLvl = 0,
2054 .txFrameToDataStart = 0x0e,
2055 .txFrameToPaOn = 0x0e,
2056 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2057 .antennaGain = 0,
2058 .switchSettling = 0x2d,
2059 .adcDesiredSize = -30,
2060 .txEndToXpaOff = 0,
2061 .txEndToRxOn = 0x2,
2062 .txFrameToXpaOn = 0xe,
2063 .thresh62 = 28,
2064 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2065 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2066 .xlna_bias_strength = 0,
2067 .futureModal = {
2068 0, 0, 0, 0, 0, 0, 0,
2069 },
2070 },
2071 .base_ext2 = {
2072 .tempSlopeLow = 72,
2073 .tempSlopeHigh = 105,
2074 .xatten1DBLow = {0x10, 0x14, 0x10},
2075 .xatten1MarginLow = {0x19, 0x19 , 0x19},
2076 .xatten1DBHigh = {0x1d, 0x20, 0x24},
2077 .xatten1MarginHigh = {0x10, 0x10, 0x10}
2078 },
2079 .calFreqPier5G = {
2080 FREQ2FBIN(5180, 0),
2081 FREQ2FBIN(5220, 0),
2082 FREQ2FBIN(5320, 0),
2083 FREQ2FBIN(5400, 0),
2084 FREQ2FBIN(5500, 0),
2085 FREQ2FBIN(5600, 0),
2086 FREQ2FBIN(5700, 0),
2087 FREQ2FBIN(5785, 0)
2088 },
2089 .calPierData5G = {
2090 {
2091 {0, 0, 0, 0, 0},
2092 {0, 0, 0, 0, 0},
2093 {0, 0, 0, 0, 0},
2094 {0, 0, 0, 0, 0},
2095 {0, 0, 0, 0, 0},
2096 {0, 0, 0, 0, 0},
2097 {0, 0, 0, 0, 0},
2098 {0, 0, 0, 0, 0},
2099 },
2100 {
2101 {0, 0, 0, 0, 0},
2102 {0, 0, 0, 0, 0},
2103 {0, 0, 0, 0, 0},
2104 {0, 0, 0, 0, 0},
2105 {0, 0, 0, 0, 0},
2106 {0, 0, 0, 0, 0},
2107 {0, 0, 0, 0, 0},
2108 {0, 0, 0, 0, 0},
2109 },
2110 {
2111 {0, 0, 0, 0, 0},
2112 {0, 0, 0, 0, 0},
2113 {0, 0, 0, 0, 0},
2114 {0, 0, 0, 0, 0},
2115 {0, 0, 0, 0, 0},
2116 {0, 0, 0, 0, 0},
2117 {0, 0, 0, 0, 0},
2118 {0, 0, 0, 0, 0},
2119 },
2120
2121 },
2122 .calTarget_freqbin_5G = {
2123 FREQ2FBIN(5180, 0),
2124 FREQ2FBIN(5220, 0),
2125 FREQ2FBIN(5320, 0),
2126 FREQ2FBIN(5400, 0),
2127 FREQ2FBIN(5500, 0),
2128 FREQ2FBIN(5600, 0),
2129 FREQ2FBIN(5725, 0),
2130 FREQ2FBIN(5825, 0)
2131 },
2132 .calTarget_freqbin_5GHT20 = {
2133 FREQ2FBIN(5180, 0),
2134 FREQ2FBIN(5220, 0),
2135 FREQ2FBIN(5320, 0),
2136 FREQ2FBIN(5400, 0),
2137 FREQ2FBIN(5500, 0),
2138 FREQ2FBIN(5600, 0),
2139 FREQ2FBIN(5725, 0),
2140 FREQ2FBIN(5825, 0)
2141 },
2142 .calTarget_freqbin_5GHT40 = {
2143 FREQ2FBIN(5180, 0),
2144 FREQ2FBIN(5220, 0),
2145 FREQ2FBIN(5320, 0),
2146 FREQ2FBIN(5400, 0),
2147 FREQ2FBIN(5500, 0),
2148 FREQ2FBIN(5600, 0),
2149 FREQ2FBIN(5725, 0),
2150 FREQ2FBIN(5825, 0)
2151 },
2152 .calTargetPower5G = {
2153 /* 6-24,36,48,54 */
2154 { {32, 32, 28, 26} },
2155 { {32, 32, 28, 26} },
2156 { {32, 32, 28, 26} },
2157 { {32, 32, 26, 24} },
2158 { {32, 32, 26, 24} },
2159 { {32, 32, 24, 22} },
2160 { {30, 30, 24, 22} },
2161 { {30, 30, 24, 22} },
2162 },
2163 .calTargetPower5GHT20 = {
2164 /*
2165 * 0_8_16,1-3_9-11_17-19,
2166 * 4,5,6,7,12,13,14,15,20,21,22,23
2167 */
2168 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2169 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2170 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2171 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2172 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2173 { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2174 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2175 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2176 },
2177 .calTargetPower5GHT40 = {
2178 /*
2179 * 0_8_16,1-3_9-11_17-19,
2180 * 4,5,6,7,12,13,14,15,20,21,22,23
2181 */
2182 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2183 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2184 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2185 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2186 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2187 { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2188 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2189 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2190 },
2191 .ctlIndex_5G = {
2192 0x10, 0x16, 0x18, 0x40, 0x46,
2193 0x48, 0x30, 0x36, 0x38
2194 },
2195 .ctl_freqbin_5G = {
2196 {
2197 /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2198 /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2199 /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2200 /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2201 /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2202 /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2203 /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2204 /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2205 },
2206 {
2207 /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2208 /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2209 /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2210 /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2211 /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2212 /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2213 /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2214 /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2215 },
2216
2217 {
2218 /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2219 /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2220 /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2221 /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2222 /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2223 /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2224 /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2225 /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2226 },
2227
2228 {
2229 /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2230 /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2231 /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2232 /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2233 /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2234 /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2235 /* Data[3].ctledges[6].bchannel */ 0xFF,
2236 /* Data[3].ctledges[7].bchannel */ 0xFF,
2237 },
2238
2239 {
2240 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2241 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2242 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2243 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2244 /* Data[4].ctledges[4].bchannel */ 0xFF,
2245 /* Data[4].ctledges[5].bchannel */ 0xFF,
2246 /* Data[4].ctledges[6].bchannel */ 0xFF,
2247 /* Data[4].ctledges[7].bchannel */ 0xFF,
2248 },
2249
2250 {
2251 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2252 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2253 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2254 /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2255 /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2256 /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2257 /* Data[5].ctledges[6].bchannel */ 0xFF,
2258 /* Data[5].ctledges[7].bchannel */ 0xFF
2259 },
2260
2261 {
2262 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2263 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2264 /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2265 /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2266 /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2267 /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2268 /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2269 /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2270 },
2271
2272 {
2273 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2274 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2275 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2276 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2277 /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2278 /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2279 /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2280 /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2281 },
2282
2283 {
2284 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2285 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2286 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2287 /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2288 /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2289 /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2290 /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2291 /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2292 }
2293 },
2294 .ctlPowerData_5G = {
2295 {
2296 {
2297 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2298 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2299 }
2300 },
2301 {
2302 {
2303 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2304 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2305 }
2306 },
2307 {
2308 {
2309 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2310 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2311 }
2312 },
2313 {
2314 {
2315 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2316 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2317 }
2318 },
2319 {
2320 {
2321 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2322 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2323 }
2324 },
2325 {
2326 {
2327 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2328 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2329 }
2330 },
2331 {
2332 {
2333 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2334 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2335 }
2336 },
2337 {
2338 {
2339 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2340 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2341 }
2342 },
2343 {
2344 {
2345 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2346 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2347 }
2348 },
2349 }
2350 };
2351
2352 static const struct ar9300_eeprom ar9300_h116 = {
2353 .eepromVersion = 2,
2354 .templateVersion = 4,
2355 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2356 .custData = {"h116-041-f0000"},
2357 .baseEepHeader = {
2358 .regDmn = { LE16(0), LE16(0x1f) },
2359 .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
2360 .opCapFlags = {
2361 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2362 .eepMisc = 0,
2363 },
2364 .rfSilent = 0,
2365 .blueToothOptions = 0,
2366 .deviceCap = 0,
2367 .deviceType = 5, /* takes lower byte in eeprom location */
2368 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2369 .params_for_tuning_caps = {0, 0},
2370 .featureEnable = 0x0d,
2371 /*
2372 * bit0 - enable tx temp comp - disabled
2373 * bit1 - enable tx volt comp - disabled
2374 * bit2 - enable fastClock - enabled
2375 * bit3 - enable doubling - enabled
2376 * bit4 - enable internal regulator - disabled
2377 * bit5 - enable pa predistortion - disabled
2378 */
2379 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
2380 .eepromWriteEnableGpio = 6,
2381 .wlanDisableGpio = 0,
2382 .wlanLedGpio = 8,
2383 .rxBandSelectGpio = 0xff,
2384 .txrxgain = 0x10,
2385 .swreg = 0,
2386 },
2387 .modalHeader2G = {
2388 /* ar9300_modal_eep_header 2g */
2389 /* 4 idle,t1,t2,b(4 bits per setting) */
2390 .antCtrlCommon = LE32(0x110),
2391 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2392 .antCtrlCommon2 = LE32(0x44444),
2393
2394 /*
2395 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2396 * rx1, rx12, b (2 bits each)
2397 */
2398 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2399
2400 /*
2401 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
2402 * for ar9280 (0xa20c/b20c 5:0)
2403 */
2404 .xatten1DB = {0x1f, 0x1f, 0x1f},
2405
2406 /*
2407 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2408 * for ar9280 (0xa20c/b20c 16:12
2409 */
2410 .xatten1Margin = {0x12, 0x12, 0x12},
2411 .tempSlope = 25,
2412 .voltSlope = 0,
2413
2414 /*
2415 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2416 * channels in usual fbin coding format
2417 */
2418 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2419
2420 /*
2421 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2422 * if the register is per chain
2423 */
2424 .noiseFloorThreshCh = {-1, 0, 0},
2425 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2426 .quick_drop = 0,
2427 .xpaBiasLvl = 0,
2428 .txFrameToDataStart = 0x0e,
2429 .txFrameToPaOn = 0x0e,
2430 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2431 .antennaGain = 0,
2432 .switchSettling = 0x2c,
2433 .adcDesiredSize = -30,
2434 .txEndToXpaOff = 0,
2435 .txEndToRxOn = 0x2,
2436 .txFrameToXpaOn = 0xe,
2437 .thresh62 = 28,
2438 .papdRateMaskHt20 = LE32(0x0c80C080),
2439 .papdRateMaskHt40 = LE32(0x0080C080),
2440 .xlna_bias_strength = 0,
2441 .futureModal = {
2442 0, 0, 0, 0, 0, 0, 0,
2443 },
2444 },
2445 .base_ext1 = {
2446 .ant_div_control = 0,
2447 .future = {0, 0, 0},
2448 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
2449 },
2450 .calFreqPier2G = {
2451 FREQ2FBIN(2412, 1),
2452 FREQ2FBIN(2437, 1),
2453 FREQ2FBIN(2462, 1),
2454 },
2455 /* ar9300_cal_data_per_freq_op_loop 2g */
2456 .calPierData2G = {
2457 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2458 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2459 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2460 },
2461 .calTarget_freqbin_Cck = {
2462 FREQ2FBIN(2412, 1),
2463 FREQ2FBIN(2472, 1),
2464 },
2465 .calTarget_freqbin_2G = {
2466 FREQ2FBIN(2412, 1),
2467 FREQ2FBIN(2437, 1),
2468 FREQ2FBIN(2472, 1)
2469 },
2470 .calTarget_freqbin_2GHT20 = {
2471 FREQ2FBIN(2412, 1),
2472 FREQ2FBIN(2437, 1),
2473 FREQ2FBIN(2472, 1)
2474 },
2475 .calTarget_freqbin_2GHT40 = {
2476 FREQ2FBIN(2412, 1),
2477 FREQ2FBIN(2437, 1),
2478 FREQ2FBIN(2472, 1)
2479 },
2480 .calTargetPowerCck = {
2481 /* 1L-5L,5S,11L,11S */
2482 { {34, 34, 34, 34} },
2483 { {34, 34, 34, 34} },
2484 },
2485 .calTargetPower2G = {
2486 /* 6-24,36,48,54 */
2487 { {34, 34, 32, 32} },
2488 { {34, 34, 32, 32} },
2489 { {34, 34, 32, 32} },
2490 },
2491 .calTargetPower2GHT20 = {
2492 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2493 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2494 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2495 },
2496 .calTargetPower2GHT40 = {
2497 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2498 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2499 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2500 },
2501 .ctlIndex_2G = {
2502 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2503 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2504 },
2505 .ctl_freqbin_2G = {
2506 {
2507 FREQ2FBIN(2412, 1),
2508 FREQ2FBIN(2417, 1),
2509 FREQ2FBIN(2457, 1),
2510 FREQ2FBIN(2462, 1)
2511 },
2512 {
2513 FREQ2FBIN(2412, 1),
2514 FREQ2FBIN(2417, 1),
2515 FREQ2FBIN(2462, 1),
2516 0xFF,
2517 },
2518
2519 {
2520 FREQ2FBIN(2412, 1),
2521 FREQ2FBIN(2417, 1),
2522 FREQ2FBIN(2462, 1),
2523 0xFF,
2524 },
2525 {
2526 FREQ2FBIN(2422, 1),
2527 FREQ2FBIN(2427, 1),
2528 FREQ2FBIN(2447, 1),
2529 FREQ2FBIN(2452, 1)
2530 },
2531
2532 {
2533 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2534 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2535 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2536 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2537 },
2538
2539 {
2540 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2541 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2542 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2543 0,
2544 },
2545
2546 {
2547 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2548 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2549 FREQ2FBIN(2472, 1),
2550 0,
2551 },
2552
2553 {
2554 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2555 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2556 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2557 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2558 },
2559
2560 {
2561 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2562 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2563 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2564 },
2565
2566 {
2567 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2568 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2569 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2570 0
2571 },
2572
2573 {
2574 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2575 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2576 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2577 0
2578 },
2579
2580 {
2581 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2582 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2583 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2584 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2585 }
2586 },
2587 .ctlPowerData_2G = {
2588 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2589 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2590 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2591
2592 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2593 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2594 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2595
2596 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2597 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2598 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599
2600 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2601 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2602 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2603 },
2604 .modalHeader5G = {
2605 /* 4 idle,t1,t2,b (4 bits per setting) */
2606 .antCtrlCommon = LE32(0x220),
2607 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2608 .antCtrlCommon2 = LE32(0x44444),
2609 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2610 .antCtrlChain = {
2611 LE16(0x150), LE16(0x150), LE16(0x150),
2612 },
2613 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2614 .xatten1DB = {0x19, 0x19, 0x19},
2615
2616 /*
2617 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2618 * for merlin (0xa20c/b20c 16:12
2619 */
2620 .xatten1Margin = {0x14, 0x14, 0x14},
2621 .tempSlope = 70,
2622 .voltSlope = 0,
2623 /* spurChans spur channels in usual fbin coding format */
2624 .spurChans = {0, 0, 0, 0, 0},
2625 /* noiseFloorThreshCh Check if the register is per chain */
2626 .noiseFloorThreshCh = {-1, 0, 0},
2627 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2628 .quick_drop = 0,
2629 .xpaBiasLvl = 0,
2630 .txFrameToDataStart = 0x0e,
2631 .txFrameToPaOn = 0x0e,
2632 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2633 .antennaGain = 0,
2634 .switchSettling = 0x2d,
2635 .adcDesiredSize = -30,
2636 .txEndToXpaOff = 0,
2637 .txEndToRxOn = 0x2,
2638 .txFrameToXpaOn = 0xe,
2639 .thresh62 = 28,
2640 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2641 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2642 .xlna_bias_strength = 0,
2643 .futureModal = {
2644 0, 0, 0, 0, 0, 0, 0,
2645 },
2646 },
2647 .base_ext2 = {
2648 .tempSlopeLow = 35,
2649 .tempSlopeHigh = 50,
2650 .xatten1DBLow = {0, 0, 0},
2651 .xatten1MarginLow = {0, 0, 0},
2652 .xatten1DBHigh = {0, 0, 0},
2653 .xatten1MarginHigh = {0, 0, 0}
2654 },
2655 .calFreqPier5G = {
2656 FREQ2FBIN(5160, 0),
2657 FREQ2FBIN(5220, 0),
2658 FREQ2FBIN(5320, 0),
2659 FREQ2FBIN(5400, 0),
2660 FREQ2FBIN(5500, 0),
2661 FREQ2FBIN(5600, 0),
2662 FREQ2FBIN(5700, 0),
2663 FREQ2FBIN(5785, 0)
2664 },
2665 .calPierData5G = {
2666 {
2667 {0, 0, 0, 0, 0},
2668 {0, 0, 0, 0, 0},
2669 {0, 0, 0, 0, 0},
2670 {0, 0, 0, 0, 0},
2671 {0, 0, 0, 0, 0},
2672 {0, 0, 0, 0, 0},
2673 {0, 0, 0, 0, 0},
2674 {0, 0, 0, 0, 0},
2675 },
2676 {
2677 {0, 0, 0, 0, 0},
2678 {0, 0, 0, 0, 0},
2679 {0, 0, 0, 0, 0},
2680 {0, 0, 0, 0, 0},
2681 {0, 0, 0, 0, 0},
2682 {0, 0, 0, 0, 0},
2683 {0, 0, 0, 0, 0},
2684 {0, 0, 0, 0, 0},
2685 },
2686 {
2687 {0, 0, 0, 0, 0},
2688 {0, 0, 0, 0, 0},
2689 {0, 0, 0, 0, 0},
2690 {0, 0, 0, 0, 0},
2691 {0, 0, 0, 0, 0},
2692 {0, 0, 0, 0, 0},
2693 {0, 0, 0, 0, 0},
2694 {0, 0, 0, 0, 0},
2695 },
2696
2697 },
2698 .calTarget_freqbin_5G = {
2699 FREQ2FBIN(5180, 0),
2700 FREQ2FBIN(5240, 0),
2701 FREQ2FBIN(5320, 0),
2702 FREQ2FBIN(5400, 0),
2703 FREQ2FBIN(5500, 0),
2704 FREQ2FBIN(5600, 0),
2705 FREQ2FBIN(5700, 0),
2706 FREQ2FBIN(5825, 0)
2707 },
2708 .calTarget_freqbin_5GHT20 = {
2709 FREQ2FBIN(5180, 0),
2710 FREQ2FBIN(5240, 0),
2711 FREQ2FBIN(5320, 0),
2712 FREQ2FBIN(5400, 0),
2713 FREQ2FBIN(5500, 0),
2714 FREQ2FBIN(5700, 0),
2715 FREQ2FBIN(5745, 0),
2716 FREQ2FBIN(5825, 0)
2717 },
2718 .calTarget_freqbin_5GHT40 = {
2719 FREQ2FBIN(5180, 0),
2720 FREQ2FBIN(5240, 0),
2721 FREQ2FBIN(5320, 0),
2722 FREQ2FBIN(5400, 0),
2723 FREQ2FBIN(5500, 0),
2724 FREQ2FBIN(5700, 0),
2725 FREQ2FBIN(5745, 0),
2726 FREQ2FBIN(5825, 0)
2727 },
2728 .calTargetPower5G = {
2729 /* 6-24,36,48,54 */
2730 { {30, 30, 28, 24} },
2731 { {30, 30, 28, 24} },
2732 { {30, 30, 28, 24} },
2733 { {30, 30, 28, 24} },
2734 { {30, 30, 28, 24} },
2735 { {30, 30, 28, 24} },
2736 { {30, 30, 28, 24} },
2737 { {30, 30, 28, 24} },
2738 },
2739 .calTargetPower5GHT20 = {
2740 /*
2741 * 0_8_16,1-3_9-11_17-19,
2742 * 4,5,6,7,12,13,14,15,20,21,22,23
2743 */
2744 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2745 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2746 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2747 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2748 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2749 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2750 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2751 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2752 },
2753 .calTargetPower5GHT40 = {
2754 /*
2755 * 0_8_16,1-3_9-11_17-19,
2756 * 4,5,6,7,12,13,14,15,20,21,22,23
2757 */
2758 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2759 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2760 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2761 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2762 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2763 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2764 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2765 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2766 },
2767 .ctlIndex_5G = {
2768 0x10, 0x16, 0x18, 0x40, 0x46,
2769 0x48, 0x30, 0x36, 0x38
2770 },
2771 .ctl_freqbin_5G = {
2772 {
2773 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2774 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2775 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2776 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2777 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2778 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2779 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2780 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2781 },
2782 {
2783 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2784 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2785 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2786 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2787 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2788 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2789 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2790 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2791 },
2792
2793 {
2794 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2795 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2796 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2797 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2798 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2799 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2800 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2801 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2802 },
2803
2804 {
2805 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2806 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2807 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2808 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2809 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2810 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2811 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
2812 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
2813 },
2814
2815 {
2816 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2817 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2818 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2819 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2820 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
2821 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
2822 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
2823 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
2824 },
2825
2826 {
2827 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2828 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2829 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2830 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2831 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2832 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2833 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
2834 /* Data[5].ctlEdges[7].bChannel */ 0xFF
2835 },
2836
2837 {
2838 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2839 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2840 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2841 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2842 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2843 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2844 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2845 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2846 },
2847
2848 {
2849 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2850 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2851 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2852 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2853 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2854 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2855 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2856 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2857 },
2858
2859 {
2860 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2861 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2862 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2863 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2864 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2865 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2866 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2867 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2868 }
2869 },
2870 .ctlPowerData_5G = {
2871 {
2872 {
2873 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2874 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2875 }
2876 },
2877 {
2878 {
2879 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2880 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2881 }
2882 },
2883 {
2884 {
2885 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2886 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2887 }
2888 },
2889 {
2890 {
2891 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2892 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2893 }
2894 },
2895 {
2896 {
2897 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2898 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2899 }
2900 },
2901 {
2902 {
2903 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2904 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2905 }
2906 },
2907 {
2908 {
2909 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2910 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2911 }
2912 },
2913 {
2914 {
2915 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2916 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2917 }
2918 },
2919 {
2920 {
2921 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2922 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2923 }
2924 },
2925 }
2926 };
2927
2928
2929 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2930 &ar9300_default,
2931 &ar9300_x112,
2932 &ar9300_h116,
2933 &ar9300_h112,
2934 &ar9300_x113,
2935 };
2936
2937 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2938 {
2939 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2940 int it;
2941
2942 for (it = 0; it < N_LOOP; it++)
2943 if (ar9300_eep_templates[it]->templateVersion == id)
2944 return ar9300_eep_templates[it];
2945 return NULL;
2946 #undef N_LOOP
2947 }
2948
2949 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2950 {
2951 return 0;
2952 }
2953
2954 static int interpolate(int x, int xa, int xb, int ya, int yb)
2955 {
2956 int bf, factor, plus;
2957
2958 bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2959 factor = bf / 2;
2960 plus = bf % 2;
2961 return ya + factor + plus;
2962 }
2963
2964 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2965 enum eeprom_param param)
2966 {
2967 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2968 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2969
2970 switch (param) {
2971 case EEP_MAC_LSW:
2972 return get_unaligned_be16(eep->macAddr);
2973 case EEP_MAC_MID:
2974 return get_unaligned_be16(eep->macAddr + 2);
2975 case EEP_MAC_MSW:
2976 return get_unaligned_be16(eep->macAddr + 4);
2977 case EEP_REG_0:
2978 return le16_to_cpu(pBase->regDmn[0]);
2979 case EEP_OP_CAP:
2980 return pBase->deviceCap;
2981 case EEP_OP_MODE:
2982 return pBase->opCapFlags.opFlags;
2983 case EEP_RF_SILENT:
2984 return pBase->rfSilent;
2985 case EEP_TX_MASK:
2986 return (pBase->txrxMask >> 4) & 0xf;
2987 case EEP_RX_MASK:
2988 return pBase->txrxMask & 0xf;
2989 case EEP_PAPRD:
2990 if (AR_SREV_9462(ah))
2991 return false;
2992 if (!ah->config.enable_paprd);
2993 return false;
2994 return !!(pBase->featureEnable & BIT(5));
2995 case EEP_CHAIN_MASK_REDUCE:
2996 return (pBase->miscConfiguration >> 0x3) & 0x1;
2997 case EEP_ANT_DIV_CTL1:
2998 return eep->base_ext1.ant_div_control;
2999 case EEP_ANTENNA_GAIN_5G:
3000 return eep->modalHeader5G.antennaGain;
3001 case EEP_ANTENNA_GAIN_2G:
3002 return eep->modalHeader2G.antennaGain;
3003 default:
3004 return 0;
3005 }
3006 }
3007
3008 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3009 u8 *buffer)
3010 {
3011 u16 val;
3012
3013 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3014 return false;
3015
3016 *buffer = (val >> (8 * (address % 2))) & 0xff;
3017 return true;
3018 }
3019
3020 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3021 u8 *buffer)
3022 {
3023 u16 val;
3024
3025 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3026 return false;
3027
3028 buffer[0] = val >> 8;
3029 buffer[1] = val & 0xff;
3030
3031 return true;
3032 }
3033
3034 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3035 int count)
3036 {
3037 struct ath_common *common = ath9k_hw_common(ah);
3038 int i;
3039
3040 if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3041 ath_dbg(common, EEPROM, "eeprom address not in range\n");
3042 return false;
3043 }
3044
3045 /*
3046 * Since we're reading the bytes in reverse order from a little-endian
3047 * word stream, an even address means we only use the lower half of
3048 * the 16-bit word at that address
3049 */
3050 if (address % 2 == 0) {
3051 if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3052 goto error;
3053
3054 count--;
3055 }
3056
3057 for (i = 0; i < count / 2; i++) {
3058 if (!ar9300_eeprom_read_word(common, address, buffer))
3059 goto error;
3060
3061 address -= 2;
3062 buffer += 2;
3063 }
3064
3065 if (count % 2)
3066 if (!ar9300_eeprom_read_byte(common, address, buffer))
3067 goto error;
3068
3069 return true;
3070
3071 error:
3072 ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3073 address);
3074 return false;
3075 }
3076
3077 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3078 {
3079 REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3080
3081 if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3082 AR9300_OTP_STATUS_VALID, 1000))
3083 return false;
3084
3085 *data = REG_READ(ah, AR9300_OTP_READ_DATA);
3086 return true;
3087 }
3088
3089 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3090 int count)
3091 {
3092 u32 data;
3093 int i;
3094
3095 for (i = 0; i < count; i++) {
3096 int offset = 8 * ((address - i) % 4);
3097 if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3098 return false;
3099
3100 buffer[i] = (data >> offset) & 0xff;
3101 }
3102
3103 return true;
3104 }
3105
3106
3107 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3108 int *length, int *major, int *minor)
3109 {
3110 unsigned long value[4];
3111
3112 value[0] = best[0];
3113 value[1] = best[1];
3114 value[2] = best[2];
3115 value[3] = best[3];
3116 *code = ((value[0] >> 5) & 0x0007);
3117 *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3118 *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3119 *major = (value[2] & 0x000f);
3120 *minor = (value[3] & 0x00ff);
3121 }
3122
3123 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3124 {
3125 int it, checksum = 0;
3126
3127 for (it = 0; it < dsize; it++) {
3128 checksum += data[it];
3129 checksum &= 0xffff;
3130 }
3131
3132 return checksum;
3133 }
3134
3135 static bool ar9300_uncompress_block(struct ath_hw *ah,
3136 u8 *mptr,
3137 int mdataSize,
3138 u8 *block,
3139 int size)
3140 {
3141 int it;
3142 int spot;
3143 int offset;
3144 int length;
3145 struct ath_common *common = ath9k_hw_common(ah);
3146
3147 spot = 0;
3148
3149 for (it = 0; it < size; it += (length+2)) {
3150 offset = block[it];
3151 offset &= 0xff;
3152 spot += offset;
3153 length = block[it+1];
3154 length &= 0xff;
3155
3156 if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3157 ath_dbg(common, EEPROM,
3158 "Restore at %d: spot=%d offset=%d length=%d\n",
3159 it, spot, offset, length);
3160 memcpy(&mptr[spot], &block[it+2], length);
3161 spot += length;
3162 } else if (length > 0) {
3163 ath_dbg(common, EEPROM,
3164 "Bad restore at %d: spot=%d offset=%d length=%d\n",
3165 it, spot, offset, length);
3166 return false;
3167 }
3168 }
3169 return true;
3170 }
3171
3172 static int ar9300_compress_decision(struct ath_hw *ah,
3173 int it,
3174 int code,
3175 int reference,
3176 u8 *mptr,
3177 u8 *word, int length, int mdata_size)
3178 {
3179 struct ath_common *common = ath9k_hw_common(ah);
3180 const struct ar9300_eeprom *eep = NULL;
3181
3182 switch (code) {
3183 case _CompressNone:
3184 if (length != mdata_size) {
3185 ath_dbg(common, EEPROM,
3186 "EEPROM structure size mismatch memory=%d eeprom=%d\n",
3187 mdata_size, length);
3188 return -1;
3189 }
3190 memcpy(mptr, word + COMP_HDR_LEN, length);
3191 ath_dbg(common, EEPROM,
3192 "restored eeprom %d: uncompressed, length %d\n",
3193 it, length);
3194 break;
3195 case _CompressBlock:
3196 if (reference == 0) {
3197 } else {
3198 eep = ar9003_eeprom_struct_find_by_id(reference);
3199 if (eep == NULL) {
3200 ath_dbg(common, EEPROM,
3201 "can't find reference eeprom struct %d\n",
3202 reference);
3203 return -1;
3204 }
3205 memcpy(mptr, eep, mdata_size);
3206 }
3207 ath_dbg(common, EEPROM,
3208 "restore eeprom %d: block, reference %d, length %d\n",
3209 it, reference, length);
3210 ar9300_uncompress_block(ah, mptr, mdata_size,
3211 (word + COMP_HDR_LEN), length);
3212 break;
3213 default:
3214 ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3215 return -1;
3216 }
3217 return 0;
3218 }
3219
3220 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3221 int count);
3222
3223 static bool ar9300_check_header(void *data)
3224 {
3225 u32 *word = data;
3226 return !(*word == 0 || *word == ~0);
3227 }
3228
3229 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3230 int base_addr)
3231 {
3232 u8 header[4];
3233
3234 if (!read(ah, base_addr, header, 4))
3235 return false;
3236
3237 return ar9300_check_header(header);
3238 }
3239
3240 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3241 int mdata_size)
3242 {
3243 struct ath_common *common = ath9k_hw_common(ah);
3244 u16 *data = (u16 *) mptr;
3245 int i;
3246
3247 for (i = 0; i < mdata_size / 2; i++, data++)
3248 ath9k_hw_nvram_read(common, i, data);
3249
3250 return 0;
3251 }
3252 /*
3253 * Read the configuration data from the eeprom.
3254 * The data can be put in any specified memory buffer.
3255 *
3256 * Returns -1 on error.
3257 * Returns address of next memory location on success.
3258 */
3259 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3260 u8 *mptr, int mdata_size)
3261 {
3262 #define MDEFAULT 15
3263 #define MSTATE 100
3264 int cptr;
3265 u8 *word;
3266 int code;
3267 int reference, length, major, minor;
3268 int osize;
3269 int it;
3270 u16 checksum, mchecksum;
3271 struct ath_common *common = ath9k_hw_common(ah);
3272 struct ar9300_eeprom *eep;
3273 eeprom_read_op read;
3274
3275 if (ath9k_hw_use_flash(ah)) {
3276 u8 txrx;
3277
3278 ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3279
3280 /* check if eeprom contains valid data */
3281 eep = (struct ar9300_eeprom *) mptr;
3282 txrx = eep->baseEepHeader.txrxMask;
3283 if (txrx != 0 && txrx != 0xff)
3284 return 0;
3285 }
3286
3287 word = kzalloc(2048, GFP_KERNEL);
3288 if (!word)
3289 return -ENOMEM;
3290
3291 memcpy(mptr, &ar9300_default, mdata_size);
3292
3293 read = ar9300_read_eeprom;
3294 if (AR_SREV_9485(ah))
3295 cptr = AR9300_BASE_ADDR_4K;
3296 else if (AR_SREV_9330(ah))
3297 cptr = AR9300_BASE_ADDR_512;
3298 else
3299 cptr = AR9300_BASE_ADDR;
3300 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3301 cptr);
3302 if (ar9300_check_eeprom_header(ah, read, cptr))
3303 goto found;
3304
3305 cptr = AR9300_BASE_ADDR_512;
3306 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3307 cptr);
3308 if (ar9300_check_eeprom_header(ah, read, cptr))
3309 goto found;
3310
3311 read = ar9300_read_otp;
3312 cptr = AR9300_BASE_ADDR;
3313 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3314 if (ar9300_check_eeprom_header(ah, read, cptr))
3315 goto found;
3316
3317 cptr = AR9300_BASE_ADDR_512;
3318 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3319 if (ar9300_check_eeprom_header(ah, read, cptr))
3320 goto found;
3321
3322 goto fail;
3323
3324 found:
3325 ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3326
3327 for (it = 0; it < MSTATE; it++) {
3328 if (!read(ah, cptr, word, COMP_HDR_LEN))
3329 goto fail;
3330
3331 if (!ar9300_check_header(word))
3332 break;
3333
3334 ar9300_comp_hdr_unpack(word, &code, &reference,
3335 &length, &major, &minor);
3336 ath_dbg(common, EEPROM,
3337 "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3338 cptr, code, reference, length, major, minor);
3339 if ((!AR_SREV_9485(ah) && length >= 1024) ||
3340 (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3341 ath_dbg(common, EEPROM, "Skipping bad header\n");
3342 cptr -= COMP_HDR_LEN;
3343 continue;
3344 }
3345
3346 osize = length;
3347 read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3348 checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3349 mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3350 ath_dbg(common, EEPROM, "checksum %x %x\n",
3351 checksum, mchecksum);
3352 if (checksum == mchecksum) {
3353 ar9300_compress_decision(ah, it, code, reference, mptr,
3354 word, length, mdata_size);
3355 } else {
3356 ath_dbg(common, EEPROM,
3357 "skipping block with bad checksum\n");
3358 }
3359 cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3360 }
3361
3362 kfree(word);
3363 return cptr;
3364
3365 fail:
3366 kfree(word);
3367 return -1;
3368 }
3369
3370 /*
3371 * Restore the configuration structure by reading the eeprom.
3372 * This function destroys any existing in-memory structure
3373 * content.
3374 */
3375 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3376 {
3377 u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3378
3379 if (ar9300_eeprom_restore_internal(ah, mptr,
3380 sizeof(struct ar9300_eeprom)) < 0)
3381 return false;
3382
3383 return true;
3384 }
3385
3386 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3387 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3388 struct ar9300_modal_eep_header *modal_hdr)
3389 {
3390 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3391 PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3392 PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3393 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3394 PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3395 PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3396 PR_EEP("Switch Settle", modal_hdr->switchSettling);
3397 PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3398 PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3399 PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3400 PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3401 PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3402 PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3403 PR_EEP("Temp Slope", modal_hdr->tempSlope);
3404 PR_EEP("Volt Slope", modal_hdr->voltSlope);
3405 PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3406 PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3407 PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3408 PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3409 PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3410 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3411 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3412 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3413 PR_EEP("Quick Drop", modal_hdr->quick_drop);
3414 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3415 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3416 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3417 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3418 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3419 PR_EEP("txClip", modal_hdr->txClip);
3420 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3421
3422 return len;
3423 }
3424
3425 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3426 u8 *buf, u32 len, u32 size)
3427 {
3428 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3429 struct ar9300_base_eep_hdr *pBase;
3430
3431 if (!dump_base_hdr) {
3432 len += snprintf(buf + len, size - len,
3433 "%20s :\n", "2GHz modal Header");
3434 len = ar9003_dump_modal_eeprom(buf, len, size,
3435 &eep->modalHeader2G);
3436 len += snprintf(buf + len, size - len,
3437 "%20s :\n", "5GHz modal Header");
3438 len = ar9003_dump_modal_eeprom(buf, len, size,
3439 &eep->modalHeader5G);
3440 goto out;
3441 }
3442
3443 pBase = &eep->baseEepHeader;
3444
3445 PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3446 PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3447 PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3448 PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3449 PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3450 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3451 AR5416_OPFLAGS_11A));
3452 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3453 AR5416_OPFLAGS_11G));
3454 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3455 AR5416_OPFLAGS_N_2G_HT20));
3456 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3457 AR5416_OPFLAGS_N_2G_HT40));
3458 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3459 AR5416_OPFLAGS_N_5G_HT20));
3460 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3461 AR5416_OPFLAGS_N_5G_HT40));
3462 PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3463 PR_EEP("RF Silent", pBase->rfSilent);
3464 PR_EEP("BT option", pBase->blueToothOptions);
3465 PR_EEP("Device Cap", pBase->deviceCap);
3466 PR_EEP("Device Type", pBase->deviceType);
3467 PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3468 PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3469 PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3470 PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3471 PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3472 PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3473 PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3474 PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3475 PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3476 PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3477 PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3478 PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3479 PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3480 PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3481 PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3482 PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3483 PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3484 PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3485 PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3486
3487 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3488 ah->eeprom.ar9300_eep.macAddr);
3489 out:
3490 if (len > size)
3491 len = size;
3492
3493 return len;
3494 }
3495 #else
3496 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3497 u8 *buf, u32 len, u32 size)
3498 {
3499 return 0;
3500 }
3501 #endif
3502
3503 /* XXX: review hardware docs */
3504 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3505 {
3506 return ah->eeprom.ar9300_eep.eepromVersion;
3507 }
3508
3509 /* XXX: could be read from the eepromVersion, not sure yet */
3510 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3511 {
3512 return 0;
3513 }
3514
3515 static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3516 bool is2ghz)
3517 {
3518 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3519
3520 if (is2ghz)
3521 return &eep->modalHeader2G;
3522 else
3523 return &eep->modalHeader5G;
3524 }
3525
3526 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3527 {
3528 int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3529
3530 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3531 REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3532 else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
3533 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3534 else {
3535 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3536 REG_RMW_FIELD(ah, AR_CH0_THERM,
3537 AR_CH0_THERM_XPABIASLVL_MSB,
3538 bias >> 2);
3539 REG_RMW_FIELD(ah, AR_CH0_THERM,
3540 AR_CH0_THERM_XPASHORT2GND, 1);
3541 }
3542 }
3543
3544 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3545 {
3546 return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3547 }
3548
3549
3550 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3551 {
3552 return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3553 }
3554
3555 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3556 {
3557 return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3558 }
3559
3560 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3561 bool is2ghz)
3562 {
3563 __le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3564 return le16_to_cpu(val);
3565 }
3566
3567 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3568 {
3569 struct ath9k_hw_capabilities *pCap = &ah->caps;
3570 int chain;
3571 u32 regval;
3572 static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3573 AR_PHY_SWITCH_CHAIN_0,
3574 AR_PHY_SWITCH_CHAIN_1,
3575 AR_PHY_SWITCH_CHAIN_2,
3576 };
3577
3578 u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3579
3580 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3581 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3582 AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3583 } else if (AR_SREV_9550(ah)) {
3584 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3585 AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3586 } else
3587 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3588 AR_SWITCH_TABLE_COM_ALL, value);
3589
3590
3591 /*
3592 * AR9462 defines new switch table for BT/WLAN,
3593 * here's new field name in XXX.ref for both 2G and 5G.
3594 * Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3595 * 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX
3596 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3597 *
3598 * 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX
3599 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3600 *
3601 * 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3602 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3603 */
3604 if (AR_SREV_9462_20_OR_LATER(ah)) {
3605 value = ar9003_switch_com_spdt_get(ah, is2ghz);
3606 REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3607 AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3608 REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3609 }
3610
3611 value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3612 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3613
3614 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3615 if ((ah->rxchainmask & BIT(chain)) ||
3616 (ah->txchainmask & BIT(chain))) {
3617 value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3618 is2ghz);
3619 REG_RMW_FIELD(ah, switch_chain_reg[chain],
3620 AR_SWITCH_TABLE_ALL, value);
3621 }
3622 }
3623
3624 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
3625 value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3626 /*
3627 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3628 * are the fields present
3629 */
3630 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3631 regval &= (~AR_ANT_DIV_CTRL_ALL);
3632 regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3633 /* enable_lnadiv */
3634 regval &= (~AR_PHY_ANT_DIV_LNADIV);
3635 regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
3636
3637 if (AR_SREV_9565(ah)) {
3638 if (ah->shared_chain_lnadiv) {
3639 regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
3640 } else {
3641 regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
3642 regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
3643 }
3644 }
3645
3646 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3647
3648 /*enable fast_div */
3649 regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3650 regval &= (~AR_FAST_DIV_ENABLE);
3651 regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
3652 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3653
3654 if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
3655 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3656 /*
3657 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3658 * main_tb, alt_tb
3659 */
3660 regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
3661 AR_PHY_ANT_DIV_ALT_LNACONF |
3662 AR_PHY_ANT_DIV_ALT_GAINTB |
3663 AR_PHY_ANT_DIV_MAIN_GAINTB));
3664 /* by default use LNA1 for the main antenna */
3665 regval |= (AR_PHY_ANT_DIV_LNA1 <<
3666 AR_PHY_ANT_DIV_MAIN_LNACONF_S);
3667 regval |= (AR_PHY_ANT_DIV_LNA2 <<
3668 AR_PHY_ANT_DIV_ALT_LNACONF_S);
3669 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3670 }
3671 }
3672 }
3673
3674 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3675 {
3676 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3677 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3678 int drive_strength;
3679 unsigned long reg;
3680
3681 drive_strength = pBase->miscConfiguration & BIT(0);
3682 if (!drive_strength)
3683 return;
3684
3685 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3686 reg &= ~0x00ffffc0;
3687 reg |= 0x5 << 21;
3688 reg |= 0x5 << 18;
3689 reg |= 0x5 << 15;
3690 reg |= 0x5 << 12;
3691 reg |= 0x5 << 9;
3692 reg |= 0x5 << 6;
3693 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3694
3695 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3696 reg &= ~0xffffffe0;
3697 reg |= 0x5 << 29;
3698 reg |= 0x5 << 26;
3699 reg |= 0x5 << 23;
3700 reg |= 0x5 << 20;
3701 reg |= 0x5 << 17;
3702 reg |= 0x5 << 14;
3703 reg |= 0x5 << 11;
3704 reg |= 0x5 << 8;
3705 reg |= 0x5 << 5;
3706 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3707
3708 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3709 reg &= ~0xff800000;
3710 reg |= 0x5 << 29;
3711 reg |= 0x5 << 26;
3712 reg |= 0x5 << 23;
3713 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3714 }
3715
3716 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3717 struct ath9k_channel *chan)
3718 {
3719 int f[3], t[3];
3720 u16 value;
3721 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3722
3723 if (chain >= 0 && chain < 3) {
3724 if (IS_CHAN_2GHZ(chan))
3725 return eep->modalHeader2G.xatten1DB[chain];
3726 else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3727 t[0] = eep->base_ext2.xatten1DBLow[chain];
3728 f[0] = 5180;
3729 t[1] = eep->modalHeader5G.xatten1DB[chain];
3730 f[1] = 5500;
3731 t[2] = eep->base_ext2.xatten1DBHigh[chain];
3732 f[2] = 5785;
3733 value = ar9003_hw_power_interpolate((s32) chan->channel,
3734 f, t, 3);
3735 return value;
3736 } else
3737 return eep->modalHeader5G.xatten1DB[chain];
3738 }
3739
3740 return 0;
3741 }
3742
3743
3744 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3745 struct ath9k_channel *chan)
3746 {
3747 int f[3], t[3];
3748 u16 value;
3749 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3750
3751 if (chain >= 0 && chain < 3) {
3752 if (IS_CHAN_2GHZ(chan))
3753 return eep->modalHeader2G.xatten1Margin[chain];
3754 else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3755 t[0] = eep->base_ext2.xatten1MarginLow[chain];
3756 f[0] = 5180;
3757 t[1] = eep->modalHeader5G.xatten1Margin[chain];
3758 f[1] = 5500;
3759 t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3760 f[2] = 5785;
3761 value = ar9003_hw_power_interpolate((s32) chan->channel,
3762 f, t, 3);
3763 return value;
3764 } else
3765 return eep->modalHeader5G.xatten1Margin[chain];
3766 }
3767
3768 return 0;
3769 }
3770
3771 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3772 {
3773 int i;
3774 u16 value;
3775 unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3776 AR_PHY_EXT_ATTEN_CTL_1,
3777 AR_PHY_EXT_ATTEN_CTL_2,
3778 };
3779
3780 /* Test value. if 0 then attenuation is unused. Don't load anything. */
3781 for (i = 0; i < 3; i++) {
3782 if (ah->txchainmask & BIT(i)) {
3783 value = ar9003_hw_atten_chain_get(ah, i, chan);
3784 REG_RMW_FIELD(ah, ext_atten_reg[i],
3785 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3786
3787 value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3788 REG_RMW_FIELD(ah, ext_atten_reg[i],
3789 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3790 value);
3791 }
3792 }
3793 }
3794
3795 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3796 {
3797 int timeout = 100;
3798
3799 while (pmu_set != REG_READ(ah, pmu_reg)) {
3800 if (timeout-- == 0)
3801 return false;
3802 REG_WRITE(ah, pmu_reg, pmu_set);
3803 udelay(10);
3804 }
3805
3806 return true;
3807 }
3808
3809 void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3810 {
3811 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3812 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3813 u32 reg_val;
3814
3815 if (pBase->featureEnable & BIT(4)) {
3816 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3817 int reg_pmu_set;
3818
3819 reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3820 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3821 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3822 return;
3823
3824 if (AR_SREV_9330(ah)) {
3825 if (ah->is_clk_25mhz) {
3826 reg_pmu_set = (3 << 1) | (8 << 4) |
3827 (3 << 8) | (1 << 14) |
3828 (6 << 17) | (1 << 20) |
3829 (3 << 24);
3830 } else {
3831 reg_pmu_set = (4 << 1) | (7 << 4) |
3832 (3 << 8) | (1 << 14) |
3833 (6 << 17) | (1 << 20) |
3834 (3 << 24);
3835 }
3836 } else {
3837 reg_pmu_set = (5 << 1) | (7 << 4) |
3838 (2 << 8) | (2 << 14) |
3839 (6 << 17) | (1 << 20) |
3840 (3 << 24) | (1 << 28);
3841 }
3842
3843 REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3844 if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3845 return;
3846
3847 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3848 | (4 << 26);
3849 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3850 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3851 return;
3852
3853 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3854 | (1 << 21);
3855 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3856 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3857 return;
3858 } else if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3859 reg_val = le32_to_cpu(pBase->swreg);
3860 REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3861 } else {
3862 /* Internal regulator is ON. Write swreg register. */
3863 reg_val = le32_to_cpu(pBase->swreg);
3864 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3865 REG_READ(ah, AR_RTC_REG_CONTROL1) &
3866 (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3867 REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3868 /* Set REG_CONTROL1.SWREG_PROGRAM */
3869 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3870 REG_READ(ah,
3871 AR_RTC_REG_CONTROL1) |
3872 AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3873 }
3874 } else {
3875 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3876 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3877 while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3878 AR_PHY_PMU2_PGM))
3879 udelay(10);
3880
3881 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3882 while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3883 AR_PHY_PMU1_PWD))
3884 udelay(10);
3885 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3886 while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3887 AR_PHY_PMU2_PGM))
3888 udelay(10);
3889 } else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
3890 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3891 else {
3892 reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3893 AR_RTC_FORCE_SWREG_PRD;
3894 REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3895 }
3896 }
3897
3898 }
3899
3900 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3901 {
3902 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3903 u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3904
3905 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3906 return;
3907
3908 if (eep->baseEepHeader.featureEnable & 0x40) {
3909 tuning_caps_param &= 0x7f;
3910 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3911 tuning_caps_param);
3912 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3913 tuning_caps_param);
3914 }
3915 }
3916
3917 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3918 {
3919 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3920 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3921 int quick_drop;
3922 s32 t[3], f[3] = {5180, 5500, 5785};
3923
3924 if (!(pBase->miscConfiguration & BIT(1)))
3925 return;
3926
3927 if (freq < 4000)
3928 quick_drop = eep->modalHeader2G.quick_drop;
3929 else {
3930 t[0] = eep->base_ext1.quick_drop_low;
3931 t[1] = eep->modalHeader5G.quick_drop;
3932 t[2] = eep->base_ext1.quick_drop_high;
3933 quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
3934 }
3935 REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
3936 }
3937
3938 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
3939 {
3940 u32 value;
3941
3942 value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
3943
3944 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3945 AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
3946 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3947 AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
3948 }
3949
3950 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
3951 {
3952 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3953 u8 xpa_ctl;
3954
3955 if (!(eep->baseEepHeader.featureEnable & 0x80))
3956 return;
3957
3958 if (!AR_SREV_9300(ah) && !AR_SREV_9340(ah) && !AR_SREV_9580(ah))
3959 return;
3960
3961 xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
3962 if (is2ghz)
3963 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3964 AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
3965 else
3966 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3967 AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
3968 }
3969
3970 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
3971 {
3972 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3973 u8 bias;
3974
3975 if (!(eep->baseEepHeader.featureEnable & 0x40))
3976 return;
3977
3978 if (!AR_SREV_9300(ah))
3979 return;
3980
3981 bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
3982 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
3983 bias & 0x3);
3984 bias >>= 2;
3985 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
3986 bias & 0x3);
3987 bias >>= 2;
3988 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
3989 bias & 0x3);
3990 }
3991
3992 static int ar9003_hw_get_thermometer(struct ath_hw *ah)
3993 {
3994 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3995 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3996 int thermometer = (pBase->miscConfiguration >> 1) & 0x3;
3997
3998 return --thermometer;
3999 }
4000
4001 static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
4002 {
4003 int thermometer = ar9003_hw_get_thermometer(ah);
4004 u8 therm_on = (thermometer < 0) ? 0 : 1;
4005
4006 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4007 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4008 if (ah->caps.tx_chainmask & BIT(1))
4009 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4010 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4011 if (ah->caps.tx_chainmask & BIT(2))
4012 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4013 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4014
4015 therm_on = (thermometer < 0) ? 0 : (thermometer == 0);
4016 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4017 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4018 if (ah->caps.tx_chainmask & BIT(1)) {
4019 therm_on = (thermometer < 0) ? 0 : (thermometer == 1);
4020 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4021 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4022 }
4023 if (ah->caps.tx_chainmask & BIT(2)) {
4024 therm_on = (thermometer < 0) ? 0 : (thermometer == 2);
4025 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4026 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4027 }
4028 }
4029
4030 static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
4031 {
4032 u32 data, ko, kg;
4033
4034 if (!AR_SREV_9462_20(ah))
4035 return;
4036 ar9300_otp_read_word(ah, 1, &data);
4037 ko = data & 0xff;
4038 kg = (data >> 8) & 0xff;
4039 if (ko || kg) {
4040 REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4041 AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
4042 REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4043 AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
4044 kg + 256);
4045 }
4046 }
4047
4048 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
4049 struct ath9k_channel *chan)
4050 {
4051 bool is2ghz = IS_CHAN_2GHZ(chan);
4052 ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
4053 ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
4054 ar9003_hw_ant_ctrl_apply(ah, is2ghz);
4055 ar9003_hw_drive_strength_apply(ah);
4056 ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
4057 ar9003_hw_atten_apply(ah, chan);
4058 ar9003_hw_quick_drop_apply(ah, chan->channel);
4059 if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9550(ah))
4060 ar9003_hw_internal_regulator_apply(ah);
4061 ar9003_hw_apply_tuning_caps(ah);
4062 ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
4063 ar9003_hw_thermometer_apply(ah);
4064 ar9003_hw_thermo_cal_apply(ah);
4065 }
4066
4067 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
4068 struct ath9k_channel *chan)
4069 {
4070 }
4071
4072 /*
4073 * Returns the interpolated y value corresponding to the specified x value
4074 * from the np ordered pairs of data (px,py).
4075 * The pairs do not have to be in any order.
4076 * If the specified x value is less than any of the px,
4077 * the returned y value is equal to the py for the lowest px.
4078 * If the specified x value is greater than any of the px,
4079 * the returned y value is equal to the py for the highest px.
4080 */
4081 static int ar9003_hw_power_interpolate(int32_t x,
4082 int32_t *px, int32_t *py, u_int16_t np)
4083 {
4084 int ip = 0;
4085 int lx = 0, ly = 0, lhave = 0;
4086 int hx = 0, hy = 0, hhave = 0;
4087 int dx = 0;
4088 int y = 0;
4089
4090 lhave = 0;
4091 hhave = 0;
4092
4093 /* identify best lower and higher x calibration measurement */
4094 for (ip = 0; ip < np; ip++) {
4095 dx = x - px[ip];
4096
4097 /* this measurement is higher than our desired x */
4098 if (dx <= 0) {
4099 if (!hhave || dx > (x - hx)) {
4100 /* new best higher x measurement */
4101 hx = px[ip];
4102 hy = py[ip];
4103 hhave = 1;
4104 }
4105 }
4106 /* this measurement is lower than our desired x */
4107 if (dx >= 0) {
4108 if (!lhave || dx < (x - lx)) {
4109 /* new best lower x measurement */
4110 lx = px[ip];
4111 ly = py[ip];
4112 lhave = 1;
4113 }
4114 }
4115 }
4116
4117 /* the low x is good */
4118 if (lhave) {
4119 /* so is the high x */
4120 if (hhave) {
4121 /* they're the same, so just pick one */
4122 if (hx == lx)
4123 y = ly;
4124 else /* interpolate */
4125 y = interpolate(x, lx, hx, ly, hy);
4126 } else /* only low is good, use it */
4127 y = ly;
4128 } else if (hhave) /* only high is good, use it */
4129 y = hy;
4130 else /* nothing is good,this should never happen unless np=0, ???? */
4131 y = -(1 << 30);
4132 return y;
4133 }
4134
4135 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4136 u16 rateIndex, u16 freq, bool is2GHz)
4137 {
4138 u16 numPiers, i;
4139 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4140 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4141 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4142 struct cal_tgt_pow_legacy *pEepromTargetPwr;
4143 u8 *pFreqBin;
4144
4145 if (is2GHz) {
4146 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4147 pEepromTargetPwr = eep->calTargetPower2G;
4148 pFreqBin = eep->calTarget_freqbin_2G;
4149 } else {
4150 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4151 pEepromTargetPwr = eep->calTargetPower5G;
4152 pFreqBin = eep->calTarget_freqbin_5G;
4153 }
4154
4155 /*
4156 * create array of channels and targetpower from
4157 * targetpower piers stored on eeprom
4158 */
4159 for (i = 0; i < numPiers; i++) {
4160 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4161 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4162 }
4163
4164 /* interpolate to get target power for given frequency */
4165 return (u8) ar9003_hw_power_interpolate((s32) freq,
4166 freqArray,
4167 targetPowerArray, numPiers);
4168 }
4169
4170 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4171 u16 rateIndex,
4172 u16 freq, bool is2GHz)
4173 {
4174 u16 numPiers, i;
4175 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4176 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4177 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4178 struct cal_tgt_pow_ht *pEepromTargetPwr;
4179 u8 *pFreqBin;
4180
4181 if (is2GHz) {
4182 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4183 pEepromTargetPwr = eep->calTargetPower2GHT20;
4184 pFreqBin = eep->calTarget_freqbin_2GHT20;
4185 } else {
4186 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4187 pEepromTargetPwr = eep->calTargetPower5GHT20;
4188 pFreqBin = eep->calTarget_freqbin_5GHT20;
4189 }
4190
4191 /*
4192 * create array of channels and targetpower
4193 * from targetpower piers stored on eeprom
4194 */
4195 for (i = 0; i < numPiers; i++) {
4196 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4197 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4198 }
4199
4200 /* interpolate to get target power for given frequency */
4201 return (u8) ar9003_hw_power_interpolate((s32) freq,
4202 freqArray,
4203 targetPowerArray, numPiers);
4204 }
4205
4206 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4207 u16 rateIndex,
4208 u16 freq, bool is2GHz)
4209 {
4210 u16 numPiers, i;
4211 s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4212 s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4213 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4214 struct cal_tgt_pow_ht *pEepromTargetPwr;
4215 u8 *pFreqBin;
4216
4217 if (is2GHz) {
4218 numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4219 pEepromTargetPwr = eep->calTargetPower2GHT40;
4220 pFreqBin = eep->calTarget_freqbin_2GHT40;
4221 } else {
4222 numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4223 pEepromTargetPwr = eep->calTargetPower5GHT40;
4224 pFreqBin = eep->calTarget_freqbin_5GHT40;
4225 }
4226
4227 /*
4228 * create array of channels and targetpower from
4229 * targetpower piers stored on eeprom
4230 */
4231 for (i = 0; i < numPiers; i++) {
4232 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4233 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4234 }
4235
4236 /* interpolate to get target power for given frequency */
4237 return (u8) ar9003_hw_power_interpolate((s32) freq,
4238 freqArray,
4239 targetPowerArray, numPiers);
4240 }
4241
4242 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4243 u16 rateIndex, u16 freq)
4244 {
4245 u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4246 s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4247 s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4248 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4249 struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4250 u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4251
4252 /*
4253 * create array of channels and targetpower from
4254 * targetpower piers stored on eeprom
4255 */
4256 for (i = 0; i < numPiers; i++) {
4257 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4258 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4259 }
4260
4261 /* interpolate to get target power for given frequency */
4262 return (u8) ar9003_hw_power_interpolate((s32) freq,
4263 freqArray,
4264 targetPowerArray, numPiers);
4265 }
4266
4267 /* Set tx power registers to array of values passed in */
4268 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4269 {
4270 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
4271 /* make sure forced gain is not set */
4272 REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4273
4274 /* Write the OFDM power per rate set */
4275
4276 /* 6 (LSB), 9, 12, 18 (MSB) */
4277 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4278 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4279 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4280 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4281 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4282
4283 /* 24 (LSB), 36, 48, 54 (MSB) */
4284 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4285 POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4286 POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4287 POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4288 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4289
4290 /* Write the CCK power per rate set */
4291
4292 /* 1L (LSB), reserved, 2L, 2S (MSB) */
4293 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4294 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4295 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4296 /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
4297 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4298
4299 /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4300 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4301 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4302 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4303 POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4304 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4305 );
4306
4307 /* Write the power for duplicated frames - HT40 */
4308
4309 /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4310 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4311 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4312 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4313 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4314 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4315 );
4316
4317 /* Write the HT20 power per rate set */
4318
4319 /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4320 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4321 POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4322 POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4323 POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4324 POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4325 );
4326
4327 /* 6 (LSB), 7, 12, 13 (MSB) */
4328 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4329 POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4330 POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4331 POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4332 POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4333 );
4334
4335 /* 14 (LSB), 15, 20, 21 */
4336 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4337 POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4338 POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4339 POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4340 POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4341 );
4342
4343 /* Mixed HT20 and HT40 rates */
4344
4345 /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4346 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4347 POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4348 POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4349 POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4350 POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4351 );
4352
4353 /*
4354 * Write the HT40 power per rate set
4355 * correct PAR difference between HT40 and HT20/LEGACY
4356 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4357 */
4358 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4359 POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4360 POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4361 POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4362 POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4363 );
4364
4365 /* 6 (LSB), 7, 12, 13 (MSB) */
4366 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4367 POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4368 POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4369 POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4370 POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4371 );
4372
4373 /* 14 (LSB), 15, 20, 21 */
4374 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4375 POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4376 POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4377 POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4378 POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4379 );
4380
4381 return 0;
4382 #undef POW_SM
4383 }
4384
4385 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4386 u8 *targetPowerValT2,
4387 bool is2GHz)
4388 {
4389 targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4390 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4391 is2GHz);
4392 targetPowerValT2[ALL_TARGET_LEGACY_36] =
4393 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4394 is2GHz);
4395 targetPowerValT2[ALL_TARGET_LEGACY_48] =
4396 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4397 is2GHz);
4398 targetPowerValT2[ALL_TARGET_LEGACY_54] =
4399 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4400 is2GHz);
4401 }
4402
4403 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4404 u8 *targetPowerValT2)
4405 {
4406 targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4407 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4408 freq);
4409 targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4410 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4411 targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4412 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4413 targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4414 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4415 }
4416
4417 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4418 u8 *targetPowerValT2, bool is2GHz)
4419 {
4420 targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4421 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4422 is2GHz);
4423 targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4424 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4425 freq, is2GHz);
4426 targetPowerValT2[ALL_TARGET_HT20_4] =
4427 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4428 is2GHz);
4429 targetPowerValT2[ALL_TARGET_HT20_5] =
4430 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4431 is2GHz);
4432 targetPowerValT2[ALL_TARGET_HT20_6] =
4433 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4434 is2GHz);
4435 targetPowerValT2[ALL_TARGET_HT20_7] =
4436 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4437 is2GHz);
4438 targetPowerValT2[ALL_TARGET_HT20_12] =
4439 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4440 is2GHz);
4441 targetPowerValT2[ALL_TARGET_HT20_13] =
4442 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4443 is2GHz);
4444 targetPowerValT2[ALL_TARGET_HT20_14] =
4445 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4446 is2GHz);
4447 targetPowerValT2[ALL_TARGET_HT20_15] =
4448 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4449 is2GHz);
4450 targetPowerValT2[ALL_TARGET_HT20_20] =
4451 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4452 is2GHz);
4453 targetPowerValT2[ALL_TARGET_HT20_21] =
4454 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4455 is2GHz);
4456 targetPowerValT2[ALL_TARGET_HT20_22] =
4457 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4458 is2GHz);
4459 targetPowerValT2[ALL_TARGET_HT20_23] =
4460 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4461 is2GHz);
4462 }
4463
4464 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4465 u16 freq,
4466 u8 *targetPowerValT2,
4467 bool is2GHz)
4468 {
4469 /* XXX: hard code for now, need to get from eeprom struct */
4470 u8 ht40PowerIncForPdadc = 0;
4471
4472 targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4473 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4474 is2GHz) + ht40PowerIncForPdadc;
4475 targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4476 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4477 freq,
4478 is2GHz) + ht40PowerIncForPdadc;
4479 targetPowerValT2[ALL_TARGET_HT40_4] =
4480 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4481 is2GHz) + ht40PowerIncForPdadc;
4482 targetPowerValT2[ALL_TARGET_HT40_5] =
4483 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4484 is2GHz) + ht40PowerIncForPdadc;
4485 targetPowerValT2[ALL_TARGET_HT40_6] =
4486 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4487 is2GHz) + ht40PowerIncForPdadc;
4488 targetPowerValT2[ALL_TARGET_HT40_7] =
4489 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4490 is2GHz) + ht40PowerIncForPdadc;
4491 targetPowerValT2[ALL_TARGET_HT40_12] =
4492 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4493 is2GHz) + ht40PowerIncForPdadc;
4494 targetPowerValT2[ALL_TARGET_HT40_13] =
4495 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4496 is2GHz) + ht40PowerIncForPdadc;
4497 targetPowerValT2[ALL_TARGET_HT40_14] =
4498 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4499 is2GHz) + ht40PowerIncForPdadc;
4500 targetPowerValT2[ALL_TARGET_HT40_15] =
4501 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4502 is2GHz) + ht40PowerIncForPdadc;
4503 targetPowerValT2[ALL_TARGET_HT40_20] =
4504 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4505 is2GHz) + ht40PowerIncForPdadc;
4506 targetPowerValT2[ALL_TARGET_HT40_21] =
4507 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4508 is2GHz) + ht40PowerIncForPdadc;
4509 targetPowerValT2[ALL_TARGET_HT40_22] =
4510 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4511 is2GHz) + ht40PowerIncForPdadc;
4512 targetPowerValT2[ALL_TARGET_HT40_23] =
4513 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4514 is2GHz) + ht40PowerIncForPdadc;
4515 }
4516
4517 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4518 struct ath9k_channel *chan,
4519 u8 *targetPowerValT2)
4520 {
4521 bool is2GHz = IS_CHAN_2GHZ(chan);
4522 unsigned int i = 0;
4523 struct ath_common *common = ath9k_hw_common(ah);
4524 u16 freq = chan->channel;
4525
4526 if (is2GHz)
4527 ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4528
4529 ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4530 ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4531
4532 if (IS_CHAN_HT40(chan))
4533 ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4534 is2GHz);
4535
4536 for (i = 0; i < ar9300RateSize; i++) {
4537 ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
4538 i, targetPowerValT2[i]);
4539 }
4540 }
4541
4542 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4543 int mode,
4544 int ipier,
4545 int ichain,
4546 int *pfrequency,
4547 int *pcorrection,
4548 int *ptemperature, int *pvoltage)
4549 {
4550 u8 *pCalPier;
4551 struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4552 int is2GHz;
4553 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4554 struct ath_common *common = ath9k_hw_common(ah);
4555
4556 if (ichain >= AR9300_MAX_CHAINS) {
4557 ath_dbg(common, EEPROM,
4558 "Invalid chain index, must be less than %d\n",
4559 AR9300_MAX_CHAINS);
4560 return -1;
4561 }
4562
4563 if (mode) { /* 5GHz */
4564 if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4565 ath_dbg(common, EEPROM,
4566 "Invalid 5GHz cal pier index, must be less than %d\n",
4567 AR9300_NUM_5G_CAL_PIERS);
4568 return -1;
4569 }
4570 pCalPier = &(eep->calFreqPier5G[ipier]);
4571 pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4572 is2GHz = 0;
4573 } else {
4574 if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4575 ath_dbg(common, EEPROM,
4576 "Invalid 2GHz cal pier index, must be less than %d\n",
4577 AR9300_NUM_2G_CAL_PIERS);
4578 return -1;
4579 }
4580
4581 pCalPier = &(eep->calFreqPier2G[ipier]);
4582 pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4583 is2GHz = 1;
4584 }
4585
4586 *pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4587 *pcorrection = pCalPierStruct->refPower;
4588 *ptemperature = pCalPierStruct->tempMeas;
4589 *pvoltage = pCalPierStruct->voltMeas;
4590
4591 return 0;
4592 }
4593
4594 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4595 int frequency,
4596 int *correction,
4597 int *voltage, int *temperature)
4598 {
4599 int tempSlope = 0;
4600 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4601 int f[8], t[8], i;
4602
4603 REG_RMW(ah, AR_PHY_TPC_11_B0,
4604 (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4605 AR_PHY_TPC_OLPC_GAIN_DELTA);
4606 if (ah->caps.tx_chainmask & BIT(1))
4607 REG_RMW(ah, AR_PHY_TPC_11_B1,
4608 (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4609 AR_PHY_TPC_OLPC_GAIN_DELTA);
4610 if (ah->caps.tx_chainmask & BIT(2))
4611 REG_RMW(ah, AR_PHY_TPC_11_B2,
4612 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4613 AR_PHY_TPC_OLPC_GAIN_DELTA);
4614
4615 /* enable open loop power control on chip */
4616 REG_RMW(ah, AR_PHY_TPC_6_B0,
4617 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4618 AR_PHY_TPC_6_ERROR_EST_MODE);
4619 if (ah->caps.tx_chainmask & BIT(1))
4620 REG_RMW(ah, AR_PHY_TPC_6_B1,
4621 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4622 AR_PHY_TPC_6_ERROR_EST_MODE);
4623 if (ah->caps.tx_chainmask & BIT(2))
4624 REG_RMW(ah, AR_PHY_TPC_6_B2,
4625 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4626 AR_PHY_TPC_6_ERROR_EST_MODE);
4627
4628 /*
4629 * enable temperature compensation
4630 * Need to use register names
4631 */
4632 if (frequency < 4000)
4633 tempSlope = eep->modalHeader2G.tempSlope;
4634 else if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
4635 for (i = 0; i < 8; i++) {
4636 t[i] = eep->base_ext1.tempslopextension[i];
4637 f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
4638 }
4639 tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4640 f, t, 8);
4641 } else if (eep->base_ext2.tempSlopeLow != 0) {
4642 t[0] = eep->base_ext2.tempSlopeLow;
4643 f[0] = 5180;
4644 t[1] = eep->modalHeader5G.tempSlope;
4645 f[1] = 5500;
4646 t[2] = eep->base_ext2.tempSlopeHigh;
4647 f[2] = 5785;
4648 tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4649 f, t, 3);
4650 } else
4651 tempSlope = eep->modalHeader5G.tempSlope;
4652
4653 REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4654
4655 if (AR_SREV_9462_20(ah))
4656 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4657 AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);
4658
4659
4660 REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4661 temperature[0]);
4662
4663 return 0;
4664 }
4665
4666 /* Apply the recorded correction values. */
4667 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4668 {
4669 int ichain, ipier, npier;
4670 int mode;
4671 int lfrequency[AR9300_MAX_CHAINS],
4672 lcorrection[AR9300_MAX_CHAINS],
4673 ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4674 int hfrequency[AR9300_MAX_CHAINS],
4675 hcorrection[AR9300_MAX_CHAINS],
4676 htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4677 int fdiff;
4678 int correction[AR9300_MAX_CHAINS],
4679 voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4680 int pfrequency, pcorrection, ptemperature, pvoltage;
4681 struct ath_common *common = ath9k_hw_common(ah);
4682
4683 mode = (frequency >= 4000);
4684 if (mode)
4685 npier = AR9300_NUM_5G_CAL_PIERS;
4686 else
4687 npier = AR9300_NUM_2G_CAL_PIERS;
4688
4689 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4690 lfrequency[ichain] = 0;
4691 hfrequency[ichain] = 100000;
4692 }
4693 /* identify best lower and higher frequency calibration measurement */
4694 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4695 for (ipier = 0; ipier < npier; ipier++) {
4696 if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4697 &pfrequency, &pcorrection,
4698 &ptemperature, &pvoltage)) {
4699 fdiff = frequency - pfrequency;
4700
4701 /*
4702 * this measurement is higher than
4703 * our desired frequency
4704 */
4705 if (fdiff <= 0) {
4706 if (hfrequency[ichain] <= 0 ||
4707 hfrequency[ichain] >= 100000 ||
4708 fdiff >
4709 (frequency - hfrequency[ichain])) {
4710 /*
4711 * new best higher
4712 * frequency measurement
4713 */
4714 hfrequency[ichain] = pfrequency;
4715 hcorrection[ichain] =
4716 pcorrection;
4717 htemperature[ichain] =
4718 ptemperature;
4719 hvoltage[ichain] = pvoltage;
4720 }
4721 }
4722 if (fdiff >= 0) {
4723 if (lfrequency[ichain] <= 0
4724 || fdiff <
4725 (frequency - lfrequency[ichain])) {
4726 /*
4727 * new best lower
4728 * frequency measurement
4729 */
4730 lfrequency[ichain] = pfrequency;
4731 lcorrection[ichain] =
4732 pcorrection;
4733 ltemperature[ichain] =
4734 ptemperature;
4735 lvoltage[ichain] = pvoltage;
4736 }
4737 }
4738 }
4739 }
4740 }
4741
4742 /* interpolate */
4743 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4744 ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4745 ichain, frequency, lfrequency[ichain],
4746 lcorrection[ichain], hfrequency[ichain],
4747 hcorrection[ichain]);
4748 /* they're the same, so just pick one */
4749 if (hfrequency[ichain] == lfrequency[ichain]) {
4750 correction[ichain] = lcorrection[ichain];
4751 voltage[ichain] = lvoltage[ichain];
4752 temperature[ichain] = ltemperature[ichain];
4753 }
4754 /* the low frequency is good */
4755 else if (frequency - lfrequency[ichain] < 1000) {
4756 /* so is the high frequency, interpolate */
4757 if (hfrequency[ichain] - frequency < 1000) {
4758
4759 correction[ichain] = interpolate(frequency,
4760 lfrequency[ichain],
4761 hfrequency[ichain],
4762 lcorrection[ichain],
4763 hcorrection[ichain]);
4764
4765 temperature[ichain] = interpolate(frequency,
4766 lfrequency[ichain],
4767 hfrequency[ichain],
4768 ltemperature[ichain],
4769 htemperature[ichain]);
4770
4771 voltage[ichain] = interpolate(frequency,
4772 lfrequency[ichain],
4773 hfrequency[ichain],
4774 lvoltage[ichain],
4775 hvoltage[ichain]);
4776 }
4777 /* only low is good, use it */
4778 else {
4779 correction[ichain] = lcorrection[ichain];
4780 temperature[ichain] = ltemperature[ichain];
4781 voltage[ichain] = lvoltage[ichain];
4782 }
4783 }
4784 /* only high is good, use it */
4785 else if (hfrequency[ichain] - frequency < 1000) {
4786 correction[ichain] = hcorrection[ichain];
4787 temperature[ichain] = htemperature[ichain];
4788 voltage[ichain] = hvoltage[ichain];
4789 } else { /* nothing is good, presume 0???? */
4790 correction[ichain] = 0;
4791 temperature[ichain] = 0;
4792 voltage[ichain] = 0;
4793 }
4794 }
4795
4796 ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4797 temperature);
4798
4799 ath_dbg(common, EEPROM,
4800 "for frequency=%d, calibration correction = %d %d %d\n",
4801 frequency, correction[0], correction[1], correction[2]);
4802
4803 return 0;
4804 }
4805
4806 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4807 int idx,
4808 int edge,
4809 bool is2GHz)
4810 {
4811 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4812 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4813
4814 if (is2GHz)
4815 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4816 else
4817 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4818 }
4819
4820 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4821 int idx,
4822 unsigned int edge,
4823 u16 freq,
4824 bool is2GHz)
4825 {
4826 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4827 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4828
4829 u8 *ctl_freqbin = is2GHz ?
4830 &eep->ctl_freqbin_2G[idx][0] :
4831 &eep->ctl_freqbin_5G[idx][0];
4832
4833 if (is2GHz) {
4834 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4835 CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4836 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4837 } else {
4838 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4839 CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4840 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4841 }
4842
4843 return MAX_RATE_POWER;
4844 }
4845
4846 /*
4847 * Find the maximum conformance test limit for the given channel and CTL info
4848 */
4849 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4850 u16 freq, int idx, bool is2GHz)
4851 {
4852 u16 twiceMaxEdgePower = MAX_RATE_POWER;
4853 u8 *ctl_freqbin = is2GHz ?
4854 &eep->ctl_freqbin_2G[idx][0] :
4855 &eep->ctl_freqbin_5G[idx][0];
4856 u16 num_edges = is2GHz ?
4857 AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4858 unsigned int edge;
4859
4860 /* Get the edge power */
4861 for (edge = 0;
4862 (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4863 edge++) {
4864 /*
4865 * If there's an exact channel match or an inband flag set
4866 * on the lower channel use the given rdEdgePower
4867 */
4868 if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4869 twiceMaxEdgePower =
4870 ar9003_hw_get_direct_edge_power(eep, idx,
4871 edge, is2GHz);
4872 break;
4873 } else if ((edge > 0) &&
4874 (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4875 is2GHz))) {
4876 twiceMaxEdgePower =
4877 ar9003_hw_get_indirect_edge_power(eep, idx,
4878 edge, freq,
4879 is2GHz);
4880 /*
4881 * Leave loop - no more affecting edges possible in
4882 * this monotonic increasing list
4883 */
4884 break;
4885 }
4886 }
4887 return twiceMaxEdgePower;
4888 }
4889
4890 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4891 struct ath9k_channel *chan,
4892 u8 *pPwrArray, u16 cfgCtl,
4893 u8 antenna_reduction,
4894 u16 powerLimit)
4895 {
4896 struct ath_common *common = ath9k_hw_common(ah);
4897 struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4898 u16 twiceMaxEdgePower;
4899 int i;
4900 u16 scaledPower = 0, minCtlPower;
4901 static const u16 ctlModesFor11a[] = {
4902 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4903 };
4904 static const u16 ctlModesFor11g[] = {
4905 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4906 CTL_11G_EXT, CTL_2GHT40
4907 };
4908 u16 numCtlModes;
4909 const u16 *pCtlMode;
4910 u16 ctlMode, freq;
4911 struct chan_centers centers;
4912 u8 *ctlIndex;
4913 u8 ctlNum;
4914 u16 twiceMinEdgePower;
4915 bool is2ghz = IS_CHAN_2GHZ(chan);
4916
4917 ath9k_hw_get_channel_centers(ah, chan, &centers);
4918 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
4919 antenna_reduction);
4920
4921 if (is2ghz) {
4922 /* Setup for CTL modes */
4923 /* CTL_11B, CTL_11G, CTL_2GHT20 */
4924 numCtlModes =
4925 ARRAY_SIZE(ctlModesFor11g) -
4926 SUB_NUM_CTL_MODES_AT_2G_40;
4927 pCtlMode = ctlModesFor11g;
4928 if (IS_CHAN_HT40(chan))
4929 /* All 2G CTL's */
4930 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4931 } else {
4932 /* Setup for CTL modes */
4933 /* CTL_11A, CTL_5GHT20 */
4934 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4935 SUB_NUM_CTL_MODES_AT_5G_40;
4936 pCtlMode = ctlModesFor11a;
4937 if (IS_CHAN_HT40(chan))
4938 /* All 5G CTL's */
4939 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4940 }
4941
4942 /*
4943 * For MIMO, need to apply regulatory caps individually across
4944 * dynamically running modes: CCK, OFDM, HT20, HT40
4945 *
4946 * The outer loop walks through each possible applicable runtime mode.
4947 * The inner loop walks through each ctlIndex entry in EEPROM.
4948 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4949 */
4950 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4951 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4952 (pCtlMode[ctlMode] == CTL_2GHT40);
4953 if (isHt40CtlMode)
4954 freq = centers.synth_center;
4955 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4956 freq = centers.ext_center;
4957 else
4958 freq = centers.ctl_center;
4959
4960 ath_dbg(common, REGULATORY,
4961 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4962 ctlMode, numCtlModes, isHt40CtlMode,
4963 (pCtlMode[ctlMode] & EXT_ADDITIVE));
4964
4965 /* walk through each CTL index stored in EEPROM */
4966 if (is2ghz) {
4967 ctlIndex = pEepData->ctlIndex_2G;
4968 ctlNum = AR9300_NUM_CTLS_2G;
4969 } else {
4970 ctlIndex = pEepData->ctlIndex_5G;
4971 ctlNum = AR9300_NUM_CTLS_5G;
4972 }
4973
4974 twiceMaxEdgePower = MAX_RATE_POWER;
4975 for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4976 ath_dbg(common, REGULATORY,
4977 "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4978 i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4979 chan->channel);
4980
4981 /*
4982 * compare test group from regulatory
4983 * channel list with test mode from pCtlMode
4984 * list
4985 */
4986 if ((((cfgCtl & ~CTL_MODE_M) |
4987 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4988 ctlIndex[i]) ||
4989 (((cfgCtl & ~CTL_MODE_M) |
4990 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4991 ((ctlIndex[i] & CTL_MODE_M) |
4992 SD_NO_CTL))) {
4993 twiceMinEdgePower =
4994 ar9003_hw_get_max_edge_power(pEepData,
4995 freq, i,
4996 is2ghz);
4997
4998 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4999 /*
5000 * Find the minimum of all CTL
5001 * edge powers that apply to
5002 * this channel
5003 */
5004 twiceMaxEdgePower =
5005 min(twiceMaxEdgePower,
5006 twiceMinEdgePower);
5007 else {
5008 /* specific */
5009 twiceMaxEdgePower = twiceMinEdgePower;
5010 break;
5011 }
5012 }
5013 }
5014
5015 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
5016
5017 ath_dbg(common, REGULATORY,
5018 "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5019 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
5020 scaledPower, minCtlPower);
5021
5022 /* Apply ctl mode to correct target power set */
5023 switch (pCtlMode[ctlMode]) {
5024 case CTL_11B:
5025 for (i = ALL_TARGET_LEGACY_1L_5L;
5026 i <= ALL_TARGET_LEGACY_11S; i++)
5027 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5028 minCtlPower);
5029 break;
5030 case CTL_11A:
5031 case CTL_11G:
5032 for (i = ALL_TARGET_LEGACY_6_24;
5033 i <= ALL_TARGET_LEGACY_54; i++)
5034 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5035 minCtlPower);
5036 break;
5037 case CTL_5GHT20:
5038 case CTL_2GHT20:
5039 for (i = ALL_TARGET_HT20_0_8_16;
5040 i <= ALL_TARGET_HT20_23; i++)
5041 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5042 minCtlPower);
5043 break;
5044 case CTL_5GHT40:
5045 case CTL_2GHT40:
5046 for (i = ALL_TARGET_HT40_0_8_16;
5047 i <= ALL_TARGET_HT40_23; i++)
5048 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5049 minCtlPower);
5050 break;
5051 default:
5052 break;
5053 }
5054 } /* end ctl mode checking */
5055 }
5056
5057 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
5058 {
5059 u8 mod_idx = mcs_idx % 8;
5060
5061 if (mod_idx <= 3)
5062 return mod_idx ? (base_pwridx + 1) : base_pwridx;
5063 else
5064 return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
5065 }
5066
5067 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5068 struct ath9k_channel *chan, u16 cfgCtl,
5069 u8 twiceAntennaReduction,
5070 u8 powerLimit, bool test)
5071 {
5072 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5073 struct ath_common *common = ath9k_hw_common(ah);
5074 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5075 struct ar9300_modal_eep_header *modal_hdr;
5076 u8 targetPowerValT2[ar9300RateSize];
5077 u8 target_power_val_t2_eep[ar9300RateSize];
5078 unsigned int i = 0, paprd_scale_factor = 0;
5079 u8 pwr_idx, min_pwridx = 0;
5080
5081 memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5082
5083 /*
5084 * Get target powers from EEPROM - our baseline for TX Power
5085 */
5086 ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5087
5088 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5089 if (IS_CHAN_2GHZ(chan))
5090 modal_hdr = &eep->modalHeader2G;
5091 else
5092 modal_hdr = &eep->modalHeader5G;
5093
5094 ah->paprd_ratemask =
5095 le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5096 AR9300_PAPRD_RATE_MASK;
5097
5098 ah->paprd_ratemask_ht40 =
5099 le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5100 AR9300_PAPRD_RATE_MASK;
5101
5102 paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5103 min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5104 ALL_TARGET_HT20_0_8_16;
5105
5106 if (!ah->paprd_table_write_done) {
5107 memcpy(target_power_val_t2_eep, targetPowerValT2,
5108 sizeof(targetPowerValT2));
5109 for (i = 0; i < 24; i++) {
5110 pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5111 if (ah->paprd_ratemask & (1 << i)) {
5112 if (targetPowerValT2[pwr_idx] &&
5113 targetPowerValT2[pwr_idx] ==
5114 target_power_val_t2_eep[pwr_idx])
5115 targetPowerValT2[pwr_idx] -=
5116 paprd_scale_factor;
5117 }
5118 }
5119 }
5120 memcpy(target_power_val_t2_eep, targetPowerValT2,
5121 sizeof(targetPowerValT2));
5122 }
5123
5124 ar9003_hw_set_power_per_rate_table(ah, chan,
5125 targetPowerValT2, cfgCtl,
5126 twiceAntennaReduction,
5127 powerLimit);
5128
5129 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5130 for (i = 0; i < ar9300RateSize; i++) {
5131 if ((ah->paprd_ratemask & (1 << i)) &&
5132 (abs(targetPowerValT2[i] -
5133 target_power_val_t2_eep[i]) >
5134 paprd_scale_factor)) {
5135 ah->paprd_ratemask &= ~(1 << i);
5136 ath_dbg(common, EEPROM,
5137 "paprd disabled for mcs %d\n", i);
5138 }
5139 }
5140 }
5141
5142 regulatory->max_power_level = 0;
5143 for (i = 0; i < ar9300RateSize; i++) {
5144 if (targetPowerValT2[i] > regulatory->max_power_level)
5145 regulatory->max_power_level = targetPowerValT2[i];
5146 }
5147
5148 ath9k_hw_update_regulatory_maxpower(ah);
5149
5150 if (test)
5151 return;
5152
5153 for (i = 0; i < ar9300RateSize; i++) {
5154 ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
5155 i, targetPowerValT2[i]);
5156 }
5157
5158 /* Write target power array to registers */
5159 ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5160 ar9003_hw_calibration_apply(ah, chan->channel);
5161
5162 if (IS_CHAN_2GHZ(chan)) {
5163 if (IS_CHAN_HT40(chan))
5164 i = ALL_TARGET_HT40_0_8_16;
5165 else
5166 i = ALL_TARGET_HT20_0_8_16;
5167 } else {
5168 if (IS_CHAN_HT40(chan))
5169 i = ALL_TARGET_HT40_7;
5170 else
5171 i = ALL_TARGET_HT20_7;
5172 }
5173 ah->paprd_target_power = targetPowerValT2[i];
5174 }
5175
5176 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5177 u16 i, bool is2GHz)
5178 {
5179 return AR_NO_SPUR;
5180 }
5181
5182 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5183 {
5184 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5185
5186 return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5187 }
5188
5189 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5190 {
5191 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5192
5193 return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5194 }
5195
5196 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5197 {
5198 return ar9003_modal_header(ah, is2ghz)->spurChans;
5199 }
5200
5201 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5202 struct ath9k_channel *chan)
5203 {
5204 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5205
5206 if (IS_CHAN_2GHZ(chan))
5207 return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5208 AR9300_PAPRD_SCALE_1);
5209 else {
5210 if (chan->channel >= 5700)
5211 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5212 AR9300_PAPRD_SCALE_1);
5213 else if (chan->channel >= 5400)
5214 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5215 AR9300_PAPRD_SCALE_2);
5216 else
5217 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5218 AR9300_PAPRD_SCALE_1);
5219 }
5220 }
5221
5222 const struct eeprom_ops eep_ar9300_ops = {
5223 .check_eeprom = ath9k_hw_ar9300_check_eeprom,
5224 .get_eeprom = ath9k_hw_ar9300_get_eeprom,
5225 .fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5226 .dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5227 .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5228 .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5229 .set_board_values = ath9k_hw_ar9300_set_board_values,
5230 .set_addac = ath9k_hw_ar9300_set_addac,
5231 .set_txpower = ath9k_hw_ar9300_set_txpower,
5232 .get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5233 };