]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/ath/ath9k/ar9003_eeprom.c
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / ath / ath9k / ar9003_eeprom.c
1 /*
2 * Copyright (c) 2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18 #include "ar9003_phy.h"
19 #include "ar9003_eeprom.h"
20
21 #define COMP_HDR_LEN 4
22 #define COMP_CKSUM_LEN 2
23
24 #define AR_CH0_TOP (0x00016288)
25 #define AR_CH0_TOP_XPABIASLVL (0x300)
26 #define AR_CH0_TOP_XPABIASLVL_S (8)
27
28 #define AR_CH0_THERM (0x00016290)
29 #define AR_CH0_THERM_XPABIASLVL_MSB 0x3
30 #define AR_CH0_THERM_XPABIASLVL_MSB_S 0
31 #define AR_CH0_THERM_XPASHORT2GND 0x4
32 #define AR_CH0_THERM_XPASHORT2GND_S 2
33
34 #define AR_SWITCH_TABLE_COM_ALL (0xffff)
35 #define AR_SWITCH_TABLE_COM_ALL_S (0)
36
37 #define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
38 #define AR_SWITCH_TABLE_COM2_ALL_S (0)
39
40 #define AR_SWITCH_TABLE_ALL (0xfff)
41 #define AR_SWITCH_TABLE_ALL_S (0)
42
43 #define LE16(x) __constant_cpu_to_le16(x)
44 #define LE32(x) __constant_cpu_to_le32(x)
45
46 /* Local defines to distinguish between extension and control CTL's */
47 #define EXT_ADDITIVE (0x8000)
48 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
49 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
50 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
51 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
52 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
53 #define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */
54 #define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */
55 #define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */
56
57 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
58 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
59
60 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
61
62 #define EEPROM_DATA_LEN_9485 1088
63
64 static int ar9003_hw_power_interpolate(int32_t x,
65 int32_t *px, int32_t *py, u_int16_t np);
66
67
68 static const struct ar9300_eeprom ar9300_default = {
69 .eepromVersion = 2,
70 .templateVersion = 2,
71 .macAddr = {1, 2, 3, 4, 5, 6},
72 .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
73 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
74 .baseEepHeader = {
75 .regDmn = { LE16(0), LE16(0x1f) },
76 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
77 .opCapFlags = {
78 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
79 .eepMisc = 0,
80 },
81 .rfSilent = 0,
82 .blueToothOptions = 0,
83 .deviceCap = 0,
84 .deviceType = 5, /* takes lower byte in eeprom location */
85 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
86 .params_for_tuning_caps = {0, 0},
87 .featureEnable = 0x0c,
88 /*
89 * bit0 - enable tx temp comp - disabled
90 * bit1 - enable tx volt comp - disabled
91 * bit2 - enable fastClock - enabled
92 * bit3 - enable doubling - enabled
93 * bit4 - enable internal regulator - disabled
94 * bit5 - enable pa predistortion - disabled
95 */
96 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
97 .eepromWriteEnableGpio = 3,
98 .wlanDisableGpio = 0,
99 .wlanLedGpio = 8,
100 .rxBandSelectGpio = 0xff,
101 .txrxgain = 0,
102 .swreg = 0,
103 },
104 .modalHeader2G = {
105 /* ar9300_modal_eep_header 2g */
106 /* 4 idle,t1,t2,b(4 bits per setting) */
107 .antCtrlCommon = LE32(0x110),
108 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
109 .antCtrlCommon2 = LE32(0x22222),
110
111 /*
112 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
113 * rx1, rx12, b (2 bits each)
114 */
115 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
116
117 /*
118 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
119 * for ar9280 (0xa20c/b20c 5:0)
120 */
121 .xatten1DB = {0, 0, 0},
122
123 /*
124 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
125 * for ar9280 (0xa20c/b20c 16:12
126 */
127 .xatten1Margin = {0, 0, 0},
128 .tempSlope = 36,
129 .voltSlope = 0,
130
131 /*
132 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
133 * channels in usual fbin coding format
134 */
135 .spurChans = {0, 0, 0, 0, 0},
136
137 /*
138 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
139 * if the register is per chain
140 */
141 .noiseFloorThreshCh = {-1, 0, 0},
142 .ob = {1, 1, 1},/* 3 chain */
143 .db_stage2 = {1, 1, 1}, /* 3 chain */
144 .db_stage3 = {0, 0, 0},
145 .db_stage4 = {0, 0, 0},
146 .xpaBiasLvl = 0,
147 .txFrameToDataStart = 0x0e,
148 .txFrameToPaOn = 0x0e,
149 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
150 .antennaGain = 0,
151 .switchSettling = 0x2c,
152 .adcDesiredSize = -30,
153 .txEndToXpaOff = 0,
154 .txEndToRxOn = 0x2,
155 .txFrameToXpaOn = 0xe,
156 .thresh62 = 28,
157 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
158 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
159 .futureModal = {
160 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
161 },
162 },
163 .base_ext1 = {
164 .ant_div_control = 0,
165 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
166 },
167 .calFreqPier2G = {
168 FREQ2FBIN(2412, 1),
169 FREQ2FBIN(2437, 1),
170 FREQ2FBIN(2472, 1),
171 },
172 /* ar9300_cal_data_per_freq_op_loop 2g */
173 .calPierData2G = {
174 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
175 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
176 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
177 },
178 .calTarget_freqbin_Cck = {
179 FREQ2FBIN(2412, 1),
180 FREQ2FBIN(2484, 1),
181 },
182 .calTarget_freqbin_2G = {
183 FREQ2FBIN(2412, 1),
184 FREQ2FBIN(2437, 1),
185 FREQ2FBIN(2472, 1)
186 },
187 .calTarget_freqbin_2GHT20 = {
188 FREQ2FBIN(2412, 1),
189 FREQ2FBIN(2437, 1),
190 FREQ2FBIN(2472, 1)
191 },
192 .calTarget_freqbin_2GHT40 = {
193 FREQ2FBIN(2412, 1),
194 FREQ2FBIN(2437, 1),
195 FREQ2FBIN(2472, 1)
196 },
197 .calTargetPowerCck = {
198 /* 1L-5L,5S,11L,11S */
199 { {36, 36, 36, 36} },
200 { {36, 36, 36, 36} },
201 },
202 .calTargetPower2G = {
203 /* 6-24,36,48,54 */
204 { {32, 32, 28, 24} },
205 { {32, 32, 28, 24} },
206 { {32, 32, 28, 24} },
207 },
208 .calTargetPower2GHT20 = {
209 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
210 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
211 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
212 },
213 .calTargetPower2GHT40 = {
214 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
215 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
216 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
217 },
218 .ctlIndex_2G = {
219 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
220 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
221 },
222 .ctl_freqbin_2G = {
223 {
224 FREQ2FBIN(2412, 1),
225 FREQ2FBIN(2417, 1),
226 FREQ2FBIN(2457, 1),
227 FREQ2FBIN(2462, 1)
228 },
229 {
230 FREQ2FBIN(2412, 1),
231 FREQ2FBIN(2417, 1),
232 FREQ2FBIN(2462, 1),
233 0xFF,
234 },
235
236 {
237 FREQ2FBIN(2412, 1),
238 FREQ2FBIN(2417, 1),
239 FREQ2FBIN(2462, 1),
240 0xFF,
241 },
242 {
243 FREQ2FBIN(2422, 1),
244 FREQ2FBIN(2427, 1),
245 FREQ2FBIN(2447, 1),
246 FREQ2FBIN(2452, 1)
247 },
248
249 {
250 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
251 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
252 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
253 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
254 },
255
256 {
257 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
258 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
259 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
260 0,
261 },
262
263 {
264 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
265 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
266 FREQ2FBIN(2472, 1),
267 0,
268 },
269
270 {
271 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
272 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
273 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
274 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
275 },
276
277 {
278 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
279 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
280 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
281 },
282
283 {
284 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
285 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
286 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
287 0
288 },
289
290 {
291 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
292 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
293 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
294 0
295 },
296
297 {
298 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
299 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
300 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
301 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
302 }
303 },
304 .ctlPowerData_2G = {
305 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
306 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
307 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
308
309 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
310 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
311 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
312
313 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
314 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
315 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
316
317 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
318 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
319 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
320 },
321 .modalHeader5G = {
322 /* 4 idle,t1,t2,b (4 bits per setting) */
323 .antCtrlCommon = LE32(0x110),
324 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
325 .antCtrlCommon2 = LE32(0x22222),
326 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
327 .antCtrlChain = {
328 LE16(0x000), LE16(0x000), LE16(0x000),
329 },
330 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
331 .xatten1DB = {0, 0, 0},
332
333 /*
334 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
335 * for merlin (0xa20c/b20c 16:12
336 */
337 .xatten1Margin = {0, 0, 0},
338 .tempSlope = 68,
339 .voltSlope = 0,
340 /* spurChans spur channels in usual fbin coding format */
341 .spurChans = {0, 0, 0, 0, 0},
342 /* noiseFloorThreshCh Check if the register is per chain */
343 .noiseFloorThreshCh = {-1, 0, 0},
344 .ob = {3, 3, 3}, /* 3 chain */
345 .db_stage2 = {3, 3, 3}, /* 3 chain */
346 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
347 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
348 .xpaBiasLvl = 0,
349 .txFrameToDataStart = 0x0e,
350 .txFrameToPaOn = 0x0e,
351 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
352 .antennaGain = 0,
353 .switchSettling = 0x2d,
354 .adcDesiredSize = -30,
355 .txEndToXpaOff = 0,
356 .txEndToRxOn = 0x2,
357 .txFrameToXpaOn = 0xe,
358 .thresh62 = 28,
359 .papdRateMaskHt20 = LE32(0x0c80c080),
360 .papdRateMaskHt40 = LE32(0x0080c080),
361 .futureModal = {
362 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
363 },
364 },
365 .base_ext2 = {
366 .tempSlopeLow = 0,
367 .tempSlopeHigh = 0,
368 .xatten1DBLow = {0, 0, 0},
369 .xatten1MarginLow = {0, 0, 0},
370 .xatten1DBHigh = {0, 0, 0},
371 .xatten1MarginHigh = {0, 0, 0}
372 },
373 .calFreqPier5G = {
374 FREQ2FBIN(5180, 0),
375 FREQ2FBIN(5220, 0),
376 FREQ2FBIN(5320, 0),
377 FREQ2FBIN(5400, 0),
378 FREQ2FBIN(5500, 0),
379 FREQ2FBIN(5600, 0),
380 FREQ2FBIN(5725, 0),
381 FREQ2FBIN(5825, 0)
382 },
383 .calPierData5G = {
384 {
385 {0, 0, 0, 0, 0},
386 {0, 0, 0, 0, 0},
387 {0, 0, 0, 0, 0},
388 {0, 0, 0, 0, 0},
389 {0, 0, 0, 0, 0},
390 {0, 0, 0, 0, 0},
391 {0, 0, 0, 0, 0},
392 {0, 0, 0, 0, 0},
393 },
394 {
395 {0, 0, 0, 0, 0},
396 {0, 0, 0, 0, 0},
397 {0, 0, 0, 0, 0},
398 {0, 0, 0, 0, 0},
399 {0, 0, 0, 0, 0},
400 {0, 0, 0, 0, 0},
401 {0, 0, 0, 0, 0},
402 {0, 0, 0, 0, 0},
403 },
404 {
405 {0, 0, 0, 0, 0},
406 {0, 0, 0, 0, 0},
407 {0, 0, 0, 0, 0},
408 {0, 0, 0, 0, 0},
409 {0, 0, 0, 0, 0},
410 {0, 0, 0, 0, 0},
411 {0, 0, 0, 0, 0},
412 {0, 0, 0, 0, 0},
413 },
414
415 },
416 .calTarget_freqbin_5G = {
417 FREQ2FBIN(5180, 0),
418 FREQ2FBIN(5220, 0),
419 FREQ2FBIN(5320, 0),
420 FREQ2FBIN(5400, 0),
421 FREQ2FBIN(5500, 0),
422 FREQ2FBIN(5600, 0),
423 FREQ2FBIN(5725, 0),
424 FREQ2FBIN(5825, 0)
425 },
426 .calTarget_freqbin_5GHT20 = {
427 FREQ2FBIN(5180, 0),
428 FREQ2FBIN(5240, 0),
429 FREQ2FBIN(5320, 0),
430 FREQ2FBIN(5500, 0),
431 FREQ2FBIN(5700, 0),
432 FREQ2FBIN(5745, 0),
433 FREQ2FBIN(5725, 0),
434 FREQ2FBIN(5825, 0)
435 },
436 .calTarget_freqbin_5GHT40 = {
437 FREQ2FBIN(5180, 0),
438 FREQ2FBIN(5240, 0),
439 FREQ2FBIN(5320, 0),
440 FREQ2FBIN(5500, 0),
441 FREQ2FBIN(5700, 0),
442 FREQ2FBIN(5745, 0),
443 FREQ2FBIN(5725, 0),
444 FREQ2FBIN(5825, 0)
445 },
446 .calTargetPower5G = {
447 /* 6-24,36,48,54 */
448 { {20, 20, 20, 10} },
449 { {20, 20, 20, 10} },
450 { {20, 20, 20, 10} },
451 { {20, 20, 20, 10} },
452 { {20, 20, 20, 10} },
453 { {20, 20, 20, 10} },
454 { {20, 20, 20, 10} },
455 { {20, 20, 20, 10} },
456 },
457 .calTargetPower5GHT20 = {
458 /*
459 * 0_8_16,1-3_9-11_17-19,
460 * 4,5,6,7,12,13,14,15,20,21,22,23
461 */
462 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
463 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
464 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
465 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
466 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
467 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
468 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
469 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
470 },
471 .calTargetPower5GHT40 = {
472 /*
473 * 0_8_16,1-3_9-11_17-19,
474 * 4,5,6,7,12,13,14,15,20,21,22,23
475 */
476 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
477 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
478 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
479 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
480 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
481 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
482 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
483 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
484 },
485 .ctlIndex_5G = {
486 0x10, 0x16, 0x18, 0x40, 0x46,
487 0x48, 0x30, 0x36, 0x38
488 },
489 .ctl_freqbin_5G = {
490 {
491 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
492 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
493 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
494 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
495 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
496 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
497 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
498 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
499 },
500 {
501 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
502 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
503 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
504 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
505 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
506 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
507 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
508 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
509 },
510
511 {
512 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
513 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
514 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
515 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
516 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
517 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
518 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
519 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
520 },
521
522 {
523 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
524 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
525 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
526 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
527 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
528 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
529 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
530 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
531 },
532
533 {
534 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
535 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
536 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
537 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
538 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
539 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
540 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
541 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
542 },
543
544 {
545 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
546 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
547 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
548 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
549 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
550 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
551 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
552 /* Data[5].ctlEdges[7].bChannel */ 0xFF
553 },
554
555 {
556 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
557 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
558 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
559 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
560 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
561 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
562 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
563 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
564 },
565
566 {
567 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
568 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
569 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
570 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
571 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
572 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
573 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
574 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
575 },
576
577 {
578 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
579 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
580 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
581 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
582 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
583 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
584 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
585 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
586 }
587 },
588 .ctlPowerData_5G = {
589 {
590 {
591 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
592 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
593 }
594 },
595 {
596 {
597 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
598 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
599 }
600 },
601 {
602 {
603 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
604 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
605 }
606 },
607 {
608 {
609 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
610 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
611 }
612 },
613 {
614 {
615 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
616 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
617 }
618 },
619 {
620 {
621 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
622 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
623 }
624 },
625 {
626 {
627 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
628 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
629 }
630 },
631 {
632 {
633 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
634 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
635 }
636 },
637 {
638 {
639 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
640 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
641 }
642 },
643 }
644 };
645
646 static const struct ar9300_eeprom ar9300_x113 = {
647 .eepromVersion = 2,
648 .templateVersion = 6,
649 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
650 .custData = {"x113-023-f0000"},
651 .baseEepHeader = {
652 .regDmn = { LE16(0), LE16(0x1f) },
653 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
654 .opCapFlags = {
655 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
656 .eepMisc = 0,
657 },
658 .rfSilent = 0,
659 .blueToothOptions = 0,
660 .deviceCap = 0,
661 .deviceType = 5, /* takes lower byte in eeprom location */
662 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
663 .params_for_tuning_caps = {0, 0},
664 .featureEnable = 0x0d,
665 /*
666 * bit0 - enable tx temp comp - disabled
667 * bit1 - enable tx volt comp - disabled
668 * bit2 - enable fastClock - enabled
669 * bit3 - enable doubling - enabled
670 * bit4 - enable internal regulator - disabled
671 * bit5 - enable pa predistortion - disabled
672 */
673 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
674 .eepromWriteEnableGpio = 6,
675 .wlanDisableGpio = 0,
676 .wlanLedGpio = 8,
677 .rxBandSelectGpio = 0xff,
678 .txrxgain = 0x21,
679 .swreg = 0,
680 },
681 .modalHeader2G = {
682 /* ar9300_modal_eep_header 2g */
683 /* 4 idle,t1,t2,b(4 bits per setting) */
684 .antCtrlCommon = LE32(0x110),
685 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
686 .antCtrlCommon2 = LE32(0x44444),
687
688 /*
689 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
690 * rx1, rx12, b (2 bits each)
691 */
692 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
693
694 /*
695 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
696 * for ar9280 (0xa20c/b20c 5:0)
697 */
698 .xatten1DB = {0, 0, 0},
699
700 /*
701 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
702 * for ar9280 (0xa20c/b20c 16:12
703 */
704 .xatten1Margin = {0, 0, 0},
705 .tempSlope = 25,
706 .voltSlope = 0,
707
708 /*
709 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
710 * channels in usual fbin coding format
711 */
712 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
713
714 /*
715 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
716 * if the register is per chain
717 */
718 .noiseFloorThreshCh = {-1, 0, 0},
719 .ob = {1, 1, 1},/* 3 chain */
720 .db_stage2 = {1, 1, 1}, /* 3 chain */
721 .db_stage3 = {0, 0, 0},
722 .db_stage4 = {0, 0, 0},
723 .xpaBiasLvl = 0,
724 .txFrameToDataStart = 0x0e,
725 .txFrameToPaOn = 0x0e,
726 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
727 .antennaGain = 0,
728 .switchSettling = 0x2c,
729 .adcDesiredSize = -30,
730 .txEndToXpaOff = 0,
731 .txEndToRxOn = 0x2,
732 .txFrameToXpaOn = 0xe,
733 .thresh62 = 28,
734 .papdRateMaskHt20 = LE32(0x0c80c080),
735 .papdRateMaskHt40 = LE32(0x0080c080),
736 .futureModal = {
737 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
738 },
739 },
740 .base_ext1 = {
741 .ant_div_control = 0,
742 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
743 },
744 .calFreqPier2G = {
745 FREQ2FBIN(2412, 1),
746 FREQ2FBIN(2437, 1),
747 FREQ2FBIN(2472, 1),
748 },
749 /* ar9300_cal_data_per_freq_op_loop 2g */
750 .calPierData2G = {
751 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
752 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
753 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
754 },
755 .calTarget_freqbin_Cck = {
756 FREQ2FBIN(2412, 1),
757 FREQ2FBIN(2472, 1),
758 },
759 .calTarget_freqbin_2G = {
760 FREQ2FBIN(2412, 1),
761 FREQ2FBIN(2437, 1),
762 FREQ2FBIN(2472, 1)
763 },
764 .calTarget_freqbin_2GHT20 = {
765 FREQ2FBIN(2412, 1),
766 FREQ2FBIN(2437, 1),
767 FREQ2FBIN(2472, 1)
768 },
769 .calTarget_freqbin_2GHT40 = {
770 FREQ2FBIN(2412, 1),
771 FREQ2FBIN(2437, 1),
772 FREQ2FBIN(2472, 1)
773 },
774 .calTargetPowerCck = {
775 /* 1L-5L,5S,11L,11S */
776 { {34, 34, 34, 34} },
777 { {34, 34, 34, 34} },
778 },
779 .calTargetPower2G = {
780 /* 6-24,36,48,54 */
781 { {34, 34, 32, 32} },
782 { {34, 34, 32, 32} },
783 { {34, 34, 32, 32} },
784 },
785 .calTargetPower2GHT20 = {
786 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
787 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
788 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
789 },
790 .calTargetPower2GHT40 = {
791 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
792 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
793 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
794 },
795 .ctlIndex_2G = {
796 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
797 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
798 },
799 .ctl_freqbin_2G = {
800 {
801 FREQ2FBIN(2412, 1),
802 FREQ2FBIN(2417, 1),
803 FREQ2FBIN(2457, 1),
804 FREQ2FBIN(2462, 1)
805 },
806 {
807 FREQ2FBIN(2412, 1),
808 FREQ2FBIN(2417, 1),
809 FREQ2FBIN(2462, 1),
810 0xFF,
811 },
812
813 {
814 FREQ2FBIN(2412, 1),
815 FREQ2FBIN(2417, 1),
816 FREQ2FBIN(2462, 1),
817 0xFF,
818 },
819 {
820 FREQ2FBIN(2422, 1),
821 FREQ2FBIN(2427, 1),
822 FREQ2FBIN(2447, 1),
823 FREQ2FBIN(2452, 1)
824 },
825
826 {
827 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
828 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
829 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
830 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
831 },
832
833 {
834 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
835 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
836 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
837 0,
838 },
839
840 {
841 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
842 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
843 FREQ2FBIN(2472, 1),
844 0,
845 },
846
847 {
848 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
849 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
850 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
851 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
852 },
853
854 {
855 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
856 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
857 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
858 },
859
860 {
861 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
862 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
863 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
864 0
865 },
866
867 {
868 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
869 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
870 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
871 0
872 },
873
874 {
875 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
876 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
877 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
878 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
879 }
880 },
881 .ctlPowerData_2G = {
882 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
883 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
884 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
885
886 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
887 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
888 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
889
890 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
891 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
892 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
893
894 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
895 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
896 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
897 },
898 .modalHeader5G = {
899 /* 4 idle,t1,t2,b (4 bits per setting) */
900 .antCtrlCommon = LE32(0x220),
901 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
902 .antCtrlCommon2 = LE32(0x11111),
903 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
904 .antCtrlChain = {
905 LE16(0x150), LE16(0x150), LE16(0x150),
906 },
907 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
908 .xatten1DB = {0, 0, 0},
909
910 /*
911 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
912 * for merlin (0xa20c/b20c 16:12
913 */
914 .xatten1Margin = {0, 0, 0},
915 .tempSlope = 68,
916 .voltSlope = 0,
917 /* spurChans spur channels in usual fbin coding format */
918 .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
919 /* noiseFloorThreshCh Check if the register is per chain */
920 .noiseFloorThreshCh = {-1, 0, 0},
921 .ob = {3, 3, 3}, /* 3 chain */
922 .db_stage2 = {3, 3, 3}, /* 3 chain */
923 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
924 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
925 .xpaBiasLvl = 0,
926 .txFrameToDataStart = 0x0e,
927 .txFrameToPaOn = 0x0e,
928 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
929 .antennaGain = 0,
930 .switchSettling = 0x2d,
931 .adcDesiredSize = -30,
932 .txEndToXpaOff = 0,
933 .txEndToRxOn = 0x2,
934 .txFrameToXpaOn = 0xe,
935 .thresh62 = 28,
936 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
937 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
938 .futureModal = {
939 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
940 },
941 },
942 .base_ext2 = {
943 .tempSlopeLow = 72,
944 .tempSlopeHigh = 105,
945 .xatten1DBLow = {0, 0, 0},
946 .xatten1MarginLow = {0, 0, 0},
947 .xatten1DBHigh = {0, 0, 0},
948 .xatten1MarginHigh = {0, 0, 0}
949 },
950 .calFreqPier5G = {
951 FREQ2FBIN(5180, 0),
952 FREQ2FBIN(5240, 0),
953 FREQ2FBIN(5320, 0),
954 FREQ2FBIN(5400, 0),
955 FREQ2FBIN(5500, 0),
956 FREQ2FBIN(5600, 0),
957 FREQ2FBIN(5745, 0),
958 FREQ2FBIN(5785, 0)
959 },
960 .calPierData5G = {
961 {
962 {0, 0, 0, 0, 0},
963 {0, 0, 0, 0, 0},
964 {0, 0, 0, 0, 0},
965 {0, 0, 0, 0, 0},
966 {0, 0, 0, 0, 0},
967 {0, 0, 0, 0, 0},
968 {0, 0, 0, 0, 0},
969 {0, 0, 0, 0, 0},
970 },
971 {
972 {0, 0, 0, 0, 0},
973 {0, 0, 0, 0, 0},
974 {0, 0, 0, 0, 0},
975 {0, 0, 0, 0, 0},
976 {0, 0, 0, 0, 0},
977 {0, 0, 0, 0, 0},
978 {0, 0, 0, 0, 0},
979 {0, 0, 0, 0, 0},
980 },
981 {
982 {0, 0, 0, 0, 0},
983 {0, 0, 0, 0, 0},
984 {0, 0, 0, 0, 0},
985 {0, 0, 0, 0, 0},
986 {0, 0, 0, 0, 0},
987 {0, 0, 0, 0, 0},
988 {0, 0, 0, 0, 0},
989 {0, 0, 0, 0, 0},
990 },
991
992 },
993 .calTarget_freqbin_5G = {
994 FREQ2FBIN(5180, 0),
995 FREQ2FBIN(5220, 0),
996 FREQ2FBIN(5320, 0),
997 FREQ2FBIN(5400, 0),
998 FREQ2FBIN(5500, 0),
999 FREQ2FBIN(5600, 0),
1000 FREQ2FBIN(5745, 0),
1001 FREQ2FBIN(5785, 0)
1002 },
1003 .calTarget_freqbin_5GHT20 = {
1004 FREQ2FBIN(5180, 0),
1005 FREQ2FBIN(5240, 0),
1006 FREQ2FBIN(5320, 0),
1007 FREQ2FBIN(5400, 0),
1008 FREQ2FBIN(5500, 0),
1009 FREQ2FBIN(5700, 0),
1010 FREQ2FBIN(5745, 0),
1011 FREQ2FBIN(5825, 0)
1012 },
1013 .calTarget_freqbin_5GHT40 = {
1014 FREQ2FBIN(5190, 0),
1015 FREQ2FBIN(5230, 0),
1016 FREQ2FBIN(5320, 0),
1017 FREQ2FBIN(5410, 0),
1018 FREQ2FBIN(5510, 0),
1019 FREQ2FBIN(5670, 0),
1020 FREQ2FBIN(5755, 0),
1021 FREQ2FBIN(5825, 0)
1022 },
1023 .calTargetPower5G = {
1024 /* 6-24,36,48,54 */
1025 { {42, 40, 40, 34} },
1026 { {42, 40, 40, 34} },
1027 { {42, 40, 40, 34} },
1028 { {42, 40, 40, 34} },
1029 { {42, 40, 40, 34} },
1030 { {42, 40, 40, 34} },
1031 { {42, 40, 40, 34} },
1032 { {42, 40, 40, 34} },
1033 },
1034 .calTargetPower5GHT20 = {
1035 /*
1036 * 0_8_16,1-3_9-11_17-19,
1037 * 4,5,6,7,12,13,14,15,20,21,22,23
1038 */
1039 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1040 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1041 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1042 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1043 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1044 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1045 { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1046 { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1047 },
1048 .calTargetPower5GHT40 = {
1049 /*
1050 * 0_8_16,1-3_9-11_17-19,
1051 * 4,5,6,7,12,13,14,15,20,21,22,23
1052 */
1053 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1054 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1055 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1056 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1057 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1058 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1059 { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1060 { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1061 },
1062 .ctlIndex_5G = {
1063 0x10, 0x16, 0x18, 0x40, 0x46,
1064 0x48, 0x30, 0x36, 0x38
1065 },
1066 .ctl_freqbin_5G = {
1067 {
1068 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1069 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1070 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1071 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1072 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1073 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1074 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1075 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1076 },
1077 {
1078 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1079 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1080 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1081 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1082 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1083 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1084 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1085 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1086 },
1087
1088 {
1089 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1090 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1091 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1092 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1093 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1094 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1095 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1096 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1097 },
1098
1099 {
1100 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1101 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1102 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1103 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1104 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1105 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1106 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1107 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1108 },
1109
1110 {
1111 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1112 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1113 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1114 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1115 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1116 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1117 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1118 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1119 },
1120
1121 {
1122 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1123 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1124 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1125 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1126 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1127 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1128 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1129 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1130 },
1131
1132 {
1133 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1134 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1135 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1136 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1137 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1138 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1139 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1140 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1141 },
1142
1143 {
1144 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1145 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1146 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1147 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1148 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1149 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1150 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1151 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1152 },
1153
1154 {
1155 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1156 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1157 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1158 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1159 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1160 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1161 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1162 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1163 }
1164 },
1165 .ctlPowerData_5G = {
1166 {
1167 {
1168 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1169 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1170 }
1171 },
1172 {
1173 {
1174 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1175 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1176 }
1177 },
1178 {
1179 {
1180 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1181 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1182 }
1183 },
1184 {
1185 {
1186 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1187 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1188 }
1189 },
1190 {
1191 {
1192 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1193 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1194 }
1195 },
1196 {
1197 {
1198 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1199 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1200 }
1201 },
1202 {
1203 {
1204 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1205 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1206 }
1207 },
1208 {
1209 {
1210 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1211 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1212 }
1213 },
1214 {
1215 {
1216 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1217 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1218 }
1219 },
1220 }
1221 };
1222
1223
1224 static const struct ar9300_eeprom ar9300_h112 = {
1225 .eepromVersion = 2,
1226 .templateVersion = 3,
1227 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1228 .custData = {"h112-241-f0000"},
1229 .baseEepHeader = {
1230 .regDmn = { LE16(0), LE16(0x1f) },
1231 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1232 .opCapFlags = {
1233 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1234 .eepMisc = 0,
1235 },
1236 .rfSilent = 0,
1237 .blueToothOptions = 0,
1238 .deviceCap = 0,
1239 .deviceType = 5, /* takes lower byte in eeprom location */
1240 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1241 .params_for_tuning_caps = {0, 0},
1242 .featureEnable = 0x0d,
1243 /*
1244 * bit0 - enable tx temp comp - disabled
1245 * bit1 - enable tx volt comp - disabled
1246 * bit2 - enable fastClock - enabled
1247 * bit3 - enable doubling - enabled
1248 * bit4 - enable internal regulator - disabled
1249 * bit5 - enable pa predistortion - disabled
1250 */
1251 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1252 .eepromWriteEnableGpio = 6,
1253 .wlanDisableGpio = 0,
1254 .wlanLedGpio = 8,
1255 .rxBandSelectGpio = 0xff,
1256 .txrxgain = 0x10,
1257 .swreg = 0,
1258 },
1259 .modalHeader2G = {
1260 /* ar9300_modal_eep_header 2g */
1261 /* 4 idle,t1,t2,b(4 bits per setting) */
1262 .antCtrlCommon = LE32(0x110),
1263 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1264 .antCtrlCommon2 = LE32(0x44444),
1265
1266 /*
1267 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1268 * rx1, rx12, b (2 bits each)
1269 */
1270 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1271
1272 /*
1273 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
1274 * for ar9280 (0xa20c/b20c 5:0)
1275 */
1276 .xatten1DB = {0, 0, 0},
1277
1278 /*
1279 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1280 * for ar9280 (0xa20c/b20c 16:12
1281 */
1282 .xatten1Margin = {0, 0, 0},
1283 .tempSlope = 25,
1284 .voltSlope = 0,
1285
1286 /*
1287 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1288 * channels in usual fbin coding format
1289 */
1290 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1291
1292 /*
1293 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1294 * if the register is per chain
1295 */
1296 .noiseFloorThreshCh = {-1, 0, 0},
1297 .ob = {1, 1, 1},/* 3 chain */
1298 .db_stage2 = {1, 1, 1}, /* 3 chain */
1299 .db_stage3 = {0, 0, 0},
1300 .db_stage4 = {0, 0, 0},
1301 .xpaBiasLvl = 0,
1302 .txFrameToDataStart = 0x0e,
1303 .txFrameToPaOn = 0x0e,
1304 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1305 .antennaGain = 0,
1306 .switchSettling = 0x2c,
1307 .adcDesiredSize = -30,
1308 .txEndToXpaOff = 0,
1309 .txEndToRxOn = 0x2,
1310 .txFrameToXpaOn = 0xe,
1311 .thresh62 = 28,
1312 .papdRateMaskHt20 = LE32(0x80c080),
1313 .papdRateMaskHt40 = LE32(0x80c080),
1314 .futureModal = {
1315 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1316 },
1317 },
1318 .base_ext1 = {
1319 .ant_div_control = 0,
1320 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1321 },
1322 .calFreqPier2G = {
1323 FREQ2FBIN(2412, 1),
1324 FREQ2FBIN(2437, 1),
1325 FREQ2FBIN(2472, 1),
1326 },
1327 /* ar9300_cal_data_per_freq_op_loop 2g */
1328 .calPierData2G = {
1329 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1330 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1331 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1332 },
1333 .calTarget_freqbin_Cck = {
1334 FREQ2FBIN(2412, 1),
1335 FREQ2FBIN(2484, 1),
1336 },
1337 .calTarget_freqbin_2G = {
1338 FREQ2FBIN(2412, 1),
1339 FREQ2FBIN(2437, 1),
1340 FREQ2FBIN(2472, 1)
1341 },
1342 .calTarget_freqbin_2GHT20 = {
1343 FREQ2FBIN(2412, 1),
1344 FREQ2FBIN(2437, 1),
1345 FREQ2FBIN(2472, 1)
1346 },
1347 .calTarget_freqbin_2GHT40 = {
1348 FREQ2FBIN(2412, 1),
1349 FREQ2FBIN(2437, 1),
1350 FREQ2FBIN(2472, 1)
1351 },
1352 .calTargetPowerCck = {
1353 /* 1L-5L,5S,11L,11S */
1354 { {34, 34, 34, 34} },
1355 { {34, 34, 34, 34} },
1356 },
1357 .calTargetPower2G = {
1358 /* 6-24,36,48,54 */
1359 { {34, 34, 32, 32} },
1360 { {34, 34, 32, 32} },
1361 { {34, 34, 32, 32} },
1362 },
1363 .calTargetPower2GHT20 = {
1364 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1365 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1366 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1367 },
1368 .calTargetPower2GHT40 = {
1369 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1370 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1371 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1372 },
1373 .ctlIndex_2G = {
1374 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1375 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1376 },
1377 .ctl_freqbin_2G = {
1378 {
1379 FREQ2FBIN(2412, 1),
1380 FREQ2FBIN(2417, 1),
1381 FREQ2FBIN(2457, 1),
1382 FREQ2FBIN(2462, 1)
1383 },
1384 {
1385 FREQ2FBIN(2412, 1),
1386 FREQ2FBIN(2417, 1),
1387 FREQ2FBIN(2462, 1),
1388 0xFF,
1389 },
1390
1391 {
1392 FREQ2FBIN(2412, 1),
1393 FREQ2FBIN(2417, 1),
1394 FREQ2FBIN(2462, 1),
1395 0xFF,
1396 },
1397 {
1398 FREQ2FBIN(2422, 1),
1399 FREQ2FBIN(2427, 1),
1400 FREQ2FBIN(2447, 1),
1401 FREQ2FBIN(2452, 1)
1402 },
1403
1404 {
1405 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1406 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1407 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1408 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1409 },
1410
1411 {
1412 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1413 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1414 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1415 0,
1416 },
1417
1418 {
1419 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1420 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1421 FREQ2FBIN(2472, 1),
1422 0,
1423 },
1424
1425 {
1426 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1427 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1428 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1429 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1430 },
1431
1432 {
1433 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1434 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1435 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1436 },
1437
1438 {
1439 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1440 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1441 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1442 0
1443 },
1444
1445 {
1446 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1447 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1448 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1449 0
1450 },
1451
1452 {
1453 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1454 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1455 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1456 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1457 }
1458 },
1459 .ctlPowerData_2G = {
1460 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1461 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1462 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1463
1464 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
1465 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1466 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1467
1468 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1469 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1470 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1471
1472 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1473 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1474 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1475 },
1476 .modalHeader5G = {
1477 /* 4 idle,t1,t2,b (4 bits per setting) */
1478 .antCtrlCommon = LE32(0x220),
1479 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1480 .antCtrlCommon2 = LE32(0x44444),
1481 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1482 .antCtrlChain = {
1483 LE16(0x150), LE16(0x150), LE16(0x150),
1484 },
1485 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1486 .xatten1DB = {0, 0, 0},
1487
1488 /*
1489 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1490 * for merlin (0xa20c/b20c 16:12
1491 */
1492 .xatten1Margin = {0, 0, 0},
1493 .tempSlope = 45,
1494 .voltSlope = 0,
1495 /* spurChans spur channels in usual fbin coding format */
1496 .spurChans = {0, 0, 0, 0, 0},
1497 /* noiseFloorThreshCh Check if the register is per chain */
1498 .noiseFloorThreshCh = {-1, 0, 0},
1499 .ob = {3, 3, 3}, /* 3 chain */
1500 .db_stage2 = {3, 3, 3}, /* 3 chain */
1501 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
1502 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
1503 .xpaBiasLvl = 0,
1504 .txFrameToDataStart = 0x0e,
1505 .txFrameToPaOn = 0x0e,
1506 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1507 .antennaGain = 0,
1508 .switchSettling = 0x2d,
1509 .adcDesiredSize = -30,
1510 .txEndToXpaOff = 0,
1511 .txEndToRxOn = 0x2,
1512 .txFrameToXpaOn = 0xe,
1513 .thresh62 = 28,
1514 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
1515 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
1516 .futureModal = {
1517 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1518 },
1519 },
1520 .base_ext2 = {
1521 .tempSlopeLow = 40,
1522 .tempSlopeHigh = 50,
1523 .xatten1DBLow = {0, 0, 0},
1524 .xatten1MarginLow = {0, 0, 0},
1525 .xatten1DBHigh = {0, 0, 0},
1526 .xatten1MarginHigh = {0, 0, 0}
1527 },
1528 .calFreqPier5G = {
1529 FREQ2FBIN(5180, 0),
1530 FREQ2FBIN(5220, 0),
1531 FREQ2FBIN(5320, 0),
1532 FREQ2FBIN(5400, 0),
1533 FREQ2FBIN(5500, 0),
1534 FREQ2FBIN(5600, 0),
1535 FREQ2FBIN(5700, 0),
1536 FREQ2FBIN(5825, 0)
1537 },
1538 .calPierData5G = {
1539 {
1540 {0, 0, 0, 0, 0},
1541 {0, 0, 0, 0, 0},
1542 {0, 0, 0, 0, 0},
1543 {0, 0, 0, 0, 0},
1544 {0, 0, 0, 0, 0},
1545 {0, 0, 0, 0, 0},
1546 {0, 0, 0, 0, 0},
1547 {0, 0, 0, 0, 0},
1548 },
1549 {
1550 {0, 0, 0, 0, 0},
1551 {0, 0, 0, 0, 0},
1552 {0, 0, 0, 0, 0},
1553 {0, 0, 0, 0, 0},
1554 {0, 0, 0, 0, 0},
1555 {0, 0, 0, 0, 0},
1556 {0, 0, 0, 0, 0},
1557 {0, 0, 0, 0, 0},
1558 },
1559 {
1560 {0, 0, 0, 0, 0},
1561 {0, 0, 0, 0, 0},
1562 {0, 0, 0, 0, 0},
1563 {0, 0, 0, 0, 0},
1564 {0, 0, 0, 0, 0},
1565 {0, 0, 0, 0, 0},
1566 {0, 0, 0, 0, 0},
1567 {0, 0, 0, 0, 0},
1568 },
1569
1570 },
1571 .calTarget_freqbin_5G = {
1572 FREQ2FBIN(5180, 0),
1573 FREQ2FBIN(5240, 0),
1574 FREQ2FBIN(5320, 0),
1575 FREQ2FBIN(5400, 0),
1576 FREQ2FBIN(5500, 0),
1577 FREQ2FBIN(5600, 0),
1578 FREQ2FBIN(5700, 0),
1579 FREQ2FBIN(5825, 0)
1580 },
1581 .calTarget_freqbin_5GHT20 = {
1582 FREQ2FBIN(5180, 0),
1583 FREQ2FBIN(5240, 0),
1584 FREQ2FBIN(5320, 0),
1585 FREQ2FBIN(5400, 0),
1586 FREQ2FBIN(5500, 0),
1587 FREQ2FBIN(5700, 0),
1588 FREQ2FBIN(5745, 0),
1589 FREQ2FBIN(5825, 0)
1590 },
1591 .calTarget_freqbin_5GHT40 = {
1592 FREQ2FBIN(5180, 0),
1593 FREQ2FBIN(5240, 0),
1594 FREQ2FBIN(5320, 0),
1595 FREQ2FBIN(5400, 0),
1596 FREQ2FBIN(5500, 0),
1597 FREQ2FBIN(5700, 0),
1598 FREQ2FBIN(5745, 0),
1599 FREQ2FBIN(5825, 0)
1600 },
1601 .calTargetPower5G = {
1602 /* 6-24,36,48,54 */
1603 { {30, 30, 28, 24} },
1604 { {30, 30, 28, 24} },
1605 { {30, 30, 28, 24} },
1606 { {30, 30, 28, 24} },
1607 { {30, 30, 28, 24} },
1608 { {30, 30, 28, 24} },
1609 { {30, 30, 28, 24} },
1610 { {30, 30, 28, 24} },
1611 },
1612 .calTargetPower5GHT20 = {
1613 /*
1614 * 0_8_16,1-3_9-11_17-19,
1615 * 4,5,6,7,12,13,14,15,20,21,22,23
1616 */
1617 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1618 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1619 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1620 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1621 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1622 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1623 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1624 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1625 },
1626 .calTargetPower5GHT40 = {
1627 /*
1628 * 0_8_16,1-3_9-11_17-19,
1629 * 4,5,6,7,12,13,14,15,20,21,22,23
1630 */
1631 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1632 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1633 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1634 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1635 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1636 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1637 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1638 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1639 },
1640 .ctlIndex_5G = {
1641 0x10, 0x16, 0x18, 0x40, 0x46,
1642 0x48, 0x30, 0x36, 0x38
1643 },
1644 .ctl_freqbin_5G = {
1645 {
1646 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1647 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1648 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1649 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1650 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1651 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1652 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1653 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1654 },
1655 {
1656 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1657 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1658 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1659 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1660 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1661 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1662 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1663 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1664 },
1665
1666 {
1667 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1668 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1669 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1670 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1671 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1672 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1673 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1674 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1675 },
1676
1677 {
1678 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1679 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1680 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1681 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1682 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1683 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1684 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1685 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1686 },
1687
1688 {
1689 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1690 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1691 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1692 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1693 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1694 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1695 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1696 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1697 },
1698
1699 {
1700 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1701 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1702 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1703 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1704 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1705 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1706 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1707 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1708 },
1709
1710 {
1711 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1712 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1713 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1714 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1715 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1716 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1717 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1718 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1719 },
1720
1721 {
1722 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1723 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1724 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1725 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1726 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1727 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1728 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1729 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1730 },
1731
1732 {
1733 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1734 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1735 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1736 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1737 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1738 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1739 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1740 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1741 }
1742 },
1743 .ctlPowerData_5G = {
1744 {
1745 {
1746 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1747 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1748 }
1749 },
1750 {
1751 {
1752 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1753 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1754 }
1755 },
1756 {
1757 {
1758 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1759 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1760 }
1761 },
1762 {
1763 {
1764 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1765 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1766 }
1767 },
1768 {
1769 {
1770 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1771 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1772 }
1773 },
1774 {
1775 {
1776 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1777 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1778 }
1779 },
1780 {
1781 {
1782 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1783 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1784 }
1785 },
1786 {
1787 {
1788 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1789 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1790 }
1791 },
1792 {
1793 {
1794 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1795 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1796 }
1797 },
1798 }
1799 };
1800
1801
1802 static const struct ar9300_eeprom ar9300_x112 = {
1803 .eepromVersion = 2,
1804 .templateVersion = 5,
1805 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1806 .custData = {"x112-041-f0000"},
1807 .baseEepHeader = {
1808 .regDmn = { LE16(0), LE16(0x1f) },
1809 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1810 .opCapFlags = {
1811 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1812 .eepMisc = 0,
1813 },
1814 .rfSilent = 0,
1815 .blueToothOptions = 0,
1816 .deviceCap = 0,
1817 .deviceType = 5, /* takes lower byte in eeprom location */
1818 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1819 .params_for_tuning_caps = {0, 0},
1820 .featureEnable = 0x0d,
1821 /*
1822 * bit0 - enable tx temp comp - disabled
1823 * bit1 - enable tx volt comp - disabled
1824 * bit2 - enable fastclock - enabled
1825 * bit3 - enable doubling - enabled
1826 * bit4 - enable internal regulator - disabled
1827 * bit5 - enable pa predistortion - disabled
1828 */
1829 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1830 .eepromWriteEnableGpio = 6,
1831 .wlanDisableGpio = 0,
1832 .wlanLedGpio = 8,
1833 .rxBandSelectGpio = 0xff,
1834 .txrxgain = 0x0,
1835 .swreg = 0,
1836 },
1837 .modalHeader2G = {
1838 /* ar9300_modal_eep_header 2g */
1839 /* 4 idle,t1,t2,b(4 bits per setting) */
1840 .antCtrlCommon = LE32(0x110),
1841 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1842 .antCtrlCommon2 = LE32(0x22222),
1843
1844 /*
1845 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1846 * rx1, rx12, b (2 bits each)
1847 */
1848 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1849
1850 /*
1851 * xatten1DB[AR9300_max_chains]; 3 xatten1_db
1852 * for ar9280 (0xa20c/b20c 5:0)
1853 */
1854 .xatten1DB = {0x1b, 0x1b, 0x1b},
1855
1856 /*
1857 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1858 * for ar9280 (0xa20c/b20c 16:12
1859 */
1860 .xatten1Margin = {0x15, 0x15, 0x15},
1861 .tempSlope = 50,
1862 .voltSlope = 0,
1863
1864 /*
1865 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1866 * channels in usual fbin coding format
1867 */
1868 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1869
1870 /*
1871 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1872 * if the register is per chain
1873 */
1874 .noiseFloorThreshCh = {-1, 0, 0},
1875 .ob = {1, 1, 1},/* 3 chain */
1876 .db_stage2 = {1, 1, 1}, /* 3 chain */
1877 .db_stage3 = {0, 0, 0},
1878 .db_stage4 = {0, 0, 0},
1879 .xpaBiasLvl = 0,
1880 .txFrameToDataStart = 0x0e,
1881 .txFrameToPaOn = 0x0e,
1882 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1883 .antennaGain = 0,
1884 .switchSettling = 0x2c,
1885 .adcDesiredSize = -30,
1886 .txEndToXpaOff = 0,
1887 .txEndToRxOn = 0x2,
1888 .txFrameToXpaOn = 0xe,
1889 .thresh62 = 28,
1890 .papdRateMaskHt20 = LE32(0x0c80c080),
1891 .papdRateMaskHt40 = LE32(0x0080c080),
1892 .futureModal = {
1893 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1894 },
1895 },
1896 .base_ext1 = {
1897 .ant_div_control = 0,
1898 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1899 },
1900 .calFreqPier2G = {
1901 FREQ2FBIN(2412, 1),
1902 FREQ2FBIN(2437, 1),
1903 FREQ2FBIN(2472, 1),
1904 },
1905 /* ar9300_cal_data_per_freq_op_loop 2g */
1906 .calPierData2G = {
1907 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1908 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1909 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1910 },
1911 .calTarget_freqbin_Cck = {
1912 FREQ2FBIN(2412, 1),
1913 FREQ2FBIN(2472, 1),
1914 },
1915 .calTarget_freqbin_2G = {
1916 FREQ2FBIN(2412, 1),
1917 FREQ2FBIN(2437, 1),
1918 FREQ2FBIN(2472, 1)
1919 },
1920 .calTarget_freqbin_2GHT20 = {
1921 FREQ2FBIN(2412, 1),
1922 FREQ2FBIN(2437, 1),
1923 FREQ2FBIN(2472, 1)
1924 },
1925 .calTarget_freqbin_2GHT40 = {
1926 FREQ2FBIN(2412, 1),
1927 FREQ2FBIN(2437, 1),
1928 FREQ2FBIN(2472, 1)
1929 },
1930 .calTargetPowerCck = {
1931 /* 1L-5L,5S,11L,11s */
1932 { {38, 38, 38, 38} },
1933 { {38, 38, 38, 38} },
1934 },
1935 .calTargetPower2G = {
1936 /* 6-24,36,48,54 */
1937 { {38, 38, 36, 34} },
1938 { {38, 38, 36, 34} },
1939 { {38, 38, 34, 32} },
1940 },
1941 .calTargetPower2GHT20 = {
1942 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1943 { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1944 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1945 },
1946 .calTargetPower2GHT40 = {
1947 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1948 { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1949 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1950 },
1951 .ctlIndex_2G = {
1952 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1953 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1954 },
1955 .ctl_freqbin_2G = {
1956 {
1957 FREQ2FBIN(2412, 1),
1958 FREQ2FBIN(2417, 1),
1959 FREQ2FBIN(2457, 1),
1960 FREQ2FBIN(2462, 1)
1961 },
1962 {
1963 FREQ2FBIN(2412, 1),
1964 FREQ2FBIN(2417, 1),
1965 FREQ2FBIN(2462, 1),
1966 0xFF,
1967 },
1968
1969 {
1970 FREQ2FBIN(2412, 1),
1971 FREQ2FBIN(2417, 1),
1972 FREQ2FBIN(2462, 1),
1973 0xFF,
1974 },
1975 {
1976 FREQ2FBIN(2422, 1),
1977 FREQ2FBIN(2427, 1),
1978 FREQ2FBIN(2447, 1),
1979 FREQ2FBIN(2452, 1)
1980 },
1981
1982 {
1983 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1984 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1985 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1986 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1987 },
1988
1989 {
1990 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1991 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1992 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1993 0,
1994 },
1995
1996 {
1997 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1998 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1999 FREQ2FBIN(2472, 1),
2000 0,
2001 },
2002
2003 {
2004 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2005 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2006 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2007 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2008 },
2009
2010 {
2011 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2012 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2013 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2014 },
2015
2016 {
2017 /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2018 /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2019 /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2020 0
2021 },
2022
2023 {
2024 /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2025 /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2026 /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2027 0
2028 },
2029
2030 {
2031 /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2032 /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2033 /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2034 /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2035 }
2036 },
2037 .ctlPowerData_2G = {
2038 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2039 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2040 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2041
2042 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
2043 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2044 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2045
2046 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2047 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2048 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2049
2050 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2051 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2052 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2053 },
2054 .modalHeader5G = {
2055 /* 4 idle,t1,t2,b (4 bits per setting) */
2056 .antCtrlCommon = LE32(0x110),
2057 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2058 .antCtrlCommon2 = LE32(0x22222),
2059 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2060 .antCtrlChain = {
2061 LE16(0x0), LE16(0x0), LE16(0x0),
2062 },
2063 /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2064 .xatten1DB = {0x13, 0x19, 0x17},
2065
2066 /*
2067 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2068 * for merlin (0xa20c/b20c 16:12
2069 */
2070 .xatten1Margin = {0x19, 0x19, 0x19},
2071 .tempSlope = 70,
2072 .voltSlope = 15,
2073 /* spurChans spur channels in usual fbin coding format */
2074 .spurChans = {0, 0, 0, 0, 0},
2075 /* noiseFloorThreshch check if the register is per chain */
2076 .noiseFloorThreshCh = {-1, 0, 0},
2077 .ob = {3, 3, 3}, /* 3 chain */
2078 .db_stage2 = {3, 3, 3}, /* 3 chain */
2079 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2080 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
2081 .xpaBiasLvl = 0,
2082 .txFrameToDataStart = 0x0e,
2083 .txFrameToPaOn = 0x0e,
2084 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2085 .antennaGain = 0,
2086 .switchSettling = 0x2d,
2087 .adcDesiredSize = -30,
2088 .txEndToXpaOff = 0,
2089 .txEndToRxOn = 0x2,
2090 .txFrameToXpaOn = 0xe,
2091 .thresh62 = 28,
2092 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2093 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2094 .futureModal = {
2095 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2096 },
2097 },
2098 .base_ext2 = {
2099 .tempSlopeLow = 72,
2100 .tempSlopeHigh = 105,
2101 .xatten1DBLow = {0x10, 0x14, 0x10},
2102 .xatten1MarginLow = {0x19, 0x19 , 0x19},
2103 .xatten1DBHigh = {0x1d, 0x20, 0x24},
2104 .xatten1MarginHigh = {0x10, 0x10, 0x10}
2105 },
2106 .calFreqPier5G = {
2107 FREQ2FBIN(5180, 0),
2108 FREQ2FBIN(5220, 0),
2109 FREQ2FBIN(5320, 0),
2110 FREQ2FBIN(5400, 0),
2111 FREQ2FBIN(5500, 0),
2112 FREQ2FBIN(5600, 0),
2113 FREQ2FBIN(5700, 0),
2114 FREQ2FBIN(5785, 0)
2115 },
2116 .calPierData5G = {
2117 {
2118 {0, 0, 0, 0, 0},
2119 {0, 0, 0, 0, 0},
2120 {0, 0, 0, 0, 0},
2121 {0, 0, 0, 0, 0},
2122 {0, 0, 0, 0, 0},
2123 {0, 0, 0, 0, 0},
2124 {0, 0, 0, 0, 0},
2125 {0, 0, 0, 0, 0},
2126 },
2127 {
2128 {0, 0, 0, 0, 0},
2129 {0, 0, 0, 0, 0},
2130 {0, 0, 0, 0, 0},
2131 {0, 0, 0, 0, 0},
2132 {0, 0, 0, 0, 0},
2133 {0, 0, 0, 0, 0},
2134 {0, 0, 0, 0, 0},
2135 {0, 0, 0, 0, 0},
2136 },
2137 {
2138 {0, 0, 0, 0, 0},
2139 {0, 0, 0, 0, 0},
2140 {0, 0, 0, 0, 0},
2141 {0, 0, 0, 0, 0},
2142 {0, 0, 0, 0, 0},
2143 {0, 0, 0, 0, 0},
2144 {0, 0, 0, 0, 0},
2145 {0, 0, 0, 0, 0},
2146 },
2147
2148 },
2149 .calTarget_freqbin_5G = {
2150 FREQ2FBIN(5180, 0),
2151 FREQ2FBIN(5220, 0),
2152 FREQ2FBIN(5320, 0),
2153 FREQ2FBIN(5400, 0),
2154 FREQ2FBIN(5500, 0),
2155 FREQ2FBIN(5600, 0),
2156 FREQ2FBIN(5725, 0),
2157 FREQ2FBIN(5825, 0)
2158 },
2159 .calTarget_freqbin_5GHT20 = {
2160 FREQ2FBIN(5180, 0),
2161 FREQ2FBIN(5220, 0),
2162 FREQ2FBIN(5320, 0),
2163 FREQ2FBIN(5400, 0),
2164 FREQ2FBIN(5500, 0),
2165 FREQ2FBIN(5600, 0),
2166 FREQ2FBIN(5725, 0),
2167 FREQ2FBIN(5825, 0)
2168 },
2169 .calTarget_freqbin_5GHT40 = {
2170 FREQ2FBIN(5180, 0),
2171 FREQ2FBIN(5220, 0),
2172 FREQ2FBIN(5320, 0),
2173 FREQ2FBIN(5400, 0),
2174 FREQ2FBIN(5500, 0),
2175 FREQ2FBIN(5600, 0),
2176 FREQ2FBIN(5725, 0),
2177 FREQ2FBIN(5825, 0)
2178 },
2179 .calTargetPower5G = {
2180 /* 6-24,36,48,54 */
2181 { {32, 32, 28, 26} },
2182 { {32, 32, 28, 26} },
2183 { {32, 32, 28, 26} },
2184 { {32, 32, 26, 24} },
2185 { {32, 32, 26, 24} },
2186 { {32, 32, 24, 22} },
2187 { {30, 30, 24, 22} },
2188 { {30, 30, 24, 22} },
2189 },
2190 .calTargetPower5GHT20 = {
2191 /*
2192 * 0_8_16,1-3_9-11_17-19,
2193 * 4,5,6,7,12,13,14,15,20,21,22,23
2194 */
2195 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2196 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2197 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2198 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2199 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2200 { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2201 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2202 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2203 },
2204 .calTargetPower5GHT40 = {
2205 /*
2206 * 0_8_16,1-3_9-11_17-19,
2207 * 4,5,6,7,12,13,14,15,20,21,22,23
2208 */
2209 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2210 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2211 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2212 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2213 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2214 { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2215 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2216 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2217 },
2218 .ctlIndex_5G = {
2219 0x10, 0x16, 0x18, 0x40, 0x46,
2220 0x48, 0x30, 0x36, 0x38
2221 },
2222 .ctl_freqbin_5G = {
2223 {
2224 /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2225 /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2226 /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2227 /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2228 /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2229 /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2230 /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2231 /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2232 },
2233 {
2234 /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2235 /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2236 /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2237 /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2238 /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2239 /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2240 /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2241 /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2242 },
2243
2244 {
2245 /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2246 /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2247 /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2248 /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2249 /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2250 /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2251 /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2252 /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2253 },
2254
2255 {
2256 /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2257 /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2258 /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2259 /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2260 /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2261 /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2262 /* Data[3].ctledges[6].bchannel */ 0xFF,
2263 /* Data[3].ctledges[7].bchannel */ 0xFF,
2264 },
2265
2266 {
2267 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2268 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2269 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2270 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2271 /* Data[4].ctledges[4].bchannel */ 0xFF,
2272 /* Data[4].ctledges[5].bchannel */ 0xFF,
2273 /* Data[4].ctledges[6].bchannel */ 0xFF,
2274 /* Data[4].ctledges[7].bchannel */ 0xFF,
2275 },
2276
2277 {
2278 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2279 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2280 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2281 /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2282 /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2283 /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2284 /* Data[5].ctledges[6].bchannel */ 0xFF,
2285 /* Data[5].ctledges[7].bchannel */ 0xFF
2286 },
2287
2288 {
2289 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2290 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2291 /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2292 /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2293 /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2294 /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2295 /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2296 /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2297 },
2298
2299 {
2300 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2301 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2302 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2303 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2304 /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2305 /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2306 /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2307 /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2308 },
2309
2310 {
2311 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2312 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2313 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2314 /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2315 /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2316 /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2317 /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2318 /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2319 }
2320 },
2321 .ctlPowerData_5G = {
2322 {
2323 {
2324 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2325 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2326 }
2327 },
2328 {
2329 {
2330 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2331 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2332 }
2333 },
2334 {
2335 {
2336 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2337 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2338 }
2339 },
2340 {
2341 {
2342 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2343 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2344 }
2345 },
2346 {
2347 {
2348 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2349 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2350 }
2351 },
2352 {
2353 {
2354 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2355 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2356 }
2357 },
2358 {
2359 {
2360 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2361 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2362 }
2363 },
2364 {
2365 {
2366 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2367 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2368 }
2369 },
2370 {
2371 {
2372 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2373 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2374 }
2375 },
2376 }
2377 };
2378
2379 static const struct ar9300_eeprom ar9300_h116 = {
2380 .eepromVersion = 2,
2381 .templateVersion = 4,
2382 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2383 .custData = {"h116-041-f0000"},
2384 .baseEepHeader = {
2385 .regDmn = { LE16(0), LE16(0x1f) },
2386 .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
2387 .opCapFlags = {
2388 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2389 .eepMisc = 0,
2390 },
2391 .rfSilent = 0,
2392 .blueToothOptions = 0,
2393 .deviceCap = 0,
2394 .deviceType = 5, /* takes lower byte in eeprom location */
2395 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2396 .params_for_tuning_caps = {0, 0},
2397 .featureEnable = 0x0d,
2398 /*
2399 * bit0 - enable tx temp comp - disabled
2400 * bit1 - enable tx volt comp - disabled
2401 * bit2 - enable fastClock - enabled
2402 * bit3 - enable doubling - enabled
2403 * bit4 - enable internal regulator - disabled
2404 * bit5 - enable pa predistortion - disabled
2405 */
2406 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
2407 .eepromWriteEnableGpio = 6,
2408 .wlanDisableGpio = 0,
2409 .wlanLedGpio = 8,
2410 .rxBandSelectGpio = 0xff,
2411 .txrxgain = 0x10,
2412 .swreg = 0,
2413 },
2414 .modalHeader2G = {
2415 /* ar9300_modal_eep_header 2g */
2416 /* 4 idle,t1,t2,b(4 bits per setting) */
2417 .antCtrlCommon = LE32(0x110),
2418 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2419 .antCtrlCommon2 = LE32(0x44444),
2420
2421 /*
2422 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2423 * rx1, rx12, b (2 bits each)
2424 */
2425 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2426
2427 /*
2428 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
2429 * for ar9280 (0xa20c/b20c 5:0)
2430 */
2431 .xatten1DB = {0x1f, 0x1f, 0x1f},
2432
2433 /*
2434 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2435 * for ar9280 (0xa20c/b20c 16:12
2436 */
2437 .xatten1Margin = {0x12, 0x12, 0x12},
2438 .tempSlope = 25,
2439 .voltSlope = 0,
2440
2441 /*
2442 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2443 * channels in usual fbin coding format
2444 */
2445 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2446
2447 /*
2448 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2449 * if the register is per chain
2450 */
2451 .noiseFloorThreshCh = {-1, 0, 0},
2452 .ob = {1, 1, 1},/* 3 chain */
2453 .db_stage2 = {1, 1, 1}, /* 3 chain */
2454 .db_stage3 = {0, 0, 0},
2455 .db_stage4 = {0, 0, 0},
2456 .xpaBiasLvl = 0,
2457 .txFrameToDataStart = 0x0e,
2458 .txFrameToPaOn = 0x0e,
2459 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2460 .antennaGain = 0,
2461 .switchSettling = 0x2c,
2462 .adcDesiredSize = -30,
2463 .txEndToXpaOff = 0,
2464 .txEndToRxOn = 0x2,
2465 .txFrameToXpaOn = 0xe,
2466 .thresh62 = 28,
2467 .papdRateMaskHt20 = LE32(0x0c80C080),
2468 .papdRateMaskHt40 = LE32(0x0080C080),
2469 .futureModal = {
2470 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2471 },
2472 },
2473 .base_ext1 = {
2474 .ant_div_control = 0,
2475 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2476 },
2477 .calFreqPier2G = {
2478 FREQ2FBIN(2412, 1),
2479 FREQ2FBIN(2437, 1),
2480 FREQ2FBIN(2472, 1),
2481 },
2482 /* ar9300_cal_data_per_freq_op_loop 2g */
2483 .calPierData2G = {
2484 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2485 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2486 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2487 },
2488 .calTarget_freqbin_Cck = {
2489 FREQ2FBIN(2412, 1),
2490 FREQ2FBIN(2472, 1),
2491 },
2492 .calTarget_freqbin_2G = {
2493 FREQ2FBIN(2412, 1),
2494 FREQ2FBIN(2437, 1),
2495 FREQ2FBIN(2472, 1)
2496 },
2497 .calTarget_freqbin_2GHT20 = {
2498 FREQ2FBIN(2412, 1),
2499 FREQ2FBIN(2437, 1),
2500 FREQ2FBIN(2472, 1)
2501 },
2502 .calTarget_freqbin_2GHT40 = {
2503 FREQ2FBIN(2412, 1),
2504 FREQ2FBIN(2437, 1),
2505 FREQ2FBIN(2472, 1)
2506 },
2507 .calTargetPowerCck = {
2508 /* 1L-5L,5S,11L,11S */
2509 { {34, 34, 34, 34} },
2510 { {34, 34, 34, 34} },
2511 },
2512 .calTargetPower2G = {
2513 /* 6-24,36,48,54 */
2514 { {34, 34, 32, 32} },
2515 { {34, 34, 32, 32} },
2516 { {34, 34, 32, 32} },
2517 },
2518 .calTargetPower2GHT20 = {
2519 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2520 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2521 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2522 },
2523 .calTargetPower2GHT40 = {
2524 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2525 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2526 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2527 },
2528 .ctlIndex_2G = {
2529 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2530 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2531 },
2532 .ctl_freqbin_2G = {
2533 {
2534 FREQ2FBIN(2412, 1),
2535 FREQ2FBIN(2417, 1),
2536 FREQ2FBIN(2457, 1),
2537 FREQ2FBIN(2462, 1)
2538 },
2539 {
2540 FREQ2FBIN(2412, 1),
2541 FREQ2FBIN(2417, 1),
2542 FREQ2FBIN(2462, 1),
2543 0xFF,
2544 },
2545
2546 {
2547 FREQ2FBIN(2412, 1),
2548 FREQ2FBIN(2417, 1),
2549 FREQ2FBIN(2462, 1),
2550 0xFF,
2551 },
2552 {
2553 FREQ2FBIN(2422, 1),
2554 FREQ2FBIN(2427, 1),
2555 FREQ2FBIN(2447, 1),
2556 FREQ2FBIN(2452, 1)
2557 },
2558
2559 {
2560 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2561 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2562 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2563 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2564 },
2565
2566 {
2567 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2568 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2569 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2570 0,
2571 },
2572
2573 {
2574 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2575 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2576 FREQ2FBIN(2472, 1),
2577 0,
2578 },
2579
2580 {
2581 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2582 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2583 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2584 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2585 },
2586
2587 {
2588 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2589 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2590 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2591 },
2592
2593 {
2594 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2595 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2596 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2597 0
2598 },
2599
2600 {
2601 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2602 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2603 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2604 0
2605 },
2606
2607 {
2608 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2609 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2610 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2611 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2612 }
2613 },
2614 .ctlPowerData_2G = {
2615 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2616 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2617 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2618
2619 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
2620 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2621 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2622
2623 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2624 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2625 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2626
2627 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2628 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2629 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2630 },
2631 .modalHeader5G = {
2632 /* 4 idle,t1,t2,b (4 bits per setting) */
2633 .antCtrlCommon = LE32(0x220),
2634 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2635 .antCtrlCommon2 = LE32(0x44444),
2636 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2637 .antCtrlChain = {
2638 LE16(0x150), LE16(0x150), LE16(0x150),
2639 },
2640 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2641 .xatten1DB = {0x19, 0x19, 0x19},
2642
2643 /*
2644 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2645 * for merlin (0xa20c/b20c 16:12
2646 */
2647 .xatten1Margin = {0x14, 0x14, 0x14},
2648 .tempSlope = 70,
2649 .voltSlope = 0,
2650 /* spurChans spur channels in usual fbin coding format */
2651 .spurChans = {0, 0, 0, 0, 0},
2652 /* noiseFloorThreshCh Check if the register is per chain */
2653 .noiseFloorThreshCh = {-1, 0, 0},
2654 .ob = {3, 3, 3}, /* 3 chain */
2655 .db_stage2 = {3, 3, 3}, /* 3 chain */
2656 .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2657 .db_stage4 = {3, 3, 3}, /* don't exist for 2G */
2658 .xpaBiasLvl = 0,
2659 .txFrameToDataStart = 0x0e,
2660 .txFrameToPaOn = 0x0e,
2661 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2662 .antennaGain = 0,
2663 .switchSettling = 0x2d,
2664 .adcDesiredSize = -30,
2665 .txEndToXpaOff = 0,
2666 .txEndToRxOn = 0x2,
2667 .txFrameToXpaOn = 0xe,
2668 .thresh62 = 28,
2669 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2670 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2671 .futureModal = {
2672 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2673 },
2674 },
2675 .base_ext2 = {
2676 .tempSlopeLow = 35,
2677 .tempSlopeHigh = 50,
2678 .xatten1DBLow = {0, 0, 0},
2679 .xatten1MarginLow = {0, 0, 0},
2680 .xatten1DBHigh = {0, 0, 0},
2681 .xatten1MarginHigh = {0, 0, 0}
2682 },
2683 .calFreqPier5G = {
2684 FREQ2FBIN(5180, 0),
2685 FREQ2FBIN(5220, 0),
2686 FREQ2FBIN(5320, 0),
2687 FREQ2FBIN(5400, 0),
2688 FREQ2FBIN(5500, 0),
2689 FREQ2FBIN(5600, 0),
2690 FREQ2FBIN(5700, 0),
2691 FREQ2FBIN(5785, 0)
2692 },
2693 .calPierData5G = {
2694 {
2695 {0, 0, 0, 0, 0},
2696 {0, 0, 0, 0, 0},
2697 {0, 0, 0, 0, 0},
2698 {0, 0, 0, 0, 0},
2699 {0, 0, 0, 0, 0},
2700 {0, 0, 0, 0, 0},
2701 {0, 0, 0, 0, 0},
2702 {0, 0, 0, 0, 0},
2703 },
2704 {
2705 {0, 0, 0, 0, 0},
2706 {0, 0, 0, 0, 0},
2707 {0, 0, 0, 0, 0},
2708 {0, 0, 0, 0, 0},
2709 {0, 0, 0, 0, 0},
2710 {0, 0, 0, 0, 0},
2711 {0, 0, 0, 0, 0},
2712 {0, 0, 0, 0, 0},
2713 },
2714 {
2715 {0, 0, 0, 0, 0},
2716 {0, 0, 0, 0, 0},
2717 {0, 0, 0, 0, 0},
2718 {0, 0, 0, 0, 0},
2719 {0, 0, 0, 0, 0},
2720 {0, 0, 0, 0, 0},
2721 {0, 0, 0, 0, 0},
2722 {0, 0, 0, 0, 0},
2723 },
2724
2725 },
2726 .calTarget_freqbin_5G = {
2727 FREQ2FBIN(5180, 0),
2728 FREQ2FBIN(5240, 0),
2729 FREQ2FBIN(5320, 0),
2730 FREQ2FBIN(5400, 0),
2731 FREQ2FBIN(5500, 0),
2732 FREQ2FBIN(5600, 0),
2733 FREQ2FBIN(5700, 0),
2734 FREQ2FBIN(5825, 0)
2735 },
2736 .calTarget_freqbin_5GHT20 = {
2737 FREQ2FBIN(5180, 0),
2738 FREQ2FBIN(5240, 0),
2739 FREQ2FBIN(5320, 0),
2740 FREQ2FBIN(5400, 0),
2741 FREQ2FBIN(5500, 0),
2742 FREQ2FBIN(5700, 0),
2743 FREQ2FBIN(5745, 0),
2744 FREQ2FBIN(5825, 0)
2745 },
2746 .calTarget_freqbin_5GHT40 = {
2747 FREQ2FBIN(5180, 0),
2748 FREQ2FBIN(5240, 0),
2749 FREQ2FBIN(5320, 0),
2750 FREQ2FBIN(5400, 0),
2751 FREQ2FBIN(5500, 0),
2752 FREQ2FBIN(5700, 0),
2753 FREQ2FBIN(5745, 0),
2754 FREQ2FBIN(5825, 0)
2755 },
2756 .calTargetPower5G = {
2757 /* 6-24,36,48,54 */
2758 { {30, 30, 28, 24} },
2759 { {30, 30, 28, 24} },
2760 { {30, 30, 28, 24} },
2761 { {30, 30, 28, 24} },
2762 { {30, 30, 28, 24} },
2763 { {30, 30, 28, 24} },
2764 { {30, 30, 28, 24} },
2765 { {30, 30, 28, 24} },
2766 },
2767 .calTargetPower5GHT20 = {
2768 /*
2769 * 0_8_16,1-3_9-11_17-19,
2770 * 4,5,6,7,12,13,14,15,20,21,22,23
2771 */
2772 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2773 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2774 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2775 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2776 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2777 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2778 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2779 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2780 },
2781 .calTargetPower5GHT40 = {
2782 /*
2783 * 0_8_16,1-3_9-11_17-19,
2784 * 4,5,6,7,12,13,14,15,20,21,22,23
2785 */
2786 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2787 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2788 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2789 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2790 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2791 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2792 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2793 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2794 },
2795 .ctlIndex_5G = {
2796 0x10, 0x16, 0x18, 0x40, 0x46,
2797 0x48, 0x30, 0x36, 0x38
2798 },
2799 .ctl_freqbin_5G = {
2800 {
2801 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2802 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2803 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2804 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2805 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2806 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2807 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2808 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2809 },
2810 {
2811 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2812 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2813 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2814 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2815 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2816 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2817 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2818 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2819 },
2820
2821 {
2822 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2823 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2824 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2825 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2826 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2827 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2828 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2829 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2830 },
2831
2832 {
2833 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2834 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2835 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2836 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2837 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2838 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2839 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
2840 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
2841 },
2842
2843 {
2844 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2845 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2846 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2847 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2848 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
2849 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
2850 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
2851 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
2852 },
2853
2854 {
2855 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2856 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2857 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2858 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2859 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2860 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2861 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
2862 /* Data[5].ctlEdges[7].bChannel */ 0xFF
2863 },
2864
2865 {
2866 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2867 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2868 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2869 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2870 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2871 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2872 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2873 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2874 },
2875
2876 {
2877 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2878 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2879 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2880 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2881 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2882 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2883 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2884 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2885 },
2886
2887 {
2888 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2889 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2890 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2891 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2892 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2893 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2894 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2895 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2896 }
2897 },
2898 .ctlPowerData_5G = {
2899 {
2900 {
2901 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2902 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2903 }
2904 },
2905 {
2906 {
2907 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2908 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2909 }
2910 },
2911 {
2912 {
2913 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2914 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2915 }
2916 },
2917 {
2918 {
2919 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2920 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2921 }
2922 },
2923 {
2924 {
2925 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2926 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2927 }
2928 },
2929 {
2930 {
2931 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2932 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2933 }
2934 },
2935 {
2936 {
2937 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2938 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2939 }
2940 },
2941 {
2942 {
2943 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2944 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2945 }
2946 },
2947 {
2948 {
2949 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2950 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2951 }
2952 },
2953 }
2954 };
2955
2956
2957 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2958 &ar9300_default,
2959 &ar9300_x112,
2960 &ar9300_h116,
2961 &ar9300_h112,
2962 &ar9300_x113,
2963 };
2964
2965 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2966 {
2967 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2968 int it;
2969
2970 for (it = 0; it < N_LOOP; it++)
2971 if (ar9300_eep_templates[it]->templateVersion == id)
2972 return ar9300_eep_templates[it];
2973 return NULL;
2974 #undef N_LOOP
2975 }
2976
2977
2978 static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
2979 {
2980 if (fbin == AR5416_BCHAN_UNUSED)
2981 return fbin;
2982
2983 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2984 }
2985
2986 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2987 {
2988 return 0;
2989 }
2990
2991 static int interpolate(int x, int xa, int xb, int ya, int yb)
2992 {
2993 int bf, factor, plus;
2994
2995 bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2996 factor = bf / 2;
2997 plus = bf % 2;
2998 return ya + factor + plus;
2999 }
3000
3001 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
3002 enum eeprom_param param)
3003 {
3004 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3005 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3006
3007 switch (param) {
3008 case EEP_MAC_LSW:
3009 return eep->macAddr[0] << 8 | eep->macAddr[1];
3010 case EEP_MAC_MID:
3011 return eep->macAddr[2] << 8 | eep->macAddr[3];
3012 case EEP_MAC_MSW:
3013 return eep->macAddr[4] << 8 | eep->macAddr[5];
3014 case EEP_REG_0:
3015 return le16_to_cpu(pBase->regDmn[0]);
3016 case EEP_REG_1:
3017 return le16_to_cpu(pBase->regDmn[1]);
3018 case EEP_OP_CAP:
3019 return pBase->deviceCap;
3020 case EEP_OP_MODE:
3021 return pBase->opCapFlags.opFlags;
3022 case EEP_RF_SILENT:
3023 return pBase->rfSilent;
3024 case EEP_TX_MASK:
3025 return (pBase->txrxMask >> 4) & 0xf;
3026 case EEP_RX_MASK:
3027 return pBase->txrxMask & 0xf;
3028 case EEP_DRIVE_STRENGTH:
3029 #define AR9300_EEP_BASE_DRIV_STRENGTH 0x1
3030 return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
3031 case EEP_INTERNAL_REGULATOR:
3032 /* Bit 4 is internal regulator flag */
3033 return (pBase->featureEnable & 0x10) >> 4;
3034 case EEP_SWREG:
3035 return le32_to_cpu(pBase->swreg);
3036 case EEP_PAPRD:
3037 return !!(pBase->featureEnable & BIT(5));
3038 case EEP_CHAIN_MASK_REDUCE:
3039 return (pBase->miscConfiguration >> 0x3) & 0x1;
3040 case EEP_ANT_DIV_CTL1:
3041 return le32_to_cpu(eep->base_ext1.ant_div_control);
3042 default:
3043 return 0;
3044 }
3045 }
3046
3047 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3048 u8 *buffer)
3049 {
3050 u16 val;
3051
3052 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3053 return false;
3054
3055 *buffer = (val >> (8 * (address % 2))) & 0xff;
3056 return true;
3057 }
3058
3059 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3060 u8 *buffer)
3061 {
3062 u16 val;
3063
3064 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3065 return false;
3066
3067 buffer[0] = val >> 8;
3068 buffer[1] = val & 0xff;
3069
3070 return true;
3071 }
3072
3073 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3074 int count)
3075 {
3076 struct ath_common *common = ath9k_hw_common(ah);
3077 int i;
3078
3079 if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3080 ath_dbg(common, ATH_DBG_EEPROM,
3081 "eeprom address not in range\n");
3082 return false;
3083 }
3084
3085 /*
3086 * Since we're reading the bytes in reverse order from a little-endian
3087 * word stream, an even address means we only use the lower half of
3088 * the 16-bit word at that address
3089 */
3090 if (address % 2 == 0) {
3091 if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3092 goto error;
3093
3094 count--;
3095 }
3096
3097 for (i = 0; i < count / 2; i++) {
3098 if (!ar9300_eeprom_read_word(common, address, buffer))
3099 goto error;
3100
3101 address -= 2;
3102 buffer += 2;
3103 }
3104
3105 if (count % 2)
3106 if (!ar9300_eeprom_read_byte(common, address, buffer))
3107 goto error;
3108
3109 return true;
3110
3111 error:
3112 ath_dbg(common, ATH_DBG_EEPROM,
3113 "unable to read eeprom region at offset %d\n", address);
3114 return false;
3115 }
3116
3117 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3118 {
3119 REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3120
3121 if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3122 AR9300_OTP_STATUS_VALID, 1000))
3123 return false;
3124
3125 *data = REG_READ(ah, AR9300_OTP_READ_DATA);
3126 return true;
3127 }
3128
3129 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3130 int count)
3131 {
3132 u32 data;
3133 int i;
3134
3135 for (i = 0; i < count; i++) {
3136 int offset = 8 * ((address - i) % 4);
3137 if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3138 return false;
3139
3140 buffer[i] = (data >> offset) & 0xff;
3141 }
3142
3143 return true;
3144 }
3145
3146
3147 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3148 int *length, int *major, int *minor)
3149 {
3150 unsigned long value[4];
3151
3152 value[0] = best[0];
3153 value[1] = best[1];
3154 value[2] = best[2];
3155 value[3] = best[3];
3156 *code = ((value[0] >> 5) & 0x0007);
3157 *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3158 *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3159 *major = (value[2] & 0x000f);
3160 *minor = (value[3] & 0x00ff);
3161 }
3162
3163 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3164 {
3165 int it, checksum = 0;
3166
3167 for (it = 0; it < dsize; it++) {
3168 checksum += data[it];
3169 checksum &= 0xffff;
3170 }
3171
3172 return checksum;
3173 }
3174
3175 static bool ar9300_uncompress_block(struct ath_hw *ah,
3176 u8 *mptr,
3177 int mdataSize,
3178 u8 *block,
3179 int size)
3180 {
3181 int it;
3182 int spot;
3183 int offset;
3184 int length;
3185 struct ath_common *common = ath9k_hw_common(ah);
3186
3187 spot = 0;
3188
3189 for (it = 0; it < size; it += (length+2)) {
3190 offset = block[it];
3191 offset &= 0xff;
3192 spot += offset;
3193 length = block[it+1];
3194 length &= 0xff;
3195
3196 if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3197 ath_dbg(common, ATH_DBG_EEPROM,
3198 "Restore at %d: spot=%d offset=%d length=%d\n",
3199 it, spot, offset, length);
3200 memcpy(&mptr[spot], &block[it+2], length);
3201 spot += length;
3202 } else if (length > 0) {
3203 ath_dbg(common, ATH_DBG_EEPROM,
3204 "Bad restore at %d: spot=%d offset=%d length=%d\n",
3205 it, spot, offset, length);
3206 return false;
3207 }
3208 }
3209 return true;
3210 }
3211
3212 static int ar9300_compress_decision(struct ath_hw *ah,
3213 int it,
3214 int code,
3215 int reference,
3216 u8 *mptr,
3217 u8 *word, int length, int mdata_size)
3218 {
3219 struct ath_common *common = ath9k_hw_common(ah);
3220 u8 *dptr;
3221 const struct ar9300_eeprom *eep = NULL;
3222
3223 switch (code) {
3224 case _CompressNone:
3225 if (length != mdata_size) {
3226 ath_dbg(common, ATH_DBG_EEPROM,
3227 "EEPROM structure size mismatch memory=%d eeprom=%d\n",
3228 mdata_size, length);
3229 return -1;
3230 }
3231 memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
3232 ath_dbg(common, ATH_DBG_EEPROM,
3233 "restored eeprom %d: uncompressed, length %d\n",
3234 it, length);
3235 break;
3236 case _CompressBlock:
3237 if (reference == 0) {
3238 dptr = mptr;
3239 } else {
3240 eep = ar9003_eeprom_struct_find_by_id(reference);
3241 if (eep == NULL) {
3242 ath_dbg(common, ATH_DBG_EEPROM,
3243 "can't find reference eeprom struct %d\n",
3244 reference);
3245 return -1;
3246 }
3247 memcpy(mptr, eep, mdata_size);
3248 }
3249 ath_dbg(common, ATH_DBG_EEPROM,
3250 "restore eeprom %d: block, reference %d, length %d\n",
3251 it, reference, length);
3252 ar9300_uncompress_block(ah, mptr, mdata_size,
3253 (u8 *) (word + COMP_HDR_LEN), length);
3254 break;
3255 default:
3256 ath_dbg(common, ATH_DBG_EEPROM,
3257 "unknown compression code %d\n", code);
3258 return -1;
3259 }
3260 return 0;
3261 }
3262
3263 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3264 int count);
3265
3266 static bool ar9300_check_header(void *data)
3267 {
3268 u32 *word = data;
3269 return !(*word == 0 || *word == ~0);
3270 }
3271
3272 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3273 int base_addr)
3274 {
3275 u8 header[4];
3276
3277 if (!read(ah, base_addr, header, 4))
3278 return false;
3279
3280 return ar9300_check_header(header);
3281 }
3282
3283 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3284 int mdata_size)
3285 {
3286 struct ath_common *common = ath9k_hw_common(ah);
3287 u16 *data = (u16 *) mptr;
3288 int i;
3289
3290 for (i = 0; i < mdata_size / 2; i++, data++)
3291 ath9k_hw_nvram_read(common, i, data);
3292
3293 return 0;
3294 }
3295 /*
3296 * Read the configuration data from the eeprom.
3297 * The data can be put in any specified memory buffer.
3298 *
3299 * Returns -1 on error.
3300 * Returns address of next memory location on success.
3301 */
3302 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3303 u8 *mptr, int mdata_size)
3304 {
3305 #define MDEFAULT 15
3306 #define MSTATE 100
3307 int cptr;
3308 u8 *word;
3309 int code;
3310 int reference, length, major, minor;
3311 int osize;
3312 int it;
3313 u16 checksum, mchecksum;
3314 struct ath_common *common = ath9k_hw_common(ah);
3315 eeprom_read_op read;
3316
3317 if (ath9k_hw_use_flash(ah))
3318 return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3319
3320 word = kzalloc(2048, GFP_KERNEL);
3321 if (!word)
3322 return -1;
3323
3324 memcpy(mptr, &ar9300_default, mdata_size);
3325
3326 read = ar9300_read_eeprom;
3327 if (AR_SREV_9485(ah))
3328 cptr = AR9300_BASE_ADDR_4K;
3329 else
3330 cptr = AR9300_BASE_ADDR;
3331 ath_dbg(common, ATH_DBG_EEPROM,
3332 "Trying EEPROM accesss at Address 0x%04x\n", cptr);
3333 if (ar9300_check_eeprom_header(ah, read, cptr))
3334 goto found;
3335
3336 cptr = AR9300_BASE_ADDR_512;
3337 ath_dbg(common, ATH_DBG_EEPROM,
3338 "Trying EEPROM accesss at Address 0x%04x\n", cptr);
3339 if (ar9300_check_eeprom_header(ah, read, cptr))
3340 goto found;
3341
3342 read = ar9300_read_otp;
3343 cptr = AR9300_BASE_ADDR;
3344 ath_dbg(common, ATH_DBG_EEPROM,
3345 "Trying OTP accesss at Address 0x%04x\n", cptr);
3346 if (ar9300_check_eeprom_header(ah, read, cptr))
3347 goto found;
3348
3349 cptr = AR9300_BASE_ADDR_512;
3350 ath_dbg(common, ATH_DBG_EEPROM,
3351 "Trying OTP accesss at Address 0x%04x\n", cptr);
3352 if (ar9300_check_eeprom_header(ah, read, cptr))
3353 goto found;
3354
3355 goto fail;
3356
3357 found:
3358 ath_dbg(common, ATH_DBG_EEPROM, "Found valid EEPROM data\n");
3359
3360 for (it = 0; it < MSTATE; it++) {
3361 if (!read(ah, cptr, word, COMP_HDR_LEN))
3362 goto fail;
3363
3364 if (!ar9300_check_header(word))
3365 break;
3366
3367 ar9300_comp_hdr_unpack(word, &code, &reference,
3368 &length, &major, &minor);
3369 ath_dbg(common, ATH_DBG_EEPROM,
3370 "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3371 cptr, code, reference, length, major, minor);
3372 if ((!AR_SREV_9485(ah) && length >= 1024) ||
3373 (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3374 ath_dbg(common, ATH_DBG_EEPROM,
3375 "Skipping bad header\n");
3376 cptr -= COMP_HDR_LEN;
3377 continue;
3378 }
3379
3380 osize = length;
3381 read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3382 checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3383 mchecksum = word[COMP_HDR_LEN + osize] |
3384 (word[COMP_HDR_LEN + osize + 1] << 8);
3385 ath_dbg(common, ATH_DBG_EEPROM,
3386 "checksum %x %x\n", checksum, mchecksum);
3387 if (checksum == mchecksum) {
3388 ar9300_compress_decision(ah, it, code, reference, mptr,
3389 word, length, mdata_size);
3390 } else {
3391 ath_dbg(common, ATH_DBG_EEPROM,
3392 "skipping block with bad checksum\n");
3393 }
3394 cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3395 }
3396
3397 kfree(word);
3398 return cptr;
3399
3400 fail:
3401 kfree(word);
3402 return -1;
3403 }
3404
3405 /*
3406 * Restore the configuration structure by reading the eeprom.
3407 * This function destroys any existing in-memory structure
3408 * content.
3409 */
3410 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3411 {
3412 u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3413
3414 if (ar9300_eeprom_restore_internal(ah, mptr,
3415 sizeof(struct ar9300_eeprom)) < 0)
3416 return false;
3417
3418 return true;
3419 }
3420
3421 /* XXX: review hardware docs */
3422 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3423 {
3424 return ah->eeprom.ar9300_eep.eepromVersion;
3425 }
3426
3427 /* XXX: could be read from the eepromVersion, not sure yet */
3428 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3429 {
3430 return 0;
3431 }
3432
3433 static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
3434 {
3435 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3436
3437 if (is2ghz)
3438 return eep->modalHeader2G.xpaBiasLvl;
3439 else
3440 return eep->modalHeader5G.xpaBiasLvl;
3441 }
3442
3443 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3444 {
3445 int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
3446
3447 if (AR_SREV_9485(ah))
3448 REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3449 else {
3450 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3451 REG_RMW_FIELD(ah, AR_CH0_THERM, AR_CH0_THERM_XPABIASLVL_MSB,
3452 bias >> 2);
3453 REG_RMW_FIELD(ah, AR_CH0_THERM, AR_CH0_THERM_XPASHORT2GND, 1);
3454 }
3455 }
3456
3457 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3458 {
3459 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3460 __le32 val;
3461
3462 if (is2ghz)
3463 val = eep->modalHeader2G.antCtrlCommon;
3464 else
3465 val = eep->modalHeader5G.antCtrlCommon;
3466 return le32_to_cpu(val);
3467 }
3468
3469 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3470 {
3471 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3472 __le32 val;
3473
3474 if (is2ghz)
3475 val = eep->modalHeader2G.antCtrlCommon2;
3476 else
3477 val = eep->modalHeader5G.antCtrlCommon2;
3478 return le32_to_cpu(val);
3479 }
3480
3481 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
3482 int chain,
3483 bool is2ghz)
3484 {
3485 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3486 __le16 val = 0;
3487
3488 if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
3489 if (is2ghz)
3490 val = eep->modalHeader2G.antCtrlChain[chain];
3491 else
3492 val = eep->modalHeader5G.antCtrlChain[chain];
3493 }
3494
3495 return le16_to_cpu(val);
3496 }
3497
3498 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3499 {
3500 u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3501 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value);
3502
3503 value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3504 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3505
3506 value = ar9003_hw_ant_ctrl_chain_get(ah, 0, is2ghz);
3507 REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
3508
3509 if (!AR_SREV_9485(ah)) {
3510 value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
3511 REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL,
3512 value);
3513
3514 value = ar9003_hw_ant_ctrl_chain_get(ah, 2, is2ghz);
3515 REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL,
3516 value);
3517 }
3518
3519 if (AR_SREV_9485(ah)) {
3520 value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3521 REG_RMW_FIELD(ah, AR_PHY_MC_GAIN_CTRL, AR_ANT_DIV_CTRL_ALL,
3522 value);
3523 REG_RMW_FIELD(ah, AR_PHY_MC_GAIN_CTRL, AR_ANT_DIV_ENABLE,
3524 value >> 6);
3525 REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT, AR_FAST_DIV_ENABLE,
3526 value >> 7);
3527 }
3528 }
3529
3530 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3531 {
3532 int drive_strength;
3533 unsigned long reg;
3534
3535 drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
3536
3537 if (!drive_strength)
3538 return;
3539
3540 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3541 reg &= ~0x00ffffc0;
3542 reg |= 0x5 << 21;
3543 reg |= 0x5 << 18;
3544 reg |= 0x5 << 15;
3545 reg |= 0x5 << 12;
3546 reg |= 0x5 << 9;
3547 reg |= 0x5 << 6;
3548 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3549
3550 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3551 reg &= ~0xffffffe0;
3552 reg |= 0x5 << 29;
3553 reg |= 0x5 << 26;
3554 reg |= 0x5 << 23;
3555 reg |= 0x5 << 20;
3556 reg |= 0x5 << 17;
3557 reg |= 0x5 << 14;
3558 reg |= 0x5 << 11;
3559 reg |= 0x5 << 8;
3560 reg |= 0x5 << 5;
3561 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3562
3563 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3564 reg &= ~0xff800000;
3565 reg |= 0x5 << 29;
3566 reg |= 0x5 << 26;
3567 reg |= 0x5 << 23;
3568 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3569 }
3570
3571 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3572 struct ath9k_channel *chan)
3573 {
3574 int f[3], t[3];
3575 u16 value;
3576 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3577
3578 if (chain >= 0 && chain < 3) {
3579 if (IS_CHAN_2GHZ(chan))
3580 return eep->modalHeader2G.xatten1DB[chain];
3581 else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3582 t[0] = eep->base_ext2.xatten1DBLow[chain];
3583 f[0] = 5180;
3584 t[1] = eep->modalHeader5G.xatten1DB[chain];
3585 f[1] = 5500;
3586 t[2] = eep->base_ext2.xatten1DBHigh[chain];
3587 f[2] = 5785;
3588 value = ar9003_hw_power_interpolate((s32) chan->channel,
3589 f, t, 3);
3590 return value;
3591 } else
3592 return eep->modalHeader5G.xatten1DB[chain];
3593 }
3594
3595 return 0;
3596 }
3597
3598
3599 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3600 struct ath9k_channel *chan)
3601 {
3602 int f[3], t[3];
3603 u16 value;
3604 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3605
3606 if (chain >= 0 && chain < 3) {
3607 if (IS_CHAN_2GHZ(chan))
3608 return eep->modalHeader2G.xatten1Margin[chain];
3609 else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3610 t[0] = eep->base_ext2.xatten1MarginLow[chain];
3611 f[0] = 5180;
3612 t[1] = eep->modalHeader5G.xatten1Margin[chain];
3613 f[1] = 5500;
3614 t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3615 f[2] = 5785;
3616 value = ar9003_hw_power_interpolate((s32) chan->channel,
3617 f, t, 3);
3618 return value;
3619 } else
3620 return eep->modalHeader5G.xatten1Margin[chain];
3621 }
3622
3623 return 0;
3624 }
3625
3626 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3627 {
3628 int i;
3629 u16 value;
3630 unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3631 AR_PHY_EXT_ATTEN_CTL_1,
3632 AR_PHY_EXT_ATTEN_CTL_2,
3633 };
3634
3635 /* Test value. if 0 then attenuation is unused. Don't load anything. */
3636 for (i = 0; i < 3; i++) {
3637 value = ar9003_hw_atten_chain_get(ah, i, chan);
3638 REG_RMW_FIELD(ah, ext_atten_reg[i],
3639 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3640
3641 value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3642 REG_RMW_FIELD(ah, ext_atten_reg[i],
3643 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
3644 }
3645 }
3646
3647 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3648 {
3649 int timeout = 100;
3650
3651 while (pmu_set != REG_READ(ah, pmu_reg)) {
3652 if (timeout-- == 0)
3653 return false;
3654 REG_WRITE(ah, pmu_reg, pmu_set);
3655 udelay(10);
3656 }
3657
3658 return true;
3659 }
3660
3661 static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3662 {
3663 int internal_regulator =
3664 ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
3665
3666 if (internal_regulator) {
3667 if (AR_SREV_9485(ah)) {
3668 int reg_pmu_set;
3669
3670 reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3671 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3672 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3673 return;
3674
3675 reg_pmu_set = (5 << 1) | (7 << 4) | (1 << 8) |
3676 (2 << 14) | (6 << 17) | (1 << 20) |
3677 (3 << 24) | (1 << 28);
3678
3679 REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3680 if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3681 return;
3682
3683 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3684 | (4 << 26);
3685 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3686 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3687 return;
3688
3689 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3690 | (1 << 21);
3691 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3692 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3693 return;
3694 } else {
3695 /* Internal regulator is ON. Write swreg register. */
3696 int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3697 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3698 REG_READ(ah, AR_RTC_REG_CONTROL1) &
3699 (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3700 REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
3701 /* Set REG_CONTROL1.SWREG_PROGRAM */
3702 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3703 REG_READ(ah,
3704 AR_RTC_REG_CONTROL1) |
3705 AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3706 }
3707 } else {
3708 if (AR_SREV_9485(ah)) {
3709 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3710 while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3711 AR_PHY_PMU2_PGM))
3712 udelay(10);
3713
3714 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3715 while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3716 AR_PHY_PMU1_PWD))
3717 udelay(10);
3718 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3719 while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3720 AR_PHY_PMU2_PGM))
3721 udelay(10);
3722 } else
3723 REG_WRITE(ah, AR_RTC_SLEEP_CLK,
3724 (REG_READ(ah,
3725 AR_RTC_SLEEP_CLK) |
3726 AR_RTC_FORCE_SWREG_PRD));
3727 }
3728
3729 }
3730
3731 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3732 {
3733 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3734 u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3735
3736 if (eep->baseEepHeader.featureEnable & 0x40) {
3737 tuning_caps_param &= 0x7f;
3738 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3739 tuning_caps_param);
3740 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3741 tuning_caps_param);
3742 }
3743 }
3744
3745 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3746 struct ath9k_channel *chan)
3747 {
3748 ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
3749 ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
3750 ar9003_hw_drive_strength_apply(ah);
3751 ar9003_hw_atten_apply(ah, chan);
3752 ar9003_hw_internal_regulator_apply(ah);
3753 if (AR_SREV_9485(ah))
3754 ar9003_hw_apply_tuning_caps(ah);
3755 }
3756
3757 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3758 struct ath9k_channel *chan)
3759 {
3760 }
3761
3762 /*
3763 * Returns the interpolated y value corresponding to the specified x value
3764 * from the np ordered pairs of data (px,py).
3765 * The pairs do not have to be in any order.
3766 * If the specified x value is less than any of the px,
3767 * the returned y value is equal to the py for the lowest px.
3768 * If the specified x value is greater than any of the px,
3769 * the returned y value is equal to the py for the highest px.
3770 */
3771 static int ar9003_hw_power_interpolate(int32_t x,
3772 int32_t *px, int32_t *py, u_int16_t np)
3773 {
3774 int ip = 0;
3775 int lx = 0, ly = 0, lhave = 0;
3776 int hx = 0, hy = 0, hhave = 0;
3777 int dx = 0;
3778 int y = 0;
3779
3780 lhave = 0;
3781 hhave = 0;
3782
3783 /* identify best lower and higher x calibration measurement */
3784 for (ip = 0; ip < np; ip++) {
3785 dx = x - px[ip];
3786
3787 /* this measurement is higher than our desired x */
3788 if (dx <= 0) {
3789 if (!hhave || dx > (x - hx)) {
3790 /* new best higher x measurement */
3791 hx = px[ip];
3792 hy = py[ip];
3793 hhave = 1;
3794 }
3795 }
3796 /* this measurement is lower than our desired x */
3797 if (dx >= 0) {
3798 if (!lhave || dx < (x - lx)) {
3799 /* new best lower x measurement */
3800 lx = px[ip];
3801 ly = py[ip];
3802 lhave = 1;
3803 }
3804 }
3805 }
3806
3807 /* the low x is good */
3808 if (lhave) {
3809 /* so is the high x */
3810 if (hhave) {
3811 /* they're the same, so just pick one */
3812 if (hx == lx)
3813 y = ly;
3814 else /* interpolate */
3815 y = interpolate(x, lx, hx, ly, hy);
3816 } else /* only low is good, use it */
3817 y = ly;
3818 } else if (hhave) /* only high is good, use it */
3819 y = hy;
3820 else /* nothing is good,this should never happen unless np=0, ???? */
3821 y = -(1 << 30);
3822 return y;
3823 }
3824
3825 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
3826 u16 rateIndex, u16 freq, bool is2GHz)
3827 {
3828 u16 numPiers, i;
3829 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
3830 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
3831 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3832 struct cal_tgt_pow_legacy *pEepromTargetPwr;
3833 u8 *pFreqBin;
3834
3835 if (is2GHz) {
3836 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
3837 pEepromTargetPwr = eep->calTargetPower2G;
3838 pFreqBin = eep->calTarget_freqbin_2G;
3839 } else {
3840 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
3841 pEepromTargetPwr = eep->calTargetPower5G;
3842 pFreqBin = eep->calTarget_freqbin_5G;
3843 }
3844
3845 /*
3846 * create array of channels and targetpower from
3847 * targetpower piers stored on eeprom
3848 */
3849 for (i = 0; i < numPiers; i++) {
3850 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3851 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3852 }
3853
3854 /* interpolate to get target power for given frequency */
3855 return (u8) ar9003_hw_power_interpolate((s32) freq,
3856 freqArray,
3857 targetPowerArray, numPiers);
3858 }
3859
3860 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
3861 u16 rateIndex,
3862 u16 freq, bool is2GHz)
3863 {
3864 u16 numPiers, i;
3865 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
3866 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
3867 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3868 struct cal_tgt_pow_ht *pEepromTargetPwr;
3869 u8 *pFreqBin;
3870
3871 if (is2GHz) {
3872 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
3873 pEepromTargetPwr = eep->calTargetPower2GHT20;
3874 pFreqBin = eep->calTarget_freqbin_2GHT20;
3875 } else {
3876 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
3877 pEepromTargetPwr = eep->calTargetPower5GHT20;
3878 pFreqBin = eep->calTarget_freqbin_5GHT20;
3879 }
3880
3881 /*
3882 * create array of channels and targetpower
3883 * from targetpower piers stored on eeprom
3884 */
3885 for (i = 0; i < numPiers; i++) {
3886 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3887 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3888 }
3889
3890 /* interpolate to get target power for given frequency */
3891 return (u8) ar9003_hw_power_interpolate((s32) freq,
3892 freqArray,
3893 targetPowerArray, numPiers);
3894 }
3895
3896 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
3897 u16 rateIndex,
3898 u16 freq, bool is2GHz)
3899 {
3900 u16 numPiers, i;
3901 s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
3902 s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
3903 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3904 struct cal_tgt_pow_ht *pEepromTargetPwr;
3905 u8 *pFreqBin;
3906
3907 if (is2GHz) {
3908 numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
3909 pEepromTargetPwr = eep->calTargetPower2GHT40;
3910 pFreqBin = eep->calTarget_freqbin_2GHT40;
3911 } else {
3912 numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
3913 pEepromTargetPwr = eep->calTargetPower5GHT40;
3914 pFreqBin = eep->calTarget_freqbin_5GHT40;
3915 }
3916
3917 /*
3918 * create array of channels and targetpower from
3919 * targetpower piers stored on eeprom
3920 */
3921 for (i = 0; i < numPiers; i++) {
3922 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3923 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3924 }
3925
3926 /* interpolate to get target power for given frequency */
3927 return (u8) ar9003_hw_power_interpolate((s32) freq,
3928 freqArray,
3929 targetPowerArray, numPiers);
3930 }
3931
3932 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
3933 u16 rateIndex, u16 freq)
3934 {
3935 u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
3936 s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
3937 s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
3938 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3939 struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
3940 u8 *pFreqBin = eep->calTarget_freqbin_Cck;
3941
3942 /*
3943 * create array of channels and targetpower from
3944 * targetpower piers stored on eeprom
3945 */
3946 for (i = 0; i < numPiers; i++) {
3947 freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
3948 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3949 }
3950
3951 /* interpolate to get target power for given frequency */
3952 return (u8) ar9003_hw_power_interpolate((s32) freq,
3953 freqArray,
3954 targetPowerArray, numPiers);
3955 }
3956
3957 /* Set tx power registers to array of values passed in */
3958 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
3959 {
3960 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
3961 /* make sure forced gain is not set */
3962 REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
3963
3964 /* Write the OFDM power per rate set */
3965
3966 /* 6 (LSB), 9, 12, 18 (MSB) */
3967 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
3968 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
3969 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
3970 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
3971 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
3972
3973 /* 24 (LSB), 36, 48, 54 (MSB) */
3974 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
3975 POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
3976 POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
3977 POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
3978 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
3979
3980 /* Write the CCK power per rate set */
3981
3982 /* 1L (LSB), reserved, 2L, 2S (MSB) */
3983 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
3984 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
3985 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
3986 /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
3987 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
3988
3989 /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3990 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
3991 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
3992 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
3993 POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
3994 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
3995 );
3996
3997 /* Write the HT20 power per rate set */
3998
3999 /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4000 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4001 POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4002 POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4003 POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4004 POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4005 );
4006
4007 /* 6 (LSB), 7, 12, 13 (MSB) */
4008 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4009 POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4010 POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4011 POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4012 POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4013 );
4014
4015 /* 14 (LSB), 15, 20, 21 */
4016 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4017 POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4018 POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4019 POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4020 POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4021 );
4022
4023 /* Mixed HT20 and HT40 rates */
4024
4025 /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4026 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4027 POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4028 POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4029 POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4030 POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4031 );
4032
4033 /*
4034 * Write the HT40 power per rate set
4035 * correct PAR difference between HT40 and HT20/LEGACY
4036 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4037 */
4038 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4039 POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4040 POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4041 POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4042 POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4043 );
4044
4045 /* 6 (LSB), 7, 12, 13 (MSB) */
4046 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4047 POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4048 POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4049 POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4050 POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4051 );
4052
4053 /* 14 (LSB), 15, 20, 21 */
4054 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4055 POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4056 POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4057 POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4058 POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4059 );
4060
4061 return 0;
4062 #undef POW_SM
4063 }
4064
4065 static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
4066 u8 *targetPowerValT2)
4067 {
4068 /* XXX: hard code for now, need to get from eeprom struct */
4069 u8 ht40PowerIncForPdadc = 0;
4070 bool is2GHz = false;
4071 unsigned int i = 0;
4072 struct ath_common *common = ath9k_hw_common(ah);
4073
4074 if (freq < 4000)
4075 is2GHz = true;
4076
4077 targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4078 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4079 is2GHz);
4080 targetPowerValT2[ALL_TARGET_LEGACY_36] =
4081 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4082 is2GHz);
4083 targetPowerValT2[ALL_TARGET_LEGACY_48] =
4084 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4085 is2GHz);
4086 targetPowerValT2[ALL_TARGET_LEGACY_54] =
4087 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4088 is2GHz);
4089 targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4090 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4091 freq);
4092 targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4093 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4094 targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4095 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4096 targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4097 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4098 targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4099 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4100 is2GHz);
4101 targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4102 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4103 freq, is2GHz);
4104 targetPowerValT2[ALL_TARGET_HT20_4] =
4105 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4106 is2GHz);
4107 targetPowerValT2[ALL_TARGET_HT20_5] =
4108 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4109 is2GHz);
4110 targetPowerValT2[ALL_TARGET_HT20_6] =
4111 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4112 is2GHz);
4113 targetPowerValT2[ALL_TARGET_HT20_7] =
4114 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4115 is2GHz);
4116 targetPowerValT2[ALL_TARGET_HT20_12] =
4117 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4118 is2GHz);
4119 targetPowerValT2[ALL_TARGET_HT20_13] =
4120 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4121 is2GHz);
4122 targetPowerValT2[ALL_TARGET_HT20_14] =
4123 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4124 is2GHz);
4125 targetPowerValT2[ALL_TARGET_HT20_15] =
4126 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4127 is2GHz);
4128 targetPowerValT2[ALL_TARGET_HT20_20] =
4129 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4130 is2GHz);
4131 targetPowerValT2[ALL_TARGET_HT20_21] =
4132 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4133 is2GHz);
4134 targetPowerValT2[ALL_TARGET_HT20_22] =
4135 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4136 is2GHz);
4137 targetPowerValT2[ALL_TARGET_HT20_23] =
4138 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4139 is2GHz);
4140 targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4141 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4142 is2GHz) + ht40PowerIncForPdadc;
4143 targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4144 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4145 freq,
4146 is2GHz) + ht40PowerIncForPdadc;
4147 targetPowerValT2[ALL_TARGET_HT40_4] =
4148 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4149 is2GHz) + ht40PowerIncForPdadc;
4150 targetPowerValT2[ALL_TARGET_HT40_5] =
4151 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4152 is2GHz) + ht40PowerIncForPdadc;
4153 targetPowerValT2[ALL_TARGET_HT40_6] =
4154 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4155 is2GHz) + ht40PowerIncForPdadc;
4156 targetPowerValT2[ALL_TARGET_HT40_7] =
4157 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4158 is2GHz) + ht40PowerIncForPdadc;
4159 targetPowerValT2[ALL_TARGET_HT40_12] =
4160 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4161 is2GHz) + ht40PowerIncForPdadc;
4162 targetPowerValT2[ALL_TARGET_HT40_13] =
4163 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4164 is2GHz) + ht40PowerIncForPdadc;
4165 targetPowerValT2[ALL_TARGET_HT40_14] =
4166 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4167 is2GHz) + ht40PowerIncForPdadc;
4168 targetPowerValT2[ALL_TARGET_HT40_15] =
4169 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4170 is2GHz) + ht40PowerIncForPdadc;
4171 targetPowerValT2[ALL_TARGET_HT40_20] =
4172 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4173 is2GHz) + ht40PowerIncForPdadc;
4174 targetPowerValT2[ALL_TARGET_HT40_21] =
4175 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4176 is2GHz) + ht40PowerIncForPdadc;
4177 targetPowerValT2[ALL_TARGET_HT40_22] =
4178 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4179 is2GHz) + ht40PowerIncForPdadc;
4180 targetPowerValT2[ALL_TARGET_HT40_23] =
4181 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4182 is2GHz) + ht40PowerIncForPdadc;
4183
4184 for (i = 0; i < ar9300RateSize; i++) {
4185 ath_dbg(common, ATH_DBG_EEPROM,
4186 "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
4187 }
4188 }
4189
4190 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4191 int mode,
4192 int ipier,
4193 int ichain,
4194 int *pfrequency,
4195 int *pcorrection,
4196 int *ptemperature, int *pvoltage)
4197 {
4198 u8 *pCalPier;
4199 struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4200 int is2GHz;
4201 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4202 struct ath_common *common = ath9k_hw_common(ah);
4203
4204 if (ichain >= AR9300_MAX_CHAINS) {
4205 ath_dbg(common, ATH_DBG_EEPROM,
4206 "Invalid chain index, must be less than %d\n",
4207 AR9300_MAX_CHAINS);
4208 return -1;
4209 }
4210
4211 if (mode) { /* 5GHz */
4212 if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4213 ath_dbg(common, ATH_DBG_EEPROM,
4214 "Invalid 5GHz cal pier index, must be less than %d\n",
4215 AR9300_NUM_5G_CAL_PIERS);
4216 return -1;
4217 }
4218 pCalPier = &(eep->calFreqPier5G[ipier]);
4219 pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4220 is2GHz = 0;
4221 } else {
4222 if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4223 ath_dbg(common, ATH_DBG_EEPROM,
4224 "Invalid 2GHz cal pier index, must be less than %d\n",
4225 AR9300_NUM_2G_CAL_PIERS);
4226 return -1;
4227 }
4228
4229 pCalPier = &(eep->calFreqPier2G[ipier]);
4230 pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4231 is2GHz = 1;
4232 }
4233
4234 *pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
4235 *pcorrection = pCalPierStruct->refPower;
4236 *ptemperature = pCalPierStruct->tempMeas;
4237 *pvoltage = pCalPierStruct->voltMeas;
4238
4239 return 0;
4240 }
4241
4242 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4243 int frequency,
4244 int *correction,
4245 int *voltage, int *temperature)
4246 {
4247 int tempSlope = 0;
4248 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4249 int f[3], t[3];
4250
4251 REG_RMW(ah, AR_PHY_TPC_11_B0,
4252 (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4253 AR_PHY_TPC_OLPC_GAIN_DELTA);
4254 if (ah->caps.tx_chainmask & BIT(1))
4255 REG_RMW(ah, AR_PHY_TPC_11_B1,
4256 (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4257 AR_PHY_TPC_OLPC_GAIN_DELTA);
4258 if (ah->caps.tx_chainmask & BIT(2))
4259 REG_RMW(ah, AR_PHY_TPC_11_B2,
4260 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4261 AR_PHY_TPC_OLPC_GAIN_DELTA);
4262
4263 /* enable open loop power control on chip */
4264 REG_RMW(ah, AR_PHY_TPC_6_B0,
4265 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4266 AR_PHY_TPC_6_ERROR_EST_MODE);
4267 if (ah->caps.tx_chainmask & BIT(1))
4268 REG_RMW(ah, AR_PHY_TPC_6_B1,
4269 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4270 AR_PHY_TPC_6_ERROR_EST_MODE);
4271 if (ah->caps.tx_chainmask & BIT(2))
4272 REG_RMW(ah, AR_PHY_TPC_6_B2,
4273 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4274 AR_PHY_TPC_6_ERROR_EST_MODE);
4275
4276 /*
4277 * enable temperature compensation
4278 * Need to use register names
4279 */
4280 if (frequency < 4000)
4281 tempSlope = eep->modalHeader2G.tempSlope;
4282 else if (eep->base_ext2.tempSlopeLow != 0) {
4283 t[0] = eep->base_ext2.tempSlopeLow;
4284 f[0] = 5180;
4285 t[1] = eep->modalHeader5G.tempSlope;
4286 f[1] = 5500;
4287 t[2] = eep->base_ext2.tempSlopeHigh;
4288 f[2] = 5785;
4289 tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4290 f, t, 3);
4291 } else
4292 tempSlope = eep->modalHeader5G.tempSlope;
4293
4294 REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4295 REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4296 temperature[0]);
4297
4298 return 0;
4299 }
4300
4301 /* Apply the recorded correction values. */
4302 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4303 {
4304 int ichain, ipier, npier;
4305 int mode;
4306 int lfrequency[AR9300_MAX_CHAINS],
4307 lcorrection[AR9300_MAX_CHAINS],
4308 ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4309 int hfrequency[AR9300_MAX_CHAINS],
4310 hcorrection[AR9300_MAX_CHAINS],
4311 htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4312 int fdiff;
4313 int correction[AR9300_MAX_CHAINS],
4314 voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4315 int pfrequency, pcorrection, ptemperature, pvoltage;
4316 struct ath_common *common = ath9k_hw_common(ah);
4317
4318 mode = (frequency >= 4000);
4319 if (mode)
4320 npier = AR9300_NUM_5G_CAL_PIERS;
4321 else
4322 npier = AR9300_NUM_2G_CAL_PIERS;
4323
4324 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4325 lfrequency[ichain] = 0;
4326 hfrequency[ichain] = 100000;
4327 }
4328 /* identify best lower and higher frequency calibration measurement */
4329 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4330 for (ipier = 0; ipier < npier; ipier++) {
4331 if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4332 &pfrequency, &pcorrection,
4333 &ptemperature, &pvoltage)) {
4334 fdiff = frequency - pfrequency;
4335
4336 /*
4337 * this measurement is higher than
4338 * our desired frequency
4339 */
4340 if (fdiff <= 0) {
4341 if (hfrequency[ichain] <= 0 ||
4342 hfrequency[ichain] >= 100000 ||
4343 fdiff >
4344 (frequency - hfrequency[ichain])) {
4345 /*
4346 * new best higher
4347 * frequency measurement
4348 */
4349 hfrequency[ichain] = pfrequency;
4350 hcorrection[ichain] =
4351 pcorrection;
4352 htemperature[ichain] =
4353 ptemperature;
4354 hvoltage[ichain] = pvoltage;
4355 }
4356 }
4357 if (fdiff >= 0) {
4358 if (lfrequency[ichain] <= 0
4359 || fdiff <
4360 (frequency - lfrequency[ichain])) {
4361 /*
4362 * new best lower
4363 * frequency measurement
4364 */
4365 lfrequency[ichain] = pfrequency;
4366 lcorrection[ichain] =
4367 pcorrection;
4368 ltemperature[ichain] =
4369 ptemperature;
4370 lvoltage[ichain] = pvoltage;
4371 }
4372 }
4373 }
4374 }
4375 }
4376
4377 /* interpolate */
4378 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4379 ath_dbg(common, ATH_DBG_EEPROM,
4380 "ch=%d f=%d low=%d %d h=%d %d\n",
4381 ichain, frequency, lfrequency[ichain],
4382 lcorrection[ichain], hfrequency[ichain],
4383 hcorrection[ichain]);
4384 /* they're the same, so just pick one */
4385 if (hfrequency[ichain] == lfrequency[ichain]) {
4386 correction[ichain] = lcorrection[ichain];
4387 voltage[ichain] = lvoltage[ichain];
4388 temperature[ichain] = ltemperature[ichain];
4389 }
4390 /* the low frequency is good */
4391 else if (frequency - lfrequency[ichain] < 1000) {
4392 /* so is the high frequency, interpolate */
4393 if (hfrequency[ichain] - frequency < 1000) {
4394
4395 correction[ichain] = interpolate(frequency,
4396 lfrequency[ichain],
4397 hfrequency[ichain],
4398 lcorrection[ichain],
4399 hcorrection[ichain]);
4400
4401 temperature[ichain] = interpolate(frequency,
4402 lfrequency[ichain],
4403 hfrequency[ichain],
4404 ltemperature[ichain],
4405 htemperature[ichain]);
4406
4407 voltage[ichain] = interpolate(frequency,
4408 lfrequency[ichain],
4409 hfrequency[ichain],
4410 lvoltage[ichain],
4411 hvoltage[ichain]);
4412 }
4413 /* only low is good, use it */
4414 else {
4415 correction[ichain] = lcorrection[ichain];
4416 temperature[ichain] = ltemperature[ichain];
4417 voltage[ichain] = lvoltage[ichain];
4418 }
4419 }
4420 /* only high is good, use it */
4421 else if (hfrequency[ichain] - frequency < 1000) {
4422 correction[ichain] = hcorrection[ichain];
4423 temperature[ichain] = htemperature[ichain];
4424 voltage[ichain] = hvoltage[ichain];
4425 } else { /* nothing is good, presume 0???? */
4426 correction[ichain] = 0;
4427 temperature[ichain] = 0;
4428 voltage[ichain] = 0;
4429 }
4430 }
4431
4432 ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4433 temperature);
4434
4435 ath_dbg(common, ATH_DBG_EEPROM,
4436 "for frequency=%d, calibration correction = %d %d %d\n",
4437 frequency, correction[0], correction[1], correction[2]);
4438
4439 return 0;
4440 }
4441
4442 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4443 int idx,
4444 int edge,
4445 bool is2GHz)
4446 {
4447 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4448 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4449
4450 if (is2GHz)
4451 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4452 else
4453 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4454 }
4455
4456 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4457 int idx,
4458 unsigned int edge,
4459 u16 freq,
4460 bool is2GHz)
4461 {
4462 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4463 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4464
4465 u8 *ctl_freqbin = is2GHz ?
4466 &eep->ctl_freqbin_2G[idx][0] :
4467 &eep->ctl_freqbin_5G[idx][0];
4468
4469 if (is2GHz) {
4470 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4471 CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4472 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4473 } else {
4474 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4475 CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4476 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4477 }
4478
4479 return MAX_RATE_POWER;
4480 }
4481
4482 /*
4483 * Find the maximum conformance test limit for the given channel and CTL info
4484 */
4485 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4486 u16 freq, int idx, bool is2GHz)
4487 {
4488 u16 twiceMaxEdgePower = MAX_RATE_POWER;
4489 u8 *ctl_freqbin = is2GHz ?
4490 &eep->ctl_freqbin_2G[idx][0] :
4491 &eep->ctl_freqbin_5G[idx][0];
4492 u16 num_edges = is2GHz ?
4493 AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4494 unsigned int edge;
4495
4496 /* Get the edge power */
4497 for (edge = 0;
4498 (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4499 edge++) {
4500 /*
4501 * If there's an exact channel match or an inband flag set
4502 * on the lower channel use the given rdEdgePower
4503 */
4504 if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4505 twiceMaxEdgePower =
4506 ar9003_hw_get_direct_edge_power(eep, idx,
4507 edge, is2GHz);
4508 break;
4509 } else if ((edge > 0) &&
4510 (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4511 is2GHz))) {
4512 twiceMaxEdgePower =
4513 ar9003_hw_get_indirect_edge_power(eep, idx,
4514 edge, freq,
4515 is2GHz);
4516 /*
4517 * Leave loop - no more affecting edges possible in
4518 * this monotonic increasing list
4519 */
4520 break;
4521 }
4522 }
4523 return twiceMaxEdgePower;
4524 }
4525
4526 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4527 struct ath9k_channel *chan,
4528 u8 *pPwrArray, u16 cfgCtl,
4529 u8 twiceAntennaReduction,
4530 u8 twiceMaxRegulatoryPower,
4531 u16 powerLimit)
4532 {
4533 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4534 struct ath_common *common = ath9k_hw_common(ah);
4535 struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4536 u16 twiceMaxEdgePower = MAX_RATE_POWER;
4537 static const u16 tpScaleReductionTable[5] = {
4538 0, 3, 6, 9, MAX_RATE_POWER
4539 };
4540 int i;
4541 int16_t twiceLargestAntenna;
4542 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
4543 static const u16 ctlModesFor11a[] = {
4544 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4545 };
4546 static const u16 ctlModesFor11g[] = {
4547 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4548 CTL_11G_EXT, CTL_2GHT40
4549 };
4550 u16 numCtlModes;
4551 const u16 *pCtlMode;
4552 u16 ctlMode, freq;
4553 struct chan_centers centers;
4554 u8 *ctlIndex;
4555 u8 ctlNum;
4556 u16 twiceMinEdgePower;
4557 bool is2ghz = IS_CHAN_2GHZ(chan);
4558
4559 ath9k_hw_get_channel_centers(ah, chan, &centers);
4560
4561 /* Compute TxPower reduction due to Antenna Gain */
4562 if (is2ghz)
4563 twiceLargestAntenna = pEepData->modalHeader2G.antennaGain;
4564 else
4565 twiceLargestAntenna = pEepData->modalHeader5G.antennaGain;
4566
4567 twiceLargestAntenna = (int16_t)min((twiceAntennaReduction) -
4568 twiceLargestAntenna, 0);
4569
4570 /*
4571 * scaledPower is the minimum of the user input power level
4572 * and the regulatory allowed power level
4573 */
4574 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
4575
4576 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
4577 maxRegAllowedPower -=
4578 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
4579 }
4580
4581 scaledPower = min(powerLimit, maxRegAllowedPower);
4582
4583 /*
4584 * Reduce scaled Power by number of chains active to get
4585 * to per chain tx power level
4586 */
4587 switch (ar5416_get_ntxchains(ah->txchainmask)) {
4588 case 1:
4589 break;
4590 case 2:
4591 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
4592 break;
4593 case 3:
4594 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
4595 break;
4596 }
4597
4598 scaledPower = max((u16)0, scaledPower);
4599
4600 /*
4601 * Get target powers from EEPROM - our baseline for TX Power
4602 */
4603 if (is2ghz) {
4604 /* Setup for CTL modes */
4605 /* CTL_11B, CTL_11G, CTL_2GHT20 */
4606 numCtlModes =
4607 ARRAY_SIZE(ctlModesFor11g) -
4608 SUB_NUM_CTL_MODES_AT_2G_40;
4609 pCtlMode = ctlModesFor11g;
4610 if (IS_CHAN_HT40(chan))
4611 /* All 2G CTL's */
4612 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4613 } else {
4614 /* Setup for CTL modes */
4615 /* CTL_11A, CTL_5GHT20 */
4616 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4617 SUB_NUM_CTL_MODES_AT_5G_40;
4618 pCtlMode = ctlModesFor11a;
4619 if (IS_CHAN_HT40(chan))
4620 /* All 5G CTL's */
4621 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4622 }
4623
4624 /*
4625 * For MIMO, need to apply regulatory caps individually across
4626 * dynamically running modes: CCK, OFDM, HT20, HT40
4627 *
4628 * The outer loop walks through each possible applicable runtime mode.
4629 * The inner loop walks through each ctlIndex entry in EEPROM.
4630 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4631 */
4632 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4633 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4634 (pCtlMode[ctlMode] == CTL_2GHT40);
4635 if (isHt40CtlMode)
4636 freq = centers.synth_center;
4637 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4638 freq = centers.ext_center;
4639 else
4640 freq = centers.ctl_center;
4641
4642 ath_dbg(common, ATH_DBG_REGULATORY,
4643 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4644 ctlMode, numCtlModes, isHt40CtlMode,
4645 (pCtlMode[ctlMode] & EXT_ADDITIVE));
4646
4647 /* walk through each CTL index stored in EEPROM */
4648 if (is2ghz) {
4649 ctlIndex = pEepData->ctlIndex_2G;
4650 ctlNum = AR9300_NUM_CTLS_2G;
4651 } else {
4652 ctlIndex = pEepData->ctlIndex_5G;
4653 ctlNum = AR9300_NUM_CTLS_5G;
4654 }
4655
4656 for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4657 ath_dbg(common, ATH_DBG_REGULATORY,
4658 "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4659 i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4660 chan->channel);
4661
4662 /*
4663 * compare test group from regulatory
4664 * channel list with test mode from pCtlMode
4665 * list
4666 */
4667 if ((((cfgCtl & ~CTL_MODE_M) |
4668 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4669 ctlIndex[i]) ||
4670 (((cfgCtl & ~CTL_MODE_M) |
4671 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4672 ((ctlIndex[i] & CTL_MODE_M) |
4673 SD_NO_CTL))) {
4674 twiceMinEdgePower =
4675 ar9003_hw_get_max_edge_power(pEepData,
4676 freq, i,
4677 is2ghz);
4678
4679 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4680 /*
4681 * Find the minimum of all CTL
4682 * edge powers that apply to
4683 * this channel
4684 */
4685 twiceMaxEdgePower =
4686 min(twiceMaxEdgePower,
4687 twiceMinEdgePower);
4688 else {
4689 /* specific */
4690 twiceMaxEdgePower =
4691 twiceMinEdgePower;
4692 break;
4693 }
4694 }
4695 }
4696
4697 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4698
4699 ath_dbg(common, ATH_DBG_REGULATORY,
4700 "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4701 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4702 scaledPower, minCtlPower);
4703
4704 /* Apply ctl mode to correct target power set */
4705 switch (pCtlMode[ctlMode]) {
4706 case CTL_11B:
4707 for (i = ALL_TARGET_LEGACY_1L_5L;
4708 i <= ALL_TARGET_LEGACY_11S; i++)
4709 pPwrArray[i] =
4710 (u8)min((u16)pPwrArray[i],
4711 minCtlPower);
4712 break;
4713 case CTL_11A:
4714 case CTL_11G:
4715 for (i = ALL_TARGET_LEGACY_6_24;
4716 i <= ALL_TARGET_LEGACY_54; i++)
4717 pPwrArray[i] =
4718 (u8)min((u16)pPwrArray[i],
4719 minCtlPower);
4720 break;
4721 case CTL_5GHT20:
4722 case CTL_2GHT20:
4723 for (i = ALL_TARGET_HT20_0_8_16;
4724 i <= ALL_TARGET_HT20_21; i++)
4725 pPwrArray[i] =
4726 (u8)min((u16)pPwrArray[i],
4727 minCtlPower);
4728 pPwrArray[ALL_TARGET_HT20_22] =
4729 (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4730 minCtlPower);
4731 pPwrArray[ALL_TARGET_HT20_23] =
4732 (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4733 minCtlPower);
4734 break;
4735 case CTL_5GHT40:
4736 case CTL_2GHT40:
4737 for (i = ALL_TARGET_HT40_0_8_16;
4738 i <= ALL_TARGET_HT40_23; i++)
4739 pPwrArray[i] =
4740 (u8)min((u16)pPwrArray[i],
4741 minCtlPower);
4742 break;
4743 default:
4744 break;
4745 }
4746 } /* end ctl mode checking */
4747 }
4748
4749 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4750 {
4751 u8 mod_idx = mcs_idx % 8;
4752
4753 if (mod_idx <= 3)
4754 return mod_idx ? (base_pwridx + 1) : base_pwridx;
4755 else
4756 return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4757 }
4758
4759 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
4760 struct ath9k_channel *chan, u16 cfgCtl,
4761 u8 twiceAntennaReduction,
4762 u8 twiceMaxRegulatoryPower,
4763 u8 powerLimit, bool test)
4764 {
4765 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4766 struct ath_common *common = ath9k_hw_common(ah);
4767 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4768 struct ar9300_modal_eep_header *modal_hdr;
4769 u8 targetPowerValT2[ar9300RateSize];
4770 u8 target_power_val_t2_eep[ar9300RateSize];
4771 unsigned int i = 0, paprd_scale_factor = 0;
4772 u8 pwr_idx, min_pwridx = 0;
4773
4774 ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
4775
4776 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4777 if (IS_CHAN_2GHZ(chan))
4778 modal_hdr = &eep->modalHeader2G;
4779 else
4780 modal_hdr = &eep->modalHeader5G;
4781
4782 ah->paprd_ratemask =
4783 le32_to_cpu(modal_hdr->papdRateMaskHt20) &
4784 AR9300_PAPRD_RATE_MASK;
4785
4786 ah->paprd_ratemask_ht40 =
4787 le32_to_cpu(modal_hdr->papdRateMaskHt40) &
4788 AR9300_PAPRD_RATE_MASK;
4789
4790 paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
4791 min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
4792 ALL_TARGET_HT20_0_8_16;
4793
4794 if (!ah->paprd_table_write_done) {
4795 memcpy(target_power_val_t2_eep, targetPowerValT2,
4796 sizeof(targetPowerValT2));
4797 for (i = 0; i < 24; i++) {
4798 pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
4799 if (ah->paprd_ratemask & (1 << i)) {
4800 if (targetPowerValT2[pwr_idx] &&
4801 targetPowerValT2[pwr_idx] ==
4802 target_power_val_t2_eep[pwr_idx])
4803 targetPowerValT2[pwr_idx] -=
4804 paprd_scale_factor;
4805 }
4806 }
4807 }
4808 memcpy(target_power_val_t2_eep, targetPowerValT2,
4809 sizeof(targetPowerValT2));
4810 }
4811
4812 ar9003_hw_set_power_per_rate_table(ah, chan,
4813 targetPowerValT2, cfgCtl,
4814 twiceAntennaReduction,
4815 twiceMaxRegulatoryPower,
4816 powerLimit);
4817
4818 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4819 for (i = 0; i < ar9300RateSize; i++) {
4820 if ((ah->paprd_ratemask & (1 << i)) &&
4821 (abs(targetPowerValT2[i] -
4822 target_power_val_t2_eep[i]) >
4823 paprd_scale_factor)) {
4824 ah->paprd_ratemask &= ~(1 << i);
4825 ath_dbg(common, ATH_DBG_EEPROM,
4826 "paprd disabled for mcs %d\n", i);
4827 }
4828 }
4829 }
4830
4831 regulatory->max_power_level = 0;
4832 for (i = 0; i < ar9300RateSize; i++) {
4833 if (targetPowerValT2[i] > regulatory->max_power_level)
4834 regulatory->max_power_level = targetPowerValT2[i];
4835 }
4836
4837 if (test)
4838 return;
4839
4840 for (i = 0; i < ar9300RateSize; i++) {
4841 ath_dbg(common, ATH_DBG_EEPROM,
4842 "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
4843 }
4844
4845 /*
4846 * This is the TX power we send back to driver core,
4847 * and it can use to pass to userspace to display our
4848 * currently configured TX power setting.
4849 *
4850 * Since power is rate dependent, use one of the indices
4851 * from the AR9300_Rates enum to select an entry from
4852 * targetPowerValT2[] to report. Currently returns the
4853 * power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
4854 * as CCK power is less interesting (?).
4855 */
4856 i = ALL_TARGET_LEGACY_6_24; /* legacy */
4857 if (IS_CHAN_HT40(chan))
4858 i = ALL_TARGET_HT40_0_8_16; /* ht40 */
4859 else if (IS_CHAN_HT20(chan))
4860 i = ALL_TARGET_HT20_0_8_16; /* ht20 */
4861
4862 ah->txpower_limit = targetPowerValT2[i];
4863 regulatory->max_power_level = targetPowerValT2[i];
4864
4865 /* Write target power array to registers */
4866 ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
4867 ar9003_hw_calibration_apply(ah, chan->channel);
4868
4869 if (IS_CHAN_2GHZ(chan)) {
4870 if (IS_CHAN_HT40(chan))
4871 i = ALL_TARGET_HT40_0_8_16;
4872 else
4873 i = ALL_TARGET_HT20_0_8_16;
4874 } else {
4875 if (IS_CHAN_HT40(chan))
4876 i = ALL_TARGET_HT40_7;
4877 else
4878 i = ALL_TARGET_HT20_7;
4879 }
4880 ah->paprd_target_power = targetPowerValT2[i];
4881 }
4882
4883 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
4884 u16 i, bool is2GHz)
4885 {
4886 return AR_NO_SPUR;
4887 }
4888
4889 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
4890 {
4891 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4892
4893 return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
4894 }
4895
4896 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
4897 {
4898 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4899
4900 return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
4901 }
4902
4903 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
4904 {
4905 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4906
4907 if (is_2ghz)
4908 return eep->modalHeader2G.spurChans;
4909 else
4910 return eep->modalHeader5G.spurChans;
4911 }
4912
4913 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
4914 struct ath9k_channel *chan)
4915 {
4916 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4917
4918 if (IS_CHAN_2GHZ(chan))
4919 return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
4920 AR9300_PAPRD_SCALE_1);
4921 else {
4922 if (chan->channel >= 5700)
4923 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
4924 AR9300_PAPRD_SCALE_1);
4925 else if (chan->channel >= 5400)
4926 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
4927 AR9300_PAPRD_SCALE_2);
4928 else
4929 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
4930 AR9300_PAPRD_SCALE_1);
4931 }
4932 }
4933
4934 const struct eeprom_ops eep_ar9300_ops = {
4935 .check_eeprom = ath9k_hw_ar9300_check_eeprom,
4936 .get_eeprom = ath9k_hw_ar9300_get_eeprom,
4937 .fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
4938 .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
4939 .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
4940 .set_board_values = ath9k_hw_ar9300_set_board_values,
4941 .set_addac = ath9k_hw_ar9300_set_addac,
4942 .set_txpower = ath9k_hw_ar9300_set_txpower,
4943 .get_spur_channel = ath9k_hw_ar9300_get_spur_channel
4944 };