]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath9k/eeprom.c
iwlagn: wait for asynchronous firmware loading
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath9k / eeprom.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18
19 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
20 {
21 if (fbin == AR5416_BCHAN_UNUSED)
22 return fbin;
23
24 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
25 }
26
27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 u32 shift, u32 val)
29 {
30 u32 regVal;
31
32 regVal = REG_READ(ah, reg) & ~mask;
33 regVal |= (val << shift) & mask;
34
35 REG_WRITE(ah, reg, regVal);
36
37 if (ah->config.analog_shiftreg)
38 udelay(100);
39
40 return;
41 }
42
43 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
44 int16_t targetLeft, int16_t targetRight)
45 {
46 int16_t rv;
47
48 if (srcRight == srcLeft) {
49 rv = targetLeft;
50 } else {
51 rv = (int16_t) (((target - srcLeft) * targetRight +
52 (srcRight - target) * targetLeft) /
53 (srcRight - srcLeft));
54 }
55 return rv;
56 }
57
58 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
59 u16 *indexL, u16 *indexR)
60 {
61 u16 i;
62
63 if (target <= pList[0]) {
64 *indexL = *indexR = 0;
65 return true;
66 }
67 if (target >= pList[listSize - 1]) {
68 *indexL = *indexR = (u16) (listSize - 1);
69 return true;
70 }
71
72 for (i = 0; i < listSize - 1; i++) {
73 if (pList[i] == target) {
74 *indexL = *indexR = i;
75 return true;
76 }
77 if (target < pList[i + 1]) {
78 *indexL = i;
79 *indexR = (u16) (i + 1);
80 return false;
81 }
82 }
83 return false;
84 }
85
86 bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
87 {
88 return common->bus_ops->eeprom_read(common, off, data);
89 }
90
91 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
92 u8 *pVpdList, u16 numIntercepts,
93 u8 *pRetVpdList)
94 {
95 u16 i, k;
96 u8 currPwr = pwrMin;
97 u16 idxL = 0, idxR = 0;
98
99 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
100 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
101 numIntercepts, &(idxL),
102 &(idxR));
103 if (idxR < 1)
104 idxR = 1;
105 if (idxL == numIntercepts - 1)
106 idxL = (u16) (numIntercepts - 2);
107 if (pPwrList[idxL] == pPwrList[idxR])
108 k = pVpdList[idxL];
109 else
110 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
111 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
112 (pPwrList[idxR] - pPwrList[idxL]));
113 pRetVpdList[i] = (u8) k;
114 currPwr += 2;
115 }
116 }
117
118 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
119 struct ath9k_channel *chan,
120 struct cal_target_power_leg *powInfo,
121 u16 numChannels,
122 struct cal_target_power_leg *pNewPower,
123 u16 numRates, bool isExtTarget)
124 {
125 struct chan_centers centers;
126 u16 clo, chi;
127 int i;
128 int matchIndex = -1, lowIndex = -1;
129 u16 freq;
130
131 ath9k_hw_get_channel_centers(ah, chan, &centers);
132 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
133
134 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
135 IS_CHAN_2GHZ(chan))) {
136 matchIndex = 0;
137 } else {
138 for (i = 0; (i < numChannels) &&
139 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
140 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
141 IS_CHAN_2GHZ(chan))) {
142 matchIndex = i;
143 break;
144 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
145 IS_CHAN_2GHZ(chan)) && i > 0 &&
146 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
147 IS_CHAN_2GHZ(chan))) {
148 lowIndex = i - 1;
149 break;
150 }
151 }
152 if ((matchIndex == -1) && (lowIndex == -1))
153 matchIndex = i - 1;
154 }
155
156 if (matchIndex != -1) {
157 *pNewPower = powInfo[matchIndex];
158 } else {
159 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
160 IS_CHAN_2GHZ(chan));
161 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
162 IS_CHAN_2GHZ(chan));
163
164 for (i = 0; i < numRates; i++) {
165 pNewPower->tPow2x[i] =
166 (u8)ath9k_hw_interpolate(freq, clo, chi,
167 powInfo[lowIndex].tPow2x[i],
168 powInfo[lowIndex + 1].tPow2x[i]);
169 }
170 }
171 }
172
173 void ath9k_hw_get_target_powers(struct ath_hw *ah,
174 struct ath9k_channel *chan,
175 struct cal_target_power_ht *powInfo,
176 u16 numChannels,
177 struct cal_target_power_ht *pNewPower,
178 u16 numRates, bool isHt40Target)
179 {
180 struct chan_centers centers;
181 u16 clo, chi;
182 int i;
183 int matchIndex = -1, lowIndex = -1;
184 u16 freq;
185
186 ath9k_hw_get_channel_centers(ah, chan, &centers);
187 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
188
189 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
190 matchIndex = 0;
191 } else {
192 for (i = 0; (i < numChannels) &&
193 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
194 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
195 IS_CHAN_2GHZ(chan))) {
196 matchIndex = i;
197 break;
198 } else
199 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
200 IS_CHAN_2GHZ(chan)) && i > 0 &&
201 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
202 IS_CHAN_2GHZ(chan))) {
203 lowIndex = i - 1;
204 break;
205 }
206 }
207 if ((matchIndex == -1) && (lowIndex == -1))
208 matchIndex = i - 1;
209 }
210
211 if (matchIndex != -1) {
212 *pNewPower = powInfo[matchIndex];
213 } else {
214 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
215 IS_CHAN_2GHZ(chan));
216 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
217 IS_CHAN_2GHZ(chan));
218
219 for (i = 0; i < numRates; i++) {
220 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
221 clo, chi,
222 powInfo[lowIndex].tPow2x[i],
223 powInfo[lowIndex + 1].tPow2x[i]);
224 }
225 }
226 }
227
228 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
229 bool is2GHz, int num_band_edges)
230 {
231 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
232 int i;
233
234 for (i = 0; (i < num_band_edges) &&
235 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
236 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
237 twiceMaxEdgePower = pRdEdgesPower[i].tPower;
238 break;
239 } else if ((i > 0) &&
240 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
241 is2GHz))) {
242 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
243 is2GHz) < freq &&
244 pRdEdgesPower[i - 1].flag) {
245 twiceMaxEdgePower =
246 pRdEdgesPower[i - 1].tPower;
247 }
248 break;
249 }
250 }
251
252 return twiceMaxEdgePower;
253 }
254
255 int ath9k_hw_eeprom_init(struct ath_hw *ah)
256 {
257 int status;
258
259 if (AR_SREV_9287(ah)) {
260 ah->eep_map = EEP_MAP_AR9287;
261 ah->eep_ops = &eep_AR9287_ops;
262 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
263 ah->eep_map = EEP_MAP_4KBITS;
264 ah->eep_ops = &eep_4k_ops;
265 } else {
266 ah->eep_map = EEP_MAP_DEFAULT;
267 ah->eep_ops = &eep_def_ops;
268 }
269
270 if (!ah->eep_ops->fill_eeprom(ah))
271 return -EIO;
272
273 status = ah->eep_ops->check_eeprom(ah);
274
275 return status;
276 }