]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ath/ath9k/eeprom_def.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18 #include "ar9002_phy.h"
19
20 static void ath9k_get_txgain_index(struct ath_hw *ah,
21 struct ath9k_channel *chan,
22 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
23 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
24 {
25 u8 pcdac, i = 0;
26 u16 idxL = 0, idxR = 0, numPiers;
27 bool match;
28 struct chan_centers centers;
29
30 ath9k_hw_get_channel_centers(ah, chan, &centers);
31
32 for (numPiers = 0; numPiers < availPiers; numPiers++)
33 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
34 break;
35
36 match = ath9k_hw_get_lower_upper_index(
37 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
38 calChans, numPiers, &idxL, &idxR);
39 if (match) {
40 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
41 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
42 } else {
43 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
44 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
45 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
46 }
47
48 while (pcdac > ah->originalGain[i] &&
49 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
50 i++;
51
52 *pcdacIdx = i;
53 }
54
55 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
56 u32 initTxGain,
57 int txPower,
58 u8 *pPDADCValues)
59 {
60 u32 i;
61 u32 offset;
62
63 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
64 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
65 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
66 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
67
68 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
69 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
70
71 offset = txPower;
72 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
73 if (i < offset)
74 pPDADCValues[i] = 0x0;
75 else
76 pPDADCValues[i] = 0xFF;
77 }
78
79 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
80 {
81 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
82 }
83
84 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
85 {
86 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
87 }
88
89 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
90 {
91 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 struct ath_common *common = ath9k_hw_common(ah);
93 u16 *eep_data = (u16 *)&ah->eeprom.def;
94 int addr, ar5416_eep_start_loc = 0x100;
95
96 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
97 if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
98 eep_data)) {
99 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
100 "Unable to read eeprom region\n");
101 return false;
102 }
103 eep_data++;
104 }
105 return true;
106 #undef SIZE_EEPROM_DEF
107 }
108
109 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
110 {
111 struct ar5416_eeprom_def *eep =
112 (struct ar5416_eeprom_def *) &ah->eeprom.def;
113 struct ath_common *common = ath9k_hw_common(ah);
114 u16 *eepdata, temp, magic, magic2;
115 u32 sum = 0, el;
116 bool need_swap = false;
117 int i, addr, size;
118
119 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
120 ath_print(common, ATH_DBG_FATAL, "Reading Magic # failed\n");
121 return false;
122 }
123
124 if (!ath9k_hw_use_flash(ah)) {
125 ath_print(common, ATH_DBG_EEPROM,
126 "Read Magic = 0x%04X\n", magic);
127
128 if (magic != AR5416_EEPROM_MAGIC) {
129 magic2 = swab16(magic);
130
131 if (magic2 == AR5416_EEPROM_MAGIC) {
132 size = sizeof(struct ar5416_eeprom_def);
133 need_swap = true;
134 eepdata = (u16 *) (&ah->eeprom);
135
136 for (addr = 0; addr < size / sizeof(u16); addr++) {
137 temp = swab16(*eepdata);
138 *eepdata = temp;
139 eepdata++;
140 }
141 } else {
142 ath_print(common, ATH_DBG_FATAL,
143 "Invalid EEPROM Magic. "
144 "Endianness mismatch.\n");
145 return -EINVAL;
146 }
147 }
148 }
149
150 ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
151 need_swap ? "True" : "False");
152
153 if (need_swap)
154 el = swab16(ah->eeprom.def.baseEepHeader.length);
155 else
156 el = ah->eeprom.def.baseEepHeader.length;
157
158 if (el > sizeof(struct ar5416_eeprom_def))
159 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
160 else
161 el = el / sizeof(u16);
162
163 eepdata = (u16 *)(&ah->eeprom);
164
165 for (i = 0; i < el; i++)
166 sum ^= *eepdata++;
167
168 if (need_swap) {
169 u32 integer, j;
170 u16 word;
171
172 ath_print(common, ATH_DBG_EEPROM,
173 "EEPROM Endianness is not native.. Changing.\n");
174
175 word = swab16(eep->baseEepHeader.length);
176 eep->baseEepHeader.length = word;
177
178 word = swab16(eep->baseEepHeader.checksum);
179 eep->baseEepHeader.checksum = word;
180
181 word = swab16(eep->baseEepHeader.version);
182 eep->baseEepHeader.version = word;
183
184 word = swab16(eep->baseEepHeader.regDmn[0]);
185 eep->baseEepHeader.regDmn[0] = word;
186
187 word = swab16(eep->baseEepHeader.regDmn[1]);
188 eep->baseEepHeader.regDmn[1] = word;
189
190 word = swab16(eep->baseEepHeader.rfSilent);
191 eep->baseEepHeader.rfSilent = word;
192
193 word = swab16(eep->baseEepHeader.blueToothOptions);
194 eep->baseEepHeader.blueToothOptions = word;
195
196 word = swab16(eep->baseEepHeader.deviceCap);
197 eep->baseEepHeader.deviceCap = word;
198
199 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
200 struct modal_eep_header *pModal =
201 &eep->modalHeader[j];
202 integer = swab32(pModal->antCtrlCommon);
203 pModal->antCtrlCommon = integer;
204
205 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
206 integer = swab32(pModal->antCtrlChain[i]);
207 pModal->antCtrlChain[i] = integer;
208 }
209
210 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
211 word = swab16(pModal->spurChans[i].spurChan);
212 pModal->spurChans[i].spurChan = word;
213 }
214 }
215 }
216
217 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
218 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
219 ath_print(common, ATH_DBG_FATAL,
220 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
221 sum, ah->eep_ops->get_eeprom_ver(ah));
222 return -EINVAL;
223 }
224
225 /* Enable fixup for AR_AN_TOP2 if necessary */
226 if (AR_SREV_9280_20_OR_LATER(ah) &&
227 (eep->baseEepHeader.version & 0xff) > 0x0a &&
228 eep->baseEepHeader.pwdclkind == 0)
229 ah->need_an_top2_fixup = 1;
230
231 return 0;
232 }
233
234 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
235 enum eeprom_param param)
236 {
237 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
238 struct modal_eep_header *pModal = eep->modalHeader;
239 struct base_eep_header *pBase = &eep->baseEepHeader;
240
241 switch (param) {
242 case EEP_NFTHRESH_5:
243 return pModal[0].noiseFloorThreshCh[0];
244 case EEP_NFTHRESH_2:
245 return pModal[1].noiseFloorThreshCh[0];
246 case EEP_MAC_LSW:
247 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
248 case EEP_MAC_MID:
249 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
250 case EEP_MAC_MSW:
251 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
252 case EEP_REG_0:
253 return pBase->regDmn[0];
254 case EEP_REG_1:
255 return pBase->regDmn[1];
256 case EEP_OP_CAP:
257 return pBase->deviceCap;
258 case EEP_OP_MODE:
259 return pBase->opCapFlags;
260 case EEP_RF_SILENT:
261 return pBase->rfSilent;
262 case EEP_OB_5:
263 return pModal[0].ob;
264 case EEP_DB_5:
265 return pModal[0].db;
266 case EEP_OB_2:
267 return pModal[1].ob;
268 case EEP_DB_2:
269 return pModal[1].db;
270 case EEP_MINOR_REV:
271 return AR5416_VER_MASK;
272 case EEP_TX_MASK:
273 return pBase->txMask;
274 case EEP_RX_MASK:
275 return pBase->rxMask;
276 case EEP_FSTCLK_5G:
277 return pBase->fastClk5g;
278 case EEP_RXGAIN_TYPE:
279 return pBase->rxGainType;
280 case EEP_TXGAIN_TYPE:
281 return pBase->txGainType;
282 case EEP_OL_PWRCTRL:
283 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
284 return pBase->openLoopPwrCntl ? true : false;
285 else
286 return false;
287 case EEP_RC_CHAIN_MASK:
288 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
289 return pBase->rcChainMask;
290 else
291 return 0;
292 case EEP_DAC_HPWR_5G:
293 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
294 return pBase->dacHiPwrMode_5G;
295 else
296 return 0;
297 case EEP_FRAC_N_5G:
298 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
299 return pBase->frac_n_5g;
300 else
301 return 0;
302 case EEP_PWR_TABLE_OFFSET:
303 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
304 return pBase->pwr_table_offset;
305 else
306 return AR5416_PWR_TABLE_OFFSET_DB;
307 default:
308 return 0;
309 }
310 }
311
312 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
313 struct modal_eep_header *pModal,
314 struct ar5416_eeprom_def *eep,
315 u8 txRxAttenLocal, int regChainOffset, int i)
316 {
317 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
318 txRxAttenLocal = pModal->txRxAttenCh[i];
319
320 if (AR_SREV_9280_20_OR_LATER(ah)) {
321 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
322 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
323 pModal->bswMargin[i]);
324 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
325 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
326 pModal->bswAtten[i]);
327 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
328 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
329 pModal->xatten2Margin[i]);
330 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
331 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
332 pModal->xatten2Db[i]);
333 } else {
334 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
335 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
336 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
337 | SM(pModal-> bswMargin[i],
338 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
339 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
340 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
341 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
342 | SM(pModal->bswAtten[i],
343 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
344 }
345 }
346
347 if (AR_SREV_9280_20_OR_LATER(ah)) {
348 REG_RMW_FIELD(ah,
349 AR_PHY_RXGAIN + regChainOffset,
350 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
351 REG_RMW_FIELD(ah,
352 AR_PHY_RXGAIN + regChainOffset,
353 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
354 } else {
355 REG_WRITE(ah,
356 AR_PHY_RXGAIN + regChainOffset,
357 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
358 ~AR_PHY_RXGAIN_TXRX_ATTEN)
359 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
360 REG_WRITE(ah,
361 AR_PHY_GAIN_2GHZ + regChainOffset,
362 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
363 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
364 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
365 }
366 }
367
368 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
369 struct ath9k_channel *chan)
370 {
371 struct modal_eep_header *pModal;
372 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
373 int i, regChainOffset;
374 u8 txRxAttenLocal;
375
376 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
377 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
378
379 REG_WRITE(ah, AR_PHY_SWITCH_COM,
380 ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
381
382 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
383 if (AR_SREV_9280(ah)) {
384 if (i >= 2)
385 break;
386 }
387
388 if (AR_SREV_5416_20_OR_LATER(ah) &&
389 (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
390 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
391 else
392 regChainOffset = i * 0x1000;
393
394 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
395 pModal->antCtrlChain[i]);
396
397 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
398 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
399 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
400 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
401 SM(pModal->iqCalICh[i],
402 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
403 SM(pModal->iqCalQCh[i],
404 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
405
406 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
407 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
408 regChainOffset, i);
409 }
410
411 if (AR_SREV_9280_20_OR_LATER(ah)) {
412 if (IS_CHAN_2GHZ(chan)) {
413 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
414 AR_AN_RF2G1_CH0_OB,
415 AR_AN_RF2G1_CH0_OB_S,
416 pModal->ob);
417 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
418 AR_AN_RF2G1_CH0_DB,
419 AR_AN_RF2G1_CH0_DB_S,
420 pModal->db);
421 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
422 AR_AN_RF2G1_CH1_OB,
423 AR_AN_RF2G1_CH1_OB_S,
424 pModal->ob_ch1);
425 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
426 AR_AN_RF2G1_CH1_DB,
427 AR_AN_RF2G1_CH1_DB_S,
428 pModal->db_ch1);
429 } else {
430 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
431 AR_AN_RF5G1_CH0_OB5,
432 AR_AN_RF5G1_CH0_OB5_S,
433 pModal->ob);
434 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
435 AR_AN_RF5G1_CH0_DB5,
436 AR_AN_RF5G1_CH0_DB5_S,
437 pModal->db);
438 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
439 AR_AN_RF5G1_CH1_OB5,
440 AR_AN_RF5G1_CH1_OB5_S,
441 pModal->ob_ch1);
442 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
443 AR_AN_RF5G1_CH1_DB5,
444 AR_AN_RF5G1_CH1_DB5_S,
445 pModal->db_ch1);
446 }
447 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
448 AR_AN_TOP2_XPABIAS_LVL,
449 AR_AN_TOP2_XPABIAS_LVL_S,
450 pModal->xpaBiasLvl);
451 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
452 AR_AN_TOP2_LOCALBIAS,
453 AR_AN_TOP2_LOCALBIAS_S,
454 !!(pModal->lna_ctl &
455 LNA_CTL_LOCAL_BIAS));
456 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
457 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
458 }
459
460 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
461 pModal->switchSettling);
462 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
463 pModal->adcDesiredSize);
464
465 if (!AR_SREV_9280_20_OR_LATER(ah))
466 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
467 AR_PHY_DESIRED_SZ_PGA,
468 pModal->pgaDesiredSize);
469
470 REG_WRITE(ah, AR_PHY_RF_CTL4,
471 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
472 | SM(pModal->txEndToXpaOff,
473 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
474 | SM(pModal->txFrameToXpaOn,
475 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
476 | SM(pModal->txFrameToXpaOn,
477 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
478
479 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
480 pModal->txEndToRxOn);
481
482 if (AR_SREV_9280_20_OR_LATER(ah)) {
483 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
484 pModal->thresh62);
485 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
486 AR_PHY_EXT_CCA0_THRESH62,
487 pModal->thresh62);
488 } else {
489 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
490 pModal->thresh62);
491 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
492 AR_PHY_EXT_CCA_THRESH62,
493 pModal->thresh62);
494 }
495
496 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
497 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
498 AR_PHY_TX_END_DATA_START,
499 pModal->txFrameToDataStart);
500 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
501 pModal->txFrameToPaOn);
502 }
503
504 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
505 if (IS_CHAN_HT40(chan))
506 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
507 AR_PHY_SETTLING_SWITCH,
508 pModal->swSettleHt40);
509 }
510
511 if (AR_SREV_9280_20_OR_LATER(ah) &&
512 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
513 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
514 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
515 pModal->miscBits);
516
517
518 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
519 if (IS_CHAN_2GHZ(chan))
520 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
521 eep->baseEepHeader.dacLpMode);
522 else if (eep->baseEepHeader.dacHiPwrMode_5G)
523 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
524 else
525 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
526 eep->baseEepHeader.dacLpMode);
527
528 udelay(100);
529
530 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
531 pModal->miscBits >> 2);
532
533 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
534 AR_PHY_TX_DESIRED_SCALE_CCK,
535 eep->baseEepHeader.desiredScaleCCK);
536 }
537 }
538
539 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
540 struct ath9k_channel *chan)
541 {
542 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
543 struct modal_eep_header *pModal;
544 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
545 u8 biaslevel;
546
547 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
548 return;
549
550 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
551 return;
552
553 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
554
555 if (pModal->xpaBiasLvl != 0xff) {
556 biaslevel = pModal->xpaBiasLvl;
557 } else {
558 u16 resetFreqBin, freqBin, freqCount = 0;
559 struct chan_centers centers;
560
561 ath9k_hw_get_channel_centers(ah, chan, &centers);
562
563 resetFreqBin = FREQ2FBIN(centers.synth_center,
564 IS_CHAN_2GHZ(chan));
565 freqBin = XPA_LVL_FREQ(0) & 0xff;
566 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
567
568 freqCount++;
569
570 while (freqCount < 3) {
571 if (XPA_LVL_FREQ(freqCount) == 0x0)
572 break;
573
574 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
575 if (resetFreqBin >= freqBin)
576 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
577 else
578 break;
579 freqCount++;
580 }
581 }
582
583 if (IS_CHAN_2GHZ(chan)) {
584 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
585 7, 1) & (~0x18)) | biaslevel << 3;
586 } else {
587 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
588 6, 1) & (~0xc0)) | biaslevel << 6;
589 }
590 #undef XPA_LVL_FREQ
591 }
592
593 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
594 struct ath9k_channel *chan,
595 struct cal_data_per_freq *pRawDataSet,
596 u8 *bChans, u16 availPiers,
597 u16 tPdGainOverlap,
598 u16 *pPdGainBoundaries, u8 *pPDADCValues,
599 u16 numXpdGains)
600 {
601 int i, j, k;
602 int16_t ss;
603 u16 idxL = 0, idxR = 0, numPiers;
604 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
605 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
606 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
607 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
608 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
609 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
610
611 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
612 u8 minPwrT4[AR5416_NUM_PD_GAINS];
613 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
614 int16_t vpdStep;
615 int16_t tmpVal;
616 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
617 bool match;
618 int16_t minDelta = 0;
619 struct chan_centers centers;
620
621 memset(&minPwrT4, 0, AR9287_NUM_PD_GAINS);
622 ath9k_hw_get_channel_centers(ah, chan, &centers);
623
624 for (numPiers = 0; numPiers < availPiers; numPiers++) {
625 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
626 break;
627 }
628
629 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
630 IS_CHAN_2GHZ(chan)),
631 bChans, numPiers, &idxL, &idxR);
632
633 if (match) {
634 for (i = 0; i < numXpdGains; i++) {
635 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
636 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
637 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
638 pRawDataSet[idxL].pwrPdg[i],
639 pRawDataSet[idxL].vpdPdg[i],
640 AR5416_PD_GAIN_ICEPTS,
641 vpdTableI[i]);
642 }
643 } else {
644 for (i = 0; i < numXpdGains; i++) {
645 pVpdL = pRawDataSet[idxL].vpdPdg[i];
646 pPwrL = pRawDataSet[idxL].pwrPdg[i];
647 pVpdR = pRawDataSet[idxR].vpdPdg[i];
648 pPwrR = pRawDataSet[idxR].pwrPdg[i];
649
650 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
651
652 maxPwrT4[i] =
653 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
654 pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
655
656
657 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
658 pPwrL, pVpdL,
659 AR5416_PD_GAIN_ICEPTS,
660 vpdTableL[i]);
661 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
662 pPwrR, pVpdR,
663 AR5416_PD_GAIN_ICEPTS,
664 vpdTableR[i]);
665
666 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
667 vpdTableI[i][j] =
668 (u8)(ath9k_hw_interpolate((u16)
669 FREQ2FBIN(centers.
670 synth_center,
671 IS_CHAN_2GHZ
672 (chan)),
673 bChans[idxL], bChans[idxR],
674 vpdTableL[i][j], vpdTableR[i][j]));
675 }
676 }
677 }
678
679 k = 0;
680
681 for (i = 0; i < numXpdGains; i++) {
682 if (i == (numXpdGains - 1))
683 pPdGainBoundaries[i] =
684 (u16)(maxPwrT4[i] / 2);
685 else
686 pPdGainBoundaries[i] =
687 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
688
689 pPdGainBoundaries[i] =
690 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
691
692 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
693 minDelta = pPdGainBoundaries[0] - 23;
694 pPdGainBoundaries[0] = 23;
695 } else {
696 minDelta = 0;
697 }
698
699 if (i == 0) {
700 if (AR_SREV_9280_20_OR_LATER(ah))
701 ss = (int16_t)(0 - (minPwrT4[i] / 2));
702 else
703 ss = 0;
704 } else {
705 ss = (int16_t)((pPdGainBoundaries[i - 1] -
706 (minPwrT4[i] / 2)) -
707 tPdGainOverlap + 1 + minDelta);
708 }
709 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
710 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
711
712 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
713 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
714 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
715 ss++;
716 }
717
718 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
719 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
720 (minPwrT4[i] / 2));
721 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
722 tgtIndex : sizeCurrVpdTable;
723
724 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
725 pPDADCValues[k++] = vpdTableI[i][ss++];
726 }
727
728 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
729 vpdTableI[i][sizeCurrVpdTable - 2]);
730 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
731
732 if (tgtIndex >= maxIndex) {
733 while ((ss <= tgtIndex) &&
734 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
735 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
736 (ss - maxIndex + 1) * vpdStep));
737 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
738 255 : tmpVal);
739 ss++;
740 }
741 }
742 }
743
744 while (i < AR5416_PD_GAINS_IN_MASK) {
745 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
746 i++;
747 }
748
749 while (k < AR5416_NUM_PDADC_VALUES) {
750 pPDADCValues[k] = pPDADCValues[k - 1];
751 k++;
752 }
753 }
754
755 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
756 u16 *gb,
757 u16 numXpdGain,
758 u16 pdGainOverlap_t2,
759 int8_t pwr_table_offset,
760 int16_t *diff)
761
762 {
763 u16 k;
764
765 /* Prior to writing the boundaries or the pdadc vs. power table
766 * into the chip registers the default starting point on the pdadc
767 * vs. power table needs to be checked and the curve boundaries
768 * adjusted accordingly
769 */
770 if (AR_SREV_9280_20_OR_LATER(ah)) {
771 u16 gb_limit;
772
773 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
774 /* get the difference in dB */
775 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
776 /* get the number of half dB steps */
777 *diff *= 2;
778 /* change the original gain boundary settings
779 * by the number of half dB steps
780 */
781 for (k = 0; k < numXpdGain; k++)
782 gb[k] = (u16)(gb[k] - *diff);
783 }
784 /* Because of a hardware limitation, ensure the gain boundary
785 * is not larger than (63 - overlap)
786 */
787 gb_limit = (u16)(AR5416_MAX_RATE_POWER - pdGainOverlap_t2);
788
789 for (k = 0; k < numXpdGain; k++)
790 gb[k] = (u16)min(gb_limit, gb[k]);
791 }
792
793 return *diff;
794 }
795
796 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
797 int8_t pwr_table_offset,
798 int16_t diff,
799 u8 *pdadcValues)
800 {
801 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
802 u16 k;
803
804 /* If this is a board that has a pwrTableOffset that differs from
805 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
806 * pdadc vs pwr table needs to be adjusted prior to writing to the
807 * chip.
808 */
809 if (AR_SREV_9280_20_OR_LATER(ah)) {
810 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
811 /* shift the table to start at the new offset */
812 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
813 pdadcValues[k] = pdadcValues[k + diff];
814 }
815
816 /* fill the back of the table */
817 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
818 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
819 }
820 }
821 }
822 #undef NUM_PDADC
823 }
824
825 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
826 struct ath9k_channel *chan,
827 int16_t *pTxPowerIndexOffset)
828 {
829 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
830 #define SM_PDGAIN_B(x, y) \
831 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
832 struct ath_common *common = ath9k_hw_common(ah);
833 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
834 struct cal_data_per_freq *pRawDataset;
835 u8 *pCalBChans = NULL;
836 u16 pdGainOverlap_t2;
837 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
838 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
839 u16 numPiers, i, j;
840 int16_t diff = 0;
841 u16 numXpdGain, xpdMask;
842 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
843 u32 reg32, regOffset, regChainOffset;
844 int16_t modalIdx;
845 int8_t pwr_table_offset;
846
847 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
848 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
849
850 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
851
852 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
853 AR5416_EEP_MINOR_VER_2) {
854 pdGainOverlap_t2 =
855 pEepData->modalHeader[modalIdx].pdGainOverlap;
856 } else {
857 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
858 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
859 }
860
861 if (IS_CHAN_2GHZ(chan)) {
862 pCalBChans = pEepData->calFreqPier2G;
863 numPiers = AR5416_NUM_2G_CAL_PIERS;
864 } else {
865 pCalBChans = pEepData->calFreqPier5G;
866 numPiers = AR5416_NUM_5G_CAL_PIERS;
867 }
868
869 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
870 pRawDataset = pEepData->calPierData2G[0];
871 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
872 pRawDataset)->vpdPdg[0][0];
873 }
874
875 numXpdGain = 0;
876
877 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
878 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
879 if (numXpdGain >= AR5416_NUM_PD_GAINS)
880 break;
881 xpdGainValues[numXpdGain] =
882 (u16)(AR5416_PD_GAINS_IN_MASK - i);
883 numXpdGain++;
884 }
885 }
886
887 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
888 (numXpdGain - 1) & 0x3);
889 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
890 xpdGainValues[0]);
891 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
892 xpdGainValues[1]);
893 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
894 xpdGainValues[2]);
895
896 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
897 if (AR_SREV_5416_20_OR_LATER(ah) &&
898 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
899 (i != 0)) {
900 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
901 } else
902 regChainOffset = i * 0x1000;
903
904 if (pEepData->baseEepHeader.txMask & (1 << i)) {
905 if (IS_CHAN_2GHZ(chan))
906 pRawDataset = pEepData->calPierData2G[i];
907 else
908 pRawDataset = pEepData->calPierData5G[i];
909
910
911 if (OLC_FOR_AR9280_20_LATER) {
912 u8 pcdacIdx;
913 u8 txPower;
914
915 ath9k_get_txgain_index(ah, chan,
916 (struct calDataPerFreqOpLoop *)pRawDataset,
917 pCalBChans, numPiers, &txPower, &pcdacIdx);
918 ath9k_olc_get_pdadcs(ah, pcdacIdx,
919 txPower/2, pdadcValues);
920 } else {
921 ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
922 chan, pRawDataset,
923 pCalBChans, numPiers,
924 pdGainOverlap_t2,
925 gainBoundaries,
926 pdadcValues,
927 numXpdGain);
928 }
929
930 diff = ath9k_change_gain_boundary_setting(ah,
931 gainBoundaries,
932 numXpdGain,
933 pdGainOverlap_t2,
934 pwr_table_offset,
935 &diff);
936
937 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
938 if (OLC_FOR_AR9280_20_LATER) {
939 REG_WRITE(ah,
940 AR_PHY_TPCRG5 + regChainOffset,
941 SM(0x6,
942 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
943 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
944 SM_PD_GAIN(3) | SM_PD_GAIN(4));
945 } else {
946 REG_WRITE(ah,
947 AR_PHY_TPCRG5 + regChainOffset,
948 SM(pdGainOverlap_t2,
949 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
950 SM_PDGAIN_B(0, 1) |
951 SM_PDGAIN_B(1, 2) |
952 SM_PDGAIN_B(2, 3) |
953 SM_PDGAIN_B(3, 4));
954 }
955 }
956
957
958 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
959 diff, pdadcValues);
960
961 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
962 for (j = 0; j < 32; j++) {
963 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
964 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
965 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
966 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
967 REG_WRITE(ah, regOffset, reg32);
968
969 ath_print(common, ATH_DBG_EEPROM,
970 "PDADC (%d,%4x): %4.4x %8.8x\n",
971 i, regChainOffset, regOffset,
972 reg32);
973 ath_print(common, ATH_DBG_EEPROM,
974 "PDADC: Chain %d | PDADC %3d "
975 "Value %3d | PDADC %3d Value %3d | "
976 "PDADC %3d Value %3d | PDADC %3d "
977 "Value %3d |\n",
978 i, 4 * j, pdadcValues[4 * j],
979 4 * j + 1, pdadcValues[4 * j + 1],
980 4 * j + 2, pdadcValues[4 * j + 2],
981 4 * j + 3,
982 pdadcValues[4 * j + 3]);
983
984 regOffset += 4;
985 }
986 }
987 }
988
989 *pTxPowerIndexOffset = 0;
990 #undef SM_PD_GAIN
991 #undef SM_PDGAIN_B
992 }
993
994 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
995 struct ath9k_channel *chan,
996 int16_t *ratesArray,
997 u16 cfgCtl,
998 u16 AntennaReduction,
999 u16 twiceMaxRegulatoryPower,
1000 u16 powerLimit)
1001 {
1002 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
1003 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
1004
1005 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1006 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1007 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1008 static const u16 tpScaleReductionTable[5] =
1009 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
1010
1011 int i;
1012 int16_t twiceLargestAntenna;
1013 struct cal_ctl_data *rep;
1014 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1015 0, { 0, 0, 0, 0}
1016 };
1017 struct cal_target_power_leg targetPowerOfdmExt = {
1018 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1019 0, { 0, 0, 0, 0 }
1020 };
1021 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1022 0, {0, 0, 0, 0}
1023 };
1024 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1025 static const u16 ctlModesFor11a[] = {
1026 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1027 };
1028 static const u16 ctlModesFor11g[] = {
1029 CTL_11B, CTL_11G, CTL_2GHT20,
1030 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1031 };
1032 u16 numCtlModes;
1033 const u16 *pCtlMode;
1034 u16 ctlMode, freq;
1035 struct chan_centers centers;
1036 int tx_chainmask;
1037 u16 twiceMinEdgePower;
1038
1039 tx_chainmask = ah->txchainmask;
1040
1041 ath9k_hw_get_channel_centers(ah, chan, &centers);
1042
1043 twiceLargestAntenna = max(
1044 pEepData->modalHeader
1045 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1046 pEepData->modalHeader
1047 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1048
1049 twiceLargestAntenna = max((u8)twiceLargestAntenna,
1050 pEepData->modalHeader
1051 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1052
1053 twiceLargestAntenna = (int16_t)min(AntennaReduction -
1054 twiceLargestAntenna, 0);
1055
1056 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1057
1058 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
1059 maxRegAllowedPower -=
1060 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
1061 }
1062
1063 scaledPower = min(powerLimit, maxRegAllowedPower);
1064
1065 switch (ar5416_get_ntxchains(tx_chainmask)) {
1066 case 1:
1067 break;
1068 case 2:
1069 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
1070 break;
1071 case 3:
1072 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
1073 break;
1074 }
1075
1076 scaledPower = max((u16)0, scaledPower);
1077
1078 if (IS_CHAN_2GHZ(chan)) {
1079 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1080 SUB_NUM_CTL_MODES_AT_2G_40;
1081 pCtlMode = ctlModesFor11g;
1082
1083 ath9k_hw_get_legacy_target_powers(ah, chan,
1084 pEepData->calTargetPowerCck,
1085 AR5416_NUM_2G_CCK_TARGET_POWERS,
1086 &targetPowerCck, 4, false);
1087 ath9k_hw_get_legacy_target_powers(ah, chan,
1088 pEepData->calTargetPower2G,
1089 AR5416_NUM_2G_20_TARGET_POWERS,
1090 &targetPowerOfdm, 4, false);
1091 ath9k_hw_get_target_powers(ah, chan,
1092 pEepData->calTargetPower2GHT20,
1093 AR5416_NUM_2G_20_TARGET_POWERS,
1094 &targetPowerHt20, 8, false);
1095
1096 if (IS_CHAN_HT40(chan)) {
1097 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1098 ath9k_hw_get_target_powers(ah, chan,
1099 pEepData->calTargetPower2GHT40,
1100 AR5416_NUM_2G_40_TARGET_POWERS,
1101 &targetPowerHt40, 8, true);
1102 ath9k_hw_get_legacy_target_powers(ah, chan,
1103 pEepData->calTargetPowerCck,
1104 AR5416_NUM_2G_CCK_TARGET_POWERS,
1105 &targetPowerCckExt, 4, true);
1106 ath9k_hw_get_legacy_target_powers(ah, chan,
1107 pEepData->calTargetPower2G,
1108 AR5416_NUM_2G_20_TARGET_POWERS,
1109 &targetPowerOfdmExt, 4, true);
1110 }
1111 } else {
1112 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1113 SUB_NUM_CTL_MODES_AT_5G_40;
1114 pCtlMode = ctlModesFor11a;
1115
1116 ath9k_hw_get_legacy_target_powers(ah, chan,
1117 pEepData->calTargetPower5G,
1118 AR5416_NUM_5G_20_TARGET_POWERS,
1119 &targetPowerOfdm, 4, false);
1120 ath9k_hw_get_target_powers(ah, chan,
1121 pEepData->calTargetPower5GHT20,
1122 AR5416_NUM_5G_20_TARGET_POWERS,
1123 &targetPowerHt20, 8, false);
1124
1125 if (IS_CHAN_HT40(chan)) {
1126 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1127 ath9k_hw_get_target_powers(ah, chan,
1128 pEepData->calTargetPower5GHT40,
1129 AR5416_NUM_5G_40_TARGET_POWERS,
1130 &targetPowerHt40, 8, true);
1131 ath9k_hw_get_legacy_target_powers(ah, chan,
1132 pEepData->calTargetPower5G,
1133 AR5416_NUM_5G_20_TARGET_POWERS,
1134 &targetPowerOfdmExt, 4, true);
1135 }
1136 }
1137
1138 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1139 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1140 (pCtlMode[ctlMode] == CTL_2GHT40);
1141 if (isHt40CtlMode)
1142 freq = centers.synth_center;
1143 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1144 freq = centers.ext_center;
1145 else
1146 freq = centers.ctl_center;
1147
1148 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1149 ah->eep_ops->get_eeprom_rev(ah) <= 2)
1150 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1151
1152 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1153 if ((((cfgCtl & ~CTL_MODE_M) |
1154 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1155 pEepData->ctlIndex[i]) ||
1156 (((cfgCtl & ~CTL_MODE_M) |
1157 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1158 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1159 rep = &(pEepData->ctlData[i]);
1160
1161 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1162 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1163 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1164
1165 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1166 twiceMaxEdgePower = min(twiceMaxEdgePower,
1167 twiceMinEdgePower);
1168 } else {
1169 twiceMaxEdgePower = twiceMinEdgePower;
1170 break;
1171 }
1172 }
1173 }
1174
1175 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1176
1177 switch (pCtlMode[ctlMode]) {
1178 case CTL_11B:
1179 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1180 targetPowerCck.tPow2x[i] =
1181 min((u16)targetPowerCck.tPow2x[i],
1182 minCtlPower);
1183 }
1184 break;
1185 case CTL_11A:
1186 case CTL_11G:
1187 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1188 targetPowerOfdm.tPow2x[i] =
1189 min((u16)targetPowerOfdm.tPow2x[i],
1190 minCtlPower);
1191 }
1192 break;
1193 case CTL_5GHT20:
1194 case CTL_2GHT20:
1195 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1196 targetPowerHt20.tPow2x[i] =
1197 min((u16)targetPowerHt20.tPow2x[i],
1198 minCtlPower);
1199 }
1200 break;
1201 case CTL_11B_EXT:
1202 targetPowerCckExt.tPow2x[0] = min((u16)
1203 targetPowerCckExt.tPow2x[0],
1204 minCtlPower);
1205 break;
1206 case CTL_11A_EXT:
1207 case CTL_11G_EXT:
1208 targetPowerOfdmExt.tPow2x[0] = min((u16)
1209 targetPowerOfdmExt.tPow2x[0],
1210 minCtlPower);
1211 break;
1212 case CTL_5GHT40:
1213 case CTL_2GHT40:
1214 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1215 targetPowerHt40.tPow2x[i] =
1216 min((u16)targetPowerHt40.tPow2x[i],
1217 minCtlPower);
1218 }
1219 break;
1220 default:
1221 break;
1222 }
1223 }
1224
1225 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1226 ratesArray[rate18mb] = ratesArray[rate24mb] =
1227 targetPowerOfdm.tPow2x[0];
1228 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1229 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1230 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1231 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1232
1233 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1234 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1235
1236 if (IS_CHAN_2GHZ(chan)) {
1237 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1238 ratesArray[rate2s] = ratesArray[rate2l] =
1239 targetPowerCck.tPow2x[1];
1240 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1241 targetPowerCck.tPow2x[2];
1242 ratesArray[rate11s] = ratesArray[rate11l] =
1243 targetPowerCck.tPow2x[3];
1244 }
1245 if (IS_CHAN_HT40(chan)) {
1246 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1247 ratesArray[rateHt40_0 + i] =
1248 targetPowerHt40.tPow2x[i];
1249 }
1250 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1251 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1252 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1253 if (IS_CHAN_2GHZ(chan)) {
1254 ratesArray[rateExtCck] =
1255 targetPowerCckExt.tPow2x[0];
1256 }
1257 }
1258 }
1259
1260 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1261 struct ath9k_channel *chan,
1262 u16 cfgCtl,
1263 u8 twiceAntennaReduction,
1264 u8 twiceMaxRegulatoryPower,
1265 u8 powerLimit, bool test)
1266 {
1267 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1268 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1269 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1270 struct modal_eep_header *pModal =
1271 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1272 int16_t ratesArray[Ar5416RateSize];
1273 int16_t txPowerIndexOffset = 0;
1274 u8 ht40PowerIncForPdadc = 2;
1275 int i, cck_ofdm_delta = 0;
1276
1277 memset(ratesArray, 0, sizeof(ratesArray));
1278
1279 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1280 AR5416_EEP_MINOR_VER_2) {
1281 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1282 }
1283
1284 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1285 &ratesArray[0], cfgCtl,
1286 twiceAntennaReduction,
1287 twiceMaxRegulatoryPower,
1288 powerLimit);
1289
1290 ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1291
1292 regulatory->max_power_level = 0;
1293 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1294 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1295 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1296 ratesArray[i] = AR5416_MAX_RATE_POWER;
1297 if (ratesArray[i] > regulatory->max_power_level)
1298 regulatory->max_power_level = ratesArray[i];
1299 }
1300
1301 if (!test) {
1302 i = rate6mb;
1303
1304 if (IS_CHAN_HT40(chan))
1305 i = rateHt40_0;
1306 else if (IS_CHAN_HT20(chan))
1307 i = rateHt20_0;
1308
1309 regulatory->max_power_level = ratesArray[i];
1310 }
1311
1312 switch(ar5416_get_ntxchains(ah->txchainmask)) {
1313 case 1:
1314 break;
1315 case 2:
1316 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1317 break;
1318 case 3:
1319 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1320 break;
1321 default:
1322 ath_print(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1323 "Invalid chainmask configuration\n");
1324 break;
1325 }
1326
1327 if (test)
1328 return;
1329
1330 if (AR_SREV_9280_20_OR_LATER(ah)) {
1331 for (i = 0; i < Ar5416RateSize; i++) {
1332 int8_t pwr_table_offset;
1333
1334 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1335 EEP_PWR_TABLE_OFFSET);
1336 ratesArray[i] -= pwr_table_offset * 2;
1337 }
1338 }
1339
1340 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1341 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1342 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1343 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1344 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1345 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1346 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1347 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1348 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1349 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1350
1351 if (IS_CHAN_2GHZ(chan)) {
1352 if (OLC_FOR_AR9280_20_LATER) {
1353 cck_ofdm_delta = 2;
1354 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1355 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1356 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1357 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1358 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1359 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1360 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1361 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1362 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1363 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1364 } else {
1365 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1366 ATH9K_POW_SM(ratesArray[rate2s], 24)
1367 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1368 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1369 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1370 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1371 ATH9K_POW_SM(ratesArray[rate11s], 24)
1372 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1373 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1374 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1375 }
1376 }
1377
1378 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1379 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1380 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1381 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1382 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1383 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1384 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1385 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1386 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1387 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1388
1389 if (IS_CHAN_HT40(chan)) {
1390 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1391 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1392 ht40PowerIncForPdadc, 24)
1393 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1394 ht40PowerIncForPdadc, 16)
1395 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1396 ht40PowerIncForPdadc, 8)
1397 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1398 ht40PowerIncForPdadc, 0));
1399 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1400 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1401 ht40PowerIncForPdadc, 24)
1402 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1403 ht40PowerIncForPdadc, 16)
1404 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1405 ht40PowerIncForPdadc, 8)
1406 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1407 ht40PowerIncForPdadc, 0));
1408 if (OLC_FOR_AR9280_20_LATER) {
1409 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1410 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1411 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1412 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1413 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1414 } else {
1415 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1416 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1417 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1418 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1419 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1420 }
1421 }
1422
1423 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1424 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1425 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1426 }
1427
1428 static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
1429 enum ath9k_hal_freq_band freq_band)
1430 {
1431 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1432 struct modal_eep_header *pModal =
1433 &(eep->modalHeader[freq_band]);
1434 struct base_eep_header *pBase = &eep->baseEepHeader;
1435 u8 num_ant_config;
1436
1437 num_ant_config = 1;
1438
1439 if (pBase->version >= 0x0E0D &&
1440 (pModal->lna_ctl & LNA_CTL_USE_ANT1))
1441 num_ant_config += 1;
1442
1443 return num_ant_config;
1444 }
1445
1446 static u32 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
1447 struct ath9k_channel *chan)
1448 {
1449 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1450 struct modal_eep_header *pModal =
1451 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1452
1453 return pModal->antCtrlCommon;
1454 }
1455
1456 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1457 {
1458 #define EEP_DEF_SPURCHAN \
1459 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1460 struct ath_common *common = ath9k_hw_common(ah);
1461
1462 u16 spur_val = AR_NO_SPUR;
1463
1464 ath_print(common, ATH_DBG_ANI,
1465 "Getting spur idx %d is2Ghz. %d val %x\n",
1466 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1467
1468 switch (ah->config.spurmode) {
1469 case SPUR_DISABLE:
1470 break;
1471 case SPUR_ENABLE_IOCTL:
1472 spur_val = ah->config.spurchans[i][is2GHz];
1473 ath_print(common, ATH_DBG_ANI,
1474 "Getting spur val from new loc. %d\n", spur_val);
1475 break;
1476 case SPUR_ENABLE_EEPROM:
1477 spur_val = EEP_DEF_SPURCHAN;
1478 break;
1479 }
1480
1481 return spur_val;
1482
1483 #undef EEP_DEF_SPURCHAN
1484 }
1485
1486 const struct eeprom_ops eep_def_ops = {
1487 .check_eeprom = ath9k_hw_def_check_eeprom,
1488 .get_eeprom = ath9k_hw_def_get_eeprom,
1489 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1490 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1491 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1492 .get_num_ant_config = ath9k_hw_def_get_num_ant_config,
1493 .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
1494 .set_board_values = ath9k_hw_def_set_board_values,
1495 .set_addac = ath9k_hw_def_set_addac,
1496 .set_txpower = ath9k_hw_def_set_txpower,
1497 .get_spur_channel = ath9k_hw_def_get_spur_channel
1498 };