]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath9k/hw.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20
21 #include "hw.h"
22 #include "rc.h"
23 #include "initvals.h"
24
25 #define ATH9K_CLOCK_RATE_CCK 22
26 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
27 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
28
29 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
30 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
31 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
32 struct ar5416_eeprom_def *pEepData,
33 u32 reg, u32 value);
34
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39
40 static int __init ath9k_init(void)
41 {
42 return 0;
43 }
44 module_init(ath9k_init);
45
46 static void __exit ath9k_exit(void)
47 {
48 return;
49 }
50 module_exit(ath9k_exit);
51
52 /********************/
53 /* Helper Functions */
54 /********************/
55
56 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
57 {
58 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
59
60 if (!ah->curchan) /* should really check for CCK instead */
61 return usecs *ATH9K_CLOCK_RATE_CCK;
62 if (conf->channel->band == IEEE80211_BAND_2GHZ)
63 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
64 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
65 }
66
67 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
68 {
69 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
70
71 if (conf_is_ht40(conf))
72 return ath9k_hw_mac_clks(ah, usecs) * 2;
73 else
74 return ath9k_hw_mac_clks(ah, usecs);
75 }
76
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 int i;
80
81 BUG_ON(timeout < AH_TIME_QUANTUM);
82
83 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 if ((REG_READ(ah, reg) & mask) == val)
85 return true;
86
87 udelay(AH_TIME_QUANTUM);
88 }
89
90 ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 timeout, reg, REG_READ(ah, reg), mask, val);
93
94 return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97
98 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
99 {
100 u32 retval;
101 int i;
102
103 for (i = 0, retval = 0; i < n; i++) {
104 retval = (retval << 1) | (val & 1);
105 val >>= 1;
106 }
107 return retval;
108 }
109
110 bool ath9k_get_channel_edges(struct ath_hw *ah,
111 u16 flags, u16 *low,
112 u16 *high)
113 {
114 struct ath9k_hw_capabilities *pCap = &ah->caps;
115
116 if (flags & CHANNEL_5GHZ) {
117 *low = pCap->low_5ghz_chan;
118 *high = pCap->high_5ghz_chan;
119 return true;
120 }
121 if ((flags & CHANNEL_2GHZ)) {
122 *low = pCap->low_2ghz_chan;
123 *high = pCap->high_2ghz_chan;
124 return true;
125 }
126 return false;
127 }
128
129 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
130 u8 phy, int kbps,
131 u32 frameLen, u16 rateix,
132 bool shortPreamble)
133 {
134 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
135
136 if (kbps == 0)
137 return 0;
138
139 switch (phy) {
140 case WLAN_RC_PHY_CCK:
141 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
142 if (shortPreamble)
143 phyTime >>= 1;
144 numBits = frameLen << 3;
145 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
146 break;
147 case WLAN_RC_PHY_OFDM:
148 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
149 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
150 numBits = OFDM_PLCP_BITS + (frameLen << 3);
151 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
152 txTime = OFDM_SIFS_TIME_QUARTER
153 + OFDM_PREAMBLE_TIME_QUARTER
154 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
155 } else if (ah->curchan &&
156 IS_CHAN_HALF_RATE(ah->curchan)) {
157 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
158 numBits = OFDM_PLCP_BITS + (frameLen << 3);
159 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
160 txTime = OFDM_SIFS_TIME_HALF +
161 OFDM_PREAMBLE_TIME_HALF
162 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
163 } else {
164 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
165 numBits = OFDM_PLCP_BITS + (frameLen << 3);
166 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
167 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
168 + (numSymbols * OFDM_SYMBOL_TIME);
169 }
170 break;
171 default:
172 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
173 "Unknown phy %u (rate ix %u)\n", phy, rateix);
174 txTime = 0;
175 break;
176 }
177
178 return txTime;
179 }
180 EXPORT_SYMBOL(ath9k_hw_computetxtime);
181
182 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
183 struct ath9k_channel *chan,
184 struct chan_centers *centers)
185 {
186 int8_t extoff;
187
188 if (!IS_CHAN_HT40(chan)) {
189 centers->ctl_center = centers->ext_center =
190 centers->synth_center = chan->channel;
191 return;
192 }
193
194 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
195 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
196 centers->synth_center =
197 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
198 extoff = 1;
199 } else {
200 centers->synth_center =
201 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
202 extoff = -1;
203 }
204
205 centers->ctl_center =
206 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
207 /* 25 MHz spacing is supported by hw but not on upper layers */
208 centers->ext_center =
209 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
210 }
211
212 /******************/
213 /* Chip Revisions */
214 /******************/
215
216 static void ath9k_hw_read_revisions(struct ath_hw *ah)
217 {
218 u32 val;
219
220 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
221
222 if (val == 0xFF) {
223 val = REG_READ(ah, AR_SREV);
224 ah->hw_version.macVersion =
225 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
226 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
227 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
228 } else {
229 if (!AR_SREV_9100(ah))
230 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
231
232 ah->hw_version.macRev = val & AR_SREV_REVISION;
233
234 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
235 ah->is_pciexpress = true;
236 }
237 }
238
239 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
240 {
241 u32 val;
242 int i;
243
244 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
245
246 for (i = 0; i < 8; i++)
247 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
248 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
249 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
250
251 return ath9k_hw_reverse_bits(val, 8);
252 }
253
254 /************************************/
255 /* HW Attach, Detach, Init Routines */
256 /************************************/
257
258 static void ath9k_hw_disablepcie(struct ath_hw *ah)
259 {
260 if (AR_SREV_9100(ah))
261 return;
262
263 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
264 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
265 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
266 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
267 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
268 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
269 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
270 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
271 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
272
273 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
274 }
275
276 static bool ath9k_hw_chip_test(struct ath_hw *ah)
277 {
278 struct ath_common *common = ath9k_hw_common(ah);
279 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
280 u32 regHold[2];
281 u32 patternData[4] = { 0x55555555,
282 0xaaaaaaaa,
283 0x66666666,
284 0x99999999 };
285 int i, j;
286
287 for (i = 0; i < 2; i++) {
288 u32 addr = regAddr[i];
289 u32 wrData, rdData;
290
291 regHold[i] = REG_READ(ah, addr);
292 for (j = 0; j < 0x100; j++) {
293 wrData = (j << 16) | j;
294 REG_WRITE(ah, addr, wrData);
295 rdData = REG_READ(ah, addr);
296 if (rdData != wrData) {
297 ath_print(common, ATH_DBG_FATAL,
298 "address test failed "
299 "addr: 0x%08x - wr:0x%08x != "
300 "rd:0x%08x\n",
301 addr, wrData, rdData);
302 return false;
303 }
304 }
305 for (j = 0; j < 4; j++) {
306 wrData = patternData[j];
307 REG_WRITE(ah, addr, wrData);
308 rdData = REG_READ(ah, addr);
309 if (wrData != rdData) {
310 ath_print(common, ATH_DBG_FATAL,
311 "address test failed "
312 "addr: 0x%08x - wr:0x%08x != "
313 "rd:0x%08x\n",
314 addr, wrData, rdData);
315 return false;
316 }
317 }
318 REG_WRITE(ah, regAddr[i], regHold[i]);
319 }
320 udelay(100);
321
322 return true;
323 }
324
325 static void ath9k_hw_init_config(struct ath_hw *ah)
326 {
327 int i;
328
329 ah->config.dma_beacon_response_time = 2;
330 ah->config.sw_beacon_response_time = 10;
331 ah->config.additional_swba_backoff = 0;
332 ah->config.ack_6mb = 0x0;
333 ah->config.cwm_ignore_extcca = 0;
334 ah->config.pcie_powersave_enable = 0;
335 ah->config.pcie_clock_req = 0;
336 ah->config.pcie_waen = 0;
337 ah->config.analog_shiftreg = 1;
338 ah->config.ofdm_trig_low = 200;
339 ah->config.ofdm_trig_high = 500;
340 ah->config.cck_trig_high = 200;
341 ah->config.cck_trig_low = 100;
342 ah->config.enable_ani = 1;
343
344 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
345 ah->config.spurchans[i][0] = AR_NO_SPUR;
346 ah->config.spurchans[i][1] = AR_NO_SPUR;
347 }
348
349 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
350 ah->config.ht_enable = 1;
351 else
352 ah->config.ht_enable = 0;
353
354 ah->config.rx_intr_mitigation = true;
355
356 /*
357 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
358 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
359 * This means we use it for all AR5416 devices, and the few
360 * minor PCI AR9280 devices out there.
361 *
362 * Serialization is required because these devices do not handle
363 * well the case of two concurrent reads/writes due to the latency
364 * involved. During one read/write another read/write can be issued
365 * on another CPU while the previous read/write may still be working
366 * on our hardware, if we hit this case the hardware poops in a loop.
367 * We prevent this by serializing reads and writes.
368 *
369 * This issue is not present on PCI-Express devices or pre-AR5416
370 * devices (legacy, 802.11abg).
371 */
372 if (num_possible_cpus() > 1)
373 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
374 }
375 EXPORT_SYMBOL(ath9k_hw_init);
376
377 static void ath9k_hw_init_defaults(struct ath_hw *ah)
378 {
379 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
380
381 regulatory->country_code = CTRY_DEFAULT;
382 regulatory->power_limit = MAX_RATE_POWER;
383 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
384
385 ah->hw_version.magic = AR5416_MAGIC;
386 ah->hw_version.subvendorid = 0;
387
388 ah->ah_flags = 0;
389 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
390 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
391 if (!AR_SREV_9100(ah))
392 ah->ah_flags = AH_USE_EEPROM;
393
394 ah->atim_window = 0;
395 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
396 ah->beacon_interval = 100;
397 ah->enable_32kHz_clock = DONT_USE_32KHZ;
398 ah->slottime = (u32) -1;
399 ah->globaltxtimeout = (u32) -1;
400 ah->power_mode = ATH9K_PM_UNDEFINED;
401 }
402
403 static int ath9k_hw_rf_claim(struct ath_hw *ah)
404 {
405 u32 val;
406
407 REG_WRITE(ah, AR_PHY(0), 0x00000007);
408
409 val = ath9k_hw_get_radiorev(ah);
410 switch (val & AR_RADIO_SREV_MAJOR) {
411 case 0:
412 val = AR_RAD5133_SREV_MAJOR;
413 break;
414 case AR_RAD5133_SREV_MAJOR:
415 case AR_RAD5122_SREV_MAJOR:
416 case AR_RAD2133_SREV_MAJOR:
417 case AR_RAD2122_SREV_MAJOR:
418 break;
419 default:
420 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
421 "Radio Chip Rev 0x%02X not supported\n",
422 val & AR_RADIO_SREV_MAJOR);
423 return -EOPNOTSUPP;
424 }
425
426 ah->hw_version.analog5GhzRev = val;
427
428 return 0;
429 }
430
431 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
432 {
433 struct ath_common *common = ath9k_hw_common(ah);
434 u32 sum;
435 int i;
436 u16 eeval;
437
438 sum = 0;
439 for (i = 0; i < 3; i++) {
440 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
441 sum += eeval;
442 common->macaddr[2 * i] = eeval >> 8;
443 common->macaddr[2 * i + 1] = eeval & 0xff;
444 }
445 if (sum == 0 || sum == 0xffff * 3)
446 return -EADDRNOTAVAIL;
447
448 return 0;
449 }
450
451 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
452 {
453 u32 rxgain_type;
454
455 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
456 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
457
458 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
459 INIT_INI_ARRAY(&ah->iniModesRxGain,
460 ar9280Modes_backoff_13db_rxgain_9280_2,
461 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
462 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
463 INIT_INI_ARRAY(&ah->iniModesRxGain,
464 ar9280Modes_backoff_23db_rxgain_9280_2,
465 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
466 else
467 INIT_INI_ARRAY(&ah->iniModesRxGain,
468 ar9280Modes_original_rxgain_9280_2,
469 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
470 } else {
471 INIT_INI_ARRAY(&ah->iniModesRxGain,
472 ar9280Modes_original_rxgain_9280_2,
473 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
474 }
475 }
476
477 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
478 {
479 u32 txgain_type;
480
481 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
482 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
483
484 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
485 INIT_INI_ARRAY(&ah->iniModesTxGain,
486 ar9280Modes_high_power_tx_gain_9280_2,
487 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
488 else
489 INIT_INI_ARRAY(&ah->iniModesTxGain,
490 ar9280Modes_original_tx_gain_9280_2,
491 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
492 } else {
493 INIT_INI_ARRAY(&ah->iniModesTxGain,
494 ar9280Modes_original_tx_gain_9280_2,
495 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
496 }
497 }
498
499 static int ath9k_hw_post_init(struct ath_hw *ah)
500 {
501 int ecode;
502
503 if (!ath9k_hw_chip_test(ah))
504 return -ENODEV;
505
506 ecode = ath9k_hw_rf_claim(ah);
507 if (ecode != 0)
508 return ecode;
509
510 ecode = ath9k_hw_eeprom_init(ah);
511 if (ecode != 0)
512 return ecode;
513
514 ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
515 "Eeprom VER: %d, REV: %d\n",
516 ah->eep_ops->get_eeprom_ver(ah),
517 ah->eep_ops->get_eeprom_rev(ah));
518
519 if (!AR_SREV_9280_10_OR_LATER(ah)) {
520 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
521 if (ecode) {
522 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
523 "Failed allocating banks for "
524 "external radio\n");
525 return ecode;
526 }
527 }
528
529 if (!AR_SREV_9100(ah)) {
530 ath9k_hw_ani_setup(ah);
531 ath9k_hw_ani_init(ah);
532 }
533
534 return 0;
535 }
536
537 static bool ath9k_hw_devid_supported(u16 devid)
538 {
539 switch (devid) {
540 case AR5416_DEVID_PCI:
541 case AR5416_DEVID_PCIE:
542 case AR5416_AR9100_DEVID:
543 case AR9160_DEVID_PCI:
544 case AR9280_DEVID_PCI:
545 case AR9280_DEVID_PCIE:
546 case AR9285_DEVID_PCIE:
547 case AR5416_DEVID_AR9287_PCI:
548 case AR5416_DEVID_AR9287_PCIE:
549 case AR9271_USB:
550 case AR2427_DEVID_PCIE:
551 return true;
552 default:
553 break;
554 }
555 return false;
556 }
557
558 static bool ath9k_hw_macversion_supported(u32 macversion)
559 {
560 switch (macversion) {
561 case AR_SREV_VERSION_5416_PCI:
562 case AR_SREV_VERSION_5416_PCIE:
563 case AR_SREV_VERSION_9160:
564 case AR_SREV_VERSION_9100:
565 case AR_SREV_VERSION_9280:
566 case AR_SREV_VERSION_9285:
567 case AR_SREV_VERSION_9287:
568 case AR_SREV_VERSION_9271:
569 return true;
570 default:
571 break;
572 }
573 return false;
574 }
575
576 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
577 {
578 if (AR_SREV_9160_10_OR_LATER(ah)) {
579 if (AR_SREV_9280_10_OR_LATER(ah)) {
580 ah->iq_caldata.calData = &iq_cal_single_sample;
581 ah->adcgain_caldata.calData =
582 &adc_gain_cal_single_sample;
583 ah->adcdc_caldata.calData =
584 &adc_dc_cal_single_sample;
585 ah->adcdc_calinitdata.calData =
586 &adc_init_dc_cal;
587 } else {
588 ah->iq_caldata.calData = &iq_cal_multi_sample;
589 ah->adcgain_caldata.calData =
590 &adc_gain_cal_multi_sample;
591 ah->adcdc_caldata.calData =
592 &adc_dc_cal_multi_sample;
593 ah->adcdc_calinitdata.calData =
594 &adc_init_dc_cal;
595 }
596 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
597 }
598 }
599
600 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
601 {
602 if (AR_SREV_9271(ah)) {
603 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
604 ARRAY_SIZE(ar9271Modes_9271), 6);
605 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
606 ARRAY_SIZE(ar9271Common_9271), 2);
607 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
608 ar9271Modes_9271_1_0_only,
609 ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
610 return;
611 }
612
613 if (AR_SREV_9287_11_OR_LATER(ah)) {
614 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
615 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
616 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
617 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
618 if (ah->config.pcie_clock_req)
619 INIT_INI_ARRAY(&ah->iniPcieSerdes,
620 ar9287PciePhy_clkreq_off_L1_9287_1_1,
621 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
622 else
623 INIT_INI_ARRAY(&ah->iniPcieSerdes,
624 ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
625 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
626 2);
627 } else if (AR_SREV_9287_10_OR_LATER(ah)) {
628 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
629 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
630 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
631 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
632
633 if (ah->config.pcie_clock_req)
634 INIT_INI_ARRAY(&ah->iniPcieSerdes,
635 ar9287PciePhy_clkreq_off_L1_9287_1_0,
636 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
637 else
638 INIT_INI_ARRAY(&ah->iniPcieSerdes,
639 ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
640 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
641 2);
642 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
643
644
645 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
646 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
647 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
648 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
649
650 if (ah->config.pcie_clock_req) {
651 INIT_INI_ARRAY(&ah->iniPcieSerdes,
652 ar9285PciePhy_clkreq_off_L1_9285_1_2,
653 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
654 } else {
655 INIT_INI_ARRAY(&ah->iniPcieSerdes,
656 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
657 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
658 2);
659 }
660 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
661 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
662 ARRAY_SIZE(ar9285Modes_9285), 6);
663 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
664 ARRAY_SIZE(ar9285Common_9285), 2);
665
666 if (ah->config.pcie_clock_req) {
667 INIT_INI_ARRAY(&ah->iniPcieSerdes,
668 ar9285PciePhy_clkreq_off_L1_9285,
669 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
670 } else {
671 INIT_INI_ARRAY(&ah->iniPcieSerdes,
672 ar9285PciePhy_clkreq_always_on_L1_9285,
673 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
674 }
675 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
676 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
677 ARRAY_SIZE(ar9280Modes_9280_2), 6);
678 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
679 ARRAY_SIZE(ar9280Common_9280_2), 2);
680
681 if (ah->config.pcie_clock_req) {
682 INIT_INI_ARRAY(&ah->iniPcieSerdes,
683 ar9280PciePhy_clkreq_off_L1_9280,
684 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
685 } else {
686 INIT_INI_ARRAY(&ah->iniPcieSerdes,
687 ar9280PciePhy_clkreq_always_on_L1_9280,
688 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
689 }
690 INIT_INI_ARRAY(&ah->iniModesAdditional,
691 ar9280Modes_fast_clock_9280_2,
692 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
693 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
694 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
695 ARRAY_SIZE(ar9280Modes_9280), 6);
696 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
697 ARRAY_SIZE(ar9280Common_9280), 2);
698 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
699 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
700 ARRAY_SIZE(ar5416Modes_9160), 6);
701 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
702 ARRAY_SIZE(ar5416Common_9160), 2);
703 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
704 ARRAY_SIZE(ar5416Bank0_9160), 2);
705 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
706 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
707 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
708 ARRAY_SIZE(ar5416Bank1_9160), 2);
709 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
710 ARRAY_SIZE(ar5416Bank2_9160), 2);
711 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
712 ARRAY_SIZE(ar5416Bank3_9160), 3);
713 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
714 ARRAY_SIZE(ar5416Bank6_9160), 3);
715 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
716 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
717 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
718 ARRAY_SIZE(ar5416Bank7_9160), 2);
719 if (AR_SREV_9160_11(ah)) {
720 INIT_INI_ARRAY(&ah->iniAddac,
721 ar5416Addac_91601_1,
722 ARRAY_SIZE(ar5416Addac_91601_1), 2);
723 } else {
724 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
725 ARRAY_SIZE(ar5416Addac_9160), 2);
726 }
727 } else if (AR_SREV_9100_OR_LATER(ah)) {
728 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
729 ARRAY_SIZE(ar5416Modes_9100), 6);
730 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
731 ARRAY_SIZE(ar5416Common_9100), 2);
732 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
733 ARRAY_SIZE(ar5416Bank0_9100), 2);
734 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
735 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
736 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
737 ARRAY_SIZE(ar5416Bank1_9100), 2);
738 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
739 ARRAY_SIZE(ar5416Bank2_9100), 2);
740 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
741 ARRAY_SIZE(ar5416Bank3_9100), 3);
742 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
743 ARRAY_SIZE(ar5416Bank6_9100), 3);
744 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
745 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
746 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
747 ARRAY_SIZE(ar5416Bank7_9100), 2);
748 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
749 ARRAY_SIZE(ar5416Addac_9100), 2);
750 } else {
751 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
752 ARRAY_SIZE(ar5416Modes), 6);
753 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
754 ARRAY_SIZE(ar5416Common), 2);
755 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
756 ARRAY_SIZE(ar5416Bank0), 2);
757 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
758 ARRAY_SIZE(ar5416BB_RfGain), 3);
759 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
760 ARRAY_SIZE(ar5416Bank1), 2);
761 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
762 ARRAY_SIZE(ar5416Bank2), 2);
763 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
764 ARRAY_SIZE(ar5416Bank3), 3);
765 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
766 ARRAY_SIZE(ar5416Bank6), 3);
767 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
768 ARRAY_SIZE(ar5416Bank6TPC), 3);
769 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
770 ARRAY_SIZE(ar5416Bank7), 2);
771 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
772 ARRAY_SIZE(ar5416Addac), 2);
773 }
774 }
775
776 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
777 {
778 if (AR_SREV_9287_11_OR_LATER(ah))
779 INIT_INI_ARRAY(&ah->iniModesRxGain,
780 ar9287Modes_rx_gain_9287_1_1,
781 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
782 else if (AR_SREV_9287_10(ah))
783 INIT_INI_ARRAY(&ah->iniModesRxGain,
784 ar9287Modes_rx_gain_9287_1_0,
785 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
786 else if (AR_SREV_9280_20(ah))
787 ath9k_hw_init_rxgain_ini(ah);
788
789 if (AR_SREV_9287_11_OR_LATER(ah)) {
790 INIT_INI_ARRAY(&ah->iniModesTxGain,
791 ar9287Modes_tx_gain_9287_1_1,
792 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
793 } else if (AR_SREV_9287_10(ah)) {
794 INIT_INI_ARRAY(&ah->iniModesTxGain,
795 ar9287Modes_tx_gain_9287_1_0,
796 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
797 } else if (AR_SREV_9280_20(ah)) {
798 ath9k_hw_init_txgain_ini(ah);
799 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
800 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
801
802 /* txgain table */
803 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
804 INIT_INI_ARRAY(&ah->iniModesTxGain,
805 ar9285Modes_high_power_tx_gain_9285_1_2,
806 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
807 } else {
808 INIT_INI_ARRAY(&ah->iniModesTxGain,
809 ar9285Modes_original_tx_gain_9285_1_2,
810 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
811 }
812
813 }
814 }
815
816 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
817 {
818 u32 i, j;
819
820 if (ah->hw_version.devid == AR9280_DEVID_PCI) {
821
822 /* EEPROM Fixup */
823 for (i = 0; i < ah->iniModes.ia_rows; i++) {
824 u32 reg = INI_RA(&ah->iniModes, i, 0);
825
826 for (j = 1; j < ah->iniModes.ia_columns; j++) {
827 u32 val = INI_RA(&ah->iniModes, i, j);
828
829 INI_RA(&ah->iniModes, i, j) =
830 ath9k_hw_ini_fixup(ah,
831 &ah->eeprom.def,
832 reg, val);
833 }
834 }
835 }
836 }
837
838 int ath9k_hw_init(struct ath_hw *ah)
839 {
840 struct ath_common *common = ath9k_hw_common(ah);
841 int r = 0;
842
843 if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
844 ath_print(common, ATH_DBG_FATAL,
845 "Unsupported device ID: 0x%0x\n",
846 ah->hw_version.devid);
847 return -EOPNOTSUPP;
848 }
849
850 ath9k_hw_init_defaults(ah);
851 ath9k_hw_init_config(ah);
852
853 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
854 ath_print(common, ATH_DBG_FATAL,
855 "Couldn't reset chip\n");
856 return -EIO;
857 }
858
859 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
860 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
861 return -EIO;
862 }
863
864 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
865 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
866 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
867 ah->config.serialize_regmode =
868 SER_REG_MODE_ON;
869 } else {
870 ah->config.serialize_regmode =
871 SER_REG_MODE_OFF;
872 }
873 }
874
875 ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
876 ah->config.serialize_regmode);
877
878 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
879 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
880 else
881 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
882
883 if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
884 ath_print(common, ATH_DBG_FATAL,
885 "Mac Chip Rev 0x%02x.%x is not supported by "
886 "this driver\n", ah->hw_version.macVersion,
887 ah->hw_version.macRev);
888 return -EOPNOTSUPP;
889 }
890
891 if (AR_SREV_9100(ah)) {
892 ah->iq_caldata.calData = &iq_cal_multi_sample;
893 ah->supp_cals = IQ_MISMATCH_CAL;
894 ah->is_pciexpress = false;
895 }
896
897 if (AR_SREV_9271(ah))
898 ah->is_pciexpress = false;
899
900 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
901
902 ath9k_hw_init_cal_settings(ah);
903
904 ah->ani_function = ATH9K_ANI_ALL;
905 if (AR_SREV_9280_10_OR_LATER(ah)) {
906 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
907 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
908 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
909 } else {
910 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
911 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
912 }
913
914 ath9k_hw_init_mode_regs(ah);
915
916 if (ah->is_pciexpress)
917 ath9k_hw_configpcipowersave(ah, 0, 0);
918 else
919 ath9k_hw_disablepcie(ah);
920
921 /* Support for Japan ch.14 (2484) spread */
922 if (AR_SREV_9287_11_OR_LATER(ah)) {
923 INIT_INI_ARRAY(&ah->iniCckfirNormal,
924 ar9287Common_normal_cck_fir_coeff_92871_1,
925 ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
926 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
927 ar9287Common_japan_2484_cck_fir_coeff_92871_1,
928 ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
929 }
930
931 r = ath9k_hw_post_init(ah);
932 if (r)
933 return r;
934
935 ath9k_hw_init_mode_gain_regs(ah);
936 r = ath9k_hw_fill_cap_info(ah);
937 if (r)
938 return r;
939
940 ath9k_hw_init_eeprom_fix(ah);
941
942 r = ath9k_hw_init_macaddr(ah);
943 if (r) {
944 ath_print(common, ATH_DBG_FATAL,
945 "Failed to initialize MAC address\n");
946 return r;
947 }
948
949 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
950 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
951 else
952 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
953
954 ath9k_init_nfcal_hist_buffer(ah);
955
956 common->state = ATH_HW_INITIALIZED;
957
958 return 0;
959 }
960
961 static void ath9k_hw_init_bb(struct ath_hw *ah,
962 struct ath9k_channel *chan)
963 {
964 u32 synthDelay;
965
966 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
967 if (IS_CHAN_B(chan))
968 synthDelay = (4 * synthDelay) / 22;
969 else
970 synthDelay /= 10;
971
972 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
973
974 udelay(synthDelay + BASE_ACTIVATE_DELAY);
975 }
976
977 static void ath9k_hw_init_qos(struct ath_hw *ah)
978 {
979 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
980 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
981
982 REG_WRITE(ah, AR_QOS_NO_ACK,
983 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
984 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
985 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
986
987 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
988 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
989 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
990 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
991 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
992 }
993
994 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
995 {
996 u32 lcr;
997 u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
998
999 lcr = REG_READ(ah , 0x5100c);
1000 lcr |= 0x80;
1001
1002 REG_WRITE(ah, 0x5100c, lcr);
1003 REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1004 REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1005
1006 lcr &= ~0x80;
1007 REG_WRITE(ah, 0x5100c, lcr);
1008 }
1009
1010 static void ath9k_hw_init_pll(struct ath_hw *ah,
1011 struct ath9k_channel *chan)
1012 {
1013 u32 pll;
1014
1015 if (AR_SREV_9100(ah)) {
1016 if (chan && IS_CHAN_5GHZ(chan))
1017 pll = 0x1450;
1018 else
1019 pll = 0x1458;
1020 } else {
1021 if (AR_SREV_9280_10_OR_LATER(ah)) {
1022 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1023
1024 if (chan && IS_CHAN_HALF_RATE(chan))
1025 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1026 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1027 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1028
1029 if (chan && IS_CHAN_5GHZ(chan)) {
1030 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1031
1032
1033 if (AR_SREV_9280_20(ah)) {
1034 if (((chan->channel % 20) == 0)
1035 || ((chan->channel % 10) == 0))
1036 pll = 0x2850;
1037 else
1038 pll = 0x142c;
1039 }
1040 } else {
1041 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1042 }
1043
1044 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1045
1046 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1047
1048 if (chan && IS_CHAN_HALF_RATE(chan))
1049 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1050 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1051 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1052
1053 if (chan && IS_CHAN_5GHZ(chan))
1054 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1055 else
1056 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1057 } else {
1058 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1059
1060 if (chan && IS_CHAN_HALF_RATE(chan))
1061 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1062 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1063 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1064
1065 if (chan && IS_CHAN_5GHZ(chan))
1066 pll |= SM(0xa, AR_RTC_PLL_DIV);
1067 else
1068 pll |= SM(0xb, AR_RTC_PLL_DIV);
1069 }
1070 }
1071 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1072
1073 /* Switch the core clock for ar9271 to 117Mhz */
1074 if (AR_SREV_9271(ah)) {
1075 if ((pll == 0x142c) || (pll == 0x2850) ) {
1076 udelay(500);
1077 /* set CLKOBS to output AHB clock */
1078 REG_WRITE(ah, 0x7020, 0xe);
1079 /*
1080 * 0x304: 117Mhz, ahb_ratio: 1x1
1081 * 0x306: 40Mhz, ahb_ratio: 1x1
1082 */
1083 REG_WRITE(ah, 0x50040, 0x304);
1084 /*
1085 * makes adjustments for the baud dividor to keep the
1086 * targetted baud rate based on the used core clock.
1087 */
1088 ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1089 AR9271_TARGET_BAUD_RATE);
1090 }
1091 }
1092
1093 udelay(RTC_PLL_SETTLE_DELAY);
1094
1095 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1096 }
1097
1098 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1099 {
1100 int rx_chainmask, tx_chainmask;
1101
1102 rx_chainmask = ah->rxchainmask;
1103 tx_chainmask = ah->txchainmask;
1104
1105 switch (rx_chainmask) {
1106 case 0x5:
1107 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1108 AR_PHY_SWAP_ALT_CHAIN);
1109 case 0x3:
1110 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1111 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1112 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1113 break;
1114 }
1115 case 0x1:
1116 case 0x2:
1117 case 0x7:
1118 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1119 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1120 break;
1121 default:
1122 break;
1123 }
1124
1125 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1126 if (tx_chainmask == 0x5) {
1127 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1128 AR_PHY_SWAP_ALT_CHAIN);
1129 }
1130 if (AR_SREV_9100(ah))
1131 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1132 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1133 }
1134
1135 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1136 enum nl80211_iftype opmode)
1137 {
1138 ah->mask_reg = AR_IMR_TXERR |
1139 AR_IMR_TXURN |
1140 AR_IMR_RXERR |
1141 AR_IMR_RXORN |
1142 AR_IMR_BCNMISC;
1143
1144 if (ah->config.rx_intr_mitigation)
1145 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1146 else
1147 ah->mask_reg |= AR_IMR_RXOK;
1148
1149 ah->mask_reg |= AR_IMR_TXOK;
1150
1151 if (opmode == NL80211_IFTYPE_AP)
1152 ah->mask_reg |= AR_IMR_MIB;
1153
1154 REG_WRITE(ah, AR_IMR, ah->mask_reg);
1155 REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1156
1157 if (!AR_SREV_9100(ah)) {
1158 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1159 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1160 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1161 }
1162 }
1163
1164 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1165 {
1166 u32 val = ath9k_hw_mac_to_clks(ah, us);
1167 val = min(val, (u32) 0xFFFF);
1168 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1169 }
1170
1171 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1172 {
1173 u32 val = ath9k_hw_mac_to_clks(ah, us);
1174 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1175 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1176 }
1177
1178 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1179 {
1180 u32 val = ath9k_hw_mac_to_clks(ah, us);
1181 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1182 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1183 }
1184
1185 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1186 {
1187 if (tu > 0xFFFF) {
1188 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1189 "bad global tx timeout %u\n", tu);
1190 ah->globaltxtimeout = (u32) -1;
1191 return false;
1192 } else {
1193 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1194 ah->globaltxtimeout = tu;
1195 return true;
1196 }
1197 }
1198
1199 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1200 {
1201 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1202 int acktimeout;
1203 int slottime;
1204 int sifstime;
1205
1206 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1207 ah->misc_mode);
1208
1209 if (ah->misc_mode != 0)
1210 REG_WRITE(ah, AR_PCU_MISC,
1211 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1212
1213 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1214 sifstime = 16;
1215 else
1216 sifstime = 10;
1217
1218 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1219 slottime = ah->slottime + 3 * ah->coverage_class;
1220 acktimeout = slottime + sifstime;
1221
1222 /*
1223 * Workaround for early ACK timeouts, add an offset to match the
1224 * initval's 64us ack timeout value.
1225 * This was initially only meant to work around an issue with delayed
1226 * BA frames in some implementations, but it has been found to fix ACK
1227 * timeout issues in other cases as well.
1228 */
1229 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1230 acktimeout += 64 - sifstime - ah->slottime;
1231
1232 ath9k_hw_setslottime(ah, slottime);
1233 ath9k_hw_set_ack_timeout(ah, acktimeout);
1234 ath9k_hw_set_cts_timeout(ah, acktimeout);
1235 if (ah->globaltxtimeout != (u32) -1)
1236 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1237 }
1238 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1239
1240 void ath9k_hw_deinit(struct ath_hw *ah)
1241 {
1242 struct ath_common *common = ath9k_hw_common(ah);
1243
1244 if (common->state <= ATH_HW_INITIALIZED)
1245 goto free_hw;
1246
1247 if (!AR_SREV_9100(ah))
1248 ath9k_hw_ani_disable(ah);
1249
1250 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1251
1252 free_hw:
1253 if (!AR_SREV_9280_10_OR_LATER(ah))
1254 ath9k_hw_rf_free_ext_banks(ah);
1255 kfree(ah);
1256 ah = NULL;
1257 }
1258 EXPORT_SYMBOL(ath9k_hw_deinit);
1259
1260 /*******/
1261 /* INI */
1262 /*******/
1263
1264 static void ath9k_hw_override_ini(struct ath_hw *ah,
1265 struct ath9k_channel *chan)
1266 {
1267 u32 val;
1268
1269 if (AR_SREV_9271(ah)) {
1270 /*
1271 * Enable spectral scan to solution for issues with stuck
1272 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1273 * AR9271 1.1
1274 */
1275 if (AR_SREV_9271_10(ah)) {
1276 val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1277 AR_PHY_SPECTRAL_SCAN_ENABLE;
1278 REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1279 }
1280 else if (AR_SREV_9271_11(ah))
1281 /*
1282 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1283 * present on AR9271 1.1
1284 */
1285 REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1286 return;
1287 }
1288
1289 /*
1290 * Set the RX_ABORT and RX_DIS and clear if off only after
1291 * RXE is set for MAC. This prevents frames with corrupted
1292 * descriptor status.
1293 */
1294 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1295
1296 if (AR_SREV_9280_10_OR_LATER(ah)) {
1297 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1298 (~AR_PCU_MISC_MODE2_HWWAR1);
1299
1300 if (AR_SREV_9287_10_OR_LATER(ah))
1301 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1302
1303 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1304 }
1305
1306 if (!AR_SREV_5416_20_OR_LATER(ah) ||
1307 AR_SREV_9280_10_OR_LATER(ah))
1308 return;
1309 /*
1310 * Disable BB clock gating
1311 * Necessary to avoid issues on AR5416 2.0
1312 */
1313 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1314
1315 /*
1316 * Disable RIFS search on some chips to avoid baseband
1317 * hang issues.
1318 */
1319 if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
1320 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
1321 val &= ~AR_PHY_RIFS_INIT_DELAY;
1322 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
1323 }
1324 }
1325
1326 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1327 struct ar5416_eeprom_def *pEepData,
1328 u32 reg, u32 value)
1329 {
1330 struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1331 struct ath_common *common = ath9k_hw_common(ah);
1332
1333 switch (ah->hw_version.devid) {
1334 case AR9280_DEVID_PCI:
1335 if (reg == 0x7894) {
1336 ath_print(common, ATH_DBG_EEPROM,
1337 "ini VAL: %x EEPROM: %x\n", value,
1338 (pBase->version & 0xff));
1339
1340 if ((pBase->version & 0xff) > 0x0a) {
1341 ath_print(common, ATH_DBG_EEPROM,
1342 "PWDCLKIND: %d\n",
1343 pBase->pwdclkind);
1344 value &= ~AR_AN_TOP2_PWDCLKIND;
1345 value |= AR_AN_TOP2_PWDCLKIND &
1346 (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1347 } else {
1348 ath_print(common, ATH_DBG_EEPROM,
1349 "PWDCLKIND Earlier Rev\n");
1350 }
1351
1352 ath_print(common, ATH_DBG_EEPROM,
1353 "final ini VAL: %x\n", value);
1354 }
1355 break;
1356 }
1357
1358 return value;
1359 }
1360
1361 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1362 struct ar5416_eeprom_def *pEepData,
1363 u32 reg, u32 value)
1364 {
1365 if (ah->eep_map == EEP_MAP_4KBITS)
1366 return value;
1367 else
1368 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1369 }
1370
1371 static void ath9k_olc_init(struct ath_hw *ah)
1372 {
1373 u32 i;
1374
1375 if (OLC_FOR_AR9287_10_LATER) {
1376 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1377 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1378 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1379 AR9287_AN_TXPC0_TXPCMODE,
1380 AR9287_AN_TXPC0_TXPCMODE_S,
1381 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1382 udelay(100);
1383 } else {
1384 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1385 ah->originalGain[i] =
1386 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1387 AR_PHY_TX_GAIN);
1388 ah->PDADCdelta = 0;
1389 }
1390 }
1391
1392 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1393 struct ath9k_channel *chan)
1394 {
1395 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1396
1397 if (IS_CHAN_B(chan))
1398 ctl |= CTL_11B;
1399 else if (IS_CHAN_G(chan))
1400 ctl |= CTL_11G;
1401 else
1402 ctl |= CTL_11A;
1403
1404 return ctl;
1405 }
1406
1407 static int ath9k_hw_process_ini(struct ath_hw *ah,
1408 struct ath9k_channel *chan)
1409 {
1410 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1411 int i, regWrites = 0;
1412 struct ieee80211_channel *channel = chan->chan;
1413 u32 modesIndex, freqIndex;
1414
1415 switch (chan->chanmode) {
1416 case CHANNEL_A:
1417 case CHANNEL_A_HT20:
1418 modesIndex = 1;
1419 freqIndex = 1;
1420 break;
1421 case CHANNEL_A_HT40PLUS:
1422 case CHANNEL_A_HT40MINUS:
1423 modesIndex = 2;
1424 freqIndex = 1;
1425 break;
1426 case CHANNEL_G:
1427 case CHANNEL_G_HT20:
1428 case CHANNEL_B:
1429 modesIndex = 4;
1430 freqIndex = 2;
1431 break;
1432 case CHANNEL_G_HT40PLUS:
1433 case CHANNEL_G_HT40MINUS:
1434 modesIndex = 3;
1435 freqIndex = 2;
1436 break;
1437
1438 default:
1439 return -EINVAL;
1440 }
1441
1442 REG_WRITE(ah, AR_PHY(0), 0x00000007);
1443 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1444 ah->eep_ops->set_addac(ah, chan);
1445
1446 if (AR_SREV_5416_22_OR_LATER(ah)) {
1447 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1448 } else {
1449 struct ar5416IniArray temp;
1450 u32 addacSize =
1451 sizeof(u32) * ah->iniAddac.ia_rows *
1452 ah->iniAddac.ia_columns;
1453
1454 memcpy(ah->addac5416_21,
1455 ah->iniAddac.ia_array, addacSize);
1456
1457 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1458
1459 temp.ia_array = ah->addac5416_21;
1460 temp.ia_columns = ah->iniAddac.ia_columns;
1461 temp.ia_rows = ah->iniAddac.ia_rows;
1462 REG_WRITE_ARRAY(&temp, 1, regWrites);
1463 }
1464
1465 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1466
1467 for (i = 0; i < ah->iniModes.ia_rows; i++) {
1468 u32 reg = INI_RA(&ah->iniModes, i, 0);
1469 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1470
1471 REG_WRITE(ah, reg, val);
1472
1473 if (reg >= 0x7800 && reg < 0x78a0
1474 && ah->config.analog_shiftreg) {
1475 udelay(100);
1476 }
1477
1478 DO_DELAY(regWrites);
1479 }
1480
1481 if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1482 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1483
1484 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1485 AR_SREV_9287_10_OR_LATER(ah))
1486 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1487
1488 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1489 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1490 u32 val = INI_RA(&ah->iniCommon, i, 1);
1491
1492 REG_WRITE(ah, reg, val);
1493
1494 if (reg >= 0x7800 && reg < 0x78a0
1495 && ah->config.analog_shiftreg) {
1496 udelay(100);
1497 }
1498
1499 DO_DELAY(regWrites);
1500 }
1501
1502 ath9k_hw_write_regs(ah, freqIndex, regWrites);
1503
1504 if (AR_SREV_9271_10(ah))
1505 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1506 modesIndex, regWrites);
1507
1508 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1509 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1510 regWrites);
1511 }
1512
1513 ath9k_hw_override_ini(ah, chan);
1514 ath9k_hw_set_regs(ah, chan);
1515 ath9k_hw_init_chain_masks(ah);
1516
1517 if (OLC_FOR_AR9280_20_LATER)
1518 ath9k_olc_init(ah);
1519
1520 ah->eep_ops->set_txpower(ah, chan,
1521 ath9k_regd_get_ctl(regulatory, chan),
1522 channel->max_antenna_gain * 2,
1523 channel->max_power * 2,
1524 min((u32) MAX_RATE_POWER,
1525 (u32) regulatory->power_limit));
1526
1527 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1528 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1529 "ar5416SetRfRegs failed\n");
1530 return -EIO;
1531 }
1532
1533 return 0;
1534 }
1535
1536 /****************************************/
1537 /* Reset and Channel Switching Routines */
1538 /****************************************/
1539
1540 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1541 {
1542 u32 rfMode = 0;
1543
1544 if (chan == NULL)
1545 return;
1546
1547 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1548 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1549
1550 if (!AR_SREV_9280_10_OR_LATER(ah))
1551 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1552 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1553
1554 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1555 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1556
1557 REG_WRITE(ah, AR_PHY_MODE, rfMode);
1558 }
1559
1560 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1561 {
1562 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1563 }
1564
1565 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1566 {
1567 u32 regval;
1568
1569 /*
1570 * set AHB_MODE not to do cacheline prefetches
1571 */
1572 regval = REG_READ(ah, AR_AHB_MODE);
1573 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1574
1575 /*
1576 * let mac dma reads be in 128 byte chunks
1577 */
1578 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1579 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1580
1581 /*
1582 * Restore TX Trigger Level to its pre-reset value.
1583 * The initial value depends on whether aggregation is enabled, and is
1584 * adjusted whenever underruns are detected.
1585 */
1586 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1587
1588 /*
1589 * let mac dma writes be in 128 byte chunks
1590 */
1591 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1592 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1593
1594 /*
1595 * Setup receive FIFO threshold to hold off TX activities
1596 */
1597 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1598
1599 /*
1600 * reduce the number of usable entries in PCU TXBUF to avoid
1601 * wrap around issues.
1602 */
1603 if (AR_SREV_9285(ah)) {
1604 /* For AR9285 the number of Fifos are reduced to half.
1605 * So set the usable tx buf size also to half to
1606 * avoid data/delimiter underruns
1607 */
1608 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1609 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1610 } else if (!AR_SREV_9271(ah)) {
1611 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1612 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1613 }
1614 }
1615
1616 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1617 {
1618 u32 val;
1619
1620 val = REG_READ(ah, AR_STA_ID1);
1621 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1622 switch (opmode) {
1623 case NL80211_IFTYPE_AP:
1624 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1625 | AR_STA_ID1_KSRCH_MODE);
1626 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1627 break;
1628 case NL80211_IFTYPE_ADHOC:
1629 case NL80211_IFTYPE_MESH_POINT:
1630 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1631 | AR_STA_ID1_KSRCH_MODE);
1632 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1633 break;
1634 case NL80211_IFTYPE_STATION:
1635 case NL80211_IFTYPE_MONITOR:
1636 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1637 break;
1638 }
1639 }
1640
1641 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1642 u32 coef_scaled,
1643 u32 *coef_mantissa,
1644 u32 *coef_exponent)
1645 {
1646 u32 coef_exp, coef_man;
1647
1648 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1649 if ((coef_scaled >> coef_exp) & 0x1)
1650 break;
1651
1652 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1653
1654 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1655
1656 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1657 *coef_exponent = coef_exp - 16;
1658 }
1659
1660 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1661 struct ath9k_channel *chan)
1662 {
1663 u32 coef_scaled, ds_coef_exp, ds_coef_man;
1664 u32 clockMhzScaled = 0x64000000;
1665 struct chan_centers centers;
1666
1667 if (IS_CHAN_HALF_RATE(chan))
1668 clockMhzScaled = clockMhzScaled >> 1;
1669 else if (IS_CHAN_QUARTER_RATE(chan))
1670 clockMhzScaled = clockMhzScaled >> 2;
1671
1672 ath9k_hw_get_channel_centers(ah, chan, &centers);
1673 coef_scaled = clockMhzScaled / centers.synth_center;
1674
1675 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1676 &ds_coef_exp);
1677
1678 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1679 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1680 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1681 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1682
1683 coef_scaled = (9 * coef_scaled) / 10;
1684
1685 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1686 &ds_coef_exp);
1687
1688 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1689 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1690 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1691 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1692 }
1693
1694 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1695 {
1696 u32 rst_flags;
1697 u32 tmpReg;
1698
1699 if (AR_SREV_9100(ah)) {
1700 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1701 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1702 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1703 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1704 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1705 }
1706
1707 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1708 AR_RTC_FORCE_WAKE_ON_INT);
1709
1710 if (AR_SREV_9100(ah)) {
1711 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1712 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1713 } else {
1714 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1715 if (tmpReg &
1716 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1717 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1718 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1719 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1720 } else {
1721 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1722 }
1723
1724 rst_flags = AR_RTC_RC_MAC_WARM;
1725 if (type == ATH9K_RESET_COLD)
1726 rst_flags |= AR_RTC_RC_MAC_COLD;
1727 }
1728
1729 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1730 udelay(50);
1731
1732 REG_WRITE(ah, AR_RTC_RC, 0);
1733 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1734 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1735 "RTC stuck in MAC reset\n");
1736 return false;
1737 }
1738
1739 if (!AR_SREV_9100(ah))
1740 REG_WRITE(ah, AR_RC, 0);
1741
1742 if (AR_SREV_9100(ah))
1743 udelay(50);
1744
1745 return true;
1746 }
1747
1748 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1749 {
1750 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1751 AR_RTC_FORCE_WAKE_ON_INT);
1752
1753 if (!AR_SREV_9100(ah))
1754 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1755
1756 REG_WRITE(ah, AR_RTC_RESET, 0);
1757 udelay(2);
1758
1759 if (!AR_SREV_9100(ah))
1760 REG_WRITE(ah, AR_RC, 0);
1761
1762 REG_WRITE(ah, AR_RTC_RESET, 1);
1763
1764 if (!ath9k_hw_wait(ah,
1765 AR_RTC_STATUS,
1766 AR_RTC_STATUS_M,
1767 AR_RTC_STATUS_ON,
1768 AH_WAIT_TIMEOUT)) {
1769 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1770 "RTC not waking up\n");
1771 return false;
1772 }
1773
1774 ath9k_hw_read_revisions(ah);
1775
1776 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1777 }
1778
1779 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1780 {
1781 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1782 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1783
1784 switch (type) {
1785 case ATH9K_RESET_POWER_ON:
1786 return ath9k_hw_set_reset_power_on(ah);
1787 case ATH9K_RESET_WARM:
1788 case ATH9K_RESET_COLD:
1789 return ath9k_hw_set_reset(ah, type);
1790 default:
1791 return false;
1792 }
1793 }
1794
1795 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1796 {
1797 u32 phymode;
1798 u32 enableDacFifo = 0;
1799
1800 if (AR_SREV_9285_10_OR_LATER(ah))
1801 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1802 AR_PHY_FC_ENABLE_DAC_FIFO);
1803
1804 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1805 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1806
1807 if (IS_CHAN_HT40(chan)) {
1808 phymode |= AR_PHY_FC_DYN2040_EN;
1809
1810 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1811 (chan->chanmode == CHANNEL_G_HT40PLUS))
1812 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1813
1814 }
1815 REG_WRITE(ah, AR_PHY_TURBO, phymode);
1816
1817 ath9k_hw_set11nmac2040(ah);
1818
1819 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1820 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1821 }
1822
1823 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1824 struct ath9k_channel *chan)
1825 {
1826 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1827 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1828 return false;
1829 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1830 return false;
1831
1832 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1833 return false;
1834
1835 ah->chip_fullsleep = false;
1836 ath9k_hw_init_pll(ah, chan);
1837 ath9k_hw_set_rfmode(ah, chan);
1838
1839 return true;
1840 }
1841
1842 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1843 struct ath9k_channel *chan)
1844 {
1845 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1846 struct ath_common *common = ath9k_hw_common(ah);
1847 struct ieee80211_channel *channel = chan->chan;
1848 u32 synthDelay, qnum;
1849 int r;
1850
1851 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1852 if (ath9k_hw_numtxpending(ah, qnum)) {
1853 ath_print(common, ATH_DBG_QUEUE,
1854 "Transmit frames pending on "
1855 "queue %d\n", qnum);
1856 return false;
1857 }
1858 }
1859
1860 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1861 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1862 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1863 ath_print(common, ATH_DBG_FATAL,
1864 "Could not kill baseband RX\n");
1865 return false;
1866 }
1867
1868 ath9k_hw_set_regs(ah, chan);
1869
1870 r = ah->ath9k_hw_rf_set_freq(ah, chan);
1871 if (r) {
1872 ath_print(common, ATH_DBG_FATAL,
1873 "Failed to set channel\n");
1874 return false;
1875 }
1876
1877 ah->eep_ops->set_txpower(ah, chan,
1878 ath9k_regd_get_ctl(regulatory, chan),
1879 channel->max_antenna_gain * 2,
1880 channel->max_power * 2,
1881 min((u32) MAX_RATE_POWER,
1882 (u32) regulatory->power_limit));
1883
1884 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1885 if (IS_CHAN_B(chan))
1886 synthDelay = (4 * synthDelay) / 22;
1887 else
1888 synthDelay /= 10;
1889
1890 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1891
1892 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1893
1894 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1895 ath9k_hw_set_delta_slope(ah, chan);
1896
1897 ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1898
1899 if (!chan->oneTimeCalsDone)
1900 chan->oneTimeCalsDone = true;
1901
1902 return true;
1903 }
1904
1905 static void ath9k_enable_rfkill(struct ath_hw *ah)
1906 {
1907 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1908 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1909
1910 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1911 AR_GPIO_INPUT_MUX2_RFSILENT);
1912
1913 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1914 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1915 }
1916
1917 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1918 bool bChannelChange)
1919 {
1920 struct ath_common *common = ath9k_hw_common(ah);
1921 u32 saveLedState;
1922 struct ath9k_channel *curchan = ah->curchan;
1923 u32 saveDefAntenna;
1924 u32 macStaId1;
1925 u64 tsf = 0;
1926 int i, rx_chainmask, r;
1927
1928 ah->txchainmask = common->tx_chainmask;
1929 ah->rxchainmask = common->rx_chainmask;
1930
1931 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1932 return -EIO;
1933
1934 if (curchan && !ah->chip_fullsleep)
1935 ath9k_hw_getnf(ah, curchan);
1936
1937 if (bChannelChange &&
1938 (ah->chip_fullsleep != true) &&
1939 (ah->curchan != NULL) &&
1940 (chan->channel != ah->curchan->channel) &&
1941 ((chan->channelFlags & CHANNEL_ALL) ==
1942 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1943 !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1944 IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1945
1946 if (ath9k_hw_channel_change(ah, chan)) {
1947 ath9k_hw_loadnf(ah, ah->curchan);
1948 ath9k_hw_start_nfcal(ah);
1949 return 0;
1950 }
1951 }
1952
1953 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1954 if (saveDefAntenna == 0)
1955 saveDefAntenna = 1;
1956
1957 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1958
1959 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1960 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1961 tsf = ath9k_hw_gettsf64(ah);
1962
1963 saveLedState = REG_READ(ah, AR_CFG_LED) &
1964 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1965 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1966
1967 ath9k_hw_mark_phy_inactive(ah);
1968
1969 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1970 REG_WRITE(ah,
1971 AR9271_RESET_POWER_DOWN_CONTROL,
1972 AR9271_RADIO_RF_RST);
1973 udelay(50);
1974 }
1975
1976 if (!ath9k_hw_chip_reset(ah, chan)) {
1977 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1978 return -EINVAL;
1979 }
1980
1981 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1982 ah->htc_reset_init = false;
1983 REG_WRITE(ah,
1984 AR9271_RESET_POWER_DOWN_CONTROL,
1985 AR9271_GATE_MAC_CTL);
1986 udelay(50);
1987 }
1988
1989 /* Restore TSF */
1990 if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1991 ath9k_hw_settsf64(ah, tsf);
1992
1993 if (AR_SREV_9280_10_OR_LATER(ah))
1994 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1995
1996 if (AR_SREV_9287_12_OR_LATER(ah)) {
1997 /* Enable ASYNC FIFO */
1998 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1999 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2000 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2001 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2002 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2003 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2004 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2005 }
2006 r = ath9k_hw_process_ini(ah, chan);
2007 if (r)
2008 return r;
2009
2010 /* Setup MFP options for CCMP */
2011 if (AR_SREV_9280_20_OR_LATER(ah)) {
2012 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2013 * frames when constructing CCMP AAD. */
2014 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2015 0xc7ff);
2016 ah->sw_mgmt_crypto = false;
2017 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2018 /* Disable hardware crypto for management frames */
2019 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2020 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2021 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2022 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2023 ah->sw_mgmt_crypto = true;
2024 } else
2025 ah->sw_mgmt_crypto = true;
2026
2027 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2028 ath9k_hw_set_delta_slope(ah, chan);
2029
2030 ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2031 ah->eep_ops->set_board_values(ah, chan);
2032
2033 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2034 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2035 | macStaId1
2036 | AR_STA_ID1_RTS_USE_DEF
2037 | (ah->config.
2038 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2039 | ah->sta_id1_defaults);
2040 ath9k_hw_set_operating_mode(ah, ah->opmode);
2041
2042 ath_hw_setbssidmask(common);
2043
2044 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2045
2046 ath9k_hw_write_associd(ah);
2047
2048 REG_WRITE(ah, AR_ISR, ~0);
2049
2050 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2051
2052 r = ah->ath9k_hw_rf_set_freq(ah, chan);
2053 if (r)
2054 return r;
2055
2056 for (i = 0; i < AR_NUM_DCU; i++)
2057 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2058
2059 ah->intr_txqs = 0;
2060 for (i = 0; i < ah->caps.total_queues; i++)
2061 ath9k_hw_resettxqueue(ah, i);
2062
2063 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2064 ath9k_hw_init_qos(ah);
2065
2066 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2067 ath9k_enable_rfkill(ah);
2068
2069 ath9k_hw_init_global_settings(ah);
2070
2071 if (AR_SREV_9287_12_OR_LATER(ah)) {
2072 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2073 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2074 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2075 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2076 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2077 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2078
2079 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2080 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2081
2082 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2083 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2084 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2085 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2086 }
2087 if (AR_SREV_9287_12_OR_LATER(ah)) {
2088 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2089 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2090 }
2091
2092 REG_WRITE(ah, AR_STA_ID1,
2093 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2094
2095 ath9k_hw_set_dma(ah);
2096
2097 REG_WRITE(ah, AR_OBS, 8);
2098
2099 if (ah->config.rx_intr_mitigation) {
2100 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2101 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2102 }
2103
2104 ath9k_hw_init_bb(ah, chan);
2105
2106 if (!ath9k_hw_init_cal(ah, chan))
2107 return -EIO;
2108
2109 rx_chainmask = ah->rxchainmask;
2110 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2111 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2112 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2113 }
2114
2115 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2116
2117 /*
2118 * For big endian systems turn on swapping for descriptors
2119 */
2120 if (AR_SREV_9100(ah)) {
2121 u32 mask;
2122 mask = REG_READ(ah, AR_CFG);
2123 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2124 ath_print(common, ATH_DBG_RESET,
2125 "CFG Byte Swap Set 0x%x\n", mask);
2126 } else {
2127 mask =
2128 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2129 REG_WRITE(ah, AR_CFG, mask);
2130 ath_print(common, ATH_DBG_RESET,
2131 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2132 }
2133 } else {
2134 /* Configure AR9271 target WLAN */
2135 if (AR_SREV_9271(ah))
2136 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2137 #ifdef __BIG_ENDIAN
2138 else
2139 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2140 #endif
2141 }
2142
2143 if (ah->btcoex_hw.enabled)
2144 ath9k_hw_btcoex_enable(ah);
2145
2146 return 0;
2147 }
2148 EXPORT_SYMBOL(ath9k_hw_reset);
2149
2150 /************************/
2151 /* Key Cache Management */
2152 /************************/
2153
2154 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2155 {
2156 u32 keyType;
2157
2158 if (entry >= ah->caps.keycache_size) {
2159 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2160 "keychache entry %u out of range\n", entry);
2161 return false;
2162 }
2163
2164 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2165
2166 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2167 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2168 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2169 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2170 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2171 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2172 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2173 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2174
2175 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2176 u16 micentry = entry + 64;
2177
2178 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2179 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2180 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2181 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2182
2183 }
2184
2185 return true;
2186 }
2187 EXPORT_SYMBOL(ath9k_hw_keyreset);
2188
2189 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2190 {
2191 u32 macHi, macLo;
2192
2193 if (entry >= ah->caps.keycache_size) {
2194 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2195 "keychache entry %u out of range\n", entry);
2196 return false;
2197 }
2198
2199 if (mac != NULL) {
2200 macHi = (mac[5] << 8) | mac[4];
2201 macLo = (mac[3] << 24) |
2202 (mac[2] << 16) |
2203 (mac[1] << 8) |
2204 mac[0];
2205 macLo >>= 1;
2206 macLo |= (macHi & 1) << 31;
2207 macHi >>= 1;
2208 } else {
2209 macLo = macHi = 0;
2210 }
2211 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2212 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2213
2214 return true;
2215 }
2216 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2217
2218 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2219 const struct ath9k_keyval *k,
2220 const u8 *mac)
2221 {
2222 const struct ath9k_hw_capabilities *pCap = &ah->caps;
2223 struct ath_common *common = ath9k_hw_common(ah);
2224 u32 key0, key1, key2, key3, key4;
2225 u32 keyType;
2226
2227 if (entry >= pCap->keycache_size) {
2228 ath_print(common, ATH_DBG_FATAL,
2229 "keycache entry %u out of range\n", entry);
2230 return false;
2231 }
2232
2233 switch (k->kv_type) {
2234 case ATH9K_CIPHER_AES_OCB:
2235 keyType = AR_KEYTABLE_TYPE_AES;
2236 break;
2237 case ATH9K_CIPHER_AES_CCM:
2238 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2239 ath_print(common, ATH_DBG_ANY,
2240 "AES-CCM not supported by mac rev 0x%x\n",
2241 ah->hw_version.macRev);
2242 return false;
2243 }
2244 keyType = AR_KEYTABLE_TYPE_CCM;
2245 break;
2246 case ATH9K_CIPHER_TKIP:
2247 keyType = AR_KEYTABLE_TYPE_TKIP;
2248 if (ATH9K_IS_MIC_ENABLED(ah)
2249 && entry + 64 >= pCap->keycache_size) {
2250 ath_print(common, ATH_DBG_ANY,
2251 "entry %u inappropriate for TKIP\n", entry);
2252 return false;
2253 }
2254 break;
2255 case ATH9K_CIPHER_WEP:
2256 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2257 ath_print(common, ATH_DBG_ANY,
2258 "WEP key length %u too small\n", k->kv_len);
2259 return false;
2260 }
2261 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2262 keyType = AR_KEYTABLE_TYPE_40;
2263 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2264 keyType = AR_KEYTABLE_TYPE_104;
2265 else
2266 keyType = AR_KEYTABLE_TYPE_128;
2267 break;
2268 case ATH9K_CIPHER_CLR:
2269 keyType = AR_KEYTABLE_TYPE_CLR;
2270 break;
2271 default:
2272 ath_print(common, ATH_DBG_FATAL,
2273 "cipher %u not supported\n", k->kv_type);
2274 return false;
2275 }
2276
2277 key0 = get_unaligned_le32(k->kv_val + 0);
2278 key1 = get_unaligned_le16(k->kv_val + 4);
2279 key2 = get_unaligned_le32(k->kv_val + 6);
2280 key3 = get_unaligned_le16(k->kv_val + 10);
2281 key4 = get_unaligned_le32(k->kv_val + 12);
2282 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2283 key4 &= 0xff;
2284
2285 /*
2286 * Note: Key cache registers access special memory area that requires
2287 * two 32-bit writes to actually update the values in the internal
2288 * memory. Consequently, the exact order and pairs used here must be
2289 * maintained.
2290 */
2291
2292 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2293 u16 micentry = entry + 64;
2294
2295 /*
2296 * Write inverted key[47:0] first to avoid Michael MIC errors
2297 * on frames that could be sent or received at the same time.
2298 * The correct key will be written in the end once everything
2299 * else is ready.
2300 */
2301 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2302 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2303
2304 /* Write key[95:48] */
2305 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2306 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2307
2308 /* Write key[127:96] and key type */
2309 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2310 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2311
2312 /* Write MAC address for the entry */
2313 (void) ath9k_hw_keysetmac(ah, entry, mac);
2314
2315 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2316 /*
2317 * TKIP uses two key cache entries:
2318 * Michael MIC TX/RX keys in the same key cache entry
2319 * (idx = main index + 64):
2320 * key0 [31:0] = RX key [31:0]
2321 * key1 [15:0] = TX key [31:16]
2322 * key1 [31:16] = reserved
2323 * key2 [31:0] = RX key [63:32]
2324 * key3 [15:0] = TX key [15:0]
2325 * key3 [31:16] = reserved
2326 * key4 [31:0] = TX key [63:32]
2327 */
2328 u32 mic0, mic1, mic2, mic3, mic4;
2329
2330 mic0 = get_unaligned_le32(k->kv_mic + 0);
2331 mic2 = get_unaligned_le32(k->kv_mic + 4);
2332 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2333 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2334 mic4 = get_unaligned_le32(k->kv_txmic + 4);
2335
2336 /* Write RX[31:0] and TX[31:16] */
2337 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2338 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2339
2340 /* Write RX[63:32] and TX[15:0] */
2341 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2342 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2343
2344 /* Write TX[63:32] and keyType(reserved) */
2345 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2346 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2347 AR_KEYTABLE_TYPE_CLR);
2348
2349 } else {
2350 /*
2351 * TKIP uses four key cache entries (two for group
2352 * keys):
2353 * Michael MIC TX/RX keys are in different key cache
2354 * entries (idx = main index + 64 for TX and
2355 * main index + 32 + 96 for RX):
2356 * key0 [31:0] = TX/RX MIC key [31:0]
2357 * key1 [31:0] = reserved
2358 * key2 [31:0] = TX/RX MIC key [63:32]
2359 * key3 [31:0] = reserved
2360 * key4 [31:0] = reserved
2361 *
2362 * Upper layer code will call this function separately
2363 * for TX and RX keys when these registers offsets are
2364 * used.
2365 */
2366 u32 mic0, mic2;
2367
2368 mic0 = get_unaligned_le32(k->kv_mic + 0);
2369 mic2 = get_unaligned_le32(k->kv_mic + 4);
2370
2371 /* Write MIC key[31:0] */
2372 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2373 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2374
2375 /* Write MIC key[63:32] */
2376 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2377 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2378
2379 /* Write TX[63:32] and keyType(reserved) */
2380 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2381 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2382 AR_KEYTABLE_TYPE_CLR);
2383 }
2384
2385 /* MAC address registers are reserved for the MIC entry */
2386 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2387 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2388
2389 /*
2390 * Write the correct (un-inverted) key[47:0] last to enable
2391 * TKIP now that all other registers are set with correct
2392 * values.
2393 */
2394 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2395 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2396 } else {
2397 /* Write key[47:0] */
2398 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2399 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2400
2401 /* Write key[95:48] */
2402 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2403 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2404
2405 /* Write key[127:96] and key type */
2406 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2407 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2408
2409 /* Write MAC address for the entry */
2410 (void) ath9k_hw_keysetmac(ah, entry, mac);
2411 }
2412
2413 return true;
2414 }
2415 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2416
2417 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2418 {
2419 if (entry < ah->caps.keycache_size) {
2420 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2421 if (val & AR_KEYTABLE_VALID)
2422 return true;
2423 }
2424 return false;
2425 }
2426 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2427
2428 /******************************/
2429 /* Power Management (Chipset) */
2430 /******************************/
2431
2432 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2433 {
2434 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2435 if (setChip) {
2436 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2437 AR_RTC_FORCE_WAKE_EN);
2438 if (!AR_SREV_9100(ah))
2439 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2440
2441 if(!AR_SREV_5416(ah))
2442 REG_CLR_BIT(ah, (AR_RTC_RESET),
2443 AR_RTC_RESET_EN);
2444 }
2445 }
2446
2447 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2448 {
2449 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2450 if (setChip) {
2451 struct ath9k_hw_capabilities *pCap = &ah->caps;
2452
2453 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2454 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2455 AR_RTC_FORCE_WAKE_ON_INT);
2456 } else {
2457 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2458 AR_RTC_FORCE_WAKE_EN);
2459 }
2460 }
2461 }
2462
2463 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2464 {
2465 u32 val;
2466 int i;
2467
2468 if (setChip) {
2469 if ((REG_READ(ah, AR_RTC_STATUS) &
2470 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2471 if (ath9k_hw_set_reset_reg(ah,
2472 ATH9K_RESET_POWER_ON) != true) {
2473 return false;
2474 }
2475 ath9k_hw_init_pll(ah, NULL);
2476 }
2477 if (AR_SREV_9100(ah))
2478 REG_SET_BIT(ah, AR_RTC_RESET,
2479 AR_RTC_RESET_EN);
2480
2481 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2482 AR_RTC_FORCE_WAKE_EN);
2483 udelay(50);
2484
2485 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2486 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2487 if (val == AR_RTC_STATUS_ON)
2488 break;
2489 udelay(50);
2490 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2491 AR_RTC_FORCE_WAKE_EN);
2492 }
2493 if (i == 0) {
2494 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2495 "Failed to wakeup in %uus\n",
2496 POWER_UP_TIME / 20);
2497 return false;
2498 }
2499 }
2500
2501 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2502
2503 return true;
2504 }
2505
2506 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2507 {
2508 struct ath_common *common = ath9k_hw_common(ah);
2509 int status = true, setChip = true;
2510 static const char *modes[] = {
2511 "AWAKE",
2512 "FULL-SLEEP",
2513 "NETWORK SLEEP",
2514 "UNDEFINED"
2515 };
2516
2517 if (ah->power_mode == mode)
2518 return status;
2519
2520 ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2521 modes[ah->power_mode], modes[mode]);
2522
2523 switch (mode) {
2524 case ATH9K_PM_AWAKE:
2525 status = ath9k_hw_set_power_awake(ah, setChip);
2526 break;
2527 case ATH9K_PM_FULL_SLEEP:
2528 ath9k_set_power_sleep(ah, setChip);
2529 ah->chip_fullsleep = true;
2530 break;
2531 case ATH9K_PM_NETWORK_SLEEP:
2532 ath9k_set_power_network_sleep(ah, setChip);
2533 break;
2534 default:
2535 ath_print(common, ATH_DBG_FATAL,
2536 "Unknown power mode %u\n", mode);
2537 return false;
2538 }
2539 ah->power_mode = mode;
2540
2541 return status;
2542 }
2543 EXPORT_SYMBOL(ath9k_hw_setpower);
2544
2545 /*
2546 * Helper for ASPM support.
2547 *
2548 * Disable PLL when in L0s as well as receiver clock when in L1.
2549 * This power saving option must be enabled through the SerDes.
2550 *
2551 * Programming the SerDes must go through the same 288 bit serial shift
2552 * register as the other analog registers. Hence the 9 writes.
2553 */
2554 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2555 {
2556 u8 i;
2557 u32 val;
2558
2559 if (ah->is_pciexpress != true)
2560 return;
2561
2562 /* Do not touch SerDes registers */
2563 if (ah->config.pcie_powersave_enable == 2)
2564 return;
2565
2566 /* Nothing to do on restore for 11N */
2567 if (!restore) {
2568 if (AR_SREV_9280_20_OR_LATER(ah)) {
2569 /*
2570 * AR9280 2.0 or later chips use SerDes values from the
2571 * initvals.h initialized depending on chipset during
2572 * ath9k_hw_init()
2573 */
2574 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2575 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2576 INI_RA(&ah->iniPcieSerdes, i, 1));
2577 }
2578 } else if (AR_SREV_9280(ah) &&
2579 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2580 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2581 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2582
2583 /* RX shut off when elecidle is asserted */
2584 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2585 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2586 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2587
2588 /* Shut off CLKREQ active in L1 */
2589 if (ah->config.pcie_clock_req)
2590 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2591 else
2592 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2593
2594 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2595 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2596 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2597
2598 /* Load the new settings */
2599 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2600
2601 } else {
2602 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2603 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2604
2605 /* RX shut off when elecidle is asserted */
2606 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2607 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2608 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2609
2610 /*
2611 * Ignore ah->ah_config.pcie_clock_req setting for
2612 * pre-AR9280 11n
2613 */
2614 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2615
2616 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2617 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2618 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2619
2620 /* Load the new settings */
2621 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2622 }
2623
2624 udelay(1000);
2625
2626 /* set bit 19 to allow forcing of pcie core into L1 state */
2627 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2628
2629 /* Several PCIe massages to ensure proper behaviour */
2630 if (ah->config.pcie_waen) {
2631 val = ah->config.pcie_waen;
2632 if (!power_off)
2633 val &= (~AR_WA_D3_L1_DISABLE);
2634 } else {
2635 if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2636 AR_SREV_9287(ah)) {
2637 val = AR9285_WA_DEFAULT;
2638 if (!power_off)
2639 val &= (~AR_WA_D3_L1_DISABLE);
2640 } else if (AR_SREV_9280(ah)) {
2641 /*
2642 * On AR9280 chips bit 22 of 0x4004 needs to be
2643 * set otherwise card may disappear.
2644 */
2645 val = AR9280_WA_DEFAULT;
2646 if (!power_off)
2647 val &= (~AR_WA_D3_L1_DISABLE);
2648 } else
2649 val = AR_WA_DEFAULT;
2650 }
2651
2652 REG_WRITE(ah, AR_WA, val);
2653 }
2654
2655 if (power_off) {
2656 /*
2657 * Set PCIe workaround bits
2658 * bit 14 in WA register (disable L1) should only
2659 * be set when device enters D3 and be cleared
2660 * when device comes back to D0.
2661 */
2662 if (ah->config.pcie_waen) {
2663 if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2664 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2665 } else {
2666 if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2667 AR_SREV_9287(ah)) &&
2668 (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2669 (AR_SREV_9280(ah) &&
2670 (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2671 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2672 }
2673 }
2674 }
2675 }
2676 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2677
2678 /**********************/
2679 /* Interrupt Handling */
2680 /**********************/
2681
2682 bool ath9k_hw_intrpend(struct ath_hw *ah)
2683 {
2684 u32 host_isr;
2685
2686 if (AR_SREV_9100(ah))
2687 return true;
2688
2689 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2690 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2691 return true;
2692
2693 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2694 if ((host_isr & AR_INTR_SYNC_DEFAULT)
2695 && (host_isr != AR_INTR_SPURIOUS))
2696 return true;
2697
2698 return false;
2699 }
2700 EXPORT_SYMBOL(ath9k_hw_intrpend);
2701
2702 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2703 {
2704 u32 isr = 0;
2705 u32 mask2 = 0;
2706 struct ath9k_hw_capabilities *pCap = &ah->caps;
2707 u32 sync_cause = 0;
2708 bool fatal_int = false;
2709 struct ath_common *common = ath9k_hw_common(ah);
2710
2711 if (!AR_SREV_9100(ah)) {
2712 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2713 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2714 == AR_RTC_STATUS_ON) {
2715 isr = REG_READ(ah, AR_ISR);
2716 }
2717 }
2718
2719 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2720 AR_INTR_SYNC_DEFAULT;
2721
2722 *masked = 0;
2723
2724 if (!isr && !sync_cause)
2725 return false;
2726 } else {
2727 *masked = 0;
2728 isr = REG_READ(ah, AR_ISR);
2729 }
2730
2731 if (isr) {
2732 if (isr & AR_ISR_BCNMISC) {
2733 u32 isr2;
2734 isr2 = REG_READ(ah, AR_ISR_S2);
2735 if (isr2 & AR_ISR_S2_TIM)
2736 mask2 |= ATH9K_INT_TIM;
2737 if (isr2 & AR_ISR_S2_DTIM)
2738 mask2 |= ATH9K_INT_DTIM;
2739 if (isr2 & AR_ISR_S2_DTIMSYNC)
2740 mask2 |= ATH9K_INT_DTIMSYNC;
2741 if (isr2 & (AR_ISR_S2_CABEND))
2742 mask2 |= ATH9K_INT_CABEND;
2743 if (isr2 & AR_ISR_S2_GTT)
2744 mask2 |= ATH9K_INT_GTT;
2745 if (isr2 & AR_ISR_S2_CST)
2746 mask2 |= ATH9K_INT_CST;
2747 if (isr2 & AR_ISR_S2_TSFOOR)
2748 mask2 |= ATH9K_INT_TSFOOR;
2749 }
2750
2751 isr = REG_READ(ah, AR_ISR_RAC);
2752 if (isr == 0xffffffff) {
2753 *masked = 0;
2754 return false;
2755 }
2756
2757 *masked = isr & ATH9K_INT_COMMON;
2758
2759 if (ah->config.rx_intr_mitigation) {
2760 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2761 *masked |= ATH9K_INT_RX;
2762 }
2763
2764 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2765 *masked |= ATH9K_INT_RX;
2766 if (isr &
2767 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2768 AR_ISR_TXEOL)) {
2769 u32 s0_s, s1_s;
2770
2771 *masked |= ATH9K_INT_TX;
2772
2773 s0_s = REG_READ(ah, AR_ISR_S0_S);
2774 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2775 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2776
2777 s1_s = REG_READ(ah, AR_ISR_S1_S);
2778 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2779 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2780 }
2781
2782 if (isr & AR_ISR_RXORN) {
2783 ath_print(common, ATH_DBG_INTERRUPT,
2784 "receive FIFO overrun interrupt\n");
2785 }
2786
2787 if (!AR_SREV_9100(ah)) {
2788 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2789 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2790 if (isr5 & AR_ISR_S5_TIM_TIMER)
2791 *masked |= ATH9K_INT_TIM_TIMER;
2792 }
2793 }
2794
2795 *masked |= mask2;
2796 }
2797
2798 if (AR_SREV_9100(ah))
2799 return true;
2800
2801 if (isr & AR_ISR_GENTMR) {
2802 u32 s5_s;
2803
2804 s5_s = REG_READ(ah, AR_ISR_S5_S);
2805 if (isr & AR_ISR_GENTMR) {
2806 ah->intr_gen_timer_trigger =
2807 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2808
2809 ah->intr_gen_timer_thresh =
2810 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2811
2812 if (ah->intr_gen_timer_trigger)
2813 *masked |= ATH9K_INT_GENTIMER;
2814
2815 }
2816 }
2817
2818 if (sync_cause) {
2819 fatal_int =
2820 (sync_cause &
2821 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2822 ? true : false;
2823
2824 if (fatal_int) {
2825 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2826 ath_print(common, ATH_DBG_ANY,
2827 "received PCI FATAL interrupt\n");
2828 }
2829 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2830 ath_print(common, ATH_DBG_ANY,
2831 "received PCI PERR interrupt\n");
2832 }
2833 *masked |= ATH9K_INT_FATAL;
2834 }
2835 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2836 ath_print(common, ATH_DBG_INTERRUPT,
2837 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2838 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2839 REG_WRITE(ah, AR_RC, 0);
2840 *masked |= ATH9K_INT_FATAL;
2841 }
2842 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2843 ath_print(common, ATH_DBG_INTERRUPT,
2844 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2845 }
2846
2847 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2848 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2849 }
2850
2851 return true;
2852 }
2853 EXPORT_SYMBOL(ath9k_hw_getisr);
2854
2855 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2856 {
2857 u32 omask = ah->mask_reg;
2858 u32 mask, mask2;
2859 struct ath9k_hw_capabilities *pCap = &ah->caps;
2860 struct ath_common *common = ath9k_hw_common(ah);
2861
2862 ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2863
2864 if (omask & ATH9K_INT_GLOBAL) {
2865 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2866 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2867 (void) REG_READ(ah, AR_IER);
2868 if (!AR_SREV_9100(ah)) {
2869 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2870 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2871
2872 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2873 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2874 }
2875 }
2876
2877 mask = ints & ATH9K_INT_COMMON;
2878 mask2 = 0;
2879
2880 if (ints & ATH9K_INT_TX) {
2881 if (ah->txok_interrupt_mask)
2882 mask |= AR_IMR_TXOK;
2883 if (ah->txdesc_interrupt_mask)
2884 mask |= AR_IMR_TXDESC;
2885 if (ah->txerr_interrupt_mask)
2886 mask |= AR_IMR_TXERR;
2887 if (ah->txeol_interrupt_mask)
2888 mask |= AR_IMR_TXEOL;
2889 }
2890 if (ints & ATH9K_INT_RX) {
2891 mask |= AR_IMR_RXERR;
2892 if (ah->config.rx_intr_mitigation)
2893 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2894 else
2895 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2896 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2897 mask |= AR_IMR_GENTMR;
2898 }
2899
2900 if (ints & (ATH9K_INT_BMISC)) {
2901 mask |= AR_IMR_BCNMISC;
2902 if (ints & ATH9K_INT_TIM)
2903 mask2 |= AR_IMR_S2_TIM;
2904 if (ints & ATH9K_INT_DTIM)
2905 mask2 |= AR_IMR_S2_DTIM;
2906 if (ints & ATH9K_INT_DTIMSYNC)
2907 mask2 |= AR_IMR_S2_DTIMSYNC;
2908 if (ints & ATH9K_INT_CABEND)
2909 mask2 |= AR_IMR_S2_CABEND;
2910 if (ints & ATH9K_INT_TSFOOR)
2911 mask2 |= AR_IMR_S2_TSFOOR;
2912 }
2913
2914 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2915 mask |= AR_IMR_BCNMISC;
2916 if (ints & ATH9K_INT_GTT)
2917 mask2 |= AR_IMR_S2_GTT;
2918 if (ints & ATH9K_INT_CST)
2919 mask2 |= AR_IMR_S2_CST;
2920 }
2921
2922 ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2923 REG_WRITE(ah, AR_IMR, mask);
2924 mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2925 AR_IMR_S2_DTIM |
2926 AR_IMR_S2_DTIMSYNC |
2927 AR_IMR_S2_CABEND |
2928 AR_IMR_S2_CABTO |
2929 AR_IMR_S2_TSFOOR |
2930 AR_IMR_S2_GTT | AR_IMR_S2_CST);
2931 REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2932 ah->mask_reg = ints;
2933
2934 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2935 if (ints & ATH9K_INT_TIM_TIMER)
2936 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2937 else
2938 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2939 }
2940
2941 if (ints & ATH9K_INT_GLOBAL) {
2942 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2943 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2944 if (!AR_SREV_9100(ah)) {
2945 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2946 AR_INTR_MAC_IRQ);
2947 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2948
2949
2950 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2951 AR_INTR_SYNC_DEFAULT);
2952 REG_WRITE(ah, AR_INTR_SYNC_MASK,
2953 AR_INTR_SYNC_DEFAULT);
2954 }
2955 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2956 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2957 }
2958
2959 return omask;
2960 }
2961 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2962
2963 /*******************/
2964 /* Beacon Handling */
2965 /*******************/
2966
2967 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2968 {
2969 int flags = 0;
2970
2971 ah->beacon_interval = beacon_period;
2972
2973 switch (ah->opmode) {
2974 case NL80211_IFTYPE_STATION:
2975 case NL80211_IFTYPE_MONITOR:
2976 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2977 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2978 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2979 flags |= AR_TBTT_TIMER_EN;
2980 break;
2981 case NL80211_IFTYPE_ADHOC:
2982 case NL80211_IFTYPE_MESH_POINT:
2983 REG_SET_BIT(ah, AR_TXCFG,
2984 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2985 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2986 TU_TO_USEC(next_beacon +
2987 (ah->atim_window ? ah->
2988 atim_window : 1)));
2989 flags |= AR_NDP_TIMER_EN;
2990 case NL80211_IFTYPE_AP:
2991 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2992 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2993 TU_TO_USEC(next_beacon -
2994 ah->config.
2995 dma_beacon_response_time));
2996 REG_WRITE(ah, AR_NEXT_SWBA,
2997 TU_TO_USEC(next_beacon -
2998 ah->config.
2999 sw_beacon_response_time));
3000 flags |=
3001 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3002 break;
3003 default:
3004 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3005 "%s: unsupported opmode: %d\n",
3006 __func__, ah->opmode);
3007 return;
3008 break;
3009 }
3010
3011 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3012 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3013 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3014 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3015
3016 beacon_period &= ~ATH9K_BEACON_ENA;
3017 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3018 ath9k_hw_reset_tsf(ah);
3019 }
3020
3021 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3022 }
3023 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3024
3025 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3026 const struct ath9k_beacon_state *bs)
3027 {
3028 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3029 struct ath9k_hw_capabilities *pCap = &ah->caps;
3030 struct ath_common *common = ath9k_hw_common(ah);
3031
3032 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3033
3034 REG_WRITE(ah, AR_BEACON_PERIOD,
3035 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3036 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3037 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3038
3039 REG_RMW_FIELD(ah, AR_RSSI_THR,
3040 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3041
3042 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3043
3044 if (bs->bs_sleepduration > beaconintval)
3045 beaconintval = bs->bs_sleepduration;
3046
3047 dtimperiod = bs->bs_dtimperiod;
3048 if (bs->bs_sleepduration > dtimperiod)
3049 dtimperiod = bs->bs_sleepduration;
3050
3051 if (beaconintval == dtimperiod)
3052 nextTbtt = bs->bs_nextdtim;
3053 else
3054 nextTbtt = bs->bs_nexttbtt;
3055
3056 ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3057 ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3058 ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3059 ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3060
3061 REG_WRITE(ah, AR_NEXT_DTIM,
3062 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3063 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3064
3065 REG_WRITE(ah, AR_SLEEP1,
3066 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3067 | AR_SLEEP1_ASSUME_DTIM);
3068
3069 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3070 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3071 else
3072 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3073
3074 REG_WRITE(ah, AR_SLEEP2,
3075 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3076
3077 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3078 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3079
3080 REG_SET_BIT(ah, AR_TIMER_MODE,
3081 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3082 AR_DTIM_TIMER_EN);
3083
3084 /* TSF Out of Range Threshold */
3085 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3086 }
3087 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3088
3089 /*******************/
3090 /* HW Capabilities */
3091 /*******************/
3092
3093 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3094 {
3095 struct ath9k_hw_capabilities *pCap = &ah->caps;
3096 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3097 struct ath_common *common = ath9k_hw_common(ah);
3098 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3099
3100 u16 capField = 0, eeval;
3101
3102 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3103 regulatory->current_rd = eeval;
3104
3105 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3106 if (AR_SREV_9285_10_OR_LATER(ah))
3107 eeval |= AR9285_RDEXT_DEFAULT;
3108 regulatory->current_rd_ext = eeval;
3109
3110 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3111
3112 if (ah->opmode != NL80211_IFTYPE_AP &&
3113 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3114 if (regulatory->current_rd == 0x64 ||
3115 regulatory->current_rd == 0x65)
3116 regulatory->current_rd += 5;
3117 else if (regulatory->current_rd == 0x41)
3118 regulatory->current_rd = 0x43;
3119 ath_print(common, ATH_DBG_REGULATORY,
3120 "regdomain mapped to 0x%x\n", regulatory->current_rd);
3121 }
3122
3123 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3124 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3125 ath_print(common, ATH_DBG_FATAL,
3126 "no band has been marked as supported in EEPROM.\n");
3127 return -EINVAL;
3128 }
3129
3130 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3131
3132 if (eeval & AR5416_OPFLAGS_11A) {
3133 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3134 if (ah->config.ht_enable) {
3135 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3136 set_bit(ATH9K_MODE_11NA_HT20,
3137 pCap->wireless_modes);
3138 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3139 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3140 pCap->wireless_modes);
3141 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3142 pCap->wireless_modes);
3143 }
3144 }
3145 }
3146
3147 if (eeval & AR5416_OPFLAGS_11G) {
3148 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3149 if (ah->config.ht_enable) {
3150 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3151 set_bit(ATH9K_MODE_11NG_HT20,
3152 pCap->wireless_modes);
3153 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3154 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3155 pCap->wireless_modes);
3156 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3157 pCap->wireless_modes);
3158 }
3159 }
3160 }
3161
3162 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3163 /*
3164 * For AR9271 we will temporarilly uses the rx chainmax as read from
3165 * the EEPROM.
3166 */
3167 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3168 !(eeval & AR5416_OPFLAGS_11A) &&
3169 !(AR_SREV_9271(ah)))
3170 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3171 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3172 else
3173 /* Use rx_chainmask from EEPROM. */
3174 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3175
3176 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3177 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3178
3179 pCap->low_2ghz_chan = 2312;
3180 pCap->high_2ghz_chan = 2732;
3181
3182 pCap->low_5ghz_chan = 4920;
3183 pCap->high_5ghz_chan = 6100;
3184
3185 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3186 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3187 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3188
3189 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3190 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3191 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3192
3193 if (ah->config.ht_enable)
3194 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3195 else
3196 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3197
3198 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3199 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3200 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3201 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3202
3203 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3204 pCap->total_queues =
3205 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3206 else
3207 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3208
3209 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3210 pCap->keycache_size =
3211 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3212 else
3213 pCap->keycache_size = AR_KEYTABLE_SIZE;
3214
3215 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3216
3217 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3218 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3219 else
3220 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3221
3222 if (AR_SREV_9285_10_OR_LATER(ah))
3223 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3224 else if (AR_SREV_9280_10_OR_LATER(ah))
3225 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3226 else
3227 pCap->num_gpio_pins = AR_NUM_GPIO;
3228
3229 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3230 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3231 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3232 } else {
3233 pCap->rts_aggr_limit = (8 * 1024);
3234 }
3235
3236 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3237
3238 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3239 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3240 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3241 ah->rfkill_gpio =
3242 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3243 ah->rfkill_polarity =
3244 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3245
3246 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3247 }
3248 #endif
3249
3250 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3251
3252 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3253 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3254 else
3255 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3256
3257 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3258 pCap->reg_cap =
3259 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3260 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3261 AR_EEPROM_EEREGCAP_EN_KK_U2 |
3262 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3263 } else {
3264 pCap->reg_cap =
3265 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3266 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3267 }
3268
3269 /* Advertise midband for AR5416 with FCC midband set in eeprom */
3270 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3271 AR_SREV_5416(ah))
3272 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3273
3274 pCap->num_antcfg_5ghz =
3275 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3276 pCap->num_antcfg_2ghz =
3277 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3278
3279 if (AR_SREV_9280_10_OR_LATER(ah) &&
3280 ath9k_hw_btcoex_supported(ah)) {
3281 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3282 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3283
3284 if (AR_SREV_9285(ah)) {
3285 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3286 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3287 } else {
3288 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3289 }
3290 } else {
3291 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3292 }
3293
3294 return 0;
3295 }
3296
3297 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3298 u32 capability, u32 *result)
3299 {
3300 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3301 switch (type) {
3302 case ATH9K_CAP_CIPHER:
3303 switch (capability) {
3304 case ATH9K_CIPHER_AES_CCM:
3305 case ATH9K_CIPHER_AES_OCB:
3306 case ATH9K_CIPHER_TKIP:
3307 case ATH9K_CIPHER_WEP:
3308 case ATH9K_CIPHER_MIC:
3309 case ATH9K_CIPHER_CLR:
3310 return true;
3311 default:
3312 return false;
3313 }
3314 case ATH9K_CAP_TKIP_MIC:
3315 switch (capability) {
3316 case 0:
3317 return true;
3318 case 1:
3319 return (ah->sta_id1_defaults &
3320 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3321 false;
3322 }
3323 case ATH9K_CAP_TKIP_SPLIT:
3324 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3325 false : true;
3326 case ATH9K_CAP_DIVERSITY:
3327 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3328 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3329 true : false;
3330 case ATH9K_CAP_MCAST_KEYSRCH:
3331 switch (capability) {
3332 case 0:
3333 return true;
3334 case 1:
3335 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3336 return false;
3337 } else {
3338 return (ah->sta_id1_defaults &
3339 AR_STA_ID1_MCAST_KSRCH) ? true :
3340 false;
3341 }
3342 }
3343 return false;
3344 case ATH9K_CAP_TXPOW:
3345 switch (capability) {
3346 case 0:
3347 return 0;
3348 case 1:
3349 *result = regulatory->power_limit;
3350 return 0;
3351 case 2:
3352 *result = regulatory->max_power_level;
3353 return 0;
3354 case 3:
3355 *result = regulatory->tp_scale;
3356 return 0;
3357 }
3358 return false;
3359 case ATH9K_CAP_DS:
3360 return (AR_SREV_9280_20_OR_LATER(ah) &&
3361 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3362 ? false : true;
3363 default:
3364 return false;
3365 }
3366 }
3367 EXPORT_SYMBOL(ath9k_hw_getcapability);
3368
3369 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3370 u32 capability, u32 setting, int *status)
3371 {
3372 u32 v;
3373
3374 switch (type) {
3375 case ATH9K_CAP_TKIP_MIC:
3376 if (setting)
3377 ah->sta_id1_defaults |=
3378 AR_STA_ID1_CRPT_MIC_ENABLE;
3379 else
3380 ah->sta_id1_defaults &=
3381 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3382 return true;
3383 case ATH9K_CAP_DIVERSITY:
3384 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3385 if (setting)
3386 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3387 else
3388 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3389 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3390 return true;
3391 case ATH9K_CAP_MCAST_KEYSRCH:
3392 if (setting)
3393 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3394 else
3395 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3396 return true;
3397 default:
3398 return false;
3399 }
3400 }
3401 EXPORT_SYMBOL(ath9k_hw_setcapability);
3402
3403 /****************************/
3404 /* GPIO / RFKILL / Antennae */
3405 /****************************/
3406
3407 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3408 u32 gpio, u32 type)
3409 {
3410 int addr;
3411 u32 gpio_shift, tmp;
3412
3413 if (gpio > 11)
3414 addr = AR_GPIO_OUTPUT_MUX3;
3415 else if (gpio > 5)
3416 addr = AR_GPIO_OUTPUT_MUX2;
3417 else
3418 addr = AR_GPIO_OUTPUT_MUX1;
3419
3420 gpio_shift = (gpio % 6) * 5;
3421
3422 if (AR_SREV_9280_20_OR_LATER(ah)
3423 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3424 REG_RMW(ah, addr, (type << gpio_shift),
3425 (0x1f << gpio_shift));
3426 } else {
3427 tmp = REG_READ(ah, addr);
3428 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3429 tmp &= ~(0x1f << gpio_shift);
3430 tmp |= (type << gpio_shift);
3431 REG_WRITE(ah, addr, tmp);
3432 }
3433 }
3434
3435 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3436 {
3437 u32 gpio_shift;
3438
3439 BUG_ON(gpio >= ah->caps.num_gpio_pins);
3440
3441 gpio_shift = gpio << 1;
3442
3443 REG_RMW(ah,
3444 AR_GPIO_OE_OUT,
3445 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3446 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3447 }
3448 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3449
3450 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3451 {
3452 #define MS_REG_READ(x, y) \
3453 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3454
3455 if (gpio >= ah->caps.num_gpio_pins)
3456 return 0xffffffff;
3457
3458 if (AR_SREV_9287_10_OR_LATER(ah))
3459 return MS_REG_READ(AR9287, gpio) != 0;
3460 else if (AR_SREV_9285_10_OR_LATER(ah))
3461 return MS_REG_READ(AR9285, gpio) != 0;
3462 else if (AR_SREV_9280_10_OR_LATER(ah))
3463 return MS_REG_READ(AR928X, gpio) != 0;
3464 else
3465 return MS_REG_READ(AR, gpio) != 0;
3466 }
3467 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3468
3469 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3470 u32 ah_signal_type)
3471 {
3472 u32 gpio_shift;
3473
3474 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3475
3476 gpio_shift = 2 * gpio;
3477
3478 REG_RMW(ah,
3479 AR_GPIO_OE_OUT,
3480 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3481 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3482 }
3483 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3484
3485 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3486 {
3487 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3488 AR_GPIO_BIT(gpio));
3489 }
3490 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3491
3492 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3493 {
3494 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3495 }
3496 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3497
3498 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3499 {
3500 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3501 }
3502 EXPORT_SYMBOL(ath9k_hw_setantenna);
3503
3504 /*********************/
3505 /* General Operation */
3506 /*********************/
3507
3508 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3509 {
3510 u32 bits = REG_READ(ah, AR_RX_FILTER);
3511 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3512
3513 if (phybits & AR_PHY_ERR_RADAR)
3514 bits |= ATH9K_RX_FILTER_PHYRADAR;
3515 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3516 bits |= ATH9K_RX_FILTER_PHYERR;
3517
3518 return bits;
3519 }
3520 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3521
3522 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3523 {
3524 u32 phybits;
3525
3526 REG_WRITE(ah, AR_RX_FILTER, bits);
3527
3528 phybits = 0;
3529 if (bits & ATH9K_RX_FILTER_PHYRADAR)
3530 phybits |= AR_PHY_ERR_RADAR;
3531 if (bits & ATH9K_RX_FILTER_PHYERR)
3532 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3533 REG_WRITE(ah, AR_PHY_ERR, phybits);
3534
3535 if (phybits)
3536 REG_WRITE(ah, AR_RXCFG,
3537 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3538 else
3539 REG_WRITE(ah, AR_RXCFG,
3540 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3541 }
3542 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3543
3544 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3545 {
3546 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3547 return false;
3548
3549 ath9k_hw_init_pll(ah, NULL);
3550 return true;
3551 }
3552 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3553
3554 bool ath9k_hw_disable(struct ath_hw *ah)
3555 {
3556 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3557 return false;
3558
3559 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3560 return false;
3561
3562 ath9k_hw_init_pll(ah, NULL);
3563 return true;
3564 }
3565 EXPORT_SYMBOL(ath9k_hw_disable);
3566
3567 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3568 {
3569 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3570 struct ath9k_channel *chan = ah->curchan;
3571 struct ieee80211_channel *channel = chan->chan;
3572
3573 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3574
3575 ah->eep_ops->set_txpower(ah, chan,
3576 ath9k_regd_get_ctl(regulatory, chan),
3577 channel->max_antenna_gain * 2,
3578 channel->max_power * 2,
3579 min((u32) MAX_RATE_POWER,
3580 (u32) regulatory->power_limit));
3581 }
3582 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3583
3584 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3585 {
3586 memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3587 }
3588 EXPORT_SYMBOL(ath9k_hw_setmac);
3589
3590 void ath9k_hw_setopmode(struct ath_hw *ah)
3591 {
3592 ath9k_hw_set_operating_mode(ah, ah->opmode);
3593 }
3594 EXPORT_SYMBOL(ath9k_hw_setopmode);
3595
3596 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3597 {
3598 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3599 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3600 }
3601 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3602
3603 void ath9k_hw_write_associd(struct ath_hw *ah)
3604 {
3605 struct ath_common *common = ath9k_hw_common(ah);
3606
3607 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3608 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3609 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3610 }
3611 EXPORT_SYMBOL(ath9k_hw_write_associd);
3612
3613 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3614 {
3615 u64 tsf;
3616
3617 tsf = REG_READ(ah, AR_TSF_U32);
3618 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3619
3620 return tsf;
3621 }
3622 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3623
3624 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3625 {
3626 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3627 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3628 }
3629 EXPORT_SYMBOL(ath9k_hw_settsf64);
3630
3631 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3632 {
3633 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3634 AH_TSF_WRITE_TIMEOUT))
3635 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3636 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3637
3638 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3639 }
3640 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3641
3642 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3643 {
3644 if (setting)
3645 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3646 else
3647 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3648 }
3649 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3650
3651 /*
3652 * Extend 15-bit time stamp from rx descriptor to
3653 * a full 64-bit TSF using the current h/w TSF.
3654 */
3655 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3656 {
3657 u64 tsf;
3658
3659 tsf = ath9k_hw_gettsf64(ah);
3660 if ((tsf & 0x7fff) < rstamp)
3661 tsf -= 0x8000;
3662 return (tsf & ~0x7fff) | rstamp;
3663 }
3664 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3665
3666 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3667 {
3668 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3669 u32 macmode;
3670
3671 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3672 macmode = AR_2040_JOINED_RX_CLEAR;
3673 else
3674 macmode = 0;
3675
3676 REG_WRITE(ah, AR_2040_MODE, macmode);
3677 }
3678
3679 /* HW Generic timers configuration */
3680
3681 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3682 {
3683 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3684 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3685 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3686 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3687 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3688 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3689 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3690 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3691 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3692 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3693 AR_NDP2_TIMER_MODE, 0x0002},
3694 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3695 AR_NDP2_TIMER_MODE, 0x0004},
3696 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3697 AR_NDP2_TIMER_MODE, 0x0008},
3698 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3699 AR_NDP2_TIMER_MODE, 0x0010},
3700 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3701 AR_NDP2_TIMER_MODE, 0x0020},
3702 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3703 AR_NDP2_TIMER_MODE, 0x0040},
3704 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3705 AR_NDP2_TIMER_MODE, 0x0080}
3706 };
3707
3708 /* HW generic timer primitives */
3709
3710 /* compute and clear index of rightmost 1 */
3711 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3712 {
3713 u32 b;
3714
3715 b = *mask;
3716 b &= (0-b);
3717 *mask &= ~b;
3718 b *= debruijn32;
3719 b >>= 27;
3720
3721 return timer_table->gen_timer_index[b];
3722 }
3723
3724 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3725 {
3726 return REG_READ(ah, AR_TSF_L32);
3727 }
3728 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3729
3730 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3731 void (*trigger)(void *),
3732 void (*overflow)(void *),
3733 void *arg,
3734 u8 timer_index)
3735 {
3736 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3737 struct ath_gen_timer *timer;
3738
3739 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3740
3741 if (timer == NULL) {
3742 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3743 "Failed to allocate memory"
3744 "for hw timer[%d]\n", timer_index);
3745 return NULL;
3746 }
3747
3748 /* allocate a hardware generic timer slot */
3749 timer_table->timers[timer_index] = timer;
3750 timer->index = timer_index;
3751 timer->trigger = trigger;
3752 timer->overflow = overflow;
3753 timer->arg = arg;
3754
3755 return timer;
3756 }
3757 EXPORT_SYMBOL(ath_gen_timer_alloc);
3758
3759 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3760 struct ath_gen_timer *timer,
3761 u32 timer_next,
3762 u32 timer_period)
3763 {
3764 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3765 u32 tsf;
3766
3767 BUG_ON(!timer_period);
3768
3769 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3770
3771 tsf = ath9k_hw_gettsf32(ah);
3772
3773 ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3774 "curent tsf %x period %x"
3775 "timer_next %x\n", tsf, timer_period, timer_next);
3776
3777 /*
3778 * Pull timer_next forward if the current TSF already passed it
3779 * because of software latency
3780 */
3781 if (timer_next < tsf)
3782 timer_next = tsf + timer_period;
3783
3784 /*
3785 * Program generic timer registers
3786 */
3787 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3788 timer_next);
3789 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3790 timer_period);
3791 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3792 gen_tmr_configuration[timer->index].mode_mask);
3793
3794 /* Enable both trigger and thresh interrupt masks */
3795 REG_SET_BIT(ah, AR_IMR_S5,
3796 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3797 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3798 }
3799 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3800
3801 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3802 {
3803 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3804
3805 if ((timer->index < AR_FIRST_NDP_TIMER) ||
3806 (timer->index >= ATH_MAX_GEN_TIMER)) {
3807 return;
3808 }
3809
3810 /* Clear generic timer enable bits. */
3811 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3812 gen_tmr_configuration[timer->index].mode_mask);
3813
3814 /* Disable both trigger and thresh interrupt masks */
3815 REG_CLR_BIT(ah, AR_IMR_S5,
3816 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3817 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3818
3819 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3820 }
3821 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3822
3823 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3824 {
3825 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3826
3827 /* free the hardware generic timer slot */
3828 timer_table->timers[timer->index] = NULL;
3829 kfree(timer);
3830 }
3831 EXPORT_SYMBOL(ath_gen_timer_free);
3832
3833 /*
3834 * Generic Timer Interrupts handling
3835 */
3836 void ath_gen_timer_isr(struct ath_hw *ah)
3837 {
3838 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3839 struct ath_gen_timer *timer;
3840 struct ath_common *common = ath9k_hw_common(ah);
3841 u32 trigger_mask, thresh_mask, index;
3842
3843 /* get hardware generic timer interrupt status */
3844 trigger_mask = ah->intr_gen_timer_trigger;
3845 thresh_mask = ah->intr_gen_timer_thresh;
3846 trigger_mask &= timer_table->timer_mask.val;
3847 thresh_mask &= timer_table->timer_mask.val;
3848
3849 trigger_mask &= ~thresh_mask;
3850
3851 while (thresh_mask) {
3852 index = rightmost_index(timer_table, &thresh_mask);
3853 timer = timer_table->timers[index];
3854 BUG_ON(!timer);
3855 ath_print(common, ATH_DBG_HWTIMER,
3856 "TSF overflow for Gen timer %d\n", index);
3857 timer->overflow(timer->arg);
3858 }
3859
3860 while (trigger_mask) {
3861 index = rightmost_index(timer_table, &trigger_mask);
3862 timer = timer_table->timers[index];
3863 BUG_ON(!timer);
3864 ath_print(common, ATH_DBG_HWTIMER,
3865 "Gen timer[%d] trigger\n", index);
3866 timer->trigger(timer->arg);
3867 }
3868 }
3869 EXPORT_SYMBOL(ath_gen_timer_isr);
3870
3871 static struct {
3872 u32 version;
3873 const char * name;
3874 } ath_mac_bb_names[] = {
3875 /* Devices with external radios */
3876 { AR_SREV_VERSION_5416_PCI, "5416" },
3877 { AR_SREV_VERSION_5416_PCIE, "5418" },
3878 { AR_SREV_VERSION_9100, "9100" },
3879 { AR_SREV_VERSION_9160, "9160" },
3880 /* Single-chip solutions */
3881 { AR_SREV_VERSION_9280, "9280" },
3882 { AR_SREV_VERSION_9285, "9285" },
3883 { AR_SREV_VERSION_9287, "9287" },
3884 { AR_SREV_VERSION_9271, "9271" },
3885 };
3886
3887 /* For devices with external radios */
3888 static struct {
3889 u16 version;
3890 const char * name;
3891 } ath_rf_names[] = {
3892 { 0, "5133" },
3893 { AR_RAD5133_SREV_MAJOR, "5133" },
3894 { AR_RAD5122_SREV_MAJOR, "5122" },
3895 { AR_RAD2133_SREV_MAJOR, "2133" },
3896 { AR_RAD2122_SREV_MAJOR, "2122" }
3897 };
3898
3899 /*
3900 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3901 */
3902 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3903 {
3904 int i;
3905
3906 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3907 if (ath_mac_bb_names[i].version == mac_bb_version) {
3908 return ath_mac_bb_names[i].name;
3909 }
3910 }
3911
3912 return "????";
3913 }
3914
3915 /*
3916 * Return the RF name. "????" is returned if the RF is unknown.
3917 * Used for devices with external radios.
3918 */
3919 static const char *ath9k_hw_rf_name(u16 rf_version)
3920 {
3921 int i;
3922
3923 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3924 if (ath_rf_names[i].version == rf_version) {
3925 return ath_rf_names[i].name;
3926 }
3927 }
3928
3929 return "????";
3930 }
3931
3932 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3933 {
3934 int used;
3935
3936 /* chipsets >= AR9280 are single-chip */
3937 if (AR_SREV_9280_10_OR_LATER(ah)) {
3938 used = snprintf(hw_name, len,
3939 "Atheros AR%s Rev:%x",
3940 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3941 ah->hw_version.macRev);
3942 }
3943 else {
3944 used = snprintf(hw_name, len,
3945 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3946 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3947 ah->hw_version.macRev,
3948 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3949 AR_RADIO_SREV_MAJOR)),
3950 ah->hw_version.phyRev);
3951 }
3952
3953 hw_name[used] = '\0';
3954 }
3955 EXPORT_SYMBOL(ath9k_hw_name);