]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/ath/ath9k/hw.c
ee9fb52cec62aa9ee07cdda616ea4d1ac041f342
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <asm/unaligned.h>
24
25 #include "hw.h"
26 #include "hw-ops.h"
27 #include "ar9003_mac.h"
28 #include "ar9003_mci.h"
29 #include "ar9003_phy.h"
30 #include "ath9k.h"
31
32 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
40 {
41 struct ath_common *common = ath9k_hw_common(ah);
42 struct ath9k_channel *chan = ah->curchan;
43 unsigned int clockrate;
44
45 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
46 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
47 clockrate = 117;
48 else if (!chan) /* should really check for CCK instead */
49 clockrate = ATH9K_CLOCK_RATE_CCK;
50 else if (IS_CHAN_2GHZ(chan))
51 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
52 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
53 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
54 else
55 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
56
57 if (chan) {
58 if (IS_CHAN_HT40(chan))
59 clockrate *= 2;
60 if (IS_CHAN_HALF_RATE(chan))
61 clockrate /= 2;
62 if (IS_CHAN_QUARTER_RATE(chan))
63 clockrate /= 4;
64 }
65
66 common->clockrate = clockrate;
67 }
68
69 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
70 {
71 struct ath_common *common = ath9k_hw_common(ah);
72
73 return usecs * common->clockrate;
74 }
75
76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78 int i;
79
80 BUG_ON(timeout < AH_TIME_QUANTUM);
81
82 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83 if ((REG_READ(ah, reg) & mask) == val)
84 return true;
85
86 udelay(AH_TIME_QUANTUM);
87 }
88
89 ath_dbg(ath9k_hw_common(ah), ANY,
90 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91 timeout, reg, REG_READ(ah, reg), mask, val);
92
93 return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96
97 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
98 int hw_delay)
99 {
100 hw_delay /= 10;
101
102 if (IS_CHAN_HALF_RATE(chan))
103 hw_delay *= 2;
104 else if (IS_CHAN_QUARTER_RATE(chan))
105 hw_delay *= 4;
106
107 udelay(hw_delay + BASE_ACTIVATE_DELAY);
108 }
109
110 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
111 int column, unsigned int *writecnt)
112 {
113 int r;
114
115 ENABLE_REGWRITE_BUFFER(ah);
116 for (r = 0; r < array->ia_rows; r++) {
117 REG_WRITE(ah, INI_RA(array, r, 0),
118 INI_RA(array, r, column));
119 DO_DELAY(*writecnt);
120 }
121 REGWRITE_BUFFER_FLUSH(ah);
122 }
123
124 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
125 {
126 u32 retval;
127 int i;
128
129 for (i = 0, retval = 0; i < n; i++) {
130 retval = (retval << 1) | (val & 1);
131 val >>= 1;
132 }
133 return retval;
134 }
135
136 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
137 u8 phy, int kbps,
138 u32 frameLen, u16 rateix,
139 bool shortPreamble)
140 {
141 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
142
143 if (kbps == 0)
144 return 0;
145
146 switch (phy) {
147 case WLAN_RC_PHY_CCK:
148 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
149 if (shortPreamble)
150 phyTime >>= 1;
151 numBits = frameLen << 3;
152 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
153 break;
154 case WLAN_RC_PHY_OFDM:
155 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
156 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
157 numBits = OFDM_PLCP_BITS + (frameLen << 3);
158 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159 txTime = OFDM_SIFS_TIME_QUARTER
160 + OFDM_PREAMBLE_TIME_QUARTER
161 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
162 } else if (ah->curchan &&
163 IS_CHAN_HALF_RATE(ah->curchan)) {
164 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
165 numBits = OFDM_PLCP_BITS + (frameLen << 3);
166 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
167 txTime = OFDM_SIFS_TIME_HALF +
168 OFDM_PREAMBLE_TIME_HALF
169 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
170 } else {
171 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
172 numBits = OFDM_PLCP_BITS + (frameLen << 3);
173 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
174 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
175 + (numSymbols * OFDM_SYMBOL_TIME);
176 }
177 break;
178 default:
179 ath_err(ath9k_hw_common(ah),
180 "Unknown phy %u (rate ix %u)\n", phy, rateix);
181 txTime = 0;
182 break;
183 }
184
185 return txTime;
186 }
187 EXPORT_SYMBOL(ath9k_hw_computetxtime);
188
189 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
190 struct ath9k_channel *chan,
191 struct chan_centers *centers)
192 {
193 int8_t extoff;
194
195 if (!IS_CHAN_HT40(chan)) {
196 centers->ctl_center = centers->ext_center =
197 centers->synth_center = chan->channel;
198 return;
199 }
200
201 if (IS_CHAN_HT40PLUS(chan)) {
202 centers->synth_center =
203 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
204 extoff = 1;
205 } else {
206 centers->synth_center =
207 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
208 extoff = -1;
209 }
210
211 centers->ctl_center =
212 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
213 /* 25 MHz spacing is supported by hw but not on upper layers */
214 centers->ext_center =
215 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
216 }
217
218 /******************/
219 /* Chip Revisions */
220 /******************/
221
222 static void ath9k_hw_read_revisions(struct ath_hw *ah)
223 {
224 u32 val;
225
226 if (ah->get_mac_revision)
227 ah->hw_version.macRev = ah->get_mac_revision();
228
229 switch (ah->hw_version.devid) {
230 case AR5416_AR9100_DEVID:
231 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
232 break;
233 case AR9300_DEVID_AR9330:
234 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
235 if (!ah->get_mac_revision) {
236 val = REG_READ(ah, AR_SREV);
237 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
238 }
239 return;
240 case AR9300_DEVID_AR9340:
241 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
242 return;
243 case AR9300_DEVID_QCA955X:
244 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
245 return;
246 case AR9300_DEVID_AR953X:
247 ah->hw_version.macVersion = AR_SREV_VERSION_9531;
248 return;
249 }
250
251 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
252
253 if (val == 0xFF) {
254 val = REG_READ(ah, AR_SREV);
255 ah->hw_version.macVersion =
256 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
257 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
258
259 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
260 ah->is_pciexpress = true;
261 else
262 ah->is_pciexpress = (val &
263 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
264 } else {
265 if (!AR_SREV_9100(ah))
266 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
267
268 ah->hw_version.macRev = val & AR_SREV_REVISION;
269
270 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
271 ah->is_pciexpress = true;
272 }
273 }
274
275 /************************************/
276 /* HW Attach, Detach, Init Routines */
277 /************************************/
278
279 static void ath9k_hw_disablepcie(struct ath_hw *ah)
280 {
281 if (!AR_SREV_5416(ah))
282 return;
283
284 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
285 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
286 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
288 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
293
294 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
295 }
296
297 /* This should work for all families including legacy */
298 static bool ath9k_hw_chip_test(struct ath_hw *ah)
299 {
300 struct ath_common *common = ath9k_hw_common(ah);
301 u32 regAddr[2] = { AR_STA_ID0 };
302 u32 regHold[2];
303 static const u32 patternData[4] = {
304 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
305 };
306 int i, j, loop_max;
307
308 if (!AR_SREV_9300_20_OR_LATER(ah)) {
309 loop_max = 2;
310 regAddr[1] = AR_PHY_BASE + (8 << 2);
311 } else
312 loop_max = 1;
313
314 for (i = 0; i < loop_max; i++) {
315 u32 addr = regAddr[i];
316 u32 wrData, rdData;
317
318 regHold[i] = REG_READ(ah, addr);
319 for (j = 0; j < 0x100; j++) {
320 wrData = (j << 16) | j;
321 REG_WRITE(ah, addr, wrData);
322 rdData = REG_READ(ah, addr);
323 if (rdData != wrData) {
324 ath_err(common,
325 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
326 addr, wrData, rdData);
327 return false;
328 }
329 }
330 for (j = 0; j < 4; j++) {
331 wrData = patternData[j];
332 REG_WRITE(ah, addr, wrData);
333 rdData = REG_READ(ah, addr);
334 if (wrData != rdData) {
335 ath_err(common,
336 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
337 addr, wrData, rdData);
338 return false;
339 }
340 }
341 REG_WRITE(ah, regAddr[i], regHold[i]);
342 }
343 udelay(100);
344
345 return true;
346 }
347
348 static void ath9k_hw_init_config(struct ath_hw *ah)
349 {
350 struct ath_common *common = ath9k_hw_common(ah);
351
352 ah->config.dma_beacon_response_time = 1;
353 ah->config.sw_beacon_response_time = 6;
354 ah->config.cwm_ignore_extcca = 0;
355 ah->config.analog_shiftreg = 1;
356
357 ah->config.rx_intr_mitigation = true;
358
359 if (AR_SREV_9300_20_OR_LATER(ah)) {
360 ah->config.rimt_last = 500;
361 ah->config.rimt_first = 2000;
362 } else {
363 ah->config.rimt_last = 250;
364 ah->config.rimt_first = 700;
365 }
366
367 /*
368 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
369 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
370 * This means we use it for all AR5416 devices, and the few
371 * minor PCI AR9280 devices out there.
372 *
373 * Serialization is required because these devices do not handle
374 * well the case of two concurrent reads/writes due to the latency
375 * involved. During one read/write another read/write can be issued
376 * on another CPU while the previous read/write may still be working
377 * on our hardware, if we hit this case the hardware poops in a loop.
378 * We prevent this by serializing reads and writes.
379 *
380 * This issue is not present on PCI-Express devices or pre-AR5416
381 * devices (legacy, 802.11abg).
382 */
383 if (num_possible_cpus() > 1)
384 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
385
386 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
387 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
388 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
389 !ah->is_pciexpress)) {
390 ah->config.serialize_regmode = SER_REG_MODE_ON;
391 } else {
392 ah->config.serialize_regmode = SER_REG_MODE_OFF;
393 }
394 }
395
396 ath_dbg(common, RESET, "serialize_regmode is %d\n",
397 ah->config.serialize_regmode);
398
399 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
400 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
401 else
402 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
403 }
404
405 static void ath9k_hw_init_defaults(struct ath_hw *ah)
406 {
407 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
408
409 regulatory->country_code = CTRY_DEFAULT;
410 regulatory->power_limit = MAX_RATE_POWER;
411
412 ah->hw_version.magic = AR5416_MAGIC;
413 ah->hw_version.subvendorid = 0;
414
415 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
416 AR_STA_ID1_MCAST_KSRCH;
417 if (AR_SREV_9100(ah))
418 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
419
420 ah->slottime = ATH9K_SLOT_TIME_9;
421 ah->globaltxtimeout = (u32) -1;
422 ah->power_mode = ATH9K_PM_UNDEFINED;
423 ah->htc_reset_init = true;
424
425 ah->ani_function = ATH9K_ANI_ALL;
426 if (!AR_SREV_9300_20_OR_LATER(ah))
427 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
428
429 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
430 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
431 else
432 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
433 }
434
435 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
436 {
437 struct ath_common *common = ath9k_hw_common(ah);
438 u32 sum;
439 int i;
440 u16 eeval;
441 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
442
443 sum = 0;
444 for (i = 0; i < 3; i++) {
445 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
446 sum += eeval;
447 common->macaddr[2 * i] = eeval >> 8;
448 common->macaddr[2 * i + 1] = eeval & 0xff;
449 }
450 if (!is_valid_ether_addr(common->macaddr)) {
451 ath_err(common,
452 "eeprom contains invalid mac address: %pM\n",
453 common->macaddr);
454
455 random_ether_addr(common->macaddr);
456 ath_err(common,
457 "random mac address will be used: %pM\n",
458 common->macaddr);
459 }
460
461 return 0;
462 }
463
464 static int ath9k_hw_post_init(struct ath_hw *ah)
465 {
466 struct ath_common *common = ath9k_hw_common(ah);
467 int ecode;
468
469 if (common->bus_ops->ath_bus_type != ATH_USB) {
470 if (!ath9k_hw_chip_test(ah))
471 return -ENODEV;
472 }
473
474 if (!AR_SREV_9300_20_OR_LATER(ah)) {
475 ecode = ar9002_hw_rf_claim(ah);
476 if (ecode != 0)
477 return ecode;
478 }
479
480 ecode = ath9k_hw_eeprom_init(ah);
481 if (ecode != 0)
482 return ecode;
483
484 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
485 ah->eep_ops->get_eeprom_ver(ah),
486 ah->eep_ops->get_eeprom_rev(ah));
487
488 ath9k_hw_ani_init(ah);
489
490 /*
491 * EEPROM needs to be initialized before we do this.
492 * This is required for regulatory compliance.
493 */
494 if (AR_SREV_9300_20_OR_LATER(ah)) {
495 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
496 if ((regdmn & 0xF0) == CTL_FCC) {
497 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
498 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
499 }
500 }
501
502 return 0;
503 }
504
505 static int ath9k_hw_attach_ops(struct ath_hw *ah)
506 {
507 if (!AR_SREV_9300_20_OR_LATER(ah))
508 return ar9002_hw_attach_ops(ah);
509
510 ar9003_hw_attach_ops(ah);
511 return 0;
512 }
513
514 /* Called for all hardware families */
515 static int __ath9k_hw_init(struct ath_hw *ah)
516 {
517 struct ath_common *common = ath9k_hw_common(ah);
518 int r = 0;
519
520 ath9k_hw_read_revisions(ah);
521
522 switch (ah->hw_version.macVersion) {
523 case AR_SREV_VERSION_5416_PCI:
524 case AR_SREV_VERSION_5416_PCIE:
525 case AR_SREV_VERSION_9160:
526 case AR_SREV_VERSION_9100:
527 case AR_SREV_VERSION_9280:
528 case AR_SREV_VERSION_9285:
529 case AR_SREV_VERSION_9287:
530 case AR_SREV_VERSION_9271:
531 case AR_SREV_VERSION_9300:
532 case AR_SREV_VERSION_9330:
533 case AR_SREV_VERSION_9485:
534 case AR_SREV_VERSION_9340:
535 case AR_SREV_VERSION_9462:
536 case AR_SREV_VERSION_9550:
537 case AR_SREV_VERSION_9565:
538 case AR_SREV_VERSION_9531:
539 break;
540 default:
541 ath_err(common,
542 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
543 ah->hw_version.macVersion, ah->hw_version.macRev);
544 return -EOPNOTSUPP;
545 }
546
547 /*
548 * Read back AR_WA into a permanent copy and set bits 14 and 17.
549 * We need to do this to avoid RMW of this register. We cannot
550 * read the reg when chip is asleep.
551 */
552 if (AR_SREV_9300_20_OR_LATER(ah)) {
553 ah->WARegVal = REG_READ(ah, AR_WA);
554 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
555 AR_WA_ASPM_TIMER_BASED_DISABLE);
556 }
557
558 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
559 ath_err(common, "Couldn't reset chip\n");
560 return -EIO;
561 }
562
563 if (AR_SREV_9565(ah)) {
564 ah->WARegVal |= AR_WA_BIT22;
565 REG_WRITE(ah, AR_WA, ah->WARegVal);
566 }
567
568 ath9k_hw_init_defaults(ah);
569 ath9k_hw_init_config(ah);
570
571 r = ath9k_hw_attach_ops(ah);
572 if (r)
573 return r;
574
575 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
576 ath_err(common, "Couldn't wakeup chip\n");
577 return -EIO;
578 }
579
580 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
581 AR_SREV_9330(ah) || AR_SREV_9550(ah))
582 ah->is_pciexpress = false;
583
584 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
585 ath9k_hw_init_cal_settings(ah);
586
587 if (!ah->is_pciexpress)
588 ath9k_hw_disablepcie(ah);
589
590 r = ath9k_hw_post_init(ah);
591 if (r)
592 return r;
593
594 ath9k_hw_init_mode_gain_regs(ah);
595 r = ath9k_hw_fill_cap_info(ah);
596 if (r)
597 return r;
598
599 r = ath9k_hw_init_macaddr(ah);
600 if (r) {
601 ath_err(common, "Failed to initialize MAC address\n");
602 return r;
603 }
604
605 ath9k_hw_init_hang_checks(ah);
606
607 common->state = ATH_HW_INITIALIZED;
608
609 return 0;
610 }
611
612 int ath9k_hw_init(struct ath_hw *ah)
613 {
614 int ret;
615 struct ath_common *common = ath9k_hw_common(ah);
616
617 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
618 switch (ah->hw_version.devid) {
619 case AR5416_DEVID_PCI:
620 case AR5416_DEVID_PCIE:
621 case AR5416_AR9100_DEVID:
622 case AR9160_DEVID_PCI:
623 case AR9280_DEVID_PCI:
624 case AR9280_DEVID_PCIE:
625 case AR9285_DEVID_PCIE:
626 case AR9287_DEVID_PCI:
627 case AR9287_DEVID_PCIE:
628 case AR2427_DEVID_PCIE:
629 case AR9300_DEVID_PCIE:
630 case AR9300_DEVID_AR9485_PCIE:
631 case AR9300_DEVID_AR9330:
632 case AR9300_DEVID_AR9340:
633 case AR9300_DEVID_QCA955X:
634 case AR9300_DEVID_AR9580:
635 case AR9300_DEVID_AR9462:
636 case AR9485_DEVID_AR1111:
637 case AR9300_DEVID_AR9565:
638 case AR9300_DEVID_AR953X:
639 break;
640 default:
641 if (common->bus_ops->ath_bus_type == ATH_USB)
642 break;
643 ath_err(common, "Hardware device ID 0x%04x not supported\n",
644 ah->hw_version.devid);
645 return -EOPNOTSUPP;
646 }
647
648 ret = __ath9k_hw_init(ah);
649 if (ret) {
650 ath_err(common,
651 "Unable to initialize hardware; initialization status: %d\n",
652 ret);
653 return ret;
654 }
655
656 ath_dynack_init(ah);
657
658 return 0;
659 }
660 EXPORT_SYMBOL(ath9k_hw_init);
661
662 static void ath9k_hw_init_qos(struct ath_hw *ah)
663 {
664 ENABLE_REGWRITE_BUFFER(ah);
665
666 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
667 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
668
669 REG_WRITE(ah, AR_QOS_NO_ACK,
670 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
671 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
672 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
673
674 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
675 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
676 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
677 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
678 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
679
680 REGWRITE_BUFFER_FLUSH(ah);
681 }
682
683 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
684 {
685 struct ath_common *common = ath9k_hw_common(ah);
686 int i = 0;
687
688 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
689 udelay(100);
690 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
691
692 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
693
694 udelay(100);
695
696 if (WARN_ON_ONCE(i >= 100)) {
697 ath_err(common, "PLL4 meaurement not done\n");
698 break;
699 }
700
701 i++;
702 }
703
704 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
705 }
706 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
707
708 static void ath9k_hw_init_pll(struct ath_hw *ah,
709 struct ath9k_channel *chan)
710 {
711 u32 pll;
712
713 pll = ath9k_hw_compute_pll_control(ah, chan);
714
715 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
716 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
717 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
718 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
719 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
720 AR_CH0_DPLL2_KD, 0x40);
721 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
722 AR_CH0_DPLL2_KI, 0x4);
723
724 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
725 AR_CH0_BB_DPLL1_REFDIV, 0x5);
726 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
727 AR_CH0_BB_DPLL1_NINI, 0x58);
728 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
729 AR_CH0_BB_DPLL1_NFRAC, 0x0);
730
731 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
732 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
733 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
734 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
735 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
736 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
737
738 /* program BB PLL phase_shift to 0x6 */
739 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
740 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
741
742 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
743 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
744 udelay(1000);
745 } else if (AR_SREV_9330(ah)) {
746 u32 ddr_dpll2, pll_control2, kd;
747
748 if (ah->is_clk_25mhz) {
749 ddr_dpll2 = 0x18e82f01;
750 pll_control2 = 0xe04a3d;
751 kd = 0x1d;
752 } else {
753 ddr_dpll2 = 0x19e82f01;
754 pll_control2 = 0x886666;
755 kd = 0x3d;
756 }
757
758 /* program DDR PLL ki and kd value */
759 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
760
761 /* program DDR PLL phase_shift */
762 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
763 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
764
765 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
766 pll | AR_RTC_9300_PLL_BYPASS);
767 udelay(1000);
768
769 /* program refdiv, nint, frac to RTC register */
770 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
771
772 /* program BB PLL kd and ki value */
773 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
774 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
775
776 /* program BB PLL phase_shift */
777 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
778 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
779 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
780 u32 regval, pll2_divint, pll2_divfrac, refdiv;
781
782 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
783 pll | AR_RTC_9300_SOC_PLL_BYPASS);
784 udelay(1000);
785
786 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
787 udelay(100);
788
789 if (ah->is_clk_25mhz) {
790 if (AR_SREV_9531(ah)) {
791 pll2_divint = 0x1c;
792 pll2_divfrac = 0xa3d2;
793 refdiv = 1;
794 } else {
795 pll2_divint = 0x54;
796 pll2_divfrac = 0x1eb85;
797 refdiv = 3;
798 }
799 } else {
800 if (AR_SREV_9340(ah)) {
801 pll2_divint = 88;
802 pll2_divfrac = 0;
803 refdiv = 5;
804 } else {
805 pll2_divint = 0x11;
806 pll2_divfrac =
807 AR_SREV_9531(ah) ? 0x26665 : 0x26666;
808 refdiv = 1;
809 }
810 }
811
812 regval = REG_READ(ah, AR_PHY_PLL_MODE);
813 if (AR_SREV_9531(ah))
814 regval |= (0x1 << 22);
815 else
816 regval |= (0x1 << 16);
817 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
818 udelay(100);
819
820 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
821 (pll2_divint << 18) | pll2_divfrac);
822 udelay(100);
823
824 regval = REG_READ(ah, AR_PHY_PLL_MODE);
825 if (AR_SREV_9340(ah))
826 regval = (regval & 0x80071fff) |
827 (0x1 << 30) |
828 (0x1 << 13) |
829 (0x4 << 26) |
830 (0x18 << 19);
831 else if (AR_SREV_9531(ah))
832 regval = (regval & 0x01c00fff) |
833 (0x1 << 31) |
834 (0x2 << 29) |
835 (0xa << 25) |
836 (0x1 << 19) |
837 (0x6 << 12);
838 else
839 regval = (regval & 0x80071fff) |
840 (0x3 << 30) |
841 (0x1 << 13) |
842 (0x4 << 26) |
843 (0x60 << 19);
844 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
845
846 if (AR_SREV_9531(ah))
847 REG_WRITE(ah, AR_PHY_PLL_MODE,
848 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
849 else
850 REG_WRITE(ah, AR_PHY_PLL_MODE,
851 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
852
853 udelay(1000);
854 }
855
856 if (AR_SREV_9565(ah))
857 pll |= 0x40000;
858 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
859
860 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
861 AR_SREV_9550(ah))
862 udelay(1000);
863
864 /* Switch the core clock for ar9271 to 117Mhz */
865 if (AR_SREV_9271(ah)) {
866 udelay(500);
867 REG_WRITE(ah, 0x50040, 0x304);
868 }
869
870 udelay(RTC_PLL_SETTLE_DELAY);
871
872 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
873
874 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
875 if (ah->is_clk_25mhz) {
876 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
877 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
878 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
879 } else {
880 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
881 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
882 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
883 }
884 udelay(100);
885 }
886 }
887
888 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
889 enum nl80211_iftype opmode)
890 {
891 u32 sync_default = AR_INTR_SYNC_DEFAULT;
892 u32 imr_reg = AR_IMR_TXERR |
893 AR_IMR_TXURN |
894 AR_IMR_RXERR |
895 AR_IMR_RXORN |
896 AR_IMR_BCNMISC;
897
898 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
899 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
900
901 if (AR_SREV_9300_20_OR_LATER(ah)) {
902 imr_reg |= AR_IMR_RXOK_HP;
903 if (ah->config.rx_intr_mitigation)
904 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
905 else
906 imr_reg |= AR_IMR_RXOK_LP;
907
908 } else {
909 if (ah->config.rx_intr_mitigation)
910 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
911 else
912 imr_reg |= AR_IMR_RXOK;
913 }
914
915 if (ah->config.tx_intr_mitigation)
916 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
917 else
918 imr_reg |= AR_IMR_TXOK;
919
920 ENABLE_REGWRITE_BUFFER(ah);
921
922 REG_WRITE(ah, AR_IMR, imr_reg);
923 ah->imrs2_reg |= AR_IMR_S2_GTT;
924 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
925
926 if (!AR_SREV_9100(ah)) {
927 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
928 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
929 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
930 }
931
932 REGWRITE_BUFFER_FLUSH(ah);
933
934 if (AR_SREV_9300_20_OR_LATER(ah)) {
935 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
936 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
937 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
938 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
939 }
940 }
941
942 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
943 {
944 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
945 val = min(val, (u32) 0xFFFF);
946 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
947 }
948
949 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
950 {
951 u32 val = ath9k_hw_mac_to_clks(ah, us);
952 val = min(val, (u32) 0xFFFF);
953 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
954 }
955
956 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
957 {
958 u32 val = ath9k_hw_mac_to_clks(ah, us);
959 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
960 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
961 }
962
963 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
964 {
965 u32 val = ath9k_hw_mac_to_clks(ah, us);
966 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
967 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
968 }
969
970 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
971 {
972 if (tu > 0xFFFF) {
973 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
974 tu);
975 ah->globaltxtimeout = (u32) -1;
976 return false;
977 } else {
978 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
979 ah->globaltxtimeout = tu;
980 return true;
981 }
982 }
983
984 void ath9k_hw_init_global_settings(struct ath_hw *ah)
985 {
986 struct ath_common *common = ath9k_hw_common(ah);
987 const struct ath9k_channel *chan = ah->curchan;
988 int acktimeout, ctstimeout, ack_offset = 0;
989 int slottime;
990 int sifstime;
991 int rx_lat = 0, tx_lat = 0, eifs = 0;
992 u32 reg;
993
994 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
995 ah->misc_mode);
996
997 if (!chan)
998 return;
999
1000 if (ah->misc_mode != 0)
1001 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1002
1003 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1004 rx_lat = 41;
1005 else
1006 rx_lat = 37;
1007 tx_lat = 54;
1008
1009 if (IS_CHAN_5GHZ(chan))
1010 sifstime = 16;
1011 else
1012 sifstime = 10;
1013
1014 if (IS_CHAN_HALF_RATE(chan)) {
1015 eifs = 175;
1016 rx_lat *= 2;
1017 tx_lat *= 2;
1018 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1019 tx_lat += 11;
1020
1021 sifstime = 32;
1022 ack_offset = 16;
1023 slottime = 13;
1024 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1025 eifs = 340;
1026 rx_lat = (rx_lat * 4) - 1;
1027 tx_lat *= 4;
1028 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1029 tx_lat += 22;
1030
1031 sifstime = 64;
1032 ack_offset = 32;
1033 slottime = 21;
1034 } else {
1035 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1036 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1037 reg = AR_USEC_ASYNC_FIFO;
1038 } else {
1039 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1040 common->clockrate;
1041 reg = REG_READ(ah, AR_USEC);
1042 }
1043 rx_lat = MS(reg, AR_USEC_RX_LAT);
1044 tx_lat = MS(reg, AR_USEC_TX_LAT);
1045
1046 slottime = ah->slottime;
1047 }
1048
1049 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1050 slottime += 3 * ah->coverage_class;
1051 acktimeout = slottime + sifstime + ack_offset;
1052 ctstimeout = acktimeout;
1053
1054 /*
1055 * Workaround for early ACK timeouts, add an offset to match the
1056 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1057 * This was initially only meant to work around an issue with delayed
1058 * BA frames in some implementations, but it has been found to fix ACK
1059 * timeout issues in other cases as well.
1060 */
1061 if (IS_CHAN_2GHZ(chan) &&
1062 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1063 acktimeout += 64 - sifstime - ah->slottime;
1064 ctstimeout += 48 - sifstime - ah->slottime;
1065 }
1066
1067 if (ah->dynack.enabled) {
1068 acktimeout = ah->dynack.ackto;
1069 ctstimeout = acktimeout;
1070 slottime = (acktimeout - 3) / 2;
1071 } else {
1072 ah->dynack.ackto = acktimeout;
1073 }
1074
1075 ath9k_hw_set_sifs_time(ah, sifstime);
1076 ath9k_hw_setslottime(ah, slottime);
1077 ath9k_hw_set_ack_timeout(ah, acktimeout);
1078 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1079 if (ah->globaltxtimeout != (u32) -1)
1080 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1081
1082 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1083 REG_RMW(ah, AR_USEC,
1084 (common->clockrate - 1) |
1085 SM(rx_lat, AR_USEC_RX_LAT) |
1086 SM(tx_lat, AR_USEC_TX_LAT),
1087 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1088
1089 }
1090 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1091
1092 void ath9k_hw_deinit(struct ath_hw *ah)
1093 {
1094 struct ath_common *common = ath9k_hw_common(ah);
1095
1096 if (common->state < ATH_HW_INITIALIZED)
1097 return;
1098
1099 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1100 }
1101 EXPORT_SYMBOL(ath9k_hw_deinit);
1102
1103 /*******/
1104 /* INI */
1105 /*******/
1106
1107 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1108 {
1109 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1110
1111 if (IS_CHAN_2GHZ(chan))
1112 ctl |= CTL_11G;
1113 else
1114 ctl |= CTL_11A;
1115
1116 return ctl;
1117 }
1118
1119 /****************************************/
1120 /* Reset and Channel Switching Routines */
1121 /****************************************/
1122
1123 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1124 {
1125 struct ath_common *common = ath9k_hw_common(ah);
1126 int txbuf_size;
1127
1128 ENABLE_REGWRITE_BUFFER(ah);
1129
1130 /*
1131 * set AHB_MODE not to do cacheline prefetches
1132 */
1133 if (!AR_SREV_9300_20_OR_LATER(ah))
1134 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1135
1136 /*
1137 * let mac dma reads be in 128 byte chunks
1138 */
1139 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1140
1141 REGWRITE_BUFFER_FLUSH(ah);
1142
1143 /*
1144 * Restore TX Trigger Level to its pre-reset value.
1145 * The initial value depends on whether aggregation is enabled, and is
1146 * adjusted whenever underruns are detected.
1147 */
1148 if (!AR_SREV_9300_20_OR_LATER(ah))
1149 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1150
1151 ENABLE_REGWRITE_BUFFER(ah);
1152
1153 /*
1154 * let mac dma writes be in 128 byte chunks
1155 */
1156 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1157
1158 /*
1159 * Setup receive FIFO threshold to hold off TX activities
1160 */
1161 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1162
1163 if (AR_SREV_9300_20_OR_LATER(ah)) {
1164 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1165 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1166
1167 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1168 ah->caps.rx_status_len);
1169 }
1170
1171 /*
1172 * reduce the number of usable entries in PCU TXBUF to avoid
1173 * wrap around issues.
1174 */
1175 if (AR_SREV_9285(ah)) {
1176 /* For AR9285 the number of Fifos are reduced to half.
1177 * So set the usable tx buf size also to half to
1178 * avoid data/delimiter underruns
1179 */
1180 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1181 } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1182 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1183 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1184 } else {
1185 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1186 }
1187
1188 if (!AR_SREV_9271(ah))
1189 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1190
1191 REGWRITE_BUFFER_FLUSH(ah);
1192
1193 if (AR_SREV_9300_20_OR_LATER(ah))
1194 ath9k_hw_reset_txstatus_ring(ah);
1195 }
1196
1197 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1198 {
1199 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1200 u32 set = AR_STA_ID1_KSRCH_MODE;
1201
1202 switch (opmode) {
1203 case NL80211_IFTYPE_ADHOC:
1204 if (!AR_SREV_9340_13(ah)) {
1205 set |= AR_STA_ID1_ADHOC;
1206 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1207 break;
1208 }
1209 /* fall through */
1210 case NL80211_IFTYPE_MESH_POINT:
1211 case NL80211_IFTYPE_AP:
1212 set |= AR_STA_ID1_STA_AP;
1213 /* fall through */
1214 case NL80211_IFTYPE_STATION:
1215 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1216 break;
1217 default:
1218 if (!ah->is_monitoring)
1219 set = 0;
1220 break;
1221 }
1222 REG_RMW(ah, AR_STA_ID1, set, mask);
1223 }
1224
1225 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1226 u32 *coef_mantissa, u32 *coef_exponent)
1227 {
1228 u32 coef_exp, coef_man;
1229
1230 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1231 if ((coef_scaled >> coef_exp) & 0x1)
1232 break;
1233
1234 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1235
1236 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1237
1238 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1239 *coef_exponent = coef_exp - 16;
1240 }
1241
1242 /* AR9330 WAR:
1243 * call external reset function to reset WMAC if:
1244 * - doing a cold reset
1245 * - we have pending frames in the TX queues.
1246 */
1247 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1248 {
1249 int i, npend = 0;
1250
1251 for (i = 0; i < AR_NUM_QCU; i++) {
1252 npend = ath9k_hw_numtxpending(ah, i);
1253 if (npend)
1254 break;
1255 }
1256
1257 if (ah->external_reset &&
1258 (npend || type == ATH9K_RESET_COLD)) {
1259 int reset_err = 0;
1260
1261 ath_dbg(ath9k_hw_common(ah), RESET,
1262 "reset MAC via external reset\n");
1263
1264 reset_err = ah->external_reset();
1265 if (reset_err) {
1266 ath_err(ath9k_hw_common(ah),
1267 "External reset failed, err=%d\n",
1268 reset_err);
1269 return false;
1270 }
1271
1272 REG_WRITE(ah, AR_RTC_RESET, 1);
1273 }
1274
1275 return true;
1276 }
1277
1278 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1279 {
1280 u32 rst_flags;
1281 u32 tmpReg;
1282
1283 if (AR_SREV_9100(ah)) {
1284 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1285 AR_RTC_DERIVED_CLK_PERIOD, 1);
1286 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1287 }
1288
1289 ENABLE_REGWRITE_BUFFER(ah);
1290
1291 if (AR_SREV_9300_20_OR_LATER(ah)) {
1292 REG_WRITE(ah, AR_WA, ah->WARegVal);
1293 udelay(10);
1294 }
1295
1296 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1297 AR_RTC_FORCE_WAKE_ON_INT);
1298
1299 if (AR_SREV_9100(ah)) {
1300 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1301 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1302 } else {
1303 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1304 if (AR_SREV_9340(ah))
1305 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1306 else
1307 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1308 AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1309
1310 if (tmpReg) {
1311 u32 val;
1312 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1313
1314 val = AR_RC_HOSTIF;
1315 if (!AR_SREV_9300_20_OR_LATER(ah))
1316 val |= AR_RC_AHB;
1317 REG_WRITE(ah, AR_RC, val);
1318
1319 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1320 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1321
1322 rst_flags = AR_RTC_RC_MAC_WARM;
1323 if (type == ATH9K_RESET_COLD)
1324 rst_flags |= AR_RTC_RC_MAC_COLD;
1325 }
1326
1327 if (AR_SREV_9330(ah)) {
1328 if (!ath9k_hw_ar9330_reset_war(ah, type))
1329 return false;
1330 }
1331
1332 if (ath9k_hw_mci_is_enabled(ah))
1333 ar9003_mci_check_gpm_offset(ah);
1334
1335 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1336
1337 REGWRITE_BUFFER_FLUSH(ah);
1338
1339 if (AR_SREV_9300_20_OR_LATER(ah))
1340 udelay(50);
1341 else if (AR_SREV_9100(ah))
1342 mdelay(10);
1343 else
1344 udelay(100);
1345
1346 REG_WRITE(ah, AR_RTC_RC, 0);
1347 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1348 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1349 return false;
1350 }
1351
1352 if (!AR_SREV_9100(ah))
1353 REG_WRITE(ah, AR_RC, 0);
1354
1355 if (AR_SREV_9100(ah))
1356 udelay(50);
1357
1358 return true;
1359 }
1360
1361 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1362 {
1363 ENABLE_REGWRITE_BUFFER(ah);
1364
1365 if (AR_SREV_9300_20_OR_LATER(ah)) {
1366 REG_WRITE(ah, AR_WA, ah->WARegVal);
1367 udelay(10);
1368 }
1369
1370 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1371 AR_RTC_FORCE_WAKE_ON_INT);
1372
1373 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1374 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1375
1376 REG_WRITE(ah, AR_RTC_RESET, 0);
1377
1378 REGWRITE_BUFFER_FLUSH(ah);
1379
1380 udelay(2);
1381
1382 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1383 REG_WRITE(ah, AR_RC, 0);
1384
1385 REG_WRITE(ah, AR_RTC_RESET, 1);
1386
1387 if (!ath9k_hw_wait(ah,
1388 AR_RTC_STATUS,
1389 AR_RTC_STATUS_M,
1390 AR_RTC_STATUS_ON,
1391 AH_WAIT_TIMEOUT)) {
1392 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1393 return false;
1394 }
1395
1396 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1397 }
1398
1399 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1400 {
1401 bool ret = false;
1402
1403 if (AR_SREV_9300_20_OR_LATER(ah)) {
1404 REG_WRITE(ah, AR_WA, ah->WARegVal);
1405 udelay(10);
1406 }
1407
1408 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1409 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1410
1411 if (!ah->reset_power_on)
1412 type = ATH9K_RESET_POWER_ON;
1413
1414 switch (type) {
1415 case ATH9K_RESET_POWER_ON:
1416 ret = ath9k_hw_set_reset_power_on(ah);
1417 if (ret)
1418 ah->reset_power_on = true;
1419 break;
1420 case ATH9K_RESET_WARM:
1421 case ATH9K_RESET_COLD:
1422 ret = ath9k_hw_set_reset(ah, type);
1423 break;
1424 default:
1425 break;
1426 }
1427
1428 return ret;
1429 }
1430
1431 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1432 struct ath9k_channel *chan)
1433 {
1434 int reset_type = ATH9K_RESET_WARM;
1435
1436 if (AR_SREV_9280(ah)) {
1437 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1438 reset_type = ATH9K_RESET_POWER_ON;
1439 else
1440 reset_type = ATH9K_RESET_COLD;
1441 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1442 (REG_READ(ah, AR_CR) & AR_CR_RXE))
1443 reset_type = ATH9K_RESET_COLD;
1444
1445 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1446 return false;
1447
1448 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1449 return false;
1450
1451 ah->chip_fullsleep = false;
1452
1453 if (AR_SREV_9330(ah))
1454 ar9003_hw_internal_regulator_apply(ah);
1455 ath9k_hw_init_pll(ah, chan);
1456
1457 return true;
1458 }
1459
1460 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1461 struct ath9k_channel *chan)
1462 {
1463 struct ath_common *common = ath9k_hw_common(ah);
1464 struct ath9k_hw_capabilities *pCap = &ah->caps;
1465 bool band_switch = false, mode_diff = false;
1466 u8 ini_reloaded = 0;
1467 u32 qnum;
1468 int r;
1469
1470 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1471 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1472 band_switch = !!(flags_diff & CHANNEL_5GHZ);
1473 mode_diff = !!(flags_diff & ~CHANNEL_HT);
1474 }
1475
1476 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1477 if (ath9k_hw_numtxpending(ah, qnum)) {
1478 ath_dbg(common, QUEUE,
1479 "Transmit frames pending on queue %d\n", qnum);
1480 return false;
1481 }
1482 }
1483
1484 if (!ath9k_hw_rfbus_req(ah)) {
1485 ath_err(common, "Could not kill baseband RX\n");
1486 return false;
1487 }
1488
1489 if (band_switch || mode_diff) {
1490 ath9k_hw_mark_phy_inactive(ah);
1491 udelay(5);
1492
1493 if (band_switch)
1494 ath9k_hw_init_pll(ah, chan);
1495
1496 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1497 ath_err(common, "Failed to do fast channel change\n");
1498 return false;
1499 }
1500 }
1501
1502 ath9k_hw_set_channel_regs(ah, chan);
1503
1504 r = ath9k_hw_rf_set_freq(ah, chan);
1505 if (r) {
1506 ath_err(common, "Failed to set channel\n");
1507 return false;
1508 }
1509 ath9k_hw_set_clockrate(ah);
1510 ath9k_hw_apply_txpower(ah, chan, false);
1511
1512 ath9k_hw_set_delta_slope(ah, chan);
1513 ath9k_hw_spur_mitigate_freq(ah, chan);
1514
1515 if (band_switch || ini_reloaded)
1516 ah->eep_ops->set_board_values(ah, chan);
1517
1518 ath9k_hw_init_bb(ah, chan);
1519 ath9k_hw_rfbus_done(ah);
1520
1521 if (band_switch || ini_reloaded) {
1522 ah->ah_flags |= AH_FASTCC;
1523 ath9k_hw_init_cal(ah, chan);
1524 ah->ah_flags &= ~AH_FASTCC;
1525 }
1526
1527 return true;
1528 }
1529
1530 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1531 {
1532 u32 gpio_mask = ah->gpio_mask;
1533 int i;
1534
1535 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1536 if (!(gpio_mask & 1))
1537 continue;
1538
1539 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1540 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1541 }
1542 }
1543
1544 void ath9k_hw_check_nav(struct ath_hw *ah)
1545 {
1546 struct ath_common *common = ath9k_hw_common(ah);
1547 u32 val;
1548
1549 val = REG_READ(ah, AR_NAV);
1550 if (val != 0xdeadbeef && val > 0x7fff) {
1551 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1552 REG_WRITE(ah, AR_NAV, 0);
1553 }
1554 }
1555 EXPORT_SYMBOL(ath9k_hw_check_nav);
1556
1557 bool ath9k_hw_check_alive(struct ath_hw *ah)
1558 {
1559 int count = 50;
1560 u32 reg, last_val;
1561
1562 if (AR_SREV_9300(ah))
1563 return !ath9k_hw_detect_mac_hang(ah);
1564
1565 if (AR_SREV_9285_12_OR_LATER(ah))
1566 return true;
1567
1568 last_val = REG_READ(ah, AR_OBS_BUS_1);
1569 do {
1570 reg = REG_READ(ah, AR_OBS_BUS_1);
1571 if (reg != last_val)
1572 return true;
1573
1574 udelay(1);
1575 last_val = reg;
1576 if ((reg & 0x7E7FFFEF) == 0x00702400)
1577 continue;
1578
1579 switch (reg & 0x7E000B00) {
1580 case 0x1E000000:
1581 case 0x52000B00:
1582 case 0x18000B00:
1583 continue;
1584 default:
1585 return true;
1586 }
1587 } while (count-- > 0);
1588
1589 return false;
1590 }
1591 EXPORT_SYMBOL(ath9k_hw_check_alive);
1592
1593 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1594 {
1595 /* Setup MFP options for CCMP */
1596 if (AR_SREV_9280_20_OR_LATER(ah)) {
1597 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1598 * frames when constructing CCMP AAD. */
1599 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1600 0xc7ff);
1601 ah->sw_mgmt_crypto = false;
1602 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1603 /* Disable hardware crypto for management frames */
1604 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1605 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1606 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1607 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1608 ah->sw_mgmt_crypto = true;
1609 } else {
1610 ah->sw_mgmt_crypto = true;
1611 }
1612 }
1613
1614 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1615 u32 macStaId1, u32 saveDefAntenna)
1616 {
1617 struct ath_common *common = ath9k_hw_common(ah);
1618
1619 ENABLE_REGWRITE_BUFFER(ah);
1620
1621 REG_RMW(ah, AR_STA_ID1, macStaId1
1622 | AR_STA_ID1_RTS_USE_DEF
1623 | ah->sta_id1_defaults,
1624 ~AR_STA_ID1_SADH_MASK);
1625 ath_hw_setbssidmask(common);
1626 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1627 ath9k_hw_write_associd(ah);
1628 REG_WRITE(ah, AR_ISR, ~0);
1629 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1630
1631 REGWRITE_BUFFER_FLUSH(ah);
1632
1633 ath9k_hw_set_operating_mode(ah, ah->opmode);
1634 }
1635
1636 static void ath9k_hw_init_queues(struct ath_hw *ah)
1637 {
1638 int i;
1639
1640 ENABLE_REGWRITE_BUFFER(ah);
1641
1642 for (i = 0; i < AR_NUM_DCU; i++)
1643 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1644
1645 REGWRITE_BUFFER_FLUSH(ah);
1646
1647 ah->intr_txqs = 0;
1648 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1649 ath9k_hw_resettxqueue(ah, i);
1650 }
1651
1652 /*
1653 * For big endian systems turn on swapping for descriptors
1654 */
1655 static void ath9k_hw_init_desc(struct ath_hw *ah)
1656 {
1657 struct ath_common *common = ath9k_hw_common(ah);
1658
1659 if (AR_SREV_9100(ah)) {
1660 u32 mask;
1661 mask = REG_READ(ah, AR_CFG);
1662 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1663 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1664 mask);
1665 } else {
1666 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1667 REG_WRITE(ah, AR_CFG, mask);
1668 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1669 REG_READ(ah, AR_CFG));
1670 }
1671 } else {
1672 if (common->bus_ops->ath_bus_type == ATH_USB) {
1673 /* Configure AR9271 target WLAN */
1674 if (AR_SREV_9271(ah))
1675 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1676 else
1677 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1678 }
1679 #ifdef __BIG_ENDIAN
1680 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1681 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1682 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1683 else
1684 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1685 #endif
1686 }
1687 }
1688
1689 /*
1690 * Fast channel change:
1691 * (Change synthesizer based on channel freq without resetting chip)
1692 */
1693 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1694 {
1695 struct ath_common *common = ath9k_hw_common(ah);
1696 struct ath9k_hw_capabilities *pCap = &ah->caps;
1697 int ret;
1698
1699 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1700 goto fail;
1701
1702 if (ah->chip_fullsleep)
1703 goto fail;
1704
1705 if (!ah->curchan)
1706 goto fail;
1707
1708 if (chan->channel == ah->curchan->channel)
1709 goto fail;
1710
1711 if ((ah->curchan->channelFlags | chan->channelFlags) &
1712 (CHANNEL_HALF | CHANNEL_QUARTER))
1713 goto fail;
1714
1715 /*
1716 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1717 */
1718 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1719 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1720 goto fail;
1721
1722 if (!ath9k_hw_check_alive(ah))
1723 goto fail;
1724
1725 /*
1726 * For AR9462, make sure that calibration data for
1727 * re-using are present.
1728 */
1729 if (AR_SREV_9462(ah) && (ah->caldata &&
1730 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1731 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1732 !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1733 goto fail;
1734
1735 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1736 ah->curchan->channel, chan->channel);
1737
1738 ret = ath9k_hw_channel_change(ah, chan);
1739 if (!ret)
1740 goto fail;
1741
1742 if (ath9k_hw_mci_is_enabled(ah))
1743 ar9003_mci_2g5g_switch(ah, false);
1744
1745 ath9k_hw_loadnf(ah, ah->curchan);
1746 ath9k_hw_start_nfcal(ah, true);
1747
1748 if (AR_SREV_9271(ah))
1749 ar9002_hw_load_ani_reg(ah, chan);
1750
1751 return 0;
1752 fail:
1753 return -EINVAL;
1754 }
1755
1756 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1757 {
1758 struct timespec ts;
1759 s64 usec;
1760
1761 if (!cur) {
1762 getrawmonotonic(&ts);
1763 cur = &ts;
1764 }
1765
1766 usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1767 usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1768
1769 return (u32) usec;
1770 }
1771 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1772
1773 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1774 struct ath9k_hw_cal_data *caldata, bool fastcc)
1775 {
1776 struct ath_common *common = ath9k_hw_common(ah);
1777 u32 saveLedState;
1778 u32 saveDefAntenna;
1779 u32 macStaId1;
1780 u64 tsf = 0;
1781 s64 usec = 0;
1782 int r;
1783 bool start_mci_reset = false;
1784 bool save_fullsleep = ah->chip_fullsleep;
1785
1786 if (ath9k_hw_mci_is_enabled(ah)) {
1787 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1788 if (start_mci_reset)
1789 return 0;
1790 }
1791
1792 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1793 return -EIO;
1794
1795 if (ah->curchan && !ah->chip_fullsleep)
1796 ath9k_hw_getnf(ah, ah->curchan);
1797
1798 ah->caldata = caldata;
1799 if (caldata && (chan->channel != caldata->channel ||
1800 chan->channelFlags != caldata->channelFlags)) {
1801 /* Operating channel changed, reset channel calibration data */
1802 memset(caldata, 0, sizeof(*caldata));
1803 ath9k_init_nfcal_hist_buffer(ah, chan);
1804 } else if (caldata) {
1805 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1806 }
1807 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1808
1809 if (fastcc) {
1810 r = ath9k_hw_do_fastcc(ah, chan);
1811 if (!r)
1812 return r;
1813 }
1814
1815 if (ath9k_hw_mci_is_enabled(ah))
1816 ar9003_mci_stop_bt(ah, save_fullsleep);
1817
1818 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1819 if (saveDefAntenna == 0)
1820 saveDefAntenna = 1;
1821
1822 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1823
1824 /* Save TSF before chip reset, a cold reset clears it */
1825 tsf = ath9k_hw_gettsf64(ah);
1826 usec = ktime_to_us(ktime_get_raw());
1827
1828 saveLedState = REG_READ(ah, AR_CFG_LED) &
1829 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1830 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1831
1832 ath9k_hw_mark_phy_inactive(ah);
1833
1834 ah->paprd_table_write_done = false;
1835
1836 /* Only required on the first reset */
1837 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1838 REG_WRITE(ah,
1839 AR9271_RESET_POWER_DOWN_CONTROL,
1840 AR9271_RADIO_RF_RST);
1841 udelay(50);
1842 }
1843
1844 if (!ath9k_hw_chip_reset(ah, chan)) {
1845 ath_err(common, "Chip reset failed\n");
1846 return -EINVAL;
1847 }
1848
1849 /* Only required on the first reset */
1850 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1851 ah->htc_reset_init = false;
1852 REG_WRITE(ah,
1853 AR9271_RESET_POWER_DOWN_CONTROL,
1854 AR9271_GATE_MAC_CTL);
1855 udelay(50);
1856 }
1857
1858 /* Restore TSF */
1859 usec = ktime_to_us(ktime_get_raw()) - usec;
1860 ath9k_hw_settsf64(ah, tsf + usec);
1861
1862 if (AR_SREV_9280_20_OR_LATER(ah))
1863 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1864
1865 if (!AR_SREV_9300_20_OR_LATER(ah))
1866 ar9002_hw_enable_async_fifo(ah);
1867
1868 r = ath9k_hw_process_ini(ah, chan);
1869 if (r)
1870 return r;
1871
1872 ath9k_hw_set_rfmode(ah, chan);
1873
1874 if (ath9k_hw_mci_is_enabled(ah))
1875 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1876
1877 /*
1878 * Some AR91xx SoC devices frequently fail to accept TSF writes
1879 * right after the chip reset. When that happens, write a new
1880 * value after the initvals have been applied, with an offset
1881 * based on measured time difference
1882 */
1883 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1884 tsf += 1500;
1885 ath9k_hw_settsf64(ah, tsf);
1886 }
1887
1888 ath9k_hw_init_mfp(ah);
1889
1890 ath9k_hw_set_delta_slope(ah, chan);
1891 ath9k_hw_spur_mitigate_freq(ah, chan);
1892 ah->eep_ops->set_board_values(ah, chan);
1893
1894 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1895
1896 r = ath9k_hw_rf_set_freq(ah, chan);
1897 if (r)
1898 return r;
1899
1900 ath9k_hw_set_clockrate(ah);
1901
1902 ath9k_hw_init_queues(ah);
1903 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1904 ath9k_hw_ani_cache_ini_regs(ah);
1905 ath9k_hw_init_qos(ah);
1906
1907 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1908 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1909
1910 ath9k_hw_init_global_settings(ah);
1911
1912 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1913 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1914 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1915 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1916 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1917 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1918 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1919 }
1920
1921 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1922
1923 ath9k_hw_set_dma(ah);
1924
1925 if (!ath9k_hw_mci_is_enabled(ah))
1926 REG_WRITE(ah, AR_OBS, 8);
1927
1928 if (ah->config.rx_intr_mitigation) {
1929 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1930 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1931 }
1932
1933 if (ah->config.tx_intr_mitigation) {
1934 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1935 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1936 }
1937
1938 ath9k_hw_init_bb(ah, chan);
1939
1940 if (caldata) {
1941 clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1942 clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1943 }
1944 if (!ath9k_hw_init_cal(ah, chan))
1945 return -EIO;
1946
1947 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1948 return -EIO;
1949
1950 ENABLE_REGWRITE_BUFFER(ah);
1951
1952 ath9k_hw_restore_chainmask(ah);
1953 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1954
1955 REGWRITE_BUFFER_FLUSH(ah);
1956
1957 ath9k_hw_init_desc(ah);
1958
1959 if (ath9k_hw_btcoex_is_enabled(ah))
1960 ath9k_hw_btcoex_enable(ah);
1961
1962 if (ath9k_hw_mci_is_enabled(ah))
1963 ar9003_mci_check_bt(ah);
1964
1965 if (AR_SREV_9300_20_OR_LATER(ah)) {
1966 ath9k_hw_loadnf(ah, chan);
1967 ath9k_hw_start_nfcal(ah, true);
1968 }
1969
1970 if (AR_SREV_9300_20_OR_LATER(ah))
1971 ar9003_hw_bb_watchdog_config(ah);
1972
1973 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1974 ar9003_hw_disable_phy_restart(ah);
1975
1976 ath9k_hw_apply_gpio_override(ah);
1977
1978 if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1979 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1980
1981 if (ah->hw->conf.radar_enabled) {
1982 /* set HW specific DFS configuration */
1983 ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
1984 ath9k_hw_set_radar_params(ah);
1985 }
1986
1987 return 0;
1988 }
1989 EXPORT_SYMBOL(ath9k_hw_reset);
1990
1991 /******************************/
1992 /* Power Management (Chipset) */
1993 /******************************/
1994
1995 /*
1996 * Notify Power Mgt is disabled in self-generated frames.
1997 * If requested, force chip to sleep.
1998 */
1999 static void ath9k_set_power_sleep(struct ath_hw *ah)
2000 {
2001 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2002
2003 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2004 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2005 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2006 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2007 /* xxx Required for WLAN only case ? */
2008 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2009 udelay(100);
2010 }
2011
2012 /*
2013 * Clear the RTC force wake bit to allow the
2014 * mac to go to sleep.
2015 */
2016 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2017
2018 if (ath9k_hw_mci_is_enabled(ah))
2019 udelay(100);
2020
2021 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2022 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2023
2024 /* Shutdown chip. Active low */
2025 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2026 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2027 udelay(2);
2028 }
2029
2030 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2031 if (AR_SREV_9300_20_OR_LATER(ah))
2032 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2033 }
2034
2035 /*
2036 * Notify Power Management is enabled in self-generating
2037 * frames. If request, set power mode of chip to
2038 * auto/normal. Duration in units of 128us (1/8 TU).
2039 */
2040 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2041 {
2042 struct ath9k_hw_capabilities *pCap = &ah->caps;
2043
2044 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2045
2046 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2047 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2048 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2049 AR_RTC_FORCE_WAKE_ON_INT);
2050 } else {
2051
2052 /* When chip goes into network sleep, it could be waken
2053 * up by MCI_INT interrupt caused by BT's HW messages
2054 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2055 * rate (~100us). This will cause chip to leave and
2056 * re-enter network sleep mode frequently, which in
2057 * consequence will have WLAN MCI HW to generate lots of
2058 * SYS_WAKING and SYS_SLEEPING messages which will make
2059 * BT CPU to busy to process.
2060 */
2061 if (ath9k_hw_mci_is_enabled(ah))
2062 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2063 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2064 /*
2065 * Clear the RTC force wake bit to allow the
2066 * mac to go to sleep.
2067 */
2068 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2069
2070 if (ath9k_hw_mci_is_enabled(ah))
2071 udelay(30);
2072 }
2073
2074 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2075 if (AR_SREV_9300_20_OR_LATER(ah))
2076 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2077 }
2078
2079 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2080 {
2081 u32 val;
2082 int i;
2083
2084 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2085 if (AR_SREV_9300_20_OR_LATER(ah)) {
2086 REG_WRITE(ah, AR_WA, ah->WARegVal);
2087 udelay(10);
2088 }
2089
2090 if ((REG_READ(ah, AR_RTC_STATUS) &
2091 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2092 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2093 return false;
2094 }
2095 if (!AR_SREV_9300_20_OR_LATER(ah))
2096 ath9k_hw_init_pll(ah, NULL);
2097 }
2098 if (AR_SREV_9100(ah))
2099 REG_SET_BIT(ah, AR_RTC_RESET,
2100 AR_RTC_RESET_EN);
2101
2102 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2103 AR_RTC_FORCE_WAKE_EN);
2104 if (AR_SREV_9100(ah))
2105 mdelay(10);
2106 else
2107 udelay(50);
2108
2109 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2110 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2111 if (val == AR_RTC_STATUS_ON)
2112 break;
2113 udelay(50);
2114 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2115 AR_RTC_FORCE_WAKE_EN);
2116 }
2117 if (i == 0) {
2118 ath_err(ath9k_hw_common(ah),
2119 "Failed to wakeup in %uus\n",
2120 POWER_UP_TIME / 20);
2121 return false;
2122 }
2123
2124 if (ath9k_hw_mci_is_enabled(ah))
2125 ar9003_mci_set_power_awake(ah);
2126
2127 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2128
2129 return true;
2130 }
2131
2132 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2133 {
2134 struct ath_common *common = ath9k_hw_common(ah);
2135 int status = true;
2136 static const char *modes[] = {
2137 "AWAKE",
2138 "FULL-SLEEP",
2139 "NETWORK SLEEP",
2140 "UNDEFINED"
2141 };
2142
2143 if (ah->power_mode == mode)
2144 return status;
2145
2146 ath_dbg(common, RESET, "%s -> %s\n",
2147 modes[ah->power_mode], modes[mode]);
2148
2149 switch (mode) {
2150 case ATH9K_PM_AWAKE:
2151 status = ath9k_hw_set_power_awake(ah);
2152 break;
2153 case ATH9K_PM_FULL_SLEEP:
2154 if (ath9k_hw_mci_is_enabled(ah))
2155 ar9003_mci_set_full_sleep(ah);
2156
2157 ath9k_set_power_sleep(ah);
2158 ah->chip_fullsleep = true;
2159 break;
2160 case ATH9K_PM_NETWORK_SLEEP:
2161 ath9k_set_power_network_sleep(ah);
2162 break;
2163 default:
2164 ath_err(common, "Unknown power mode %u\n", mode);
2165 return false;
2166 }
2167 ah->power_mode = mode;
2168
2169 /*
2170 * XXX: If this warning never comes up after a while then
2171 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2172 * ath9k_hw_setpower() return type void.
2173 */
2174
2175 if (!(ah->ah_flags & AH_UNPLUGGED))
2176 ATH_DBG_WARN_ON_ONCE(!status);
2177
2178 return status;
2179 }
2180 EXPORT_SYMBOL(ath9k_hw_setpower);
2181
2182 /*******************/
2183 /* Beacon Handling */
2184 /*******************/
2185
2186 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2187 {
2188 int flags = 0;
2189
2190 ENABLE_REGWRITE_BUFFER(ah);
2191
2192 switch (ah->opmode) {
2193 case NL80211_IFTYPE_ADHOC:
2194 REG_SET_BIT(ah, AR_TXCFG,
2195 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2196 case NL80211_IFTYPE_MESH_POINT:
2197 case NL80211_IFTYPE_AP:
2198 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2199 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2200 TU_TO_USEC(ah->config.dma_beacon_response_time));
2201 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2202 TU_TO_USEC(ah->config.sw_beacon_response_time));
2203 flags |=
2204 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2205 break;
2206 default:
2207 ath_dbg(ath9k_hw_common(ah), BEACON,
2208 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2209 return;
2210 break;
2211 }
2212
2213 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2214 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2215 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2216
2217 REGWRITE_BUFFER_FLUSH(ah);
2218
2219 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2220 }
2221 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2222
2223 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2224 const struct ath9k_beacon_state *bs)
2225 {
2226 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2227 struct ath9k_hw_capabilities *pCap = &ah->caps;
2228 struct ath_common *common = ath9k_hw_common(ah);
2229
2230 ENABLE_REGWRITE_BUFFER(ah);
2231
2232 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2233 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2234 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2235
2236 REGWRITE_BUFFER_FLUSH(ah);
2237
2238 REG_RMW_FIELD(ah, AR_RSSI_THR,
2239 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2240
2241 beaconintval = bs->bs_intval;
2242
2243 if (bs->bs_sleepduration > beaconintval)
2244 beaconintval = bs->bs_sleepduration;
2245
2246 dtimperiod = bs->bs_dtimperiod;
2247 if (bs->bs_sleepduration > dtimperiod)
2248 dtimperiod = bs->bs_sleepduration;
2249
2250 if (beaconintval == dtimperiod)
2251 nextTbtt = bs->bs_nextdtim;
2252 else
2253 nextTbtt = bs->bs_nexttbtt;
2254
2255 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2256 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2257 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2258 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2259
2260 ENABLE_REGWRITE_BUFFER(ah);
2261
2262 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2263 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2264
2265 REG_WRITE(ah, AR_SLEEP1,
2266 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2267 | AR_SLEEP1_ASSUME_DTIM);
2268
2269 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2270 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2271 else
2272 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2273
2274 REG_WRITE(ah, AR_SLEEP2,
2275 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2276
2277 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2278 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2279
2280 REGWRITE_BUFFER_FLUSH(ah);
2281
2282 REG_SET_BIT(ah, AR_TIMER_MODE,
2283 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2284 AR_DTIM_TIMER_EN);
2285
2286 /* TSF Out of Range Threshold */
2287 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2288 }
2289 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2290
2291 /*******************/
2292 /* HW Capabilities */
2293 /*******************/
2294
2295 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2296 {
2297 eeprom_chainmask &= chip_chainmask;
2298 if (eeprom_chainmask)
2299 return eeprom_chainmask;
2300 else
2301 return chip_chainmask;
2302 }
2303
2304 /**
2305 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2306 * @ah: the atheros hardware data structure
2307 *
2308 * We enable DFS support upstream on chipsets which have passed a series
2309 * of tests. The testing requirements are going to be documented. Desired
2310 * test requirements are documented at:
2311 *
2312 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2313 *
2314 * Once a new chipset gets properly tested an individual commit can be used
2315 * to document the testing for DFS for that chipset.
2316 */
2317 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2318 {
2319
2320 switch (ah->hw_version.macVersion) {
2321 /* for temporary testing DFS with 9280 */
2322 case AR_SREV_VERSION_9280:
2323 /* AR9580 will likely be our first target to get testing on */
2324 case AR_SREV_VERSION_9580:
2325 return true;
2326 default:
2327 return false;
2328 }
2329 }
2330
2331 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2332 {
2333 struct ath9k_hw_capabilities *pCap = &ah->caps;
2334 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2335 struct ath_common *common = ath9k_hw_common(ah);
2336 unsigned int chip_chainmask;
2337
2338 u16 eeval;
2339 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2340
2341 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2342 regulatory->current_rd = eeval;
2343
2344 if (ah->opmode != NL80211_IFTYPE_AP &&
2345 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2346 if (regulatory->current_rd == 0x64 ||
2347 regulatory->current_rd == 0x65)
2348 regulatory->current_rd += 5;
2349 else if (regulatory->current_rd == 0x41)
2350 regulatory->current_rd = 0x43;
2351 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2352 regulatory->current_rd);
2353 }
2354
2355 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2356
2357 if (eeval & AR5416_OPFLAGS_11A) {
2358 if (ah->disable_5ghz)
2359 ath_warn(common, "disabling 5GHz band\n");
2360 else
2361 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2362 }
2363
2364 if (eeval & AR5416_OPFLAGS_11G) {
2365 if (ah->disable_2ghz)
2366 ath_warn(common, "disabling 2GHz band\n");
2367 else
2368 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2369 }
2370
2371 if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2372 ath_err(common, "both bands are disabled\n");
2373 return -EINVAL;
2374 }
2375
2376 if (AR_SREV_9485(ah) ||
2377 AR_SREV_9285(ah) ||
2378 AR_SREV_9330(ah) ||
2379 AR_SREV_9565(ah))
2380 chip_chainmask = 1;
2381 else if (AR_SREV_9462(ah))
2382 chip_chainmask = 3;
2383 else if (!AR_SREV_9280_20_OR_LATER(ah))
2384 chip_chainmask = 7;
2385 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2386 chip_chainmask = 3;
2387 else
2388 chip_chainmask = 7;
2389
2390 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2391 /*
2392 * For AR9271 we will temporarilly uses the rx chainmax as read from
2393 * the EEPROM.
2394 */
2395 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2396 !(eeval & AR5416_OPFLAGS_11A) &&
2397 !(AR_SREV_9271(ah)))
2398 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2399 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2400 else if (AR_SREV_9100(ah))
2401 pCap->rx_chainmask = 0x7;
2402 else
2403 /* Use rx_chainmask from EEPROM. */
2404 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2405
2406 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2407 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2408 ah->txchainmask = pCap->tx_chainmask;
2409 ah->rxchainmask = pCap->rx_chainmask;
2410
2411 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2412
2413 /* enable key search for every frame in an aggregate */
2414 if (AR_SREV_9300_20_OR_LATER(ah))
2415 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2416
2417 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2418
2419 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2420 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2421 else
2422 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2423
2424 if (AR_SREV_9271(ah))
2425 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2426 else if (AR_DEVID_7010(ah))
2427 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2428 else if (AR_SREV_9300_20_OR_LATER(ah))
2429 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2430 else if (AR_SREV_9287_11_OR_LATER(ah))
2431 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2432 else if (AR_SREV_9285_12_OR_LATER(ah))
2433 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2434 else if (AR_SREV_9280_20_OR_LATER(ah))
2435 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2436 else
2437 pCap->num_gpio_pins = AR_NUM_GPIO;
2438
2439 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2440 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2441 else
2442 pCap->rts_aggr_limit = (8 * 1024);
2443
2444 #ifdef CONFIG_ATH9K_RFKILL
2445 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2446 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2447 ah->rfkill_gpio =
2448 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2449 ah->rfkill_polarity =
2450 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2451
2452 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2453 }
2454 #endif
2455 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2456 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2457 else
2458 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2459
2460 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2461 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2462 else
2463 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2464
2465 if (AR_SREV_9300_20_OR_LATER(ah)) {
2466 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2467 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2468 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2469
2470 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2471 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2472 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2473 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2474 pCap->txs_len = sizeof(struct ar9003_txs);
2475 } else {
2476 pCap->tx_desc_len = sizeof(struct ath_desc);
2477 if (AR_SREV_9280_20(ah))
2478 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2479 }
2480
2481 if (AR_SREV_9300_20_OR_LATER(ah))
2482 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2483
2484 if (AR_SREV_9300_20_OR_LATER(ah))
2485 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2486
2487 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2488 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2489
2490 if (AR_SREV_9285(ah)) {
2491 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2492 ant_div_ctl1 =
2493 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2494 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2495 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2496 ath_info(common, "Enable LNA combining\n");
2497 }
2498 }
2499 }
2500
2501 if (AR_SREV_9300_20_OR_LATER(ah)) {
2502 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2503 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2504 }
2505
2506 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2507 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2508 if ((ant_div_ctl1 >> 0x6) == 0x3) {
2509 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2510 ath_info(common, "Enable LNA combining\n");
2511 }
2512 }
2513
2514 if (ath9k_hw_dfs_tested(ah))
2515 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2516
2517 tx_chainmask = pCap->tx_chainmask;
2518 rx_chainmask = pCap->rx_chainmask;
2519 while (tx_chainmask || rx_chainmask) {
2520 if (tx_chainmask & BIT(0))
2521 pCap->max_txchains++;
2522 if (rx_chainmask & BIT(0))
2523 pCap->max_rxchains++;
2524
2525 tx_chainmask >>= 1;
2526 rx_chainmask >>= 1;
2527 }
2528
2529 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2530 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2531 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2532
2533 if (AR_SREV_9462_20_OR_LATER(ah))
2534 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2535 }
2536
2537 if (AR_SREV_9462(ah))
2538 pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2539
2540 if (AR_SREV_9300_20_OR_LATER(ah) &&
2541 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2542 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2543
2544 return 0;
2545 }
2546
2547 /****************************/
2548 /* GPIO / RFKILL / Antennae */
2549 /****************************/
2550
2551 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2552 u32 gpio, u32 type)
2553 {
2554 int addr;
2555 u32 gpio_shift, tmp;
2556
2557 if (gpio > 11)
2558 addr = AR_GPIO_OUTPUT_MUX3;
2559 else if (gpio > 5)
2560 addr = AR_GPIO_OUTPUT_MUX2;
2561 else
2562 addr = AR_GPIO_OUTPUT_MUX1;
2563
2564 gpio_shift = (gpio % 6) * 5;
2565
2566 if (AR_SREV_9280_20_OR_LATER(ah)
2567 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2568 REG_RMW(ah, addr, (type << gpio_shift),
2569 (0x1f << gpio_shift));
2570 } else {
2571 tmp = REG_READ(ah, addr);
2572 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2573 tmp &= ~(0x1f << gpio_shift);
2574 tmp |= (type << gpio_shift);
2575 REG_WRITE(ah, addr, tmp);
2576 }
2577 }
2578
2579 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2580 {
2581 u32 gpio_shift;
2582
2583 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2584
2585 if (AR_DEVID_7010(ah)) {
2586 gpio_shift = gpio;
2587 REG_RMW(ah, AR7010_GPIO_OE,
2588 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2589 (AR7010_GPIO_OE_MASK << gpio_shift));
2590 return;
2591 }
2592
2593 gpio_shift = gpio << 1;
2594 REG_RMW(ah,
2595 AR_GPIO_OE_OUT,
2596 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2597 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2598 }
2599 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2600
2601 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2602 {
2603 #define MS_REG_READ(x, y) \
2604 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2605
2606 if (gpio >= ah->caps.num_gpio_pins)
2607 return 0xffffffff;
2608
2609 if (AR_DEVID_7010(ah)) {
2610 u32 val;
2611 val = REG_READ(ah, AR7010_GPIO_IN);
2612 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2613 } else if (AR_SREV_9300_20_OR_LATER(ah))
2614 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2615 AR_GPIO_BIT(gpio)) != 0;
2616 else if (AR_SREV_9271(ah))
2617 return MS_REG_READ(AR9271, gpio) != 0;
2618 else if (AR_SREV_9287_11_OR_LATER(ah))
2619 return MS_REG_READ(AR9287, gpio) != 0;
2620 else if (AR_SREV_9285_12_OR_LATER(ah))
2621 return MS_REG_READ(AR9285, gpio) != 0;
2622 else if (AR_SREV_9280_20_OR_LATER(ah))
2623 return MS_REG_READ(AR928X, gpio) != 0;
2624 else
2625 return MS_REG_READ(AR, gpio) != 0;
2626 }
2627 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2628
2629 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2630 u32 ah_signal_type)
2631 {
2632 u32 gpio_shift;
2633
2634 if (AR_DEVID_7010(ah)) {
2635 gpio_shift = gpio;
2636 REG_RMW(ah, AR7010_GPIO_OE,
2637 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2638 (AR7010_GPIO_OE_MASK << gpio_shift));
2639 return;
2640 }
2641
2642 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2643 gpio_shift = 2 * gpio;
2644 REG_RMW(ah,
2645 AR_GPIO_OE_OUT,
2646 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2647 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2648 }
2649 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2650
2651 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2652 {
2653 if (AR_DEVID_7010(ah)) {
2654 val = val ? 0 : 1;
2655 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2656 AR_GPIO_BIT(gpio));
2657 return;
2658 }
2659
2660 if (AR_SREV_9271(ah))
2661 val = ~val;
2662
2663 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2664 AR_GPIO_BIT(gpio));
2665 }
2666 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2667
2668 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2669 {
2670 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2671 }
2672 EXPORT_SYMBOL(ath9k_hw_setantenna);
2673
2674 /*********************/
2675 /* General Operation */
2676 /*********************/
2677
2678 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2679 {
2680 u32 bits = REG_READ(ah, AR_RX_FILTER);
2681 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2682
2683 if (phybits & AR_PHY_ERR_RADAR)
2684 bits |= ATH9K_RX_FILTER_PHYRADAR;
2685 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2686 bits |= ATH9K_RX_FILTER_PHYERR;
2687
2688 return bits;
2689 }
2690 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2691
2692 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2693 {
2694 u32 phybits;
2695
2696 ENABLE_REGWRITE_BUFFER(ah);
2697
2698 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2699 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2700
2701 REG_WRITE(ah, AR_RX_FILTER, bits);
2702
2703 phybits = 0;
2704 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2705 phybits |= AR_PHY_ERR_RADAR;
2706 if (bits & ATH9K_RX_FILTER_PHYERR)
2707 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2708 REG_WRITE(ah, AR_PHY_ERR, phybits);
2709
2710 if (phybits)
2711 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2712 else
2713 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2714
2715 REGWRITE_BUFFER_FLUSH(ah);
2716 }
2717 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2718
2719 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2720 {
2721 if (ath9k_hw_mci_is_enabled(ah))
2722 ar9003_mci_bt_gain_ctrl(ah);
2723
2724 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2725 return false;
2726
2727 ath9k_hw_init_pll(ah, NULL);
2728 ah->htc_reset_init = true;
2729 return true;
2730 }
2731 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2732
2733 bool ath9k_hw_disable(struct ath_hw *ah)
2734 {
2735 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2736 return false;
2737
2738 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2739 return false;
2740
2741 ath9k_hw_init_pll(ah, NULL);
2742 return true;
2743 }
2744 EXPORT_SYMBOL(ath9k_hw_disable);
2745
2746 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2747 {
2748 enum eeprom_param gain_param;
2749
2750 if (IS_CHAN_2GHZ(chan))
2751 gain_param = EEP_ANTENNA_GAIN_2G;
2752 else
2753 gain_param = EEP_ANTENNA_GAIN_5G;
2754
2755 return ah->eep_ops->get_eeprom(ah, gain_param);
2756 }
2757
2758 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2759 bool test)
2760 {
2761 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2762 struct ieee80211_channel *channel;
2763 int chan_pwr, new_pwr, max_gain;
2764 int ant_gain, ant_reduction = 0;
2765
2766 if (!chan)
2767 return;
2768
2769 channel = chan->chan;
2770 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2771 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2772 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2773
2774 ant_gain = get_antenna_gain(ah, chan);
2775 if (ant_gain > max_gain)
2776 ant_reduction = ant_gain - max_gain;
2777
2778 ah->eep_ops->set_txpower(ah, chan,
2779 ath9k_regd_get_ctl(reg, chan),
2780 ant_reduction, new_pwr, test);
2781 }
2782
2783 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2784 {
2785 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2786 struct ath9k_channel *chan = ah->curchan;
2787 struct ieee80211_channel *channel = chan->chan;
2788
2789 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2790 if (test)
2791 channel->max_power = MAX_RATE_POWER / 2;
2792
2793 ath9k_hw_apply_txpower(ah, chan, test);
2794
2795 if (test)
2796 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2797 }
2798 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2799
2800 void ath9k_hw_setopmode(struct ath_hw *ah)
2801 {
2802 ath9k_hw_set_operating_mode(ah, ah->opmode);
2803 }
2804 EXPORT_SYMBOL(ath9k_hw_setopmode);
2805
2806 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2807 {
2808 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2809 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2810 }
2811 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2812
2813 void ath9k_hw_write_associd(struct ath_hw *ah)
2814 {
2815 struct ath_common *common = ath9k_hw_common(ah);
2816
2817 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2818 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2819 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2820 }
2821 EXPORT_SYMBOL(ath9k_hw_write_associd);
2822
2823 #define ATH9K_MAX_TSF_READ 10
2824
2825 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2826 {
2827 u32 tsf_lower, tsf_upper1, tsf_upper2;
2828 int i;
2829
2830 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2831 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2832 tsf_lower = REG_READ(ah, AR_TSF_L32);
2833 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2834 if (tsf_upper2 == tsf_upper1)
2835 break;
2836 tsf_upper1 = tsf_upper2;
2837 }
2838
2839 WARN_ON( i == ATH9K_MAX_TSF_READ );
2840
2841 return (((u64)tsf_upper1 << 32) | tsf_lower);
2842 }
2843 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2844
2845 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2846 {
2847 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2848 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2849 }
2850 EXPORT_SYMBOL(ath9k_hw_settsf64);
2851
2852 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2853 {
2854 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2855 AH_TSF_WRITE_TIMEOUT))
2856 ath_dbg(ath9k_hw_common(ah), RESET,
2857 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2858
2859 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2860 }
2861 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2862
2863 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2864 {
2865 if (set)
2866 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2867 else
2868 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2869 }
2870 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2871
2872 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2873 {
2874 u32 macmode;
2875
2876 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2877 macmode = AR_2040_JOINED_RX_CLEAR;
2878 else
2879 macmode = 0;
2880
2881 REG_WRITE(ah, AR_2040_MODE, macmode);
2882 }
2883
2884 /* HW Generic timers configuration */
2885
2886 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2887 {
2888 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2889 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2890 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2891 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2892 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2893 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2894 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2895 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2896 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2897 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2898 AR_NDP2_TIMER_MODE, 0x0002},
2899 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2900 AR_NDP2_TIMER_MODE, 0x0004},
2901 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2902 AR_NDP2_TIMER_MODE, 0x0008},
2903 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2904 AR_NDP2_TIMER_MODE, 0x0010},
2905 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2906 AR_NDP2_TIMER_MODE, 0x0020},
2907 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2908 AR_NDP2_TIMER_MODE, 0x0040},
2909 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2910 AR_NDP2_TIMER_MODE, 0x0080}
2911 };
2912
2913 /* HW generic timer primitives */
2914
2915 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2916 {
2917 return REG_READ(ah, AR_TSF_L32);
2918 }
2919 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2920
2921 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2922 void (*trigger)(void *),
2923 void (*overflow)(void *),
2924 void *arg,
2925 u8 timer_index)
2926 {
2927 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2928 struct ath_gen_timer *timer;
2929
2930 if ((timer_index < AR_FIRST_NDP_TIMER) ||
2931 (timer_index >= ATH_MAX_GEN_TIMER))
2932 return NULL;
2933
2934 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2935 if (timer == NULL)
2936 return NULL;
2937
2938 /* allocate a hardware generic timer slot */
2939 timer_table->timers[timer_index] = timer;
2940 timer->index = timer_index;
2941 timer->trigger = trigger;
2942 timer->overflow = overflow;
2943 timer->arg = arg;
2944
2945 return timer;
2946 }
2947 EXPORT_SYMBOL(ath_gen_timer_alloc);
2948
2949 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2950 struct ath_gen_timer *timer,
2951 u32 timer_next,
2952 u32 timer_period)
2953 {
2954 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2955 u32 mask = 0;
2956
2957 timer_table->timer_mask |= BIT(timer->index);
2958
2959 /*
2960 * Program generic timer registers
2961 */
2962 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2963 timer_next);
2964 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2965 timer_period);
2966 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2967 gen_tmr_configuration[timer->index].mode_mask);
2968
2969 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2970 /*
2971 * Starting from AR9462, each generic timer can select which tsf
2972 * to use. But we still follow the old rule, 0 - 7 use tsf and
2973 * 8 - 15 use tsf2.
2974 */
2975 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2976 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2977 (1 << timer->index));
2978 else
2979 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2980 (1 << timer->index));
2981 }
2982
2983 if (timer->trigger)
2984 mask |= SM(AR_GENTMR_BIT(timer->index),
2985 AR_IMR_S5_GENTIMER_TRIG);
2986 if (timer->overflow)
2987 mask |= SM(AR_GENTMR_BIT(timer->index),
2988 AR_IMR_S5_GENTIMER_THRESH);
2989
2990 REG_SET_BIT(ah, AR_IMR_S5, mask);
2991
2992 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2993 ah->imask |= ATH9K_INT_GENTIMER;
2994 ath9k_hw_set_interrupts(ah);
2995 }
2996 }
2997 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2998
2999 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3000 {
3001 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3002
3003 /* Clear generic timer enable bits. */
3004 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3005 gen_tmr_configuration[timer->index].mode_mask);
3006
3007 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3008 /*
3009 * Need to switch back to TSF if it was using TSF2.
3010 */
3011 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3012 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3013 (1 << timer->index));
3014 }
3015 }
3016
3017 /* Disable both trigger and thresh interrupt masks */
3018 REG_CLR_BIT(ah, AR_IMR_S5,
3019 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3020 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3021
3022 timer_table->timer_mask &= ~BIT(timer->index);
3023
3024 if (timer_table->timer_mask == 0) {
3025 ah->imask &= ~ATH9K_INT_GENTIMER;
3026 ath9k_hw_set_interrupts(ah);
3027 }
3028 }
3029 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3030
3031 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3032 {
3033 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3034
3035 /* free the hardware generic timer slot */
3036 timer_table->timers[timer->index] = NULL;
3037 kfree(timer);
3038 }
3039 EXPORT_SYMBOL(ath_gen_timer_free);
3040
3041 /*
3042 * Generic Timer Interrupts handling
3043 */
3044 void ath_gen_timer_isr(struct ath_hw *ah)
3045 {
3046 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3047 struct ath_gen_timer *timer;
3048 unsigned long trigger_mask, thresh_mask;
3049 unsigned int index;
3050
3051 /* get hardware generic timer interrupt status */
3052 trigger_mask = ah->intr_gen_timer_trigger;
3053 thresh_mask = ah->intr_gen_timer_thresh;
3054 trigger_mask &= timer_table->timer_mask;
3055 thresh_mask &= timer_table->timer_mask;
3056
3057 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3058 timer = timer_table->timers[index];
3059 if (!timer)
3060 continue;
3061 if (!timer->overflow)
3062 continue;
3063
3064 trigger_mask &= ~BIT(index);
3065 timer->overflow(timer->arg);
3066 }
3067
3068 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3069 timer = timer_table->timers[index];
3070 if (!timer)
3071 continue;
3072 if (!timer->trigger)
3073 continue;
3074 timer->trigger(timer->arg);
3075 }
3076 }
3077 EXPORT_SYMBOL(ath_gen_timer_isr);
3078
3079 /********/
3080 /* HTC */
3081 /********/
3082
3083 static struct {
3084 u32 version;
3085 const char * name;
3086 } ath_mac_bb_names[] = {
3087 /* Devices with external radios */
3088 { AR_SREV_VERSION_5416_PCI, "5416" },
3089 { AR_SREV_VERSION_5416_PCIE, "5418" },
3090 { AR_SREV_VERSION_9100, "9100" },
3091 { AR_SREV_VERSION_9160, "9160" },
3092 /* Single-chip solutions */
3093 { AR_SREV_VERSION_9280, "9280" },
3094 { AR_SREV_VERSION_9285, "9285" },
3095 { AR_SREV_VERSION_9287, "9287" },
3096 { AR_SREV_VERSION_9271, "9271" },
3097 { AR_SREV_VERSION_9300, "9300" },
3098 { AR_SREV_VERSION_9330, "9330" },
3099 { AR_SREV_VERSION_9340, "9340" },
3100 { AR_SREV_VERSION_9485, "9485" },
3101 { AR_SREV_VERSION_9462, "9462" },
3102 { AR_SREV_VERSION_9550, "9550" },
3103 { AR_SREV_VERSION_9565, "9565" },
3104 { AR_SREV_VERSION_9531, "9531" },
3105 };
3106
3107 /* For devices with external radios */
3108 static struct {
3109 u16 version;
3110 const char * name;
3111 } ath_rf_names[] = {
3112 { 0, "5133" },
3113 { AR_RAD5133_SREV_MAJOR, "5133" },
3114 { AR_RAD5122_SREV_MAJOR, "5122" },
3115 { AR_RAD2133_SREV_MAJOR, "2133" },
3116 { AR_RAD2122_SREV_MAJOR, "2122" }
3117 };
3118
3119 /*
3120 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3121 */
3122 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3123 {
3124 int i;
3125
3126 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3127 if (ath_mac_bb_names[i].version == mac_bb_version) {
3128 return ath_mac_bb_names[i].name;
3129 }
3130 }
3131
3132 return "????";
3133 }
3134
3135 /*
3136 * Return the RF name. "????" is returned if the RF is unknown.
3137 * Used for devices with external radios.
3138 */
3139 static const char *ath9k_hw_rf_name(u16 rf_version)
3140 {
3141 int i;
3142
3143 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3144 if (ath_rf_names[i].version == rf_version) {
3145 return ath_rf_names[i].name;
3146 }
3147 }
3148
3149 return "????";
3150 }
3151
3152 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3153 {
3154 int used;
3155
3156 /* chipsets >= AR9280 are single-chip */
3157 if (AR_SREV_9280_20_OR_LATER(ah)) {
3158 used = scnprintf(hw_name, len,
3159 "Atheros AR%s Rev:%x",
3160 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3161 ah->hw_version.macRev);
3162 }
3163 else {
3164 used = scnprintf(hw_name, len,
3165 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3166 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3167 ah->hw_version.macRev,
3168 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3169 & AR_RADIO_SREV_MAJOR)),
3170 ah->hw_version.phyRev);
3171 }
3172
3173 hw_name[used] = '\0';
3174 }
3175 EXPORT_SYMBOL(ath9k_hw_name);