]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ath/ath9k/init.c
19b46c7e361636e0debdf74332ada2c1e8c3b9d4
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ath / ath9k / init.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/dma-mapping.h>
20 #include <linux/slab.h>
21 #include <linux/ath9k_platform.h>
22 #include <linux/module.h>
23 #include <linux/relay.h>
24 #include <net/ieee80211_radiotap.h>
25
26 #include "ath9k.h"
27
28 struct ath9k_eeprom_ctx {
29 struct completion complete;
30 struct ath_hw *ah;
31 };
32
33 static char *dev_info = "ath9k";
34
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39
40 static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
41 module_param_named(debug, ath9k_debug, uint, 0);
42 MODULE_PARM_DESC(debug, "Debugging mask");
43
44 int ath9k_modparam_nohwcrypt;
45 module_param_named(nohwcrypt, ath9k_modparam_nohwcrypt, int, 0444);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
47
48 int led_blink;
49 module_param_named(blink, led_blink, int, 0444);
50 MODULE_PARM_DESC(blink, "Enable LED blink on activity");
51
52 static int ath9k_btcoex_enable;
53 module_param_named(btcoex_enable, ath9k_btcoex_enable, int, 0444);
54 MODULE_PARM_DESC(btcoex_enable, "Enable wifi-BT coexistence");
55
56 static int ath9k_bt_ant_diversity;
57 module_param_named(bt_ant_diversity, ath9k_bt_ant_diversity, int, 0444);
58 MODULE_PARM_DESC(bt_ant_diversity, "Enable WLAN/BT RX antenna diversity");
59
60 bool is_ath9k_unloaded;
61 /* We use the hw_value as an index into our private channel structure */
62
63 #define CHAN2G(_freq, _idx) { \
64 .band = IEEE80211_BAND_2GHZ, \
65 .center_freq = (_freq), \
66 .hw_value = (_idx), \
67 .max_power = 20, \
68 }
69
70 #define CHAN5G(_freq, _idx) { \
71 .band = IEEE80211_BAND_5GHZ, \
72 .center_freq = (_freq), \
73 .hw_value = (_idx), \
74 .max_power = 20, \
75 }
76
77 /* Some 2 GHz radios are actually tunable on 2312-2732
78 * on 5 MHz steps, we support the channels which we know
79 * we have calibration data for all cards though to make
80 * this static */
81 static const struct ieee80211_channel ath9k_2ghz_chantable[] = {
82 CHAN2G(2412, 0), /* Channel 1 */
83 CHAN2G(2417, 1), /* Channel 2 */
84 CHAN2G(2422, 2), /* Channel 3 */
85 CHAN2G(2427, 3), /* Channel 4 */
86 CHAN2G(2432, 4), /* Channel 5 */
87 CHAN2G(2437, 5), /* Channel 6 */
88 CHAN2G(2442, 6), /* Channel 7 */
89 CHAN2G(2447, 7), /* Channel 8 */
90 CHAN2G(2452, 8), /* Channel 9 */
91 CHAN2G(2457, 9), /* Channel 10 */
92 CHAN2G(2462, 10), /* Channel 11 */
93 CHAN2G(2467, 11), /* Channel 12 */
94 CHAN2G(2472, 12), /* Channel 13 */
95 CHAN2G(2484, 13), /* Channel 14 */
96 };
97
98 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
99 * on 5 MHz steps, we support the channels which we know
100 * we have calibration data for all cards though to make
101 * this static */
102 static const struct ieee80211_channel ath9k_5ghz_chantable[] = {
103 /* _We_ call this UNII 1 */
104 CHAN5G(5180, 14), /* Channel 36 */
105 CHAN5G(5200, 15), /* Channel 40 */
106 CHAN5G(5220, 16), /* Channel 44 */
107 CHAN5G(5240, 17), /* Channel 48 */
108 /* _We_ call this UNII 2 */
109 CHAN5G(5260, 18), /* Channel 52 */
110 CHAN5G(5280, 19), /* Channel 56 */
111 CHAN5G(5300, 20), /* Channel 60 */
112 CHAN5G(5320, 21), /* Channel 64 */
113 /* _We_ call this "Middle band" */
114 CHAN5G(5500, 22), /* Channel 100 */
115 CHAN5G(5520, 23), /* Channel 104 */
116 CHAN5G(5540, 24), /* Channel 108 */
117 CHAN5G(5560, 25), /* Channel 112 */
118 CHAN5G(5580, 26), /* Channel 116 */
119 CHAN5G(5600, 27), /* Channel 120 */
120 CHAN5G(5620, 28), /* Channel 124 */
121 CHAN5G(5640, 29), /* Channel 128 */
122 CHAN5G(5660, 30), /* Channel 132 */
123 CHAN5G(5680, 31), /* Channel 136 */
124 CHAN5G(5700, 32), /* Channel 140 */
125 /* _We_ call this UNII 3 */
126 CHAN5G(5745, 33), /* Channel 149 */
127 CHAN5G(5765, 34), /* Channel 153 */
128 CHAN5G(5785, 35), /* Channel 157 */
129 CHAN5G(5805, 36), /* Channel 161 */
130 CHAN5G(5825, 37), /* Channel 165 */
131 };
132
133 /* Atheros hardware rate code addition for short premble */
134 #define SHPCHECK(__hw_rate, __flags) \
135 ((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
136
137 #define RATE(_bitrate, _hw_rate, _flags) { \
138 .bitrate = (_bitrate), \
139 .flags = (_flags), \
140 .hw_value = (_hw_rate), \
141 .hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
142 }
143
144 static struct ieee80211_rate ath9k_legacy_rates[] = {
145 RATE(10, 0x1b, 0),
146 RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
147 RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
148 RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
149 RATE(60, 0x0b, (IEEE80211_RATE_SUPPORTS_5MHZ |
150 IEEE80211_RATE_SUPPORTS_10MHZ)),
151 RATE(90, 0x0f, (IEEE80211_RATE_SUPPORTS_5MHZ |
152 IEEE80211_RATE_SUPPORTS_10MHZ)),
153 RATE(120, 0x0a, (IEEE80211_RATE_SUPPORTS_5MHZ |
154 IEEE80211_RATE_SUPPORTS_10MHZ)),
155 RATE(180, 0x0e, (IEEE80211_RATE_SUPPORTS_5MHZ |
156 IEEE80211_RATE_SUPPORTS_10MHZ)),
157 RATE(240, 0x09, (IEEE80211_RATE_SUPPORTS_5MHZ |
158 IEEE80211_RATE_SUPPORTS_10MHZ)),
159 RATE(360, 0x0d, (IEEE80211_RATE_SUPPORTS_5MHZ |
160 IEEE80211_RATE_SUPPORTS_10MHZ)),
161 RATE(480, 0x08, (IEEE80211_RATE_SUPPORTS_5MHZ |
162 IEEE80211_RATE_SUPPORTS_10MHZ)),
163 RATE(540, 0x0c, (IEEE80211_RATE_SUPPORTS_5MHZ |
164 IEEE80211_RATE_SUPPORTS_10MHZ)),
165 };
166
167 #ifdef CONFIG_MAC80211_LEDS
168 static const struct ieee80211_tpt_blink ath9k_tpt_blink[] = {
169 { .throughput = 0 * 1024, .blink_time = 334 },
170 { .throughput = 1 * 1024, .blink_time = 260 },
171 { .throughput = 5 * 1024, .blink_time = 220 },
172 { .throughput = 10 * 1024, .blink_time = 190 },
173 { .throughput = 20 * 1024, .blink_time = 170 },
174 { .throughput = 50 * 1024, .blink_time = 150 },
175 { .throughput = 70 * 1024, .blink_time = 130 },
176 { .throughput = 100 * 1024, .blink_time = 110 },
177 { .throughput = 200 * 1024, .blink_time = 80 },
178 { .throughput = 300 * 1024, .blink_time = 50 },
179 };
180 #endif
181
182 static void ath9k_deinit_softc(struct ath_softc *sc);
183
184 /*
185 * Read and write, they both share the same lock. We do this to serialize
186 * reads and writes on Atheros 802.11n PCI devices only. This is required
187 * as the FIFO on these devices can only accept sanely 2 requests.
188 */
189
190 static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
191 {
192 struct ath_hw *ah = (struct ath_hw *) hw_priv;
193 struct ath_common *common = ath9k_hw_common(ah);
194 struct ath_softc *sc = (struct ath_softc *) common->priv;
195
196 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
197 unsigned long flags;
198 spin_lock_irqsave(&sc->sc_serial_rw, flags);
199 iowrite32(val, sc->mem + reg_offset);
200 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
201 } else
202 iowrite32(val, sc->mem + reg_offset);
203 }
204
205 static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
206 {
207 struct ath_hw *ah = (struct ath_hw *) hw_priv;
208 struct ath_common *common = ath9k_hw_common(ah);
209 struct ath_softc *sc = (struct ath_softc *) common->priv;
210 u32 val;
211
212 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
213 unsigned long flags;
214 spin_lock_irqsave(&sc->sc_serial_rw, flags);
215 val = ioread32(sc->mem + reg_offset);
216 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
217 } else
218 val = ioread32(sc->mem + reg_offset);
219 return val;
220 }
221
222 static unsigned int __ath9k_reg_rmw(struct ath_softc *sc, u32 reg_offset,
223 u32 set, u32 clr)
224 {
225 u32 val;
226
227 val = ioread32(sc->mem + reg_offset);
228 val &= ~clr;
229 val |= set;
230 iowrite32(val, sc->mem + reg_offset);
231
232 return val;
233 }
234
235 static unsigned int ath9k_reg_rmw(void *hw_priv, u32 reg_offset, u32 set, u32 clr)
236 {
237 struct ath_hw *ah = (struct ath_hw *) hw_priv;
238 struct ath_common *common = ath9k_hw_common(ah);
239 struct ath_softc *sc = (struct ath_softc *) common->priv;
240 unsigned long uninitialized_var(flags);
241 u32 val;
242
243 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
244 spin_lock_irqsave(&sc->sc_serial_rw, flags);
245 val = __ath9k_reg_rmw(sc, reg_offset, set, clr);
246 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
247 } else
248 val = __ath9k_reg_rmw(sc, reg_offset, set, clr);
249
250 return val;
251 }
252
253 /**************************/
254 /* Initialization */
255 /**************************/
256
257 static void setup_ht_cap(struct ath_softc *sc,
258 struct ieee80211_sta_ht_cap *ht_info)
259 {
260 struct ath_hw *ah = sc->sc_ah;
261 struct ath_common *common = ath9k_hw_common(ah);
262 u8 tx_streams, rx_streams;
263 int i, max_streams;
264
265 ht_info->ht_supported = true;
266 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
267 IEEE80211_HT_CAP_SM_PS |
268 IEEE80211_HT_CAP_SGI_40 |
269 IEEE80211_HT_CAP_DSSSCCK40;
270
271 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_LDPC)
272 ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
273
274 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
275 ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
276
277 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
278 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
279
280 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah))
281 max_streams = 1;
282 else if (AR_SREV_9462(ah))
283 max_streams = 2;
284 else if (AR_SREV_9300_20_OR_LATER(ah))
285 max_streams = 3;
286 else
287 max_streams = 2;
288
289 if (AR_SREV_9280_20_OR_LATER(ah)) {
290 if (max_streams >= 2)
291 ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
292 ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
293 }
294
295 /* set up supported mcs set */
296 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
297 tx_streams = ath9k_cmn_count_streams(ah->txchainmask, max_streams);
298 rx_streams = ath9k_cmn_count_streams(ah->rxchainmask, max_streams);
299
300 ath_dbg(common, CONFIG, "TX streams %d, RX streams: %d\n",
301 tx_streams, rx_streams);
302
303 if (tx_streams != rx_streams) {
304 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
305 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
306 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
307 }
308
309 for (i = 0; i < rx_streams; i++)
310 ht_info->mcs.rx_mask[i] = 0xff;
311
312 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
313 }
314
315 static void ath9k_reg_notifier(struct wiphy *wiphy,
316 struct regulatory_request *request)
317 {
318 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
319 struct ath_softc *sc = hw->priv;
320 struct ath_hw *ah = sc->sc_ah;
321 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
322
323 ath_reg_notifier_apply(wiphy, request, reg);
324
325 /* Set tx power */
326 if (ah->curchan) {
327 sc->config.txpowlimit = 2 * ah->curchan->chan->max_power;
328 ath9k_ps_wakeup(sc);
329 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit, false);
330 sc->curtxpow = ath9k_hw_regulatory(ah)->power_limit;
331 /* synchronize DFS detector if regulatory domain changed */
332 if (sc->dfs_detector != NULL)
333 sc->dfs_detector->set_dfs_domain(sc->dfs_detector,
334 request->dfs_region);
335 ath9k_ps_restore(sc);
336 }
337 }
338
339 /*
340 * This function will allocate both the DMA descriptor structure, and the
341 * buffers it contains. These are used to contain the descriptors used
342 * by the system.
343 */
344 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
345 struct list_head *head, const char *name,
346 int nbuf, int ndesc, bool is_tx)
347 {
348 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
349 u8 *ds;
350 struct ath_buf *bf;
351 int i, bsize, desc_len;
352
353 ath_dbg(common, CONFIG, "%s DMA: %u buffers %u desc/buf\n",
354 name, nbuf, ndesc);
355
356 INIT_LIST_HEAD(head);
357
358 if (is_tx)
359 desc_len = sc->sc_ah->caps.tx_desc_len;
360 else
361 desc_len = sizeof(struct ath_desc);
362
363 /* ath_desc must be a multiple of DWORDs */
364 if ((desc_len % 4) != 0) {
365 ath_err(common, "ath_desc not DWORD aligned\n");
366 BUG_ON((desc_len % 4) != 0);
367 return -ENOMEM;
368 }
369
370 dd->dd_desc_len = desc_len * nbuf * ndesc;
371
372 /*
373 * Need additional DMA memory because we can't use
374 * descriptors that cross the 4K page boundary. Assume
375 * one skipped descriptor per 4K page.
376 */
377 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
378 u32 ndesc_skipped =
379 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
380 u32 dma_len;
381
382 while (ndesc_skipped) {
383 dma_len = ndesc_skipped * desc_len;
384 dd->dd_desc_len += dma_len;
385
386 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
387 }
388 }
389
390 /* allocate descriptors */
391 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
392 &dd->dd_desc_paddr, GFP_KERNEL);
393 if (!dd->dd_desc)
394 return -ENOMEM;
395
396 ds = (u8 *) dd->dd_desc;
397 ath_dbg(common, CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
398 name, ds, (u32) dd->dd_desc_len,
399 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
400
401 /* allocate buffers */
402 bsize = sizeof(struct ath_buf) * nbuf;
403 bf = devm_kzalloc(sc->dev, bsize, GFP_KERNEL);
404 if (!bf)
405 return -ENOMEM;
406
407 for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
408 bf->bf_desc = ds;
409 bf->bf_daddr = DS2PHYS(dd, ds);
410
411 if (!(sc->sc_ah->caps.hw_caps &
412 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
413 /*
414 * Skip descriptor addresses which can cause 4KB
415 * boundary crossing (addr + length) with a 32 dword
416 * descriptor fetch.
417 */
418 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
419 BUG_ON((caddr_t) bf->bf_desc >=
420 ((caddr_t) dd->dd_desc +
421 dd->dd_desc_len));
422
423 ds += (desc_len * ndesc);
424 bf->bf_desc = ds;
425 bf->bf_daddr = DS2PHYS(dd, ds);
426 }
427 }
428 list_add_tail(&bf->list, head);
429 }
430 return 0;
431 }
432
433 static int ath9k_init_queues(struct ath_softc *sc)
434 {
435 int i = 0;
436
437 sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
438 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
439
440 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
441 ath_cabq_update(sc);
442
443 sc->tx.uapsdq = ath_txq_setup(sc, ATH9K_TX_QUEUE_UAPSD, 0);
444
445 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
446 sc->tx.txq_map[i] = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, i);
447 sc->tx.txq_map[i]->mac80211_qnum = i;
448 sc->tx.txq_max_pending[i] = ATH_MAX_QDEPTH;
449 }
450 return 0;
451 }
452
453 static int ath9k_init_channels_rates(struct ath_softc *sc)
454 {
455 void *channels;
456
457 BUILD_BUG_ON(ARRAY_SIZE(ath9k_2ghz_chantable) +
458 ARRAY_SIZE(ath9k_5ghz_chantable) !=
459 ATH9K_NUM_CHANNELS);
460
461 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) {
462 channels = devm_kzalloc(sc->dev,
463 sizeof(ath9k_2ghz_chantable), GFP_KERNEL);
464 if (!channels)
465 return -ENOMEM;
466
467 memcpy(channels, ath9k_2ghz_chantable,
468 sizeof(ath9k_2ghz_chantable));
469 sc->sbands[IEEE80211_BAND_2GHZ].channels = channels;
470 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
471 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
472 ARRAY_SIZE(ath9k_2ghz_chantable);
473 sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
474 sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
475 ARRAY_SIZE(ath9k_legacy_rates);
476 }
477
478 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) {
479 channels = devm_kzalloc(sc->dev,
480 sizeof(ath9k_5ghz_chantable), GFP_KERNEL);
481 if (!channels)
482 return -ENOMEM;
483
484 memcpy(channels, ath9k_5ghz_chantable,
485 sizeof(ath9k_5ghz_chantable));
486 sc->sbands[IEEE80211_BAND_5GHZ].channels = channels;
487 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
488 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
489 ARRAY_SIZE(ath9k_5ghz_chantable);
490 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
491 ath9k_legacy_rates + 4;
492 sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
493 ARRAY_SIZE(ath9k_legacy_rates) - 4;
494 }
495 return 0;
496 }
497
498 static void ath9k_init_misc(struct ath_softc *sc)
499 {
500 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
501 int i = 0;
502
503 setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
504
505 sc->last_rssi = ATH_RSSI_DUMMY_MARKER;
506 sc->config.txpowlimit = ATH_TXPOWER_MAX;
507 memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
508 sc->beacon.slottime = ATH9K_SLOT_TIME_9;
509
510 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
511 sc->beacon.bslot[i] = NULL;
512
513 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
514 sc->ant_comb.count = ATH_ANT_DIV_COMB_INIT_COUNT;
515
516 sc->spec_config.enabled = 0;
517 sc->spec_config.short_repeat = true;
518 sc->spec_config.count = 8;
519 sc->spec_config.endless = false;
520 sc->spec_config.period = 0xFF;
521 sc->spec_config.fft_period = 0xF;
522 }
523
524 static void ath9k_init_platform(struct ath_softc *sc)
525 {
526 struct ath_hw *ah = sc->sc_ah;
527 struct ath9k_hw_capabilities *pCap = &ah->caps;
528 struct ath_common *common = ath9k_hw_common(ah);
529
530 if (common->bus_ops->ath_bus_type != ATH_PCI)
531 return;
532
533 if (sc->driver_data & (ATH9K_PCI_CUS198 |
534 ATH9K_PCI_CUS230)) {
535 ah->config.xlna_gpio = 9;
536 ah->config.xatten_margin_cfg = true;
537 ah->config.alt_mingainidx = true;
538 ah->config.ant_ctrl_comm2g_switch_enable = 0x000BBB88;
539 sc->ant_comb.low_rssi_thresh = 20;
540 sc->ant_comb.fast_div_bias = 3;
541
542 ath_info(common, "Set parameters for %s\n",
543 (sc->driver_data & ATH9K_PCI_CUS198) ?
544 "CUS198" : "CUS230");
545 }
546
547 if (sc->driver_data & ATH9K_PCI_CUS217)
548 ath_info(common, "CUS217 card detected\n");
549
550 if (sc->driver_data & ATH9K_PCI_BT_ANT_DIV) {
551 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
552 ath_info(common, "Set BT/WLAN RX diversity capability\n");
553 }
554 }
555
556 static void ath9k_eeprom_request_cb(const struct firmware *eeprom_blob,
557 void *ctx)
558 {
559 struct ath9k_eeprom_ctx *ec = ctx;
560
561 if (eeprom_blob)
562 ec->ah->eeprom_blob = eeprom_blob;
563
564 complete(&ec->complete);
565 }
566
567 static int ath9k_eeprom_request(struct ath_softc *sc, const char *name)
568 {
569 struct ath9k_eeprom_ctx ec;
570 struct ath_hw *ah = ah = sc->sc_ah;
571 int err;
572
573 /* try to load the EEPROM content asynchronously */
574 init_completion(&ec.complete);
575 ec.ah = sc->sc_ah;
576
577 err = request_firmware_nowait(THIS_MODULE, 1, name, sc->dev, GFP_KERNEL,
578 &ec, ath9k_eeprom_request_cb);
579 if (err < 0) {
580 ath_err(ath9k_hw_common(ah),
581 "EEPROM request failed\n");
582 return err;
583 }
584
585 wait_for_completion(&ec.complete);
586
587 if (!ah->eeprom_blob) {
588 ath_err(ath9k_hw_common(ah),
589 "Unable to load EEPROM file %s\n", name);
590 return -EINVAL;
591 }
592
593 return 0;
594 }
595
596 static void ath9k_eeprom_release(struct ath_softc *sc)
597 {
598 release_firmware(sc->sc_ah->eeprom_blob);
599 }
600
601 static int ath9k_init_softc(u16 devid, struct ath_softc *sc,
602 const struct ath_bus_ops *bus_ops)
603 {
604 struct ath9k_platform_data *pdata = sc->dev->platform_data;
605 struct ath_hw *ah = NULL;
606 struct ath9k_hw_capabilities *pCap;
607 struct ath_common *common;
608 int ret = 0, i;
609 int csz = 0;
610
611 ah = devm_kzalloc(sc->dev, sizeof(struct ath_hw), GFP_KERNEL);
612 if (!ah)
613 return -ENOMEM;
614
615 ah->dev = sc->dev;
616 ah->hw = sc->hw;
617 ah->hw_version.devid = devid;
618 ah->reg_ops.read = ath9k_ioread32;
619 ah->reg_ops.write = ath9k_iowrite32;
620 ah->reg_ops.rmw = ath9k_reg_rmw;
621 atomic_set(&ah->intr_ref_cnt, -1);
622 sc->sc_ah = ah;
623 pCap = &ah->caps;
624
625 sc->dfs_detector = dfs_pattern_detector_init(ah, NL80211_DFS_UNSET);
626
627 if (!pdata) {
628 ah->ah_flags |= AH_USE_EEPROM;
629 sc->sc_ah->led_pin = -1;
630 } else {
631 sc->sc_ah->gpio_mask = pdata->gpio_mask;
632 sc->sc_ah->gpio_val = pdata->gpio_val;
633 sc->sc_ah->led_pin = pdata->led_pin;
634 ah->is_clk_25mhz = pdata->is_clk_25mhz;
635 ah->get_mac_revision = pdata->get_mac_revision;
636 ah->external_reset = pdata->external_reset;
637 }
638
639 common = ath9k_hw_common(ah);
640 common->ops = &ah->reg_ops;
641 common->bus_ops = bus_ops;
642 common->ah = ah;
643 common->hw = sc->hw;
644 common->priv = sc;
645 common->debug_mask = ath9k_debug;
646 common->btcoex_enabled = ath9k_btcoex_enable == 1;
647 common->disable_ani = false;
648
649 /*
650 * Platform quirks.
651 */
652 ath9k_init_platform(sc);
653
654 /*
655 * Enable WLAN/BT RX Antenna diversity only when:
656 *
657 * - BTCOEX is disabled.
658 * - the user manually requests the feature.
659 * - the HW cap is set using the platform data.
660 */
661 if (!common->btcoex_enabled && ath9k_bt_ant_diversity &&
662 (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV))
663 common->bt_ant_diversity = 1;
664
665 spin_lock_init(&common->cc_lock);
666
667 spin_lock_init(&sc->sc_serial_rw);
668 spin_lock_init(&sc->sc_pm_lock);
669 mutex_init(&sc->mutex);
670 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
671 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
672 (unsigned long)sc);
673
674 INIT_WORK(&sc->hw_reset_work, ath_reset_work);
675 INIT_WORK(&sc->hw_check_work, ath_hw_check);
676 INIT_WORK(&sc->paprd_work, ath_paprd_calibrate);
677 INIT_DELAYED_WORK(&sc->hw_pll_work, ath_hw_pll_work);
678 setup_timer(&sc->rx_poll_timer, ath_rx_poll, (unsigned long)sc);
679
680 /*
681 * Cache line size is used to size and align various
682 * structures used to communicate with the hardware.
683 */
684 ath_read_cachesize(common, &csz);
685 common->cachelsz = csz << 2; /* convert to bytes */
686
687 if (pdata && pdata->eeprom_name) {
688 ret = ath9k_eeprom_request(sc, pdata->eeprom_name);
689 if (ret)
690 return ret;
691 }
692
693 /* Initializes the hardware for all supported chipsets */
694 ret = ath9k_hw_init(ah);
695 if (ret)
696 goto err_hw;
697
698 if (pdata && pdata->macaddr)
699 memcpy(common->macaddr, pdata->macaddr, ETH_ALEN);
700
701 ret = ath9k_init_queues(sc);
702 if (ret)
703 goto err_queues;
704
705 ret = ath9k_init_btcoex(sc);
706 if (ret)
707 goto err_btcoex;
708
709 ret = ath9k_init_channels_rates(sc);
710 if (ret)
711 goto err_btcoex;
712
713 ath9k_cmn_init_crypto(sc->sc_ah);
714 ath9k_init_misc(sc);
715 ath_fill_led_pin(sc);
716
717 if (common->bus_ops->aspm_init)
718 common->bus_ops->aspm_init(common);
719
720 return 0;
721
722 err_btcoex:
723 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
724 if (ATH_TXQ_SETUP(sc, i))
725 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
726 err_queues:
727 ath9k_hw_deinit(ah);
728 err_hw:
729 ath9k_eeprom_release(sc);
730 return ret;
731 }
732
733 static void ath9k_init_band_txpower(struct ath_softc *sc, int band)
734 {
735 struct ieee80211_supported_band *sband;
736 struct ieee80211_channel *chan;
737 struct ath_hw *ah = sc->sc_ah;
738 struct cfg80211_chan_def chandef;
739 int i;
740
741 sband = &sc->sbands[band];
742 for (i = 0; i < sband->n_channels; i++) {
743 chan = &sband->channels[i];
744 ah->curchan = &ah->channels[chan->hw_value];
745 cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
746 ath9k_cmn_update_ichannel(ah->curchan, &chandef);
747 ath9k_hw_set_txpowerlimit(ah, MAX_RATE_POWER, true);
748 }
749 }
750
751 static void ath9k_init_txpower_limits(struct ath_softc *sc)
752 {
753 struct ath_hw *ah = sc->sc_ah;
754 struct ath9k_channel *curchan = ah->curchan;
755
756 if (ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
757 ath9k_init_band_txpower(sc, IEEE80211_BAND_2GHZ);
758 if (ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
759 ath9k_init_band_txpower(sc, IEEE80211_BAND_5GHZ);
760
761 ah->curchan = curchan;
762 }
763
764 void ath9k_reload_chainmask_settings(struct ath_softc *sc)
765 {
766 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT))
767 return;
768
769 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
770 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
771 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
772 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
773 }
774
775 static const struct ieee80211_iface_limit if_limits[] = {
776 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) |
777 BIT(NL80211_IFTYPE_P2P_CLIENT) |
778 BIT(NL80211_IFTYPE_WDS) },
779 { .max = 8, .types =
780 #ifdef CONFIG_MAC80211_MESH
781 BIT(NL80211_IFTYPE_MESH_POINT) |
782 #endif
783 BIT(NL80211_IFTYPE_AP) |
784 BIT(NL80211_IFTYPE_P2P_GO) },
785 };
786
787
788 static const struct ieee80211_iface_limit if_dfs_limits[] = {
789 { .max = 1, .types = BIT(NL80211_IFTYPE_AP) },
790 };
791
792 static const struct ieee80211_iface_combination if_comb[] = {
793 {
794 .limits = if_limits,
795 .n_limits = ARRAY_SIZE(if_limits),
796 .max_interfaces = 2048,
797 .num_different_channels = 1,
798 .beacon_int_infra_match = true,
799 },
800 {
801 .limits = if_dfs_limits,
802 .n_limits = ARRAY_SIZE(if_dfs_limits),
803 .max_interfaces = 1,
804 .num_different_channels = 1,
805 .beacon_int_infra_match = true,
806 .radar_detect_widths = BIT(NL80211_CHAN_NO_HT) |
807 BIT(NL80211_CHAN_HT20),
808 }
809 };
810
811 #ifdef CONFIG_PM
812 static const struct wiphy_wowlan_support ath9k_wowlan_support = {
813 .flags = WIPHY_WOWLAN_MAGIC_PKT | WIPHY_WOWLAN_DISCONNECT,
814 .n_patterns = MAX_NUM_USER_PATTERN,
815 .pattern_min_len = 1,
816 .pattern_max_len = MAX_PATTERN_SIZE,
817 };
818 #endif
819
820 void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
821 {
822 struct ath_hw *ah = sc->sc_ah;
823 struct ath_common *common = ath9k_hw_common(ah);
824
825 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
826 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
827 IEEE80211_HW_SIGNAL_DBM |
828 IEEE80211_HW_SUPPORTS_PS |
829 IEEE80211_HW_PS_NULLFUNC_STACK |
830 IEEE80211_HW_SPECTRUM_MGMT |
831 IEEE80211_HW_REPORTS_TX_ACK_STATUS |
832 IEEE80211_HW_SUPPORTS_RC_TABLE;
833
834 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
835 hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
836
837 if (AR_SREV_9280_20_OR_LATER(ah))
838 hw->radiotap_mcs_details |=
839 IEEE80211_RADIOTAP_MCS_HAVE_STBC;
840 }
841
842 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || ath9k_modparam_nohwcrypt)
843 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
844
845 hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
846
847 hw->wiphy->interface_modes =
848 BIT(NL80211_IFTYPE_P2P_GO) |
849 BIT(NL80211_IFTYPE_P2P_CLIENT) |
850 BIT(NL80211_IFTYPE_AP) |
851 BIT(NL80211_IFTYPE_WDS) |
852 BIT(NL80211_IFTYPE_STATION) |
853 BIT(NL80211_IFTYPE_ADHOC) |
854 BIT(NL80211_IFTYPE_MESH_POINT);
855
856 hw->wiphy->iface_combinations = if_comb;
857 hw->wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
858
859 hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
860
861 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
862 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
863 hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
864 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
865 hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
866
867 #ifdef CONFIG_PM_SLEEP
868 if ((ah->caps.hw_caps & ATH9K_HW_WOW_DEVICE_CAPABLE) &&
869 (sc->driver_data & ATH9K_PCI_WOW) &&
870 device_can_wakeup(sc->dev))
871 hw->wiphy->wowlan = &ath9k_wowlan_support;
872
873 atomic_set(&sc->wow_sleep_proc_intr, -1);
874 atomic_set(&sc->wow_got_bmiss_intr, -1);
875 #endif
876
877 hw->queues = 4;
878 hw->max_rates = 4;
879 hw->channel_change_time = 5000;
880 hw->max_listen_interval = 1;
881 hw->max_rate_tries = 10;
882 hw->sta_data_size = sizeof(struct ath_node);
883 hw->vif_data_size = sizeof(struct ath_vif);
884
885 hw->wiphy->available_antennas_rx = BIT(ah->caps.max_rxchains) - 1;
886 hw->wiphy->available_antennas_tx = BIT(ah->caps.max_txchains) - 1;
887
888 /* single chain devices with rx diversity */
889 if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
890 hw->wiphy->available_antennas_rx = BIT(0) | BIT(1);
891
892 sc->ant_rx = hw->wiphy->available_antennas_rx;
893 sc->ant_tx = hw->wiphy->available_antennas_tx;
894
895 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
896 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
897 &sc->sbands[IEEE80211_BAND_2GHZ];
898 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
899 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
900 &sc->sbands[IEEE80211_BAND_5GHZ];
901
902 ath9k_reload_chainmask_settings(sc);
903
904 SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
905 }
906
907 int ath9k_init_device(u16 devid, struct ath_softc *sc,
908 const struct ath_bus_ops *bus_ops)
909 {
910 struct ieee80211_hw *hw = sc->hw;
911 struct ath_common *common;
912 struct ath_hw *ah;
913 int error = 0;
914 struct ath_regulatory *reg;
915
916 /* Bring up device */
917 error = ath9k_init_softc(devid, sc, bus_ops);
918 if (error)
919 return error;
920
921 ah = sc->sc_ah;
922 common = ath9k_hw_common(ah);
923 ath9k_set_hw_capab(sc, hw);
924
925 /* Initialize regulatory */
926 error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
927 ath9k_reg_notifier);
928 if (error)
929 goto deinit;
930
931 reg = &common->regulatory;
932
933 /* Setup TX DMA */
934 error = ath_tx_init(sc, ATH_TXBUF);
935 if (error != 0)
936 goto deinit;
937
938 /* Setup RX DMA */
939 error = ath_rx_init(sc, ATH_RXBUF);
940 if (error != 0)
941 goto deinit;
942
943 ath9k_init_txpower_limits(sc);
944
945 #ifdef CONFIG_MAC80211_LEDS
946 /* must be initialized before ieee80211_register_hw */
947 sc->led_cdev.default_trigger = ieee80211_create_tpt_led_trigger(sc->hw,
948 IEEE80211_TPT_LEDTRIG_FL_RADIO, ath9k_tpt_blink,
949 ARRAY_SIZE(ath9k_tpt_blink));
950 #endif
951
952 /* Register with mac80211 */
953 error = ieee80211_register_hw(hw);
954 if (error)
955 goto rx_cleanup;
956
957 error = ath9k_init_debug(ah);
958 if (error) {
959 ath_err(common, "Unable to create debugfs files\n");
960 goto unregister;
961 }
962
963 /* Handle world regulatory */
964 if (!ath_is_world_regd(reg)) {
965 error = regulatory_hint(hw->wiphy, reg->alpha2);
966 if (error)
967 goto debug_cleanup;
968 }
969
970 ath_init_leds(sc);
971 ath_start_rfkill_poll(sc);
972
973 return 0;
974
975 debug_cleanup:
976 ath9k_deinit_debug(sc);
977 unregister:
978 ieee80211_unregister_hw(hw);
979 rx_cleanup:
980 ath_rx_cleanup(sc);
981 deinit:
982 ath9k_deinit_softc(sc);
983 return error;
984 }
985
986 /*****************************/
987 /* De-Initialization */
988 /*****************************/
989
990 static void ath9k_deinit_softc(struct ath_softc *sc)
991 {
992 int i = 0;
993
994 ath9k_deinit_btcoex(sc);
995
996 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
997 if (ATH_TXQ_SETUP(sc, i))
998 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
999
1000 ath9k_hw_deinit(sc->sc_ah);
1001 if (sc->dfs_detector != NULL)
1002 sc->dfs_detector->exit(sc->dfs_detector);
1003
1004 ath9k_eeprom_release(sc);
1005 }
1006
1007 void ath9k_deinit_device(struct ath_softc *sc)
1008 {
1009 struct ieee80211_hw *hw = sc->hw;
1010
1011 ath9k_ps_wakeup(sc);
1012
1013 wiphy_rfkill_stop_polling(sc->hw->wiphy);
1014 ath_deinit_leds(sc);
1015
1016 ath9k_ps_restore(sc);
1017
1018 ath9k_deinit_debug(sc);
1019 ieee80211_unregister_hw(hw);
1020 ath_rx_cleanup(sc);
1021 ath9k_deinit_softc(sc);
1022 }
1023
1024 /************************/
1025 /* Module Hooks */
1026 /************************/
1027
1028 static int __init ath9k_init(void)
1029 {
1030 int error;
1031
1032 /* Register rate control algorithm */
1033 error = ath_rate_control_register();
1034 if (error != 0) {
1035 pr_err("Unable to register rate control algorithm: %d\n",
1036 error);
1037 goto err_out;
1038 }
1039
1040 error = ath_pci_init();
1041 if (error < 0) {
1042 pr_err("No PCI devices found, driver not installed\n");
1043 error = -ENODEV;
1044 goto err_rate_unregister;
1045 }
1046
1047 error = ath_ahb_init();
1048 if (error < 0) {
1049 error = -ENODEV;
1050 goto err_pci_exit;
1051 }
1052
1053 return 0;
1054
1055 err_pci_exit:
1056 ath_pci_exit();
1057
1058 err_rate_unregister:
1059 ath_rate_control_unregister();
1060 err_out:
1061 return error;
1062 }
1063 module_init(ath9k_init);
1064
1065 static void __exit ath9k_exit(void)
1066 {
1067 is_ath9k_unloaded = true;
1068 ath_ahb_exit();
1069 ath_pci_exit();
1070 ath_rate_control_unregister();
1071 pr_info("%s: Driver unloaded\n", dev_info);
1072 }
1073 module_exit(ath9k_exit);