]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ath/ath9k/init.c
944e9b518f1935ba61111d1ca1d6c6aa8eb89b24
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ath / ath9k / init.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include <linux/slab.h>
19 #include <linux/ath9k_platform.h>
20 #include <linux/module.h>
21
22 #include "ath9k.h"
23
24 static char *dev_info = "ath9k";
25
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
30
31 static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
32 module_param_named(debug, ath9k_debug, uint, 0);
33 MODULE_PARM_DESC(debug, "Debugging mask");
34
35 int ath9k_modparam_nohwcrypt;
36 module_param_named(nohwcrypt, ath9k_modparam_nohwcrypt, int, 0444);
37 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
38
39 int led_blink;
40 module_param_named(blink, led_blink, int, 0444);
41 MODULE_PARM_DESC(blink, "Enable LED blink on activity");
42
43 static int ath9k_btcoex_enable;
44 module_param_named(btcoex_enable, ath9k_btcoex_enable, int, 0444);
45 MODULE_PARM_DESC(btcoex_enable, "Enable wifi-BT coexistence");
46
47 bool is_ath9k_unloaded;
48 /* We use the hw_value as an index into our private channel structure */
49
50 #define CHAN2G(_freq, _idx) { \
51 .band = IEEE80211_BAND_2GHZ, \
52 .center_freq = (_freq), \
53 .hw_value = (_idx), \
54 .max_power = 20, \
55 }
56
57 #define CHAN5G(_freq, _idx) { \
58 .band = IEEE80211_BAND_5GHZ, \
59 .center_freq = (_freq), \
60 .hw_value = (_idx), \
61 .max_power = 20, \
62 }
63
64 /* Some 2 GHz radios are actually tunable on 2312-2732
65 * on 5 MHz steps, we support the channels which we know
66 * we have calibration data for all cards though to make
67 * this static */
68 static const struct ieee80211_channel ath9k_2ghz_chantable[] = {
69 CHAN2G(2412, 0), /* Channel 1 */
70 CHAN2G(2417, 1), /* Channel 2 */
71 CHAN2G(2422, 2), /* Channel 3 */
72 CHAN2G(2427, 3), /* Channel 4 */
73 CHAN2G(2432, 4), /* Channel 5 */
74 CHAN2G(2437, 5), /* Channel 6 */
75 CHAN2G(2442, 6), /* Channel 7 */
76 CHAN2G(2447, 7), /* Channel 8 */
77 CHAN2G(2452, 8), /* Channel 9 */
78 CHAN2G(2457, 9), /* Channel 10 */
79 CHAN2G(2462, 10), /* Channel 11 */
80 CHAN2G(2467, 11), /* Channel 12 */
81 CHAN2G(2472, 12), /* Channel 13 */
82 CHAN2G(2484, 13), /* Channel 14 */
83 };
84
85 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
86 * on 5 MHz steps, we support the channels which we know
87 * we have calibration data for all cards though to make
88 * this static */
89 static const struct ieee80211_channel ath9k_5ghz_chantable[] = {
90 /* _We_ call this UNII 1 */
91 CHAN5G(5180, 14), /* Channel 36 */
92 CHAN5G(5200, 15), /* Channel 40 */
93 CHAN5G(5220, 16), /* Channel 44 */
94 CHAN5G(5240, 17), /* Channel 48 */
95 /* _We_ call this UNII 2 */
96 CHAN5G(5260, 18), /* Channel 52 */
97 CHAN5G(5280, 19), /* Channel 56 */
98 CHAN5G(5300, 20), /* Channel 60 */
99 CHAN5G(5320, 21), /* Channel 64 */
100 /* _We_ call this "Middle band" */
101 CHAN5G(5500, 22), /* Channel 100 */
102 CHAN5G(5520, 23), /* Channel 104 */
103 CHAN5G(5540, 24), /* Channel 108 */
104 CHAN5G(5560, 25), /* Channel 112 */
105 CHAN5G(5580, 26), /* Channel 116 */
106 CHAN5G(5600, 27), /* Channel 120 */
107 CHAN5G(5620, 28), /* Channel 124 */
108 CHAN5G(5640, 29), /* Channel 128 */
109 CHAN5G(5660, 30), /* Channel 132 */
110 CHAN5G(5680, 31), /* Channel 136 */
111 CHAN5G(5700, 32), /* Channel 140 */
112 /* _We_ call this UNII 3 */
113 CHAN5G(5745, 33), /* Channel 149 */
114 CHAN5G(5765, 34), /* Channel 153 */
115 CHAN5G(5785, 35), /* Channel 157 */
116 CHAN5G(5805, 36), /* Channel 161 */
117 CHAN5G(5825, 37), /* Channel 165 */
118 };
119
120 /* Atheros hardware rate code addition for short premble */
121 #define SHPCHECK(__hw_rate, __flags) \
122 ((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
123
124 #define RATE(_bitrate, _hw_rate, _flags) { \
125 .bitrate = (_bitrate), \
126 .flags = (_flags), \
127 .hw_value = (_hw_rate), \
128 .hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
129 }
130
131 static struct ieee80211_rate ath9k_legacy_rates[] = {
132 RATE(10, 0x1b, 0),
133 RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
134 RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
135 RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
136 RATE(60, 0x0b, 0),
137 RATE(90, 0x0f, 0),
138 RATE(120, 0x0a, 0),
139 RATE(180, 0x0e, 0),
140 RATE(240, 0x09, 0),
141 RATE(360, 0x0d, 0),
142 RATE(480, 0x08, 0),
143 RATE(540, 0x0c, 0),
144 };
145
146 #ifdef CONFIG_MAC80211_LEDS
147 static const struct ieee80211_tpt_blink ath9k_tpt_blink[] = {
148 { .throughput = 0 * 1024, .blink_time = 334 },
149 { .throughput = 1 * 1024, .blink_time = 260 },
150 { .throughput = 5 * 1024, .blink_time = 220 },
151 { .throughput = 10 * 1024, .blink_time = 190 },
152 { .throughput = 20 * 1024, .blink_time = 170 },
153 { .throughput = 50 * 1024, .blink_time = 150 },
154 { .throughput = 70 * 1024, .blink_time = 130 },
155 { .throughput = 100 * 1024, .blink_time = 110 },
156 { .throughput = 200 * 1024, .blink_time = 80 },
157 { .throughput = 300 * 1024, .blink_time = 50 },
158 };
159 #endif
160
161 static void ath9k_deinit_softc(struct ath_softc *sc);
162
163 /*
164 * Read and write, they both share the same lock. We do this to serialize
165 * reads and writes on Atheros 802.11n PCI devices only. This is required
166 * as the FIFO on these devices can only accept sanely 2 requests.
167 */
168
169 static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
170 {
171 struct ath_hw *ah = (struct ath_hw *) hw_priv;
172 struct ath_common *common = ath9k_hw_common(ah);
173 struct ath_softc *sc = (struct ath_softc *) common->priv;
174
175 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
176 unsigned long flags;
177 spin_lock_irqsave(&sc->sc_serial_rw, flags);
178 iowrite32(val, sc->mem + reg_offset);
179 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
180 } else
181 iowrite32(val, sc->mem + reg_offset);
182 }
183
184 static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
185 {
186 struct ath_hw *ah = (struct ath_hw *) hw_priv;
187 struct ath_common *common = ath9k_hw_common(ah);
188 struct ath_softc *sc = (struct ath_softc *) common->priv;
189 u32 val;
190
191 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
192 unsigned long flags;
193 spin_lock_irqsave(&sc->sc_serial_rw, flags);
194 val = ioread32(sc->mem + reg_offset);
195 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
196 } else
197 val = ioread32(sc->mem + reg_offset);
198 return val;
199 }
200
201 static unsigned int __ath9k_reg_rmw(struct ath_softc *sc, u32 reg_offset,
202 u32 set, u32 clr)
203 {
204 u32 val;
205
206 val = ioread32(sc->mem + reg_offset);
207 val &= ~clr;
208 val |= set;
209 iowrite32(val, sc->mem + reg_offset);
210
211 return val;
212 }
213
214 static unsigned int ath9k_reg_rmw(void *hw_priv, u32 reg_offset, u32 set, u32 clr)
215 {
216 struct ath_hw *ah = (struct ath_hw *) hw_priv;
217 struct ath_common *common = ath9k_hw_common(ah);
218 struct ath_softc *sc = (struct ath_softc *) common->priv;
219 unsigned long uninitialized_var(flags);
220 u32 val;
221
222 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
223 spin_lock_irqsave(&sc->sc_serial_rw, flags);
224 val = __ath9k_reg_rmw(sc, reg_offset, set, clr);
225 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
226 } else
227 val = __ath9k_reg_rmw(sc, reg_offset, set, clr);
228
229 return val;
230 }
231
232 /**************************/
233 /* Initialization */
234 /**************************/
235
236 static void setup_ht_cap(struct ath_softc *sc,
237 struct ieee80211_sta_ht_cap *ht_info)
238 {
239 struct ath_hw *ah = sc->sc_ah;
240 struct ath_common *common = ath9k_hw_common(ah);
241 u8 tx_streams, rx_streams;
242 int i, max_streams;
243
244 ht_info->ht_supported = true;
245 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
246 IEEE80211_HT_CAP_SM_PS |
247 IEEE80211_HT_CAP_SGI_40 |
248 IEEE80211_HT_CAP_DSSSCCK40;
249
250 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_LDPC)
251 ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
252
253 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
254 ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
255
256 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
257 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
258
259 if (AR_SREV_9330(ah) || AR_SREV_9485(ah))
260 max_streams = 1;
261 else if (AR_SREV_9462(ah))
262 max_streams = 2;
263 else if (AR_SREV_9300_20_OR_LATER(ah))
264 max_streams = 3;
265 else
266 max_streams = 2;
267
268 if (AR_SREV_9280_20_OR_LATER(ah)) {
269 if (max_streams >= 2)
270 ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
271 ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
272 }
273
274 /* set up supported mcs set */
275 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
276 tx_streams = ath9k_cmn_count_streams(ah->txchainmask, max_streams);
277 rx_streams = ath9k_cmn_count_streams(ah->rxchainmask, max_streams);
278
279 ath_dbg(common, CONFIG, "TX streams %d, RX streams: %d\n",
280 tx_streams, rx_streams);
281
282 if (tx_streams != rx_streams) {
283 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
284 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
285 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
286 }
287
288 for (i = 0; i < rx_streams; i++)
289 ht_info->mcs.rx_mask[i] = 0xff;
290
291 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
292 }
293
294 static int ath9k_reg_notifier(struct wiphy *wiphy,
295 struct regulatory_request *request)
296 {
297 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
298 struct ath_softc *sc = hw->priv;
299 struct ath_hw *ah = sc->sc_ah;
300 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
301 int ret;
302
303 ret = ath_reg_notifier_apply(wiphy, request, reg);
304
305 /* Set tx power */
306 if (ah->curchan) {
307 sc->config.txpowlimit = 2 * ah->curchan->chan->max_power;
308 ath9k_ps_wakeup(sc);
309 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit, false);
310 sc->curtxpow = ath9k_hw_regulatory(ah)->power_limit;
311 ath9k_ps_restore(sc);
312 }
313
314 return ret;
315 }
316
317 /*
318 * This function will allocate both the DMA descriptor structure, and the
319 * buffers it contains. These are used to contain the descriptors used
320 * by the system.
321 */
322 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
323 struct list_head *head, const char *name,
324 int nbuf, int ndesc, bool is_tx)
325 {
326 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
327 u8 *ds;
328 struct ath_buf *bf;
329 int i, bsize, error, desc_len;
330
331 ath_dbg(common, CONFIG, "%s DMA: %u buffers %u desc/buf\n",
332 name, nbuf, ndesc);
333
334 INIT_LIST_HEAD(head);
335
336 if (is_tx)
337 desc_len = sc->sc_ah->caps.tx_desc_len;
338 else
339 desc_len = sizeof(struct ath_desc);
340
341 /* ath_desc must be a multiple of DWORDs */
342 if ((desc_len % 4) != 0) {
343 ath_err(common, "ath_desc not DWORD aligned\n");
344 BUG_ON((desc_len % 4) != 0);
345 error = -ENOMEM;
346 goto fail;
347 }
348
349 dd->dd_desc_len = desc_len * nbuf * ndesc;
350
351 /*
352 * Need additional DMA memory because we can't use
353 * descriptors that cross the 4K page boundary. Assume
354 * one skipped descriptor per 4K page.
355 */
356 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
357 u32 ndesc_skipped =
358 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
359 u32 dma_len;
360
361 while (ndesc_skipped) {
362 dma_len = ndesc_skipped * desc_len;
363 dd->dd_desc_len += dma_len;
364
365 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
366 }
367 }
368
369 /* allocate descriptors */
370 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
371 &dd->dd_desc_paddr, GFP_KERNEL);
372 if (dd->dd_desc == NULL) {
373 error = -ENOMEM;
374 goto fail;
375 }
376 ds = (u8 *) dd->dd_desc;
377 ath_dbg(common, CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
378 name, ds, (u32) dd->dd_desc_len,
379 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
380
381 /* allocate buffers */
382 bsize = sizeof(struct ath_buf) * nbuf;
383 bf = kzalloc(bsize, GFP_KERNEL);
384 if (bf == NULL) {
385 error = -ENOMEM;
386 goto fail2;
387 }
388 dd->dd_bufptr = bf;
389
390 for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
391 bf->bf_desc = ds;
392 bf->bf_daddr = DS2PHYS(dd, ds);
393
394 if (!(sc->sc_ah->caps.hw_caps &
395 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
396 /*
397 * Skip descriptor addresses which can cause 4KB
398 * boundary crossing (addr + length) with a 32 dword
399 * descriptor fetch.
400 */
401 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
402 BUG_ON((caddr_t) bf->bf_desc >=
403 ((caddr_t) dd->dd_desc +
404 dd->dd_desc_len));
405
406 ds += (desc_len * ndesc);
407 bf->bf_desc = ds;
408 bf->bf_daddr = DS2PHYS(dd, ds);
409 }
410 }
411 list_add_tail(&bf->list, head);
412 }
413 return 0;
414 fail2:
415 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
416 dd->dd_desc_paddr);
417 fail:
418 memset(dd, 0, sizeof(*dd));
419 return error;
420 }
421
422 static int ath9k_init_queues(struct ath_softc *sc)
423 {
424 int i = 0;
425
426 sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
427 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
428
429 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
430 ath_cabq_update(sc);
431
432 for (i = 0; i < WME_NUM_AC; i++) {
433 sc->tx.txq_map[i] = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, i);
434 sc->tx.txq_map[i]->mac80211_qnum = i;
435 }
436 return 0;
437 }
438
439 static int ath9k_init_channels_rates(struct ath_softc *sc)
440 {
441 void *channels;
442
443 BUILD_BUG_ON(ARRAY_SIZE(ath9k_2ghz_chantable) +
444 ARRAY_SIZE(ath9k_5ghz_chantable) !=
445 ATH9K_NUM_CHANNELS);
446
447 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) {
448 channels = kmemdup(ath9k_2ghz_chantable,
449 sizeof(ath9k_2ghz_chantable), GFP_KERNEL);
450 if (!channels)
451 return -ENOMEM;
452
453 sc->sbands[IEEE80211_BAND_2GHZ].channels = channels;
454 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
455 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
456 ARRAY_SIZE(ath9k_2ghz_chantable);
457 sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
458 sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
459 ARRAY_SIZE(ath9k_legacy_rates);
460 }
461
462 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) {
463 channels = kmemdup(ath9k_5ghz_chantable,
464 sizeof(ath9k_5ghz_chantable), GFP_KERNEL);
465 if (!channels) {
466 if (sc->sbands[IEEE80211_BAND_2GHZ].channels)
467 kfree(sc->sbands[IEEE80211_BAND_2GHZ].channels);
468 return -ENOMEM;
469 }
470
471 sc->sbands[IEEE80211_BAND_5GHZ].channels = channels;
472 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
473 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
474 ARRAY_SIZE(ath9k_5ghz_chantable);
475 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
476 ath9k_legacy_rates + 4;
477 sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
478 ARRAY_SIZE(ath9k_legacy_rates) - 4;
479 }
480 return 0;
481 }
482
483 static void ath9k_init_misc(struct ath_softc *sc)
484 {
485 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
486 int i = 0;
487 setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
488
489 sc->config.txpowlimit = ATH_TXPOWER_MAX;
490
491 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
492 sc->sc_flags |= SC_OP_TXAGGR;
493 sc->sc_flags |= SC_OP_RXAGGR;
494 }
495
496 sc->rx.defant = ath9k_hw_getdefantenna(sc->sc_ah);
497
498 memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
499
500 sc->beacon.slottime = ATH9K_SLOT_TIME_9;
501
502 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
503 sc->beacon.bslot[i] = NULL;
504
505 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
506 sc->ant_comb.count = ATH_ANT_DIV_COMB_INIT_COUNT;
507 }
508
509 static int ath9k_init_softc(u16 devid, struct ath_softc *sc,
510 const struct ath_bus_ops *bus_ops)
511 {
512 struct ath9k_platform_data *pdata = sc->dev->platform_data;
513 struct ath_hw *ah = NULL;
514 struct ath_common *common;
515 int ret = 0, i;
516 int csz = 0;
517
518 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
519 if (!ah)
520 return -ENOMEM;
521
522 ah->hw = sc->hw;
523 ah->hw_version.devid = devid;
524 ah->reg_ops.read = ath9k_ioread32;
525 ah->reg_ops.write = ath9k_iowrite32;
526 ah->reg_ops.rmw = ath9k_reg_rmw;
527 atomic_set(&ah->intr_ref_cnt, -1);
528 sc->sc_ah = ah;
529
530 if (!pdata) {
531 ah->ah_flags |= AH_USE_EEPROM;
532 sc->sc_ah->led_pin = -1;
533 } else {
534 sc->sc_ah->gpio_mask = pdata->gpio_mask;
535 sc->sc_ah->gpio_val = pdata->gpio_val;
536 sc->sc_ah->led_pin = pdata->led_pin;
537 ah->is_clk_25mhz = pdata->is_clk_25mhz;
538 ah->get_mac_revision = pdata->get_mac_revision;
539 ah->external_reset = pdata->external_reset;
540 }
541
542 common = ath9k_hw_common(ah);
543 common->ops = &ah->reg_ops;
544 common->bus_ops = bus_ops;
545 common->ah = ah;
546 common->hw = sc->hw;
547 common->priv = sc;
548 common->debug_mask = ath9k_debug;
549 common->btcoex_enabled = ath9k_btcoex_enable == 1;
550 common->disable_ani = false;
551 spin_lock_init(&common->cc_lock);
552
553 spin_lock_init(&sc->sc_serial_rw);
554 spin_lock_init(&sc->sc_pm_lock);
555 mutex_init(&sc->mutex);
556 #ifdef CONFIG_ATH9K_DEBUGFS
557 spin_lock_init(&sc->nodes_lock);
558 INIT_LIST_HEAD(&sc->nodes);
559 #endif
560 #ifdef CONFIG_ATH9K_MAC_DEBUG
561 spin_lock_init(&sc->debug.samp_lock);
562 #endif
563 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
564 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
565 (unsigned long)sc);
566
567 /*
568 * Cache line size is used to size and align various
569 * structures used to communicate with the hardware.
570 */
571 ath_read_cachesize(common, &csz);
572 common->cachelsz = csz << 2; /* convert to bytes */
573
574 /* Initializes the hardware for all supported chipsets */
575 ret = ath9k_hw_init(ah);
576 if (ret)
577 goto err_hw;
578
579 if (pdata && pdata->macaddr)
580 memcpy(common->macaddr, pdata->macaddr, ETH_ALEN);
581
582 ret = ath9k_init_queues(sc);
583 if (ret)
584 goto err_queues;
585
586 ret = ath9k_init_btcoex(sc);
587 if (ret)
588 goto err_btcoex;
589
590 ret = ath9k_init_channels_rates(sc);
591 if (ret)
592 goto err_btcoex;
593
594 ath9k_cmn_init_crypto(sc->sc_ah);
595 ath9k_init_misc(sc);
596
597 return 0;
598
599 err_btcoex:
600 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
601 if (ATH_TXQ_SETUP(sc, i))
602 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
603 err_queues:
604 ath9k_hw_deinit(ah);
605 err_hw:
606
607 kfree(ah);
608 sc->sc_ah = NULL;
609
610 return ret;
611 }
612
613 static void ath9k_init_band_txpower(struct ath_softc *sc, int band)
614 {
615 struct ieee80211_supported_band *sband;
616 struct ieee80211_channel *chan;
617 struct ath_hw *ah = sc->sc_ah;
618 int i;
619
620 sband = &sc->sbands[band];
621 for (i = 0; i < sband->n_channels; i++) {
622 chan = &sband->channels[i];
623 ah->curchan = &ah->channels[chan->hw_value];
624 ath9k_cmn_update_ichannel(ah->curchan, chan, NL80211_CHAN_HT20);
625 ath9k_hw_set_txpowerlimit(ah, MAX_RATE_POWER, true);
626 }
627 }
628
629 static void ath9k_init_txpower_limits(struct ath_softc *sc)
630 {
631 struct ath_hw *ah = sc->sc_ah;
632 struct ath9k_channel *curchan = ah->curchan;
633
634 if (ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
635 ath9k_init_band_txpower(sc, IEEE80211_BAND_2GHZ);
636 if (ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
637 ath9k_init_band_txpower(sc, IEEE80211_BAND_5GHZ);
638
639 ah->curchan = curchan;
640 }
641
642 void ath9k_reload_chainmask_settings(struct ath_softc *sc)
643 {
644 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT))
645 return;
646
647 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
648 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
649 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
650 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
651 }
652
653
654 void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
655 {
656 struct ath_hw *ah = sc->sc_ah;
657 struct ath_common *common = ath9k_hw_common(ah);
658
659 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
660 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
661 IEEE80211_HW_SIGNAL_DBM |
662 IEEE80211_HW_SUPPORTS_PS |
663 IEEE80211_HW_PS_NULLFUNC_STACK |
664 IEEE80211_HW_SPECTRUM_MGMT |
665 IEEE80211_HW_REPORTS_TX_ACK_STATUS;
666
667 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
668 hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
669
670 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || ath9k_modparam_nohwcrypt)
671 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
672
673 hw->wiphy->interface_modes =
674 BIT(NL80211_IFTYPE_P2P_GO) |
675 BIT(NL80211_IFTYPE_P2P_CLIENT) |
676 BIT(NL80211_IFTYPE_AP) |
677 BIT(NL80211_IFTYPE_WDS) |
678 BIT(NL80211_IFTYPE_STATION) |
679 BIT(NL80211_IFTYPE_ADHOC) |
680 BIT(NL80211_IFTYPE_MESH_POINT);
681
682 if (AR_SREV_5416(sc->sc_ah))
683 hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
684
685 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
686 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
687
688 hw->queues = 4;
689 hw->max_rates = 4;
690 hw->channel_change_time = 5000;
691 hw->max_listen_interval = 10;
692 hw->max_rate_tries = 10;
693 hw->sta_data_size = sizeof(struct ath_node);
694 hw->vif_data_size = sizeof(struct ath_vif);
695
696 hw->wiphy->available_antennas_rx = BIT(ah->caps.max_rxchains) - 1;
697 hw->wiphy->available_antennas_tx = BIT(ah->caps.max_txchains) - 1;
698
699 /* single chain devices with rx diversity */
700 if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
701 hw->wiphy->available_antennas_rx = BIT(0) | BIT(1);
702
703 sc->ant_rx = hw->wiphy->available_antennas_rx;
704 sc->ant_tx = hw->wiphy->available_antennas_tx;
705
706 #ifdef CONFIG_ATH9K_RATE_CONTROL
707 hw->rate_control_algorithm = "ath9k_rate_control";
708 #endif
709
710 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
711 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
712 &sc->sbands[IEEE80211_BAND_2GHZ];
713 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
714 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
715 &sc->sbands[IEEE80211_BAND_5GHZ];
716
717 ath9k_reload_chainmask_settings(sc);
718
719 SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
720 }
721
722 int ath9k_init_device(u16 devid, struct ath_softc *sc,
723 const struct ath_bus_ops *bus_ops)
724 {
725 struct ieee80211_hw *hw = sc->hw;
726 struct ath_common *common;
727 struct ath_hw *ah;
728 int error = 0;
729 struct ath_regulatory *reg;
730
731 /* Bring up device */
732 error = ath9k_init_softc(devid, sc, bus_ops);
733 if (error != 0)
734 goto error_init;
735
736 ah = sc->sc_ah;
737 common = ath9k_hw_common(ah);
738 ath9k_set_hw_capab(sc, hw);
739
740 /* Initialize regulatory */
741 error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
742 ath9k_reg_notifier);
743 if (error)
744 goto error_regd;
745
746 reg = &common->regulatory;
747
748 /* Setup TX DMA */
749 error = ath_tx_init(sc, ATH_TXBUF);
750 if (error != 0)
751 goto error_tx;
752
753 /* Setup RX DMA */
754 error = ath_rx_init(sc, ATH_RXBUF);
755 if (error != 0)
756 goto error_rx;
757
758 ath9k_init_txpower_limits(sc);
759
760 #ifdef CONFIG_MAC80211_LEDS
761 /* must be initialized before ieee80211_register_hw */
762 sc->led_cdev.default_trigger = ieee80211_create_tpt_led_trigger(sc->hw,
763 IEEE80211_TPT_LEDTRIG_FL_RADIO, ath9k_tpt_blink,
764 ARRAY_SIZE(ath9k_tpt_blink));
765 #endif
766
767 INIT_WORK(&sc->hw_reset_work, ath_reset_work);
768 INIT_WORK(&sc->hw_check_work, ath_hw_check);
769 INIT_WORK(&sc->paprd_work, ath_paprd_calibrate);
770 INIT_DELAYED_WORK(&sc->hw_pll_work, ath_hw_pll_work);
771
772 /* Register with mac80211 */
773 error = ieee80211_register_hw(hw);
774 if (error)
775 goto error_register;
776
777 error = ath9k_init_debug(ah);
778 if (error) {
779 ath_err(common, "Unable to create debugfs files\n");
780 goto error_world;
781 }
782
783 /* Handle world regulatory */
784 if (!ath_is_world_regd(reg)) {
785 error = regulatory_hint(hw->wiphy, reg->alpha2);
786 if (error)
787 goto error_world;
788 }
789
790 sc->last_rssi = ATH_RSSI_DUMMY_MARKER;
791
792 ath_init_leds(sc);
793 ath_start_rfkill_poll(sc);
794
795 return 0;
796
797 error_world:
798 ieee80211_unregister_hw(hw);
799 error_register:
800 ath_rx_cleanup(sc);
801 error_rx:
802 ath_tx_cleanup(sc);
803 error_tx:
804 /* Nothing */
805 error_regd:
806 ath9k_deinit_softc(sc);
807 error_init:
808 return error;
809 }
810
811 /*****************************/
812 /* De-Initialization */
813 /*****************************/
814
815 static void ath9k_deinit_softc(struct ath_softc *sc)
816 {
817 int i = 0;
818
819 if (sc->sbands[IEEE80211_BAND_2GHZ].channels)
820 kfree(sc->sbands[IEEE80211_BAND_2GHZ].channels);
821
822 if (sc->sbands[IEEE80211_BAND_5GHZ].channels)
823 kfree(sc->sbands[IEEE80211_BAND_5GHZ].channels);
824
825 ath9k_deinit_btcoex(sc);
826
827 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
828 if (ATH_TXQ_SETUP(sc, i))
829 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
830
831 ath9k_hw_deinit(sc->sc_ah);
832
833 kfree(sc->sc_ah);
834 sc->sc_ah = NULL;
835 }
836
837 void ath9k_deinit_device(struct ath_softc *sc)
838 {
839 struct ieee80211_hw *hw = sc->hw;
840
841 ath9k_ps_wakeup(sc);
842
843 wiphy_rfkill_stop_polling(sc->hw->wiphy);
844 ath_deinit_leds(sc);
845
846 ath9k_ps_restore(sc);
847
848 ieee80211_unregister_hw(hw);
849 ath_rx_cleanup(sc);
850 ath_tx_cleanup(sc);
851 ath9k_deinit_softc(sc);
852 }
853
854 void ath_descdma_cleanup(struct ath_softc *sc,
855 struct ath_descdma *dd,
856 struct list_head *head)
857 {
858 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
859 dd->dd_desc_paddr);
860
861 INIT_LIST_HEAD(head);
862 kfree(dd->dd_bufptr);
863 memset(dd, 0, sizeof(*dd));
864 }
865
866 /************************/
867 /* Module Hooks */
868 /************************/
869
870 static int __init ath9k_init(void)
871 {
872 int error;
873
874 /* Register rate control algorithm */
875 error = ath_rate_control_register();
876 if (error != 0) {
877 printk(KERN_ERR
878 "ath9k: Unable to register rate control "
879 "algorithm: %d\n",
880 error);
881 goto err_out;
882 }
883
884 error = ath_pci_init();
885 if (error < 0) {
886 printk(KERN_ERR
887 "ath9k: No PCI devices found, driver not installed.\n");
888 error = -ENODEV;
889 goto err_rate_unregister;
890 }
891
892 error = ath_ahb_init();
893 if (error < 0) {
894 error = -ENODEV;
895 goto err_pci_exit;
896 }
897
898 return 0;
899
900 err_pci_exit:
901 ath_pci_exit();
902
903 err_rate_unregister:
904 ath_rate_control_unregister();
905 err_out:
906 return error;
907 }
908 module_init(ath9k_init);
909
910 static void __exit ath9k_exit(void)
911 {
912 is_ath9k_unloaded = true;
913 ath_ahb_exit();
914 ath_pci_exit();
915 ath_rate_control_unregister();
916 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
917 }
918 module_exit(ath9k_exit);