]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath9k/phy.c
ath9k: Cleanup ineffective return values
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath9k / phy.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18
19 void
20 ath9k_hw_write_regs(struct ath_hw *ah, u32 modesIndex, u32 freqIndex,
21 int regWrites)
22 {
23 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
24 }
25
26 bool
27 ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
28 {
29 u32 channelSel = 0;
30 u32 bModeSynth = 0;
31 u32 aModeRefSel = 0;
32 u32 reg32 = 0;
33 u16 freq;
34 struct chan_centers centers;
35
36 ath9k_hw_get_channel_centers(ah, chan, &centers);
37 freq = centers.synth_center;
38
39 if (freq < 4800) {
40 u32 txctl;
41
42 if (((freq - 2192) % 5) == 0) {
43 channelSel = ((freq - 672) * 2 - 3040) / 10;
44 bModeSynth = 0;
45 } else if (((freq - 2224) % 5) == 0) {
46 channelSel = ((freq - 704) * 2 - 3040) / 10;
47 bModeSynth = 1;
48 } else {
49 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
50 "Invalid channel %u MHz\n", freq);
51 return false;
52 }
53
54 channelSel = (channelSel << 2) & 0xff;
55 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
56
57 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
58 if (freq == 2484) {
59
60 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
61 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
62 } else {
63 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
64 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
65 }
66
67 } else if ((freq % 20) == 0 && freq >= 5120) {
68 channelSel =
69 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
70 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
71 } else if ((freq % 10) == 0) {
72 channelSel =
73 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
74 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
75 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
76 else
77 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
78 } else if ((freq % 5) == 0) {
79 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
80 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
81 } else {
82 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
83 "Invalid channel %u MHz\n", freq);
84 return false;
85 }
86
87 reg32 =
88 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
89 (1 << 5) | 0x1;
90
91 REG_WRITE(ah, AR_PHY(0x37), reg32);
92
93 ah->curchan = chan;
94 ah->curchan_rad_index = -1;
95
96 return true;
97 }
98
99 void ath9k_hw_ar9280_set_channel(struct ath_hw *ah,
100 struct ath9k_channel *chan)
101 {
102 u16 bMode, fracMode, aModeRefSel = 0;
103 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
104 struct chan_centers centers;
105 u32 refDivA = 24;
106
107 ath9k_hw_get_channel_centers(ah, chan, &centers);
108 freq = centers.synth_center;
109
110 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
111 reg32 &= 0xc0000000;
112
113 if (freq < 4800) {
114 u32 txctl;
115
116 bMode = 1;
117 fracMode = 1;
118 aModeRefSel = 0;
119 channelSel = (freq * 0x10000) / 15;
120
121 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
122 if (freq == 2484) {
123
124 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
125 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
126 } else {
127 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
128 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
129 }
130 } else {
131 bMode = 0;
132 fracMode = 0;
133
134 switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
135 case 0:
136 if ((freq % 20) == 0) {
137 aModeRefSel = 3;
138 } else if ((freq % 10) == 0) {
139 aModeRefSel = 2;
140 }
141 if (aModeRefSel)
142 break;
143 case 1:
144 default:
145 aModeRefSel = 0;
146 fracMode = 1;
147 refDivA = 1;
148 channelSel = (freq * 0x8000) / 15;
149
150 REG_RMW_FIELD(ah, AR_AN_SYNTH9,
151 AR_AN_SYNTH9_REFDIVA, refDivA);
152
153 }
154
155 if (!fracMode) {
156 ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
157 channelSel = ndiv & 0x1ff;
158 channelFrac = (ndiv & 0xfffffe00) * 2;
159 channelSel = (channelSel << 17) | channelFrac;
160 }
161 }
162
163 reg32 = reg32 |
164 (bMode << 29) |
165 (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
166
167 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
168
169 ah->curchan = chan;
170 ah->curchan_rad_index = -1;
171 }
172
173 static void
174 ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
175 u32 numBits, u32 firstBit,
176 u32 column)
177 {
178 u32 tmp32, mask, arrayEntry, lastBit;
179 int32_t bitPosition, bitsLeft;
180
181 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
182 arrayEntry = (firstBit - 1) / 8;
183 bitPosition = (firstBit - 1) % 8;
184 bitsLeft = numBits;
185 while (bitsLeft > 0) {
186 lastBit = (bitPosition + bitsLeft > 8) ?
187 8 : bitPosition + bitsLeft;
188 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
189 (column * 8);
190 rfBuf[arrayEntry] &= ~mask;
191 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
192 (column * 8)) & mask;
193 bitsLeft -= 8 - bitPosition;
194 tmp32 = tmp32 >> (8 - bitPosition);
195 bitPosition = 0;
196 arrayEntry++;
197 }
198 }
199
200 bool
201 ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan,
202 u16 modesIndex)
203 {
204 u32 eepMinorRev;
205 u32 ob5GHz = 0, db5GHz = 0;
206 u32 ob2GHz = 0, db2GHz = 0;
207 int regWrites = 0;
208
209 if (AR_SREV_9280_10_OR_LATER(ah))
210 return true;
211
212 eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
213
214 RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
215
216 RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
217
218 RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
219
220 RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
221 modesIndex);
222 {
223 int i;
224 for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
225 ah->analogBank6Data[i] =
226 INI_RA(&ah->iniBank6TPC, i, modesIndex);
227 }
228 }
229
230 if (eepMinorRev >= 2) {
231 if (IS_CHAN_2GHZ(chan)) {
232 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
233 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
234 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
235 ob2GHz, 3, 197, 0);
236 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
237 db2GHz, 3, 194, 0);
238 } else {
239 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
240 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
241 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
242 ob5GHz, 3, 203, 0);
243 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
244 db5GHz, 3, 200, 0);
245 }
246 }
247
248 RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
249
250 REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
251 regWrites);
252 REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
253 regWrites);
254 REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
255 regWrites);
256 REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
257 regWrites);
258 REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
259 regWrites);
260 REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
261 regWrites);
262
263 return true;
264 }
265
266 void
267 ath9k_hw_rfdetach(struct ath_hw *ah)
268 {
269 if (ah->analogBank0Data != NULL) {
270 kfree(ah->analogBank0Data);
271 ah->analogBank0Data = NULL;
272 }
273 if (ah->analogBank1Data != NULL) {
274 kfree(ah->analogBank1Data);
275 ah->analogBank1Data = NULL;
276 }
277 if (ah->analogBank2Data != NULL) {
278 kfree(ah->analogBank2Data);
279 ah->analogBank2Data = NULL;
280 }
281 if (ah->analogBank3Data != NULL) {
282 kfree(ah->analogBank3Data);
283 ah->analogBank3Data = NULL;
284 }
285 if (ah->analogBank6Data != NULL) {
286 kfree(ah->analogBank6Data);
287 ah->analogBank6Data = NULL;
288 }
289 if (ah->analogBank6TPCData != NULL) {
290 kfree(ah->analogBank6TPCData);
291 ah->analogBank6TPCData = NULL;
292 }
293 if (ah->analogBank7Data != NULL) {
294 kfree(ah->analogBank7Data);
295 ah->analogBank7Data = NULL;
296 }
297 if (ah->addac5416_21 != NULL) {
298 kfree(ah->addac5416_21);
299 ah->addac5416_21 = NULL;
300 }
301 if (ah->bank6Temp != NULL) {
302 kfree(ah->bank6Temp);
303 ah->bank6Temp = NULL;
304 }
305 }
306
307 bool ath9k_hw_init_rf(struct ath_hw *ah, int *status)
308 {
309 if (!AR_SREV_9280_10_OR_LATER(ah)) {
310 ah->analogBank0Data =
311 kzalloc((sizeof(u32) *
312 ah->iniBank0.ia_rows), GFP_KERNEL);
313 ah->analogBank1Data =
314 kzalloc((sizeof(u32) *
315 ah->iniBank1.ia_rows), GFP_KERNEL);
316 ah->analogBank2Data =
317 kzalloc((sizeof(u32) *
318 ah->iniBank2.ia_rows), GFP_KERNEL);
319 ah->analogBank3Data =
320 kzalloc((sizeof(u32) *
321 ah->iniBank3.ia_rows), GFP_KERNEL);
322 ah->analogBank6Data =
323 kzalloc((sizeof(u32) *
324 ah->iniBank6.ia_rows), GFP_KERNEL);
325 ah->analogBank6TPCData =
326 kzalloc((sizeof(u32) *
327 ah->iniBank6TPC.ia_rows), GFP_KERNEL);
328 ah->analogBank7Data =
329 kzalloc((sizeof(u32) *
330 ah->iniBank7.ia_rows), GFP_KERNEL);
331
332 if (ah->analogBank0Data == NULL
333 || ah->analogBank1Data == NULL
334 || ah->analogBank2Data == NULL
335 || ah->analogBank3Data == NULL
336 || ah->analogBank6Data == NULL
337 || ah->analogBank6TPCData == NULL
338 || ah->analogBank7Data == NULL) {
339 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
340 "Cannot allocate RF banks\n");
341 *status = -ENOMEM;
342 return false;
343 }
344
345 ah->addac5416_21 =
346 kzalloc((sizeof(u32) *
347 ah->iniAddac.ia_rows *
348 ah->iniAddac.ia_columns), GFP_KERNEL);
349 if (ah->addac5416_21 == NULL) {
350 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
351 "Cannot allocate addac5416_21\n");
352 *status = -ENOMEM;
353 return false;
354 }
355
356 ah->bank6Temp =
357 kzalloc((sizeof(u32) *
358 ah->iniBank6.ia_rows), GFP_KERNEL);
359 if (ah->bank6Temp == NULL) {
360 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
361 "Cannot allocate bank6Temp\n");
362 *status = -ENOMEM;
363 return false;
364 }
365 }
366
367 return true;
368 }
369
370 void
371 ath9k_hw_decrease_chain_power(struct ath_hw *ah, struct ath9k_channel *chan)
372 {
373 int i, regWrites = 0;
374 u32 bank6SelMask;
375 u32 *bank6Temp = ah->bank6Temp;
376
377 switch (ah->diversity_control) {
378 case ATH9K_ANT_FIXED_A:
379 bank6SelMask =
380 (ah->
381 antenna_switch_swap & ANTSWAP_AB) ? REDUCE_CHAIN_0 :
382 REDUCE_CHAIN_1;
383 break;
384 case ATH9K_ANT_FIXED_B:
385 bank6SelMask =
386 (ah->
387 antenna_switch_swap & ANTSWAP_AB) ? REDUCE_CHAIN_1 :
388 REDUCE_CHAIN_0;
389 break;
390 case ATH9K_ANT_VARIABLE:
391 return;
392 break;
393 default:
394 return;
395 break;
396 }
397
398 for (i = 0; i < ah->iniBank6.ia_rows; i++)
399 bank6Temp[i] = ah->analogBank6Data[i];
400
401 REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask);
402
403 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0);
404 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0);
405 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0);
406 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0);
407 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0);
408 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0);
409 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0);
410 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0);
411 ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0);
412
413 REG_WRITE_RF_ARRAY(&ah->iniBank6, bank6Temp, regWrites);
414
415 REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053);
416 #ifdef ALTER_SWITCH
417 REG_WRITE(ah, PHY_SWITCH_CHAIN_0,
418 (REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38)
419 | ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38));
420 #endif
421 }