]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath9k/rc.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath9k / rc.c
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2009 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include "ath9k.h"
19
20 static const struct ath_rate_table ar5416_11na_ratetable = {
21 42,
22 8, /* MCS start */
23 {
24 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
25 5400, 0, 12, 0, 0, 0, 0, 0 },
26 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
27 7800, 1, 18, 0, 1, 1, 1, 1 },
28 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
29 10000, 2, 24, 2, 2, 2, 2, 2 },
30 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
31 13900, 3, 36, 2, 3, 3, 3, 3 },
32 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
33 17300, 4, 48, 4, 4, 4, 4, 4 },
34 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
35 23000, 5, 72, 4, 5, 5, 5, 5 },
36 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
37 27400, 6, 96, 4, 6, 6, 6, 6 },
38 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
39 29300, 7, 108, 4, 7, 7, 7, 7 },
40 { VALID_2040, VALID_2040, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
41 6400, 0, 0, 0, 8, 24, 8, 24 },
42 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
43 12700, 1, 1, 2, 9, 25, 9, 25 },
44 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
45 18800, 2, 2, 2, 10, 26, 10, 26 },
46 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
47 25000, 3, 3, 4, 11, 27, 11, 27 },
48 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
49 36700, 4, 4, 4, 12, 28, 12, 28 },
50 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
51 48100, 5, 5, 4, 13, 29, 13, 29 },
52 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
53 53500, 6, 6, 4, 14, 30, 14, 30 },
54 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
55 59000, 7, 7, 4, 15, 31, 15, 32 },
56 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
57 12700, 8, 8, 3, 16, 33, 16, 33 },
58 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
59 24800, 9, 9, 2, 17, 34, 17, 34 },
60 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
61 36600, 10, 10, 2, 18, 35, 18, 35 },
62 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
63 48100, 11, 11, 4, 19, 36, 19, 36 },
64 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
65 69500, 12, 12, 4, 20, 37, 20, 37 },
66 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
67 89500, 13, 13, 4, 21, 38, 21, 38 },
68 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
69 98900, 14, 14, 4, 22, 39, 22, 39 },
70 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
71 108300, 15, 15, 4, 23, 40, 23, 41 },
72 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
73 13200, 0, 0, 0, 8, 24, 24, 24 },
74 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
75 25900, 1, 1, 2, 9, 25, 25, 25 },
76 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
77 38600, 2, 2, 2, 10, 26, 26, 26 },
78 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
79 49800, 3, 3, 4, 11, 27, 27, 27 },
80 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
81 72200, 4, 4, 4, 12, 28, 28, 28 },
82 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
83 92900, 5, 5, 4, 13, 29, 29, 29 },
84 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
85 102700, 6, 6, 4, 14, 30, 30, 30 },
86 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
87 112000, 7, 7, 4, 15, 31, 32, 32 },
88 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
89 122000, 7, 7, 4, 15, 31, 32, 32 },
90 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
91 25800, 8, 8, 0, 16, 33, 33, 33 },
92 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
93 49800, 9, 9, 2, 17, 34, 34, 34 },
94 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
95 71900, 10, 10, 2, 18, 35, 35, 35 },
96 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
97 92500, 11, 11, 4, 19, 36, 36, 36 },
98 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
99 130300, 12, 12, 4, 20, 37, 37, 37 },
100 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
101 162800, 13, 13, 4, 21, 38, 38, 38 },
102 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
103 178200, 14, 14, 4, 22, 39, 39, 39 },
104 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
105 192100, 15, 15, 4, 23, 40, 41, 41 },
106 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
107 207000, 15, 15, 4, 23, 40, 41, 41 },
108 },
109 50, /* probe interval */
110 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
111 };
112
113 /* 4ms frame limit not used for NG mode. The values filled
114 * for HT are the 64K max aggregate limit */
115
116 static const struct ath_rate_table ar5416_11ng_ratetable = {
117 46,
118 12, /* MCS start */
119 {
120 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
121 900, 0, 2, 0, 0, 0, 0, 0 },
122 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
123 1900, 1, 4, 1, 1, 1, 1, 1 },
124 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
125 4900, 2, 11, 2, 2, 2, 2, 2 },
126 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
127 8100, 3, 22, 3, 3, 3, 3, 3 },
128 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
129 5400, 4, 12, 4, 4, 4, 4, 4 },
130 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
131 7800, 5, 18, 4, 5, 5, 5, 5 },
132 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
133 10100, 6, 24, 6, 6, 6, 6, 6 },
134 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
135 14100, 7, 36, 6, 7, 7, 7, 7 },
136 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
137 17700, 8, 48, 8, 8, 8, 8, 8 },
138 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
139 23700, 9, 72, 8, 9, 9, 9, 9 },
140 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
141 27400, 10, 96, 8, 10, 10, 10, 10 },
142 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
143 30900, 11, 108, 8, 11, 11, 11, 11 },
144 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
145 6400, 0, 0, 4, 12, 28, 12, 28 },
146 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
147 12700, 1, 1, 6, 13, 29, 13, 29 },
148 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
149 18800, 2, 2, 6, 14, 30, 14, 30 },
150 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
151 25000, 3, 3, 8, 15, 31, 15, 31 },
152 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
153 36700, 4, 4, 8, 16, 32, 16, 32 },
154 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
155 48100, 5, 5, 8, 17, 33, 17, 33 },
156 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
157 53500, 6, 6, 8, 18, 34, 18, 34 },
158 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
159 59000, 7, 7, 8, 19, 35, 19, 36 },
160 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
161 12700, 8, 8, 4, 20, 37, 20, 37 },
162 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
163 24800, 9, 9, 6, 21, 38, 21, 38 },
164 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
165 36600, 10, 10, 6, 22, 39, 22, 39 },
166 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
167 48100, 11, 11, 8, 23, 40, 23, 40 },
168 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
169 69500, 12, 12, 8, 24, 41, 24, 41 },
170 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
171 89500, 13, 13, 8, 25, 42, 25, 42 },
172 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
173 98900, 14, 14, 8, 26, 43, 26, 44 },
174 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
175 108300, 15, 15, 8, 27, 44, 27, 45 },
176 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
177 13200, 0, 0, 8, 12, 28, 28, 28 },
178 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
179 25900, 1, 1, 8, 13, 29, 29, 29 },
180 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
181 38600, 2, 2, 8, 14, 30, 30, 30 },
182 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
183 49800, 3, 3, 8, 15, 31, 31, 31 },
184 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
185 72200, 4, 4, 8, 16, 32, 32, 32 },
186 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
187 92900, 5, 5, 8, 17, 33, 33, 33 },
188 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
189 102700, 6, 6, 8, 18, 34, 34, 34 },
190 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
191 112000, 7, 7, 8, 19, 35, 36, 36 },
192 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
193 122000, 7, 7, 8, 19, 35, 36, 36 },
194 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
195 25800, 8, 8, 8, 20, 37, 37, 37 },
196 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
197 49800, 9, 9, 8, 21, 38, 38, 38 },
198 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
199 71900, 10, 10, 8, 22, 39, 39, 39 },
200 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
201 92500, 11, 11, 8, 23, 40, 40, 40 },
202 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
203 130300, 12, 12, 8, 24, 41, 41, 41 },
204 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
205 162800, 13, 13, 8, 25, 42, 42, 42 },
206 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
207 178200, 14, 14, 8, 26, 43, 43, 43 },
208 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
209 192100, 15, 15, 8, 27, 44, 45, 45 },
210 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
211 207000, 15, 15, 8, 27, 44, 45, 45 },
212 },
213 50, /* probe interval */
214 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
215 };
216
217 static const struct ath_rate_table ar5416_11a_ratetable = {
218 8,
219 0,
220 {
221 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
222 5400, 0, 12, 0, 0, 0 },
223 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
224 7800, 1, 18, 0, 1, 0 },
225 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
226 10000, 2, 24, 2, 2, 0 },
227 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
228 13900, 3, 36, 2, 3, 0 },
229 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
230 17300, 4, 48, 4, 4, 0 },
231 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
232 23000, 5, 72, 4, 5, 0 },
233 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
234 27400, 6, 96, 4, 6, 0 },
235 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
236 29300, 7, 108, 4, 7, 0 },
237 },
238 50, /* probe interval */
239 0, /* Phy rates allowed initially */
240 };
241
242 static const struct ath_rate_table ar5416_11g_ratetable = {
243 12,
244 0,
245 {
246 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
247 900, 0, 2, 0, 0, 0 },
248 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
249 1900, 1, 4, 1, 1, 0 },
250 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
251 4900, 2, 11, 2, 2, 0 },
252 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
253 8100, 3, 22, 3, 3, 0 },
254 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
255 5400, 4, 12, 4, 4, 0 },
256 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
257 7800, 5, 18, 4, 5, 0 },
258 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
259 10000, 6, 24, 6, 6, 0 },
260 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
261 13900, 7, 36, 6, 7, 0 },
262 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
263 17300, 8, 48, 8, 8, 0 },
264 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
265 23000, 9, 72, 8, 9, 0 },
266 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
267 27400, 10, 96, 8, 10, 0 },
268 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
269 29300, 11, 108, 8, 11, 0 },
270 },
271 50, /* probe interval */
272 0, /* Phy rates allowed initially */
273 };
274
275 static const struct ath_rate_table *hw_rate_table[ATH9K_MODE_MAX] = {
276 [ATH9K_MODE_11A] = &ar5416_11a_ratetable,
277 [ATH9K_MODE_11G] = &ar5416_11g_ratetable,
278 [ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable,
279 [ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable,
280 [ATH9K_MODE_11NA_HT40PLUS] = &ar5416_11na_ratetable,
281 [ATH9K_MODE_11NA_HT40MINUS] = &ar5416_11na_ratetable,
282 [ATH9K_MODE_11NG_HT40PLUS] = &ar5416_11ng_ratetable,
283 [ATH9K_MODE_11NG_HT40MINUS] = &ar5416_11ng_ratetable,
284 };
285
286 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
287 struct ieee80211_tx_rate *rate);
288
289 static inline int8_t median(int8_t a, int8_t b, int8_t c)
290 {
291 if (a >= b) {
292 if (b >= c)
293 return b;
294 else if (a > c)
295 return c;
296 else
297 return a;
298 } else {
299 if (a >= c)
300 return a;
301 else if (b >= c)
302 return c;
303 else
304 return b;
305 }
306 }
307
308 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
309 struct ath_rate_priv *ath_rc_priv)
310 {
311 u8 i, j, idx, idx_next;
312
313 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
314 for (j = 0; j <= i-1; j++) {
315 idx = ath_rc_priv->valid_rate_index[j];
316 idx_next = ath_rc_priv->valid_rate_index[j+1];
317
318 if (rate_table->info[idx].ratekbps >
319 rate_table->info[idx_next].ratekbps) {
320 ath_rc_priv->valid_rate_index[j] = idx_next;
321 ath_rc_priv->valid_rate_index[j+1] = idx;
322 }
323 }
324 }
325 }
326
327 static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
328 {
329 u8 i;
330
331 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
332 ath_rc_priv->valid_rate_index[i] = 0;
333 }
334
335 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
336 u8 index, int valid_tx_rate)
337 {
338 BUG_ON(index > ath_rc_priv->rate_table_size);
339 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
340 }
341
342 static inline
343 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
344 struct ath_rate_priv *ath_rc_priv,
345 u8 cur_valid_txrate,
346 u8 *next_idx)
347 {
348 u8 i;
349
350 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
351 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
352 *next_idx = ath_rc_priv->valid_rate_index[i+1];
353 return 1;
354 }
355 }
356
357 /* No more valid rates */
358 *next_idx = 0;
359
360 return 0;
361 }
362
363 /* Return true only for single stream */
364
365 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
366 {
367 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
368 return 0;
369 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
370 return 0;
371 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
372 return 0;
373 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
374 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
375 return 0;
376 return 1;
377 }
378
379 static inline int
380 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
381 struct ath_rate_priv *ath_rc_priv,
382 u8 cur_valid_txrate, u8 *next_idx)
383 {
384 int8_t i;
385
386 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
387 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
388 *next_idx = ath_rc_priv->valid_rate_index[i-1];
389 return 1;
390 }
391 }
392
393 return 0;
394 }
395
396 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
397 const struct ath_rate_table *rate_table,
398 u32 capflag)
399 {
400 u8 i, hi = 0;
401 u32 valid;
402
403 for (i = 0; i < rate_table->rate_cnt; i++) {
404 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
405 rate_table->info[i].valid_single_stream :
406 rate_table->info[i].valid);
407 if (valid == 1) {
408 u32 phy = rate_table->info[i].phy;
409 u8 valid_rate_count = 0;
410
411 if (!ath_rc_valid_phyrate(phy, capflag, 0))
412 continue;
413
414 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
415
416 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
417 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
418 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
419 hi = A_MAX(hi, i);
420 }
421 }
422
423 return hi;
424 }
425
426 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
427 const struct ath_rate_table *rate_table,
428 struct ath_rateset *rateset,
429 u32 capflag)
430 {
431 u8 i, j, hi = 0;
432
433 /* Use intersection of working rates and valid rates */
434 for (i = 0; i < rateset->rs_nrates; i++) {
435 for (j = 0; j < rate_table->rate_cnt; j++) {
436 u32 phy = rate_table->info[j].phy;
437 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
438 rate_table->info[j].valid_single_stream :
439 rate_table->info[j].valid);
440 u8 rate = rateset->rs_rates[i];
441 u8 dot11rate = rate_table->info[j].dot11rate;
442
443 /* We allow a rate only if its valid and the
444 * capflag matches one of the validity
445 * (VALID/VALID_20/VALID_40) flags */
446
447 if ((rate == dot11rate) &&
448 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
449 WLAN_RC_CAP_MODE(capflag)) &&
450 !WLAN_RC_PHY_HT(phy)) {
451 u8 valid_rate_count = 0;
452
453 if (!ath_rc_valid_phyrate(phy, capflag, 0))
454 continue;
455
456 valid_rate_count =
457 ath_rc_priv->valid_phy_ratecnt[phy];
458
459 ath_rc_priv->valid_phy_rateidx[phy]
460 [valid_rate_count] = j;
461 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
462 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
463 hi = A_MAX(hi, j);
464 }
465 }
466 }
467
468 return hi;
469 }
470
471 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
472 const struct ath_rate_table *rate_table,
473 u8 *mcs_set, u32 capflag)
474 {
475 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
476
477 u8 i, j, hi = 0;
478
479 /* Use intersection of working rates and valid rates */
480 for (i = 0; i < rateset->rs_nrates; i++) {
481 for (j = 0; j < rate_table->rate_cnt; j++) {
482 u32 phy = rate_table->info[j].phy;
483 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
484 rate_table->info[j].valid_single_stream :
485 rate_table->info[j].valid);
486 u8 rate = rateset->rs_rates[i];
487 u8 dot11rate = rate_table->info[j].dot11rate;
488
489 if ((rate != dot11rate) || !WLAN_RC_PHY_HT(phy) ||
490 !WLAN_RC_PHY_HT_VALID(valid, capflag))
491 continue;
492
493 if (!ath_rc_valid_phyrate(phy, capflag, 0))
494 continue;
495
496 ath_rc_priv->valid_phy_rateidx[phy]
497 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
498 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
499 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
500 hi = A_MAX(hi, j);
501 }
502 }
503
504 return hi;
505 }
506
507 /* Finds the highest rate index we can use */
508 static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
509 struct ath_rate_priv *ath_rc_priv,
510 const struct ath_rate_table *rate_table,
511 int *is_probing)
512 {
513 u32 best_thruput, this_thruput, now_msec;
514 u8 rate, next_rate, best_rate, maxindex, minindex;
515 int8_t index = 0;
516
517 now_msec = jiffies_to_msecs(jiffies);
518 *is_probing = 0;
519 best_thruput = 0;
520 maxindex = ath_rc_priv->max_valid_rate-1;
521 minindex = 0;
522 best_rate = minindex;
523
524 /*
525 * Try the higher rate first. It will reduce memory moving time
526 * if we have very good channel characteristics.
527 */
528 for (index = maxindex; index >= minindex ; index--) {
529 u8 per_thres;
530
531 rate = ath_rc_priv->valid_rate_index[index];
532 if (rate > ath_rc_priv->rate_max_phy)
533 continue;
534
535 /*
536 * For TCP the average collision rate is around 11%,
537 * so we ignore PERs less than this. This is to
538 * prevent the rate we are currently using (whose
539 * PER might be in the 10-15 range because of TCP
540 * collisions) looking worse than the next lower
541 * rate whose PER has decayed close to 0. If we
542 * used to next lower rate, its PER would grow to
543 * 10-15 and we would be worse off then staying
544 * at the current rate.
545 */
546 per_thres = ath_rc_priv->per[rate];
547 if (per_thres < 12)
548 per_thres = 12;
549
550 this_thruput = rate_table->info[rate].user_ratekbps *
551 (100 - per_thres);
552
553 if (best_thruput <= this_thruput) {
554 best_thruput = this_thruput;
555 best_rate = rate;
556 }
557 }
558
559 rate = best_rate;
560
561 /*
562 * Must check the actual rate (ratekbps) to account for
563 * non-monoticity of 11g's rate table
564 */
565
566 if (rate >= ath_rc_priv->rate_max_phy) {
567 rate = ath_rc_priv->rate_max_phy;
568
569 /* Probe the next allowed phy state */
570 if (ath_rc_get_nextvalid_txrate(rate_table,
571 ath_rc_priv, rate, &next_rate) &&
572 (now_msec - ath_rc_priv->probe_time >
573 rate_table->probe_interval) &&
574 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
575 rate = next_rate;
576 ath_rc_priv->probe_rate = rate;
577 ath_rc_priv->probe_time = now_msec;
578 ath_rc_priv->hw_maxretry_pktcnt = 0;
579 *is_probing = 1;
580 }
581 }
582
583 if (rate > (ath_rc_priv->rate_table_size - 1))
584 rate = ath_rc_priv->rate_table_size - 1;
585
586 if (rate_table->info[rate].valid &&
587 (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG))
588 return rate;
589
590 if (rate_table->info[rate].valid_single_stream &&
591 !(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG))
592 return rate;
593
594 /* This should not happen */
595 WARN_ON(1);
596
597 rate = ath_rc_priv->valid_rate_index[0];
598
599 return rate;
600 }
601
602 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
603 struct ieee80211_tx_rate *rate,
604 struct ieee80211_tx_rate_control *txrc,
605 u8 tries, u8 rix, int rtsctsenable)
606 {
607 rate->count = tries;
608 rate->idx = rate_table->info[rix].ratecode;
609
610 if (txrc->short_preamble)
611 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
612 if (txrc->rts || rtsctsenable)
613 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
614
615 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
616 rate->flags |= IEEE80211_TX_RC_MCS;
617 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
618 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
619 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
620 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
621 }
622 }
623
624 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
625 const struct ath_rate_table *rate_table,
626 struct ieee80211_tx_info *tx_info)
627 {
628 struct ieee80211_tx_rate *rates = tx_info->control.rates;
629 int i = 0, rix = 0, cix, enable_g_protection = 0;
630
631 /* get the cix for the lowest valid rix */
632 for (i = 3; i >= 0; i--) {
633 if (rates[i].count && (rates[i].idx >= 0)) {
634 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
635 break;
636 }
637 }
638 cix = rate_table->info[rix].ctrl_rate;
639
640 /* All protection frames are transmited at 2Mb/s for 802.11g,
641 * otherwise we transmit them at 1Mb/s */
642 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
643 !conf_is_ht(&sc->hw->conf))
644 enable_g_protection = 1;
645
646 /*
647 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
648 * just CTS. Note that this is only done for OFDM/HT unicast frames.
649 */
650 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
651 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
652 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
653 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
654 cix = rate_table->info[enable_g_protection].ctrl_rate;
655 }
656
657 tx_info->control.rts_cts_rate_idx = cix;
658 }
659
660 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
661 struct ieee80211_tx_rate_control *txrc)
662 {
663 struct ath_softc *sc = priv;
664 struct ath_rate_priv *ath_rc_priv = priv_sta;
665 const struct ath_rate_table *rate_table;
666 struct sk_buff *skb = txrc->skb;
667 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
668 struct ieee80211_tx_rate *rates = tx_info->control.rates;
669 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
670 __le16 fc = hdr->frame_control;
671 u8 try_per_rate, i = 0, rix, nrix;
672 int is_probe = 0;
673
674 if (rate_control_send_low(sta, priv_sta, txrc))
675 return;
676
677 /*
678 * For Multi Rate Retry we use a different number of
679 * retry attempt counts. This ends up looking like this:
680 *
681 * MRR[0] = 4
682 * MRR[1] = 4
683 * MRR[2] = 4
684 * MRR[3] = 8
685 *
686 */
687 try_per_rate = 4;
688
689 rate_table = sc->cur_rate_table;
690 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe);
691 nrix = rix;
692
693 if (is_probe) {
694 /* set one try for probe rates. For the
695 * probes don't enable rts */
696 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
697 1, nrix, 0);
698
699 /* Get the next tried/allowed rate. No RTS for the next series
700 * after the probe rate
701 */
702 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix);
703 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
704 try_per_rate, nrix, 0);
705
706 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
707 } else {
708 /* Set the choosen rate. No RTS for first series entry. */
709 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
710 try_per_rate, nrix, 0);
711 }
712
713 /* Fill in the other rates for multirate retry */
714 for ( ; i < 4; i++) {
715 /* Use twice the number of tries for the last MRR segment. */
716 if (i + 1 == 4)
717 try_per_rate = 8;
718
719 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix);
720 /* All other rates in the series have RTS enabled */
721 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
722 try_per_rate, nrix, 1);
723 }
724
725 /*
726 * NB:Change rate series to enable aggregation when operating
727 * at lower MCS rates. When first rate in series is MCS2
728 * in HT40 @ 2.4GHz, series should look like:
729 *
730 * {MCS2, MCS1, MCS0, MCS0}.
731 *
732 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
733 * look like:
734 *
735 * {MCS3, MCS2, MCS1, MCS1}
736 *
737 * So, set fourth rate in series to be same as third one for
738 * above conditions.
739 */
740 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
741 (conf_is_ht(&sc->hw->conf))) {
742 u8 dot11rate = rate_table->info[rix].dot11rate;
743 u8 phy = rate_table->info[rix].phy;
744 if (i == 4 &&
745 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
746 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
747 rates[3].idx = rates[2].idx;
748 rates[3].flags = rates[2].flags;
749 }
750 }
751
752 /*
753 * Force hardware to use computed duration for next
754 * fragment by disabling multi-rate retry, which
755 * updates duration based on the multi-rate duration table.
756 *
757 * FIXME: Fix duration
758 */
759 if (ieee80211_has_morefrags(fc) ||
760 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
761 rates[1].count = rates[2].count = rates[3].count = 0;
762 rates[1].idx = rates[2].idx = rates[3].idx = 0;
763 rates[0].count = ATH_TXMAXTRY;
764 }
765
766 /* Setup RTS/CTS */
767 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
768 }
769
770 static bool ath_rc_update_per(struct ath_softc *sc,
771 const struct ath_rate_table *rate_table,
772 struct ath_rate_priv *ath_rc_priv,
773 struct ieee80211_tx_info *tx_info,
774 int tx_rate, int xretries, int retries,
775 u32 now_msec)
776 {
777 bool state_change = false;
778 int count, n_bad_frames;
779 u8 last_per;
780 static u32 nretry_to_per_lookup[10] = {
781 100 * 0 / 1,
782 100 * 1 / 4,
783 100 * 1 / 2,
784 100 * 3 / 4,
785 100 * 4 / 5,
786 100 * 5 / 6,
787 100 * 6 / 7,
788 100 * 7 / 8,
789 100 * 8 / 9,
790 100 * 9 / 10
791 };
792
793 last_per = ath_rc_priv->per[tx_rate];
794 n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
795
796 if (xretries) {
797 if (xretries == 1) {
798 ath_rc_priv->per[tx_rate] += 30;
799 if (ath_rc_priv->per[tx_rate] > 100)
800 ath_rc_priv->per[tx_rate] = 100;
801 } else {
802 /* xretries == 2 */
803 count = ARRAY_SIZE(nretry_to_per_lookup);
804 if (retries >= count)
805 retries = count - 1;
806
807 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
808 ath_rc_priv->per[tx_rate] =
809 (u8)(last_per - (last_per >> 3) + (100 >> 3));
810 }
811
812 /* xretries == 1 or 2 */
813
814 if (ath_rc_priv->probe_rate == tx_rate)
815 ath_rc_priv->probe_rate = 0;
816
817 } else { /* xretries == 0 */
818 count = ARRAY_SIZE(nretry_to_per_lookup);
819 if (retries >= count)
820 retries = count - 1;
821
822 if (n_bad_frames) {
823 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
824 * Assuming that n_frames is not 0. The current PER
825 * from the retries is 100 * retries / (retries+1),
826 * since the first retries attempts failed, and the
827 * next one worked. For the one that worked,
828 * n_bad_frames subframes out of n_frames wored,
829 * so the PER for that part is
830 * 100 * n_bad_frames / n_frames, and it contributes
831 * 100 * n_bad_frames / (n_frames * (retries+1)) to
832 * the above PER. The expression below is a
833 * simplified version of the sum of these two terms.
834 */
835 if (tx_info->status.ampdu_len > 0) {
836 int n_frames, n_bad_tries;
837 u8 cur_per, new_per;
838
839 n_bad_tries = retries * tx_info->status.ampdu_len +
840 n_bad_frames;
841 n_frames = tx_info->status.ampdu_len * (retries + 1);
842 cur_per = (100 * n_bad_tries / n_frames) >> 3;
843 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
844 ath_rc_priv->per[tx_rate] = new_per;
845 }
846 } else {
847 ath_rc_priv->per[tx_rate] =
848 (u8)(last_per - (last_per >> 3) +
849 (nretry_to_per_lookup[retries] >> 3));
850 }
851
852
853 /*
854 * If we got at most one retry then increase the max rate if
855 * this was a probe. Otherwise, ignore the probe.
856 */
857 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
858 if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
859 /*
860 * Since we probed with just a single attempt,
861 * any retries means the probe failed. Also,
862 * if the attempt worked, but more than half
863 * the subframes were bad then also consider
864 * the probe a failure.
865 */
866 ath_rc_priv->probe_rate = 0;
867 } else {
868 u8 probe_rate = 0;
869
870 ath_rc_priv->rate_max_phy =
871 ath_rc_priv->probe_rate;
872 probe_rate = ath_rc_priv->probe_rate;
873
874 if (ath_rc_priv->per[probe_rate] > 30)
875 ath_rc_priv->per[probe_rate] = 20;
876
877 ath_rc_priv->probe_rate = 0;
878
879 /*
880 * Since this probe succeeded, we allow the next
881 * probe twice as soon. This allows the maxRate
882 * to move up faster if the probes are
883 * successful.
884 */
885 ath_rc_priv->probe_time =
886 now_msec - rate_table->probe_interval / 2;
887 }
888 }
889
890 if (retries > 0) {
891 /*
892 * Don't update anything. We don't know if
893 * this was because of collisions or poor signal.
894 */
895 ath_rc_priv->hw_maxretry_pktcnt = 0;
896 } else {
897 /*
898 * It worked with no retries. First ignore bogus (small)
899 * rssi_ack values.
900 */
901 if (tx_rate == ath_rc_priv->rate_max_phy &&
902 ath_rc_priv->hw_maxretry_pktcnt < 255) {
903 ath_rc_priv->hw_maxretry_pktcnt++;
904 }
905
906 }
907 }
908
909 return state_change;
910 }
911
912 /* Update PER, RSSI and whatever else that the code thinks it is doing.
913 If you can make sense of all this, you really need to go out more. */
914
915 static void ath_rc_update_ht(struct ath_softc *sc,
916 struct ath_rate_priv *ath_rc_priv,
917 struct ieee80211_tx_info *tx_info,
918 int tx_rate, int xretries, int retries)
919 {
920 u32 now_msec = jiffies_to_msecs(jiffies);
921 int rate;
922 u8 last_per;
923 bool state_change = false;
924 const struct ath_rate_table *rate_table = sc->cur_rate_table;
925 int size = ath_rc_priv->rate_table_size;
926
927 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
928 return;
929
930 last_per = ath_rc_priv->per[tx_rate];
931
932 /* Update PER first */
933 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
934 tx_info, tx_rate, xretries,
935 retries, now_msec);
936
937 /*
938 * If this rate looks bad (high PER) then stop using it for
939 * a while (except if we are probing).
940 */
941 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
942 rate_table->info[tx_rate].ratekbps <=
943 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
944 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
945 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
946
947 /* Don't probe for a little while. */
948 ath_rc_priv->probe_time = now_msec;
949 }
950
951 /* Make sure the rates below this have lower PER */
952 /* Monotonicity is kept only for rates below the current rate. */
953 if (ath_rc_priv->per[tx_rate] < last_per) {
954 for (rate = tx_rate - 1; rate >= 0; rate--) {
955
956 if (ath_rc_priv->per[rate] >
957 ath_rc_priv->per[rate+1]) {
958 ath_rc_priv->per[rate] =
959 ath_rc_priv->per[rate+1];
960 }
961 }
962 }
963
964 /* Maintain monotonicity for rates above the current rate */
965 for (rate = tx_rate; rate < size - 1; rate++) {
966 if (ath_rc_priv->per[rate+1] <
967 ath_rc_priv->per[rate])
968 ath_rc_priv->per[rate+1] =
969 ath_rc_priv->per[rate];
970 }
971
972 /* Every so often, we reduce the thresholds
973 * and PER (different for CCK and OFDM). */
974 if (now_msec - ath_rc_priv->per_down_time >=
975 rate_table->probe_interval) {
976 for (rate = 0; rate < size; rate++) {
977 ath_rc_priv->per[rate] =
978 7 * ath_rc_priv->per[rate] / 8;
979 }
980
981 ath_rc_priv->per_down_time = now_msec;
982 }
983
984 ath_debug_stat_retries(sc, tx_rate, xretries, retries,
985 ath_rc_priv->per[tx_rate]);
986
987 }
988
989 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
990 struct ieee80211_tx_rate *rate)
991 {
992 int rix;
993
994 if (!(rate->flags & IEEE80211_TX_RC_MCS))
995 return rate->idx;
996
997 rix = rate->idx + rate_table->mcs_start;
998 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
999 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1000 rix = rate_table->info[rix].ht_index;
1001 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1002 rix = rate_table->info[rix].sgi_index;
1003 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1004 rix = rate_table->info[rix].cw40index;
1005 else
1006 rix = rate_table->info[rix].base_index;
1007
1008 return rix;
1009 }
1010
1011 static void ath_rc_tx_status(struct ath_softc *sc,
1012 struct ath_rate_priv *ath_rc_priv,
1013 struct ieee80211_tx_info *tx_info,
1014 int final_ts_idx, int xretries, int long_retry)
1015 {
1016 const struct ath_rate_table *rate_table;
1017 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1018 u8 flags;
1019 u32 i = 0, rix;
1020
1021 rate_table = sc->cur_rate_table;
1022
1023 /*
1024 * If the first rate is not the final index, there
1025 * are intermediate rate failures to be processed.
1026 */
1027 if (final_ts_idx != 0) {
1028 /* Process intermediate rates that failed.*/
1029 for (i = 0; i < final_ts_idx ; i++) {
1030 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1031 flags = rates[i].flags;
1032
1033 /* If HT40 and we have switched mode from
1034 * 40 to 20 => don't update */
1035
1036 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1037 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1038 return;
1039
1040 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1041 ath_rc_update_ht(sc, ath_rc_priv, tx_info,
1042 rix, xretries ? 1 : 2,
1043 rates[i].count);
1044 }
1045 }
1046 } else {
1047 /*
1048 * Handle the special case of MIMO PS burst, where the second
1049 * aggregate is sent out with only one rate and one try.
1050 * Treating it as an excessive retry penalizes the rate
1051 * inordinately.
1052 */
1053 if (rates[0].count == 1 && xretries == 1)
1054 xretries = 2;
1055 }
1056
1057 flags = rates[i].flags;
1058
1059 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1060 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1061 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1062 return;
1063
1064 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1065 ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
1066 }
1067
1068 static const
1069 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1070 enum ieee80211_band band,
1071 bool is_ht,
1072 bool is_cw_40)
1073 {
1074 int mode = 0;
1075 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1076
1077 switch(band) {
1078 case IEEE80211_BAND_2GHZ:
1079 mode = ATH9K_MODE_11G;
1080 if (is_ht)
1081 mode = ATH9K_MODE_11NG_HT20;
1082 if (is_cw_40)
1083 mode = ATH9K_MODE_11NG_HT40PLUS;
1084 break;
1085 case IEEE80211_BAND_5GHZ:
1086 mode = ATH9K_MODE_11A;
1087 if (is_ht)
1088 mode = ATH9K_MODE_11NA_HT20;
1089 if (is_cw_40)
1090 mode = ATH9K_MODE_11NA_HT40PLUS;
1091 break;
1092 default:
1093 ath_print(common, ATH_DBG_CONFIG, "Invalid band\n");
1094 return NULL;
1095 }
1096
1097 BUG_ON(mode >= ATH9K_MODE_MAX);
1098
1099 ath_print(common, ATH_DBG_CONFIG,
1100 "Choosing rate table for mode: %d\n", mode);
1101
1102 sc->cur_rate_mode = mode;
1103 return hw_rate_table[mode];
1104 }
1105
1106 static void ath_rc_init(struct ath_softc *sc,
1107 struct ath_rate_priv *ath_rc_priv,
1108 struct ieee80211_supported_band *sband,
1109 struct ieee80211_sta *sta,
1110 const struct ath_rate_table *rate_table)
1111 {
1112 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1113 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1114 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1115 u8 i, j, k, hi = 0, hthi = 0;
1116
1117 /* Initial rate table size. Will change depending
1118 * on the working rate set */
1119 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1120
1121 /* Initialize thresholds according to the global rate table */
1122 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1123 ath_rc_priv->per[i] = 0;
1124 }
1125
1126 /* Determine the valid rates */
1127 ath_rc_init_valid_txmask(ath_rc_priv);
1128
1129 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1130 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1131 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1132 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1133 }
1134
1135 if (!rateset->rs_nrates) {
1136 /* No working rate, just initialize valid rates */
1137 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1138 ath_rc_priv->ht_cap);
1139 } else {
1140 /* Use intersection of working rates and valid rates */
1141 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1142 rateset, ath_rc_priv->ht_cap);
1143 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1144 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1145 rate_table,
1146 ht_mcs,
1147 ath_rc_priv->ht_cap);
1148 }
1149 hi = A_MAX(hi, hthi);
1150 }
1151
1152 ath_rc_priv->rate_table_size = hi + 1;
1153 ath_rc_priv->rate_max_phy = 0;
1154 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1155
1156 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1157 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1158 ath_rc_priv->valid_rate_index[k++] =
1159 ath_rc_priv->valid_phy_rateidx[i][j];
1160 }
1161
1162 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1163 || !ath_rc_priv->valid_phy_ratecnt[i])
1164 continue;
1165
1166 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1167 }
1168 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1169 BUG_ON(k > RATE_TABLE_SIZE);
1170
1171 ath_rc_priv->max_valid_rate = k;
1172 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1173 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1174 sc->cur_rate_table = rate_table;
1175
1176 ath_print(common, ATH_DBG_CONFIG,
1177 "RC Initialized with capabilities: 0x%x\n",
1178 ath_rc_priv->ht_cap);
1179 }
1180
1181 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1182 bool is_cw40, bool is_sgi40)
1183 {
1184 u8 caps = 0;
1185
1186 if (sta->ht_cap.ht_supported) {
1187 caps = WLAN_RC_HT_FLAG;
1188 if (sc->sc_ah->caps.tx_chainmask != 1 &&
1189 ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_DS, 0, NULL)) {
1190 if (sta->ht_cap.mcs.rx_mask[1])
1191 caps |= WLAN_RC_DS_FLAG;
1192 }
1193 if (is_cw40)
1194 caps |= WLAN_RC_40_FLAG;
1195 if (is_sgi40)
1196 caps |= WLAN_RC_SGI_FLAG;
1197 }
1198
1199 return caps;
1200 }
1201
1202 /***********************************/
1203 /* mac80211 Rate Control callbacks */
1204 /***********************************/
1205
1206 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1207 struct ieee80211_sta *sta, void *priv_sta,
1208 struct sk_buff *skb)
1209 {
1210 struct ath_softc *sc = priv;
1211 struct ath_rate_priv *ath_rc_priv = priv_sta;
1212 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1213 struct ieee80211_hdr *hdr;
1214 int final_ts_idx = 0, tx_status = 0, is_underrun = 0;
1215 int long_retry = 0;
1216 __le16 fc;
1217 int i;
1218
1219 hdr = (struct ieee80211_hdr *)skb->data;
1220 fc = hdr->frame_control;
1221 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
1222 struct ieee80211_tx_rate *rate = &tx_info->status.rates[i];
1223 if (!rate->count)
1224 break;
1225
1226 final_ts_idx = i;
1227 long_retry = rate->count - 1;
1228 }
1229
1230 if (!priv_sta || !ieee80211_is_data(fc) ||
1231 !(tx_info->pad[0] & ATH_TX_INFO_UPDATE_RC))
1232 return;
1233
1234 if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
1235 return;
1236
1237 /*
1238 * If an underrun error is seen assume it as an excessive retry only
1239 * if max frame trigger level has been reached (2 KB for singel stream,
1240 * and 4 KB for dual stream). Adjust the long retry as if the frame was
1241 * tried hw->max_rate_tries times to affect how ratectrl updates PER for
1242 * the failed rate. In case of congestion on the bus penalizing these
1243 * type of underruns should help hardware actually transmit new frames
1244 * successfully by eventually preferring slower rates. This itself
1245 * should also alleviate congestion on the bus.
1246 */
1247 if ((tx_info->pad[0] & ATH_TX_INFO_UNDERRUN) &&
1248 (sc->sc_ah->tx_trig_level >= ath_rc_priv->tx_triglevel_max)) {
1249 tx_status = 1;
1250 is_underrun = 1;
1251 }
1252
1253 if (tx_info->pad[0] & ATH_TX_INFO_XRETRY)
1254 tx_status = 1;
1255
1256 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1257 (is_underrun) ? sc->hw->max_rate_tries : long_retry);
1258
1259 /* Check if aggregation has to be enabled for this tid */
1260 if (conf_is_ht(&sc->hw->conf) &&
1261 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1262 if (ieee80211_is_data_qos(fc)) {
1263 u8 *qc, tid;
1264 struct ath_node *an;
1265
1266 qc = ieee80211_get_qos_ctl(hdr);
1267 tid = qc[0] & 0xf;
1268 an = (struct ath_node *)sta->drv_priv;
1269
1270 if(ath_tx_aggr_check(sc, an, tid))
1271 ieee80211_start_tx_ba_session(sta, tid);
1272 }
1273 }
1274
1275 ath_debug_stat_rc(sc, ath_rc_get_rateindex(sc->cur_rate_table,
1276 &tx_info->status.rates[final_ts_idx]));
1277 }
1278
1279 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1280 struct ieee80211_sta *sta, void *priv_sta)
1281 {
1282 struct ath_softc *sc = priv;
1283 struct ath_rate_priv *ath_rc_priv = priv_sta;
1284 const struct ath_rate_table *rate_table;
1285 bool is_cw40, is_sgi40;
1286 int i, j = 0;
1287
1288 for (i = 0; i < sband->n_bitrates; i++) {
1289 if (sta->supp_rates[sband->band] & BIT(i)) {
1290 ath_rc_priv->neg_rates.rs_rates[j]
1291 = (sband->bitrates[i].bitrate * 2) / 10;
1292 j++;
1293 }
1294 }
1295 ath_rc_priv->neg_rates.rs_nrates = j;
1296
1297 if (sta->ht_cap.ht_supported) {
1298 for (i = 0, j = 0; i < 77; i++) {
1299 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1300 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1301 if (j == ATH_RATE_MAX)
1302 break;
1303 }
1304 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1305 }
1306
1307 is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1308 is_sgi40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
1309
1310 /* Choose rate table first */
1311
1312 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) ||
1313 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) ||
1314 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) {
1315 rate_table = ath_choose_rate_table(sc, sband->band,
1316 sta->ht_cap.ht_supported, is_cw40);
1317 } else {
1318 rate_table = hw_rate_table[sc->cur_rate_mode];
1319 }
1320
1321 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi40);
1322 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1323 }
1324
1325 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1326 struct ieee80211_sta *sta, void *priv_sta,
1327 u32 changed)
1328 {
1329 struct ath_softc *sc = priv;
1330 struct ath_rate_priv *ath_rc_priv = priv_sta;
1331 const struct ath_rate_table *rate_table = NULL;
1332 bool oper_cw40 = false, oper_sgi40;
1333 bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ?
1334 true : false;
1335 bool local_sgi40 = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ?
1336 true : false;
1337
1338 /* FIXME: Handle AP mode later when we support CWM */
1339
1340 if (changed & IEEE80211_RC_HT_CHANGED) {
1341 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1342 return;
1343
1344 if (sc->hw->conf.channel_type == NL80211_CHAN_HT40MINUS ||
1345 sc->hw->conf.channel_type == NL80211_CHAN_HT40PLUS)
1346 oper_cw40 = true;
1347
1348 oper_sgi40 = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1349 true : false;
1350
1351 if ((local_cw40 != oper_cw40) || (local_sgi40 != oper_sgi40)) {
1352 rate_table = ath_choose_rate_table(sc, sband->band,
1353 sta->ht_cap.ht_supported,
1354 oper_cw40);
1355 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1356 oper_cw40, oper_sgi40);
1357 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1358
1359 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
1360 "Operating HT Bandwidth changed to: %d\n",
1361 sc->hw->conf.channel_type);
1362 sc->cur_rate_table = hw_rate_table[sc->cur_rate_mode];
1363 }
1364 }
1365 }
1366
1367 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1368 {
1369 struct ath_wiphy *aphy = hw->priv;
1370 return aphy->sc;
1371 }
1372
1373 static void ath_rate_free(void *priv)
1374 {
1375 return;
1376 }
1377
1378 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1379 {
1380 struct ath_softc *sc = priv;
1381 struct ath_rate_priv *rate_priv;
1382
1383 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1384 if (!rate_priv) {
1385 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1386 "Unable to allocate private rc structure\n");
1387 return NULL;
1388 }
1389
1390 rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max;
1391
1392 return rate_priv;
1393 }
1394
1395 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1396 void *priv_sta)
1397 {
1398 struct ath_rate_priv *rate_priv = priv_sta;
1399 kfree(rate_priv);
1400 }
1401
1402 static struct rate_control_ops ath_rate_ops = {
1403 .module = NULL,
1404 .name = "ath9k_rate_control",
1405 .tx_status = ath_tx_status,
1406 .get_rate = ath_get_rate,
1407 .rate_init = ath_rate_init,
1408 .rate_update = ath_rate_update,
1409 .alloc = ath_rate_alloc,
1410 .free = ath_rate_free,
1411 .alloc_sta = ath_rate_alloc_sta,
1412 .free_sta = ath_rate_free_sta,
1413 };
1414
1415 int ath_rate_control_register(void)
1416 {
1417 return ieee80211_rate_control_register(&ath_rate_ops);
1418 }
1419
1420 void ath_rate_control_unregister(void)
1421 {
1422 ieee80211_rate_control_unregister(&ath_rate_ops);
1423 }