]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/ath/ath9k/rc.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / ath / ath9k / rc.c
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2009 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/slab.h>
19
20 #include "ath9k.h"
21
22 static const struct ath_rate_table ar5416_11na_ratetable = {
23 42,
24 8, /* MCS start */
25 {
26 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
27 5400, 0, 12, 0, 0, 0, 0, 0 },
28 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
29 7800, 1, 18, 0, 1, 1, 1, 1 },
30 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
31 10000, 2, 24, 2, 2, 2, 2, 2 },
32 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
33 13900, 3, 36, 2, 3, 3, 3, 3 },
34 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
35 17300, 4, 48, 4, 4, 4, 4, 4 },
36 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
37 23000, 5, 72, 4, 5, 5, 5, 5 },
38 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
39 27400, 6, 96, 4, 6, 6, 6, 6 },
40 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
41 29300, 7, 108, 4, 7, 7, 7, 7 },
42 { VALID_2040, VALID_2040, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
43 6400, 0, 0, 0, 8, 24, 8, 24 },
44 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
45 12700, 1, 1, 2, 9, 25, 9, 25 },
46 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
47 18800, 2, 2, 2, 10, 26, 10, 26 },
48 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
49 25000, 3, 3, 4, 11, 27, 11, 27 },
50 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
51 36700, 4, 4, 4, 12, 28, 12, 28 },
52 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
53 48100, 5, 5, 4, 13, 29, 13, 29 },
54 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
55 53500, 6, 6, 4, 14, 30, 14, 30 },
56 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
57 59000, 7, 7, 4, 15, 31, 15, 32 },
58 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
59 12700, 8, 8, 3, 16, 33, 16, 33 },
60 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
61 24800, 9, 9, 2, 17, 34, 17, 34 },
62 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
63 36600, 10, 10, 2, 18, 35, 18, 35 },
64 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
65 48100, 11, 11, 4, 19, 36, 19, 36 },
66 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
67 69500, 12, 12, 4, 20, 37, 20, 37 },
68 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
69 89500, 13, 13, 4, 21, 38, 21, 38 },
70 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
71 98900, 14, 14, 4, 22, 39, 22, 39 },
72 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
73 108300, 15, 15, 4, 23, 40, 23, 41 },
74 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
75 13200, 0, 0, 0, 8, 24, 24, 24 },
76 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
77 25900, 1, 1, 2, 9, 25, 25, 25 },
78 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
79 38600, 2, 2, 2, 10, 26, 26, 26 },
80 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
81 49800, 3, 3, 4, 11, 27, 27, 27 },
82 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
83 72200, 4, 4, 4, 12, 28, 28, 28 },
84 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
85 92900, 5, 5, 4, 13, 29, 29, 29 },
86 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
87 102700, 6, 6, 4, 14, 30, 30, 30 },
88 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
89 112000, 7, 7, 4, 15, 31, 32, 32 },
90 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
91 122000, 7, 7, 4, 15, 31, 32, 32 },
92 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
93 25800, 8, 8, 0, 16, 33, 33, 33 },
94 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
95 49800, 9, 9, 2, 17, 34, 34, 34 },
96 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
97 71900, 10, 10, 2, 18, 35, 35, 35 },
98 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
99 92500, 11, 11, 4, 19, 36, 36, 36 },
100 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
101 130300, 12, 12, 4, 20, 37, 37, 37 },
102 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
103 162800, 13, 13, 4, 21, 38, 38, 38 },
104 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
105 178200, 14, 14, 4, 22, 39, 39, 39 },
106 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
107 192100, 15, 15, 4, 23, 40, 41, 41 },
108 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
109 207000, 15, 15, 4, 23, 40, 41, 41 },
110 },
111 50, /* probe interval */
112 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
113 };
114
115 /* 4ms frame limit not used for NG mode. The values filled
116 * for HT are the 64K max aggregate limit */
117
118 static const struct ath_rate_table ar5416_11ng_ratetable = {
119 46,
120 12, /* MCS start */
121 {
122 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
123 900, 0, 2, 0, 0, 0, 0, 0 },
124 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
125 1900, 1, 4, 1, 1, 1, 1, 1 },
126 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
127 4900, 2, 11, 2, 2, 2, 2, 2 },
128 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
129 8100, 3, 22, 3, 3, 3, 3, 3 },
130 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
131 5400, 4, 12, 4, 4, 4, 4, 4 },
132 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
133 7800, 5, 18, 4, 5, 5, 5, 5 },
134 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
135 10100, 6, 24, 6, 6, 6, 6, 6 },
136 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
137 14100, 7, 36, 6, 7, 7, 7, 7 },
138 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
139 17700, 8, 48, 8, 8, 8, 8, 8 },
140 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
141 23700, 9, 72, 8, 9, 9, 9, 9 },
142 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
143 27400, 10, 96, 8, 10, 10, 10, 10 },
144 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
145 30900, 11, 108, 8, 11, 11, 11, 11 },
146 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
147 6400, 0, 0, 4, 12, 28, 12, 28 },
148 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
149 12700, 1, 1, 6, 13, 29, 13, 29 },
150 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
151 18800, 2, 2, 6, 14, 30, 14, 30 },
152 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
153 25000, 3, 3, 8, 15, 31, 15, 31 },
154 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
155 36700, 4, 4, 8, 16, 32, 16, 32 },
156 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
157 48100, 5, 5, 8, 17, 33, 17, 33 },
158 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
159 53500, 6, 6, 8, 18, 34, 18, 34 },
160 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
161 59000, 7, 7, 8, 19, 35, 19, 36 },
162 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
163 12700, 8, 8, 4, 20, 37, 20, 37 },
164 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
165 24800, 9, 9, 6, 21, 38, 21, 38 },
166 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
167 36600, 10, 10, 6, 22, 39, 22, 39 },
168 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
169 48100, 11, 11, 8, 23, 40, 23, 40 },
170 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
171 69500, 12, 12, 8, 24, 41, 24, 41 },
172 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
173 89500, 13, 13, 8, 25, 42, 25, 42 },
174 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
175 98900, 14, 14, 8, 26, 43, 26, 44 },
176 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
177 108300, 15, 15, 8, 27, 44, 27, 45 },
178 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
179 13200, 0, 0, 8, 12, 28, 28, 28 },
180 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
181 25900, 1, 1, 8, 13, 29, 29, 29 },
182 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
183 38600, 2, 2, 8, 14, 30, 30, 30 },
184 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
185 49800, 3, 3, 8, 15, 31, 31, 31 },
186 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
187 72200, 4, 4, 8, 16, 32, 32, 32 },
188 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
189 92900, 5, 5, 8, 17, 33, 33, 33 },
190 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
191 102700, 6, 6, 8, 18, 34, 34, 34 },
192 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
193 112000, 7, 7, 8, 19, 35, 36, 36 },
194 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
195 122000, 7, 7, 8, 19, 35, 36, 36 },
196 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
197 25800, 8, 8, 8, 20, 37, 37, 37 },
198 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
199 49800, 9, 9, 8, 21, 38, 38, 38 },
200 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
201 71900, 10, 10, 8, 22, 39, 39, 39 },
202 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
203 92500, 11, 11, 8, 23, 40, 40, 40 },
204 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
205 130300, 12, 12, 8, 24, 41, 41, 41 },
206 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
207 162800, 13, 13, 8, 25, 42, 42, 42 },
208 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
209 178200, 14, 14, 8, 26, 43, 43, 43 },
210 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
211 192100, 15, 15, 8, 27, 44, 45, 45 },
212 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
213 207000, 15, 15, 8, 27, 44, 45, 45 },
214 },
215 50, /* probe interval */
216 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
217 };
218
219 static const struct ath_rate_table ar5416_11a_ratetable = {
220 8,
221 0,
222 {
223 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
224 5400, 0, 12, 0, 0, 0 },
225 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
226 7800, 1, 18, 0, 1, 0 },
227 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
228 10000, 2, 24, 2, 2, 0 },
229 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
230 13900, 3, 36, 2, 3, 0 },
231 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
232 17300, 4, 48, 4, 4, 0 },
233 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
234 23000, 5, 72, 4, 5, 0 },
235 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
236 27400, 6, 96, 4, 6, 0 },
237 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
238 29300, 7, 108, 4, 7, 0 },
239 },
240 50, /* probe interval */
241 0, /* Phy rates allowed initially */
242 };
243
244 static const struct ath_rate_table ar5416_11g_ratetable = {
245 12,
246 0,
247 {
248 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
249 900, 0, 2, 0, 0, 0 },
250 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
251 1900, 1, 4, 1, 1, 0 },
252 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
253 4900, 2, 11, 2, 2, 0 },
254 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
255 8100, 3, 22, 3, 3, 0 },
256 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
257 5400, 4, 12, 4, 4, 0 },
258 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
259 7800, 5, 18, 4, 5, 0 },
260 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
261 10000, 6, 24, 6, 6, 0 },
262 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
263 13900, 7, 36, 6, 7, 0 },
264 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
265 17300, 8, 48, 8, 8, 0 },
266 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
267 23000, 9, 72, 8, 9, 0 },
268 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
269 27400, 10, 96, 8, 10, 0 },
270 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
271 29300, 11, 108, 8, 11, 0 },
272 },
273 50, /* probe interval */
274 0, /* Phy rates allowed initially */
275 };
276
277 static const struct ath_rate_table *hw_rate_table[ATH9K_MODE_MAX] = {
278 [ATH9K_MODE_11A] = &ar5416_11a_ratetable,
279 [ATH9K_MODE_11G] = &ar5416_11g_ratetable,
280 [ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable,
281 [ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable,
282 [ATH9K_MODE_11NA_HT40PLUS] = &ar5416_11na_ratetable,
283 [ATH9K_MODE_11NA_HT40MINUS] = &ar5416_11na_ratetable,
284 [ATH9K_MODE_11NG_HT40PLUS] = &ar5416_11ng_ratetable,
285 [ATH9K_MODE_11NG_HT40MINUS] = &ar5416_11ng_ratetable,
286 };
287
288 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
289 struct ieee80211_tx_rate *rate);
290
291 static inline int8_t median(int8_t a, int8_t b, int8_t c)
292 {
293 if (a >= b) {
294 if (b >= c)
295 return b;
296 else if (a > c)
297 return c;
298 else
299 return a;
300 } else {
301 if (a >= c)
302 return a;
303 else if (b >= c)
304 return c;
305 else
306 return b;
307 }
308 }
309
310 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
311 struct ath_rate_priv *ath_rc_priv)
312 {
313 u8 i, j, idx, idx_next;
314
315 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
316 for (j = 0; j <= i-1; j++) {
317 idx = ath_rc_priv->valid_rate_index[j];
318 idx_next = ath_rc_priv->valid_rate_index[j+1];
319
320 if (rate_table->info[idx].ratekbps >
321 rate_table->info[idx_next].ratekbps) {
322 ath_rc_priv->valid_rate_index[j] = idx_next;
323 ath_rc_priv->valid_rate_index[j+1] = idx;
324 }
325 }
326 }
327 }
328
329 static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
330 {
331 u8 i;
332
333 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
334 ath_rc_priv->valid_rate_index[i] = 0;
335 }
336
337 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
338 u8 index, int valid_tx_rate)
339 {
340 BUG_ON(index > ath_rc_priv->rate_table_size);
341 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
342 }
343
344 static inline
345 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
346 struct ath_rate_priv *ath_rc_priv,
347 u8 cur_valid_txrate,
348 u8 *next_idx)
349 {
350 u8 i;
351
352 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
353 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
354 *next_idx = ath_rc_priv->valid_rate_index[i+1];
355 return 1;
356 }
357 }
358
359 /* No more valid rates */
360 *next_idx = 0;
361
362 return 0;
363 }
364
365 /* Return true only for single stream */
366
367 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
368 {
369 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
370 return 0;
371 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
372 return 0;
373 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
374 return 0;
375 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
376 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
377 return 0;
378 return 1;
379 }
380
381 static inline int
382 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
383 struct ath_rate_priv *ath_rc_priv,
384 u8 cur_valid_txrate, u8 *next_idx)
385 {
386 int8_t i;
387
388 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
389 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
390 *next_idx = ath_rc_priv->valid_rate_index[i-1];
391 return 1;
392 }
393 }
394
395 return 0;
396 }
397
398 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
399 const struct ath_rate_table *rate_table,
400 u32 capflag)
401 {
402 u8 i, hi = 0;
403 u32 valid;
404
405 for (i = 0; i < rate_table->rate_cnt; i++) {
406 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
407 rate_table->info[i].valid_single_stream :
408 rate_table->info[i].valid);
409 if (valid == 1) {
410 u32 phy = rate_table->info[i].phy;
411 u8 valid_rate_count = 0;
412
413 if (!ath_rc_valid_phyrate(phy, capflag, 0))
414 continue;
415
416 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
417
418 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
419 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
420 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
421 hi = A_MAX(hi, i);
422 }
423 }
424
425 return hi;
426 }
427
428 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
429 const struct ath_rate_table *rate_table,
430 struct ath_rateset *rateset,
431 u32 capflag)
432 {
433 u8 i, j, hi = 0;
434
435 /* Use intersection of working rates and valid rates */
436 for (i = 0; i < rateset->rs_nrates; i++) {
437 for (j = 0; j < rate_table->rate_cnt; j++) {
438 u32 phy = rate_table->info[j].phy;
439 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
440 rate_table->info[j].valid_single_stream :
441 rate_table->info[j].valid);
442 u8 rate = rateset->rs_rates[i];
443 u8 dot11rate = rate_table->info[j].dot11rate;
444
445 /* We allow a rate only if its valid and the
446 * capflag matches one of the validity
447 * (VALID/VALID_20/VALID_40) flags */
448
449 if ((rate == dot11rate) &&
450 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
451 WLAN_RC_CAP_MODE(capflag)) &&
452 !WLAN_RC_PHY_HT(phy)) {
453 u8 valid_rate_count = 0;
454
455 if (!ath_rc_valid_phyrate(phy, capflag, 0))
456 continue;
457
458 valid_rate_count =
459 ath_rc_priv->valid_phy_ratecnt[phy];
460
461 ath_rc_priv->valid_phy_rateidx[phy]
462 [valid_rate_count] = j;
463 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
464 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
465 hi = A_MAX(hi, j);
466 }
467 }
468 }
469
470 return hi;
471 }
472
473 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
474 const struct ath_rate_table *rate_table,
475 u8 *mcs_set, u32 capflag)
476 {
477 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
478
479 u8 i, j, hi = 0;
480
481 /* Use intersection of working rates and valid rates */
482 for (i = 0; i < rateset->rs_nrates; i++) {
483 for (j = 0; j < rate_table->rate_cnt; j++) {
484 u32 phy = rate_table->info[j].phy;
485 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
486 rate_table->info[j].valid_single_stream :
487 rate_table->info[j].valid);
488 u8 rate = rateset->rs_rates[i];
489 u8 dot11rate = rate_table->info[j].dot11rate;
490
491 if ((rate != dot11rate) || !WLAN_RC_PHY_HT(phy) ||
492 !WLAN_RC_PHY_HT_VALID(valid, capflag))
493 continue;
494
495 if (!ath_rc_valid_phyrate(phy, capflag, 0))
496 continue;
497
498 ath_rc_priv->valid_phy_rateidx[phy]
499 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
500 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
501 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
502 hi = A_MAX(hi, j);
503 }
504 }
505
506 return hi;
507 }
508
509 /* Finds the highest rate index we can use */
510 static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
511 struct ath_rate_priv *ath_rc_priv,
512 const struct ath_rate_table *rate_table,
513 int *is_probing)
514 {
515 u32 best_thruput, this_thruput, now_msec;
516 u8 rate, next_rate, best_rate, maxindex, minindex;
517 int8_t index = 0;
518
519 now_msec = jiffies_to_msecs(jiffies);
520 *is_probing = 0;
521 best_thruput = 0;
522 maxindex = ath_rc_priv->max_valid_rate-1;
523 minindex = 0;
524 best_rate = minindex;
525
526 /*
527 * Try the higher rate first. It will reduce memory moving time
528 * if we have very good channel characteristics.
529 */
530 for (index = maxindex; index >= minindex ; index--) {
531 u8 per_thres;
532
533 rate = ath_rc_priv->valid_rate_index[index];
534 if (rate > ath_rc_priv->rate_max_phy)
535 continue;
536
537 /*
538 * For TCP the average collision rate is around 11%,
539 * so we ignore PERs less than this. This is to
540 * prevent the rate we are currently using (whose
541 * PER might be in the 10-15 range because of TCP
542 * collisions) looking worse than the next lower
543 * rate whose PER has decayed close to 0. If we
544 * used to next lower rate, its PER would grow to
545 * 10-15 and we would be worse off then staying
546 * at the current rate.
547 */
548 per_thres = ath_rc_priv->per[rate];
549 if (per_thres < 12)
550 per_thres = 12;
551
552 this_thruput = rate_table->info[rate].user_ratekbps *
553 (100 - per_thres);
554
555 if (best_thruput <= this_thruput) {
556 best_thruput = this_thruput;
557 best_rate = rate;
558 }
559 }
560
561 rate = best_rate;
562
563 /*
564 * Must check the actual rate (ratekbps) to account for
565 * non-monoticity of 11g's rate table
566 */
567
568 if (rate >= ath_rc_priv->rate_max_phy) {
569 rate = ath_rc_priv->rate_max_phy;
570
571 /* Probe the next allowed phy state */
572 if (ath_rc_get_nextvalid_txrate(rate_table,
573 ath_rc_priv, rate, &next_rate) &&
574 (now_msec - ath_rc_priv->probe_time >
575 rate_table->probe_interval) &&
576 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
577 rate = next_rate;
578 ath_rc_priv->probe_rate = rate;
579 ath_rc_priv->probe_time = now_msec;
580 ath_rc_priv->hw_maxretry_pktcnt = 0;
581 *is_probing = 1;
582 }
583 }
584
585 if (rate > (ath_rc_priv->rate_table_size - 1))
586 rate = ath_rc_priv->rate_table_size - 1;
587
588 if (rate_table->info[rate].valid &&
589 (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG))
590 return rate;
591
592 if (rate_table->info[rate].valid_single_stream &&
593 !(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG))
594 return rate;
595
596 /* This should not happen */
597 WARN_ON(1);
598
599 rate = ath_rc_priv->valid_rate_index[0];
600
601 return rate;
602 }
603
604 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
605 struct ieee80211_tx_rate *rate,
606 struct ieee80211_tx_rate_control *txrc,
607 u8 tries, u8 rix, int rtsctsenable)
608 {
609 rate->count = tries;
610 rate->idx = rate_table->info[rix].ratecode;
611
612 if (txrc->short_preamble)
613 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
614 if (txrc->rts || rtsctsenable)
615 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
616
617 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
618 rate->flags |= IEEE80211_TX_RC_MCS;
619 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
620 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
621 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
622 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
623 }
624 }
625
626 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
627 const struct ath_rate_table *rate_table,
628 struct ieee80211_tx_info *tx_info)
629 {
630 struct ieee80211_tx_rate *rates = tx_info->control.rates;
631 int i = 0, rix = 0, cix, enable_g_protection = 0;
632
633 /* get the cix for the lowest valid rix */
634 for (i = 3; i >= 0; i--) {
635 if (rates[i].count && (rates[i].idx >= 0)) {
636 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
637 break;
638 }
639 }
640 cix = rate_table->info[rix].ctrl_rate;
641
642 /* All protection frames are transmited at 2Mb/s for 802.11g,
643 * otherwise we transmit them at 1Mb/s */
644 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
645 !conf_is_ht(&sc->hw->conf))
646 enable_g_protection = 1;
647
648 /*
649 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
650 * just CTS. Note that this is only done for OFDM/HT unicast frames.
651 */
652 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
653 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
654 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
655 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
656 cix = rate_table->info[enable_g_protection].ctrl_rate;
657 }
658
659 tx_info->control.rts_cts_rate_idx = cix;
660 }
661
662 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
663 struct ieee80211_tx_rate_control *txrc)
664 {
665 struct ath_softc *sc = priv;
666 struct ath_rate_priv *ath_rc_priv = priv_sta;
667 const struct ath_rate_table *rate_table;
668 struct sk_buff *skb = txrc->skb;
669 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
670 struct ieee80211_tx_rate *rates = tx_info->control.rates;
671 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
672 __le16 fc = hdr->frame_control;
673 u8 try_per_rate, i = 0, rix;
674 int is_probe = 0;
675
676 if (rate_control_send_low(sta, priv_sta, txrc))
677 return;
678
679 /*
680 * For Multi Rate Retry we use a different number of
681 * retry attempt counts. This ends up looking like this:
682 *
683 * MRR[0] = 4
684 * MRR[1] = 4
685 * MRR[2] = 4
686 * MRR[3] = 8
687 *
688 */
689 try_per_rate = 4;
690
691 rate_table = sc->cur_rate_table;
692 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe);
693
694 if (is_probe) {
695 /* set one try for probe rates. For the
696 * probes don't enable rts */
697 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
698 1, rix, 0);
699
700 /* Get the next tried/allowed rate. No RTS for the next series
701 * after the probe rate
702 */
703 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
704 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
705 try_per_rate, rix, 0);
706
707 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
708 } else {
709 /* Set the choosen rate. No RTS for first series entry. */
710 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
711 try_per_rate, rix, 0);
712 }
713
714 /* Fill in the other rates for multirate retry */
715 for ( ; i < 4; i++) {
716 /* Use twice the number of tries for the last MRR segment. */
717 if (i + 1 == 4)
718 try_per_rate = 8;
719
720 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
721 /* All other rates in the series have RTS enabled */
722 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
723 try_per_rate, rix, 1);
724 }
725
726 /*
727 * NB:Change rate series to enable aggregation when operating
728 * at lower MCS rates. When first rate in series is MCS2
729 * in HT40 @ 2.4GHz, series should look like:
730 *
731 * {MCS2, MCS1, MCS0, MCS0}.
732 *
733 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
734 * look like:
735 *
736 * {MCS3, MCS2, MCS1, MCS1}
737 *
738 * So, set fourth rate in series to be same as third one for
739 * above conditions.
740 */
741 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
742 (conf_is_ht(&sc->hw->conf))) {
743 u8 dot11rate = rate_table->info[rix].dot11rate;
744 u8 phy = rate_table->info[rix].phy;
745 if (i == 4 &&
746 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
747 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
748 rates[3].idx = rates[2].idx;
749 rates[3].flags = rates[2].flags;
750 }
751 }
752
753 /*
754 * Force hardware to use computed duration for next
755 * fragment by disabling multi-rate retry, which
756 * updates duration based on the multi-rate duration table.
757 *
758 * FIXME: Fix duration
759 */
760 if (ieee80211_has_morefrags(fc) ||
761 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
762 rates[1].count = rates[2].count = rates[3].count = 0;
763 rates[1].idx = rates[2].idx = rates[3].idx = 0;
764 rates[0].count = ATH_TXMAXTRY;
765 }
766
767 /* Setup RTS/CTS */
768 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
769 }
770
771 static bool ath_rc_update_per(struct ath_softc *sc,
772 const struct ath_rate_table *rate_table,
773 struct ath_rate_priv *ath_rc_priv,
774 struct ieee80211_tx_info *tx_info,
775 int tx_rate, int xretries, int retries,
776 u32 now_msec)
777 {
778 bool state_change = false;
779 int count, n_bad_frames;
780 u8 last_per;
781 static u32 nretry_to_per_lookup[10] = {
782 100 * 0 / 1,
783 100 * 1 / 4,
784 100 * 1 / 2,
785 100 * 3 / 4,
786 100 * 4 / 5,
787 100 * 5 / 6,
788 100 * 6 / 7,
789 100 * 7 / 8,
790 100 * 8 / 9,
791 100 * 9 / 10
792 };
793
794 last_per = ath_rc_priv->per[tx_rate];
795 n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
796
797 if (xretries) {
798 if (xretries == 1) {
799 ath_rc_priv->per[tx_rate] += 30;
800 if (ath_rc_priv->per[tx_rate] > 100)
801 ath_rc_priv->per[tx_rate] = 100;
802 } else {
803 /* xretries == 2 */
804 count = ARRAY_SIZE(nretry_to_per_lookup);
805 if (retries >= count)
806 retries = count - 1;
807
808 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
809 ath_rc_priv->per[tx_rate] =
810 (u8)(last_per - (last_per >> 3) + (100 >> 3));
811 }
812
813 /* xretries == 1 or 2 */
814
815 if (ath_rc_priv->probe_rate == tx_rate)
816 ath_rc_priv->probe_rate = 0;
817
818 } else { /* xretries == 0 */
819 count = ARRAY_SIZE(nretry_to_per_lookup);
820 if (retries >= count)
821 retries = count - 1;
822
823 if (n_bad_frames) {
824 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
825 * Assuming that n_frames is not 0. The current PER
826 * from the retries is 100 * retries / (retries+1),
827 * since the first retries attempts failed, and the
828 * next one worked. For the one that worked,
829 * n_bad_frames subframes out of n_frames wored,
830 * so the PER for that part is
831 * 100 * n_bad_frames / n_frames, and it contributes
832 * 100 * n_bad_frames / (n_frames * (retries+1)) to
833 * the above PER. The expression below is a
834 * simplified version of the sum of these two terms.
835 */
836 if (tx_info->status.ampdu_len > 0) {
837 int n_frames, n_bad_tries;
838 u8 cur_per, new_per;
839
840 n_bad_tries = retries * tx_info->status.ampdu_len +
841 n_bad_frames;
842 n_frames = tx_info->status.ampdu_len * (retries + 1);
843 cur_per = (100 * n_bad_tries / n_frames) >> 3;
844 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
845 ath_rc_priv->per[tx_rate] = new_per;
846 }
847 } else {
848 ath_rc_priv->per[tx_rate] =
849 (u8)(last_per - (last_per >> 3) +
850 (nretry_to_per_lookup[retries] >> 3));
851 }
852
853
854 /*
855 * If we got at most one retry then increase the max rate if
856 * this was a probe. Otherwise, ignore the probe.
857 */
858 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
859 if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
860 /*
861 * Since we probed with just a single attempt,
862 * any retries means the probe failed. Also,
863 * if the attempt worked, but more than half
864 * the subframes were bad then also consider
865 * the probe a failure.
866 */
867 ath_rc_priv->probe_rate = 0;
868 } else {
869 u8 probe_rate = 0;
870
871 ath_rc_priv->rate_max_phy =
872 ath_rc_priv->probe_rate;
873 probe_rate = ath_rc_priv->probe_rate;
874
875 if (ath_rc_priv->per[probe_rate] > 30)
876 ath_rc_priv->per[probe_rate] = 20;
877
878 ath_rc_priv->probe_rate = 0;
879
880 /*
881 * Since this probe succeeded, we allow the next
882 * probe twice as soon. This allows the maxRate
883 * to move up faster if the probes are
884 * successful.
885 */
886 ath_rc_priv->probe_time =
887 now_msec - rate_table->probe_interval / 2;
888 }
889 }
890
891 if (retries > 0) {
892 /*
893 * Don't update anything. We don't know if
894 * this was because of collisions or poor signal.
895 */
896 ath_rc_priv->hw_maxretry_pktcnt = 0;
897 } else {
898 /*
899 * It worked with no retries. First ignore bogus (small)
900 * rssi_ack values.
901 */
902 if (tx_rate == ath_rc_priv->rate_max_phy &&
903 ath_rc_priv->hw_maxretry_pktcnt < 255) {
904 ath_rc_priv->hw_maxretry_pktcnt++;
905 }
906
907 }
908 }
909
910 return state_change;
911 }
912
913 /* Update PER, RSSI and whatever else that the code thinks it is doing.
914 If you can make sense of all this, you really need to go out more. */
915
916 static void ath_rc_update_ht(struct ath_softc *sc,
917 struct ath_rate_priv *ath_rc_priv,
918 struct ieee80211_tx_info *tx_info,
919 int tx_rate, int xretries, int retries)
920 {
921 u32 now_msec = jiffies_to_msecs(jiffies);
922 int rate;
923 u8 last_per;
924 bool state_change = false;
925 const struct ath_rate_table *rate_table = sc->cur_rate_table;
926 int size = ath_rc_priv->rate_table_size;
927
928 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
929 return;
930
931 last_per = ath_rc_priv->per[tx_rate];
932
933 /* Update PER first */
934 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
935 tx_info, tx_rate, xretries,
936 retries, now_msec);
937
938 /*
939 * If this rate looks bad (high PER) then stop using it for
940 * a while (except if we are probing).
941 */
942 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
943 rate_table->info[tx_rate].ratekbps <=
944 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
945 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
946 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
947
948 /* Don't probe for a little while. */
949 ath_rc_priv->probe_time = now_msec;
950 }
951
952 /* Make sure the rates below this have lower PER */
953 /* Monotonicity is kept only for rates below the current rate. */
954 if (ath_rc_priv->per[tx_rate] < last_per) {
955 for (rate = tx_rate - 1; rate >= 0; rate--) {
956
957 if (ath_rc_priv->per[rate] >
958 ath_rc_priv->per[rate+1]) {
959 ath_rc_priv->per[rate] =
960 ath_rc_priv->per[rate+1];
961 }
962 }
963 }
964
965 /* Maintain monotonicity for rates above the current rate */
966 for (rate = tx_rate; rate < size - 1; rate++) {
967 if (ath_rc_priv->per[rate+1] <
968 ath_rc_priv->per[rate])
969 ath_rc_priv->per[rate+1] =
970 ath_rc_priv->per[rate];
971 }
972
973 /* Every so often, we reduce the thresholds
974 * and PER (different for CCK and OFDM). */
975 if (now_msec - ath_rc_priv->per_down_time >=
976 rate_table->probe_interval) {
977 for (rate = 0; rate < size; rate++) {
978 ath_rc_priv->per[rate] =
979 7 * ath_rc_priv->per[rate] / 8;
980 }
981
982 ath_rc_priv->per_down_time = now_msec;
983 }
984
985 ath_debug_stat_retries(sc, tx_rate, xretries, retries,
986 ath_rc_priv->per[tx_rate]);
987
988 }
989
990 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
991 struct ieee80211_tx_rate *rate)
992 {
993 int rix;
994
995 if (!(rate->flags & IEEE80211_TX_RC_MCS))
996 return rate->idx;
997
998 rix = rate->idx + rate_table->mcs_start;
999 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1000 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1001 rix = rate_table->info[rix].ht_index;
1002 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1003 rix = rate_table->info[rix].sgi_index;
1004 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1005 rix = rate_table->info[rix].cw40index;
1006 else
1007 rix = rate_table->info[rix].base_index;
1008
1009 return rix;
1010 }
1011
1012 static void ath_rc_tx_status(struct ath_softc *sc,
1013 struct ath_rate_priv *ath_rc_priv,
1014 struct ieee80211_tx_info *tx_info,
1015 int final_ts_idx, int xretries, int long_retry)
1016 {
1017 const struct ath_rate_table *rate_table;
1018 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1019 u8 flags;
1020 u32 i = 0, rix;
1021
1022 rate_table = sc->cur_rate_table;
1023
1024 /*
1025 * If the first rate is not the final index, there
1026 * are intermediate rate failures to be processed.
1027 */
1028 if (final_ts_idx != 0) {
1029 /* Process intermediate rates that failed.*/
1030 for (i = 0; i < final_ts_idx ; i++) {
1031 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1032 flags = rates[i].flags;
1033
1034 /* If HT40 and we have switched mode from
1035 * 40 to 20 => don't update */
1036
1037 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1038 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1039 return;
1040
1041 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1042 ath_rc_update_ht(sc, ath_rc_priv, tx_info,
1043 rix, xretries ? 1 : 2,
1044 rates[i].count);
1045 }
1046 }
1047 } else {
1048 /*
1049 * Handle the special case of MIMO PS burst, where the second
1050 * aggregate is sent out with only one rate and one try.
1051 * Treating it as an excessive retry penalizes the rate
1052 * inordinately.
1053 */
1054 if (rates[0].count == 1 && xretries == 1)
1055 xretries = 2;
1056 }
1057
1058 flags = rates[i].flags;
1059
1060 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1061 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1062 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1063 return;
1064
1065 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1066 ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
1067 }
1068
1069 static const
1070 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1071 enum ieee80211_band band,
1072 bool is_ht,
1073 bool is_cw_40)
1074 {
1075 int mode = 0;
1076 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1077
1078 switch(band) {
1079 case IEEE80211_BAND_2GHZ:
1080 mode = ATH9K_MODE_11G;
1081 if (is_ht)
1082 mode = ATH9K_MODE_11NG_HT20;
1083 if (is_cw_40)
1084 mode = ATH9K_MODE_11NG_HT40PLUS;
1085 break;
1086 case IEEE80211_BAND_5GHZ:
1087 mode = ATH9K_MODE_11A;
1088 if (is_ht)
1089 mode = ATH9K_MODE_11NA_HT20;
1090 if (is_cw_40)
1091 mode = ATH9K_MODE_11NA_HT40PLUS;
1092 break;
1093 default:
1094 ath_print(common, ATH_DBG_CONFIG, "Invalid band\n");
1095 return NULL;
1096 }
1097
1098 BUG_ON(mode >= ATH9K_MODE_MAX);
1099
1100 ath_print(common, ATH_DBG_CONFIG,
1101 "Choosing rate table for mode: %d\n", mode);
1102
1103 sc->cur_rate_mode = mode;
1104 return hw_rate_table[mode];
1105 }
1106
1107 static void ath_rc_init(struct ath_softc *sc,
1108 struct ath_rate_priv *ath_rc_priv,
1109 struct ieee80211_supported_band *sband,
1110 struct ieee80211_sta *sta,
1111 const struct ath_rate_table *rate_table)
1112 {
1113 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1114 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1115 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1116 u8 i, j, k, hi = 0, hthi = 0;
1117
1118 /* Initial rate table size. Will change depending
1119 * on the working rate set */
1120 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1121
1122 /* Initialize thresholds according to the global rate table */
1123 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1124 ath_rc_priv->per[i] = 0;
1125 }
1126
1127 /* Determine the valid rates */
1128 ath_rc_init_valid_txmask(ath_rc_priv);
1129
1130 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1131 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1132 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1133 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1134 }
1135
1136 if (!rateset->rs_nrates) {
1137 /* No working rate, just initialize valid rates */
1138 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1139 ath_rc_priv->ht_cap);
1140 } else {
1141 /* Use intersection of working rates and valid rates */
1142 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1143 rateset, ath_rc_priv->ht_cap);
1144 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1145 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1146 rate_table,
1147 ht_mcs,
1148 ath_rc_priv->ht_cap);
1149 }
1150 hi = A_MAX(hi, hthi);
1151 }
1152
1153 ath_rc_priv->rate_table_size = hi + 1;
1154 ath_rc_priv->rate_max_phy = 0;
1155 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1156
1157 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1158 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1159 ath_rc_priv->valid_rate_index[k++] =
1160 ath_rc_priv->valid_phy_rateidx[i][j];
1161 }
1162
1163 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1164 || !ath_rc_priv->valid_phy_ratecnt[i])
1165 continue;
1166
1167 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1168 }
1169 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1170 BUG_ON(k > RATE_TABLE_SIZE);
1171
1172 ath_rc_priv->max_valid_rate = k;
1173 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1174 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1175 sc->cur_rate_table = rate_table;
1176
1177 ath_print(common, ATH_DBG_CONFIG,
1178 "RC Initialized with capabilities: 0x%x\n",
1179 ath_rc_priv->ht_cap);
1180 }
1181
1182 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1183 bool is_cw40, bool is_sgi40)
1184 {
1185 u8 caps = 0;
1186
1187 if (sta->ht_cap.ht_supported) {
1188 caps = WLAN_RC_HT_FLAG;
1189 if (sc->sc_ah->caps.tx_chainmask != 1 &&
1190 ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_DS, 0, NULL)) {
1191 if (sta->ht_cap.mcs.rx_mask[1])
1192 caps |= WLAN_RC_DS_FLAG;
1193 }
1194 if (is_cw40)
1195 caps |= WLAN_RC_40_FLAG;
1196 if (is_sgi40)
1197 caps |= WLAN_RC_SGI_FLAG;
1198 }
1199
1200 return caps;
1201 }
1202
1203 /***********************************/
1204 /* mac80211 Rate Control callbacks */
1205 /***********************************/
1206
1207 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1208 struct ieee80211_sta *sta, void *priv_sta,
1209 struct sk_buff *skb)
1210 {
1211 struct ath_softc *sc = priv;
1212 struct ath_rate_priv *ath_rc_priv = priv_sta;
1213 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1214 struct ieee80211_hdr *hdr;
1215 int final_ts_idx = 0, tx_status = 0, is_underrun = 0;
1216 int long_retry = 0;
1217 __le16 fc;
1218 int i;
1219
1220 hdr = (struct ieee80211_hdr *)skb->data;
1221 fc = hdr->frame_control;
1222 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
1223 struct ieee80211_tx_rate *rate = &tx_info->status.rates[i];
1224 if (!rate->count)
1225 break;
1226
1227 final_ts_idx = i;
1228 long_retry = rate->count - 1;
1229 }
1230
1231 if (!priv_sta || !ieee80211_is_data(fc) ||
1232 !(tx_info->pad[0] & ATH_TX_INFO_UPDATE_RC))
1233 return;
1234
1235 if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
1236 return;
1237
1238 /*
1239 * If an underrun error is seen assume it as an excessive retry only
1240 * if max frame trigger level has been reached (2 KB for singel stream,
1241 * and 4 KB for dual stream). Adjust the long retry as if the frame was
1242 * tried hw->max_rate_tries times to affect how ratectrl updates PER for
1243 * the failed rate. In case of congestion on the bus penalizing these
1244 * type of underruns should help hardware actually transmit new frames
1245 * successfully by eventually preferring slower rates. This itself
1246 * should also alleviate congestion on the bus.
1247 */
1248 if ((tx_info->pad[0] & ATH_TX_INFO_UNDERRUN) &&
1249 (sc->sc_ah->tx_trig_level >= ath_rc_priv->tx_triglevel_max)) {
1250 tx_status = 1;
1251 is_underrun = 1;
1252 }
1253
1254 if (tx_info->pad[0] & ATH_TX_INFO_XRETRY)
1255 tx_status = 1;
1256
1257 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1258 (is_underrun) ? sc->hw->max_rate_tries : long_retry);
1259
1260 /* Check if aggregation has to be enabled for this tid */
1261 if (conf_is_ht(&sc->hw->conf) &&
1262 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1263 if (ieee80211_is_data_qos(fc)) {
1264 u8 *qc, tid;
1265 struct ath_node *an;
1266
1267 qc = ieee80211_get_qos_ctl(hdr);
1268 tid = qc[0] & 0xf;
1269 an = (struct ath_node *)sta->drv_priv;
1270
1271 if(ath_tx_aggr_check(sc, an, tid))
1272 ieee80211_start_tx_ba_session(sta, tid);
1273 }
1274 }
1275
1276 ath_debug_stat_rc(sc, ath_rc_get_rateindex(sc->cur_rate_table,
1277 &tx_info->status.rates[final_ts_idx]));
1278 }
1279
1280 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1281 struct ieee80211_sta *sta, void *priv_sta)
1282 {
1283 struct ath_softc *sc = priv;
1284 struct ath_rate_priv *ath_rc_priv = priv_sta;
1285 const struct ath_rate_table *rate_table;
1286 bool is_cw40, is_sgi40;
1287 int i, j = 0;
1288
1289 for (i = 0; i < sband->n_bitrates; i++) {
1290 if (sta->supp_rates[sband->band] & BIT(i)) {
1291 ath_rc_priv->neg_rates.rs_rates[j]
1292 = (sband->bitrates[i].bitrate * 2) / 10;
1293 j++;
1294 }
1295 }
1296 ath_rc_priv->neg_rates.rs_nrates = j;
1297
1298 if (sta->ht_cap.ht_supported) {
1299 for (i = 0, j = 0; i < 77; i++) {
1300 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1301 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1302 if (j == ATH_RATE_MAX)
1303 break;
1304 }
1305 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1306 }
1307
1308 is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1309 is_sgi40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
1310
1311 /* Choose rate table first */
1312
1313 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) ||
1314 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) ||
1315 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) {
1316 rate_table = ath_choose_rate_table(sc, sband->band,
1317 sta->ht_cap.ht_supported, is_cw40);
1318 } else {
1319 rate_table = hw_rate_table[sc->cur_rate_mode];
1320 }
1321
1322 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi40);
1323 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1324 }
1325
1326 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1327 struct ieee80211_sta *sta, void *priv_sta,
1328 u32 changed, enum nl80211_channel_type oper_chan_type)
1329 {
1330 struct ath_softc *sc = priv;
1331 struct ath_rate_priv *ath_rc_priv = priv_sta;
1332 const struct ath_rate_table *rate_table = NULL;
1333 bool oper_cw40 = false, oper_sgi40;
1334 bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ?
1335 true : false;
1336 bool local_sgi40 = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ?
1337 true : false;
1338
1339 /* FIXME: Handle AP mode later when we support CWM */
1340
1341 if (changed & IEEE80211_RC_HT_CHANGED) {
1342 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1343 return;
1344
1345 if (oper_chan_type == NL80211_CHAN_HT40MINUS ||
1346 oper_chan_type == NL80211_CHAN_HT40PLUS)
1347 oper_cw40 = true;
1348
1349 oper_sgi40 = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1350 true : false;
1351
1352 if ((local_cw40 != oper_cw40) || (local_sgi40 != oper_sgi40)) {
1353 rate_table = ath_choose_rate_table(sc, sband->band,
1354 sta->ht_cap.ht_supported,
1355 oper_cw40);
1356 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1357 oper_cw40, oper_sgi40);
1358 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1359
1360 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
1361 "Operating HT Bandwidth changed to: %d\n",
1362 sc->hw->conf.channel_type);
1363 sc->cur_rate_table = hw_rate_table[sc->cur_rate_mode];
1364 }
1365 }
1366 }
1367
1368 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1369 {
1370 struct ath_wiphy *aphy = hw->priv;
1371 return aphy->sc;
1372 }
1373
1374 static void ath_rate_free(void *priv)
1375 {
1376 return;
1377 }
1378
1379 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1380 {
1381 struct ath_softc *sc = priv;
1382 struct ath_rate_priv *rate_priv;
1383
1384 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1385 if (!rate_priv) {
1386 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1387 "Unable to allocate private rc structure\n");
1388 return NULL;
1389 }
1390
1391 rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max;
1392
1393 return rate_priv;
1394 }
1395
1396 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1397 void *priv_sta)
1398 {
1399 struct ath_rate_priv *rate_priv = priv_sta;
1400 kfree(rate_priv);
1401 }
1402
1403 static struct rate_control_ops ath_rate_ops = {
1404 .module = NULL,
1405 .name = "ath9k_rate_control",
1406 .tx_status = ath_tx_status,
1407 .get_rate = ath_get_rate,
1408 .rate_init = ath_rate_init,
1409 .rate_update = ath_rate_update,
1410 .alloc = ath_rate_alloc,
1411 .free = ath_rate_free,
1412 .alloc_sta = ath_rate_alloc_sta,
1413 .free_sta = ath_rate_free_sta,
1414 };
1415
1416 int ath_rate_control_register(void)
1417 {
1418 return ieee80211_rate_control_register(&ath_rate_ops);
1419 }
1420
1421 void ath_rate_control_unregister(void)
1422 {
1423 ieee80211_rate_control_unregister(&ath_rate_ops);
1424 }