]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ath/ath9k/rc.c
mac80211: stop toggling IEEE80211_HT_CAP_SUP_WIDTH_20_40
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ath / ath9k / rc.c
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2011 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/slab.h>
19 #include <linux/export.h>
20
21 #include "ath9k.h"
22
23 static const struct ath_rate_table ar5416_11na_ratetable = {
24 68,
25 8, /* MCS start */
26 {
27 [0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
28 5400, 0, 12 }, /* 6 Mb */
29 [1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
30 7800, 1, 18 }, /* 9 Mb */
31 [2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
32 10000, 2, 24 }, /* 12 Mb */
33 [3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
34 13900, 3, 36 }, /* 18 Mb */
35 [4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
36 17300, 4, 48 }, /* 24 Mb */
37 [5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
38 23000, 5, 72 }, /* 36 Mb */
39 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
40 27400, 6, 96 }, /* 48 Mb */
41 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
42 29300, 7, 108 }, /* 54 Mb */
43 [8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
44 6400, 0, 0 }, /* 6.5 Mb */
45 [9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
46 12700, 1, 1 }, /* 13 Mb */
47 [10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
48 18800, 2, 2 }, /* 19.5 Mb */
49 [11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
50 25000, 3, 3 }, /* 26 Mb */
51 [12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
52 36700, 4, 4 }, /* 39 Mb */
53 [13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
54 48100, 5, 5 }, /* 52 Mb */
55 [14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
56 53500, 6, 6 }, /* 58.5 Mb */
57 [15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
58 59000, 7, 7 }, /* 65 Mb */
59 [16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
60 65400, 7, 7 }, /* 75 Mb */
61 [17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
62 12700, 8, 8 }, /* 13 Mb */
63 [18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
64 24800, 9, 9 }, /* 26 Mb */
65 [19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
66 36600, 10, 10 }, /* 39 Mb */
67 [20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
68 48100, 11, 11 }, /* 52 Mb */
69 [21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
70 69500, 12, 12 }, /* 78 Mb */
71 [22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
72 89500, 13, 13 }, /* 104 Mb */
73 [23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
74 98900, 14, 14 }, /* 117 Mb */
75 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
76 108300, 15, 15 }, /* 130 Mb */
77 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
78 120000, 15, 15 }, /* 144.4 Mb */
79 [26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
80 17400, 16, 16 }, /* 19.5 Mb */
81 [27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
82 35100, 17, 17 }, /* 39 Mb */
83 [28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
84 52600, 18, 18 }, /* 58.5 Mb */
85 [29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
86 70400, 19, 19 }, /* 78 Mb */
87 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
88 104900, 20, 20 }, /* 117 Mb */
89 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
90 115800, 20, 20 }, /* 130 Mb*/
91 [32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
92 137200, 21, 21 }, /* 156 Mb */
93 [33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
94 151100, 21, 21 }, /* 173.3 Mb */
95 [34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
96 152800, 22, 22 }, /* 175.5 Mb */
97 [35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
98 168400, 22, 22 }, /* 195 Mb*/
99 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
100 168400, 23, 23 }, /* 195 Mb */
101 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
102 185000, 23, 23 }, /* 216.7 Mb */
103 [38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
104 13200, 0, 0 }, /* 13.5 Mb*/
105 [39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
106 25900, 1, 1 }, /* 27.0 Mb*/
107 [40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
108 38600, 2, 2 }, /* 40.5 Mb*/
109 [41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
110 49800, 3, 3 }, /* 54 Mb */
111 [42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
112 72200, 4, 4 }, /* 81 Mb */
113 [43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
114 92900, 5, 5 }, /* 108 Mb */
115 [44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
116 102700, 6, 6 }, /* 121.5 Mb*/
117 [45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
118 112000, 7, 7 }, /* 135 Mb */
119 [46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
120 122000, 7, 7 }, /* 150 Mb */
121 [47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
122 25800, 8, 8 }, /* 27 Mb */
123 [48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
124 49800, 9, 9 }, /* 54 Mb */
125 [49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
126 71900, 10, 10 }, /* 81 Mb */
127 [50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
128 92500, 11, 11 }, /* 108 Mb */
129 [51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
130 130300, 12, 12 }, /* 162 Mb */
131 [52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
132 162800, 13, 13 }, /* 216 Mb */
133 [53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
134 178200, 14, 14 }, /* 243 Mb */
135 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
136 192100, 15, 15 }, /* 270 Mb */
137 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
138 207000, 15, 15 }, /* 300 Mb */
139 [56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
140 36100, 16, 16 }, /* 40.5 Mb */
141 [57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
142 72900, 17, 17 }, /* 81 Mb */
143 [58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
144 108300, 18, 18 }, /* 121.5 Mb */
145 [59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
146 142000, 19, 19 }, /* 162 Mb */
147 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
148 205100, 20, 20 }, /* 243 Mb */
149 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
150 224700, 20, 20 }, /* 270 Mb */
151 [62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
152 263100, 21, 21 }, /* 324 Mb */
153 [63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
154 288000, 21, 21 }, /* 360 Mb */
155 [64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
156 290700, 22, 22 }, /* 364.5 Mb */
157 [65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
158 317200, 22, 22 }, /* 405 Mb */
159 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
160 317200, 23, 23 }, /* 405 Mb */
161 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
162 346400, 23, 23 }, /* 450 Mb */
163 },
164 50, /* probe interval */
165 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
166 };
167
168 /* 4ms frame limit not used for NG mode. The values filled
169 * for HT are the 64K max aggregate limit */
170
171 static const struct ath_rate_table ar5416_11ng_ratetable = {
172 72,
173 12, /* MCS start */
174 {
175 [0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
176 900, 0, 2 }, /* 1 Mb */
177 [1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
178 1900, 1, 4 }, /* 2 Mb */
179 [2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
180 4900, 2, 11 }, /* 5.5 Mb */
181 [3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
182 8100, 3, 22 }, /* 11 Mb */
183 [4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
184 5400, 4, 12 }, /* 6 Mb */
185 [5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
186 7800, 5, 18 }, /* 9 Mb */
187 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
188 10100, 6, 24 }, /* 12 Mb */
189 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
190 14100, 7, 36 }, /* 18 Mb */
191 [8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
192 17700, 8, 48 }, /* 24 Mb */
193 [9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
194 23700, 9, 72 }, /* 36 Mb */
195 [10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
196 27400, 10, 96 }, /* 48 Mb */
197 [11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
198 30900, 11, 108 }, /* 54 Mb */
199 [12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
200 6400, 0, 0 }, /* 6.5 Mb */
201 [13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
202 12700, 1, 1 }, /* 13 Mb */
203 [14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
204 18800, 2, 2 }, /* 19.5 Mb*/
205 [15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
206 25000, 3, 3 }, /* 26 Mb */
207 [16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
208 36700, 4, 4 }, /* 39 Mb */
209 [17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
210 48100, 5, 5 }, /* 52 Mb */
211 [18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
212 53500, 6, 6 }, /* 58.5 Mb */
213 [19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
214 59000, 7, 7 }, /* 65 Mb */
215 [20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
216 65400, 7, 7 }, /* 65 Mb*/
217 [21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
218 12700, 8, 8 }, /* 13 Mb */
219 [22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
220 24800, 9, 9 }, /* 26 Mb */
221 [23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
222 36600, 10, 10 }, /* 39 Mb */
223 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
224 48100, 11, 11 }, /* 52 Mb */
225 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
226 69500, 12, 12 }, /* 78 Mb */
227 [26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
228 89500, 13, 13 }, /* 104 Mb */
229 [27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
230 98900, 14, 14 }, /* 117 Mb */
231 [28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
232 108300, 15, 15 }, /* 130 Mb */
233 [29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
234 120000, 15, 15 }, /* 144.4 Mb */
235 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
236 17400, 16, 16 }, /* 19.5 Mb */
237 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
238 35100, 17, 17 }, /* 39 Mb */
239 [32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
240 52600, 18, 18 }, /* 58.5 Mb */
241 [33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
242 70400, 19, 19 }, /* 78 Mb */
243 [34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
244 104900, 20, 20 }, /* 117 Mb */
245 [35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
246 115800, 20, 20 }, /* 130 Mb */
247 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
248 137200, 21, 21 }, /* 156 Mb */
249 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
250 151100, 21, 21 }, /* 173.3 Mb */
251 [38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
252 152800, 22, 22 }, /* 175.5 Mb */
253 [39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
254 168400, 22, 22 }, /* 195 Mb */
255 [40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
256 168400, 23, 23 }, /* 195 Mb */
257 [41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
258 185000, 23, 23 }, /* 216.7 Mb */
259 [42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
260 13200, 0, 0 }, /* 13.5 Mb */
261 [43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
262 25900, 1, 1 }, /* 27.0 Mb */
263 [44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
264 38600, 2, 2 }, /* 40.5 Mb */
265 [45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
266 49800, 3, 3 }, /* 54 Mb */
267 [46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
268 72200, 4, 4 }, /* 81 Mb */
269 [47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
270 92900, 5, 5 }, /* 108 Mb */
271 [48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
272 102700, 6, 6 }, /* 121.5 Mb */
273 [49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
274 112000, 7, 7 }, /* 135 Mb */
275 [50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
276 122000, 7, 7 }, /* 150 Mb */
277 [51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
278 25800, 8, 8 }, /* 27 Mb */
279 [52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
280 49800, 9, 9 }, /* 54 Mb */
281 [53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
282 71900, 10, 10 }, /* 81 Mb */
283 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
284 92500, 11, 11 }, /* 108 Mb */
285 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
286 130300, 12, 12 }, /* 162 Mb */
287 [56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
288 162800, 13, 13 }, /* 216 Mb */
289 [57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
290 178200, 14, 14 }, /* 243 Mb */
291 [58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
292 192100, 15, 15 }, /* 270 Mb */
293 [59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
294 207000, 15, 15 }, /* 300 Mb */
295 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
296 36100, 16, 16 }, /* 40.5 Mb */
297 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
298 72900, 17, 17 }, /* 81 Mb */
299 [62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
300 108300, 18, 18 }, /* 121.5 Mb */
301 [63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
302 142000, 19, 19 }, /* 162 Mb */
303 [64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
304 205100, 20, 20 }, /* 243 Mb */
305 [65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
306 224700, 20, 20 }, /* 270 Mb */
307 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
308 263100, 21, 21 }, /* 324 Mb */
309 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
310 288000, 21, 21 }, /* 360 Mb */
311 [68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
312 290700, 22, 22 }, /* 364.5 Mb */
313 [69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
314 317200, 22, 22 }, /* 405 Mb */
315 [70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
316 317200, 23, 23 }, /* 405 Mb */
317 [71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
318 346400, 23, 23 }, /* 450 Mb */
319 },
320 50, /* probe interval */
321 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
322 };
323
324 static const struct ath_rate_table ar5416_11a_ratetable = {
325 8,
326 0,
327 {
328 { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
329 5400, 0, 12},
330 { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
331 7800, 1, 18},
332 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
333 10000, 2, 24},
334 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
335 13900, 3, 36},
336 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
337 17300, 4, 48},
338 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
339 23000, 5, 72},
340 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
341 27400, 6, 96},
342 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
343 29300, 7, 108},
344 },
345 50, /* probe interval */
346 0, /* Phy rates allowed initially */
347 };
348
349 static const struct ath_rate_table ar5416_11g_ratetable = {
350 12,
351 0,
352 {
353 { RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
354 900, 0, 2},
355 { RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
356 1900, 1, 4},
357 { RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
358 4900, 2, 11},
359 { RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
360 8100, 3, 22},
361 { RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
362 5400, 4, 12},
363 { RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
364 7800, 5, 18},
365 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
366 10000, 6, 24},
367 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
368 13900, 7, 36},
369 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
370 17300, 8, 48},
371 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
372 23000, 9, 72},
373 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
374 27400, 10, 96},
375 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
376 29300, 11, 108},
377 },
378 50, /* probe interval */
379 0, /* Phy rates allowed initially */
380 };
381
382 static int ath_rc_get_rateindex(struct ath_rate_priv *ath_rc_priv,
383 struct ieee80211_tx_rate *rate)
384 {
385 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
386 int rix, i, idx = 0;
387
388 if (!(rate->flags & IEEE80211_TX_RC_MCS))
389 return rate->idx;
390
391 for (i = 0; i < ath_rc_priv->max_valid_rate; i++) {
392 idx = ath_rc_priv->valid_rate_index[i];
393
394 if (WLAN_RC_PHY_HT(rate_table->info[idx].phy) &&
395 rate_table->info[idx].ratecode == rate->idx)
396 break;
397 }
398
399 rix = idx;
400
401 if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
402 rix++;
403
404 return rix;
405 }
406
407 static void ath_rc_sort_validrates(struct ath_rate_priv *ath_rc_priv)
408 {
409 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
410 u8 i, j, idx, idx_next;
411
412 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
413 for (j = 0; j <= i-1; j++) {
414 idx = ath_rc_priv->valid_rate_index[j];
415 idx_next = ath_rc_priv->valid_rate_index[j+1];
416
417 if (rate_table->info[idx].ratekbps >
418 rate_table->info[idx_next].ratekbps) {
419 ath_rc_priv->valid_rate_index[j] = idx_next;
420 ath_rc_priv->valid_rate_index[j+1] = idx;
421 }
422 }
423 }
424 }
425
426 static inline
427 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
428 struct ath_rate_priv *ath_rc_priv,
429 u8 cur_valid_txrate,
430 u8 *next_idx)
431 {
432 u8 i;
433
434 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
435 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
436 *next_idx = ath_rc_priv->valid_rate_index[i+1];
437 return 1;
438 }
439 }
440
441 /* No more valid rates */
442 *next_idx = 0;
443
444 return 0;
445 }
446
447 /* Return true only for single stream */
448
449 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
450 {
451 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
452 return 0;
453 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
454 return 0;
455 if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
456 return 0;
457 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
458 return 0;
459 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
460 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
461 return 0;
462 return 1;
463 }
464
465 static inline int
466 ath_rc_get_lower_rix(struct ath_rate_priv *ath_rc_priv,
467 u8 cur_valid_txrate, u8 *next_idx)
468 {
469 int8_t i;
470
471 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
472 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
473 *next_idx = ath_rc_priv->valid_rate_index[i-1];
474 return 1;
475 }
476 }
477
478 return 0;
479 }
480
481 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv)
482 {
483 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
484 u8 i, hi = 0;
485
486 for (i = 0; i < rate_table->rate_cnt; i++) {
487 if (rate_table->info[i].rate_flags & RC_LEGACY) {
488 u32 phy = rate_table->info[i].phy;
489 u8 valid_rate_count = 0;
490
491 if (!ath_rc_valid_phyrate(phy, ath_rc_priv->ht_cap, 0))
492 continue;
493
494 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
495
496 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
497 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
498 ath_rc_priv->valid_rate_index[i] = true;
499 hi = i;
500 }
501 }
502
503 return hi;
504 }
505
506 static inline bool ath_rc_check_legacy(u8 rate, u8 dot11rate, u16 rate_flags,
507 u32 phy, u32 capflag)
508 {
509 if (rate != dot11rate || WLAN_RC_PHY_HT(phy))
510 return false;
511
512 if ((rate_flags & WLAN_RC_CAP_MODE(capflag)) != WLAN_RC_CAP_MODE(capflag))
513 return false;
514
515 if (!(rate_flags & WLAN_RC_CAP_STREAM(capflag)))
516 return false;
517
518 return true;
519 }
520
521 static inline bool ath_rc_check_ht(u8 rate, u8 dot11rate, u16 rate_flags,
522 u32 phy, u32 capflag)
523 {
524 if (rate != dot11rate || !WLAN_RC_PHY_HT(phy))
525 return false;
526
527 if (!WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
528 return false;
529
530 if (!(rate_flags & WLAN_RC_CAP_STREAM(capflag)))
531 return false;
532
533 return true;
534 }
535
536 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv, bool legacy)
537 {
538 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
539 struct ath_rateset *rateset;
540 u32 phy, capflag = ath_rc_priv->ht_cap;
541 u16 rate_flags;
542 u8 i, j, hi = 0, rate, dot11rate, valid_rate_count;
543
544 if (legacy)
545 rateset = &ath_rc_priv->neg_rates;
546 else
547 rateset = &ath_rc_priv->neg_ht_rates;
548
549 for (i = 0; i < rateset->rs_nrates; i++) {
550 for (j = 0; j < rate_table->rate_cnt; j++) {
551 phy = rate_table->info[j].phy;
552 rate_flags = rate_table->info[j].rate_flags;
553 rate = rateset->rs_rates[i];
554 dot11rate = rate_table->info[j].dot11rate;
555
556 if (legacy &&
557 !ath_rc_check_legacy(rate, dot11rate,
558 rate_flags, phy, capflag))
559 continue;
560
561 if (!legacy &&
562 !ath_rc_check_ht(rate, dot11rate,
563 rate_flags, phy, capflag))
564 continue;
565
566 if (!ath_rc_valid_phyrate(phy, capflag, 0))
567 continue;
568
569 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
570 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = j;
571 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
572 ath_rc_priv->valid_rate_index[j] = true;
573 hi = max(hi, j);
574 }
575 }
576
577 return hi;
578 }
579
580 static u8 ath_rc_get_highest_rix(struct ath_rate_priv *ath_rc_priv,
581 int *is_probing)
582 {
583 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
584 u32 best_thruput, this_thruput, now_msec;
585 u8 rate, next_rate, best_rate, maxindex, minindex;
586 int8_t index = 0;
587
588 now_msec = jiffies_to_msecs(jiffies);
589 *is_probing = 0;
590 best_thruput = 0;
591 maxindex = ath_rc_priv->max_valid_rate-1;
592 minindex = 0;
593 best_rate = minindex;
594
595 /*
596 * Try the higher rate first. It will reduce memory moving time
597 * if we have very good channel characteristics.
598 */
599 for (index = maxindex; index >= minindex ; index--) {
600 u8 per_thres;
601
602 rate = ath_rc_priv->valid_rate_index[index];
603 if (rate > ath_rc_priv->rate_max_phy)
604 continue;
605
606 /*
607 * For TCP the average collision rate is around 11%,
608 * so we ignore PERs less than this. This is to
609 * prevent the rate we are currently using (whose
610 * PER might be in the 10-15 range because of TCP
611 * collisions) looking worse than the next lower
612 * rate whose PER has decayed close to 0. If we
613 * used to next lower rate, its PER would grow to
614 * 10-15 and we would be worse off then staying
615 * at the current rate.
616 */
617 per_thres = ath_rc_priv->per[rate];
618 if (per_thres < 12)
619 per_thres = 12;
620
621 this_thruput = rate_table->info[rate].user_ratekbps *
622 (100 - per_thres);
623
624 if (best_thruput <= this_thruput) {
625 best_thruput = this_thruput;
626 best_rate = rate;
627 }
628 }
629
630 rate = best_rate;
631
632 /*
633 * Must check the actual rate (ratekbps) to account for
634 * non-monoticity of 11g's rate table
635 */
636
637 if (rate >= ath_rc_priv->rate_max_phy) {
638 rate = ath_rc_priv->rate_max_phy;
639
640 /* Probe the next allowed phy state */
641 if (ath_rc_get_nextvalid_txrate(rate_table,
642 ath_rc_priv, rate, &next_rate) &&
643 (now_msec - ath_rc_priv->probe_time >
644 rate_table->probe_interval) &&
645 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
646 rate = next_rate;
647 ath_rc_priv->probe_rate = rate;
648 ath_rc_priv->probe_time = now_msec;
649 ath_rc_priv->hw_maxretry_pktcnt = 0;
650 *is_probing = 1;
651 }
652 }
653
654 if (rate > (ath_rc_priv->rate_table_size - 1))
655 rate = ath_rc_priv->rate_table_size - 1;
656
657 if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
658 (ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
659 return rate;
660
661 if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
662 (ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
663 return rate;
664
665 if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
666 return rate;
667
668 /* This should not happen */
669 WARN_ON_ONCE(1);
670
671 rate = ath_rc_priv->valid_rate_index[0];
672
673 return rate;
674 }
675
676 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
677 struct ieee80211_tx_rate *rate,
678 struct ieee80211_tx_rate_control *txrc,
679 u8 tries, u8 rix, int rtsctsenable)
680 {
681 rate->count = tries;
682 rate->idx = rate_table->info[rix].ratecode;
683
684 if (txrc->rts || rtsctsenable)
685 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
686
687 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
688 rate->flags |= IEEE80211_TX_RC_MCS;
689 if (WLAN_RC_PHY_40(rate_table->info[rix].phy) &&
690 conf_is_ht40(&txrc->hw->conf))
691 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
692 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
693 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
694 }
695 }
696
697 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
698 const struct ath_rate_table *rate_table,
699 struct ieee80211_tx_info *tx_info)
700 {
701 struct ieee80211_bss_conf *bss_conf;
702
703 if (!tx_info->control.vif)
704 return;
705 /*
706 * For legacy frames, mac80211 takes care of CTS protection.
707 */
708 if (!(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS))
709 return;
710
711 bss_conf = &tx_info->control.vif->bss_conf;
712
713 if (!bss_conf->basic_rates)
714 return;
715
716 /*
717 * For now, use the lowest allowed basic rate for HT frames.
718 */
719 tx_info->control.rts_cts_rate_idx = __ffs(bss_conf->basic_rates);
720 }
721
722 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
723 struct ieee80211_tx_rate_control *txrc)
724 {
725 struct ath_softc *sc = priv;
726 struct ath_rate_priv *ath_rc_priv = priv_sta;
727 const struct ath_rate_table *rate_table;
728 struct sk_buff *skb = txrc->skb;
729 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
730 struct ieee80211_tx_rate *rates = tx_info->control.rates;
731 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
732 __le16 fc = hdr->frame_control;
733 u8 try_per_rate, i = 0, rix;
734 int is_probe = 0;
735
736 if (rate_control_send_low(sta, priv_sta, txrc))
737 return;
738
739 /*
740 * For Multi Rate Retry we use a different number of
741 * retry attempt counts. This ends up looking like this:
742 *
743 * MRR[0] = 4
744 * MRR[1] = 4
745 * MRR[2] = 4
746 * MRR[3] = 8
747 *
748 */
749 try_per_rate = 4;
750
751 rate_table = ath_rc_priv->rate_table;
752 rix = ath_rc_get_highest_rix(ath_rc_priv, &is_probe);
753
754 if (conf_is_ht(&sc->hw->conf) &&
755 (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING))
756 tx_info->flags |= IEEE80211_TX_CTL_LDPC;
757
758 if (conf_is_ht(&sc->hw->conf) &&
759 (sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
760 tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
761
762 if (is_probe) {
763 /*
764 * Set one try for probe rates. For the
765 * probes don't enable RTS.
766 */
767 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
768 1, rix, 0);
769 /*
770 * Get the next tried/allowed rate.
771 * No RTS for the next series after the probe rate.
772 */
773 ath_rc_get_lower_rix(ath_rc_priv, rix, &rix);
774 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
775 try_per_rate, rix, 0);
776
777 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
778 } else {
779 /*
780 * Set the chosen rate. No RTS for first series entry.
781 */
782 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
783 try_per_rate, rix, 0);
784 }
785
786 for ( ; i < 4; i++) {
787 /*
788 * Use twice the number of tries for the last MRR segment.
789 */
790 if (i + 1 == 4)
791 try_per_rate = 8;
792
793 ath_rc_get_lower_rix(ath_rc_priv, rix, &rix);
794
795 /*
796 * All other rates in the series have RTS enabled.
797 */
798 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
799 try_per_rate, rix, 1);
800 }
801
802 /*
803 * NB:Change rate series to enable aggregation when operating
804 * at lower MCS rates. When first rate in series is MCS2
805 * in HT40 @ 2.4GHz, series should look like:
806 *
807 * {MCS2, MCS1, MCS0, MCS0}.
808 *
809 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
810 * look like:
811 *
812 * {MCS3, MCS2, MCS1, MCS1}
813 *
814 * So, set fourth rate in series to be same as third one for
815 * above conditions.
816 */
817 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
818 (conf_is_ht(&sc->hw->conf))) {
819 u8 dot11rate = rate_table->info[rix].dot11rate;
820 u8 phy = rate_table->info[rix].phy;
821 if (i == 4 &&
822 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
823 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
824 rates[3].idx = rates[2].idx;
825 rates[3].flags = rates[2].flags;
826 }
827 }
828
829 /*
830 * Force hardware to use computed duration for next
831 * fragment by disabling multi-rate retry, which
832 * updates duration based on the multi-rate duration table.
833 *
834 * FIXME: Fix duration
835 */
836 if (ieee80211_has_morefrags(fc) ||
837 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
838 rates[1].count = rates[2].count = rates[3].count = 0;
839 rates[1].idx = rates[2].idx = rates[3].idx = 0;
840 rates[0].count = ATH_TXMAXTRY;
841 }
842
843 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
844 }
845
846 static void ath_rc_update_per(struct ath_softc *sc,
847 const struct ath_rate_table *rate_table,
848 struct ath_rate_priv *ath_rc_priv,
849 struct ieee80211_tx_info *tx_info,
850 int tx_rate, int xretries, int retries,
851 u32 now_msec)
852 {
853 int count, n_bad_frames;
854 u8 last_per;
855 static const u32 nretry_to_per_lookup[10] = {
856 100 * 0 / 1,
857 100 * 1 / 4,
858 100 * 1 / 2,
859 100 * 3 / 4,
860 100 * 4 / 5,
861 100 * 5 / 6,
862 100 * 6 / 7,
863 100 * 7 / 8,
864 100 * 8 / 9,
865 100 * 9 / 10
866 };
867
868 last_per = ath_rc_priv->per[tx_rate];
869 n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
870
871 if (xretries) {
872 if (xretries == 1) {
873 ath_rc_priv->per[tx_rate] += 30;
874 if (ath_rc_priv->per[tx_rate] > 100)
875 ath_rc_priv->per[tx_rate] = 100;
876 } else {
877 /* xretries == 2 */
878 count = ARRAY_SIZE(nretry_to_per_lookup);
879 if (retries >= count)
880 retries = count - 1;
881
882 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
883 ath_rc_priv->per[tx_rate] =
884 (u8)(last_per - (last_per >> 3) + (100 >> 3));
885 }
886
887 /* xretries == 1 or 2 */
888
889 if (ath_rc_priv->probe_rate == tx_rate)
890 ath_rc_priv->probe_rate = 0;
891
892 } else { /* xretries == 0 */
893 count = ARRAY_SIZE(nretry_to_per_lookup);
894 if (retries >= count)
895 retries = count - 1;
896
897 if (n_bad_frames) {
898 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
899 * Assuming that n_frames is not 0. The current PER
900 * from the retries is 100 * retries / (retries+1),
901 * since the first retries attempts failed, and the
902 * next one worked. For the one that worked,
903 * n_bad_frames subframes out of n_frames wored,
904 * so the PER for that part is
905 * 100 * n_bad_frames / n_frames, and it contributes
906 * 100 * n_bad_frames / (n_frames * (retries+1)) to
907 * the above PER. The expression below is a
908 * simplified version of the sum of these two terms.
909 */
910 if (tx_info->status.ampdu_len > 0) {
911 int n_frames, n_bad_tries;
912 u8 cur_per, new_per;
913
914 n_bad_tries = retries * tx_info->status.ampdu_len +
915 n_bad_frames;
916 n_frames = tx_info->status.ampdu_len * (retries + 1);
917 cur_per = (100 * n_bad_tries / n_frames) >> 3;
918 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
919 ath_rc_priv->per[tx_rate] = new_per;
920 }
921 } else {
922 ath_rc_priv->per[tx_rate] =
923 (u8)(last_per - (last_per >> 3) +
924 (nretry_to_per_lookup[retries] >> 3));
925 }
926
927
928 /*
929 * If we got at most one retry then increase the max rate if
930 * this was a probe. Otherwise, ignore the probe.
931 */
932 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
933 if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
934 /*
935 * Since we probed with just a single attempt,
936 * any retries means the probe failed. Also,
937 * if the attempt worked, but more than half
938 * the subframes were bad then also consider
939 * the probe a failure.
940 */
941 ath_rc_priv->probe_rate = 0;
942 } else {
943 u8 probe_rate = 0;
944
945 ath_rc_priv->rate_max_phy =
946 ath_rc_priv->probe_rate;
947 probe_rate = ath_rc_priv->probe_rate;
948
949 if (ath_rc_priv->per[probe_rate] > 30)
950 ath_rc_priv->per[probe_rate] = 20;
951
952 ath_rc_priv->probe_rate = 0;
953
954 /*
955 * Since this probe succeeded, we allow the next
956 * probe twice as soon. This allows the maxRate
957 * to move up faster if the probes are
958 * successful.
959 */
960 ath_rc_priv->probe_time =
961 now_msec - rate_table->probe_interval / 2;
962 }
963 }
964
965 if (retries > 0) {
966 /*
967 * Don't update anything. We don't know if
968 * this was because of collisions or poor signal.
969 */
970 ath_rc_priv->hw_maxretry_pktcnt = 0;
971 } else {
972 /*
973 * It worked with no retries. First ignore bogus (small)
974 * rssi_ack values.
975 */
976 if (tx_rate == ath_rc_priv->rate_max_phy &&
977 ath_rc_priv->hw_maxretry_pktcnt < 255) {
978 ath_rc_priv->hw_maxretry_pktcnt++;
979 }
980
981 }
982 }
983 }
984
985 static void ath_rc_update_ht(struct ath_softc *sc,
986 struct ath_rate_priv *ath_rc_priv,
987 struct ieee80211_tx_info *tx_info,
988 int tx_rate, int xretries, int retries)
989 {
990 u32 now_msec = jiffies_to_msecs(jiffies);
991 int rate;
992 u8 last_per;
993 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
994 int size = ath_rc_priv->rate_table_size;
995
996 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
997 return;
998
999 last_per = ath_rc_priv->per[tx_rate];
1000
1001 /* Update PER first */
1002 ath_rc_update_per(sc, rate_table, ath_rc_priv,
1003 tx_info, tx_rate, xretries,
1004 retries, now_msec);
1005
1006 /*
1007 * If this rate looks bad (high PER) then stop using it for
1008 * a while (except if we are probing).
1009 */
1010 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
1011 rate_table->info[tx_rate].ratekbps <=
1012 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1013 ath_rc_get_lower_rix(ath_rc_priv, (u8)tx_rate,
1014 &ath_rc_priv->rate_max_phy);
1015
1016 /* Don't probe for a little while. */
1017 ath_rc_priv->probe_time = now_msec;
1018 }
1019
1020 /* Make sure the rates below this have lower PER */
1021 /* Monotonicity is kept only for rates below the current rate. */
1022 if (ath_rc_priv->per[tx_rate] < last_per) {
1023 for (rate = tx_rate - 1; rate >= 0; rate--) {
1024
1025 if (ath_rc_priv->per[rate] >
1026 ath_rc_priv->per[rate+1]) {
1027 ath_rc_priv->per[rate] =
1028 ath_rc_priv->per[rate+1];
1029 }
1030 }
1031 }
1032
1033 /* Maintain monotonicity for rates above the current rate */
1034 for (rate = tx_rate; rate < size - 1; rate++) {
1035 if (ath_rc_priv->per[rate+1] <
1036 ath_rc_priv->per[rate])
1037 ath_rc_priv->per[rate+1] =
1038 ath_rc_priv->per[rate];
1039 }
1040
1041 /* Every so often, we reduce the thresholds
1042 * and PER (different for CCK and OFDM). */
1043 if (now_msec - ath_rc_priv->per_down_time >=
1044 rate_table->probe_interval) {
1045 for (rate = 0; rate < size; rate++) {
1046 ath_rc_priv->per[rate] =
1047 7 * ath_rc_priv->per[rate] / 8;
1048 }
1049
1050 ath_rc_priv->per_down_time = now_msec;
1051 }
1052
1053 ath_debug_stat_retries(ath_rc_priv, tx_rate, xretries, retries,
1054 ath_rc_priv->per[tx_rate]);
1055
1056 }
1057
1058 static void ath_rc_tx_status(struct ath_softc *sc,
1059 struct ath_rate_priv *ath_rc_priv,
1060 struct sk_buff *skb)
1061 {
1062 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1063 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1064 struct ieee80211_tx_rate *rate;
1065 int final_ts_idx = 0, xretries = 0, long_retry = 0;
1066 u8 flags;
1067 u32 i = 0, rix;
1068
1069 for (i = 0; i < sc->hw->max_rates; i++) {
1070 rate = &tx_info->status.rates[i];
1071 if (rate->idx < 0 || !rate->count)
1072 break;
1073
1074 final_ts_idx = i;
1075 long_retry = rate->count - 1;
1076 }
1077
1078 if (!(tx_info->flags & IEEE80211_TX_STAT_ACK))
1079 xretries = 1;
1080
1081 /*
1082 * If the first rate is not the final index, there
1083 * are intermediate rate failures to be processed.
1084 */
1085 if (final_ts_idx != 0) {
1086 for (i = 0; i < final_ts_idx ; i++) {
1087 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1088 flags = rates[i].flags;
1089
1090 /* If HT40 and we have switched mode from
1091 * 40 to 20 => don't update */
1092
1093 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1094 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1095 return;
1096
1097 rix = ath_rc_get_rateindex(ath_rc_priv, &rates[i]);
1098 ath_rc_update_ht(sc, ath_rc_priv, tx_info,
1099 rix, xretries ? 1 : 2,
1100 rates[i].count);
1101 }
1102 }
1103 }
1104
1105 flags = rates[final_ts_idx].flags;
1106
1107 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1108 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1109 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1110 return;
1111
1112 rix = ath_rc_get_rateindex(ath_rc_priv, &rates[final_ts_idx]);
1113 ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
1114 ath_debug_stat_rc(ath_rc_priv, rix);
1115 }
1116
1117 static const
1118 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1119 enum ieee80211_band band,
1120 bool is_ht)
1121 {
1122 switch(band) {
1123 case IEEE80211_BAND_2GHZ:
1124 if (is_ht)
1125 return &ar5416_11ng_ratetable;
1126 return &ar5416_11g_ratetable;
1127 case IEEE80211_BAND_5GHZ:
1128 if (is_ht)
1129 return &ar5416_11na_ratetable;
1130 return &ar5416_11a_ratetable;
1131 default:
1132 return NULL;
1133 }
1134 }
1135
1136 static void ath_rc_init(struct ath_softc *sc,
1137 struct ath_rate_priv *ath_rc_priv)
1138 {
1139 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
1140 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1141 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1142 u8 i, j, k, hi = 0, hthi = 0;
1143
1144 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1145
1146 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1147 ath_rc_priv->per[i] = 0;
1148 ath_rc_priv->valid_rate_index[i] = 0;
1149 }
1150
1151 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1152 for (j = 0; j < RATE_TABLE_SIZE; j++)
1153 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1154 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1155 }
1156
1157 if (!rateset->rs_nrates) {
1158 hi = ath_rc_init_validrates(ath_rc_priv);
1159 } else {
1160 hi = ath_rc_setvalid_rates(ath_rc_priv, true);
1161
1162 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG)
1163 hthi = ath_rc_setvalid_rates(ath_rc_priv, false);
1164
1165 hi = max(hi, hthi);
1166 }
1167
1168 ath_rc_priv->rate_table_size = hi + 1;
1169 ath_rc_priv->rate_max_phy = 0;
1170 WARN_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1171
1172 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1173 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1174 ath_rc_priv->valid_rate_index[k++] =
1175 ath_rc_priv->valid_phy_rateidx[i][j];
1176 }
1177
1178 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) ||
1179 !ath_rc_priv->valid_phy_ratecnt[i])
1180 continue;
1181
1182 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1183 }
1184 WARN_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1185 WARN_ON(k > RATE_TABLE_SIZE);
1186
1187 ath_rc_priv->max_valid_rate = k;
1188 ath_rc_sort_validrates(ath_rc_priv);
1189 ath_rc_priv->rate_max_phy = (k > 4) ?
1190 ath_rc_priv->valid_rate_index[k-4] :
1191 ath_rc_priv->valid_rate_index[k-1];
1192
1193 ath_dbg(common, CONFIG, "RC Initialized with capabilities: 0x%x\n",
1194 ath_rc_priv->ht_cap);
1195 }
1196
1197 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta)
1198 {
1199 u8 caps = 0;
1200
1201 if (sta->ht_cap.ht_supported) {
1202 caps = WLAN_RC_HT_FLAG;
1203 if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
1204 caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
1205 else if (sta->ht_cap.mcs.rx_mask[1])
1206 caps |= WLAN_RC_DS_FLAG;
1207 if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) {
1208 caps |= WLAN_RC_40_FLAG;
1209 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
1210 caps |= WLAN_RC_SGI_FLAG;
1211 } else {
1212 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20)
1213 caps |= WLAN_RC_SGI_FLAG;
1214 }
1215 }
1216
1217 return caps;
1218 }
1219
1220 static bool ath_tx_aggr_check(struct ath_softc *sc, struct ieee80211_sta *sta,
1221 u8 tidno)
1222 {
1223 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1224 struct ath_atx_tid *txtid;
1225
1226 if (!sta->ht_cap.ht_supported)
1227 return false;
1228
1229 txtid = ATH_AN_2_TID(an, tidno);
1230
1231 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
1232 return true;
1233 return false;
1234 }
1235
1236
1237 /***********************************/
1238 /* mac80211 Rate Control callbacks */
1239 /***********************************/
1240
1241 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1242 struct ieee80211_sta *sta, void *priv_sta,
1243 struct sk_buff *skb)
1244 {
1245 struct ath_softc *sc = priv;
1246 struct ath_rate_priv *ath_rc_priv = priv_sta;
1247 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1248 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1249 __le16 fc = hdr->frame_control;
1250
1251 if (!priv_sta || !ieee80211_is_data(fc))
1252 return;
1253
1254 /* This packet was aggregated but doesn't carry status info */
1255 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
1256 !(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
1257 return;
1258
1259 if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
1260 return;
1261
1262 ath_rc_tx_status(sc, ath_rc_priv, skb);
1263
1264 /* Check if aggregation has to be enabled for this tid */
1265 if (conf_is_ht(&sc->hw->conf) &&
1266 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1267 if (ieee80211_is_data_qos(fc) &&
1268 skb_get_queue_mapping(skb) != IEEE80211_AC_VO) {
1269 u8 *qc, tid;
1270
1271 qc = ieee80211_get_qos_ctl(hdr);
1272 tid = qc[0] & 0xf;
1273
1274 if(ath_tx_aggr_check(sc, sta, tid))
1275 ieee80211_start_tx_ba_session(sta, tid, 0);
1276 }
1277 }
1278 }
1279
1280 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1281 struct ieee80211_sta *sta, void *priv_sta)
1282 {
1283 struct ath_softc *sc = priv;
1284 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1285 struct ath_rate_priv *ath_rc_priv = priv_sta;
1286 int i, j = 0;
1287
1288 for (i = 0; i < sband->n_bitrates; i++) {
1289 if (sta->supp_rates[sband->band] & BIT(i)) {
1290 ath_rc_priv->neg_rates.rs_rates[j]
1291 = (sband->bitrates[i].bitrate * 2) / 10;
1292 j++;
1293 }
1294 }
1295 ath_rc_priv->neg_rates.rs_nrates = j;
1296
1297 if (sta->ht_cap.ht_supported) {
1298 for (i = 0, j = 0; i < 77; i++) {
1299 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1300 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1301 if (j == ATH_RATE_MAX)
1302 break;
1303 }
1304 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1305 }
1306
1307 ath_rc_priv->rate_table = ath_choose_rate_table(sc, sband->band,
1308 sta->ht_cap.ht_supported);
1309 if (!ath_rc_priv->rate_table) {
1310 ath_err(common, "No rate table chosen\n");
1311 return;
1312 }
1313
1314 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta);
1315 ath_rc_init(sc, priv_sta);
1316 }
1317
1318 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1319 struct ieee80211_sta *sta, void *priv_sta,
1320 u32 changed)
1321 {
1322 struct ath_softc *sc = priv;
1323 struct ath_rate_priv *ath_rc_priv = priv_sta;
1324
1325 if (changed & IEEE80211_RC_BW_CHANGED) {
1326 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta);
1327 ath_rc_init(sc, priv_sta);
1328
1329 ath_dbg(ath9k_hw_common(sc->sc_ah), CONFIG,
1330 "Operating HT Bandwidth changed to: %d\n",
1331 sc->hw->conf.channel_type);
1332 }
1333 }
1334
1335 #if defined(CONFIG_MAC80211_DEBUGFS) && defined(CONFIG_ATH9K_DEBUGFS)
1336
1337 void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate)
1338 {
1339 struct ath_rc_stats *stats;
1340
1341 stats = &rc->rcstats[final_rate];
1342 stats->success++;
1343 }
1344
1345 void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
1346 int xretries, int retries, u8 per)
1347 {
1348 struct ath_rc_stats *stats = &rc->rcstats[rix];
1349
1350 stats->xretries += xretries;
1351 stats->retries += retries;
1352 stats->per = per;
1353 }
1354
1355 static ssize_t read_file_rcstat(struct file *file, char __user *user_buf,
1356 size_t count, loff_t *ppos)
1357 {
1358 struct ath_rate_priv *rc = file->private_data;
1359 char *buf;
1360 unsigned int len = 0, max;
1361 int rix;
1362 ssize_t retval;
1363
1364 if (rc->rate_table == NULL)
1365 return 0;
1366
1367 max = 80 + rc->rate_table_size * 1024 + 1;
1368 buf = kmalloc(max, GFP_KERNEL);
1369 if (buf == NULL)
1370 return -ENOMEM;
1371
1372 len += sprintf(buf, "%6s %6s %6s "
1373 "%10s %10s %10s %10s\n",
1374 "HT", "MCS", "Rate",
1375 "Success", "Retries", "XRetries", "PER");
1376
1377 for (rix = 0; rix < rc->max_valid_rate; rix++) {
1378 u8 i = rc->valid_rate_index[rix];
1379 u32 ratekbps = rc->rate_table->info[i].ratekbps;
1380 struct ath_rc_stats *stats = &rc->rcstats[i];
1381 char mcs[5];
1382 char htmode[5];
1383 int used_mcs = 0, used_htmode = 0;
1384
1385 if (WLAN_RC_PHY_HT(rc->rate_table->info[i].phy)) {
1386 used_mcs = snprintf(mcs, 5, "%d",
1387 rc->rate_table->info[i].ratecode);
1388
1389 if (WLAN_RC_PHY_40(rc->rate_table->info[i].phy))
1390 used_htmode = snprintf(htmode, 5, "HT40");
1391 else if (WLAN_RC_PHY_20(rc->rate_table->info[i].phy))
1392 used_htmode = snprintf(htmode, 5, "HT20");
1393 else
1394 used_htmode = snprintf(htmode, 5, "????");
1395 }
1396
1397 mcs[used_mcs] = '\0';
1398 htmode[used_htmode] = '\0';
1399
1400 len += snprintf(buf + len, max - len,
1401 "%6s %6s %3u.%d: "
1402 "%10u %10u %10u %10u\n",
1403 htmode,
1404 mcs,
1405 ratekbps / 1000,
1406 (ratekbps % 1000) / 100,
1407 stats->success,
1408 stats->retries,
1409 stats->xretries,
1410 stats->per);
1411 }
1412
1413 if (len > max)
1414 len = max;
1415
1416 retval = simple_read_from_buffer(user_buf, count, ppos, buf, len);
1417 kfree(buf);
1418 return retval;
1419 }
1420
1421 static const struct file_operations fops_rcstat = {
1422 .read = read_file_rcstat,
1423 .open = simple_open,
1424 .owner = THIS_MODULE
1425 };
1426
1427 static void ath_rate_add_sta_debugfs(void *priv, void *priv_sta,
1428 struct dentry *dir)
1429 {
1430 struct ath_rate_priv *rc = priv_sta;
1431 rc->debugfs_rcstats = debugfs_create_file("rc_stats", S_IRUGO,
1432 dir, rc, &fops_rcstat);
1433 }
1434
1435 static void ath_rate_remove_sta_debugfs(void *priv, void *priv_sta)
1436 {
1437 struct ath_rate_priv *rc = priv_sta;
1438 debugfs_remove(rc->debugfs_rcstats);
1439 }
1440
1441 #endif /* CONFIG_MAC80211_DEBUGFS && CONFIG_ATH9K_DEBUGFS */
1442
1443 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1444 {
1445 return hw->priv;
1446 }
1447
1448 static void ath_rate_free(void *priv)
1449 {
1450 return;
1451 }
1452
1453 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1454 {
1455 struct ath_softc *sc = priv;
1456 struct ath_rate_priv *rate_priv;
1457
1458 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1459 if (!rate_priv) {
1460 ath_err(ath9k_hw_common(sc->sc_ah),
1461 "Unable to allocate private rc structure\n");
1462 return NULL;
1463 }
1464
1465 return rate_priv;
1466 }
1467
1468 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1469 void *priv_sta)
1470 {
1471 struct ath_rate_priv *rate_priv = priv_sta;
1472 kfree(rate_priv);
1473 }
1474
1475 static struct rate_control_ops ath_rate_ops = {
1476 .module = NULL,
1477 .name = "ath9k_rate_control",
1478 .tx_status = ath_tx_status,
1479 .get_rate = ath_get_rate,
1480 .rate_init = ath_rate_init,
1481 .rate_update = ath_rate_update,
1482 .alloc = ath_rate_alloc,
1483 .free = ath_rate_free,
1484 .alloc_sta = ath_rate_alloc_sta,
1485 .free_sta = ath_rate_free_sta,
1486
1487 #if defined(CONFIG_MAC80211_DEBUGFS) && defined(CONFIG_ATH9K_DEBUGFS)
1488 .add_sta_debugfs = ath_rate_add_sta_debugfs,
1489 .remove_sta_debugfs = ath_rate_remove_sta_debugfs,
1490 #endif
1491 };
1492
1493 int ath_rate_control_register(void)
1494 {
1495 return ieee80211_rate_control_register(&ath_rate_ops);
1496 }
1497
1498 void ath_rate_control_unregister(void)
1499 {
1500 ieee80211_rate_control_unregister(&ath_rate_ops);
1501 }