]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath9k/rc.c
ath9k: Remove ath_rc_set_valid_rate_idx
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath9k / rc.c
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2011 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/slab.h>
19 #include <linux/export.h>
20
21 #include "ath9k.h"
22
23 static const struct ath_rate_table ar5416_11na_ratetable = {
24 68,
25 8, /* MCS start */
26 {
27 [0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
28 5400, 0, 12, 0, 0, 0, 0 }, /* 6 Mb */
29 [1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
30 7800, 1, 18, 0, 1, 1, 1 }, /* 9 Mb */
31 [2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
32 10000, 2, 24, 2, 2, 2, 2 }, /* 12 Mb */
33 [3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
34 13900, 3, 36, 2, 3, 3, 3 }, /* 18 Mb */
35 [4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
36 17300, 4, 48, 4, 4, 4, 4 }, /* 24 Mb */
37 [5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
38 23000, 5, 72, 4, 5, 5, 5 }, /* 36 Mb */
39 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
40 27400, 6, 96, 4, 6, 6, 6 }, /* 48 Mb */
41 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
42 29300, 7, 108, 4, 7, 7, 7 }, /* 54 Mb */
43 [8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
44 6400, 0, 0, 0, 38, 8, 38 }, /* 6.5 Mb */
45 [9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
46 12700, 1, 1, 2, 39, 9, 39 }, /* 13 Mb */
47 [10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
48 18800, 2, 2, 2, 40, 10, 40 }, /* 19.5 Mb */
49 [11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
50 25000, 3, 3, 4, 41, 11, 41 }, /* 26 Mb */
51 [12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
52 36700, 4, 4, 4, 42, 12, 42 }, /* 39 Mb */
53 [13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
54 48100, 5, 5, 4, 43, 13, 43 }, /* 52 Mb */
55 [14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
56 53500, 6, 6, 4, 44, 14, 44 }, /* 58.5 Mb */
57 [15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
58 59000, 7, 7, 4, 45, 16, 46 }, /* 65 Mb */
59 [16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
60 65400, 7, 7, 4, 45, 16, 46 }, /* 75 Mb */
61 [17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
62 12700, 8, 8, 0, 47, 17, 47 }, /* 13 Mb */
63 [18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
64 24800, 9, 9, 2, 48, 18, 48 }, /* 26 Mb */
65 [19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
66 36600, 10, 10, 2, 49, 19, 49 }, /* 39 Mb */
67 [20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
68 48100, 11, 11, 4, 50, 20, 50 }, /* 52 Mb */
69 [21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
70 69500, 12, 12, 4, 51, 21, 51 }, /* 78 Mb */
71 [22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
72 89500, 13, 13, 4, 52, 22, 52 }, /* 104 Mb */
73 [23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
74 98900, 14, 14, 4, 53, 23, 53 }, /* 117 Mb */
75 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
76 108300, 15, 15, 4, 54, 25, 55 }, /* 130 Mb */
77 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
78 120000, 15, 15, 4, 54, 25, 55 }, /* 144.4 Mb */
79 [26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
80 17400, 16, 16, 0, 56, 26, 56 }, /* 19.5 Mb */
81 [27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
82 35100, 17, 17, 2, 57, 27, 57 }, /* 39 Mb */
83 [28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
84 52600, 18, 18, 2, 58, 28, 58 }, /* 58.5 Mb */
85 [29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
86 70400, 19, 19, 4, 59, 29, 59 }, /* 78 Mb */
87 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
88 104900, 20, 20, 4, 60, 31, 61 }, /* 117 Mb */
89 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
90 115800, 20, 20, 4, 60, 31, 61 }, /* 130 Mb*/
91 [32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
92 137200, 21, 21, 4, 62, 33, 63 }, /* 156 Mb */
93 [33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
94 151100, 21, 21, 4, 62, 33, 63 }, /* 173.3 Mb */
95 [34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
96 152800, 22, 22, 4, 64, 35, 65 }, /* 175.5 Mb */
97 [35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
98 168400, 22, 22, 4, 64, 35, 65 }, /* 195 Mb*/
99 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
100 168400, 23, 23, 4, 66, 37, 67 }, /* 195 Mb */
101 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
102 185000, 23, 23, 4, 66, 37, 67 }, /* 216.7 Mb */
103 [38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
104 13200, 0, 0, 0, 38, 38, 38 }, /* 13.5 Mb*/
105 [39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
106 25900, 1, 1, 2, 39, 39, 39 }, /* 27.0 Mb*/
107 [40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
108 38600, 2, 2, 2, 40, 40, 40 }, /* 40.5 Mb*/
109 [41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
110 49800, 3, 3, 4, 41, 41, 41 }, /* 54 Mb */
111 [42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
112 72200, 4, 4, 4, 42, 42, 42 }, /* 81 Mb */
113 [43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
114 92900, 5, 5, 4, 43, 43, 43 }, /* 108 Mb */
115 [44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
116 102700, 6, 6, 4, 44, 44, 44 }, /* 121.5 Mb*/
117 [45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
118 112000, 7, 7, 4, 45, 46, 46 }, /* 135 Mb */
119 [46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
120 122000, 7, 7, 4, 45, 46, 46 }, /* 150 Mb */
121 [47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
122 25800, 8, 8, 0, 47, 47, 47 }, /* 27 Mb */
123 [48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
124 49800, 9, 9, 2, 48, 48, 48 }, /* 54 Mb */
125 [49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
126 71900, 10, 10, 2, 49, 49, 49 }, /* 81 Mb */
127 [50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
128 92500, 11, 11, 4, 50, 50, 50 }, /* 108 Mb */
129 [51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
130 130300, 12, 12, 4, 51, 51, 51 }, /* 162 Mb */
131 [52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
132 162800, 13, 13, 4, 52, 52, 52 }, /* 216 Mb */
133 [53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
134 178200, 14, 14, 4, 53, 53, 53 }, /* 243 Mb */
135 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
136 192100, 15, 15, 4, 54, 55, 55 }, /* 270 Mb */
137 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
138 207000, 15, 15, 4, 54, 55, 55 }, /* 300 Mb */
139 [56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
140 36100, 16, 16, 0, 56, 56, 56 }, /* 40.5 Mb */
141 [57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
142 72900, 17, 17, 2, 57, 57, 57 }, /* 81 Mb */
143 [58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
144 108300, 18, 18, 2, 58, 58, 58 }, /* 121.5 Mb */
145 [59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
146 142000, 19, 19, 4, 59, 59, 59 }, /* 162 Mb */
147 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
148 205100, 20, 20, 4, 60, 61, 61 }, /* 243 Mb */
149 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
150 224700, 20, 20, 4, 60, 61, 61 }, /* 270 Mb */
151 [62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
152 263100, 21, 21, 4, 62, 63, 63 }, /* 324 Mb */
153 [63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
154 288000, 21, 21, 4, 62, 63, 63 }, /* 360 Mb */
155 [64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
156 290700, 22, 22, 4, 64, 65, 65 }, /* 364.5 Mb */
157 [65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
158 317200, 22, 22, 4, 64, 65, 65 }, /* 405 Mb */
159 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
160 317200, 23, 23, 4, 66, 67, 67 }, /* 405 Mb */
161 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
162 346400, 23, 23, 4, 66, 67, 67 }, /* 450 Mb */
163 },
164 50, /* probe interval */
165 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
166 };
167
168 /* 4ms frame limit not used for NG mode. The values filled
169 * for HT are the 64K max aggregate limit */
170
171 static const struct ath_rate_table ar5416_11ng_ratetable = {
172 72,
173 12, /* MCS start */
174 {
175 [0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
176 900, 0, 2, 0, 0, 0, 0 }, /* 1 Mb */
177 [1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
178 1900, 1, 4, 1, 1, 1, 1 }, /* 2 Mb */
179 [2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
180 4900, 2, 11, 2, 2, 2, 2 }, /* 5.5 Mb */
181 [3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
182 8100, 3, 22, 3, 3, 3, 3 }, /* 11 Mb */
183 [4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
184 5400, 4, 12, 4, 4, 4, 4 }, /* 6 Mb */
185 [5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
186 7800, 5, 18, 4, 5, 5, 5 }, /* 9 Mb */
187 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
188 10100, 6, 24, 6, 6, 6, 6 }, /* 12 Mb */
189 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
190 14100, 7, 36, 6, 7, 7, 7 }, /* 18 Mb */
191 [8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
192 17700, 8, 48, 8, 8, 8, 8 }, /* 24 Mb */
193 [9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
194 23700, 9, 72, 8, 9, 9, 9 }, /* 36 Mb */
195 [10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
196 27400, 10, 96, 8, 10, 10, 10 }, /* 48 Mb */
197 [11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
198 30900, 11, 108, 8, 11, 11, 11 }, /* 54 Mb */
199 [12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
200 6400, 0, 0, 4, 42, 12, 42 }, /* 6.5 Mb */
201 [13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
202 12700, 1, 1, 6, 43, 13, 43 }, /* 13 Mb */
203 [14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
204 18800, 2, 2, 6, 44, 14, 44 }, /* 19.5 Mb*/
205 [15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
206 25000, 3, 3, 8, 45, 15, 45 }, /* 26 Mb */
207 [16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
208 36700, 4, 4, 8, 46, 16, 46 }, /* 39 Mb */
209 [17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
210 48100, 5, 5, 8, 47, 17, 47 }, /* 52 Mb */
211 [18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
212 53500, 6, 6, 8, 48, 18, 48 }, /* 58.5 Mb */
213 [19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
214 59000, 7, 7, 8, 49, 20, 50 }, /* 65 Mb */
215 [20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
216 65400, 7, 7, 8, 49, 20, 50 }, /* 65 Mb*/
217 [21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
218 12700, 8, 8, 4, 51, 21, 51 }, /* 13 Mb */
219 [22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
220 24800, 9, 9, 6, 52, 22, 52 }, /* 26 Mb */
221 [23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
222 36600, 10, 10, 6, 53, 23, 53 }, /* 39 Mb */
223 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
224 48100, 11, 11, 8, 54, 24, 54 }, /* 52 Mb */
225 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
226 69500, 12, 12, 8, 55, 25, 55 }, /* 78 Mb */
227 [26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
228 89500, 13, 13, 8, 56, 26, 56 }, /* 104 Mb */
229 [27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
230 98900, 14, 14, 8, 57, 27, 57 }, /* 117 Mb */
231 [28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
232 108300, 15, 15, 8, 58, 29, 59 }, /* 130 Mb */
233 [29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
234 120000, 15, 15, 8, 58, 29, 59 }, /* 144.4 Mb */
235 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
236 17400, 16, 16, 4, 60, 30, 60 }, /* 19.5 Mb */
237 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
238 35100, 17, 17, 6, 61, 31, 61 }, /* 39 Mb */
239 [32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
240 52600, 18, 18, 6, 62, 32, 62 }, /* 58.5 Mb */
241 [33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
242 70400, 19, 19, 8, 63, 33, 63 }, /* 78 Mb */
243 [34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
244 104900, 20, 20, 8, 64, 35, 65 }, /* 117 Mb */
245 [35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
246 115800, 20, 20, 8, 64, 35, 65 }, /* 130 Mb */
247 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
248 137200, 21, 21, 8, 66, 37, 67 }, /* 156 Mb */
249 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
250 151100, 21, 21, 8, 66, 37, 67 }, /* 173.3 Mb */
251 [38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
252 152800, 22, 22, 8, 68, 39, 69 }, /* 175.5 Mb */
253 [39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
254 168400, 22, 22, 8, 68, 39, 69 }, /* 195 Mb */
255 [40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
256 168400, 23, 23, 8, 70, 41, 71 }, /* 195 Mb */
257 [41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
258 185000, 23, 23, 8, 70, 41, 71 }, /* 216.7 Mb */
259 [42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
260 13200, 0, 0, 8, 42, 42, 42 }, /* 13.5 Mb */
261 [43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
262 25900, 1, 1, 8, 43, 43, 43 }, /* 27.0 Mb */
263 [44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
264 38600, 2, 2, 8, 44, 44, 44 }, /* 40.5 Mb */
265 [45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
266 49800, 3, 3, 8, 45, 45, 45 }, /* 54 Mb */
267 [46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
268 72200, 4, 4, 8, 46, 46, 46 }, /* 81 Mb */
269 [47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
270 92900, 5, 5, 8, 47, 47, 47 }, /* 108 Mb */
271 [48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
272 102700, 6, 6, 8, 48, 48, 48 }, /* 121.5 Mb */
273 [49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
274 112000, 7, 7, 8, 49, 50, 50 }, /* 135 Mb */
275 [50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
276 122000, 7, 7, 8, 49, 50, 50 }, /* 150 Mb */
277 [51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
278 25800, 8, 8, 8, 51, 51, 51 }, /* 27 Mb */
279 [52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
280 49800, 9, 9, 8, 52, 52, 52 }, /* 54 Mb */
281 [53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
282 71900, 10, 10, 8, 53, 53, 53 }, /* 81 Mb */
283 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
284 92500, 11, 11, 8, 54, 54, 54 }, /* 108 Mb */
285 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
286 130300, 12, 12, 8, 55, 55, 55 }, /* 162 Mb */
287 [56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
288 162800, 13, 13, 8, 56, 56, 56 }, /* 216 Mb */
289 [57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
290 178200, 14, 14, 8, 57, 57, 57 }, /* 243 Mb */
291 [58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
292 192100, 15, 15, 8, 58, 59, 59 }, /* 270 Mb */
293 [59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
294 207000, 15, 15, 8, 58, 59, 59 }, /* 300 Mb */
295 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
296 36100, 16, 16, 8, 60, 60, 60 }, /* 40.5 Mb */
297 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
298 72900, 17, 17, 8, 61, 61, 61 }, /* 81 Mb */
299 [62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
300 108300, 18, 18, 8, 62, 62, 62 }, /* 121.5 Mb */
301 [63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
302 142000, 19, 19, 8, 63, 63, 63 }, /* 162 Mb */
303 [64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
304 205100, 20, 20, 8, 64, 65, 65 }, /* 243 Mb */
305 [65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
306 224700, 20, 20, 8, 64, 65, 65 }, /* 270 Mb */
307 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
308 263100, 21, 21, 8, 66, 67, 67 }, /* 324 Mb */
309 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
310 288000, 21, 21, 8, 66, 67, 67 }, /* 360 Mb */
311 [68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
312 290700, 22, 22, 8, 68, 69, 69 }, /* 364.5 Mb */
313 [69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
314 317200, 22, 22, 8, 68, 69, 69 }, /* 405 Mb */
315 [70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
316 317200, 23, 23, 8, 70, 71, 71 }, /* 405 Mb */
317 [71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
318 346400, 23, 23, 8, 70, 71, 71 }, /* 450 Mb */
319 },
320 50, /* probe interval */
321 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
322 };
323
324 static const struct ath_rate_table ar5416_11a_ratetable = {
325 8,
326 0,
327 {
328 { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
329 5400, 0, 12, 0},
330 { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
331 7800, 1, 18, 0},
332 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
333 10000, 2, 24, 2},
334 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
335 13900, 3, 36, 2},
336 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
337 17300, 4, 48, 4},
338 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
339 23000, 5, 72, 4},
340 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
341 27400, 6, 96, 4},
342 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
343 29300, 7, 108, 4},
344 },
345 50, /* probe interval */
346 0, /* Phy rates allowed initially */
347 };
348
349 static const struct ath_rate_table ar5416_11g_ratetable = {
350 12,
351 0,
352 {
353 { RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
354 900, 0, 2, 0},
355 { RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
356 1900, 1, 4, 1},
357 { RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
358 4900, 2, 11, 2},
359 { RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
360 8100, 3, 22, 3},
361 { RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
362 5400, 4, 12, 4},
363 { RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
364 7800, 5, 18, 4},
365 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
366 10000, 6, 24, 6},
367 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
368 13900, 7, 36, 6},
369 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
370 17300, 8, 48, 8},
371 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
372 23000, 9, 72, 8},
373 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
374 27400, 10, 96, 8},
375 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
376 29300, 11, 108, 8},
377 },
378 50, /* probe interval */
379 0, /* Phy rates allowed initially */
380 };
381
382 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
383 struct ieee80211_tx_rate *rate)
384 {
385 int rix = 0, i = 0;
386 static const int mcs_rix_off[] = { 7, 15, 20, 21, 22, 23 };
387
388 if (!(rate->flags & IEEE80211_TX_RC_MCS))
389 return rate->idx;
390
391 while (i < ARRAY_SIZE(mcs_rix_off) && rate->idx > mcs_rix_off[i]) {
392 rix++; i++;
393 }
394
395 rix += rate->idx + rate_table->mcs_start;
396
397 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
398 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
399 rix = rate_table->info[rix].ht_index;
400 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
401 rix = rate_table->info[rix].sgi_index;
402 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
403 rix = rate_table->info[rix].cw40index;
404
405 return rix;
406 }
407
408 static void ath_rc_sort_validrates(struct ath_rate_priv *ath_rc_priv)
409 {
410 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
411 u8 i, j, idx, idx_next;
412
413 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
414 for (j = 0; j <= i-1; j++) {
415 idx = ath_rc_priv->valid_rate_index[j];
416 idx_next = ath_rc_priv->valid_rate_index[j+1];
417
418 if (rate_table->info[idx].ratekbps >
419 rate_table->info[idx_next].ratekbps) {
420 ath_rc_priv->valid_rate_index[j] = idx_next;
421 ath_rc_priv->valid_rate_index[j+1] = idx;
422 }
423 }
424 }
425 }
426
427 static inline
428 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
429 struct ath_rate_priv *ath_rc_priv,
430 u8 cur_valid_txrate,
431 u8 *next_idx)
432 {
433 u8 i;
434
435 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
436 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
437 *next_idx = ath_rc_priv->valid_rate_index[i+1];
438 return 1;
439 }
440 }
441
442 /* No more valid rates */
443 *next_idx = 0;
444
445 return 0;
446 }
447
448 /* Return true only for single stream */
449
450 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
451 {
452 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
453 return 0;
454 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
455 return 0;
456 if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
457 return 0;
458 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
459 return 0;
460 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
461 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
462 return 0;
463 return 1;
464 }
465
466 static inline int
467 ath_rc_get_lower_rix(struct ath_rate_priv *ath_rc_priv,
468 u8 cur_valid_txrate, u8 *next_idx)
469 {
470 int8_t i;
471
472 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
473 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
474 *next_idx = ath_rc_priv->valid_rate_index[i-1];
475 return 1;
476 }
477 }
478
479 return 0;
480 }
481
482 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv)
483 {
484 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
485 u8 i, hi = 0;
486
487 for (i = 0; i < rate_table->rate_cnt; i++) {
488 if (rate_table->info[i].rate_flags & RC_LEGACY) {
489 u32 phy = rate_table->info[i].phy;
490 u8 valid_rate_count = 0;
491
492 if (!ath_rc_valid_phyrate(phy, ath_rc_priv->ht_cap, 0))
493 continue;
494
495 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
496
497 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
498 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
499 ath_rc_priv->valid_rate_index[i] = true;
500 hi = i;
501 }
502 }
503
504 return hi;
505 }
506
507 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv)
508 {
509 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
510 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
511 u32 phy, capflag = ath_rc_priv->ht_cap;
512 u16 rate_flags;
513 u8 i, j, hi = 0, rate, dot11rate, valid_rate_count;
514
515 for (i = 0; i < rateset->rs_nrates; i++) {
516 for (j = 0; j < rate_table->rate_cnt; j++) {
517 phy = rate_table->info[j].phy;
518 rate_flags = rate_table->info[j].rate_flags;
519 rate = rateset->rs_rates[i];
520 dot11rate = rate_table->info[j].dot11rate;
521
522 if (rate != dot11rate
523 || ((rate_flags & WLAN_RC_CAP_MODE(capflag)) !=
524 WLAN_RC_CAP_MODE(capflag))
525 || !(rate_flags & WLAN_RC_CAP_STREAM(capflag))
526 || WLAN_RC_PHY_HT(phy))
527 continue;
528
529 if (!ath_rc_valid_phyrate(phy, capflag, 0))
530 continue;
531
532 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
533 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = j;
534 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
535 ath_rc_priv->valid_rate_index[j] = true;
536 hi = max(hi, j);
537 }
538 }
539
540 return hi;
541 }
542
543 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv)
544 {
545 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
546 struct ath_rateset *rateset = &ath_rc_priv->neg_ht_rates;
547 u32 phy, capflag = ath_rc_priv->ht_cap;
548 u16 rate_flags;
549 u8 i, j, hi = 0, rate, dot11rate, valid_rate_count;
550
551 for (i = 0; i < rateset->rs_nrates; i++) {
552 for (j = 0; j < rate_table->rate_cnt; j++) {
553 phy = rate_table->info[j].phy;
554 rate_flags = rate_table->info[j].rate_flags;
555 rate = rateset->rs_rates[i];
556 dot11rate = rate_table->info[j].dot11rate;
557
558 if ((rate != dot11rate) || !WLAN_RC_PHY_HT(phy) ||
559 !(rate_flags & WLAN_RC_CAP_STREAM(capflag)) ||
560 !WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
561 continue;
562
563 if (!ath_rc_valid_phyrate(phy, capflag, 0))
564 continue;
565
566 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
567 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = j;
568 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
569 ath_rc_priv->valid_rate_index[j] = true;
570 hi = max(hi, j);
571 }
572 }
573
574 return hi;
575 }
576
577 static u8 ath_rc_get_highest_rix(struct ath_rate_priv *ath_rc_priv,
578 int *is_probing)
579 {
580 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
581 u32 best_thruput, this_thruput, now_msec;
582 u8 rate, next_rate, best_rate, maxindex, minindex;
583 int8_t index = 0;
584
585 now_msec = jiffies_to_msecs(jiffies);
586 *is_probing = 0;
587 best_thruput = 0;
588 maxindex = ath_rc_priv->max_valid_rate-1;
589 minindex = 0;
590 best_rate = minindex;
591
592 /*
593 * Try the higher rate first. It will reduce memory moving time
594 * if we have very good channel characteristics.
595 */
596 for (index = maxindex; index >= minindex ; index--) {
597 u8 per_thres;
598
599 rate = ath_rc_priv->valid_rate_index[index];
600 if (rate > ath_rc_priv->rate_max_phy)
601 continue;
602
603 /*
604 * For TCP the average collision rate is around 11%,
605 * so we ignore PERs less than this. This is to
606 * prevent the rate we are currently using (whose
607 * PER might be in the 10-15 range because of TCP
608 * collisions) looking worse than the next lower
609 * rate whose PER has decayed close to 0. If we
610 * used to next lower rate, its PER would grow to
611 * 10-15 and we would be worse off then staying
612 * at the current rate.
613 */
614 per_thres = ath_rc_priv->per[rate];
615 if (per_thres < 12)
616 per_thres = 12;
617
618 this_thruput = rate_table->info[rate].user_ratekbps *
619 (100 - per_thres);
620
621 if (best_thruput <= this_thruput) {
622 best_thruput = this_thruput;
623 best_rate = rate;
624 }
625 }
626
627 rate = best_rate;
628
629 /*
630 * Must check the actual rate (ratekbps) to account for
631 * non-monoticity of 11g's rate table
632 */
633
634 if (rate >= ath_rc_priv->rate_max_phy) {
635 rate = ath_rc_priv->rate_max_phy;
636
637 /* Probe the next allowed phy state */
638 if (ath_rc_get_nextvalid_txrate(rate_table,
639 ath_rc_priv, rate, &next_rate) &&
640 (now_msec - ath_rc_priv->probe_time >
641 rate_table->probe_interval) &&
642 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
643 rate = next_rate;
644 ath_rc_priv->probe_rate = rate;
645 ath_rc_priv->probe_time = now_msec;
646 ath_rc_priv->hw_maxretry_pktcnt = 0;
647 *is_probing = 1;
648 }
649 }
650
651 if (rate > (ath_rc_priv->rate_table_size - 1))
652 rate = ath_rc_priv->rate_table_size - 1;
653
654 if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
655 (ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
656 return rate;
657
658 if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
659 (ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
660 return rate;
661
662 if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
663 return rate;
664
665 /* This should not happen */
666 WARN_ON_ONCE(1);
667
668 rate = ath_rc_priv->valid_rate_index[0];
669
670 return rate;
671 }
672
673 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
674 struct ieee80211_tx_rate *rate,
675 struct ieee80211_tx_rate_control *txrc,
676 u8 tries, u8 rix, int rtsctsenable)
677 {
678 rate->count = tries;
679 rate->idx = rate_table->info[rix].ratecode;
680
681 if (txrc->short_preamble)
682 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
683 if (txrc->rts || rtsctsenable)
684 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
685
686 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
687 rate->flags |= IEEE80211_TX_RC_MCS;
688 if (WLAN_RC_PHY_40(rate_table->info[rix].phy) &&
689 conf_is_ht40(&txrc->hw->conf))
690 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
691 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
692 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
693 }
694 }
695
696 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
697 const struct ath_rate_table *rate_table,
698 struct ieee80211_tx_info *tx_info)
699 {
700 struct ieee80211_tx_rate *rates = tx_info->control.rates;
701 int i = 0, rix = 0, cix, enable_g_protection = 0;
702
703 /* get the cix for the lowest valid rix */
704 for (i = 3; i >= 0; i--) {
705 if (rates[i].count && (rates[i].idx >= 0)) {
706 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
707 break;
708 }
709 }
710 cix = rate_table->info[rix].ctrl_rate;
711
712 /* All protection frames are transmited at 2Mb/s for 802.11g,
713 * otherwise we transmit them at 1Mb/s */
714 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
715 !conf_is_ht(&sc->hw->conf))
716 enable_g_protection = 1;
717
718 /*
719 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
720 * just CTS. Note that this is only done for OFDM/HT unicast frames.
721 */
722 if ((tx_info->control.vif &&
723 tx_info->control.vif->bss_conf.use_cts_prot) &&
724 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
725 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
726 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
727 cix = rate_table->info[enable_g_protection].ctrl_rate;
728 }
729
730 tx_info->control.rts_cts_rate_idx = cix;
731 }
732
733 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
734 struct ieee80211_tx_rate_control *txrc)
735 {
736 struct ath_softc *sc = priv;
737 struct ath_rate_priv *ath_rc_priv = priv_sta;
738 const struct ath_rate_table *rate_table;
739 struct sk_buff *skb = txrc->skb;
740 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
741 struct ieee80211_tx_rate *rates = tx_info->control.rates;
742 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
743 __le16 fc = hdr->frame_control;
744 u8 try_per_rate, i = 0, rix;
745 int is_probe = 0;
746
747 if (rate_control_send_low(sta, priv_sta, txrc))
748 return;
749
750 /*
751 * For Multi Rate Retry we use a different number of
752 * retry attempt counts. This ends up looking like this:
753 *
754 * MRR[0] = 4
755 * MRR[1] = 4
756 * MRR[2] = 4
757 * MRR[3] = 8
758 *
759 */
760 try_per_rate = 4;
761
762 rate_table = ath_rc_priv->rate_table;
763 rix = ath_rc_get_highest_rix(ath_rc_priv, &is_probe);
764
765 if (conf_is_ht(&sc->hw->conf) &&
766 (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING))
767 tx_info->flags |= IEEE80211_TX_CTL_LDPC;
768
769 if (conf_is_ht(&sc->hw->conf) &&
770 (sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
771 tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
772
773 if (is_probe) {
774 /*
775 * Set one try for probe rates. For the
776 * probes don't enable RTS.
777 */
778 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
779 1, rix, 0);
780 /*
781 * Get the next tried/allowed rate.
782 * No RTS for the next series after the probe rate.
783 */
784 ath_rc_get_lower_rix(ath_rc_priv, rix, &rix);
785 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
786 try_per_rate, rix, 0);
787
788 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
789 } else {
790 /*
791 * Set the chosen rate. No RTS for first series entry.
792 */
793 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
794 try_per_rate, rix, 0);
795 }
796
797 for ( ; i < 4; i++) {
798 /*
799 * Use twice the number of tries for the last MRR segment.
800 */
801 if (i + 1 == 4)
802 try_per_rate = 8;
803
804 ath_rc_get_lower_rix(ath_rc_priv, rix, &rix);
805
806 /*
807 * All other rates in the series have RTS enabled.
808 */
809 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
810 try_per_rate, rix, 1);
811 }
812
813 /*
814 * NB:Change rate series to enable aggregation when operating
815 * at lower MCS rates. When first rate in series is MCS2
816 * in HT40 @ 2.4GHz, series should look like:
817 *
818 * {MCS2, MCS1, MCS0, MCS0}.
819 *
820 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
821 * look like:
822 *
823 * {MCS3, MCS2, MCS1, MCS1}
824 *
825 * So, set fourth rate in series to be same as third one for
826 * above conditions.
827 */
828 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
829 (conf_is_ht(&sc->hw->conf))) {
830 u8 dot11rate = rate_table->info[rix].dot11rate;
831 u8 phy = rate_table->info[rix].phy;
832 if (i == 4 &&
833 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
834 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
835 rates[3].idx = rates[2].idx;
836 rates[3].flags = rates[2].flags;
837 }
838 }
839
840 /*
841 * Force hardware to use computed duration for next
842 * fragment by disabling multi-rate retry, which
843 * updates duration based on the multi-rate duration table.
844 *
845 * FIXME: Fix duration
846 */
847 if (ieee80211_has_morefrags(fc) ||
848 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
849 rates[1].count = rates[2].count = rates[3].count = 0;
850 rates[1].idx = rates[2].idx = rates[3].idx = 0;
851 rates[0].count = ATH_TXMAXTRY;
852 }
853
854 /* Setup RTS/CTS */
855 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
856 }
857
858 static void ath_rc_update_per(struct ath_softc *sc,
859 const struct ath_rate_table *rate_table,
860 struct ath_rate_priv *ath_rc_priv,
861 struct ieee80211_tx_info *tx_info,
862 int tx_rate, int xretries, int retries,
863 u32 now_msec)
864 {
865 int count, n_bad_frames;
866 u8 last_per;
867 static const u32 nretry_to_per_lookup[10] = {
868 100 * 0 / 1,
869 100 * 1 / 4,
870 100 * 1 / 2,
871 100 * 3 / 4,
872 100 * 4 / 5,
873 100 * 5 / 6,
874 100 * 6 / 7,
875 100 * 7 / 8,
876 100 * 8 / 9,
877 100 * 9 / 10
878 };
879
880 last_per = ath_rc_priv->per[tx_rate];
881 n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
882
883 if (xretries) {
884 if (xretries == 1) {
885 ath_rc_priv->per[tx_rate] += 30;
886 if (ath_rc_priv->per[tx_rate] > 100)
887 ath_rc_priv->per[tx_rate] = 100;
888 } else {
889 /* xretries == 2 */
890 count = ARRAY_SIZE(nretry_to_per_lookup);
891 if (retries >= count)
892 retries = count - 1;
893
894 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
895 ath_rc_priv->per[tx_rate] =
896 (u8)(last_per - (last_per >> 3) + (100 >> 3));
897 }
898
899 /* xretries == 1 or 2 */
900
901 if (ath_rc_priv->probe_rate == tx_rate)
902 ath_rc_priv->probe_rate = 0;
903
904 } else { /* xretries == 0 */
905 count = ARRAY_SIZE(nretry_to_per_lookup);
906 if (retries >= count)
907 retries = count - 1;
908
909 if (n_bad_frames) {
910 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
911 * Assuming that n_frames is not 0. The current PER
912 * from the retries is 100 * retries / (retries+1),
913 * since the first retries attempts failed, and the
914 * next one worked. For the one that worked,
915 * n_bad_frames subframes out of n_frames wored,
916 * so the PER for that part is
917 * 100 * n_bad_frames / n_frames, and it contributes
918 * 100 * n_bad_frames / (n_frames * (retries+1)) to
919 * the above PER. The expression below is a
920 * simplified version of the sum of these two terms.
921 */
922 if (tx_info->status.ampdu_len > 0) {
923 int n_frames, n_bad_tries;
924 u8 cur_per, new_per;
925
926 n_bad_tries = retries * tx_info->status.ampdu_len +
927 n_bad_frames;
928 n_frames = tx_info->status.ampdu_len * (retries + 1);
929 cur_per = (100 * n_bad_tries / n_frames) >> 3;
930 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
931 ath_rc_priv->per[tx_rate] = new_per;
932 }
933 } else {
934 ath_rc_priv->per[tx_rate] =
935 (u8)(last_per - (last_per >> 3) +
936 (nretry_to_per_lookup[retries] >> 3));
937 }
938
939
940 /*
941 * If we got at most one retry then increase the max rate if
942 * this was a probe. Otherwise, ignore the probe.
943 */
944 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
945 if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
946 /*
947 * Since we probed with just a single attempt,
948 * any retries means the probe failed. Also,
949 * if the attempt worked, but more than half
950 * the subframes were bad then also consider
951 * the probe a failure.
952 */
953 ath_rc_priv->probe_rate = 0;
954 } else {
955 u8 probe_rate = 0;
956
957 ath_rc_priv->rate_max_phy =
958 ath_rc_priv->probe_rate;
959 probe_rate = ath_rc_priv->probe_rate;
960
961 if (ath_rc_priv->per[probe_rate] > 30)
962 ath_rc_priv->per[probe_rate] = 20;
963
964 ath_rc_priv->probe_rate = 0;
965
966 /*
967 * Since this probe succeeded, we allow the next
968 * probe twice as soon. This allows the maxRate
969 * to move up faster if the probes are
970 * successful.
971 */
972 ath_rc_priv->probe_time =
973 now_msec - rate_table->probe_interval / 2;
974 }
975 }
976
977 if (retries > 0) {
978 /*
979 * Don't update anything. We don't know if
980 * this was because of collisions or poor signal.
981 */
982 ath_rc_priv->hw_maxretry_pktcnt = 0;
983 } else {
984 /*
985 * It worked with no retries. First ignore bogus (small)
986 * rssi_ack values.
987 */
988 if (tx_rate == ath_rc_priv->rate_max_phy &&
989 ath_rc_priv->hw_maxretry_pktcnt < 255) {
990 ath_rc_priv->hw_maxretry_pktcnt++;
991 }
992
993 }
994 }
995 }
996
997 static void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
998 int xretries, int retries, u8 per)
999 {
1000 struct ath_rc_stats *stats = &rc->rcstats[rix];
1001
1002 stats->xretries += xretries;
1003 stats->retries += retries;
1004 stats->per = per;
1005 }
1006
1007 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1008 If you can make sense of all this, you really need to go out more. */
1009
1010 static void ath_rc_update_ht(struct ath_softc *sc,
1011 struct ath_rate_priv *ath_rc_priv,
1012 struct ieee80211_tx_info *tx_info,
1013 int tx_rate, int xretries, int retries)
1014 {
1015 u32 now_msec = jiffies_to_msecs(jiffies);
1016 int rate;
1017 u8 last_per;
1018 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
1019 int size = ath_rc_priv->rate_table_size;
1020
1021 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1022 return;
1023
1024 last_per = ath_rc_priv->per[tx_rate];
1025
1026 /* Update PER first */
1027 ath_rc_update_per(sc, rate_table, ath_rc_priv,
1028 tx_info, tx_rate, xretries,
1029 retries, now_msec);
1030
1031 /*
1032 * If this rate looks bad (high PER) then stop using it for
1033 * a while (except if we are probing).
1034 */
1035 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
1036 rate_table->info[tx_rate].ratekbps <=
1037 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1038 ath_rc_get_lower_rix(ath_rc_priv, (u8)tx_rate,
1039 &ath_rc_priv->rate_max_phy);
1040
1041 /* Don't probe for a little while. */
1042 ath_rc_priv->probe_time = now_msec;
1043 }
1044
1045 /* Make sure the rates below this have lower PER */
1046 /* Monotonicity is kept only for rates below the current rate. */
1047 if (ath_rc_priv->per[tx_rate] < last_per) {
1048 for (rate = tx_rate - 1; rate >= 0; rate--) {
1049
1050 if (ath_rc_priv->per[rate] >
1051 ath_rc_priv->per[rate+1]) {
1052 ath_rc_priv->per[rate] =
1053 ath_rc_priv->per[rate+1];
1054 }
1055 }
1056 }
1057
1058 /* Maintain monotonicity for rates above the current rate */
1059 for (rate = tx_rate; rate < size - 1; rate++) {
1060 if (ath_rc_priv->per[rate+1] <
1061 ath_rc_priv->per[rate])
1062 ath_rc_priv->per[rate+1] =
1063 ath_rc_priv->per[rate];
1064 }
1065
1066 /* Every so often, we reduce the thresholds
1067 * and PER (different for CCK and OFDM). */
1068 if (now_msec - ath_rc_priv->per_down_time >=
1069 rate_table->probe_interval) {
1070 for (rate = 0; rate < size; rate++) {
1071 ath_rc_priv->per[rate] =
1072 7 * ath_rc_priv->per[rate] / 8;
1073 }
1074
1075 ath_rc_priv->per_down_time = now_msec;
1076 }
1077
1078 ath_debug_stat_retries(ath_rc_priv, tx_rate, xretries, retries,
1079 ath_rc_priv->per[tx_rate]);
1080
1081 }
1082
1083
1084 static void ath_rc_tx_status(struct ath_softc *sc,
1085 struct ath_rate_priv *ath_rc_priv,
1086 struct ieee80211_tx_info *tx_info,
1087 int final_ts_idx, int xretries, int long_retry)
1088 {
1089 const struct ath_rate_table *rate_table;
1090 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1091 u8 flags;
1092 u32 i = 0, rix;
1093
1094 rate_table = ath_rc_priv->rate_table;
1095
1096 /*
1097 * If the first rate is not the final index, there
1098 * are intermediate rate failures to be processed.
1099 */
1100 if (final_ts_idx != 0) {
1101 /* Process intermediate rates that failed.*/
1102 for (i = 0; i < final_ts_idx ; i++) {
1103 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1104 flags = rates[i].flags;
1105
1106 /* If HT40 and we have switched mode from
1107 * 40 to 20 => don't update */
1108
1109 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1110 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1111 return;
1112
1113 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1114 ath_rc_update_ht(sc, ath_rc_priv, tx_info,
1115 rix, xretries ? 1 : 2,
1116 rates[i].count);
1117 }
1118 }
1119 } else {
1120 /*
1121 * Handle the special case of MIMO PS burst, where the second
1122 * aggregate is sent out with only one rate and one try.
1123 * Treating it as an excessive retry penalizes the rate
1124 * inordinately.
1125 */
1126 if (rates[0].count == 1 && xretries == 1)
1127 xretries = 2;
1128 }
1129
1130 flags = rates[i].flags;
1131
1132 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1133 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1134 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1135 return;
1136
1137 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1138 ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
1139 }
1140
1141 static const
1142 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1143 enum ieee80211_band band,
1144 bool is_ht)
1145 {
1146 switch(band) {
1147 case IEEE80211_BAND_2GHZ:
1148 if (is_ht)
1149 return &ar5416_11ng_ratetable;
1150 return &ar5416_11g_ratetable;
1151 case IEEE80211_BAND_5GHZ:
1152 if (is_ht)
1153 return &ar5416_11na_ratetable;
1154 return &ar5416_11a_ratetable;
1155 default:
1156 return NULL;
1157 }
1158 }
1159
1160 static void ath_rc_init(struct ath_softc *sc,
1161 struct ath_rate_priv *ath_rc_priv)
1162 {
1163 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
1164 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1165 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1166 u8 i, j, k, hi = 0, hthi = 0;
1167
1168 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1169
1170 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1171 ath_rc_priv->per[i] = 0;
1172 ath_rc_priv->valid_rate_index[i] = 0;
1173 }
1174
1175 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1176 for (j = 0; j < RATE_TABLE_SIZE; j++)
1177 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1178 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1179 }
1180
1181 if (!rateset->rs_nrates) {
1182 hi = ath_rc_init_validrates(ath_rc_priv);
1183 } else {
1184 hi = ath_rc_setvalid_rates(ath_rc_priv);
1185
1186 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG)
1187 hthi = ath_rc_setvalid_htrates(ath_rc_priv);
1188
1189 hi = max(hi, hthi);
1190 }
1191
1192 ath_rc_priv->rate_table_size = hi + 1;
1193 ath_rc_priv->rate_max_phy = 0;
1194 WARN_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1195
1196 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1197 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1198 ath_rc_priv->valid_rate_index[k++] =
1199 ath_rc_priv->valid_phy_rateidx[i][j];
1200 }
1201
1202 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) ||
1203 !ath_rc_priv->valid_phy_ratecnt[i])
1204 continue;
1205
1206 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1207 }
1208 WARN_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1209 WARN_ON(k > RATE_TABLE_SIZE);
1210
1211 ath_rc_priv->max_valid_rate = k;
1212 ath_rc_sort_validrates(ath_rc_priv);
1213 ath_rc_priv->rate_max_phy = (k > 4) ?
1214 ath_rc_priv->valid_rate_index[k-4] :
1215 ath_rc_priv->valid_rate_index[k-1];
1216
1217 ath_dbg(common, CONFIG, "RC Initialized with capabilities: 0x%x\n",
1218 ath_rc_priv->ht_cap);
1219 }
1220
1221 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta)
1222 {
1223 u8 caps = 0;
1224
1225 if (sta->ht_cap.ht_supported) {
1226 caps = WLAN_RC_HT_FLAG;
1227 if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
1228 caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
1229 else if (sta->ht_cap.mcs.rx_mask[1])
1230 caps |= WLAN_RC_DS_FLAG;
1231 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
1232 caps |= WLAN_RC_40_FLAG;
1233 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40 ||
1234 sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20)
1235 caps |= WLAN_RC_SGI_FLAG;
1236 }
1237
1238 return caps;
1239 }
1240
1241 static bool ath_tx_aggr_check(struct ath_softc *sc, struct ieee80211_sta *sta,
1242 u8 tidno)
1243 {
1244 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1245 struct ath_atx_tid *txtid;
1246
1247 if (!sta->ht_cap.ht_supported)
1248 return false;
1249
1250 txtid = ATH_AN_2_TID(an, tidno);
1251
1252 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
1253 return true;
1254 return false;
1255 }
1256
1257
1258 /***********************************/
1259 /* mac80211 Rate Control callbacks */
1260 /***********************************/
1261
1262 static void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate)
1263 {
1264 struct ath_rc_stats *stats;
1265
1266 stats = &rc->rcstats[final_rate];
1267 stats->success++;
1268 }
1269
1270
1271 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1272 struct ieee80211_sta *sta, void *priv_sta,
1273 struct sk_buff *skb)
1274 {
1275 struct ath_softc *sc = priv;
1276 struct ath_rate_priv *ath_rc_priv = priv_sta;
1277 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1278 struct ieee80211_hdr *hdr;
1279 int final_ts_idx = 0, tx_status = 0;
1280 int long_retry = 0;
1281 __le16 fc;
1282 int i;
1283
1284 hdr = (struct ieee80211_hdr *)skb->data;
1285 fc = hdr->frame_control;
1286 for (i = 0; i < sc->hw->max_rates; i++) {
1287 struct ieee80211_tx_rate *rate = &tx_info->status.rates[i];
1288 if (rate->idx < 0 || !rate->count)
1289 break;
1290
1291 final_ts_idx = i;
1292 long_retry = rate->count - 1;
1293 }
1294
1295 if (!priv_sta || !ieee80211_is_data(fc))
1296 return;
1297
1298 /* This packet was aggregated but doesn't carry status info */
1299 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
1300 !(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
1301 return;
1302
1303 if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
1304 return;
1305
1306 if (!(tx_info->flags & IEEE80211_TX_STAT_ACK))
1307 tx_status = 1;
1308
1309 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1310 long_retry);
1311
1312 /* Check if aggregation has to be enabled for this tid */
1313 if (conf_is_ht(&sc->hw->conf) &&
1314 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1315 if (ieee80211_is_data_qos(fc) &&
1316 skb_get_queue_mapping(skb) != IEEE80211_AC_VO) {
1317 u8 *qc, tid;
1318
1319 qc = ieee80211_get_qos_ctl(hdr);
1320 tid = qc[0] & 0xf;
1321
1322 if(ath_tx_aggr_check(sc, sta, tid))
1323 ieee80211_start_tx_ba_session(sta, tid, 0);
1324 }
1325 }
1326
1327 ath_debug_stat_rc(ath_rc_priv,
1328 ath_rc_get_rateindex(ath_rc_priv->rate_table,
1329 &tx_info->status.rates[final_ts_idx]));
1330 }
1331
1332 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1333 struct ieee80211_sta *sta, void *priv_sta)
1334 {
1335 struct ath_softc *sc = priv;
1336 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1337 struct ath_rate_priv *ath_rc_priv = priv_sta;
1338 int i, j = 0;
1339
1340 for (i = 0; i < sband->n_bitrates; i++) {
1341 if (sta->supp_rates[sband->band] & BIT(i)) {
1342 ath_rc_priv->neg_rates.rs_rates[j]
1343 = (sband->bitrates[i].bitrate * 2) / 10;
1344 j++;
1345 }
1346 }
1347 ath_rc_priv->neg_rates.rs_nrates = j;
1348
1349 if (sta->ht_cap.ht_supported) {
1350 for (i = 0, j = 0; i < 77; i++) {
1351 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1352 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1353 if (j == ATH_RATE_MAX)
1354 break;
1355 }
1356 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1357 }
1358
1359 ath_rc_priv->rate_table = ath_choose_rate_table(sc, sband->band,
1360 sta->ht_cap.ht_supported);
1361 if (!ath_rc_priv->rate_table) {
1362 ath_err(common, "No rate table chosen\n");
1363 return;
1364 }
1365
1366 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta);
1367 ath_rc_init(sc, priv_sta);
1368 }
1369
1370 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1371 struct ieee80211_sta *sta, void *priv_sta,
1372 u32 changed)
1373 {
1374 struct ath_softc *sc = priv;
1375 struct ath_rate_priv *ath_rc_priv = priv_sta;
1376
1377 if (changed & IEEE80211_RC_BW_CHANGED) {
1378 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta);
1379 ath_rc_init(sc, priv_sta);
1380
1381 ath_dbg(ath9k_hw_common(sc->sc_ah), CONFIG,
1382 "Operating HT Bandwidth changed to: %d\n",
1383 sc->hw->conf.channel_type);
1384 }
1385 }
1386
1387 #ifdef CONFIG_ATH9K_DEBUGFS
1388
1389 static ssize_t read_file_rcstat(struct file *file, char __user *user_buf,
1390 size_t count, loff_t *ppos)
1391 {
1392 struct ath_rate_priv *rc = file->private_data;
1393 char *buf;
1394 unsigned int len = 0, max;
1395 int i = 0;
1396 ssize_t retval;
1397
1398 if (rc->rate_table == NULL)
1399 return 0;
1400
1401 max = 80 + rc->rate_table_size * 1024 + 1;
1402 buf = kmalloc(max, GFP_KERNEL);
1403 if (buf == NULL)
1404 return -ENOMEM;
1405
1406 len += sprintf(buf, "%6s %6s %6s "
1407 "%10s %10s %10s %10s\n",
1408 "HT", "MCS", "Rate",
1409 "Success", "Retries", "XRetries", "PER");
1410
1411 for (i = 0; i < rc->rate_table_size; i++) {
1412 u32 ratekbps = rc->rate_table->info[i].ratekbps;
1413 struct ath_rc_stats *stats = &rc->rcstats[i];
1414 char mcs[5];
1415 char htmode[5];
1416 int used_mcs = 0, used_htmode = 0;
1417
1418 if (WLAN_RC_PHY_HT(rc->rate_table->info[i].phy)) {
1419 used_mcs = snprintf(mcs, 5, "%d",
1420 rc->rate_table->info[i].ratecode);
1421
1422 if (WLAN_RC_PHY_40(rc->rate_table->info[i].phy))
1423 used_htmode = snprintf(htmode, 5, "HT40");
1424 else if (WLAN_RC_PHY_20(rc->rate_table->info[i].phy))
1425 used_htmode = snprintf(htmode, 5, "HT20");
1426 else
1427 used_htmode = snprintf(htmode, 5, "????");
1428 }
1429
1430 mcs[used_mcs] = '\0';
1431 htmode[used_htmode] = '\0';
1432
1433 len += snprintf(buf + len, max - len,
1434 "%6s %6s %3u.%d: "
1435 "%10u %10u %10u %10u\n",
1436 htmode,
1437 mcs,
1438 ratekbps / 1000,
1439 (ratekbps % 1000) / 100,
1440 stats->success,
1441 stats->retries,
1442 stats->xretries,
1443 stats->per);
1444 }
1445
1446 if (len > max)
1447 len = max;
1448
1449 retval = simple_read_from_buffer(user_buf, count, ppos, buf, len);
1450 kfree(buf);
1451 return retval;
1452 }
1453
1454 static const struct file_operations fops_rcstat = {
1455 .read = read_file_rcstat,
1456 .open = simple_open,
1457 .owner = THIS_MODULE
1458 };
1459
1460 static void ath_rate_add_sta_debugfs(void *priv, void *priv_sta,
1461 struct dentry *dir)
1462 {
1463 struct ath_rate_priv *rc = priv_sta;
1464 debugfs_create_file("rc_stats", S_IRUGO, dir, rc, &fops_rcstat);
1465 }
1466
1467 #endif /* CONFIG_ATH9K_DEBUGFS */
1468
1469 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1470 {
1471 return hw->priv;
1472 }
1473
1474 static void ath_rate_free(void *priv)
1475 {
1476 return;
1477 }
1478
1479 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1480 {
1481 struct ath_softc *sc = priv;
1482 struct ath_rate_priv *rate_priv;
1483
1484 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1485 if (!rate_priv) {
1486 ath_err(ath9k_hw_common(sc->sc_ah),
1487 "Unable to allocate private rc structure\n");
1488 return NULL;
1489 }
1490
1491 return rate_priv;
1492 }
1493
1494 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1495 void *priv_sta)
1496 {
1497 struct ath_rate_priv *rate_priv = priv_sta;
1498 kfree(rate_priv);
1499 }
1500
1501 static struct rate_control_ops ath_rate_ops = {
1502 .module = NULL,
1503 .name = "ath9k_rate_control",
1504 .tx_status = ath_tx_status,
1505 .get_rate = ath_get_rate,
1506 .rate_init = ath_rate_init,
1507 .rate_update = ath_rate_update,
1508 .alloc = ath_rate_alloc,
1509 .free = ath_rate_free,
1510 .alloc_sta = ath_rate_alloc_sta,
1511 .free_sta = ath_rate_free_sta,
1512 #ifdef CONFIG_ATH9K_DEBUGFS
1513 .add_sta_debugfs = ath_rate_add_sta_debugfs,
1514 #endif
1515 };
1516
1517 int ath_rate_control_register(void)
1518 {
1519 return ieee80211_rate_control_register(&ath_rate_ops);
1520 }
1521
1522 void ath_rate_control_unregister(void)
1523 {
1524 ieee80211_rate_control_unregister(&ath_rate_ops);
1525 }