]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/ath9k/xmit.c
Merge branch 'sched/urgent' into sched/core
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
51
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 struct ath_txq *txq, struct list_head *bf_q,
58 struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_tx_status *ts, int nframes, int nbad,
63 int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 struct ath_txq *txq,
68 struct ath_atx_tid *tid,
69 struct sk_buff *skb);
70
71 enum {
72 MCS_HT20,
73 MCS_HT20_SGI,
74 MCS_HT40,
75 MCS_HT40_SGI,
76 };
77
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
81
82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
83 __acquires(&txq->axq_lock)
84 {
85 spin_lock_bh(&txq->axq_lock);
86 }
87
88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
89 __releases(&txq->axq_lock)
90 {
91 spin_unlock_bh(&txq->axq_lock);
92 }
93
94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
95 __releases(&txq->axq_lock)
96 {
97 struct sk_buff_head q;
98 struct sk_buff *skb;
99
100 __skb_queue_head_init(&q);
101 skb_queue_splice_init(&txq->complete_q, &q);
102 spin_unlock_bh(&txq->axq_lock);
103
104 while ((skb = __skb_dequeue(&q)))
105 ieee80211_tx_status(sc->hw, skb);
106 }
107
108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
109 {
110 struct ath_atx_ac *ac = tid->ac;
111
112 if (tid->paused)
113 return;
114
115 if (tid->sched)
116 return;
117
118 tid->sched = true;
119 list_add_tail(&tid->list, &ac->tid_q);
120
121 if (ac->sched)
122 return;
123
124 ac->sched = true;
125 list_add_tail(&ac->list, &txq->axq_acq);
126 }
127
128 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
129 {
130 struct ath_txq *txq = tid->ac->txq;
131
132 WARN_ON(!tid->paused);
133
134 ath_txq_lock(sc, txq);
135 tid->paused = false;
136
137 if (skb_queue_empty(&tid->buf_q))
138 goto unlock;
139
140 ath_tx_queue_tid(txq, tid);
141 ath_txq_schedule(sc, txq);
142 unlock:
143 ath_txq_unlock_complete(sc, txq);
144 }
145
146 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
147 {
148 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
149 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
150 sizeof(tx_info->rate_driver_data));
151 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
152 }
153
154 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
155 {
156 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
157 seqno << IEEE80211_SEQ_SEQ_SHIFT);
158 }
159
160 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
161 struct ath_buf *bf)
162 {
163 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
164 ARRAY_SIZE(bf->rates));
165 }
166
167 static void ath_tx_clear_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
168 {
169 tid->state &= ~AGGR_ADDBA_COMPLETE;
170 tid->state &= ~AGGR_CLEANUP;
171 if (!tid->stop_cb)
172 return;
173
174 ieee80211_start_tx_ba_cb_irqsafe(tid->an->vif, tid->an->sta->addr,
175 tid->tidno);
176 tid->stop_cb = false;
177 }
178
179 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid,
180 bool flush_packets)
181 {
182 struct ath_txq *txq = tid->ac->txq;
183 struct sk_buff *skb;
184 struct ath_buf *bf;
185 struct list_head bf_head;
186 struct ath_tx_status ts;
187 struct ath_frame_info *fi;
188 bool sendbar = false;
189
190 INIT_LIST_HEAD(&bf_head);
191
192 memset(&ts, 0, sizeof(ts));
193
194 while ((skb = __skb_dequeue(&tid->buf_q))) {
195 fi = get_frame_info(skb);
196 bf = fi->bf;
197 if (!bf && !flush_packets)
198 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
199
200 if (!bf) {
201 ieee80211_free_txskb(sc->hw, skb);
202 continue;
203 }
204
205 if (fi->retries || flush_packets) {
206 list_add_tail(&bf->list, &bf_head);
207 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
208 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
209 sendbar = true;
210 } else {
211 ath_set_rates(tid->an->vif, tid->an->sta, bf);
212 ath_tx_send_normal(sc, txq, NULL, skb);
213 }
214 }
215
216 if (tid->baw_head == tid->baw_tail)
217 ath_tx_clear_tid(sc, tid);
218
219 if (sendbar && !flush_packets) {
220 ath_txq_unlock(sc, txq);
221 ath_send_bar(tid, tid->seq_start);
222 ath_txq_lock(sc, txq);
223 }
224 }
225
226 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
227 int seqno)
228 {
229 int index, cindex;
230
231 index = ATH_BA_INDEX(tid->seq_start, seqno);
232 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
233
234 __clear_bit(cindex, tid->tx_buf);
235
236 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
237 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
238 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
239 if (tid->bar_index >= 0)
240 tid->bar_index--;
241 }
242 }
243
244 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
245 u16 seqno)
246 {
247 int index, cindex;
248
249 index = ATH_BA_INDEX(tid->seq_start, seqno);
250 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
251 __set_bit(cindex, tid->tx_buf);
252
253 if (index >= ((tid->baw_tail - tid->baw_head) &
254 (ATH_TID_MAX_BUFS - 1))) {
255 tid->baw_tail = cindex;
256 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
257 }
258 }
259
260 /*
261 * TODO: For frame(s) that are in the retry state, we will reuse the
262 * sequence number(s) without setting the retry bit. The
263 * alternative is to give up on these and BAR the receiver's window
264 * forward.
265 */
266 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
267 struct ath_atx_tid *tid)
268
269 {
270 struct sk_buff *skb;
271 struct ath_buf *bf;
272 struct list_head bf_head;
273 struct ath_tx_status ts;
274 struct ath_frame_info *fi;
275
276 memset(&ts, 0, sizeof(ts));
277 INIT_LIST_HEAD(&bf_head);
278
279 while ((skb = __skb_dequeue(&tid->buf_q))) {
280 fi = get_frame_info(skb);
281 bf = fi->bf;
282
283 if (!bf) {
284 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
285 continue;
286 }
287
288 list_add_tail(&bf->list, &bf_head);
289
290 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
291 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
292 }
293
294 tid->seq_next = tid->seq_start;
295 tid->baw_tail = tid->baw_head;
296 tid->bar_index = -1;
297 }
298
299 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
300 struct sk_buff *skb, int count)
301 {
302 struct ath_frame_info *fi = get_frame_info(skb);
303 struct ath_buf *bf = fi->bf;
304 struct ieee80211_hdr *hdr;
305 int prev = fi->retries;
306
307 TX_STAT_INC(txq->axq_qnum, a_retries);
308 fi->retries += count;
309
310 if (prev > 0)
311 return;
312
313 hdr = (struct ieee80211_hdr *)skb->data;
314 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
315 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
316 sizeof(*hdr), DMA_TO_DEVICE);
317 }
318
319 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
320 {
321 struct ath_buf *bf = NULL;
322
323 spin_lock_bh(&sc->tx.txbuflock);
324
325 if (unlikely(list_empty(&sc->tx.txbuf))) {
326 spin_unlock_bh(&sc->tx.txbuflock);
327 return NULL;
328 }
329
330 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
331 list_del(&bf->list);
332
333 spin_unlock_bh(&sc->tx.txbuflock);
334
335 return bf;
336 }
337
338 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
339 {
340 spin_lock_bh(&sc->tx.txbuflock);
341 list_add_tail(&bf->list, &sc->tx.txbuf);
342 spin_unlock_bh(&sc->tx.txbuflock);
343 }
344
345 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
346 {
347 struct ath_buf *tbf;
348
349 tbf = ath_tx_get_buffer(sc);
350 if (WARN_ON(!tbf))
351 return NULL;
352
353 ATH_TXBUF_RESET(tbf);
354
355 tbf->bf_mpdu = bf->bf_mpdu;
356 tbf->bf_buf_addr = bf->bf_buf_addr;
357 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
358 tbf->bf_state = bf->bf_state;
359
360 return tbf;
361 }
362
363 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
364 struct ath_tx_status *ts, int txok,
365 int *nframes, int *nbad)
366 {
367 struct ath_frame_info *fi;
368 u16 seq_st = 0;
369 u32 ba[WME_BA_BMP_SIZE >> 5];
370 int ba_index;
371 int isaggr = 0;
372
373 *nbad = 0;
374 *nframes = 0;
375
376 isaggr = bf_isaggr(bf);
377 if (isaggr) {
378 seq_st = ts->ts_seqnum;
379 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
380 }
381
382 while (bf) {
383 fi = get_frame_info(bf->bf_mpdu);
384 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
385
386 (*nframes)++;
387 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
388 (*nbad)++;
389
390 bf = bf->bf_next;
391 }
392 }
393
394
395 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
396 struct ath_buf *bf, struct list_head *bf_q,
397 struct ath_tx_status *ts, int txok)
398 {
399 struct ath_node *an = NULL;
400 struct sk_buff *skb;
401 struct ieee80211_sta *sta;
402 struct ieee80211_hw *hw = sc->hw;
403 struct ieee80211_hdr *hdr;
404 struct ieee80211_tx_info *tx_info;
405 struct ath_atx_tid *tid = NULL;
406 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
407 struct list_head bf_head;
408 struct sk_buff_head bf_pending;
409 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
410 u32 ba[WME_BA_BMP_SIZE >> 5];
411 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
412 bool rc_update = true, isba;
413 struct ieee80211_tx_rate rates[4];
414 struct ath_frame_info *fi;
415 int nframes;
416 u8 tidno;
417 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
418 int i, retries;
419 int bar_index = -1;
420
421 skb = bf->bf_mpdu;
422 hdr = (struct ieee80211_hdr *)skb->data;
423
424 tx_info = IEEE80211_SKB_CB(skb);
425
426 memcpy(rates, bf->rates, sizeof(rates));
427
428 retries = ts->ts_longretry + 1;
429 for (i = 0; i < ts->ts_rateindex; i++)
430 retries += rates[i].count;
431
432 rcu_read_lock();
433
434 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
435 if (!sta) {
436 rcu_read_unlock();
437
438 INIT_LIST_HEAD(&bf_head);
439 while (bf) {
440 bf_next = bf->bf_next;
441
442 if (!bf->bf_stale || bf_next != NULL)
443 list_move_tail(&bf->list, &bf_head);
444
445 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
446
447 bf = bf_next;
448 }
449 return;
450 }
451
452 an = (struct ath_node *)sta->drv_priv;
453 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
454 tid = ATH_AN_2_TID(an, tidno);
455 seq_first = tid->seq_start;
456 isba = ts->ts_flags & ATH9K_TX_BA;
457
458 /*
459 * The hardware occasionally sends a tx status for the wrong TID.
460 * In this case, the BA status cannot be considered valid and all
461 * subframes need to be retransmitted
462 *
463 * Only BlockAcks have a TID and therefore normal Acks cannot be
464 * checked
465 */
466 if (isba && tidno != ts->tid)
467 txok = false;
468
469 isaggr = bf_isaggr(bf);
470 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
471
472 if (isaggr && txok) {
473 if (ts->ts_flags & ATH9K_TX_BA) {
474 seq_st = ts->ts_seqnum;
475 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
476 } else {
477 /*
478 * AR5416 can become deaf/mute when BA
479 * issue happens. Chip needs to be reset.
480 * But AP code may have sychronization issues
481 * when perform internal reset in this routine.
482 * Only enable reset in STA mode for now.
483 */
484 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
485 needreset = 1;
486 }
487 }
488
489 __skb_queue_head_init(&bf_pending);
490
491 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
492 while (bf) {
493 u16 seqno = bf->bf_state.seqno;
494
495 txfail = txpending = sendbar = 0;
496 bf_next = bf->bf_next;
497
498 skb = bf->bf_mpdu;
499 tx_info = IEEE80211_SKB_CB(skb);
500 fi = get_frame_info(skb);
501
502 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
503 /* transmit completion, subframe is
504 * acked by block ack */
505 acked_cnt++;
506 } else if (!isaggr && txok) {
507 /* transmit completion */
508 acked_cnt++;
509 } else if (tid->state & AGGR_CLEANUP) {
510 /*
511 * cleanup in progress, just fail
512 * the un-acked sub-frames
513 */
514 txfail = 1;
515 } else if (flush) {
516 txpending = 1;
517 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
518 if (txok || !an->sleeping)
519 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
520 retries);
521
522 txpending = 1;
523 } else {
524 txfail = 1;
525 txfail_cnt++;
526 bar_index = max_t(int, bar_index,
527 ATH_BA_INDEX(seq_first, seqno));
528 }
529
530 /*
531 * Make sure the last desc is reclaimed if it
532 * not a holding desc.
533 */
534 INIT_LIST_HEAD(&bf_head);
535 if (bf_next != NULL || !bf_last->bf_stale)
536 list_move_tail(&bf->list, &bf_head);
537
538 if (!txpending || (tid->state & AGGR_CLEANUP)) {
539 /*
540 * complete the acked-ones/xretried ones; update
541 * block-ack window
542 */
543 ath_tx_update_baw(sc, tid, seqno);
544
545 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
546 memcpy(tx_info->control.rates, rates, sizeof(rates));
547 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
548 rc_update = false;
549 }
550
551 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
552 !txfail);
553 } else {
554 /* retry the un-acked ones */
555 if (bf->bf_next == NULL && bf_last->bf_stale) {
556 struct ath_buf *tbf;
557
558 tbf = ath_clone_txbuf(sc, bf_last);
559 /*
560 * Update tx baw and complete the
561 * frame with failed status if we
562 * run out of tx buf.
563 */
564 if (!tbf) {
565 ath_tx_update_baw(sc, tid, seqno);
566
567 ath_tx_complete_buf(sc, bf, txq,
568 &bf_head, ts, 0);
569 bar_index = max_t(int, bar_index,
570 ATH_BA_INDEX(seq_first, seqno));
571 break;
572 }
573
574 fi->bf = tbf;
575 }
576
577 /*
578 * Put this buffer to the temporary pending
579 * queue to retain ordering
580 */
581 __skb_queue_tail(&bf_pending, skb);
582 }
583
584 bf = bf_next;
585 }
586
587 /* prepend un-acked frames to the beginning of the pending frame queue */
588 if (!skb_queue_empty(&bf_pending)) {
589 if (an->sleeping)
590 ieee80211_sta_set_buffered(sta, tid->tidno, true);
591
592 skb_queue_splice(&bf_pending, &tid->buf_q);
593 if (!an->sleeping) {
594 ath_tx_queue_tid(txq, tid);
595
596 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
597 tid->ac->clear_ps_filter = true;
598 }
599 }
600
601 if (bar_index >= 0) {
602 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
603
604 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
605 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
606
607 ath_txq_unlock(sc, txq);
608 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
609 ath_txq_lock(sc, txq);
610 }
611
612 if (tid->state & AGGR_CLEANUP)
613 ath_tx_flush_tid(sc, tid, false);
614
615 rcu_read_unlock();
616
617 if (needreset)
618 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
619 }
620
621 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
622 {
623 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
624 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
625 }
626
627 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
628 struct ath_tx_status *ts, struct ath_buf *bf,
629 struct list_head *bf_head)
630 {
631 struct ieee80211_tx_info *info;
632 bool txok, flush;
633
634 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
635 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
636 txq->axq_tx_inprogress = false;
637
638 txq->axq_depth--;
639 if (bf_is_ampdu_not_probing(bf))
640 txq->axq_ampdu_depth--;
641
642 if (!bf_isampdu(bf)) {
643 if (!flush) {
644 info = IEEE80211_SKB_CB(bf->bf_mpdu);
645 memcpy(info->control.rates, bf->rates,
646 sizeof(info->control.rates));
647 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
648 }
649 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
650 } else
651 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
652
653 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
654 ath_txq_schedule(sc, txq);
655 }
656
657 static bool ath_lookup_legacy(struct ath_buf *bf)
658 {
659 struct sk_buff *skb;
660 struct ieee80211_tx_info *tx_info;
661 struct ieee80211_tx_rate *rates;
662 int i;
663
664 skb = bf->bf_mpdu;
665 tx_info = IEEE80211_SKB_CB(skb);
666 rates = tx_info->control.rates;
667
668 for (i = 0; i < 4; i++) {
669 if (!rates[i].count || rates[i].idx < 0)
670 break;
671
672 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
673 return true;
674 }
675
676 return false;
677 }
678
679 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
680 struct ath_atx_tid *tid)
681 {
682 struct sk_buff *skb;
683 struct ieee80211_tx_info *tx_info;
684 struct ieee80211_tx_rate *rates;
685 u32 max_4ms_framelen, frmlen;
686 u16 aggr_limit, bt_aggr_limit, legacy = 0;
687 int q = tid->ac->txq->mac80211_qnum;
688 int i;
689
690 skb = bf->bf_mpdu;
691 tx_info = IEEE80211_SKB_CB(skb);
692 rates = bf->rates;
693
694 /*
695 * Find the lowest frame length among the rate series that will have a
696 * 4ms (or TXOP limited) transmit duration.
697 */
698 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
699
700 for (i = 0; i < 4; i++) {
701 int modeidx;
702
703 if (!rates[i].count)
704 continue;
705
706 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
707 legacy = 1;
708 break;
709 }
710
711 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
712 modeidx = MCS_HT40;
713 else
714 modeidx = MCS_HT20;
715
716 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
717 modeidx++;
718
719 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
720 max_4ms_framelen = min(max_4ms_framelen, frmlen);
721 }
722
723 /*
724 * limit aggregate size by the minimum rate if rate selected is
725 * not a probe rate, if rate selected is a probe rate then
726 * avoid aggregation of this packet.
727 */
728 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
729 return 0;
730
731 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
732
733 /*
734 * Override the default aggregation limit for BTCOEX.
735 */
736 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
737 if (bt_aggr_limit)
738 aggr_limit = bt_aggr_limit;
739
740 /*
741 * h/w can accept aggregates up to 16 bit lengths (65535).
742 * The IE, however can hold up to 65536, which shows up here
743 * as zero. Ignore 65536 since we are constrained by hw.
744 */
745 if (tid->an->maxampdu)
746 aggr_limit = min(aggr_limit, tid->an->maxampdu);
747
748 return aggr_limit;
749 }
750
751 /*
752 * Returns the number of delimiters to be added to
753 * meet the minimum required mpdudensity.
754 */
755 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
756 struct ath_buf *bf, u16 frmlen,
757 bool first_subfrm)
758 {
759 #define FIRST_DESC_NDELIMS 60
760 u32 nsymbits, nsymbols;
761 u16 minlen;
762 u8 flags, rix;
763 int width, streams, half_gi, ndelim, mindelim;
764 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
765
766 /* Select standard number of delimiters based on frame length alone */
767 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
768
769 /*
770 * If encryption enabled, hardware requires some more padding between
771 * subframes.
772 * TODO - this could be improved to be dependent on the rate.
773 * The hardware can keep up at lower rates, but not higher rates
774 */
775 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
776 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
777 ndelim += ATH_AGGR_ENCRYPTDELIM;
778
779 /*
780 * Add delimiter when using RTS/CTS with aggregation
781 * and non enterprise AR9003 card
782 */
783 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
784 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
785 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
786
787 /*
788 * Convert desired mpdu density from microeconds to bytes based
789 * on highest rate in rate series (i.e. first rate) to determine
790 * required minimum length for subframe. Take into account
791 * whether high rate is 20 or 40Mhz and half or full GI.
792 *
793 * If there is no mpdu density restriction, no further calculation
794 * is needed.
795 */
796
797 if (tid->an->mpdudensity == 0)
798 return ndelim;
799
800 rix = bf->rates[0].idx;
801 flags = bf->rates[0].flags;
802 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
803 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
804
805 if (half_gi)
806 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
807 else
808 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
809
810 if (nsymbols == 0)
811 nsymbols = 1;
812
813 streams = HT_RC_2_STREAMS(rix);
814 nsymbits = bits_per_symbol[rix % 8][width] * streams;
815 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
816
817 if (frmlen < minlen) {
818 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
819 ndelim = max(mindelim, ndelim);
820 }
821
822 return ndelim;
823 }
824
825 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
826 struct ath_txq *txq,
827 struct ath_atx_tid *tid,
828 struct list_head *bf_q,
829 int *aggr_len)
830 {
831 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
832 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
833 int rl = 0, nframes = 0, ndelim, prev_al = 0;
834 u16 aggr_limit = 0, al = 0, bpad = 0,
835 al_delta, h_baw = tid->baw_size / 2;
836 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
837 struct ieee80211_tx_info *tx_info;
838 struct ath_frame_info *fi;
839 struct sk_buff *skb;
840 u16 seqno;
841
842 do {
843 skb = skb_peek(&tid->buf_q);
844 fi = get_frame_info(skb);
845 bf = fi->bf;
846 if (!fi->bf)
847 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
848
849 if (!bf) {
850 __skb_unlink(skb, &tid->buf_q);
851 ieee80211_free_txskb(sc->hw, skb);
852 continue;
853 }
854
855 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
856 seqno = bf->bf_state.seqno;
857
858 /* do not step over block-ack window */
859 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
860 status = ATH_AGGR_BAW_CLOSED;
861 break;
862 }
863
864 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
865 struct ath_tx_status ts = {};
866 struct list_head bf_head;
867
868 INIT_LIST_HEAD(&bf_head);
869 list_add(&bf->list, &bf_head);
870 __skb_unlink(skb, &tid->buf_q);
871 ath_tx_update_baw(sc, tid, seqno);
872 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
873 continue;
874 }
875
876 if (!bf_first)
877 bf_first = bf;
878
879 if (!rl) {
880 ath_set_rates(tid->an->vif, tid->an->sta, bf);
881 aggr_limit = ath_lookup_rate(sc, bf, tid);
882 rl = 1;
883 }
884
885 /* do not exceed aggregation limit */
886 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
887
888 if (nframes &&
889 ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
890 ath_lookup_legacy(bf))) {
891 status = ATH_AGGR_LIMITED;
892 break;
893 }
894
895 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
896 if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
897 break;
898
899 /* do not exceed subframe limit */
900 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
901 status = ATH_AGGR_LIMITED;
902 break;
903 }
904
905 /* add padding for previous frame to aggregation length */
906 al += bpad + al_delta;
907
908 /*
909 * Get the delimiters needed to meet the MPDU
910 * density for this node.
911 */
912 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
913 !nframes);
914 bpad = PADBYTES(al_delta) + (ndelim << 2);
915
916 nframes++;
917 bf->bf_next = NULL;
918
919 /* link buffers of this frame to the aggregate */
920 if (!fi->retries)
921 ath_tx_addto_baw(sc, tid, seqno);
922 bf->bf_state.ndelim = ndelim;
923
924 __skb_unlink(skb, &tid->buf_q);
925 list_add_tail(&bf->list, bf_q);
926 if (bf_prev)
927 bf_prev->bf_next = bf;
928
929 bf_prev = bf;
930
931 } while (!skb_queue_empty(&tid->buf_q));
932
933 *aggr_len = al;
934
935 return status;
936 #undef PADBYTES
937 }
938
939 /*
940 * rix - rate index
941 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
942 * width - 0 for 20 MHz, 1 for 40 MHz
943 * half_gi - to use 4us v/s 3.6 us for symbol time
944 */
945 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
946 int width, int half_gi, bool shortPreamble)
947 {
948 u32 nbits, nsymbits, duration, nsymbols;
949 int streams;
950
951 /* find number of symbols: PLCP + data */
952 streams = HT_RC_2_STREAMS(rix);
953 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
954 nsymbits = bits_per_symbol[rix % 8][width] * streams;
955 nsymbols = (nbits + nsymbits - 1) / nsymbits;
956
957 if (!half_gi)
958 duration = SYMBOL_TIME(nsymbols);
959 else
960 duration = SYMBOL_TIME_HALFGI(nsymbols);
961
962 /* addup duration for legacy/ht training and signal fields */
963 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
964
965 return duration;
966 }
967
968 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
969 {
970 int streams = HT_RC_2_STREAMS(mcs);
971 int symbols, bits;
972 int bytes = 0;
973
974 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
975 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
976 bits -= OFDM_PLCP_BITS;
977 bytes = bits / 8;
978 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
979 if (bytes > 65532)
980 bytes = 65532;
981
982 return bytes;
983 }
984
985 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
986 {
987 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
988 int mcs;
989
990 /* 4ms is the default (and maximum) duration */
991 if (!txop || txop > 4096)
992 txop = 4096;
993
994 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
995 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
996 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
997 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
998 for (mcs = 0; mcs < 32; mcs++) {
999 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1000 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1001 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1002 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1003 }
1004 }
1005
1006 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1007 struct ath_tx_info *info, int len)
1008 {
1009 struct ath_hw *ah = sc->sc_ah;
1010 struct sk_buff *skb;
1011 struct ieee80211_tx_info *tx_info;
1012 struct ieee80211_tx_rate *rates;
1013 const struct ieee80211_rate *rate;
1014 struct ieee80211_hdr *hdr;
1015 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1016 int i;
1017 u8 rix = 0;
1018
1019 skb = bf->bf_mpdu;
1020 tx_info = IEEE80211_SKB_CB(skb);
1021 rates = bf->rates;
1022 hdr = (struct ieee80211_hdr *)skb->data;
1023
1024 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1025 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1026 info->rtscts_rate = fi->rtscts_rate;
1027
1028 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1029 bool is_40, is_sgi, is_sp;
1030 int phy;
1031
1032 if (!rates[i].count || (rates[i].idx < 0))
1033 continue;
1034
1035 rix = rates[i].idx;
1036 info->rates[i].Tries = rates[i].count;
1037
1038 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1039 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1040 info->flags |= ATH9K_TXDESC_RTSENA;
1041 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1042 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1043 info->flags |= ATH9K_TXDESC_CTSENA;
1044 }
1045
1046 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1047 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1048 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1049 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1050
1051 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1052 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1053 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1054
1055 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1056 /* MCS rates */
1057 info->rates[i].Rate = rix | 0x80;
1058 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1059 ah->txchainmask, info->rates[i].Rate);
1060 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1061 is_40, is_sgi, is_sp);
1062 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1063 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1064 continue;
1065 }
1066
1067 /* legacy rates */
1068 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1069 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1070 !(rate->flags & IEEE80211_RATE_ERP_G))
1071 phy = WLAN_RC_PHY_CCK;
1072 else
1073 phy = WLAN_RC_PHY_OFDM;
1074
1075 info->rates[i].Rate = rate->hw_value;
1076 if (rate->hw_value_short) {
1077 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1078 info->rates[i].Rate |= rate->hw_value_short;
1079 } else {
1080 is_sp = false;
1081 }
1082
1083 if (bf->bf_state.bfs_paprd)
1084 info->rates[i].ChSel = ah->txchainmask;
1085 else
1086 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1087 ah->txchainmask, info->rates[i].Rate);
1088
1089 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1090 phy, rate->bitrate * 100, len, rix, is_sp);
1091 }
1092
1093 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1094 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1095 info->flags &= ~ATH9K_TXDESC_RTSENA;
1096
1097 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1098 if (info->flags & ATH9K_TXDESC_RTSENA)
1099 info->flags &= ~ATH9K_TXDESC_CTSENA;
1100 }
1101
1102 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1103 {
1104 struct ieee80211_hdr *hdr;
1105 enum ath9k_pkt_type htype;
1106 __le16 fc;
1107
1108 hdr = (struct ieee80211_hdr *)skb->data;
1109 fc = hdr->frame_control;
1110
1111 if (ieee80211_is_beacon(fc))
1112 htype = ATH9K_PKT_TYPE_BEACON;
1113 else if (ieee80211_is_probe_resp(fc))
1114 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1115 else if (ieee80211_is_atim(fc))
1116 htype = ATH9K_PKT_TYPE_ATIM;
1117 else if (ieee80211_is_pspoll(fc))
1118 htype = ATH9K_PKT_TYPE_PSPOLL;
1119 else
1120 htype = ATH9K_PKT_TYPE_NORMAL;
1121
1122 return htype;
1123 }
1124
1125 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1126 struct ath_txq *txq, int len)
1127 {
1128 struct ath_hw *ah = sc->sc_ah;
1129 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1130 struct ath_buf *bf_first = bf;
1131 struct ath_tx_info info;
1132 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1133
1134 memset(&info, 0, sizeof(info));
1135 info.is_first = true;
1136 info.is_last = true;
1137 info.txpower = MAX_RATE_POWER;
1138 info.qcu = txq->axq_qnum;
1139
1140 info.flags = ATH9K_TXDESC_INTREQ;
1141 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1142 info.flags |= ATH9K_TXDESC_NOACK;
1143 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1144 info.flags |= ATH9K_TXDESC_LDPC;
1145
1146 ath_buf_set_rate(sc, bf, &info, len);
1147
1148 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1149 info.flags |= ATH9K_TXDESC_CLRDMASK;
1150
1151 if (bf->bf_state.bfs_paprd)
1152 info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1153
1154
1155 while (bf) {
1156 struct sk_buff *skb = bf->bf_mpdu;
1157 struct ath_frame_info *fi = get_frame_info(skb);
1158
1159 info.type = get_hw_packet_type(skb);
1160 if (bf->bf_next)
1161 info.link = bf->bf_next->bf_daddr;
1162 else
1163 info.link = 0;
1164
1165 info.buf_addr[0] = bf->bf_buf_addr;
1166 info.buf_len[0] = skb->len;
1167 info.pkt_len = fi->framelen;
1168 info.keyix = fi->keyix;
1169 info.keytype = fi->keytype;
1170
1171 if (aggr) {
1172 if (bf == bf_first)
1173 info.aggr = AGGR_BUF_FIRST;
1174 else if (!bf->bf_next)
1175 info.aggr = AGGR_BUF_LAST;
1176 else
1177 info.aggr = AGGR_BUF_MIDDLE;
1178
1179 info.ndelim = bf->bf_state.ndelim;
1180 info.aggr_len = len;
1181 }
1182
1183 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1184 bf = bf->bf_next;
1185 }
1186 }
1187
1188 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1189 struct ath_atx_tid *tid)
1190 {
1191 struct ath_buf *bf;
1192 enum ATH_AGGR_STATUS status;
1193 struct ieee80211_tx_info *tx_info;
1194 struct list_head bf_q;
1195 int aggr_len;
1196
1197 do {
1198 if (skb_queue_empty(&tid->buf_q))
1199 return;
1200
1201 INIT_LIST_HEAD(&bf_q);
1202
1203 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1204
1205 /*
1206 * no frames picked up to be aggregated;
1207 * block-ack window is not open.
1208 */
1209 if (list_empty(&bf_q))
1210 break;
1211
1212 bf = list_first_entry(&bf_q, struct ath_buf, list);
1213 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1214 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1215
1216 if (tid->ac->clear_ps_filter) {
1217 tid->ac->clear_ps_filter = false;
1218 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1219 } else {
1220 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1221 }
1222
1223 /* if only one frame, send as non-aggregate */
1224 if (bf == bf->bf_lastbf) {
1225 aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1226 bf->bf_state.bf_type = BUF_AMPDU;
1227 } else {
1228 TX_STAT_INC(txq->axq_qnum, a_aggr);
1229 }
1230
1231 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1232 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1233 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1234 status != ATH_AGGR_BAW_CLOSED);
1235 }
1236
1237 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1238 u16 tid, u16 *ssn)
1239 {
1240 struct ath_atx_tid *txtid;
1241 struct ath_node *an;
1242 u8 density;
1243
1244 an = (struct ath_node *)sta->drv_priv;
1245 txtid = ATH_AN_2_TID(an, tid);
1246
1247 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1248 return -EAGAIN;
1249
1250 /* update ampdu factor/density, they may have changed. This may happen
1251 * in HT IBSS when a beacon with HT-info is received after the station
1252 * has already been added.
1253 */
1254 if (sta->ht_cap.ht_supported) {
1255 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1256 sta->ht_cap.ampdu_factor);
1257 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1258 an->mpdudensity = density;
1259 }
1260
1261 txtid->state |= AGGR_ADDBA_PROGRESS;
1262 txtid->paused = true;
1263 *ssn = txtid->seq_start = txtid->seq_next;
1264 txtid->bar_index = -1;
1265
1266 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1267 txtid->baw_head = txtid->baw_tail = 0;
1268
1269 return 0;
1270 }
1271
1272 bool ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid,
1273 bool flush)
1274 {
1275 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1276 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1277 struct ath_txq *txq = txtid->ac->txq;
1278 bool ret = !flush;
1279
1280 if (flush)
1281 txtid->stop_cb = false;
1282
1283 if (txtid->state & AGGR_CLEANUP)
1284 return false;
1285
1286 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1287 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1288 return ret;
1289 }
1290
1291 ath_txq_lock(sc, txq);
1292 txtid->paused = true;
1293
1294 /*
1295 * If frames are still being transmitted for this TID, they will be
1296 * cleaned up during tx completion. To prevent race conditions, this
1297 * TID can only be reused after all in-progress subframes have been
1298 * completed.
1299 */
1300 if (txtid->baw_head != txtid->baw_tail) {
1301 txtid->state |= AGGR_CLEANUP;
1302 ret = false;
1303 txtid->stop_cb = !flush;
1304 } else {
1305 txtid->state &= ~AGGR_ADDBA_COMPLETE;
1306 }
1307
1308 ath_tx_flush_tid(sc, txtid, flush);
1309 ath_txq_unlock_complete(sc, txq);
1310 return ret;
1311 }
1312
1313 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1314 struct ath_node *an)
1315 {
1316 struct ath_atx_tid *tid;
1317 struct ath_atx_ac *ac;
1318 struct ath_txq *txq;
1319 bool buffered;
1320 int tidno;
1321
1322 for (tidno = 0, tid = &an->tid[tidno];
1323 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1324
1325 if (!tid->sched)
1326 continue;
1327
1328 ac = tid->ac;
1329 txq = ac->txq;
1330
1331 ath_txq_lock(sc, txq);
1332
1333 buffered = !skb_queue_empty(&tid->buf_q);
1334
1335 tid->sched = false;
1336 list_del(&tid->list);
1337
1338 if (ac->sched) {
1339 ac->sched = false;
1340 list_del(&ac->list);
1341 }
1342
1343 ath_txq_unlock(sc, txq);
1344
1345 ieee80211_sta_set_buffered(sta, tidno, buffered);
1346 }
1347 }
1348
1349 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1350 {
1351 struct ath_atx_tid *tid;
1352 struct ath_atx_ac *ac;
1353 struct ath_txq *txq;
1354 int tidno;
1355
1356 for (tidno = 0, tid = &an->tid[tidno];
1357 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1358
1359 ac = tid->ac;
1360 txq = ac->txq;
1361
1362 ath_txq_lock(sc, txq);
1363 ac->clear_ps_filter = true;
1364
1365 if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1366 ath_tx_queue_tid(txq, tid);
1367 ath_txq_schedule(sc, txq);
1368 }
1369
1370 ath_txq_unlock_complete(sc, txq);
1371 }
1372 }
1373
1374 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1375 {
1376 struct ath_atx_tid *txtid;
1377 struct ath_node *an;
1378
1379 an = (struct ath_node *)sta->drv_priv;
1380
1381 txtid = ATH_AN_2_TID(an, tid);
1382 txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1383 txtid->state |= AGGR_ADDBA_COMPLETE;
1384 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1385 ath_tx_resume_tid(sc, txtid);
1386 }
1387
1388 /********************/
1389 /* Queue Management */
1390 /********************/
1391
1392 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1393 {
1394 struct ath_hw *ah = sc->sc_ah;
1395 struct ath9k_tx_queue_info qi;
1396 static const int subtype_txq_to_hwq[] = {
1397 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1398 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1399 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1400 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1401 };
1402 int axq_qnum, i;
1403
1404 memset(&qi, 0, sizeof(qi));
1405 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1406 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1407 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1408 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1409 qi.tqi_physCompBuf = 0;
1410
1411 /*
1412 * Enable interrupts only for EOL and DESC conditions.
1413 * We mark tx descriptors to receive a DESC interrupt
1414 * when a tx queue gets deep; otherwise waiting for the
1415 * EOL to reap descriptors. Note that this is done to
1416 * reduce interrupt load and this only defers reaping
1417 * descriptors, never transmitting frames. Aside from
1418 * reducing interrupts this also permits more concurrency.
1419 * The only potential downside is if the tx queue backs
1420 * up in which case the top half of the kernel may backup
1421 * due to a lack of tx descriptors.
1422 *
1423 * The UAPSD queue is an exception, since we take a desc-
1424 * based intr on the EOSP frames.
1425 */
1426 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1427 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1428 } else {
1429 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1430 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1431 else
1432 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1433 TXQ_FLAG_TXDESCINT_ENABLE;
1434 }
1435 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1436 if (axq_qnum == -1) {
1437 /*
1438 * NB: don't print a message, this happens
1439 * normally on parts with too few tx queues
1440 */
1441 return NULL;
1442 }
1443 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1444 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1445
1446 txq->axq_qnum = axq_qnum;
1447 txq->mac80211_qnum = -1;
1448 txq->axq_link = NULL;
1449 __skb_queue_head_init(&txq->complete_q);
1450 INIT_LIST_HEAD(&txq->axq_q);
1451 INIT_LIST_HEAD(&txq->axq_acq);
1452 spin_lock_init(&txq->axq_lock);
1453 txq->axq_depth = 0;
1454 txq->axq_ampdu_depth = 0;
1455 txq->axq_tx_inprogress = false;
1456 sc->tx.txqsetup |= 1<<axq_qnum;
1457
1458 txq->txq_headidx = txq->txq_tailidx = 0;
1459 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1460 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1461 }
1462 return &sc->tx.txq[axq_qnum];
1463 }
1464
1465 int ath_txq_update(struct ath_softc *sc, int qnum,
1466 struct ath9k_tx_queue_info *qinfo)
1467 {
1468 struct ath_hw *ah = sc->sc_ah;
1469 int error = 0;
1470 struct ath9k_tx_queue_info qi;
1471
1472 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1473
1474 ath9k_hw_get_txq_props(ah, qnum, &qi);
1475 qi.tqi_aifs = qinfo->tqi_aifs;
1476 qi.tqi_cwmin = qinfo->tqi_cwmin;
1477 qi.tqi_cwmax = qinfo->tqi_cwmax;
1478 qi.tqi_burstTime = qinfo->tqi_burstTime;
1479 qi.tqi_readyTime = qinfo->tqi_readyTime;
1480
1481 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1482 ath_err(ath9k_hw_common(sc->sc_ah),
1483 "Unable to update hardware queue %u!\n", qnum);
1484 error = -EIO;
1485 } else {
1486 ath9k_hw_resettxqueue(ah, qnum);
1487 }
1488
1489 return error;
1490 }
1491
1492 int ath_cabq_update(struct ath_softc *sc)
1493 {
1494 struct ath9k_tx_queue_info qi;
1495 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1496 int qnum = sc->beacon.cabq->axq_qnum;
1497
1498 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1499 /*
1500 * Ensure the readytime % is within the bounds.
1501 */
1502 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1503 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1504 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1505 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1506
1507 qi.tqi_readyTime = (cur_conf->beacon_interval *
1508 sc->config.cabqReadytime) / 100;
1509 ath_txq_update(sc, qnum, &qi);
1510
1511 return 0;
1512 }
1513
1514 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1515 struct list_head *list)
1516 {
1517 struct ath_buf *bf, *lastbf;
1518 struct list_head bf_head;
1519 struct ath_tx_status ts;
1520
1521 memset(&ts, 0, sizeof(ts));
1522 ts.ts_status = ATH9K_TX_FLUSH;
1523 INIT_LIST_HEAD(&bf_head);
1524
1525 while (!list_empty(list)) {
1526 bf = list_first_entry(list, struct ath_buf, list);
1527
1528 if (bf->bf_stale) {
1529 list_del(&bf->list);
1530
1531 ath_tx_return_buffer(sc, bf);
1532 continue;
1533 }
1534
1535 lastbf = bf->bf_lastbf;
1536 list_cut_position(&bf_head, list, &lastbf->list);
1537 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1538 }
1539 }
1540
1541 /*
1542 * Drain a given TX queue (could be Beacon or Data)
1543 *
1544 * This assumes output has been stopped and
1545 * we do not need to block ath_tx_tasklet.
1546 */
1547 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1548 {
1549 ath_txq_lock(sc, txq);
1550
1551 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1552 int idx = txq->txq_tailidx;
1553
1554 while (!list_empty(&txq->txq_fifo[idx])) {
1555 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1556
1557 INCR(idx, ATH_TXFIFO_DEPTH);
1558 }
1559 txq->txq_tailidx = idx;
1560 }
1561
1562 txq->axq_link = NULL;
1563 txq->axq_tx_inprogress = false;
1564 ath_drain_txq_list(sc, txq, &txq->axq_q);
1565
1566 ath_txq_unlock_complete(sc, txq);
1567 }
1568
1569 bool ath_drain_all_txq(struct ath_softc *sc)
1570 {
1571 struct ath_hw *ah = sc->sc_ah;
1572 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1573 struct ath_txq *txq;
1574 int i;
1575 u32 npend = 0;
1576
1577 if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1578 return true;
1579
1580 ath9k_hw_abort_tx_dma(ah);
1581
1582 /* Check if any queue remains active */
1583 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1584 if (!ATH_TXQ_SETUP(sc, i))
1585 continue;
1586
1587 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1588 npend |= BIT(i);
1589 }
1590
1591 if (npend)
1592 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1593
1594 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1595 if (!ATH_TXQ_SETUP(sc, i))
1596 continue;
1597
1598 /*
1599 * The caller will resume queues with ieee80211_wake_queues.
1600 * Mark the queue as not stopped to prevent ath_tx_complete
1601 * from waking the queue too early.
1602 */
1603 txq = &sc->tx.txq[i];
1604 txq->stopped = false;
1605 ath_draintxq(sc, txq);
1606 }
1607
1608 return !npend;
1609 }
1610
1611 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1612 {
1613 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1614 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1615 }
1616
1617 /* For each axq_acq entry, for each tid, try to schedule packets
1618 * for transmit until ampdu_depth has reached min Q depth.
1619 */
1620 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1621 {
1622 struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1623 struct ath_atx_tid *tid, *last_tid;
1624
1625 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1626 list_empty(&txq->axq_acq) ||
1627 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1628 return;
1629
1630 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1631 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1632
1633 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1634 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1635 list_del(&ac->list);
1636 ac->sched = false;
1637
1638 while (!list_empty(&ac->tid_q)) {
1639 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1640 list);
1641 list_del(&tid->list);
1642 tid->sched = false;
1643
1644 if (tid->paused)
1645 continue;
1646
1647 ath_tx_sched_aggr(sc, txq, tid);
1648
1649 /*
1650 * add tid to round-robin queue if more frames
1651 * are pending for the tid
1652 */
1653 if (!skb_queue_empty(&tid->buf_q))
1654 ath_tx_queue_tid(txq, tid);
1655
1656 if (tid == last_tid ||
1657 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1658 break;
1659 }
1660
1661 if (!list_empty(&ac->tid_q) && !ac->sched) {
1662 ac->sched = true;
1663 list_add_tail(&ac->list, &txq->axq_acq);
1664 }
1665
1666 if (ac == last_ac ||
1667 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1668 return;
1669 }
1670 }
1671
1672 /***********/
1673 /* TX, DMA */
1674 /***********/
1675
1676 /*
1677 * Insert a chain of ath_buf (descriptors) on a txq and
1678 * assume the descriptors are already chained together by caller.
1679 */
1680 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1681 struct list_head *head, bool internal)
1682 {
1683 struct ath_hw *ah = sc->sc_ah;
1684 struct ath_common *common = ath9k_hw_common(ah);
1685 struct ath_buf *bf, *bf_last;
1686 bool puttxbuf = false;
1687 bool edma;
1688
1689 /*
1690 * Insert the frame on the outbound list and
1691 * pass it on to the hardware.
1692 */
1693
1694 if (list_empty(head))
1695 return;
1696
1697 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1698 bf = list_first_entry(head, struct ath_buf, list);
1699 bf_last = list_entry(head->prev, struct ath_buf, list);
1700
1701 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1702 txq->axq_qnum, txq->axq_depth);
1703
1704 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1705 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1706 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1707 puttxbuf = true;
1708 } else {
1709 list_splice_tail_init(head, &txq->axq_q);
1710
1711 if (txq->axq_link) {
1712 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1713 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1714 txq->axq_qnum, txq->axq_link,
1715 ito64(bf->bf_daddr), bf->bf_desc);
1716 } else if (!edma)
1717 puttxbuf = true;
1718
1719 txq->axq_link = bf_last->bf_desc;
1720 }
1721
1722 if (puttxbuf) {
1723 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1724 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1725 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1726 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1727 }
1728
1729 if (!edma) {
1730 TX_STAT_INC(txq->axq_qnum, txstart);
1731 ath9k_hw_txstart(ah, txq->axq_qnum);
1732 }
1733
1734 if (!internal) {
1735 txq->axq_depth++;
1736 if (bf_is_ampdu_not_probing(bf))
1737 txq->axq_ampdu_depth++;
1738 }
1739 }
1740
1741 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1742 struct sk_buff *skb, struct ath_tx_control *txctl)
1743 {
1744 struct ath_frame_info *fi = get_frame_info(skb);
1745 struct list_head bf_head;
1746 struct ath_buf *bf;
1747
1748 /*
1749 * Do not queue to h/w when any of the following conditions is true:
1750 * - there are pending frames in software queue
1751 * - the TID is currently paused for ADDBA/BAR request
1752 * - seqno is not within block-ack window
1753 * - h/w queue depth exceeds low water mark
1754 */
1755 if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1756 !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1757 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1758 /*
1759 * Add this frame to software queue for scheduling later
1760 * for aggregation.
1761 */
1762 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1763 __skb_queue_tail(&tid->buf_q, skb);
1764 if (!txctl->an || !txctl->an->sleeping)
1765 ath_tx_queue_tid(txctl->txq, tid);
1766 return;
1767 }
1768
1769 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1770 if (!bf) {
1771 ieee80211_free_txskb(sc->hw, skb);
1772 return;
1773 }
1774
1775 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1776 bf->bf_state.bf_type = BUF_AMPDU;
1777 INIT_LIST_HEAD(&bf_head);
1778 list_add(&bf->list, &bf_head);
1779
1780 /* Add sub-frame to BAW */
1781 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1782
1783 /* Queue to h/w without aggregation */
1784 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1785 bf->bf_lastbf = bf;
1786 ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1787 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1788 }
1789
1790 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1791 struct ath_atx_tid *tid, struct sk_buff *skb)
1792 {
1793 struct ath_frame_info *fi = get_frame_info(skb);
1794 struct list_head bf_head;
1795 struct ath_buf *bf;
1796
1797 bf = fi->bf;
1798
1799 INIT_LIST_HEAD(&bf_head);
1800 list_add_tail(&bf->list, &bf_head);
1801 bf->bf_state.bf_type = 0;
1802
1803 bf->bf_next = NULL;
1804 bf->bf_lastbf = bf;
1805 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1806 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1807 TX_STAT_INC(txq->axq_qnum, queued);
1808 }
1809
1810 static void setup_frame_info(struct ieee80211_hw *hw,
1811 struct ieee80211_sta *sta,
1812 struct sk_buff *skb,
1813 int framelen)
1814 {
1815 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1816 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1817 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1818 const struct ieee80211_rate *rate;
1819 struct ath_frame_info *fi = get_frame_info(skb);
1820 struct ath_node *an = NULL;
1821 enum ath9k_key_type keytype;
1822 bool short_preamble = false;
1823
1824 /*
1825 * We check if Short Preamble is needed for the CTS rate by
1826 * checking the BSS's global flag.
1827 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1828 */
1829 if (tx_info->control.vif &&
1830 tx_info->control.vif->bss_conf.use_short_preamble)
1831 short_preamble = true;
1832
1833 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1834 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1835
1836 if (sta)
1837 an = (struct ath_node *) sta->drv_priv;
1838
1839 memset(fi, 0, sizeof(*fi));
1840 if (hw_key)
1841 fi->keyix = hw_key->hw_key_idx;
1842 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1843 fi->keyix = an->ps_key;
1844 else
1845 fi->keyix = ATH9K_TXKEYIX_INVALID;
1846 fi->keytype = keytype;
1847 fi->framelen = framelen;
1848 fi->rtscts_rate = rate->hw_value;
1849 if (short_preamble)
1850 fi->rtscts_rate |= rate->hw_value_short;
1851 }
1852
1853 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1854 {
1855 struct ath_hw *ah = sc->sc_ah;
1856 struct ath9k_channel *curchan = ah->curchan;
1857
1858 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1859 (curchan->channelFlags & CHANNEL_5GHZ) &&
1860 (chainmask == 0x7) && (rate < 0x90))
1861 return 0x3;
1862 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
1863 IS_CCK_RATE(rate))
1864 return 0x2;
1865 else
1866 return chainmask;
1867 }
1868
1869 /*
1870 * Assign a descriptor (and sequence number if necessary,
1871 * and map buffer for DMA. Frees skb on error
1872 */
1873 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1874 struct ath_txq *txq,
1875 struct ath_atx_tid *tid,
1876 struct sk_buff *skb)
1877 {
1878 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1879 struct ath_frame_info *fi = get_frame_info(skb);
1880 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1881 struct ath_buf *bf;
1882 int fragno;
1883 u16 seqno;
1884
1885 bf = ath_tx_get_buffer(sc);
1886 if (!bf) {
1887 ath_dbg(common, XMIT, "TX buffers are full\n");
1888 return NULL;
1889 }
1890
1891 ATH_TXBUF_RESET(bf);
1892
1893 if (tid) {
1894 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1895 seqno = tid->seq_next;
1896 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1897
1898 if (fragno)
1899 hdr->seq_ctrl |= cpu_to_le16(fragno);
1900
1901 if (!ieee80211_has_morefrags(hdr->frame_control))
1902 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1903
1904 bf->bf_state.seqno = seqno;
1905 }
1906
1907 bf->bf_mpdu = skb;
1908
1909 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1910 skb->len, DMA_TO_DEVICE);
1911 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1912 bf->bf_mpdu = NULL;
1913 bf->bf_buf_addr = 0;
1914 ath_err(ath9k_hw_common(sc->sc_ah),
1915 "dma_mapping_error() on TX\n");
1916 ath_tx_return_buffer(sc, bf);
1917 return NULL;
1918 }
1919
1920 fi->bf = bf;
1921
1922 return bf;
1923 }
1924
1925 /* Upon failure caller should free skb */
1926 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1927 struct ath_tx_control *txctl)
1928 {
1929 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1930 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1931 struct ieee80211_sta *sta = txctl->sta;
1932 struct ieee80211_vif *vif = info->control.vif;
1933 struct ath_softc *sc = hw->priv;
1934 struct ath_txq *txq = txctl->txq;
1935 struct ath_atx_tid *tid = NULL;
1936 struct ath_buf *bf;
1937 int padpos, padsize;
1938 int frmlen = skb->len + FCS_LEN;
1939 u8 tidno;
1940 int q;
1941
1942 /* NOTE: sta can be NULL according to net/mac80211.h */
1943 if (sta)
1944 txctl->an = (struct ath_node *)sta->drv_priv;
1945
1946 if (info->control.hw_key)
1947 frmlen += info->control.hw_key->icv_len;
1948
1949 /*
1950 * As a temporary workaround, assign seq# here; this will likely need
1951 * to be cleaned up to work better with Beacon transmission and virtual
1952 * BSSes.
1953 */
1954 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1955 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1956 sc->tx.seq_no += 0x10;
1957 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1958 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1959 }
1960
1961 /* Add the padding after the header if this is not already done */
1962 padpos = ieee80211_hdrlen(hdr->frame_control);
1963 padsize = padpos & 3;
1964 if (padsize && skb->len > padpos) {
1965 if (skb_headroom(skb) < padsize)
1966 return -ENOMEM;
1967
1968 skb_push(skb, padsize);
1969 memmove(skb->data, skb->data + padsize, padpos);
1970 hdr = (struct ieee80211_hdr *) skb->data;
1971 }
1972
1973 if ((vif && vif->type != NL80211_IFTYPE_AP &&
1974 vif->type != NL80211_IFTYPE_AP_VLAN) ||
1975 !ieee80211_is_data(hdr->frame_control))
1976 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1977
1978 setup_frame_info(hw, sta, skb, frmlen);
1979
1980 /*
1981 * At this point, the vif, hw_key and sta pointers in the tx control
1982 * info are no longer valid (overwritten by the ath_frame_info data.
1983 */
1984
1985 q = skb_get_queue_mapping(skb);
1986
1987 ath_txq_lock(sc, txq);
1988 if (txq == sc->tx.txq_map[q] &&
1989 ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
1990 !txq->stopped) {
1991 ieee80211_stop_queue(sc->hw, q);
1992 txq->stopped = true;
1993 }
1994
1995 if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
1996 tidno = ieee80211_get_qos_ctl(hdr)[0] &
1997 IEEE80211_QOS_CTL_TID_MASK;
1998 tid = ATH_AN_2_TID(txctl->an, tidno);
1999
2000 WARN_ON(tid->ac->txq != txctl->txq);
2001 }
2002
2003 if ((info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
2004 /*
2005 * Try aggregation if it's a unicast data frame
2006 * and the destination is HT capable.
2007 */
2008 ath_tx_send_ampdu(sc, tid, skb, txctl);
2009 goto out;
2010 }
2011
2012 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
2013 if (!bf) {
2014 if (txctl->paprd)
2015 dev_kfree_skb_any(skb);
2016 else
2017 ieee80211_free_txskb(sc->hw, skb);
2018 goto out;
2019 }
2020
2021 bf->bf_state.bfs_paprd = txctl->paprd;
2022
2023 if (txctl->paprd)
2024 bf->bf_state.bfs_paprd_timestamp = jiffies;
2025
2026 ath_set_rates(vif, sta, bf);
2027 ath_tx_send_normal(sc, txctl->txq, tid, skb);
2028
2029 out:
2030 ath_txq_unlock(sc, txq);
2031
2032 return 0;
2033 }
2034
2035 /*****************/
2036 /* TX Completion */
2037 /*****************/
2038
2039 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2040 int tx_flags, struct ath_txq *txq)
2041 {
2042 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2043 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2044 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2045 int q, padpos, padsize;
2046 unsigned long flags;
2047
2048 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2049
2050 if (sc->sc_ah->caldata)
2051 sc->sc_ah->caldata->paprd_packet_sent = true;
2052
2053 if (!(tx_flags & ATH_TX_ERROR))
2054 /* Frame was ACKed */
2055 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2056
2057 padpos = ieee80211_hdrlen(hdr->frame_control);
2058 padsize = padpos & 3;
2059 if (padsize && skb->len>padpos+padsize) {
2060 /*
2061 * Remove MAC header padding before giving the frame back to
2062 * mac80211.
2063 */
2064 memmove(skb->data + padsize, skb->data, padpos);
2065 skb_pull(skb, padsize);
2066 }
2067
2068 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2069 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2070 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2071 ath_dbg(common, PS,
2072 "Going back to sleep after having received TX status (0x%lx)\n",
2073 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2074 PS_WAIT_FOR_CAB |
2075 PS_WAIT_FOR_PSPOLL_DATA |
2076 PS_WAIT_FOR_TX_ACK));
2077 }
2078 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2079
2080 q = skb_get_queue_mapping(skb);
2081 if (txq == sc->tx.txq_map[q]) {
2082 if (WARN_ON(--txq->pending_frames < 0))
2083 txq->pending_frames = 0;
2084
2085 if (txq->stopped &&
2086 txq->pending_frames < sc->tx.txq_max_pending[q]) {
2087 ieee80211_wake_queue(sc->hw, q);
2088 txq->stopped = false;
2089 }
2090 }
2091
2092 __skb_queue_tail(&txq->complete_q, skb);
2093 }
2094
2095 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2096 struct ath_txq *txq, struct list_head *bf_q,
2097 struct ath_tx_status *ts, int txok)
2098 {
2099 struct sk_buff *skb = bf->bf_mpdu;
2100 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2101 unsigned long flags;
2102 int tx_flags = 0;
2103
2104 if (!txok)
2105 tx_flags |= ATH_TX_ERROR;
2106
2107 if (ts->ts_status & ATH9K_TXERR_FILT)
2108 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2109
2110 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2111 bf->bf_buf_addr = 0;
2112
2113 if (bf->bf_state.bfs_paprd) {
2114 if (time_after(jiffies,
2115 bf->bf_state.bfs_paprd_timestamp +
2116 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2117 dev_kfree_skb_any(skb);
2118 else
2119 complete(&sc->paprd_complete);
2120 } else {
2121 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2122 ath_tx_complete(sc, skb, tx_flags, txq);
2123 }
2124 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2125 * accidentally reference it later.
2126 */
2127 bf->bf_mpdu = NULL;
2128
2129 /*
2130 * Return the list of ath_buf of this mpdu to free queue
2131 */
2132 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2133 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2134 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2135 }
2136
2137 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2138 struct ath_tx_status *ts, int nframes, int nbad,
2139 int txok)
2140 {
2141 struct sk_buff *skb = bf->bf_mpdu;
2142 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2143 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2144 struct ieee80211_hw *hw = sc->hw;
2145 struct ath_hw *ah = sc->sc_ah;
2146 u8 i, tx_rateindex;
2147
2148 if (txok)
2149 tx_info->status.ack_signal = ts->ts_rssi;
2150
2151 tx_rateindex = ts->ts_rateindex;
2152 WARN_ON(tx_rateindex >= hw->max_rates);
2153
2154 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2155 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2156
2157 BUG_ON(nbad > nframes);
2158 }
2159 tx_info->status.ampdu_len = nframes;
2160 tx_info->status.ampdu_ack_len = nframes - nbad;
2161
2162 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2163 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2164 /*
2165 * If an underrun error is seen assume it as an excessive
2166 * retry only if max frame trigger level has been reached
2167 * (2 KB for single stream, and 4 KB for dual stream).
2168 * Adjust the long retry as if the frame was tried
2169 * hw->max_rate_tries times to affect how rate control updates
2170 * PER for the failed rate.
2171 * In case of congestion on the bus penalizing this type of
2172 * underruns should help hardware actually transmit new frames
2173 * successfully by eventually preferring slower rates.
2174 * This itself should also alleviate congestion on the bus.
2175 */
2176 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2177 ATH9K_TX_DELIM_UNDERRUN)) &&
2178 ieee80211_is_data(hdr->frame_control) &&
2179 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2180 tx_info->status.rates[tx_rateindex].count =
2181 hw->max_rate_tries;
2182 }
2183
2184 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2185 tx_info->status.rates[i].count = 0;
2186 tx_info->status.rates[i].idx = -1;
2187 }
2188
2189 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2190 }
2191
2192 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2193 {
2194 struct ath_hw *ah = sc->sc_ah;
2195 struct ath_common *common = ath9k_hw_common(ah);
2196 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2197 struct list_head bf_head;
2198 struct ath_desc *ds;
2199 struct ath_tx_status ts;
2200 int status;
2201
2202 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2203 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2204 txq->axq_link);
2205
2206 ath_txq_lock(sc, txq);
2207 for (;;) {
2208 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2209 break;
2210
2211 if (list_empty(&txq->axq_q)) {
2212 txq->axq_link = NULL;
2213 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2214 ath_txq_schedule(sc, txq);
2215 break;
2216 }
2217 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2218
2219 /*
2220 * There is a race condition that a BH gets scheduled
2221 * after sw writes TxE and before hw re-load the last
2222 * descriptor to get the newly chained one.
2223 * Software must keep the last DONE descriptor as a
2224 * holding descriptor - software does so by marking
2225 * it with the STALE flag.
2226 */
2227 bf_held = NULL;
2228 if (bf->bf_stale) {
2229 bf_held = bf;
2230 if (list_is_last(&bf_held->list, &txq->axq_q))
2231 break;
2232
2233 bf = list_entry(bf_held->list.next, struct ath_buf,
2234 list);
2235 }
2236
2237 lastbf = bf->bf_lastbf;
2238 ds = lastbf->bf_desc;
2239
2240 memset(&ts, 0, sizeof(ts));
2241 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2242 if (status == -EINPROGRESS)
2243 break;
2244
2245 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2246
2247 /*
2248 * Remove ath_buf's of the same transmit unit from txq,
2249 * however leave the last descriptor back as the holding
2250 * descriptor for hw.
2251 */
2252 lastbf->bf_stale = true;
2253 INIT_LIST_HEAD(&bf_head);
2254 if (!list_is_singular(&lastbf->list))
2255 list_cut_position(&bf_head,
2256 &txq->axq_q, lastbf->list.prev);
2257
2258 if (bf_held) {
2259 list_del(&bf_held->list);
2260 ath_tx_return_buffer(sc, bf_held);
2261 }
2262
2263 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2264 }
2265 ath_txq_unlock_complete(sc, txq);
2266 }
2267
2268 void ath_tx_tasklet(struct ath_softc *sc)
2269 {
2270 struct ath_hw *ah = sc->sc_ah;
2271 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2272 int i;
2273
2274 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2275 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2276 ath_tx_processq(sc, &sc->tx.txq[i]);
2277 }
2278 }
2279
2280 void ath_tx_edma_tasklet(struct ath_softc *sc)
2281 {
2282 struct ath_tx_status ts;
2283 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2284 struct ath_hw *ah = sc->sc_ah;
2285 struct ath_txq *txq;
2286 struct ath_buf *bf, *lastbf;
2287 struct list_head bf_head;
2288 struct list_head *fifo_list;
2289 int status;
2290
2291 for (;;) {
2292 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2293 break;
2294
2295 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2296 if (status == -EINPROGRESS)
2297 break;
2298 if (status == -EIO) {
2299 ath_dbg(common, XMIT, "Error processing tx status\n");
2300 break;
2301 }
2302
2303 /* Process beacon completions separately */
2304 if (ts.qid == sc->beacon.beaconq) {
2305 sc->beacon.tx_processed = true;
2306 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2307 continue;
2308 }
2309
2310 txq = &sc->tx.txq[ts.qid];
2311
2312 ath_txq_lock(sc, txq);
2313
2314 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2315
2316 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2317 if (list_empty(fifo_list)) {
2318 ath_txq_unlock(sc, txq);
2319 return;
2320 }
2321
2322 bf = list_first_entry(fifo_list, struct ath_buf, list);
2323 if (bf->bf_stale) {
2324 list_del(&bf->list);
2325 ath_tx_return_buffer(sc, bf);
2326 bf = list_first_entry(fifo_list, struct ath_buf, list);
2327 }
2328
2329 lastbf = bf->bf_lastbf;
2330
2331 INIT_LIST_HEAD(&bf_head);
2332 if (list_is_last(&lastbf->list, fifo_list)) {
2333 list_splice_tail_init(fifo_list, &bf_head);
2334 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2335
2336 if (!list_empty(&txq->axq_q)) {
2337 struct list_head bf_q;
2338
2339 INIT_LIST_HEAD(&bf_q);
2340 txq->axq_link = NULL;
2341 list_splice_tail_init(&txq->axq_q, &bf_q);
2342 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2343 }
2344 } else {
2345 lastbf->bf_stale = true;
2346 if (bf != lastbf)
2347 list_cut_position(&bf_head, fifo_list,
2348 lastbf->list.prev);
2349 }
2350
2351 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2352 ath_txq_unlock_complete(sc, txq);
2353 }
2354 }
2355
2356 /*****************/
2357 /* Init, Cleanup */
2358 /*****************/
2359
2360 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2361 {
2362 struct ath_descdma *dd = &sc->txsdma;
2363 u8 txs_len = sc->sc_ah->caps.txs_len;
2364
2365 dd->dd_desc_len = size * txs_len;
2366 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2367 &dd->dd_desc_paddr, GFP_KERNEL);
2368 if (!dd->dd_desc)
2369 return -ENOMEM;
2370
2371 return 0;
2372 }
2373
2374 static int ath_tx_edma_init(struct ath_softc *sc)
2375 {
2376 int err;
2377
2378 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2379 if (!err)
2380 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2381 sc->txsdma.dd_desc_paddr,
2382 ATH_TXSTATUS_RING_SIZE);
2383
2384 return err;
2385 }
2386
2387 int ath_tx_init(struct ath_softc *sc, int nbufs)
2388 {
2389 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2390 int error = 0;
2391
2392 spin_lock_init(&sc->tx.txbuflock);
2393
2394 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2395 "tx", nbufs, 1, 1);
2396 if (error != 0) {
2397 ath_err(common,
2398 "Failed to allocate tx descriptors: %d\n", error);
2399 return error;
2400 }
2401
2402 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2403 "beacon", ATH_BCBUF, 1, 1);
2404 if (error != 0) {
2405 ath_err(common,
2406 "Failed to allocate beacon descriptors: %d\n", error);
2407 return error;
2408 }
2409
2410 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2411
2412 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2413 error = ath_tx_edma_init(sc);
2414
2415 return error;
2416 }
2417
2418 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2419 {
2420 struct ath_atx_tid *tid;
2421 struct ath_atx_ac *ac;
2422 int tidno, acno;
2423
2424 for (tidno = 0, tid = &an->tid[tidno];
2425 tidno < IEEE80211_NUM_TIDS;
2426 tidno++, tid++) {
2427 tid->an = an;
2428 tid->tidno = tidno;
2429 tid->seq_start = tid->seq_next = 0;
2430 tid->baw_size = WME_MAX_BA;
2431 tid->baw_head = tid->baw_tail = 0;
2432 tid->sched = false;
2433 tid->paused = false;
2434 tid->state &= ~AGGR_CLEANUP;
2435 __skb_queue_head_init(&tid->buf_q);
2436 acno = TID_TO_WME_AC(tidno);
2437 tid->ac = &an->ac[acno];
2438 tid->state &= ~AGGR_ADDBA_COMPLETE;
2439 tid->state &= ~AGGR_ADDBA_PROGRESS;
2440 tid->stop_cb = false;
2441 }
2442
2443 for (acno = 0, ac = &an->ac[acno];
2444 acno < IEEE80211_NUM_ACS; acno++, ac++) {
2445 ac->sched = false;
2446 ac->txq = sc->tx.txq_map[acno];
2447 INIT_LIST_HEAD(&ac->tid_q);
2448 }
2449 }
2450
2451 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2452 {
2453 struct ath_atx_ac *ac;
2454 struct ath_atx_tid *tid;
2455 struct ath_txq *txq;
2456 int tidno;
2457
2458 for (tidno = 0, tid = &an->tid[tidno];
2459 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2460
2461 ac = tid->ac;
2462 txq = ac->txq;
2463
2464 ath_txq_lock(sc, txq);
2465
2466 if (tid->sched) {
2467 list_del(&tid->list);
2468 tid->sched = false;
2469 }
2470
2471 if (ac->sched) {
2472 list_del(&ac->list);
2473 tid->ac->sched = false;
2474 }
2475
2476 ath_tid_drain(sc, txq, tid);
2477 ath_tx_clear_tid(sc, tid);
2478
2479 ath_txq_unlock(sc, txq);
2480 }
2481 }