2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/dma-mapping.h>
19 #include "ar9003_mac.h"
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 static u16 bits_per_symbol
[][2] = {
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
50 static void ath_tx_send_normal(struct ath_softc
*sc
, struct ath_txq
*txq
,
51 struct ath_atx_tid
*tid
, struct sk_buff
*skb
);
52 static void ath_tx_complete(struct ath_softc
*sc
, struct sk_buff
*skb
,
53 int tx_flags
, struct ath_txq
*txq
);
54 static void ath_tx_complete_buf(struct ath_softc
*sc
, struct ath_buf
*bf
,
55 struct ath_txq
*txq
, struct list_head
*bf_q
,
56 struct ath_tx_status
*ts
, int txok
);
57 static void ath_tx_txqaddbuf(struct ath_softc
*sc
, struct ath_txq
*txq
,
58 struct list_head
*head
, bool internal
);
59 static void ath_tx_rc_status(struct ath_softc
*sc
, struct ath_buf
*bf
,
60 struct ath_tx_status
*ts
, int nframes
, int nbad
,
62 static void ath_tx_update_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
64 static struct ath_buf
*ath_tx_setup_buffer(struct ath_softc
*sc
,
66 struct ath_atx_tid
*tid
,
76 static int ath_max_4ms_framelen
[4][32] = {
78 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
79 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
80 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
81 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
84 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
85 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
86 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
87 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
90 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
91 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
92 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
93 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
96 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
97 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
98 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
99 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
103 /*********************/
104 /* Aggregation logic */
105 /*********************/
107 static void ath_tx_queue_tid(struct ath_txq
*txq
, struct ath_atx_tid
*tid
)
109 struct ath_atx_ac
*ac
= tid
->ac
;
118 list_add_tail(&tid
->list
, &ac
->tid_q
);
124 list_add_tail(&ac
->list
, &txq
->axq_acq
);
127 static void ath_tx_resume_tid(struct ath_softc
*sc
, struct ath_atx_tid
*tid
)
129 struct ath_txq
*txq
= tid
->ac
->txq
;
131 WARN_ON(!tid
->paused
);
133 spin_lock_bh(&txq
->axq_lock
);
136 if (skb_queue_empty(&tid
->buf_q
))
139 ath_tx_queue_tid(txq
, tid
);
140 ath_txq_schedule(sc
, txq
);
142 spin_unlock_bh(&txq
->axq_lock
);
145 static struct ath_frame_info
*get_frame_info(struct sk_buff
*skb
)
147 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
148 BUILD_BUG_ON(sizeof(struct ath_frame_info
) >
149 sizeof(tx_info
->rate_driver_data
));
150 return (struct ath_frame_info
*) &tx_info
->rate_driver_data
[0];
153 static void ath_send_bar(struct ath_atx_tid
*tid
, u16 seqno
)
155 ieee80211_send_bar(tid
->an
->vif
, tid
->an
->sta
->addr
, tid
->tidno
,
156 seqno
<< IEEE80211_SEQ_SEQ_SHIFT
);
159 static void ath_tx_flush_tid(struct ath_softc
*sc
, struct ath_atx_tid
*tid
)
161 struct ath_txq
*txq
= tid
->ac
->txq
;
164 struct list_head bf_head
;
165 struct ath_tx_status ts
;
166 struct ath_frame_info
*fi
;
167 bool sendbar
= false;
169 INIT_LIST_HEAD(&bf_head
);
171 memset(&ts
, 0, sizeof(ts
));
173 while ((skb
= __skb_dequeue(&tid
->buf_q
))) {
174 fi
= get_frame_info(skb
);
177 if (bf
&& fi
->retries
) {
178 list_add_tail(&bf
->list
, &bf_head
);
179 ath_tx_update_baw(sc
, tid
, bf
->bf_state
.seqno
);
180 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, &ts
, 0);
183 ath_tx_send_normal(sc
, txq
, NULL
, skb
);
187 if (tid
->baw_head
== tid
->baw_tail
) {
188 tid
->state
&= ~AGGR_ADDBA_COMPLETE
;
189 tid
->state
&= ~AGGR_CLEANUP
;
193 ath_send_bar(tid
, tid
->seq_start
);
196 static void ath_tx_update_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
201 index
= ATH_BA_INDEX(tid
->seq_start
, seqno
);
202 cindex
= (tid
->baw_head
+ index
) & (ATH_TID_MAX_BUFS
- 1);
204 __clear_bit(cindex
, tid
->tx_buf
);
206 while (tid
->baw_head
!= tid
->baw_tail
&& !test_bit(tid
->baw_head
, tid
->tx_buf
)) {
207 INCR(tid
->seq_start
, IEEE80211_SEQ_MAX
);
208 INCR(tid
->baw_head
, ATH_TID_MAX_BUFS
);
209 if (tid
->bar_index
>= 0)
214 static void ath_tx_addto_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
219 index
= ATH_BA_INDEX(tid
->seq_start
, seqno
);
220 cindex
= (tid
->baw_head
+ index
) & (ATH_TID_MAX_BUFS
- 1);
221 __set_bit(cindex
, tid
->tx_buf
);
223 if (index
>= ((tid
->baw_tail
- tid
->baw_head
) &
224 (ATH_TID_MAX_BUFS
- 1))) {
225 tid
->baw_tail
= cindex
;
226 INCR(tid
->baw_tail
, ATH_TID_MAX_BUFS
);
231 * TODO: For frame(s) that are in the retry state, we will reuse the
232 * sequence number(s) without setting the retry bit. The
233 * alternative is to give up on these and BAR the receiver's window
236 static void ath_tid_drain(struct ath_softc
*sc
, struct ath_txq
*txq
,
237 struct ath_atx_tid
*tid
)
242 struct list_head bf_head
;
243 struct ath_tx_status ts
;
244 struct ath_frame_info
*fi
;
246 memset(&ts
, 0, sizeof(ts
));
247 INIT_LIST_HEAD(&bf_head
);
249 while ((skb
= __skb_dequeue(&tid
->buf_q
))) {
250 fi
= get_frame_info(skb
);
254 ath_tx_complete(sc
, skb
, ATH_TX_ERROR
, txq
);
258 list_add_tail(&bf
->list
, &bf_head
);
261 ath_tx_update_baw(sc
, tid
, bf
->bf_state
.seqno
);
263 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, &ts
, 0);
266 tid
->seq_next
= tid
->seq_start
;
267 tid
->baw_tail
= tid
->baw_head
;
271 static void ath_tx_set_retry(struct ath_softc
*sc
, struct ath_txq
*txq
,
272 struct sk_buff
*skb
, int count
)
274 struct ath_frame_info
*fi
= get_frame_info(skb
);
275 struct ath_buf
*bf
= fi
->bf
;
276 struct ieee80211_hdr
*hdr
;
277 int prev
= fi
->retries
;
279 TX_STAT_INC(txq
->axq_qnum
, a_retries
);
280 fi
->retries
+= count
;
285 hdr
= (struct ieee80211_hdr
*)skb
->data
;
286 hdr
->frame_control
|= cpu_to_le16(IEEE80211_FCTL_RETRY
);
287 dma_sync_single_for_device(sc
->dev
, bf
->bf_buf_addr
,
288 sizeof(*hdr
), DMA_TO_DEVICE
);
291 static struct ath_buf
*ath_tx_get_buffer(struct ath_softc
*sc
)
293 struct ath_buf
*bf
= NULL
;
295 spin_lock_bh(&sc
->tx
.txbuflock
);
297 if (unlikely(list_empty(&sc
->tx
.txbuf
))) {
298 spin_unlock_bh(&sc
->tx
.txbuflock
);
302 bf
= list_first_entry(&sc
->tx
.txbuf
, struct ath_buf
, list
);
305 spin_unlock_bh(&sc
->tx
.txbuflock
);
310 static void ath_tx_return_buffer(struct ath_softc
*sc
, struct ath_buf
*bf
)
312 spin_lock_bh(&sc
->tx
.txbuflock
);
313 list_add_tail(&bf
->list
, &sc
->tx
.txbuf
);
314 spin_unlock_bh(&sc
->tx
.txbuflock
);
317 static struct ath_buf
* ath_clone_txbuf(struct ath_softc
*sc
, struct ath_buf
*bf
)
321 tbf
= ath_tx_get_buffer(sc
);
325 ATH_TXBUF_RESET(tbf
);
327 tbf
->bf_mpdu
= bf
->bf_mpdu
;
328 tbf
->bf_buf_addr
= bf
->bf_buf_addr
;
329 memcpy(tbf
->bf_desc
, bf
->bf_desc
, sc
->sc_ah
->caps
.tx_desc_len
);
330 tbf
->bf_state
= bf
->bf_state
;
335 static void ath_tx_count_frames(struct ath_softc
*sc
, struct ath_buf
*bf
,
336 struct ath_tx_status
*ts
, int txok
,
337 int *nframes
, int *nbad
)
339 struct ath_frame_info
*fi
;
341 u32 ba
[WME_BA_BMP_SIZE
>> 5];
348 isaggr
= bf_isaggr(bf
);
350 seq_st
= ts
->ts_seqnum
;
351 memcpy(ba
, &ts
->ba_low
, WME_BA_BMP_SIZE
>> 3);
355 fi
= get_frame_info(bf
->bf_mpdu
);
356 ba_index
= ATH_BA_INDEX(seq_st
, bf
->bf_state
.seqno
);
359 if (!txok
|| (isaggr
&& !ATH_BA_ISSET(ba
, ba_index
)))
367 static void ath_tx_complete_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
368 struct ath_buf
*bf
, struct list_head
*bf_q
,
369 struct ath_tx_status
*ts
, int txok
, bool retry
)
371 struct ath_node
*an
= NULL
;
373 struct ieee80211_sta
*sta
;
374 struct ieee80211_hw
*hw
= sc
->hw
;
375 struct ieee80211_hdr
*hdr
;
376 struct ieee80211_tx_info
*tx_info
;
377 struct ath_atx_tid
*tid
= NULL
;
378 struct ath_buf
*bf_next
, *bf_last
= bf
->bf_lastbf
;
379 struct list_head bf_head
;
380 struct sk_buff_head bf_pending
;
381 u16 seq_st
= 0, acked_cnt
= 0, txfail_cnt
= 0, seq_first
;
382 u32 ba
[WME_BA_BMP_SIZE
>> 5];
383 int isaggr
, txfail
, txpending
, sendbar
= 0, needreset
= 0, nbad
= 0;
384 bool rc_update
= true;
385 struct ieee80211_tx_rate rates
[4];
386 struct ath_frame_info
*fi
;
389 bool flush
= !!(ts
->ts_status
& ATH9K_TX_FLUSH
);
394 hdr
= (struct ieee80211_hdr
*)skb
->data
;
396 tx_info
= IEEE80211_SKB_CB(skb
);
398 memcpy(rates
, tx_info
->control
.rates
, sizeof(rates
));
400 retries
= ts
->ts_longretry
+ 1;
401 for (i
= 0; i
< ts
->ts_rateindex
; i
++)
402 retries
+= rates
[i
].count
;
406 sta
= ieee80211_find_sta_by_ifaddr(hw
, hdr
->addr1
, hdr
->addr2
);
410 INIT_LIST_HEAD(&bf_head
);
412 bf_next
= bf
->bf_next
;
414 if (!bf
->bf_stale
|| bf_next
!= NULL
)
415 list_move_tail(&bf
->list
, &bf_head
);
417 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, ts
, 0);
424 an
= (struct ath_node
*)sta
->drv_priv
;
425 tidno
= ieee80211_get_qos_ctl(hdr
)[0] & IEEE80211_QOS_CTL_TID_MASK
;
426 tid
= ATH_AN_2_TID(an
, tidno
);
427 seq_first
= tid
->seq_start
;
430 * The hardware occasionally sends a tx status for the wrong TID.
431 * In this case, the BA status cannot be considered valid and all
432 * subframes need to be retransmitted
434 if (tidno
!= ts
->tid
)
437 isaggr
= bf_isaggr(bf
);
438 memset(ba
, 0, WME_BA_BMP_SIZE
>> 3);
440 if (isaggr
&& txok
) {
441 if (ts
->ts_flags
& ATH9K_TX_BA
) {
442 seq_st
= ts
->ts_seqnum
;
443 memcpy(ba
, &ts
->ba_low
, WME_BA_BMP_SIZE
>> 3);
446 * AR5416 can become deaf/mute when BA
447 * issue happens. Chip needs to be reset.
448 * But AP code may have sychronization issues
449 * when perform internal reset in this routine.
450 * Only enable reset in STA mode for now.
452 if (sc
->sc_ah
->opmode
== NL80211_IFTYPE_STATION
)
457 __skb_queue_head_init(&bf_pending
);
459 ath_tx_count_frames(sc
, bf
, ts
, txok
, &nframes
, &nbad
);
461 u16 seqno
= bf
->bf_state
.seqno
;
463 txfail
= txpending
= sendbar
= 0;
464 bf_next
= bf
->bf_next
;
467 tx_info
= IEEE80211_SKB_CB(skb
);
468 fi
= get_frame_info(skb
);
470 if (ATH_BA_ISSET(ba
, ATH_BA_INDEX(seq_st
, seqno
))) {
471 /* transmit completion, subframe is
472 * acked by block ack */
474 } else if (!isaggr
&& txok
) {
475 /* transmit completion */
477 } else if ((tid
->state
& AGGR_CLEANUP
) || !retry
) {
479 * cleanup in progress, just fail
480 * the un-acked sub-frames
485 } else if (fi
->retries
< ATH_MAX_SW_RETRIES
) {
486 if (txok
|| !an
->sleeping
)
487 ath_tx_set_retry(sc
, txq
, bf
->bf_mpdu
,
494 bar_index
= max_t(int, bar_index
,
495 ATH_BA_INDEX(seq_first
, seqno
));
499 * Make sure the last desc is reclaimed if it
500 * not a holding desc.
502 INIT_LIST_HEAD(&bf_head
);
503 if ((sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) ||
504 bf_next
!= NULL
|| !bf_last
->bf_stale
)
505 list_move_tail(&bf
->list
, &bf_head
);
507 if (!txpending
|| (tid
->state
& AGGR_CLEANUP
)) {
509 * complete the acked-ones/xretried ones; update
512 ath_tx_update_baw(sc
, tid
, seqno
);
514 if (rc_update
&& (acked_cnt
== 1 || txfail_cnt
== 1)) {
515 memcpy(tx_info
->control
.rates
, rates
, sizeof(rates
));
516 ath_tx_rc_status(sc
, bf
, ts
, nframes
, nbad
, txok
);
520 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, ts
,
523 /* retry the un-acked ones */
524 if (!(sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) &&
525 bf
->bf_next
== NULL
&& bf_last
->bf_stale
) {
528 tbf
= ath_clone_txbuf(sc
, bf_last
);
530 * Update tx baw and complete the
531 * frame with failed status if we
535 ath_tx_update_baw(sc
, tid
, seqno
);
537 ath_tx_complete_buf(sc
, bf
, txq
,
539 bar_index
= max_t(int, bar_index
,
540 ATH_BA_INDEX(seq_first
, seqno
));
548 * Put this buffer to the temporary pending
549 * queue to retain ordering
551 __skb_queue_tail(&bf_pending
, skb
);
557 if (bar_index
>= 0) {
558 u16 bar_seq
= ATH_BA_INDEX2SEQ(seq_first
, bar_index
);
559 ath_send_bar(tid
, ATH_BA_INDEX2SEQ(seq_first
, bar_index
+ 1));
560 if (BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, bar_seq
))
561 tid
->bar_index
= ATH_BA_INDEX(tid
->seq_start
, bar_seq
);
564 /* prepend un-acked frames to the beginning of the pending frame queue */
565 if (!skb_queue_empty(&bf_pending
)) {
567 ieee80211_sta_set_buffered(sta
, tid
->tidno
, true);
569 skb_queue_splice(&bf_pending
, &tid
->buf_q
);
571 ath_tx_queue_tid(txq
, tid
);
573 if (ts
->ts_status
& ATH9K_TXERR_FILT
)
574 tid
->ac
->clear_ps_filter
= true;
578 if (tid
->state
& AGGR_CLEANUP
)
579 ath_tx_flush_tid(sc
, tid
);
584 RESET_STAT_INC(sc
, RESET_TYPE_TX_ERROR
);
585 ieee80211_queue_work(sc
->hw
, &sc
->hw_reset_work
);
589 static bool ath_lookup_legacy(struct ath_buf
*bf
)
592 struct ieee80211_tx_info
*tx_info
;
593 struct ieee80211_tx_rate
*rates
;
597 tx_info
= IEEE80211_SKB_CB(skb
);
598 rates
= tx_info
->control
.rates
;
600 for (i
= 0; i
< 4; i
++) {
601 if (!rates
[i
].count
|| rates
[i
].idx
< 0)
604 if (!(rates
[i
].flags
& IEEE80211_TX_RC_MCS
))
611 static u32
ath_lookup_rate(struct ath_softc
*sc
, struct ath_buf
*bf
,
612 struct ath_atx_tid
*tid
)
615 struct ieee80211_tx_info
*tx_info
;
616 struct ieee80211_tx_rate
*rates
;
617 struct ath_mci_profile
*mci
= &sc
->btcoex
.mci
;
618 u32 max_4ms_framelen
, frmlen
;
619 u16 aggr_limit
, legacy
= 0;
623 tx_info
= IEEE80211_SKB_CB(skb
);
624 rates
= tx_info
->control
.rates
;
627 * Find the lowest frame length among the rate series that will have a
628 * 4ms transmit duration.
629 * TODO - TXOP limit needs to be considered.
631 max_4ms_framelen
= ATH_AMPDU_LIMIT_MAX
;
633 for (i
= 0; i
< 4; i
++) {
639 if (!(rates
[i
].flags
& IEEE80211_TX_RC_MCS
)) {
644 if (rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
649 if (rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
)
652 frmlen
= ath_max_4ms_framelen
[modeidx
][rates
[i
].idx
];
653 max_4ms_framelen
= min(max_4ms_framelen
, frmlen
);
657 * limit aggregate size by the minimum rate if rate selected is
658 * not a probe rate, if rate selected is a probe rate then
659 * avoid aggregation of this packet.
661 if (tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
|| legacy
)
664 if ((sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_MCI
) && mci
->aggr_limit
)
665 aggr_limit
= (max_4ms_framelen
* mci
->aggr_limit
) >> 4;
666 else if (sc
->sc_flags
& SC_OP_BT_PRIORITY_DETECTED
)
667 aggr_limit
= min((max_4ms_framelen
* 3) / 8,
668 (u32
)ATH_AMPDU_LIMIT_MAX
);
670 aggr_limit
= min(max_4ms_framelen
,
671 (u32
)ATH_AMPDU_LIMIT_MAX
);
674 * h/w can accept aggregates up to 16 bit lengths (65535).
675 * The IE, however can hold up to 65536, which shows up here
676 * as zero. Ignore 65536 since we are constrained by hw.
678 if (tid
->an
->maxampdu
)
679 aggr_limit
= min(aggr_limit
, tid
->an
->maxampdu
);
685 * Returns the number of delimiters to be added to
686 * meet the minimum required mpdudensity.
688 static int ath_compute_num_delims(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
689 struct ath_buf
*bf
, u16 frmlen
,
692 #define FIRST_DESC_NDELIMS 60
693 struct sk_buff
*skb
= bf
->bf_mpdu
;
694 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
695 u32 nsymbits
, nsymbols
;
698 int width
, streams
, half_gi
, ndelim
, mindelim
;
699 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
701 /* Select standard number of delimiters based on frame length alone */
702 ndelim
= ATH_AGGR_GET_NDELIM(frmlen
);
705 * If encryption enabled, hardware requires some more padding between
707 * TODO - this could be improved to be dependent on the rate.
708 * The hardware can keep up at lower rates, but not higher rates
710 if ((fi
->keyix
!= ATH9K_TXKEYIX_INVALID
) &&
711 !(sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
))
712 ndelim
+= ATH_AGGR_ENCRYPTDELIM
;
715 * Add delimiter when using RTS/CTS with aggregation
716 * and non enterprise AR9003 card
718 if (first_subfrm
&& !AR_SREV_9580_10_OR_LATER(sc
->sc_ah
) &&
719 (sc
->sc_ah
->ent_mode
& AR_ENT_OTP_MIN_PKT_SIZE_DISABLE
))
720 ndelim
= max(ndelim
, FIRST_DESC_NDELIMS
);
723 * Convert desired mpdu density from microeconds to bytes based
724 * on highest rate in rate series (i.e. first rate) to determine
725 * required minimum length for subframe. Take into account
726 * whether high rate is 20 or 40Mhz and half or full GI.
728 * If there is no mpdu density restriction, no further calculation
732 if (tid
->an
->mpdudensity
== 0)
735 rix
= tx_info
->control
.rates
[0].idx
;
736 flags
= tx_info
->control
.rates
[0].flags
;
737 width
= (flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
) ? 1 : 0;
738 half_gi
= (flags
& IEEE80211_TX_RC_SHORT_GI
) ? 1 : 0;
741 nsymbols
= NUM_SYMBOLS_PER_USEC_HALFGI(tid
->an
->mpdudensity
);
743 nsymbols
= NUM_SYMBOLS_PER_USEC(tid
->an
->mpdudensity
);
748 streams
= HT_RC_2_STREAMS(rix
);
749 nsymbits
= bits_per_symbol
[rix
% 8][width
] * streams
;
750 minlen
= (nsymbols
* nsymbits
) / BITS_PER_BYTE
;
752 if (frmlen
< minlen
) {
753 mindelim
= (minlen
- frmlen
) / ATH_AGGR_DELIM_SZ
;
754 ndelim
= max(mindelim
, ndelim
);
760 static enum ATH_AGGR_STATUS
ath_tx_form_aggr(struct ath_softc
*sc
,
762 struct ath_atx_tid
*tid
,
763 struct list_head
*bf_q
,
766 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
767 struct ath_buf
*bf
, *bf_first
= NULL
, *bf_prev
= NULL
;
768 int rl
= 0, nframes
= 0, ndelim
, prev_al
= 0;
769 u16 aggr_limit
= 0, al
= 0, bpad
= 0,
770 al_delta
, h_baw
= tid
->baw_size
/ 2;
771 enum ATH_AGGR_STATUS status
= ATH_AGGR_DONE
;
772 struct ieee80211_tx_info
*tx_info
;
773 struct ath_frame_info
*fi
;
778 skb
= skb_peek(&tid
->buf_q
);
779 fi
= get_frame_info(skb
);
782 bf
= ath_tx_setup_buffer(sc
, txq
, tid
, skb
);
787 bf
->bf_state
.bf_type
= BUF_AMPDU
| BUF_AGGR
;
788 seqno
= bf
->bf_state
.seqno
;
790 /* do not step over block-ack window */
791 if (!BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, seqno
)) {
792 status
= ATH_AGGR_BAW_CLOSED
;
796 if (tid
->bar_index
> ATH_BA_INDEX(tid
->seq_start
, seqno
)) {
797 struct ath_tx_status ts
= {};
798 struct list_head bf_head
;
800 INIT_LIST_HEAD(&bf_head
);
801 list_add(&bf
->list
, &bf_head
);
802 __skb_unlink(skb
, &tid
->buf_q
);
803 ath_tx_update_baw(sc
, tid
, seqno
);
804 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, &ts
, 0);
812 aggr_limit
= ath_lookup_rate(sc
, bf
, tid
);
816 /* do not exceed aggregation limit */
817 al_delta
= ATH_AGGR_DELIM_SZ
+ fi
->framelen
;
820 ((aggr_limit
< (al
+ bpad
+ al_delta
+ prev_al
)) ||
821 ath_lookup_legacy(bf
))) {
822 status
= ATH_AGGR_LIMITED
;
826 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
827 if (nframes
&& (tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
))
830 /* do not exceed subframe limit */
831 if (nframes
>= min((int)h_baw
, ATH_AMPDU_SUBFRAME_DEFAULT
)) {
832 status
= ATH_AGGR_LIMITED
;
836 /* add padding for previous frame to aggregation length */
837 al
+= bpad
+ al_delta
;
840 * Get the delimiters needed to meet the MPDU
841 * density for this node.
843 ndelim
= ath_compute_num_delims(sc
, tid
, bf_first
, fi
->framelen
,
845 bpad
= PADBYTES(al_delta
) + (ndelim
<< 2);
850 /* link buffers of this frame to the aggregate */
852 ath_tx_addto_baw(sc
, tid
, seqno
);
853 bf
->bf_state
.ndelim
= ndelim
;
855 __skb_unlink(skb
, &tid
->buf_q
);
856 list_add_tail(&bf
->list
, bf_q
);
858 bf_prev
->bf_next
= bf
;
862 } while (!skb_queue_empty(&tid
->buf_q
));
872 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
873 * width - 0 for 20 MHz, 1 for 40 MHz
874 * half_gi - to use 4us v/s 3.6 us for symbol time
876 static u32
ath_pkt_duration(struct ath_softc
*sc
, u8 rix
, int pktlen
,
877 int width
, int half_gi
, bool shortPreamble
)
879 u32 nbits
, nsymbits
, duration
, nsymbols
;
882 /* find number of symbols: PLCP + data */
883 streams
= HT_RC_2_STREAMS(rix
);
884 nbits
= (pktlen
<< 3) + OFDM_PLCP_BITS
;
885 nsymbits
= bits_per_symbol
[rix
% 8][width
] * streams
;
886 nsymbols
= (nbits
+ nsymbits
- 1) / nsymbits
;
889 duration
= SYMBOL_TIME(nsymbols
);
891 duration
= SYMBOL_TIME_HALFGI(nsymbols
);
893 /* addup duration for legacy/ht training and signal fields */
894 duration
+= L_STF
+ L_LTF
+ L_SIG
+ HT_SIG
+ HT_STF
+ HT_LTF(streams
);
899 static void ath_buf_set_rate(struct ath_softc
*sc
, struct ath_buf
*bf
,
900 struct ath_tx_info
*info
, int len
)
902 struct ath_hw
*ah
= sc
->sc_ah
;
904 struct ieee80211_tx_info
*tx_info
;
905 struct ieee80211_tx_rate
*rates
;
906 const struct ieee80211_rate
*rate
;
907 struct ieee80211_hdr
*hdr
;
912 tx_info
= IEEE80211_SKB_CB(skb
);
913 rates
= tx_info
->control
.rates
;
914 hdr
= (struct ieee80211_hdr
*)skb
->data
;
916 /* set dur_update_en for l-sig computation except for PS-Poll frames */
917 info
->dur_update
= !ieee80211_is_pspoll(hdr
->frame_control
);
920 * We check if Short Preamble is needed for the CTS rate by
921 * checking the BSS's global flag.
922 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
924 rate
= ieee80211_get_rts_cts_rate(sc
->hw
, tx_info
);
925 info
->rtscts_rate
= rate
->hw_value
;
926 if (sc
->sc_flags
& SC_OP_PREAMBLE_SHORT
)
927 info
->rtscts_rate
|= rate
->hw_value_short
;
929 for (i
= 0; i
< 4; i
++) {
930 bool is_40
, is_sgi
, is_sp
;
933 if (!rates
[i
].count
|| (rates
[i
].idx
< 0))
937 info
->rates
[i
].Tries
= rates
[i
].count
;
939 if (rates
[i
].flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
940 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_RTS_CTS
;
941 info
->flags
|= ATH9K_TXDESC_RTSENA
;
942 } else if (rates
[i
].flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
943 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_RTS_CTS
;
944 info
->flags
|= ATH9K_TXDESC_CTSENA
;
947 if (rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
948 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_2040
;
949 if (rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
)
950 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_HALFGI
;
952 is_sgi
= !!(rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
);
953 is_40
= !!(rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
);
954 is_sp
= !!(rates
[i
].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
);
956 if (rates
[i
].flags
& IEEE80211_TX_RC_MCS
) {
958 info
->rates
[i
].Rate
= rix
| 0x80;
959 info
->rates
[i
].ChSel
= ath_txchainmask_reduction(sc
,
960 ah
->txchainmask
, info
->rates
[i
].Rate
);
961 info
->rates
[i
].PktDuration
= ath_pkt_duration(sc
, rix
, len
,
962 is_40
, is_sgi
, is_sp
);
963 if (rix
< 8 && (tx_info
->flags
& IEEE80211_TX_CTL_STBC
))
964 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_STBC
;
969 if ((tx_info
->band
== IEEE80211_BAND_2GHZ
) &&
970 !(rate
->flags
& IEEE80211_RATE_ERP_G
))
971 phy
= WLAN_RC_PHY_CCK
;
973 phy
= WLAN_RC_PHY_OFDM
;
975 rate
= &sc
->sbands
[tx_info
->band
].bitrates
[rates
[i
].idx
];
976 info
->rates
[i
].Rate
= rate
->hw_value
;
977 if (rate
->hw_value_short
) {
978 if (rates
[i
].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
979 info
->rates
[i
].Rate
|= rate
->hw_value_short
;
984 if (bf
->bf_state
.bfs_paprd
)
985 info
->rates
[i
].ChSel
= ah
->txchainmask
;
987 info
->rates
[i
].ChSel
= ath_txchainmask_reduction(sc
,
988 ah
->txchainmask
, info
->rates
[i
].Rate
);
990 info
->rates
[i
].PktDuration
= ath9k_hw_computetxtime(sc
->sc_ah
,
991 phy
, rate
->bitrate
* 100, len
, rix
, is_sp
);
994 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
995 if (bf_isaggr(bf
) && (len
> sc
->sc_ah
->caps
.rts_aggr_limit
))
996 info
->flags
&= ~ATH9K_TXDESC_RTSENA
;
998 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
999 if (info
->flags
& ATH9K_TXDESC_RTSENA
)
1000 info
->flags
&= ~ATH9K_TXDESC_CTSENA
;
1003 static enum ath9k_pkt_type
get_hw_packet_type(struct sk_buff
*skb
)
1005 struct ieee80211_hdr
*hdr
;
1006 enum ath9k_pkt_type htype
;
1009 hdr
= (struct ieee80211_hdr
*)skb
->data
;
1010 fc
= hdr
->frame_control
;
1012 if (ieee80211_is_beacon(fc
))
1013 htype
= ATH9K_PKT_TYPE_BEACON
;
1014 else if (ieee80211_is_probe_resp(fc
))
1015 htype
= ATH9K_PKT_TYPE_PROBE_RESP
;
1016 else if (ieee80211_is_atim(fc
))
1017 htype
= ATH9K_PKT_TYPE_ATIM
;
1018 else if (ieee80211_is_pspoll(fc
))
1019 htype
= ATH9K_PKT_TYPE_PSPOLL
;
1021 htype
= ATH9K_PKT_TYPE_NORMAL
;
1026 static void ath_tx_fill_desc(struct ath_softc
*sc
, struct ath_buf
*bf
,
1027 struct ath_txq
*txq
, int len
)
1029 struct ath_hw
*ah
= sc
->sc_ah
;
1030 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
1031 struct ath_buf
*bf_first
= bf
;
1032 struct ath_tx_info info
;
1033 bool aggr
= !!(bf
->bf_state
.bf_type
& BUF_AGGR
);
1035 memset(&info
, 0, sizeof(info
));
1036 info
.is_first
= true;
1037 info
.is_last
= true;
1038 info
.txpower
= MAX_RATE_POWER
;
1039 info
.qcu
= txq
->axq_qnum
;
1041 info
.flags
= ATH9K_TXDESC_INTREQ
;
1042 if (tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
1043 info
.flags
|= ATH9K_TXDESC_NOACK
;
1044 if (tx_info
->flags
& IEEE80211_TX_CTL_LDPC
)
1045 info
.flags
|= ATH9K_TXDESC_LDPC
;
1047 ath_buf_set_rate(sc
, bf
, &info
, len
);
1049 if (tx_info
->flags
& IEEE80211_TX_CTL_CLEAR_PS_FILT
)
1050 info
.flags
|= ATH9K_TXDESC_CLRDMASK
;
1052 if (bf
->bf_state
.bfs_paprd
)
1053 info
.flags
|= (u32
) bf
->bf_state
.bfs_paprd
<< ATH9K_TXDESC_PAPRD_S
;
1057 struct sk_buff
*skb
= bf
->bf_mpdu
;
1058 struct ath_frame_info
*fi
= get_frame_info(skb
);
1060 info
.type
= get_hw_packet_type(skb
);
1062 info
.link
= bf
->bf_next
->bf_daddr
;
1066 info
.buf_addr
[0] = bf
->bf_buf_addr
;
1067 info
.buf_len
[0] = skb
->len
;
1068 info
.pkt_len
= fi
->framelen
;
1069 info
.keyix
= fi
->keyix
;
1070 info
.keytype
= fi
->keytype
;
1074 info
.aggr
= AGGR_BUF_FIRST
;
1075 else if (!bf
->bf_next
)
1076 info
.aggr
= AGGR_BUF_LAST
;
1078 info
.aggr
= AGGR_BUF_MIDDLE
;
1080 info
.ndelim
= bf
->bf_state
.ndelim
;
1081 info
.aggr_len
= len
;
1084 ath9k_hw_set_txdesc(ah
, bf
->bf_desc
, &info
);
1089 static void ath_tx_sched_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
1090 struct ath_atx_tid
*tid
)
1093 enum ATH_AGGR_STATUS status
;
1094 struct ieee80211_tx_info
*tx_info
;
1095 struct list_head bf_q
;
1099 if (skb_queue_empty(&tid
->buf_q
))
1102 INIT_LIST_HEAD(&bf_q
);
1104 status
= ath_tx_form_aggr(sc
, txq
, tid
, &bf_q
, &aggr_len
);
1107 * no frames picked up to be aggregated;
1108 * block-ack window is not open.
1110 if (list_empty(&bf_q
))
1113 bf
= list_first_entry(&bf_q
, struct ath_buf
, list
);
1114 bf
->bf_lastbf
= list_entry(bf_q
.prev
, struct ath_buf
, list
);
1115 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
1117 if (tid
->ac
->clear_ps_filter
) {
1118 tid
->ac
->clear_ps_filter
= false;
1119 tx_info
->flags
|= IEEE80211_TX_CTL_CLEAR_PS_FILT
;
1121 tx_info
->flags
&= ~IEEE80211_TX_CTL_CLEAR_PS_FILT
;
1124 /* if only one frame, send as non-aggregate */
1125 if (bf
== bf
->bf_lastbf
) {
1126 aggr_len
= get_frame_info(bf
->bf_mpdu
)->framelen
;
1127 bf
->bf_state
.bf_type
= BUF_AMPDU
;
1129 TX_STAT_INC(txq
->axq_qnum
, a_aggr
);
1132 ath_tx_fill_desc(sc
, bf
, txq
, aggr_len
);
1133 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, false);
1134 } while (txq
->axq_ampdu_depth
< ATH_AGGR_MIN_QDEPTH
&&
1135 status
!= ATH_AGGR_BAW_CLOSED
);
1138 int ath_tx_aggr_start(struct ath_softc
*sc
, struct ieee80211_sta
*sta
,
1141 struct ath_atx_tid
*txtid
;
1142 struct ath_node
*an
;
1144 an
= (struct ath_node
*)sta
->drv_priv
;
1145 txtid
= ATH_AN_2_TID(an
, tid
);
1147 if (txtid
->state
& (AGGR_CLEANUP
| AGGR_ADDBA_COMPLETE
))
1150 txtid
->state
|= AGGR_ADDBA_PROGRESS
;
1151 txtid
->paused
= true;
1152 *ssn
= txtid
->seq_start
= txtid
->seq_next
;
1153 txtid
->bar_index
= -1;
1155 memset(txtid
->tx_buf
, 0, sizeof(txtid
->tx_buf
));
1156 txtid
->baw_head
= txtid
->baw_tail
= 0;
1161 void ath_tx_aggr_stop(struct ath_softc
*sc
, struct ieee80211_sta
*sta
, u16 tid
)
1163 struct ath_node
*an
= (struct ath_node
*)sta
->drv_priv
;
1164 struct ath_atx_tid
*txtid
= ATH_AN_2_TID(an
, tid
);
1165 struct ath_txq
*txq
= txtid
->ac
->txq
;
1167 if (txtid
->state
& AGGR_CLEANUP
)
1170 if (!(txtid
->state
& AGGR_ADDBA_COMPLETE
)) {
1171 txtid
->state
&= ~AGGR_ADDBA_PROGRESS
;
1175 spin_lock_bh(&txq
->axq_lock
);
1176 txtid
->paused
= true;
1179 * If frames are still being transmitted for this TID, they will be
1180 * cleaned up during tx completion. To prevent race conditions, this
1181 * TID can only be reused after all in-progress subframes have been
1184 if (txtid
->baw_head
!= txtid
->baw_tail
)
1185 txtid
->state
|= AGGR_CLEANUP
;
1187 txtid
->state
&= ~AGGR_ADDBA_COMPLETE
;
1189 ath_tx_flush_tid(sc
, txtid
);
1190 spin_unlock_bh(&txq
->axq_lock
);
1193 void ath_tx_aggr_sleep(struct ieee80211_sta
*sta
, struct ath_softc
*sc
,
1194 struct ath_node
*an
)
1196 struct ath_atx_tid
*tid
;
1197 struct ath_atx_ac
*ac
;
1198 struct ath_txq
*txq
;
1202 for (tidno
= 0, tid
= &an
->tid
[tidno
];
1203 tidno
< WME_NUM_TID
; tidno
++, tid
++) {
1211 spin_lock_bh(&txq
->axq_lock
);
1213 buffered
= !skb_queue_empty(&tid
->buf_q
);
1216 list_del(&tid
->list
);
1220 list_del(&ac
->list
);
1223 spin_unlock_bh(&txq
->axq_lock
);
1225 ieee80211_sta_set_buffered(sta
, tidno
, buffered
);
1229 void ath_tx_aggr_wakeup(struct ath_softc
*sc
, struct ath_node
*an
)
1231 struct ath_atx_tid
*tid
;
1232 struct ath_atx_ac
*ac
;
1233 struct ath_txq
*txq
;
1236 for (tidno
= 0, tid
= &an
->tid
[tidno
];
1237 tidno
< WME_NUM_TID
; tidno
++, tid
++) {
1242 spin_lock_bh(&txq
->axq_lock
);
1243 ac
->clear_ps_filter
= true;
1245 if (!skb_queue_empty(&tid
->buf_q
) && !tid
->paused
) {
1246 ath_tx_queue_tid(txq
, tid
);
1247 ath_txq_schedule(sc
, txq
);
1250 spin_unlock_bh(&txq
->axq_lock
);
1254 void ath_tx_aggr_resume(struct ath_softc
*sc
, struct ieee80211_sta
*sta
, u16 tid
)
1256 struct ath_atx_tid
*txtid
;
1257 struct ath_node
*an
;
1259 an
= (struct ath_node
*)sta
->drv_priv
;
1261 if (sc
->sc_flags
& SC_OP_TXAGGR
) {
1262 txtid
= ATH_AN_2_TID(an
, tid
);
1264 IEEE80211_MIN_AMPDU_BUF
<< sta
->ht_cap
.ampdu_factor
;
1265 txtid
->state
|= AGGR_ADDBA_COMPLETE
;
1266 txtid
->state
&= ~AGGR_ADDBA_PROGRESS
;
1267 ath_tx_resume_tid(sc
, txtid
);
1271 /********************/
1272 /* Queue Management */
1273 /********************/
1275 static void ath_txq_drain_pending_buffers(struct ath_softc
*sc
,
1276 struct ath_txq
*txq
)
1278 struct ath_atx_ac
*ac
, *ac_tmp
;
1279 struct ath_atx_tid
*tid
, *tid_tmp
;
1281 list_for_each_entry_safe(ac
, ac_tmp
, &txq
->axq_acq
, list
) {
1282 list_del(&ac
->list
);
1284 list_for_each_entry_safe(tid
, tid_tmp
, &ac
->tid_q
, list
) {
1285 list_del(&tid
->list
);
1287 ath_tid_drain(sc
, txq
, tid
);
1292 struct ath_txq
*ath_txq_setup(struct ath_softc
*sc
, int qtype
, int subtype
)
1294 struct ath_hw
*ah
= sc
->sc_ah
;
1295 struct ath9k_tx_queue_info qi
;
1296 static const int subtype_txq_to_hwq
[] = {
1297 [WME_AC_BE
] = ATH_TXQ_AC_BE
,
1298 [WME_AC_BK
] = ATH_TXQ_AC_BK
,
1299 [WME_AC_VI
] = ATH_TXQ_AC_VI
,
1300 [WME_AC_VO
] = ATH_TXQ_AC_VO
,
1304 memset(&qi
, 0, sizeof(qi
));
1305 qi
.tqi_subtype
= subtype_txq_to_hwq
[subtype
];
1306 qi
.tqi_aifs
= ATH9K_TXQ_USEDEFAULT
;
1307 qi
.tqi_cwmin
= ATH9K_TXQ_USEDEFAULT
;
1308 qi
.tqi_cwmax
= ATH9K_TXQ_USEDEFAULT
;
1309 qi
.tqi_physCompBuf
= 0;
1312 * Enable interrupts only for EOL and DESC conditions.
1313 * We mark tx descriptors to receive a DESC interrupt
1314 * when a tx queue gets deep; otherwise waiting for the
1315 * EOL to reap descriptors. Note that this is done to
1316 * reduce interrupt load and this only defers reaping
1317 * descriptors, never transmitting frames. Aside from
1318 * reducing interrupts this also permits more concurrency.
1319 * The only potential downside is if the tx queue backs
1320 * up in which case the top half of the kernel may backup
1321 * due to a lack of tx descriptors.
1323 * The UAPSD queue is an exception, since we take a desc-
1324 * based intr on the EOSP frames.
1326 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) {
1327 qi
.tqi_qflags
= TXQ_FLAG_TXOKINT_ENABLE
|
1328 TXQ_FLAG_TXERRINT_ENABLE
;
1330 if (qtype
== ATH9K_TX_QUEUE_UAPSD
)
1331 qi
.tqi_qflags
= TXQ_FLAG_TXDESCINT_ENABLE
;
1333 qi
.tqi_qflags
= TXQ_FLAG_TXEOLINT_ENABLE
|
1334 TXQ_FLAG_TXDESCINT_ENABLE
;
1336 axq_qnum
= ath9k_hw_setuptxqueue(ah
, qtype
, &qi
);
1337 if (axq_qnum
== -1) {
1339 * NB: don't print a message, this happens
1340 * normally on parts with too few tx queues
1344 if (!ATH_TXQ_SETUP(sc
, axq_qnum
)) {
1345 struct ath_txq
*txq
= &sc
->tx
.txq
[axq_qnum
];
1347 txq
->axq_qnum
= axq_qnum
;
1348 txq
->mac80211_qnum
= -1;
1349 txq
->axq_link
= NULL
;
1350 INIT_LIST_HEAD(&txq
->axq_q
);
1351 INIT_LIST_HEAD(&txq
->axq_acq
);
1352 spin_lock_init(&txq
->axq_lock
);
1354 txq
->axq_ampdu_depth
= 0;
1355 txq
->axq_tx_inprogress
= false;
1356 sc
->tx
.txqsetup
|= 1<<axq_qnum
;
1358 txq
->txq_headidx
= txq
->txq_tailidx
= 0;
1359 for (i
= 0; i
< ATH_TXFIFO_DEPTH
; i
++)
1360 INIT_LIST_HEAD(&txq
->txq_fifo
[i
]);
1362 return &sc
->tx
.txq
[axq_qnum
];
1365 int ath_txq_update(struct ath_softc
*sc
, int qnum
,
1366 struct ath9k_tx_queue_info
*qinfo
)
1368 struct ath_hw
*ah
= sc
->sc_ah
;
1370 struct ath9k_tx_queue_info qi
;
1372 if (qnum
== sc
->beacon
.beaconq
) {
1374 * XXX: for beacon queue, we just save the parameter.
1375 * It will be picked up by ath_beaconq_config when
1378 sc
->beacon
.beacon_qi
= *qinfo
;
1382 BUG_ON(sc
->tx
.txq
[qnum
].axq_qnum
!= qnum
);
1384 ath9k_hw_get_txq_props(ah
, qnum
, &qi
);
1385 qi
.tqi_aifs
= qinfo
->tqi_aifs
;
1386 qi
.tqi_cwmin
= qinfo
->tqi_cwmin
;
1387 qi
.tqi_cwmax
= qinfo
->tqi_cwmax
;
1388 qi
.tqi_burstTime
= qinfo
->tqi_burstTime
;
1389 qi
.tqi_readyTime
= qinfo
->tqi_readyTime
;
1391 if (!ath9k_hw_set_txq_props(ah
, qnum
, &qi
)) {
1392 ath_err(ath9k_hw_common(sc
->sc_ah
),
1393 "Unable to update hardware queue %u!\n", qnum
);
1396 ath9k_hw_resettxqueue(ah
, qnum
);
1402 int ath_cabq_update(struct ath_softc
*sc
)
1404 struct ath9k_tx_queue_info qi
;
1405 struct ath_beacon_config
*cur_conf
= &sc
->cur_beacon_conf
;
1406 int qnum
= sc
->beacon
.cabq
->axq_qnum
;
1408 ath9k_hw_get_txq_props(sc
->sc_ah
, qnum
, &qi
);
1410 * Ensure the readytime % is within the bounds.
1412 if (sc
->config
.cabqReadytime
< ATH9K_READY_TIME_LO_BOUND
)
1413 sc
->config
.cabqReadytime
= ATH9K_READY_TIME_LO_BOUND
;
1414 else if (sc
->config
.cabqReadytime
> ATH9K_READY_TIME_HI_BOUND
)
1415 sc
->config
.cabqReadytime
= ATH9K_READY_TIME_HI_BOUND
;
1417 qi
.tqi_readyTime
= (cur_conf
->beacon_interval
*
1418 sc
->config
.cabqReadytime
) / 100;
1419 ath_txq_update(sc
, qnum
, &qi
);
1424 static bool bf_is_ampdu_not_probing(struct ath_buf
*bf
)
1426 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
1427 return bf_isampdu(bf
) && !(info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
);
1430 static void ath_drain_txq_list(struct ath_softc
*sc
, struct ath_txq
*txq
,
1431 struct list_head
*list
, bool retry_tx
)
1433 struct ath_buf
*bf
, *lastbf
;
1434 struct list_head bf_head
;
1435 struct ath_tx_status ts
;
1437 memset(&ts
, 0, sizeof(ts
));
1438 ts
.ts_status
= ATH9K_TX_FLUSH
;
1439 INIT_LIST_HEAD(&bf_head
);
1441 while (!list_empty(list
)) {
1442 bf
= list_first_entry(list
, struct ath_buf
, list
);
1445 list_del(&bf
->list
);
1447 ath_tx_return_buffer(sc
, bf
);
1451 lastbf
= bf
->bf_lastbf
;
1452 list_cut_position(&bf_head
, list
, &lastbf
->list
);
1455 if (bf_is_ampdu_not_probing(bf
))
1456 txq
->axq_ampdu_depth
--;
1459 ath_tx_complete_aggr(sc
, txq
, bf
, &bf_head
, &ts
, 0,
1462 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, &ts
, 0);
1467 * Drain a given TX queue (could be Beacon or Data)
1469 * This assumes output has been stopped and
1470 * we do not need to block ath_tx_tasklet.
1472 void ath_draintxq(struct ath_softc
*sc
, struct ath_txq
*txq
, bool retry_tx
)
1474 spin_lock_bh(&txq
->axq_lock
);
1475 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) {
1476 int idx
= txq
->txq_tailidx
;
1478 while (!list_empty(&txq
->txq_fifo
[idx
])) {
1479 ath_drain_txq_list(sc
, txq
, &txq
->txq_fifo
[idx
],
1482 INCR(idx
, ATH_TXFIFO_DEPTH
);
1484 txq
->txq_tailidx
= idx
;
1487 txq
->axq_link
= NULL
;
1488 txq
->axq_tx_inprogress
= false;
1489 ath_drain_txq_list(sc
, txq
, &txq
->axq_q
, retry_tx
);
1491 /* flush any pending frames if aggregation is enabled */
1492 if ((sc
->sc_flags
& SC_OP_TXAGGR
) && !retry_tx
)
1493 ath_txq_drain_pending_buffers(sc
, txq
);
1495 spin_unlock_bh(&txq
->axq_lock
);
1498 bool ath_drain_all_txq(struct ath_softc
*sc
, bool retry_tx
)
1500 struct ath_hw
*ah
= sc
->sc_ah
;
1501 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1502 struct ath_txq
*txq
;
1506 if (sc
->sc_flags
& SC_OP_INVALID
)
1509 ath9k_hw_abort_tx_dma(ah
);
1511 /* Check if any queue remains active */
1512 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
1513 if (!ATH_TXQ_SETUP(sc
, i
))
1516 if (ath9k_hw_numtxpending(ah
, sc
->tx
.txq
[i
].axq_qnum
))
1521 ath_err(common
, "Failed to stop TX DMA, queues=0x%03x!\n", npend
);
1523 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
1524 if (!ATH_TXQ_SETUP(sc
, i
))
1528 * The caller will resume queues with ieee80211_wake_queues.
1529 * Mark the queue as not stopped to prevent ath_tx_complete
1530 * from waking the queue too early.
1532 txq
= &sc
->tx
.txq
[i
];
1533 txq
->stopped
= false;
1534 ath_draintxq(sc
, txq
, retry_tx
);
1540 void ath_tx_cleanupq(struct ath_softc
*sc
, struct ath_txq
*txq
)
1542 ath9k_hw_releasetxqueue(sc
->sc_ah
, txq
->axq_qnum
);
1543 sc
->tx
.txqsetup
&= ~(1<<txq
->axq_qnum
);
1546 /* For each axq_acq entry, for each tid, try to schedule packets
1547 * for transmit until ampdu_depth has reached min Q depth.
1549 void ath_txq_schedule(struct ath_softc
*sc
, struct ath_txq
*txq
)
1551 struct ath_atx_ac
*ac
, *ac_tmp
, *last_ac
;
1552 struct ath_atx_tid
*tid
, *last_tid
;
1554 if (work_pending(&sc
->hw_reset_work
) || list_empty(&txq
->axq_acq
) ||
1555 txq
->axq_ampdu_depth
>= ATH_AGGR_MIN_QDEPTH
)
1558 ac
= list_first_entry(&txq
->axq_acq
, struct ath_atx_ac
, list
);
1559 last_ac
= list_entry(txq
->axq_acq
.prev
, struct ath_atx_ac
, list
);
1561 list_for_each_entry_safe(ac
, ac_tmp
, &txq
->axq_acq
, list
) {
1562 last_tid
= list_entry(ac
->tid_q
.prev
, struct ath_atx_tid
, list
);
1563 list_del(&ac
->list
);
1566 while (!list_empty(&ac
->tid_q
)) {
1567 tid
= list_first_entry(&ac
->tid_q
, struct ath_atx_tid
,
1569 list_del(&tid
->list
);
1575 ath_tx_sched_aggr(sc
, txq
, tid
);
1578 * add tid to round-robin queue if more frames
1579 * are pending for the tid
1581 if (!skb_queue_empty(&tid
->buf_q
))
1582 ath_tx_queue_tid(txq
, tid
);
1584 if (tid
== last_tid
||
1585 txq
->axq_ampdu_depth
>= ATH_AGGR_MIN_QDEPTH
)
1589 if (!list_empty(&ac
->tid_q
) && !ac
->sched
) {
1591 list_add_tail(&ac
->list
, &txq
->axq_acq
);
1594 if (ac
== last_ac
||
1595 txq
->axq_ampdu_depth
>= ATH_AGGR_MIN_QDEPTH
)
1605 * Insert a chain of ath_buf (descriptors) on a txq and
1606 * assume the descriptors are already chained together by caller.
1608 static void ath_tx_txqaddbuf(struct ath_softc
*sc
, struct ath_txq
*txq
,
1609 struct list_head
*head
, bool internal
)
1611 struct ath_hw
*ah
= sc
->sc_ah
;
1612 struct ath_common
*common
= ath9k_hw_common(ah
);
1613 struct ath_buf
*bf
, *bf_last
;
1614 bool puttxbuf
= false;
1618 * Insert the frame on the outbound list and
1619 * pass it on to the hardware.
1622 if (list_empty(head
))
1625 edma
= !!(ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
);
1626 bf
= list_first_entry(head
, struct ath_buf
, list
);
1627 bf_last
= list_entry(head
->prev
, struct ath_buf
, list
);
1629 ath_dbg(common
, ATH_DBG_QUEUE
,
1630 "qnum: %d, txq depth: %d\n", txq
->axq_qnum
, txq
->axq_depth
);
1632 if (edma
&& list_empty(&txq
->txq_fifo
[txq
->txq_headidx
])) {
1633 list_splice_tail_init(head
, &txq
->txq_fifo
[txq
->txq_headidx
]);
1634 INCR(txq
->txq_headidx
, ATH_TXFIFO_DEPTH
);
1637 list_splice_tail_init(head
, &txq
->axq_q
);
1639 if (txq
->axq_link
) {
1640 ath9k_hw_set_desc_link(ah
, txq
->axq_link
, bf
->bf_daddr
);
1641 ath_dbg(common
, ATH_DBG_XMIT
,
1642 "link[%u] (%p)=%llx (%p)\n",
1643 txq
->axq_qnum
, txq
->axq_link
,
1644 ito64(bf
->bf_daddr
), bf
->bf_desc
);
1648 txq
->axq_link
= bf_last
->bf_desc
;
1652 TX_STAT_INC(txq
->axq_qnum
, puttxbuf
);
1653 ath9k_hw_puttxbuf(ah
, txq
->axq_qnum
, bf
->bf_daddr
);
1654 ath_dbg(common
, ATH_DBG_XMIT
, "TXDP[%u] = %llx (%p)\n",
1655 txq
->axq_qnum
, ito64(bf
->bf_daddr
), bf
->bf_desc
);
1659 TX_STAT_INC(txq
->axq_qnum
, txstart
);
1660 ath9k_hw_txstart(ah
, txq
->axq_qnum
);
1665 if (bf_is_ampdu_not_probing(bf
))
1666 txq
->axq_ampdu_depth
++;
1670 static void ath_tx_send_ampdu(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
1671 struct sk_buff
*skb
, struct ath_tx_control
*txctl
)
1673 struct ath_frame_info
*fi
= get_frame_info(skb
);
1674 struct list_head bf_head
;
1678 * Do not queue to h/w when any of the following conditions is true:
1679 * - there are pending frames in software queue
1680 * - the TID is currently paused for ADDBA/BAR request
1681 * - seqno is not within block-ack window
1682 * - h/w queue depth exceeds low water mark
1684 if (!skb_queue_empty(&tid
->buf_q
) || tid
->paused
||
1685 !BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, tid
->seq_next
) ||
1686 txctl
->txq
->axq_ampdu_depth
>= ATH_AGGR_MIN_QDEPTH
) {
1688 * Add this frame to software queue for scheduling later
1691 TX_STAT_INC(txctl
->txq
->axq_qnum
, a_queued_sw
);
1692 __skb_queue_tail(&tid
->buf_q
, skb
);
1693 if (!txctl
->an
|| !txctl
->an
->sleeping
)
1694 ath_tx_queue_tid(txctl
->txq
, tid
);
1698 bf
= ath_tx_setup_buffer(sc
, txctl
->txq
, tid
, skb
);
1702 bf
->bf_state
.bf_type
= BUF_AMPDU
;
1703 INIT_LIST_HEAD(&bf_head
);
1704 list_add(&bf
->list
, &bf_head
);
1706 /* Add sub-frame to BAW */
1707 ath_tx_addto_baw(sc
, tid
, bf
->bf_state
.seqno
);
1709 /* Queue to h/w without aggregation */
1710 TX_STAT_INC(txctl
->txq
->axq_qnum
, a_queued_hw
);
1712 ath_tx_fill_desc(sc
, bf
, txctl
->txq
, fi
->framelen
);
1713 ath_tx_txqaddbuf(sc
, txctl
->txq
, &bf_head
, false);
1716 static void ath_tx_send_normal(struct ath_softc
*sc
, struct ath_txq
*txq
,
1717 struct ath_atx_tid
*tid
, struct sk_buff
*skb
)
1719 struct ath_frame_info
*fi
= get_frame_info(skb
);
1720 struct list_head bf_head
;
1725 bf
= ath_tx_setup_buffer(sc
, txq
, tid
, skb
);
1730 INIT_LIST_HEAD(&bf_head
);
1731 list_add_tail(&bf
->list
, &bf_head
);
1732 bf
->bf_state
.bf_type
= 0;
1735 ath_tx_fill_desc(sc
, bf
, txq
, fi
->framelen
);
1736 ath_tx_txqaddbuf(sc
, txq
, &bf_head
, false);
1737 TX_STAT_INC(txq
->axq_qnum
, queued
);
1740 static void setup_frame_info(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
1743 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
1744 struct ieee80211_sta
*sta
= tx_info
->control
.sta
;
1745 struct ieee80211_key_conf
*hw_key
= tx_info
->control
.hw_key
;
1746 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1747 struct ath_frame_info
*fi
= get_frame_info(skb
);
1748 struct ath_node
*an
= NULL
;
1749 enum ath9k_key_type keytype
;
1751 keytype
= ath9k_cmn_get_hw_crypto_keytype(skb
);
1754 an
= (struct ath_node
*) sta
->drv_priv
;
1756 memset(fi
, 0, sizeof(*fi
));
1758 fi
->keyix
= hw_key
->hw_key_idx
;
1759 else if (an
&& ieee80211_is_data(hdr
->frame_control
) && an
->ps_key
> 0)
1760 fi
->keyix
= an
->ps_key
;
1762 fi
->keyix
= ATH9K_TXKEYIX_INVALID
;
1763 fi
->keytype
= keytype
;
1764 fi
->framelen
= framelen
;
1767 u8
ath_txchainmask_reduction(struct ath_softc
*sc
, u8 chainmask
, u32 rate
)
1769 struct ath_hw
*ah
= sc
->sc_ah
;
1770 struct ath9k_channel
*curchan
= ah
->curchan
;
1771 if ((ah
->caps
.hw_caps
& ATH9K_HW_CAP_APM
) &&
1772 (curchan
->channelFlags
& CHANNEL_5GHZ
) &&
1773 (chainmask
== 0x7) && (rate
< 0x90))
1780 * Assign a descriptor (and sequence number if necessary,
1781 * and map buffer for DMA. Frees skb on error
1783 static struct ath_buf
*ath_tx_setup_buffer(struct ath_softc
*sc
,
1784 struct ath_txq
*txq
,
1785 struct ath_atx_tid
*tid
,
1786 struct sk_buff
*skb
)
1788 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1789 struct ath_frame_info
*fi
= get_frame_info(skb
);
1790 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1794 bf
= ath_tx_get_buffer(sc
);
1796 ath_dbg(common
, ATH_DBG_XMIT
, "TX buffers are full\n");
1800 ATH_TXBUF_RESET(bf
);
1803 seqno
= tid
->seq_next
;
1804 hdr
->seq_ctrl
= cpu_to_le16(tid
->seq_next
<< IEEE80211_SEQ_SEQ_SHIFT
);
1805 INCR(tid
->seq_next
, IEEE80211_SEQ_MAX
);
1806 bf
->bf_state
.seqno
= seqno
;
1811 bf
->bf_buf_addr
= dma_map_single(sc
->dev
, skb
->data
,
1812 skb
->len
, DMA_TO_DEVICE
);
1813 if (unlikely(dma_mapping_error(sc
->dev
, bf
->bf_buf_addr
))) {
1815 bf
->bf_buf_addr
= 0;
1816 ath_err(ath9k_hw_common(sc
->sc_ah
),
1817 "dma_mapping_error() on TX\n");
1818 ath_tx_return_buffer(sc
, bf
);
1827 dev_kfree_skb_any(skb
);
1831 /* FIXME: tx power */
1832 static void ath_tx_start_dma(struct ath_softc
*sc
, struct sk_buff
*skb
,
1833 struct ath_tx_control
*txctl
)
1835 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
1836 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1837 struct ath_atx_tid
*tid
= NULL
;
1841 if ((sc
->sc_flags
& SC_OP_TXAGGR
) && txctl
->an
&&
1842 ieee80211_is_data_qos(hdr
->frame_control
)) {
1843 tidno
= ieee80211_get_qos_ctl(hdr
)[0] &
1844 IEEE80211_QOS_CTL_TID_MASK
;
1845 tid
= ATH_AN_2_TID(txctl
->an
, tidno
);
1847 WARN_ON(tid
->ac
->txq
!= txctl
->txq
);
1850 if ((tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) && tid
) {
1852 * Try aggregation if it's a unicast data frame
1853 * and the destination is HT capable.
1855 ath_tx_send_ampdu(sc
, tid
, skb
, txctl
);
1857 bf
= ath_tx_setup_buffer(sc
, txctl
->txq
, tid
, skb
);
1861 bf
->bf_state
.bfs_paprd
= txctl
->paprd
;
1864 bf
->bf_state
.bfs_paprd_timestamp
= jiffies
;
1866 ath_tx_send_normal(sc
, txctl
->txq
, tid
, skb
);
1870 /* Upon failure caller should free skb */
1871 int ath_tx_start(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
1872 struct ath_tx_control
*txctl
)
1874 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
1875 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
1876 struct ieee80211_sta
*sta
= info
->control
.sta
;
1877 struct ieee80211_vif
*vif
= info
->control
.vif
;
1878 struct ath_softc
*sc
= hw
->priv
;
1879 struct ath_txq
*txq
= txctl
->txq
;
1880 int padpos
, padsize
;
1881 int frmlen
= skb
->len
+ FCS_LEN
;
1884 /* NOTE: sta can be NULL according to net/mac80211.h */
1886 txctl
->an
= (struct ath_node
*)sta
->drv_priv
;
1888 if (info
->control
.hw_key
)
1889 frmlen
+= info
->control
.hw_key
->icv_len
;
1892 * As a temporary workaround, assign seq# here; this will likely need
1893 * to be cleaned up to work better with Beacon transmission and virtual
1896 if (info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
) {
1897 if (info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
)
1898 sc
->tx
.seq_no
+= 0x10;
1899 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
1900 hdr
->seq_ctrl
|= cpu_to_le16(sc
->tx
.seq_no
);
1903 /* Add the padding after the header if this is not already done */
1904 padpos
= ath9k_cmn_padpos(hdr
->frame_control
);
1905 padsize
= padpos
& 3;
1906 if (padsize
&& skb
->len
> padpos
) {
1907 if (skb_headroom(skb
) < padsize
)
1910 skb_push(skb
, padsize
);
1911 memmove(skb
->data
, skb
->data
+ padsize
, padpos
);
1912 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1915 if ((vif
&& vif
->type
!= NL80211_IFTYPE_AP
&&
1916 vif
->type
!= NL80211_IFTYPE_AP_VLAN
) ||
1917 !ieee80211_is_data(hdr
->frame_control
))
1918 info
->flags
|= IEEE80211_TX_CTL_CLEAR_PS_FILT
;
1920 setup_frame_info(hw
, skb
, frmlen
);
1923 * At this point, the vif, hw_key and sta pointers in the tx control
1924 * info are no longer valid (overwritten by the ath_frame_info data.
1927 q
= skb_get_queue_mapping(skb
);
1928 spin_lock_bh(&txq
->axq_lock
);
1929 if (txq
== sc
->tx
.txq_map
[q
] &&
1930 ++txq
->pending_frames
> ATH_MAX_QDEPTH
&& !txq
->stopped
) {
1931 ieee80211_stop_queue(sc
->hw
, q
);
1932 txq
->stopped
= true;
1935 ath_tx_start_dma(sc
, skb
, txctl
);
1937 spin_unlock_bh(&txq
->axq_lock
);
1946 static void ath_tx_complete(struct ath_softc
*sc
, struct sk_buff
*skb
,
1947 int tx_flags
, struct ath_txq
*txq
)
1949 struct ieee80211_hw
*hw
= sc
->hw
;
1950 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
1951 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1952 struct ieee80211_hdr
* hdr
= (struct ieee80211_hdr
*)skb
->data
;
1953 int q
, padpos
, padsize
;
1955 ath_dbg(common
, ATH_DBG_XMIT
, "TX complete: skb: %p\n", skb
);
1957 if (!(tx_flags
& ATH_TX_ERROR
))
1958 /* Frame was ACKed */
1959 tx_info
->flags
|= IEEE80211_TX_STAT_ACK
;
1961 padpos
= ath9k_cmn_padpos(hdr
->frame_control
);
1962 padsize
= padpos
& 3;
1963 if (padsize
&& skb
->len
>padpos
+padsize
) {
1965 * Remove MAC header padding before giving the frame back to
1968 memmove(skb
->data
+ padsize
, skb
->data
, padpos
);
1969 skb_pull(skb
, padsize
);
1972 if ((sc
->ps_flags
& PS_WAIT_FOR_TX_ACK
) && !txq
->axq_depth
) {
1973 sc
->ps_flags
&= ~PS_WAIT_FOR_TX_ACK
;
1974 ath_dbg(common
, ATH_DBG_PS
,
1975 "Going back to sleep after having received TX status (0x%lx)\n",
1976 sc
->ps_flags
& (PS_WAIT_FOR_BEACON
|
1978 PS_WAIT_FOR_PSPOLL_DATA
|
1979 PS_WAIT_FOR_TX_ACK
));
1982 q
= skb_get_queue_mapping(skb
);
1983 if (txq
== sc
->tx
.txq_map
[q
]) {
1984 if (WARN_ON(--txq
->pending_frames
< 0))
1985 txq
->pending_frames
= 0;
1987 if (txq
->stopped
&& txq
->pending_frames
< ATH_MAX_QDEPTH
) {
1988 ieee80211_wake_queue(sc
->hw
, q
);
1989 txq
->stopped
= false;
1993 ieee80211_tx_status(hw
, skb
);
1996 static void ath_tx_complete_buf(struct ath_softc
*sc
, struct ath_buf
*bf
,
1997 struct ath_txq
*txq
, struct list_head
*bf_q
,
1998 struct ath_tx_status
*ts
, int txok
)
2000 struct sk_buff
*skb
= bf
->bf_mpdu
;
2001 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2002 unsigned long flags
;
2006 tx_flags
|= ATH_TX_ERROR
;
2008 if (ts
->ts_status
& ATH9K_TXERR_FILT
)
2009 tx_info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
2011 dma_unmap_single(sc
->dev
, bf
->bf_buf_addr
, skb
->len
, DMA_TO_DEVICE
);
2012 bf
->bf_buf_addr
= 0;
2014 if (bf
->bf_state
.bfs_paprd
) {
2015 if (time_after(jiffies
,
2016 bf
->bf_state
.bfs_paprd_timestamp
+
2017 msecs_to_jiffies(ATH_PAPRD_TIMEOUT
)))
2018 dev_kfree_skb_any(skb
);
2020 complete(&sc
->paprd_complete
);
2022 ath_debug_stat_tx(sc
, bf
, ts
, txq
, tx_flags
);
2023 ath_tx_complete(sc
, skb
, tx_flags
, txq
);
2025 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2026 * accidentally reference it later.
2031 * Return the list of ath_buf of this mpdu to free queue
2033 spin_lock_irqsave(&sc
->tx
.txbuflock
, flags
);
2034 list_splice_tail_init(bf_q
, &sc
->tx
.txbuf
);
2035 spin_unlock_irqrestore(&sc
->tx
.txbuflock
, flags
);
2038 static void ath_tx_rc_status(struct ath_softc
*sc
, struct ath_buf
*bf
,
2039 struct ath_tx_status
*ts
, int nframes
, int nbad
,
2042 struct sk_buff
*skb
= bf
->bf_mpdu
;
2043 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2044 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2045 struct ieee80211_hw
*hw
= sc
->hw
;
2046 struct ath_hw
*ah
= sc
->sc_ah
;
2050 tx_info
->status
.ack_signal
= ts
->ts_rssi
;
2052 tx_rateindex
= ts
->ts_rateindex
;
2053 WARN_ON(tx_rateindex
>= hw
->max_rates
);
2055 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
2056 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU
;
2058 BUG_ON(nbad
> nframes
);
2060 tx_info
->status
.ampdu_len
= nframes
;
2061 tx_info
->status
.ampdu_ack_len
= nframes
- nbad
;
2063 if ((ts
->ts_status
& ATH9K_TXERR_FILT
) == 0 &&
2064 (tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
) == 0) {
2066 * If an underrun error is seen assume it as an excessive
2067 * retry only if max frame trigger level has been reached
2068 * (2 KB for single stream, and 4 KB for dual stream).
2069 * Adjust the long retry as if the frame was tried
2070 * hw->max_rate_tries times to affect how rate control updates
2071 * PER for the failed rate.
2072 * In case of congestion on the bus penalizing this type of
2073 * underruns should help hardware actually transmit new frames
2074 * successfully by eventually preferring slower rates.
2075 * This itself should also alleviate congestion on the bus.
2077 if (unlikely(ts
->ts_flags
& (ATH9K_TX_DATA_UNDERRUN
|
2078 ATH9K_TX_DELIM_UNDERRUN
)) &&
2079 ieee80211_is_data(hdr
->frame_control
) &&
2080 ah
->tx_trig_level
>= sc
->sc_ah
->config
.max_txtrig_level
)
2081 tx_info
->status
.rates
[tx_rateindex
].count
=
2085 for (i
= tx_rateindex
+ 1; i
< hw
->max_rates
; i
++) {
2086 tx_info
->status
.rates
[i
].count
= 0;
2087 tx_info
->status
.rates
[i
].idx
= -1;
2090 tx_info
->status
.rates
[tx_rateindex
].count
= ts
->ts_longretry
+ 1;
2093 static void ath_tx_process_buffer(struct ath_softc
*sc
, struct ath_txq
*txq
,
2094 struct ath_tx_status
*ts
, struct ath_buf
*bf
,
2095 struct list_head
*bf_head
)
2100 txok
= !(ts
->ts_status
& ATH9K_TXERR_MASK
);
2101 txq
->axq_tx_inprogress
= false;
2102 if (bf_is_ampdu_not_probing(bf
))
2103 txq
->axq_ampdu_depth
--;
2105 if (!bf_isampdu(bf
)) {
2106 ath_tx_rc_status(sc
, bf
, ts
, 1, txok
? 0 : 1, txok
);
2107 ath_tx_complete_buf(sc
, bf
, txq
, bf_head
, ts
, txok
);
2109 ath_tx_complete_aggr(sc
, txq
, bf
, bf_head
, ts
, txok
, true);
2111 if (sc
->sc_flags
& SC_OP_TXAGGR
)
2112 ath_txq_schedule(sc
, txq
);
2115 static void ath_tx_processq(struct ath_softc
*sc
, struct ath_txq
*txq
)
2117 struct ath_hw
*ah
= sc
->sc_ah
;
2118 struct ath_common
*common
= ath9k_hw_common(ah
);
2119 struct ath_buf
*bf
, *lastbf
, *bf_held
= NULL
;
2120 struct list_head bf_head
;
2121 struct ath_desc
*ds
;
2122 struct ath_tx_status ts
;
2125 ath_dbg(common
, ATH_DBG_QUEUE
, "tx queue %d (%x), link %p\n",
2126 txq
->axq_qnum
, ath9k_hw_gettxbuf(sc
->sc_ah
, txq
->axq_qnum
),
2129 spin_lock_bh(&txq
->axq_lock
);
2131 if (work_pending(&sc
->hw_reset_work
))
2134 if (list_empty(&txq
->axq_q
)) {
2135 txq
->axq_link
= NULL
;
2136 if (sc
->sc_flags
& SC_OP_TXAGGR
)
2137 ath_txq_schedule(sc
, txq
);
2140 bf
= list_first_entry(&txq
->axq_q
, struct ath_buf
, list
);
2143 * There is a race condition that a BH gets scheduled
2144 * after sw writes TxE and before hw re-load the last
2145 * descriptor to get the newly chained one.
2146 * Software must keep the last DONE descriptor as a
2147 * holding descriptor - software does so by marking
2148 * it with the STALE flag.
2153 if (list_is_last(&bf_held
->list
, &txq
->axq_q
))
2156 bf
= list_entry(bf_held
->list
.next
, struct ath_buf
,
2160 lastbf
= bf
->bf_lastbf
;
2161 ds
= lastbf
->bf_desc
;
2163 memset(&ts
, 0, sizeof(ts
));
2164 status
= ath9k_hw_txprocdesc(ah
, ds
, &ts
);
2165 if (status
== -EINPROGRESS
)
2168 TX_STAT_INC(txq
->axq_qnum
, txprocdesc
);
2171 * Remove ath_buf's of the same transmit unit from txq,
2172 * however leave the last descriptor back as the holding
2173 * descriptor for hw.
2175 lastbf
->bf_stale
= true;
2176 INIT_LIST_HEAD(&bf_head
);
2177 if (!list_is_singular(&lastbf
->list
))
2178 list_cut_position(&bf_head
,
2179 &txq
->axq_q
, lastbf
->list
.prev
);
2182 list_del(&bf_held
->list
);
2183 ath_tx_return_buffer(sc
, bf_held
);
2186 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
2188 spin_unlock_bh(&txq
->axq_lock
);
2191 static void ath_tx_complete_poll_work(struct work_struct
*work
)
2193 struct ath_softc
*sc
= container_of(work
, struct ath_softc
,
2194 tx_complete_work
.work
);
2195 struct ath_txq
*txq
;
2197 bool needreset
= false;
2198 #ifdef CONFIG_ATH9K_DEBUGFS
2199 sc
->tx_complete_poll_work_seen
++;
2202 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
2203 if (ATH_TXQ_SETUP(sc
, i
)) {
2204 txq
= &sc
->tx
.txq
[i
];
2205 spin_lock_bh(&txq
->axq_lock
);
2206 if (txq
->axq_depth
) {
2207 if (txq
->axq_tx_inprogress
) {
2209 spin_unlock_bh(&txq
->axq_lock
);
2212 txq
->axq_tx_inprogress
= true;
2215 spin_unlock_bh(&txq
->axq_lock
);
2219 ath_dbg(ath9k_hw_common(sc
->sc_ah
), ATH_DBG_RESET
,
2220 "tx hung, resetting the chip\n");
2221 RESET_STAT_INC(sc
, RESET_TYPE_TX_HANG
);
2222 ieee80211_queue_work(sc
->hw
, &sc
->hw_reset_work
);
2225 ieee80211_queue_delayed_work(sc
->hw
, &sc
->tx_complete_work
,
2226 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT
));
2231 void ath_tx_tasklet(struct ath_softc
*sc
)
2234 u32 qcumask
= ((1 << ATH9K_NUM_TX_QUEUES
) - 1);
2236 ath9k_hw_gettxintrtxqs(sc
->sc_ah
, &qcumask
);
2238 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
2239 if (ATH_TXQ_SETUP(sc
, i
) && (qcumask
& (1 << i
)))
2240 ath_tx_processq(sc
, &sc
->tx
.txq
[i
]);
2244 void ath_tx_edma_tasklet(struct ath_softc
*sc
)
2246 struct ath_tx_status ts
;
2247 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2248 struct ath_hw
*ah
= sc
->sc_ah
;
2249 struct ath_txq
*txq
;
2250 struct ath_buf
*bf
, *lastbf
;
2251 struct list_head bf_head
;
2255 if (work_pending(&sc
->hw_reset_work
))
2258 status
= ath9k_hw_txprocdesc(ah
, NULL
, (void *)&ts
);
2259 if (status
== -EINPROGRESS
)
2261 if (status
== -EIO
) {
2262 ath_dbg(common
, ATH_DBG_XMIT
,
2263 "Error processing tx status\n");
2267 /* Skip beacon completions */
2268 if (ts
.qid
== sc
->beacon
.beaconq
)
2271 txq
= &sc
->tx
.txq
[ts
.qid
];
2273 spin_lock_bh(&txq
->axq_lock
);
2275 if (list_empty(&txq
->txq_fifo
[txq
->txq_tailidx
])) {
2276 spin_unlock_bh(&txq
->axq_lock
);
2280 bf
= list_first_entry(&txq
->txq_fifo
[txq
->txq_tailidx
],
2281 struct ath_buf
, list
);
2282 lastbf
= bf
->bf_lastbf
;
2284 INIT_LIST_HEAD(&bf_head
);
2285 list_cut_position(&bf_head
, &txq
->txq_fifo
[txq
->txq_tailidx
],
2288 if (list_empty(&txq
->txq_fifo
[txq
->txq_tailidx
])) {
2289 INCR(txq
->txq_tailidx
, ATH_TXFIFO_DEPTH
);
2291 if (!list_empty(&txq
->axq_q
)) {
2292 struct list_head bf_q
;
2294 INIT_LIST_HEAD(&bf_q
);
2295 txq
->axq_link
= NULL
;
2296 list_splice_tail_init(&txq
->axq_q
, &bf_q
);
2297 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, true);
2301 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
2302 spin_unlock_bh(&txq
->axq_lock
);
2310 static int ath_txstatus_setup(struct ath_softc
*sc
, int size
)
2312 struct ath_descdma
*dd
= &sc
->txsdma
;
2313 u8 txs_len
= sc
->sc_ah
->caps
.txs_len
;
2315 dd
->dd_desc_len
= size
* txs_len
;
2316 dd
->dd_desc
= dma_alloc_coherent(sc
->dev
, dd
->dd_desc_len
,
2317 &dd
->dd_desc_paddr
, GFP_KERNEL
);
2324 static int ath_tx_edma_init(struct ath_softc
*sc
)
2328 err
= ath_txstatus_setup(sc
, ATH_TXSTATUS_RING_SIZE
);
2330 ath9k_hw_setup_statusring(sc
->sc_ah
, sc
->txsdma
.dd_desc
,
2331 sc
->txsdma
.dd_desc_paddr
,
2332 ATH_TXSTATUS_RING_SIZE
);
2337 static void ath_tx_edma_cleanup(struct ath_softc
*sc
)
2339 struct ath_descdma
*dd
= &sc
->txsdma
;
2341 dma_free_coherent(sc
->dev
, dd
->dd_desc_len
, dd
->dd_desc
,
2345 int ath_tx_init(struct ath_softc
*sc
, int nbufs
)
2347 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2350 spin_lock_init(&sc
->tx
.txbuflock
);
2352 error
= ath_descdma_setup(sc
, &sc
->tx
.txdma
, &sc
->tx
.txbuf
,
2356 "Failed to allocate tx descriptors: %d\n", error
);
2360 error
= ath_descdma_setup(sc
, &sc
->beacon
.bdma
, &sc
->beacon
.bbuf
,
2361 "beacon", ATH_BCBUF
, 1, 1);
2364 "Failed to allocate beacon descriptors: %d\n", error
);
2368 INIT_DELAYED_WORK(&sc
->tx_complete_work
, ath_tx_complete_poll_work
);
2370 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) {
2371 error
= ath_tx_edma_init(sc
);
2383 void ath_tx_cleanup(struct ath_softc
*sc
)
2385 if (sc
->beacon
.bdma
.dd_desc_len
!= 0)
2386 ath_descdma_cleanup(sc
, &sc
->beacon
.bdma
, &sc
->beacon
.bbuf
);
2388 if (sc
->tx
.txdma
.dd_desc_len
!= 0)
2389 ath_descdma_cleanup(sc
, &sc
->tx
.txdma
, &sc
->tx
.txbuf
);
2391 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
)
2392 ath_tx_edma_cleanup(sc
);
2395 void ath_tx_node_init(struct ath_softc
*sc
, struct ath_node
*an
)
2397 struct ath_atx_tid
*tid
;
2398 struct ath_atx_ac
*ac
;
2401 for (tidno
= 0, tid
= &an
->tid
[tidno
];
2402 tidno
< WME_NUM_TID
;
2406 tid
->seq_start
= tid
->seq_next
= 0;
2407 tid
->baw_size
= WME_MAX_BA
;
2408 tid
->baw_head
= tid
->baw_tail
= 0;
2410 tid
->paused
= false;
2411 tid
->state
&= ~AGGR_CLEANUP
;
2412 __skb_queue_head_init(&tid
->buf_q
);
2413 acno
= TID_TO_WME_AC(tidno
);
2414 tid
->ac
= &an
->ac
[acno
];
2415 tid
->state
&= ~AGGR_ADDBA_COMPLETE
;
2416 tid
->state
&= ~AGGR_ADDBA_PROGRESS
;
2419 for (acno
= 0, ac
= &an
->ac
[acno
];
2420 acno
< WME_NUM_AC
; acno
++, ac
++) {
2422 ac
->txq
= sc
->tx
.txq_map
[acno
];
2423 INIT_LIST_HEAD(&ac
->tid_q
);
2427 void ath_tx_node_cleanup(struct ath_softc
*sc
, struct ath_node
*an
)
2429 struct ath_atx_ac
*ac
;
2430 struct ath_atx_tid
*tid
;
2431 struct ath_txq
*txq
;
2434 for (tidno
= 0, tid
= &an
->tid
[tidno
];
2435 tidno
< WME_NUM_TID
; tidno
++, tid
++) {
2440 spin_lock_bh(&txq
->axq_lock
);
2443 list_del(&tid
->list
);
2448 list_del(&ac
->list
);
2449 tid
->ac
->sched
= false;
2452 ath_tid_drain(sc
, txq
, tid
);
2453 tid
->state
&= ~AGGR_ADDBA_COMPLETE
;
2454 tid
->state
&= ~AGGR_CLEANUP
;
2456 spin_unlock_bh(&txq
->axq_lock
);