]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/wireless/ath/ath9k/xmit.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[mirror_ubuntu-jammy-kernel.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
51
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 struct ath_txq *txq, struct list_head *bf_q,
58 struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_tx_status *ts, int nframes, int nbad,
63 int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 struct ath_txq *txq,
68 struct ath_atx_tid *tid,
69 struct sk_buff *skb);
70
71 enum {
72 MCS_HT20,
73 MCS_HT20_SGI,
74 MCS_HT40,
75 MCS_HT40_SGI,
76 };
77
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
81
82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
83 __acquires(&txq->axq_lock)
84 {
85 spin_lock_bh(&txq->axq_lock);
86 }
87
88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
89 __releases(&txq->axq_lock)
90 {
91 spin_unlock_bh(&txq->axq_lock);
92 }
93
94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
95 __releases(&txq->axq_lock)
96 {
97 struct sk_buff_head q;
98 struct sk_buff *skb;
99
100 __skb_queue_head_init(&q);
101 skb_queue_splice_init(&txq->complete_q, &q);
102 spin_unlock_bh(&txq->axq_lock);
103
104 while ((skb = __skb_dequeue(&q)))
105 ieee80211_tx_status(sc->hw, skb);
106 }
107
108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
109 {
110 struct ath_atx_ac *ac = tid->ac;
111
112 if (tid->paused)
113 return;
114
115 if (tid->sched)
116 return;
117
118 tid->sched = true;
119 list_add_tail(&tid->list, &ac->tid_q);
120
121 if (ac->sched)
122 return;
123
124 ac->sched = true;
125 list_add_tail(&ac->list, &txq->axq_acq);
126 }
127
128 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
129 {
130 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
131 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
132 sizeof(tx_info->rate_driver_data));
133 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
134 }
135
136 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
137 {
138 if (!tid->an->sta)
139 return;
140
141 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
142 seqno << IEEE80211_SEQ_SEQ_SHIFT);
143 }
144
145 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
146 struct ath_buf *bf)
147 {
148 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
149 ARRAY_SIZE(bf->rates));
150 }
151
152 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
153 struct sk_buff *skb)
154 {
155 int q;
156
157 q = skb_get_queue_mapping(skb);
158 if (txq == sc->tx.uapsdq)
159 txq = sc->tx.txq_map[q];
160
161 if (txq != sc->tx.txq_map[q])
162 return;
163
164 if (WARN_ON(--txq->pending_frames < 0))
165 txq->pending_frames = 0;
166
167 if (txq->stopped &&
168 txq->pending_frames < sc->tx.txq_max_pending[q]) {
169 ieee80211_wake_queue(sc->hw, q);
170 txq->stopped = false;
171 }
172 }
173
174 static struct ath_atx_tid *
175 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
176 {
177 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
178 return ATH_AN_2_TID(an, tidno);
179 }
180
181 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
182 {
183 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
184 }
185
186 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
187 {
188 struct sk_buff *skb;
189
190 skb = __skb_dequeue(&tid->retry_q);
191 if (!skb)
192 skb = __skb_dequeue(&tid->buf_q);
193
194 return skb;
195 }
196
197 /*
198 * ath_tx_tid_change_state:
199 * - clears a-mpdu flag of previous session
200 * - force sequence number allocation to fix next BlockAck Window
201 */
202 static void
203 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
204 {
205 struct ath_txq *txq = tid->ac->txq;
206 struct ieee80211_tx_info *tx_info;
207 struct sk_buff *skb, *tskb;
208 struct ath_buf *bf;
209 struct ath_frame_info *fi;
210
211 skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
212 fi = get_frame_info(skb);
213 bf = fi->bf;
214
215 tx_info = IEEE80211_SKB_CB(skb);
216 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
217
218 if (bf)
219 continue;
220
221 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
222 if (!bf) {
223 __skb_unlink(skb, &tid->buf_q);
224 ath_txq_skb_done(sc, txq, skb);
225 ieee80211_free_txskb(sc->hw, skb);
226 continue;
227 }
228 }
229
230 }
231
232 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
233 {
234 struct ath_txq *txq = tid->ac->txq;
235 struct sk_buff *skb;
236 struct ath_buf *bf;
237 struct list_head bf_head;
238 struct ath_tx_status ts;
239 struct ath_frame_info *fi;
240 bool sendbar = false;
241
242 INIT_LIST_HEAD(&bf_head);
243
244 memset(&ts, 0, sizeof(ts));
245
246 while ((skb = __skb_dequeue(&tid->retry_q))) {
247 fi = get_frame_info(skb);
248 bf = fi->bf;
249 if (!bf) {
250 ath_txq_skb_done(sc, txq, skb);
251 ieee80211_free_txskb(sc->hw, skb);
252 continue;
253 }
254
255 if (fi->baw_tracked) {
256 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
257 sendbar = true;
258 }
259
260 list_add_tail(&bf->list, &bf_head);
261 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
262 }
263
264 if (sendbar) {
265 ath_txq_unlock(sc, txq);
266 ath_send_bar(tid, tid->seq_start);
267 ath_txq_lock(sc, txq);
268 }
269 }
270
271 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
272 int seqno)
273 {
274 int index, cindex;
275
276 index = ATH_BA_INDEX(tid->seq_start, seqno);
277 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
278
279 __clear_bit(cindex, tid->tx_buf);
280
281 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
282 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
283 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
284 if (tid->bar_index >= 0)
285 tid->bar_index--;
286 }
287 }
288
289 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
290 struct ath_buf *bf)
291 {
292 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
293 u16 seqno = bf->bf_state.seqno;
294 int index, cindex;
295
296 index = ATH_BA_INDEX(tid->seq_start, seqno);
297 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
298 __set_bit(cindex, tid->tx_buf);
299 fi->baw_tracked = 1;
300
301 if (index >= ((tid->baw_tail - tid->baw_head) &
302 (ATH_TID_MAX_BUFS - 1))) {
303 tid->baw_tail = cindex;
304 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
305 }
306 }
307
308 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
309 struct ath_atx_tid *tid)
310
311 {
312 struct sk_buff *skb;
313 struct ath_buf *bf;
314 struct list_head bf_head;
315 struct ath_tx_status ts;
316 struct ath_frame_info *fi;
317
318 memset(&ts, 0, sizeof(ts));
319 INIT_LIST_HEAD(&bf_head);
320
321 while ((skb = ath_tid_dequeue(tid))) {
322 fi = get_frame_info(skb);
323 bf = fi->bf;
324
325 if (!bf) {
326 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
327 continue;
328 }
329
330 list_add_tail(&bf->list, &bf_head);
331 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
332 }
333 }
334
335 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
336 struct sk_buff *skb, int count)
337 {
338 struct ath_frame_info *fi = get_frame_info(skb);
339 struct ath_buf *bf = fi->bf;
340 struct ieee80211_hdr *hdr;
341 int prev = fi->retries;
342
343 TX_STAT_INC(txq->axq_qnum, a_retries);
344 fi->retries += count;
345
346 if (prev > 0)
347 return;
348
349 hdr = (struct ieee80211_hdr *)skb->data;
350 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
351 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
352 sizeof(*hdr), DMA_TO_DEVICE);
353 }
354
355 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
356 {
357 struct ath_buf *bf = NULL;
358
359 spin_lock_bh(&sc->tx.txbuflock);
360
361 if (unlikely(list_empty(&sc->tx.txbuf))) {
362 spin_unlock_bh(&sc->tx.txbuflock);
363 return NULL;
364 }
365
366 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
367 list_del(&bf->list);
368
369 spin_unlock_bh(&sc->tx.txbuflock);
370
371 return bf;
372 }
373
374 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
375 {
376 spin_lock_bh(&sc->tx.txbuflock);
377 list_add_tail(&bf->list, &sc->tx.txbuf);
378 spin_unlock_bh(&sc->tx.txbuflock);
379 }
380
381 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
382 {
383 struct ath_buf *tbf;
384
385 tbf = ath_tx_get_buffer(sc);
386 if (WARN_ON(!tbf))
387 return NULL;
388
389 ATH_TXBUF_RESET(tbf);
390
391 tbf->bf_mpdu = bf->bf_mpdu;
392 tbf->bf_buf_addr = bf->bf_buf_addr;
393 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
394 tbf->bf_state = bf->bf_state;
395 tbf->bf_state.stale = false;
396
397 return tbf;
398 }
399
400 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
401 struct ath_tx_status *ts, int txok,
402 int *nframes, int *nbad)
403 {
404 struct ath_frame_info *fi;
405 u16 seq_st = 0;
406 u32 ba[WME_BA_BMP_SIZE >> 5];
407 int ba_index;
408 int isaggr = 0;
409
410 *nbad = 0;
411 *nframes = 0;
412
413 isaggr = bf_isaggr(bf);
414 if (isaggr) {
415 seq_st = ts->ts_seqnum;
416 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
417 }
418
419 while (bf) {
420 fi = get_frame_info(bf->bf_mpdu);
421 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
422
423 (*nframes)++;
424 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
425 (*nbad)++;
426
427 bf = bf->bf_next;
428 }
429 }
430
431
432 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
433 struct ath_buf *bf, struct list_head *bf_q,
434 struct ath_tx_status *ts, int txok)
435 {
436 struct ath_node *an = NULL;
437 struct sk_buff *skb;
438 struct ieee80211_sta *sta;
439 struct ieee80211_hw *hw = sc->hw;
440 struct ieee80211_hdr *hdr;
441 struct ieee80211_tx_info *tx_info;
442 struct ath_atx_tid *tid = NULL;
443 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
444 struct list_head bf_head;
445 struct sk_buff_head bf_pending;
446 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
447 u32 ba[WME_BA_BMP_SIZE >> 5];
448 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
449 bool rc_update = true, isba;
450 struct ieee80211_tx_rate rates[4];
451 struct ath_frame_info *fi;
452 int nframes;
453 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
454 int i, retries;
455 int bar_index = -1;
456
457 skb = bf->bf_mpdu;
458 hdr = (struct ieee80211_hdr *)skb->data;
459
460 tx_info = IEEE80211_SKB_CB(skb);
461
462 memcpy(rates, bf->rates, sizeof(rates));
463
464 retries = ts->ts_longretry + 1;
465 for (i = 0; i < ts->ts_rateindex; i++)
466 retries += rates[i].count;
467
468 rcu_read_lock();
469
470 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
471 if (!sta) {
472 rcu_read_unlock();
473
474 INIT_LIST_HEAD(&bf_head);
475 while (bf) {
476 bf_next = bf->bf_next;
477
478 if (!bf->bf_state.stale || bf_next != NULL)
479 list_move_tail(&bf->list, &bf_head);
480
481 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
482
483 bf = bf_next;
484 }
485 return;
486 }
487
488 an = (struct ath_node *)sta->drv_priv;
489 tid = ath_get_skb_tid(sc, an, skb);
490 seq_first = tid->seq_start;
491 isba = ts->ts_flags & ATH9K_TX_BA;
492
493 /*
494 * The hardware occasionally sends a tx status for the wrong TID.
495 * In this case, the BA status cannot be considered valid and all
496 * subframes need to be retransmitted
497 *
498 * Only BlockAcks have a TID and therefore normal Acks cannot be
499 * checked
500 */
501 if (isba && tid->tidno != ts->tid)
502 txok = false;
503
504 isaggr = bf_isaggr(bf);
505 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
506
507 if (isaggr && txok) {
508 if (ts->ts_flags & ATH9K_TX_BA) {
509 seq_st = ts->ts_seqnum;
510 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
511 } else {
512 /*
513 * AR5416 can become deaf/mute when BA
514 * issue happens. Chip needs to be reset.
515 * But AP code may have sychronization issues
516 * when perform internal reset in this routine.
517 * Only enable reset in STA mode for now.
518 */
519 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
520 needreset = 1;
521 }
522 }
523
524 __skb_queue_head_init(&bf_pending);
525
526 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
527 while (bf) {
528 u16 seqno = bf->bf_state.seqno;
529
530 txfail = txpending = sendbar = 0;
531 bf_next = bf->bf_next;
532
533 skb = bf->bf_mpdu;
534 tx_info = IEEE80211_SKB_CB(skb);
535 fi = get_frame_info(skb);
536
537 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
538 !tid->active) {
539 /*
540 * Outside of the current BlockAck window,
541 * maybe part of a previous session
542 */
543 txfail = 1;
544 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
545 /* transmit completion, subframe is
546 * acked by block ack */
547 acked_cnt++;
548 } else if (!isaggr && txok) {
549 /* transmit completion */
550 acked_cnt++;
551 } else if (flush) {
552 txpending = 1;
553 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
554 if (txok || !an->sleeping)
555 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
556 retries);
557
558 txpending = 1;
559 } else {
560 txfail = 1;
561 txfail_cnt++;
562 bar_index = max_t(int, bar_index,
563 ATH_BA_INDEX(seq_first, seqno));
564 }
565
566 /*
567 * Make sure the last desc is reclaimed if it
568 * not a holding desc.
569 */
570 INIT_LIST_HEAD(&bf_head);
571 if (bf_next != NULL || !bf_last->bf_state.stale)
572 list_move_tail(&bf->list, &bf_head);
573
574 if (!txpending) {
575 /*
576 * complete the acked-ones/xretried ones; update
577 * block-ack window
578 */
579 ath_tx_update_baw(sc, tid, seqno);
580
581 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
582 memcpy(tx_info->control.rates, rates, sizeof(rates));
583 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
584 rc_update = false;
585 }
586
587 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
588 !txfail);
589 } else {
590 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
591 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
592 ieee80211_sta_eosp(sta);
593 }
594 /* retry the un-acked ones */
595 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
596 struct ath_buf *tbf;
597
598 tbf = ath_clone_txbuf(sc, bf_last);
599 /*
600 * Update tx baw and complete the
601 * frame with failed status if we
602 * run out of tx buf.
603 */
604 if (!tbf) {
605 ath_tx_update_baw(sc, tid, seqno);
606
607 ath_tx_complete_buf(sc, bf, txq,
608 &bf_head, ts, 0);
609 bar_index = max_t(int, bar_index,
610 ATH_BA_INDEX(seq_first, seqno));
611 break;
612 }
613
614 fi->bf = tbf;
615 }
616
617 /*
618 * Put this buffer to the temporary pending
619 * queue to retain ordering
620 */
621 __skb_queue_tail(&bf_pending, skb);
622 }
623
624 bf = bf_next;
625 }
626
627 /* prepend un-acked frames to the beginning of the pending frame queue */
628 if (!skb_queue_empty(&bf_pending)) {
629 if (an->sleeping)
630 ieee80211_sta_set_buffered(sta, tid->tidno, true);
631
632 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
633 if (!an->sleeping) {
634 ath_tx_queue_tid(txq, tid);
635
636 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
637 tid->ac->clear_ps_filter = true;
638 }
639 }
640
641 if (bar_index >= 0) {
642 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
643
644 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
645 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
646
647 ath_txq_unlock(sc, txq);
648 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
649 ath_txq_lock(sc, txq);
650 }
651
652 rcu_read_unlock();
653
654 if (needreset)
655 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
656 }
657
658 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
659 {
660 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
661 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
662 }
663
664 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
665 struct ath_tx_status *ts, struct ath_buf *bf,
666 struct list_head *bf_head)
667 {
668 struct ieee80211_tx_info *info;
669 bool txok, flush;
670
671 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
672 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
673 txq->axq_tx_inprogress = false;
674
675 txq->axq_depth--;
676 if (bf_is_ampdu_not_probing(bf))
677 txq->axq_ampdu_depth--;
678
679 if (!bf_isampdu(bf)) {
680 if (!flush) {
681 info = IEEE80211_SKB_CB(bf->bf_mpdu);
682 memcpy(info->control.rates, bf->rates,
683 sizeof(info->control.rates));
684 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
685 }
686 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
687 } else
688 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
689
690 if (!flush)
691 ath_txq_schedule(sc, txq);
692 }
693
694 static bool ath_lookup_legacy(struct ath_buf *bf)
695 {
696 struct sk_buff *skb;
697 struct ieee80211_tx_info *tx_info;
698 struct ieee80211_tx_rate *rates;
699 int i;
700
701 skb = bf->bf_mpdu;
702 tx_info = IEEE80211_SKB_CB(skb);
703 rates = tx_info->control.rates;
704
705 for (i = 0; i < 4; i++) {
706 if (!rates[i].count || rates[i].idx < 0)
707 break;
708
709 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
710 return true;
711 }
712
713 return false;
714 }
715
716 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
717 struct ath_atx_tid *tid)
718 {
719 struct sk_buff *skb;
720 struct ieee80211_tx_info *tx_info;
721 struct ieee80211_tx_rate *rates;
722 u32 max_4ms_framelen, frmlen;
723 u16 aggr_limit, bt_aggr_limit, legacy = 0;
724 int q = tid->ac->txq->mac80211_qnum;
725 int i;
726
727 skb = bf->bf_mpdu;
728 tx_info = IEEE80211_SKB_CB(skb);
729 rates = bf->rates;
730
731 /*
732 * Find the lowest frame length among the rate series that will have a
733 * 4ms (or TXOP limited) transmit duration.
734 */
735 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
736
737 for (i = 0; i < 4; i++) {
738 int modeidx;
739
740 if (!rates[i].count)
741 continue;
742
743 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
744 legacy = 1;
745 break;
746 }
747
748 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
749 modeidx = MCS_HT40;
750 else
751 modeidx = MCS_HT20;
752
753 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
754 modeidx++;
755
756 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
757 max_4ms_framelen = min(max_4ms_framelen, frmlen);
758 }
759
760 /*
761 * limit aggregate size by the minimum rate if rate selected is
762 * not a probe rate, if rate selected is a probe rate then
763 * avoid aggregation of this packet.
764 */
765 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
766 return 0;
767
768 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
769
770 /*
771 * Override the default aggregation limit for BTCOEX.
772 */
773 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
774 if (bt_aggr_limit)
775 aggr_limit = bt_aggr_limit;
776
777 if (tid->an->maxampdu)
778 aggr_limit = min(aggr_limit, tid->an->maxampdu);
779
780 return aggr_limit;
781 }
782
783 /*
784 * Returns the number of delimiters to be added to
785 * meet the minimum required mpdudensity.
786 */
787 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
788 struct ath_buf *bf, u16 frmlen,
789 bool first_subfrm)
790 {
791 #define FIRST_DESC_NDELIMS 60
792 u32 nsymbits, nsymbols;
793 u16 minlen;
794 u8 flags, rix;
795 int width, streams, half_gi, ndelim, mindelim;
796 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
797
798 /* Select standard number of delimiters based on frame length alone */
799 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
800
801 /*
802 * If encryption enabled, hardware requires some more padding between
803 * subframes.
804 * TODO - this could be improved to be dependent on the rate.
805 * The hardware can keep up at lower rates, but not higher rates
806 */
807 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
808 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
809 ndelim += ATH_AGGR_ENCRYPTDELIM;
810
811 /*
812 * Add delimiter when using RTS/CTS with aggregation
813 * and non enterprise AR9003 card
814 */
815 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
816 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
817 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
818
819 /*
820 * Convert desired mpdu density from microeconds to bytes based
821 * on highest rate in rate series (i.e. first rate) to determine
822 * required minimum length for subframe. Take into account
823 * whether high rate is 20 or 40Mhz and half or full GI.
824 *
825 * If there is no mpdu density restriction, no further calculation
826 * is needed.
827 */
828
829 if (tid->an->mpdudensity == 0)
830 return ndelim;
831
832 rix = bf->rates[0].idx;
833 flags = bf->rates[0].flags;
834 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
835 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
836
837 if (half_gi)
838 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
839 else
840 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
841
842 if (nsymbols == 0)
843 nsymbols = 1;
844
845 streams = HT_RC_2_STREAMS(rix);
846 nsymbits = bits_per_symbol[rix % 8][width] * streams;
847 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
848
849 if (frmlen < minlen) {
850 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
851 ndelim = max(mindelim, ndelim);
852 }
853
854 return ndelim;
855 }
856
857 static struct ath_buf *
858 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
859 struct ath_atx_tid *tid, struct sk_buff_head **q)
860 {
861 struct ieee80211_tx_info *tx_info;
862 struct ath_frame_info *fi;
863 struct sk_buff *skb;
864 struct ath_buf *bf;
865 u16 seqno;
866
867 while (1) {
868 *q = &tid->retry_q;
869 if (skb_queue_empty(*q))
870 *q = &tid->buf_q;
871
872 skb = skb_peek(*q);
873 if (!skb)
874 break;
875
876 fi = get_frame_info(skb);
877 bf = fi->bf;
878 if (!fi->bf)
879 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
880 else
881 bf->bf_state.stale = false;
882
883 if (!bf) {
884 __skb_unlink(skb, *q);
885 ath_txq_skb_done(sc, txq, skb);
886 ieee80211_free_txskb(sc->hw, skb);
887 continue;
888 }
889
890 bf->bf_next = NULL;
891 bf->bf_lastbf = bf;
892
893 tx_info = IEEE80211_SKB_CB(skb);
894 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
895 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
896 bf->bf_state.bf_type = 0;
897 return bf;
898 }
899
900 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
901 seqno = bf->bf_state.seqno;
902
903 /* do not step over block-ack window */
904 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
905 break;
906
907 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
908 struct ath_tx_status ts = {};
909 struct list_head bf_head;
910
911 INIT_LIST_HEAD(&bf_head);
912 list_add(&bf->list, &bf_head);
913 __skb_unlink(skb, *q);
914 ath_tx_update_baw(sc, tid, seqno);
915 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
916 continue;
917 }
918
919 return bf;
920 }
921
922 return NULL;
923 }
924
925 static bool
926 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
927 struct ath_atx_tid *tid, struct list_head *bf_q,
928 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
929 int *aggr_len)
930 {
931 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
932 struct ath_buf *bf = bf_first, *bf_prev = NULL;
933 int nframes = 0, ndelim;
934 u16 aggr_limit = 0, al = 0, bpad = 0,
935 al_delta, h_baw = tid->baw_size / 2;
936 struct ieee80211_tx_info *tx_info;
937 struct ath_frame_info *fi;
938 struct sk_buff *skb;
939 bool closed = false;
940
941 bf = bf_first;
942 aggr_limit = ath_lookup_rate(sc, bf, tid);
943
944 do {
945 skb = bf->bf_mpdu;
946 fi = get_frame_info(skb);
947
948 /* do not exceed aggregation limit */
949 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
950 if (nframes) {
951 if (aggr_limit < al + bpad + al_delta ||
952 ath_lookup_legacy(bf) || nframes >= h_baw)
953 break;
954
955 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
956 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
957 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
958 break;
959 }
960
961 /* add padding for previous frame to aggregation length */
962 al += bpad + al_delta;
963
964 /*
965 * Get the delimiters needed to meet the MPDU
966 * density for this node.
967 */
968 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
969 !nframes);
970 bpad = PADBYTES(al_delta) + (ndelim << 2);
971
972 nframes++;
973 bf->bf_next = NULL;
974
975 /* link buffers of this frame to the aggregate */
976 if (!fi->baw_tracked)
977 ath_tx_addto_baw(sc, tid, bf);
978 bf->bf_state.ndelim = ndelim;
979
980 __skb_unlink(skb, tid_q);
981 list_add_tail(&bf->list, bf_q);
982 if (bf_prev)
983 bf_prev->bf_next = bf;
984
985 bf_prev = bf;
986
987 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
988 if (!bf) {
989 closed = true;
990 break;
991 }
992 } while (ath_tid_has_buffered(tid));
993
994 bf = bf_first;
995 bf->bf_lastbf = bf_prev;
996
997 if (bf == bf_prev) {
998 al = get_frame_info(bf->bf_mpdu)->framelen;
999 bf->bf_state.bf_type = BUF_AMPDU;
1000 } else {
1001 TX_STAT_INC(txq->axq_qnum, a_aggr);
1002 }
1003
1004 *aggr_len = al;
1005
1006 return closed;
1007 #undef PADBYTES
1008 }
1009
1010 /*
1011 * rix - rate index
1012 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1013 * width - 0 for 20 MHz, 1 for 40 MHz
1014 * half_gi - to use 4us v/s 3.6 us for symbol time
1015 */
1016 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1017 int width, int half_gi, bool shortPreamble)
1018 {
1019 u32 nbits, nsymbits, duration, nsymbols;
1020 int streams;
1021
1022 /* find number of symbols: PLCP + data */
1023 streams = HT_RC_2_STREAMS(rix);
1024 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1025 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1026 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1027
1028 if (!half_gi)
1029 duration = SYMBOL_TIME(nsymbols);
1030 else
1031 duration = SYMBOL_TIME_HALFGI(nsymbols);
1032
1033 /* addup duration for legacy/ht training and signal fields */
1034 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1035
1036 return duration;
1037 }
1038
1039 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1040 {
1041 int streams = HT_RC_2_STREAMS(mcs);
1042 int symbols, bits;
1043 int bytes = 0;
1044
1045 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1046 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1047 bits -= OFDM_PLCP_BITS;
1048 bytes = bits / 8;
1049 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1050 if (bytes > 65532)
1051 bytes = 65532;
1052
1053 return bytes;
1054 }
1055
1056 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1057 {
1058 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1059 int mcs;
1060
1061 /* 4ms is the default (and maximum) duration */
1062 if (!txop || txop > 4096)
1063 txop = 4096;
1064
1065 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1066 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1067 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1068 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1069 for (mcs = 0; mcs < 32; mcs++) {
1070 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1071 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1072 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1073 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1074 }
1075 }
1076
1077 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1078 struct ath_tx_info *info, int len, bool rts)
1079 {
1080 struct ath_hw *ah = sc->sc_ah;
1081 struct sk_buff *skb;
1082 struct ieee80211_tx_info *tx_info;
1083 struct ieee80211_tx_rate *rates;
1084 const struct ieee80211_rate *rate;
1085 struct ieee80211_hdr *hdr;
1086 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1087 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1088 int i;
1089 u8 rix = 0;
1090
1091 skb = bf->bf_mpdu;
1092 tx_info = IEEE80211_SKB_CB(skb);
1093 rates = bf->rates;
1094 hdr = (struct ieee80211_hdr *)skb->data;
1095
1096 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1097 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1098 info->rtscts_rate = fi->rtscts_rate;
1099
1100 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1101 bool is_40, is_sgi, is_sp;
1102 int phy;
1103
1104 if (!rates[i].count || (rates[i].idx < 0))
1105 continue;
1106
1107 rix = rates[i].idx;
1108 info->rates[i].Tries = rates[i].count;
1109
1110 /*
1111 * Handle RTS threshold for unaggregated HT frames.
1112 */
1113 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1114 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1115 unlikely(rts_thresh != (u32) -1)) {
1116 if (!rts_thresh || (len > rts_thresh))
1117 rts = true;
1118 }
1119
1120 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1121 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1122 info->flags |= ATH9K_TXDESC_RTSENA;
1123 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1124 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1125 info->flags |= ATH9K_TXDESC_CTSENA;
1126 }
1127
1128 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1129 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1130 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1131 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1132
1133 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1134 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1135 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1136
1137 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1138 /* MCS rates */
1139 info->rates[i].Rate = rix | 0x80;
1140 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1141 ah->txchainmask, info->rates[i].Rate);
1142 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1143 is_40, is_sgi, is_sp);
1144 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1145 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1146 continue;
1147 }
1148
1149 /* legacy rates */
1150 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1151 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1152 !(rate->flags & IEEE80211_RATE_ERP_G))
1153 phy = WLAN_RC_PHY_CCK;
1154 else
1155 phy = WLAN_RC_PHY_OFDM;
1156
1157 info->rates[i].Rate = rate->hw_value;
1158 if (rate->hw_value_short) {
1159 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1160 info->rates[i].Rate |= rate->hw_value_short;
1161 } else {
1162 is_sp = false;
1163 }
1164
1165 if (bf->bf_state.bfs_paprd)
1166 info->rates[i].ChSel = ah->txchainmask;
1167 else
1168 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1169 ah->txchainmask, info->rates[i].Rate);
1170
1171 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1172 phy, rate->bitrate * 100, len, rix, is_sp);
1173 }
1174
1175 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1176 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1177 info->flags &= ~ATH9K_TXDESC_RTSENA;
1178
1179 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1180 if (info->flags & ATH9K_TXDESC_RTSENA)
1181 info->flags &= ~ATH9K_TXDESC_CTSENA;
1182 }
1183
1184 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1185 {
1186 struct ieee80211_hdr *hdr;
1187 enum ath9k_pkt_type htype;
1188 __le16 fc;
1189
1190 hdr = (struct ieee80211_hdr *)skb->data;
1191 fc = hdr->frame_control;
1192
1193 if (ieee80211_is_beacon(fc))
1194 htype = ATH9K_PKT_TYPE_BEACON;
1195 else if (ieee80211_is_probe_resp(fc))
1196 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1197 else if (ieee80211_is_atim(fc))
1198 htype = ATH9K_PKT_TYPE_ATIM;
1199 else if (ieee80211_is_pspoll(fc))
1200 htype = ATH9K_PKT_TYPE_PSPOLL;
1201 else
1202 htype = ATH9K_PKT_TYPE_NORMAL;
1203
1204 return htype;
1205 }
1206
1207 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1208 struct ath_txq *txq, int len)
1209 {
1210 struct ath_hw *ah = sc->sc_ah;
1211 struct ath_buf *bf_first = NULL;
1212 struct ath_tx_info info;
1213 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1214 bool rts = false;
1215
1216 memset(&info, 0, sizeof(info));
1217 info.is_first = true;
1218 info.is_last = true;
1219 info.txpower = MAX_RATE_POWER;
1220 info.qcu = txq->axq_qnum;
1221
1222 while (bf) {
1223 struct sk_buff *skb = bf->bf_mpdu;
1224 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1225 struct ath_frame_info *fi = get_frame_info(skb);
1226 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1227
1228 info.type = get_hw_packet_type(skb);
1229 if (bf->bf_next)
1230 info.link = bf->bf_next->bf_daddr;
1231 else
1232 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1233
1234 if (!bf_first) {
1235 bf_first = bf;
1236
1237 if (!sc->tx99_state)
1238 info.flags = ATH9K_TXDESC_INTREQ;
1239 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1240 txq == sc->tx.uapsdq)
1241 info.flags |= ATH9K_TXDESC_CLRDMASK;
1242
1243 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1244 info.flags |= ATH9K_TXDESC_NOACK;
1245 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1246 info.flags |= ATH9K_TXDESC_LDPC;
1247
1248 if (bf->bf_state.bfs_paprd)
1249 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1250 ATH9K_TXDESC_PAPRD_S;
1251
1252 /*
1253 * mac80211 doesn't handle RTS threshold for HT because
1254 * the decision has to be taken based on AMPDU length
1255 * and aggregation is done entirely inside ath9k.
1256 * Set the RTS/CTS flag for the first subframe based
1257 * on the threshold.
1258 */
1259 if (aggr && (bf == bf_first) &&
1260 unlikely(rts_thresh != (u32) -1)) {
1261 /*
1262 * "len" is the size of the entire AMPDU.
1263 */
1264 if (!rts_thresh || (len > rts_thresh))
1265 rts = true;
1266 }
1267
1268 if (!aggr)
1269 len = fi->framelen;
1270
1271 ath_buf_set_rate(sc, bf, &info, len, rts);
1272 }
1273
1274 info.buf_addr[0] = bf->bf_buf_addr;
1275 info.buf_len[0] = skb->len;
1276 info.pkt_len = fi->framelen;
1277 info.keyix = fi->keyix;
1278 info.keytype = fi->keytype;
1279
1280 if (aggr) {
1281 if (bf == bf_first)
1282 info.aggr = AGGR_BUF_FIRST;
1283 else if (bf == bf_first->bf_lastbf)
1284 info.aggr = AGGR_BUF_LAST;
1285 else
1286 info.aggr = AGGR_BUF_MIDDLE;
1287
1288 info.ndelim = bf->bf_state.ndelim;
1289 info.aggr_len = len;
1290 }
1291
1292 if (bf == bf_first->bf_lastbf)
1293 bf_first = NULL;
1294
1295 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1296 bf = bf->bf_next;
1297 }
1298 }
1299
1300 static void
1301 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1302 struct ath_atx_tid *tid, struct list_head *bf_q,
1303 struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1304 {
1305 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1306 struct sk_buff *skb;
1307 int nframes = 0;
1308
1309 do {
1310 struct ieee80211_tx_info *tx_info;
1311 skb = bf->bf_mpdu;
1312
1313 nframes++;
1314 __skb_unlink(skb, tid_q);
1315 list_add_tail(&bf->list, bf_q);
1316 if (bf_prev)
1317 bf_prev->bf_next = bf;
1318 bf_prev = bf;
1319
1320 if (nframes >= 2)
1321 break;
1322
1323 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1324 if (!bf)
1325 break;
1326
1327 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1328 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1329 break;
1330
1331 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1332 } while (1);
1333 }
1334
1335 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1336 struct ath_atx_tid *tid, bool *stop)
1337 {
1338 struct ath_buf *bf;
1339 struct ieee80211_tx_info *tx_info;
1340 struct sk_buff_head *tid_q;
1341 struct list_head bf_q;
1342 int aggr_len = 0;
1343 bool aggr, last = true;
1344
1345 if (!ath_tid_has_buffered(tid))
1346 return false;
1347
1348 INIT_LIST_HEAD(&bf_q);
1349
1350 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1351 if (!bf)
1352 return false;
1353
1354 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1355 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1356 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1357 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1358 *stop = true;
1359 return false;
1360 }
1361
1362 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1363 if (aggr)
1364 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1365 tid_q, &aggr_len);
1366 else
1367 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1368
1369 if (list_empty(&bf_q))
1370 return false;
1371
1372 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1373 tid->ac->clear_ps_filter = false;
1374 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1375 }
1376
1377 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1378 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1379 return true;
1380 }
1381
1382 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1383 u16 tid, u16 *ssn)
1384 {
1385 struct ath_atx_tid *txtid;
1386 struct ath_txq *txq;
1387 struct ath_node *an;
1388 u8 density;
1389
1390 an = (struct ath_node *)sta->drv_priv;
1391 txtid = ATH_AN_2_TID(an, tid);
1392 txq = txtid->ac->txq;
1393
1394 ath_txq_lock(sc, txq);
1395
1396 /* update ampdu factor/density, they may have changed. This may happen
1397 * in HT IBSS when a beacon with HT-info is received after the station
1398 * has already been added.
1399 */
1400 if (sta->ht_cap.ht_supported) {
1401 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1402 sta->ht_cap.ampdu_factor)) - 1;
1403 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1404 an->mpdudensity = density;
1405 }
1406
1407 /* force sequence number allocation for pending frames */
1408 ath_tx_tid_change_state(sc, txtid);
1409
1410 txtid->active = true;
1411 txtid->paused = true;
1412 *ssn = txtid->seq_start = txtid->seq_next;
1413 txtid->bar_index = -1;
1414
1415 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1416 txtid->baw_head = txtid->baw_tail = 0;
1417
1418 ath_txq_unlock_complete(sc, txq);
1419
1420 return 0;
1421 }
1422
1423 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1424 {
1425 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1426 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1427 struct ath_txq *txq = txtid->ac->txq;
1428
1429 ath_txq_lock(sc, txq);
1430 txtid->active = false;
1431 txtid->paused = false;
1432 ath_tx_flush_tid(sc, txtid);
1433 ath_tx_tid_change_state(sc, txtid);
1434 ath_txq_unlock_complete(sc, txq);
1435 }
1436
1437 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1438 struct ath_node *an)
1439 {
1440 struct ath_atx_tid *tid;
1441 struct ath_atx_ac *ac;
1442 struct ath_txq *txq;
1443 bool buffered;
1444 int tidno;
1445
1446 for (tidno = 0, tid = &an->tid[tidno];
1447 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1448
1449 if (!tid->sched)
1450 continue;
1451
1452 ac = tid->ac;
1453 txq = ac->txq;
1454
1455 ath_txq_lock(sc, txq);
1456
1457 buffered = ath_tid_has_buffered(tid);
1458
1459 tid->sched = false;
1460 list_del(&tid->list);
1461
1462 if (ac->sched) {
1463 ac->sched = false;
1464 list_del(&ac->list);
1465 }
1466
1467 ath_txq_unlock(sc, txq);
1468
1469 ieee80211_sta_set_buffered(sta, tidno, buffered);
1470 }
1471 }
1472
1473 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1474 {
1475 struct ath_atx_tid *tid;
1476 struct ath_atx_ac *ac;
1477 struct ath_txq *txq;
1478 int tidno;
1479
1480 for (tidno = 0, tid = &an->tid[tidno];
1481 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1482
1483 ac = tid->ac;
1484 txq = ac->txq;
1485
1486 ath_txq_lock(sc, txq);
1487 ac->clear_ps_filter = true;
1488
1489 if (!tid->paused && ath_tid_has_buffered(tid)) {
1490 ath_tx_queue_tid(txq, tid);
1491 ath_txq_schedule(sc, txq);
1492 }
1493
1494 ath_txq_unlock_complete(sc, txq);
1495 }
1496 }
1497
1498 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1499 u16 tidno)
1500 {
1501 struct ath_atx_tid *tid;
1502 struct ath_node *an;
1503 struct ath_txq *txq;
1504
1505 an = (struct ath_node *)sta->drv_priv;
1506 tid = ATH_AN_2_TID(an, tidno);
1507 txq = tid->ac->txq;
1508
1509 ath_txq_lock(sc, txq);
1510
1511 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1512 tid->paused = false;
1513
1514 if (ath_tid_has_buffered(tid)) {
1515 ath_tx_queue_tid(txq, tid);
1516 ath_txq_schedule(sc, txq);
1517 }
1518
1519 ath_txq_unlock_complete(sc, txq);
1520 }
1521
1522 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1523 struct ieee80211_sta *sta,
1524 u16 tids, int nframes,
1525 enum ieee80211_frame_release_type reason,
1526 bool more_data)
1527 {
1528 struct ath_softc *sc = hw->priv;
1529 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1530 struct ath_txq *txq = sc->tx.uapsdq;
1531 struct ieee80211_tx_info *info;
1532 struct list_head bf_q;
1533 struct ath_buf *bf_tail = NULL, *bf;
1534 struct sk_buff_head *tid_q;
1535 int sent = 0;
1536 int i;
1537
1538 INIT_LIST_HEAD(&bf_q);
1539 for (i = 0; tids && nframes; i++, tids >>= 1) {
1540 struct ath_atx_tid *tid;
1541
1542 if (!(tids & 1))
1543 continue;
1544
1545 tid = ATH_AN_2_TID(an, i);
1546 if (tid->paused)
1547 continue;
1548
1549 ath_txq_lock(sc, tid->ac->txq);
1550 while (nframes > 0) {
1551 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1552 if (!bf)
1553 break;
1554
1555 __skb_unlink(bf->bf_mpdu, tid_q);
1556 list_add_tail(&bf->list, &bf_q);
1557 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1558 if (bf_isampdu(bf)) {
1559 ath_tx_addto_baw(sc, tid, bf);
1560 bf->bf_state.bf_type &= ~BUF_AGGR;
1561 }
1562 if (bf_tail)
1563 bf_tail->bf_next = bf;
1564
1565 bf_tail = bf;
1566 nframes--;
1567 sent++;
1568 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1569
1570 if (an->sta && !ath_tid_has_buffered(tid))
1571 ieee80211_sta_set_buffered(an->sta, i, false);
1572 }
1573 ath_txq_unlock_complete(sc, tid->ac->txq);
1574 }
1575
1576 if (list_empty(&bf_q))
1577 return;
1578
1579 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1580 info->flags |= IEEE80211_TX_STATUS_EOSP;
1581
1582 bf = list_first_entry(&bf_q, struct ath_buf, list);
1583 ath_txq_lock(sc, txq);
1584 ath_tx_fill_desc(sc, bf, txq, 0);
1585 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1586 ath_txq_unlock(sc, txq);
1587 }
1588
1589 /********************/
1590 /* Queue Management */
1591 /********************/
1592
1593 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1594 {
1595 struct ath_hw *ah = sc->sc_ah;
1596 struct ath9k_tx_queue_info qi;
1597 static const int subtype_txq_to_hwq[] = {
1598 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1599 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1600 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1601 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1602 };
1603 int axq_qnum, i;
1604
1605 memset(&qi, 0, sizeof(qi));
1606 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1607 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1608 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1609 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1610 qi.tqi_physCompBuf = 0;
1611
1612 /*
1613 * Enable interrupts only for EOL and DESC conditions.
1614 * We mark tx descriptors to receive a DESC interrupt
1615 * when a tx queue gets deep; otherwise waiting for the
1616 * EOL to reap descriptors. Note that this is done to
1617 * reduce interrupt load and this only defers reaping
1618 * descriptors, never transmitting frames. Aside from
1619 * reducing interrupts this also permits more concurrency.
1620 * The only potential downside is if the tx queue backs
1621 * up in which case the top half of the kernel may backup
1622 * due to a lack of tx descriptors.
1623 *
1624 * The UAPSD queue is an exception, since we take a desc-
1625 * based intr on the EOSP frames.
1626 */
1627 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1628 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1629 } else {
1630 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1631 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1632 else
1633 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1634 TXQ_FLAG_TXDESCINT_ENABLE;
1635 }
1636 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1637 if (axq_qnum == -1) {
1638 /*
1639 * NB: don't print a message, this happens
1640 * normally on parts with too few tx queues
1641 */
1642 return NULL;
1643 }
1644 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1645 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1646
1647 txq->axq_qnum = axq_qnum;
1648 txq->mac80211_qnum = -1;
1649 txq->axq_link = NULL;
1650 __skb_queue_head_init(&txq->complete_q);
1651 INIT_LIST_HEAD(&txq->axq_q);
1652 INIT_LIST_HEAD(&txq->axq_acq);
1653 spin_lock_init(&txq->axq_lock);
1654 txq->axq_depth = 0;
1655 txq->axq_ampdu_depth = 0;
1656 txq->axq_tx_inprogress = false;
1657 sc->tx.txqsetup |= 1<<axq_qnum;
1658
1659 txq->txq_headidx = txq->txq_tailidx = 0;
1660 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1661 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1662 }
1663 return &sc->tx.txq[axq_qnum];
1664 }
1665
1666 int ath_txq_update(struct ath_softc *sc, int qnum,
1667 struct ath9k_tx_queue_info *qinfo)
1668 {
1669 struct ath_hw *ah = sc->sc_ah;
1670 int error = 0;
1671 struct ath9k_tx_queue_info qi;
1672
1673 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1674
1675 ath9k_hw_get_txq_props(ah, qnum, &qi);
1676 qi.tqi_aifs = qinfo->tqi_aifs;
1677 qi.tqi_cwmin = qinfo->tqi_cwmin;
1678 qi.tqi_cwmax = qinfo->tqi_cwmax;
1679 qi.tqi_burstTime = qinfo->tqi_burstTime;
1680 qi.tqi_readyTime = qinfo->tqi_readyTime;
1681
1682 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1683 ath_err(ath9k_hw_common(sc->sc_ah),
1684 "Unable to update hardware queue %u!\n", qnum);
1685 error = -EIO;
1686 } else {
1687 ath9k_hw_resettxqueue(ah, qnum);
1688 }
1689
1690 return error;
1691 }
1692
1693 int ath_cabq_update(struct ath_softc *sc)
1694 {
1695 struct ath9k_tx_queue_info qi;
1696 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1697 int qnum = sc->beacon.cabq->axq_qnum;
1698
1699 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1700
1701 qi.tqi_readyTime = (cur_conf->beacon_interval *
1702 ATH_CABQ_READY_TIME) / 100;
1703 ath_txq_update(sc, qnum, &qi);
1704
1705 return 0;
1706 }
1707
1708 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1709 struct list_head *list)
1710 {
1711 struct ath_buf *bf, *lastbf;
1712 struct list_head bf_head;
1713 struct ath_tx_status ts;
1714
1715 memset(&ts, 0, sizeof(ts));
1716 ts.ts_status = ATH9K_TX_FLUSH;
1717 INIT_LIST_HEAD(&bf_head);
1718
1719 while (!list_empty(list)) {
1720 bf = list_first_entry(list, struct ath_buf, list);
1721
1722 if (bf->bf_state.stale) {
1723 list_del(&bf->list);
1724
1725 ath_tx_return_buffer(sc, bf);
1726 continue;
1727 }
1728
1729 lastbf = bf->bf_lastbf;
1730 list_cut_position(&bf_head, list, &lastbf->list);
1731 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1732 }
1733 }
1734
1735 /*
1736 * Drain a given TX queue (could be Beacon or Data)
1737 *
1738 * This assumes output has been stopped and
1739 * we do not need to block ath_tx_tasklet.
1740 */
1741 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1742 {
1743 ath_txq_lock(sc, txq);
1744
1745 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1746 int idx = txq->txq_tailidx;
1747
1748 while (!list_empty(&txq->txq_fifo[idx])) {
1749 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1750
1751 INCR(idx, ATH_TXFIFO_DEPTH);
1752 }
1753 txq->txq_tailidx = idx;
1754 }
1755
1756 txq->axq_link = NULL;
1757 txq->axq_tx_inprogress = false;
1758 ath_drain_txq_list(sc, txq, &txq->axq_q);
1759
1760 ath_txq_unlock_complete(sc, txq);
1761 }
1762
1763 bool ath_drain_all_txq(struct ath_softc *sc)
1764 {
1765 struct ath_hw *ah = sc->sc_ah;
1766 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1767 struct ath_txq *txq;
1768 int i;
1769 u32 npend = 0;
1770
1771 if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1772 return true;
1773
1774 ath9k_hw_abort_tx_dma(ah);
1775
1776 /* Check if any queue remains active */
1777 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1778 if (!ATH_TXQ_SETUP(sc, i))
1779 continue;
1780
1781 if (!sc->tx.txq[i].axq_depth)
1782 continue;
1783
1784 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1785 npend |= BIT(i);
1786 }
1787
1788 if (npend)
1789 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1790
1791 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1792 if (!ATH_TXQ_SETUP(sc, i))
1793 continue;
1794
1795 /*
1796 * The caller will resume queues with ieee80211_wake_queues.
1797 * Mark the queue as not stopped to prevent ath_tx_complete
1798 * from waking the queue too early.
1799 */
1800 txq = &sc->tx.txq[i];
1801 txq->stopped = false;
1802 ath_draintxq(sc, txq);
1803 }
1804
1805 return !npend;
1806 }
1807
1808 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1809 {
1810 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1811 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1812 }
1813
1814 /* For each axq_acq entry, for each tid, try to schedule packets
1815 * for transmit until ampdu_depth has reached min Q depth.
1816 */
1817 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1818 {
1819 struct ath_atx_ac *ac, *last_ac;
1820 struct ath_atx_tid *tid, *last_tid;
1821 bool sent = false;
1822
1823 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1824 list_empty(&txq->axq_acq))
1825 return;
1826
1827 rcu_read_lock();
1828
1829 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1830 while (!list_empty(&txq->axq_acq)) {
1831 bool stop = false;
1832
1833 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1834 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1835 list_del(&ac->list);
1836 ac->sched = false;
1837
1838 while (!list_empty(&ac->tid_q)) {
1839
1840 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1841 list);
1842 list_del(&tid->list);
1843 tid->sched = false;
1844
1845 if (tid->paused)
1846 continue;
1847
1848 if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1849 sent = true;
1850
1851 /*
1852 * add tid to round-robin queue if more frames
1853 * are pending for the tid
1854 */
1855 if (ath_tid_has_buffered(tid))
1856 ath_tx_queue_tid(txq, tid);
1857
1858 if (stop || tid == last_tid)
1859 break;
1860 }
1861
1862 if (!list_empty(&ac->tid_q) && !ac->sched) {
1863 ac->sched = true;
1864 list_add_tail(&ac->list, &txq->axq_acq);
1865 }
1866
1867 if (stop)
1868 break;
1869
1870 if (ac == last_ac) {
1871 if (!sent)
1872 break;
1873
1874 sent = false;
1875 last_ac = list_entry(txq->axq_acq.prev,
1876 struct ath_atx_ac, list);
1877 }
1878 }
1879
1880 rcu_read_unlock();
1881 }
1882
1883 /***********/
1884 /* TX, DMA */
1885 /***********/
1886
1887 /*
1888 * Insert a chain of ath_buf (descriptors) on a txq and
1889 * assume the descriptors are already chained together by caller.
1890 */
1891 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1892 struct list_head *head, bool internal)
1893 {
1894 struct ath_hw *ah = sc->sc_ah;
1895 struct ath_common *common = ath9k_hw_common(ah);
1896 struct ath_buf *bf, *bf_last;
1897 bool puttxbuf = false;
1898 bool edma;
1899
1900 /*
1901 * Insert the frame on the outbound list and
1902 * pass it on to the hardware.
1903 */
1904
1905 if (list_empty(head))
1906 return;
1907
1908 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1909 bf = list_first_entry(head, struct ath_buf, list);
1910 bf_last = list_entry(head->prev, struct ath_buf, list);
1911
1912 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1913 txq->axq_qnum, txq->axq_depth);
1914
1915 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1916 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1917 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1918 puttxbuf = true;
1919 } else {
1920 list_splice_tail_init(head, &txq->axq_q);
1921
1922 if (txq->axq_link) {
1923 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1924 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1925 txq->axq_qnum, txq->axq_link,
1926 ito64(bf->bf_daddr), bf->bf_desc);
1927 } else if (!edma)
1928 puttxbuf = true;
1929
1930 txq->axq_link = bf_last->bf_desc;
1931 }
1932
1933 if (puttxbuf) {
1934 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1935 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1936 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1937 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1938 }
1939
1940 if (!edma || sc->tx99_state) {
1941 TX_STAT_INC(txq->axq_qnum, txstart);
1942 ath9k_hw_txstart(ah, txq->axq_qnum);
1943 }
1944
1945 if (!internal) {
1946 while (bf) {
1947 txq->axq_depth++;
1948 if (bf_is_ampdu_not_probing(bf))
1949 txq->axq_ampdu_depth++;
1950
1951 bf_last = bf->bf_lastbf;
1952 bf = bf_last->bf_next;
1953 bf_last->bf_next = NULL;
1954 }
1955 }
1956 }
1957
1958 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1959 struct ath_atx_tid *tid, struct sk_buff *skb)
1960 {
1961 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1962 struct ath_frame_info *fi = get_frame_info(skb);
1963 struct list_head bf_head;
1964 struct ath_buf *bf = fi->bf;
1965
1966 INIT_LIST_HEAD(&bf_head);
1967 list_add_tail(&bf->list, &bf_head);
1968 bf->bf_state.bf_type = 0;
1969 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
1970 bf->bf_state.bf_type = BUF_AMPDU;
1971 ath_tx_addto_baw(sc, tid, bf);
1972 }
1973
1974 bf->bf_next = NULL;
1975 bf->bf_lastbf = bf;
1976 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1977 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1978 TX_STAT_INC(txq->axq_qnum, queued);
1979 }
1980
1981 static void setup_frame_info(struct ieee80211_hw *hw,
1982 struct ieee80211_sta *sta,
1983 struct sk_buff *skb,
1984 int framelen)
1985 {
1986 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1987 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1988 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1989 const struct ieee80211_rate *rate;
1990 struct ath_frame_info *fi = get_frame_info(skb);
1991 struct ath_node *an = NULL;
1992 enum ath9k_key_type keytype;
1993 bool short_preamble = false;
1994
1995 /*
1996 * We check if Short Preamble is needed for the CTS rate by
1997 * checking the BSS's global flag.
1998 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1999 */
2000 if (tx_info->control.vif &&
2001 tx_info->control.vif->bss_conf.use_short_preamble)
2002 short_preamble = true;
2003
2004 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2005 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2006
2007 if (sta)
2008 an = (struct ath_node *) sta->drv_priv;
2009
2010 memset(fi, 0, sizeof(*fi));
2011 if (hw_key)
2012 fi->keyix = hw_key->hw_key_idx;
2013 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2014 fi->keyix = an->ps_key;
2015 else
2016 fi->keyix = ATH9K_TXKEYIX_INVALID;
2017 fi->keytype = keytype;
2018 fi->framelen = framelen;
2019
2020 if (!rate)
2021 return;
2022 fi->rtscts_rate = rate->hw_value;
2023 if (short_preamble)
2024 fi->rtscts_rate |= rate->hw_value_short;
2025 }
2026
2027 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2028 {
2029 struct ath_hw *ah = sc->sc_ah;
2030 struct ath9k_channel *curchan = ah->curchan;
2031
2032 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2033 (chainmask == 0x7) && (rate < 0x90))
2034 return 0x3;
2035 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2036 IS_CCK_RATE(rate))
2037 return 0x2;
2038 else
2039 return chainmask;
2040 }
2041
2042 /*
2043 * Assign a descriptor (and sequence number if necessary,
2044 * and map buffer for DMA. Frees skb on error
2045 */
2046 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2047 struct ath_txq *txq,
2048 struct ath_atx_tid *tid,
2049 struct sk_buff *skb)
2050 {
2051 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2052 struct ath_frame_info *fi = get_frame_info(skb);
2053 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2054 struct ath_buf *bf;
2055 int fragno;
2056 u16 seqno;
2057
2058 bf = ath_tx_get_buffer(sc);
2059 if (!bf) {
2060 ath_dbg(common, XMIT, "TX buffers are full\n");
2061 return NULL;
2062 }
2063
2064 ATH_TXBUF_RESET(bf);
2065
2066 if (tid) {
2067 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2068 seqno = tid->seq_next;
2069 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2070
2071 if (fragno)
2072 hdr->seq_ctrl |= cpu_to_le16(fragno);
2073
2074 if (!ieee80211_has_morefrags(hdr->frame_control))
2075 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2076
2077 bf->bf_state.seqno = seqno;
2078 }
2079
2080 bf->bf_mpdu = skb;
2081
2082 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2083 skb->len, DMA_TO_DEVICE);
2084 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2085 bf->bf_mpdu = NULL;
2086 bf->bf_buf_addr = 0;
2087 ath_err(ath9k_hw_common(sc->sc_ah),
2088 "dma_mapping_error() on TX\n");
2089 ath_tx_return_buffer(sc, bf);
2090 return NULL;
2091 }
2092
2093 fi->bf = bf;
2094
2095 return bf;
2096 }
2097
2098 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2099 struct ath_tx_control *txctl)
2100 {
2101 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2102 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2103 struct ieee80211_sta *sta = txctl->sta;
2104 struct ieee80211_vif *vif = info->control.vif;
2105 struct ath_vif *avp;
2106 struct ath_softc *sc = hw->priv;
2107 int frmlen = skb->len + FCS_LEN;
2108 int padpos, padsize;
2109
2110 /* NOTE: sta can be NULL according to net/mac80211.h */
2111 if (sta)
2112 txctl->an = (struct ath_node *)sta->drv_priv;
2113 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2114 avp = (void *)vif->drv_priv;
2115 txctl->an = &avp->mcast_node;
2116 }
2117
2118 if (info->control.hw_key)
2119 frmlen += info->control.hw_key->icv_len;
2120
2121 /*
2122 * As a temporary workaround, assign seq# here; this will likely need
2123 * to be cleaned up to work better with Beacon transmission and virtual
2124 * BSSes.
2125 */
2126 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2127 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2128 sc->tx.seq_no += 0x10;
2129 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2130 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2131 }
2132
2133 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2134 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2135 !ieee80211_is_data(hdr->frame_control))
2136 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2137
2138 /* Add the padding after the header if this is not already done */
2139 padpos = ieee80211_hdrlen(hdr->frame_control);
2140 padsize = padpos & 3;
2141 if (padsize && skb->len > padpos) {
2142 if (skb_headroom(skb) < padsize)
2143 return -ENOMEM;
2144
2145 skb_push(skb, padsize);
2146 memmove(skb->data, skb->data + padsize, padpos);
2147 }
2148
2149 setup_frame_info(hw, sta, skb, frmlen);
2150 return 0;
2151 }
2152
2153
2154 /* Upon failure caller should free skb */
2155 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2156 struct ath_tx_control *txctl)
2157 {
2158 struct ieee80211_hdr *hdr;
2159 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2160 struct ieee80211_sta *sta = txctl->sta;
2161 struct ieee80211_vif *vif = info->control.vif;
2162 struct ath_softc *sc = hw->priv;
2163 struct ath_txq *txq = txctl->txq;
2164 struct ath_atx_tid *tid = NULL;
2165 struct ath_buf *bf;
2166 int q;
2167 int ret;
2168
2169 ret = ath_tx_prepare(hw, skb, txctl);
2170 if (ret)
2171 return ret;
2172
2173 hdr = (struct ieee80211_hdr *) skb->data;
2174 /*
2175 * At this point, the vif, hw_key and sta pointers in the tx control
2176 * info are no longer valid (overwritten by the ath_frame_info data.
2177 */
2178
2179 q = skb_get_queue_mapping(skb);
2180
2181 ath_txq_lock(sc, txq);
2182 if (txq == sc->tx.txq_map[q] &&
2183 ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2184 !txq->stopped) {
2185 ieee80211_stop_queue(sc->hw, q);
2186 txq->stopped = true;
2187 }
2188
2189 if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2190 ath_txq_unlock(sc, txq);
2191 txq = sc->tx.uapsdq;
2192 ath_txq_lock(sc, txq);
2193 } else if (txctl->an &&
2194 ieee80211_is_data_present(hdr->frame_control)) {
2195 tid = ath_get_skb_tid(sc, txctl->an, skb);
2196
2197 WARN_ON(tid->ac->txq != txctl->txq);
2198
2199 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2200 tid->ac->clear_ps_filter = true;
2201
2202 /*
2203 * Add this frame to software queue for scheduling later
2204 * for aggregation.
2205 */
2206 TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2207 __skb_queue_tail(&tid->buf_q, skb);
2208 if (!txctl->an->sleeping)
2209 ath_tx_queue_tid(txq, tid);
2210
2211 ath_txq_schedule(sc, txq);
2212 goto out;
2213 }
2214
2215 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2216 if (!bf) {
2217 ath_txq_skb_done(sc, txq, skb);
2218 if (txctl->paprd)
2219 dev_kfree_skb_any(skb);
2220 else
2221 ieee80211_free_txskb(sc->hw, skb);
2222 goto out;
2223 }
2224
2225 bf->bf_state.bfs_paprd = txctl->paprd;
2226
2227 if (txctl->paprd)
2228 bf->bf_state.bfs_paprd_timestamp = jiffies;
2229
2230 ath_set_rates(vif, sta, bf);
2231 ath_tx_send_normal(sc, txq, tid, skb);
2232
2233 out:
2234 ath_txq_unlock(sc, txq);
2235
2236 return 0;
2237 }
2238
2239 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2240 struct sk_buff *skb)
2241 {
2242 struct ath_softc *sc = hw->priv;
2243 struct ath_tx_control txctl = {
2244 .txq = sc->beacon.cabq
2245 };
2246 struct ath_tx_info info = {};
2247 struct ieee80211_hdr *hdr;
2248 struct ath_buf *bf_tail = NULL;
2249 struct ath_buf *bf;
2250 LIST_HEAD(bf_q);
2251 int duration = 0;
2252 int max_duration;
2253
2254 max_duration =
2255 sc->cur_beacon_conf.beacon_interval * 1000 *
2256 sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2257
2258 do {
2259 struct ath_frame_info *fi = get_frame_info(skb);
2260
2261 if (ath_tx_prepare(hw, skb, &txctl))
2262 break;
2263
2264 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2265 if (!bf)
2266 break;
2267
2268 bf->bf_lastbf = bf;
2269 ath_set_rates(vif, NULL, bf);
2270 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2271 duration += info.rates[0].PktDuration;
2272 if (bf_tail)
2273 bf_tail->bf_next = bf;
2274
2275 list_add_tail(&bf->list, &bf_q);
2276 bf_tail = bf;
2277 skb = NULL;
2278
2279 if (duration > max_duration)
2280 break;
2281
2282 skb = ieee80211_get_buffered_bc(hw, vif);
2283 } while(skb);
2284
2285 if (skb)
2286 ieee80211_free_txskb(hw, skb);
2287
2288 if (list_empty(&bf_q))
2289 return;
2290
2291 bf = list_first_entry(&bf_q, struct ath_buf, list);
2292 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2293
2294 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2295 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2296 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2297 sizeof(*hdr), DMA_TO_DEVICE);
2298 }
2299
2300 ath_txq_lock(sc, txctl.txq);
2301 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2302 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2303 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2304 ath_txq_unlock(sc, txctl.txq);
2305 }
2306
2307 /*****************/
2308 /* TX Completion */
2309 /*****************/
2310
2311 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2312 int tx_flags, struct ath_txq *txq)
2313 {
2314 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2315 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2316 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2317 int padpos, padsize;
2318 unsigned long flags;
2319
2320 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2321
2322 if (sc->sc_ah->caldata)
2323 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2324
2325 if (!(tx_flags & ATH_TX_ERROR))
2326 /* Frame was ACKed */
2327 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2328
2329 padpos = ieee80211_hdrlen(hdr->frame_control);
2330 padsize = padpos & 3;
2331 if (padsize && skb->len>padpos+padsize) {
2332 /*
2333 * Remove MAC header padding before giving the frame back to
2334 * mac80211.
2335 */
2336 memmove(skb->data + padsize, skb->data, padpos);
2337 skb_pull(skb, padsize);
2338 }
2339
2340 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2341 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2342 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2343 ath_dbg(common, PS,
2344 "Going back to sleep after having received TX status (0x%lx)\n",
2345 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2346 PS_WAIT_FOR_CAB |
2347 PS_WAIT_FOR_PSPOLL_DATA |
2348 PS_WAIT_FOR_TX_ACK));
2349 }
2350 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2351
2352 __skb_queue_tail(&txq->complete_q, skb);
2353 ath_txq_skb_done(sc, txq, skb);
2354 }
2355
2356 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2357 struct ath_txq *txq, struct list_head *bf_q,
2358 struct ath_tx_status *ts, int txok)
2359 {
2360 struct sk_buff *skb = bf->bf_mpdu;
2361 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2362 unsigned long flags;
2363 int tx_flags = 0;
2364
2365 if (!txok)
2366 tx_flags |= ATH_TX_ERROR;
2367
2368 if (ts->ts_status & ATH9K_TXERR_FILT)
2369 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2370
2371 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2372 bf->bf_buf_addr = 0;
2373 if (sc->tx99_state)
2374 goto skip_tx_complete;
2375
2376 if (bf->bf_state.bfs_paprd) {
2377 if (time_after(jiffies,
2378 bf->bf_state.bfs_paprd_timestamp +
2379 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2380 dev_kfree_skb_any(skb);
2381 else
2382 complete(&sc->paprd_complete);
2383 } else {
2384 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2385 ath_tx_complete(sc, skb, tx_flags, txq);
2386 }
2387 skip_tx_complete:
2388 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2389 * accidentally reference it later.
2390 */
2391 bf->bf_mpdu = NULL;
2392
2393 /*
2394 * Return the list of ath_buf of this mpdu to free queue
2395 */
2396 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2397 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2398 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2399 }
2400
2401 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2402 struct ath_tx_status *ts, int nframes, int nbad,
2403 int txok)
2404 {
2405 struct sk_buff *skb = bf->bf_mpdu;
2406 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2407 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2408 struct ieee80211_hw *hw = sc->hw;
2409 struct ath_hw *ah = sc->sc_ah;
2410 u8 i, tx_rateindex;
2411
2412 if (txok)
2413 tx_info->status.ack_signal = ts->ts_rssi;
2414
2415 tx_rateindex = ts->ts_rateindex;
2416 WARN_ON(tx_rateindex >= hw->max_rates);
2417
2418 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2419 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2420
2421 BUG_ON(nbad > nframes);
2422 }
2423 tx_info->status.ampdu_len = nframes;
2424 tx_info->status.ampdu_ack_len = nframes - nbad;
2425
2426 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2427 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2428 /*
2429 * If an underrun error is seen assume it as an excessive
2430 * retry only if max frame trigger level has been reached
2431 * (2 KB for single stream, and 4 KB for dual stream).
2432 * Adjust the long retry as if the frame was tried
2433 * hw->max_rate_tries times to affect how rate control updates
2434 * PER for the failed rate.
2435 * In case of congestion on the bus penalizing this type of
2436 * underruns should help hardware actually transmit new frames
2437 * successfully by eventually preferring slower rates.
2438 * This itself should also alleviate congestion on the bus.
2439 */
2440 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2441 ATH9K_TX_DELIM_UNDERRUN)) &&
2442 ieee80211_is_data(hdr->frame_control) &&
2443 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2444 tx_info->status.rates[tx_rateindex].count =
2445 hw->max_rate_tries;
2446 }
2447
2448 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2449 tx_info->status.rates[i].count = 0;
2450 tx_info->status.rates[i].idx = -1;
2451 }
2452
2453 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2454 }
2455
2456 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2457 {
2458 struct ath_hw *ah = sc->sc_ah;
2459 struct ath_common *common = ath9k_hw_common(ah);
2460 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2461 struct list_head bf_head;
2462 struct ath_desc *ds;
2463 struct ath_tx_status ts;
2464 int status;
2465
2466 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2467 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2468 txq->axq_link);
2469
2470 ath_txq_lock(sc, txq);
2471 for (;;) {
2472 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2473 break;
2474
2475 if (list_empty(&txq->axq_q)) {
2476 txq->axq_link = NULL;
2477 ath_txq_schedule(sc, txq);
2478 break;
2479 }
2480 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2481
2482 /*
2483 * There is a race condition that a BH gets scheduled
2484 * after sw writes TxE and before hw re-load the last
2485 * descriptor to get the newly chained one.
2486 * Software must keep the last DONE descriptor as a
2487 * holding descriptor - software does so by marking
2488 * it with the STALE flag.
2489 */
2490 bf_held = NULL;
2491 if (bf->bf_state.stale) {
2492 bf_held = bf;
2493 if (list_is_last(&bf_held->list, &txq->axq_q))
2494 break;
2495
2496 bf = list_entry(bf_held->list.next, struct ath_buf,
2497 list);
2498 }
2499
2500 lastbf = bf->bf_lastbf;
2501 ds = lastbf->bf_desc;
2502
2503 memset(&ts, 0, sizeof(ts));
2504 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2505 if (status == -EINPROGRESS)
2506 break;
2507
2508 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2509
2510 /*
2511 * Remove ath_buf's of the same transmit unit from txq,
2512 * however leave the last descriptor back as the holding
2513 * descriptor for hw.
2514 */
2515 lastbf->bf_state.stale = true;
2516 INIT_LIST_HEAD(&bf_head);
2517 if (!list_is_singular(&lastbf->list))
2518 list_cut_position(&bf_head,
2519 &txq->axq_q, lastbf->list.prev);
2520
2521 if (bf_held) {
2522 list_del(&bf_held->list);
2523 ath_tx_return_buffer(sc, bf_held);
2524 }
2525
2526 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2527 }
2528 ath_txq_unlock_complete(sc, txq);
2529 }
2530
2531 void ath_tx_tasklet(struct ath_softc *sc)
2532 {
2533 struct ath_hw *ah = sc->sc_ah;
2534 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2535 int i;
2536
2537 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2538 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2539 ath_tx_processq(sc, &sc->tx.txq[i]);
2540 }
2541 }
2542
2543 void ath_tx_edma_tasklet(struct ath_softc *sc)
2544 {
2545 struct ath_tx_status ts;
2546 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2547 struct ath_hw *ah = sc->sc_ah;
2548 struct ath_txq *txq;
2549 struct ath_buf *bf, *lastbf;
2550 struct list_head bf_head;
2551 struct list_head *fifo_list;
2552 int status;
2553
2554 for (;;) {
2555 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2556 break;
2557
2558 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2559 if (status == -EINPROGRESS)
2560 break;
2561 if (status == -EIO) {
2562 ath_dbg(common, XMIT, "Error processing tx status\n");
2563 break;
2564 }
2565
2566 /* Process beacon completions separately */
2567 if (ts.qid == sc->beacon.beaconq) {
2568 sc->beacon.tx_processed = true;
2569 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2570
2571 ath9k_csa_is_finished(sc);
2572 continue;
2573 }
2574
2575 txq = &sc->tx.txq[ts.qid];
2576
2577 ath_txq_lock(sc, txq);
2578
2579 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2580
2581 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2582 if (list_empty(fifo_list)) {
2583 ath_txq_unlock(sc, txq);
2584 return;
2585 }
2586
2587 bf = list_first_entry(fifo_list, struct ath_buf, list);
2588 if (bf->bf_state.stale) {
2589 list_del(&bf->list);
2590 ath_tx_return_buffer(sc, bf);
2591 bf = list_first_entry(fifo_list, struct ath_buf, list);
2592 }
2593
2594 lastbf = bf->bf_lastbf;
2595
2596 INIT_LIST_HEAD(&bf_head);
2597 if (list_is_last(&lastbf->list, fifo_list)) {
2598 list_splice_tail_init(fifo_list, &bf_head);
2599 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2600
2601 if (!list_empty(&txq->axq_q)) {
2602 struct list_head bf_q;
2603
2604 INIT_LIST_HEAD(&bf_q);
2605 txq->axq_link = NULL;
2606 list_splice_tail_init(&txq->axq_q, &bf_q);
2607 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2608 }
2609 } else {
2610 lastbf->bf_state.stale = true;
2611 if (bf != lastbf)
2612 list_cut_position(&bf_head, fifo_list,
2613 lastbf->list.prev);
2614 }
2615
2616 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2617 ath_txq_unlock_complete(sc, txq);
2618 }
2619 }
2620
2621 /*****************/
2622 /* Init, Cleanup */
2623 /*****************/
2624
2625 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2626 {
2627 struct ath_descdma *dd = &sc->txsdma;
2628 u8 txs_len = sc->sc_ah->caps.txs_len;
2629
2630 dd->dd_desc_len = size * txs_len;
2631 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2632 &dd->dd_desc_paddr, GFP_KERNEL);
2633 if (!dd->dd_desc)
2634 return -ENOMEM;
2635
2636 return 0;
2637 }
2638
2639 static int ath_tx_edma_init(struct ath_softc *sc)
2640 {
2641 int err;
2642
2643 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2644 if (!err)
2645 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2646 sc->txsdma.dd_desc_paddr,
2647 ATH_TXSTATUS_RING_SIZE);
2648
2649 return err;
2650 }
2651
2652 int ath_tx_init(struct ath_softc *sc, int nbufs)
2653 {
2654 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2655 int error = 0;
2656
2657 spin_lock_init(&sc->tx.txbuflock);
2658
2659 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2660 "tx", nbufs, 1, 1);
2661 if (error != 0) {
2662 ath_err(common,
2663 "Failed to allocate tx descriptors: %d\n", error);
2664 return error;
2665 }
2666
2667 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2668 "beacon", ATH_BCBUF, 1, 1);
2669 if (error != 0) {
2670 ath_err(common,
2671 "Failed to allocate beacon descriptors: %d\n", error);
2672 return error;
2673 }
2674
2675 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2676
2677 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2678 error = ath_tx_edma_init(sc);
2679
2680 return error;
2681 }
2682
2683 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2684 {
2685 struct ath_atx_tid *tid;
2686 struct ath_atx_ac *ac;
2687 int tidno, acno;
2688
2689 for (tidno = 0, tid = &an->tid[tidno];
2690 tidno < IEEE80211_NUM_TIDS;
2691 tidno++, tid++) {
2692 tid->an = an;
2693 tid->tidno = tidno;
2694 tid->seq_start = tid->seq_next = 0;
2695 tid->baw_size = WME_MAX_BA;
2696 tid->baw_head = tid->baw_tail = 0;
2697 tid->sched = false;
2698 tid->paused = false;
2699 tid->active = false;
2700 __skb_queue_head_init(&tid->buf_q);
2701 __skb_queue_head_init(&tid->retry_q);
2702 acno = TID_TO_WME_AC(tidno);
2703 tid->ac = &an->ac[acno];
2704 }
2705
2706 for (acno = 0, ac = &an->ac[acno];
2707 acno < IEEE80211_NUM_ACS; acno++, ac++) {
2708 ac->sched = false;
2709 ac->clear_ps_filter = true;
2710 ac->txq = sc->tx.txq_map[acno];
2711 INIT_LIST_HEAD(&ac->tid_q);
2712 }
2713 }
2714
2715 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2716 {
2717 struct ath_atx_ac *ac;
2718 struct ath_atx_tid *tid;
2719 struct ath_txq *txq;
2720 int tidno;
2721
2722 for (tidno = 0, tid = &an->tid[tidno];
2723 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2724
2725 ac = tid->ac;
2726 txq = ac->txq;
2727
2728 ath_txq_lock(sc, txq);
2729
2730 if (tid->sched) {
2731 list_del(&tid->list);
2732 tid->sched = false;
2733 }
2734
2735 if (ac->sched) {
2736 list_del(&ac->list);
2737 tid->ac->sched = false;
2738 }
2739
2740 ath_tid_drain(sc, txq, tid);
2741 tid->active = false;
2742
2743 ath_txq_unlock(sc, txq);
2744 }
2745 }
2746
2747 #ifdef CONFIG_ATH9K_TX99
2748
2749 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2750 struct ath_tx_control *txctl)
2751 {
2752 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2753 struct ath_frame_info *fi = get_frame_info(skb);
2754 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2755 struct ath_buf *bf;
2756 int padpos, padsize;
2757
2758 padpos = ieee80211_hdrlen(hdr->frame_control);
2759 padsize = padpos & 3;
2760
2761 if (padsize && skb->len > padpos) {
2762 if (skb_headroom(skb) < padsize) {
2763 ath_dbg(common, XMIT,
2764 "tx99 padding failed\n");
2765 return -EINVAL;
2766 }
2767
2768 skb_push(skb, padsize);
2769 memmove(skb->data, skb->data + padsize, padpos);
2770 }
2771
2772 fi->keyix = ATH9K_TXKEYIX_INVALID;
2773 fi->framelen = skb->len + FCS_LEN;
2774 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2775
2776 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2777 if (!bf) {
2778 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2779 return -EINVAL;
2780 }
2781
2782 ath_set_rates(sc->tx99_vif, NULL, bf);
2783
2784 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2785 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2786
2787 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2788
2789 return 0;
2790 }
2791
2792 #endif /* CONFIG_ATH9K_TX99 */