]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/ath/carl9170/main.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / ath / carl9170 / main.c
1 /*
2 * Atheros CARL9170 driver
3 *
4 * mac80211 interaction code
5 *
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, see
21 * http://www.gnu.org/licenses/.
22 *
23 * This file incorporates work covered by the following copyright and
24 * permission notice:
25 * Copyright (c) 2007-2008 Atheros Communications, Inc.
26 *
27 * Permission to use, copy, modify, and/or distribute this software for any
28 * purpose with or without fee is hereby granted, provided that the above
29 * copyright notice and this permission notice appear in all copies.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38 */
39
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <linux/etherdevice.h>
43 #include <linux/random.h>
44 #include <net/mac80211.h>
45 #include <net/cfg80211.h>
46 #include "hw.h"
47 #include "carl9170.h"
48 #include "cmd.h"
49
50 static bool modparam_nohwcrypt;
51 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
52 MODULE_PARM_DESC(nohwcrypt, "Disable hardware crypto offload.");
53
54 int modparam_noht;
55 module_param_named(noht, modparam_noht, int, S_IRUGO);
56 MODULE_PARM_DESC(noht, "Disable MPDU aggregation.");
57
58 #define RATE(_bitrate, _hw_rate, _txpidx, _flags) { \
59 .bitrate = (_bitrate), \
60 .flags = (_flags), \
61 .hw_value = (_hw_rate) | (_txpidx) << 4, \
62 }
63
64 struct ieee80211_rate __carl9170_ratetable[] = {
65 RATE(10, 0, 0, 0),
66 RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE),
67 RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE),
68 RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE),
69 RATE(60, 0xb, 0, 0),
70 RATE(90, 0xf, 0, 0),
71 RATE(120, 0xa, 0, 0),
72 RATE(180, 0xe, 0, 0),
73 RATE(240, 0x9, 0, 0),
74 RATE(360, 0xd, 1, 0),
75 RATE(480, 0x8, 2, 0),
76 RATE(540, 0xc, 3, 0),
77 };
78 #undef RATE
79
80 #define carl9170_g_ratetable (__carl9170_ratetable + 0)
81 #define carl9170_g_ratetable_size 12
82 #define carl9170_a_ratetable (__carl9170_ratetable + 4)
83 #define carl9170_a_ratetable_size 8
84
85 /*
86 * NB: The hw_value is used as an index into the carl9170_phy_freq_params
87 * array in phy.c so that we don't have to do frequency lookups!
88 */
89 #define CHAN(_freq, _idx) { \
90 .center_freq = (_freq), \
91 .hw_value = (_idx), \
92 .max_power = 18, /* XXX */ \
93 }
94
95 static struct ieee80211_channel carl9170_2ghz_chantable[] = {
96 CHAN(2412, 0),
97 CHAN(2417, 1),
98 CHAN(2422, 2),
99 CHAN(2427, 3),
100 CHAN(2432, 4),
101 CHAN(2437, 5),
102 CHAN(2442, 6),
103 CHAN(2447, 7),
104 CHAN(2452, 8),
105 CHAN(2457, 9),
106 CHAN(2462, 10),
107 CHAN(2467, 11),
108 CHAN(2472, 12),
109 CHAN(2484, 13),
110 };
111
112 static struct ieee80211_channel carl9170_5ghz_chantable[] = {
113 CHAN(4920, 14),
114 CHAN(4940, 15),
115 CHAN(4960, 16),
116 CHAN(4980, 17),
117 CHAN(5040, 18),
118 CHAN(5060, 19),
119 CHAN(5080, 20),
120 CHAN(5180, 21),
121 CHAN(5200, 22),
122 CHAN(5220, 23),
123 CHAN(5240, 24),
124 CHAN(5260, 25),
125 CHAN(5280, 26),
126 CHAN(5300, 27),
127 CHAN(5320, 28),
128 CHAN(5500, 29),
129 CHAN(5520, 30),
130 CHAN(5540, 31),
131 CHAN(5560, 32),
132 CHAN(5580, 33),
133 CHAN(5600, 34),
134 CHAN(5620, 35),
135 CHAN(5640, 36),
136 CHAN(5660, 37),
137 CHAN(5680, 38),
138 CHAN(5700, 39),
139 CHAN(5745, 40),
140 CHAN(5765, 41),
141 CHAN(5785, 42),
142 CHAN(5805, 43),
143 CHAN(5825, 44),
144 CHAN(5170, 45),
145 CHAN(5190, 46),
146 CHAN(5210, 47),
147 CHAN(5230, 48),
148 };
149 #undef CHAN
150
151 #define CARL9170_HT_CAP \
152 { \
153 .ht_supported = true, \
154 .cap = IEEE80211_HT_CAP_MAX_AMSDU | \
155 IEEE80211_HT_CAP_SUP_WIDTH_20_40 | \
156 IEEE80211_HT_CAP_SGI_40 | \
157 IEEE80211_HT_CAP_DSSSCCK40 | \
158 IEEE80211_HT_CAP_SM_PS, \
159 .ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, \
160 .ampdu_density = IEEE80211_HT_MPDU_DENSITY_8, \
161 .mcs = { \
162 .rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, }, \
163 .rx_highest = cpu_to_le16(300), \
164 .tx_params = IEEE80211_HT_MCS_TX_DEFINED, \
165 }, \
166 }
167
168 static struct ieee80211_supported_band carl9170_band_2GHz = {
169 .channels = carl9170_2ghz_chantable,
170 .n_channels = ARRAY_SIZE(carl9170_2ghz_chantable),
171 .bitrates = carl9170_g_ratetable,
172 .n_bitrates = carl9170_g_ratetable_size,
173 .ht_cap = CARL9170_HT_CAP,
174 };
175
176 static struct ieee80211_supported_band carl9170_band_5GHz = {
177 .channels = carl9170_5ghz_chantable,
178 .n_channels = ARRAY_SIZE(carl9170_5ghz_chantable),
179 .bitrates = carl9170_a_ratetable,
180 .n_bitrates = carl9170_a_ratetable_size,
181 .ht_cap = CARL9170_HT_CAP,
182 };
183
184 static void carl9170_ampdu_gc(struct ar9170 *ar)
185 {
186 struct carl9170_sta_tid *tid_info;
187 LIST_HEAD(tid_gc);
188
189 rcu_read_lock();
190 list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
191 spin_lock_bh(&ar->tx_ampdu_list_lock);
192 if (tid_info->state == CARL9170_TID_STATE_SHUTDOWN) {
193 tid_info->state = CARL9170_TID_STATE_KILLED;
194 list_del_rcu(&tid_info->list);
195 ar->tx_ampdu_list_len--;
196 list_add_tail(&tid_info->tmp_list, &tid_gc);
197 }
198 spin_unlock_bh(&ar->tx_ampdu_list_lock);
199
200 }
201 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
202 rcu_read_unlock();
203
204 synchronize_rcu();
205
206 while (!list_empty(&tid_gc)) {
207 struct sk_buff *skb;
208 tid_info = list_first_entry(&tid_gc, struct carl9170_sta_tid,
209 tmp_list);
210
211 while ((skb = __skb_dequeue(&tid_info->queue)))
212 carl9170_tx_status(ar, skb, false);
213
214 list_del_init(&tid_info->tmp_list);
215 kfree(tid_info);
216 }
217 }
218
219 static void carl9170_flush(struct ar9170 *ar, bool drop_queued)
220 {
221 if (drop_queued) {
222 int i;
223
224 /*
225 * We can only drop frames which have not been uploaded
226 * to the device yet.
227 */
228
229 for (i = 0; i < ar->hw->queues; i++) {
230 struct sk_buff *skb;
231
232 while ((skb = skb_dequeue(&ar->tx_pending[i]))) {
233 struct ieee80211_tx_info *info;
234
235 info = IEEE80211_SKB_CB(skb);
236 if (info->flags & IEEE80211_TX_CTL_AMPDU)
237 atomic_dec(&ar->tx_ampdu_upload);
238
239 carl9170_tx_status(ar, skb, false);
240 }
241 }
242 }
243
244 /* Wait for all other outstanding frames to timeout. */
245 if (atomic_read(&ar->tx_total_queued))
246 WARN_ON(wait_for_completion_timeout(&ar->tx_flush, HZ) == 0);
247 }
248
249 static void carl9170_flush_ba(struct ar9170 *ar)
250 {
251 struct sk_buff_head free;
252 struct carl9170_sta_tid *tid_info;
253 struct sk_buff *skb;
254
255 __skb_queue_head_init(&free);
256
257 rcu_read_lock();
258 spin_lock_bh(&ar->tx_ampdu_list_lock);
259 list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
260 if (tid_info->state > CARL9170_TID_STATE_SUSPEND) {
261 tid_info->state = CARL9170_TID_STATE_SUSPEND;
262
263 spin_lock(&tid_info->lock);
264 while ((skb = __skb_dequeue(&tid_info->queue)))
265 __skb_queue_tail(&free, skb);
266 spin_unlock(&tid_info->lock);
267 }
268 }
269 spin_unlock_bh(&ar->tx_ampdu_list_lock);
270 rcu_read_unlock();
271
272 while ((skb = __skb_dequeue(&free)))
273 carl9170_tx_status(ar, skb, false);
274 }
275
276 static void carl9170_zap_queues(struct ar9170 *ar)
277 {
278 struct carl9170_vif_info *cvif;
279 unsigned int i;
280
281 carl9170_ampdu_gc(ar);
282
283 carl9170_flush_ba(ar);
284 carl9170_flush(ar, true);
285
286 for (i = 0; i < ar->hw->queues; i++) {
287 spin_lock_bh(&ar->tx_status[i].lock);
288 while (!skb_queue_empty(&ar->tx_status[i])) {
289 struct sk_buff *skb;
290
291 skb = skb_peek(&ar->tx_status[i]);
292 carl9170_tx_get_skb(skb);
293 spin_unlock_bh(&ar->tx_status[i].lock);
294 carl9170_tx_drop(ar, skb);
295 spin_lock_bh(&ar->tx_status[i].lock);
296 carl9170_tx_put_skb(skb);
297 }
298 spin_unlock_bh(&ar->tx_status[i].lock);
299 }
300
301 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_SOFT < 1);
302 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD < CARL9170_NUM_TX_LIMIT_SOFT);
303 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD >= CARL9170_BAW_BITS);
304
305 /* reinitialize queues statistics */
306 memset(&ar->tx_stats, 0, sizeof(ar->tx_stats));
307 for (i = 0; i < ar->hw->queues; i++)
308 ar->tx_stats[i].limit = CARL9170_NUM_TX_LIMIT_HARD;
309
310 for (i = 0; i < DIV_ROUND_UP(ar->fw.mem_blocks, BITS_PER_LONG); i++)
311 ar->mem_bitmap[i] = 0;
312
313 rcu_read_lock();
314 list_for_each_entry_rcu(cvif, &ar->vif_list, list) {
315 spin_lock_bh(&ar->beacon_lock);
316 dev_kfree_skb_any(cvif->beacon);
317 cvif->beacon = NULL;
318 spin_unlock_bh(&ar->beacon_lock);
319 }
320 rcu_read_unlock();
321
322 atomic_set(&ar->tx_ampdu_upload, 0);
323 atomic_set(&ar->tx_ampdu_scheduler, 0);
324 atomic_set(&ar->tx_total_pending, 0);
325 atomic_set(&ar->tx_total_queued, 0);
326 atomic_set(&ar->mem_free_blocks, ar->fw.mem_blocks);
327 }
328
329 #define CARL9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop) \
330 do { \
331 queue.aifs = ai_fs; \
332 queue.cw_min = cwmin; \
333 queue.cw_max = cwmax; \
334 queue.txop = _txop; \
335 } while (0)
336
337 static int carl9170_op_start(struct ieee80211_hw *hw)
338 {
339 struct ar9170 *ar = hw->priv;
340 int err, i;
341
342 mutex_lock(&ar->mutex);
343
344 carl9170_zap_queues(ar);
345
346 /* reset QoS defaults */
347 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VO], 2, 3, 7, 47);
348 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VI], 2, 7, 15, 94);
349 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BE], 3, 15, 1023, 0);
350 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BK], 7, 15, 1023, 0);
351 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_SPECIAL], 2, 3, 7, 0);
352
353 ar->current_factor = ar->current_density = -1;
354 /* "The first key is unique." */
355 ar->usedkeys = 1;
356 ar->filter_state = 0;
357 ar->ps.last_action = jiffies;
358 ar->ps.last_slept = jiffies;
359 ar->erp_mode = CARL9170_ERP_AUTO;
360
361 /* Set "disable hw crypto offload" whenever the module parameter
362 * nohwcrypt is true or if the firmware does not support it.
363 */
364 ar->disable_offload = modparam_nohwcrypt |
365 ar->fw.disable_offload_fw;
366 ar->rx_software_decryption = ar->disable_offload;
367
368 for (i = 0; i < ar->hw->queues; i++) {
369 ar->queue_stop_timeout[i] = jiffies;
370 ar->max_queue_stop_timeout[i] = 0;
371 }
372
373 atomic_set(&ar->mem_allocs, 0);
374
375 err = carl9170_usb_open(ar);
376 if (err)
377 goto out;
378
379 err = carl9170_init_mac(ar);
380 if (err)
381 goto out;
382
383 err = carl9170_set_qos(ar);
384 if (err)
385 goto out;
386
387 if (ar->fw.rx_filter) {
388 err = carl9170_rx_filter(ar, CARL9170_RX_FILTER_OTHER_RA |
389 CARL9170_RX_FILTER_CTL_OTHER | CARL9170_RX_FILTER_BAD);
390 if (err)
391 goto out;
392 }
393
394 err = carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER,
395 AR9170_DMA_TRIGGER_RXQ);
396 if (err)
397 goto out;
398
399 /* Clear key-cache */
400 for (i = 0; i < AR9170_CAM_MAX_USER + 4; i++) {
401 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
402 0, NULL, 0);
403 if (err)
404 goto out;
405
406 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
407 1, NULL, 0);
408 if (err)
409 goto out;
410
411 if (i < AR9170_CAM_MAX_USER) {
412 err = carl9170_disable_key(ar, i);
413 if (err)
414 goto out;
415 }
416 }
417
418 carl9170_set_state_when(ar, CARL9170_IDLE, CARL9170_STARTED);
419
420 ieee80211_queue_delayed_work(ar->hw, &ar->stat_work,
421 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK)));
422
423 ieee80211_wake_queues(ar->hw);
424 err = 0;
425
426 out:
427 mutex_unlock(&ar->mutex);
428 return err;
429 }
430
431 static void carl9170_cancel_worker(struct ar9170 *ar)
432 {
433 cancel_delayed_work_sync(&ar->stat_work);
434 cancel_delayed_work_sync(&ar->tx_janitor);
435 #ifdef CONFIG_CARL9170_LEDS
436 cancel_delayed_work_sync(&ar->led_work);
437 #endif /* CONFIG_CARL9170_LEDS */
438 cancel_work_sync(&ar->ps_work);
439 cancel_work_sync(&ar->ping_work);
440 cancel_work_sync(&ar->ampdu_work);
441 }
442
443 static void carl9170_op_stop(struct ieee80211_hw *hw)
444 {
445 struct ar9170 *ar = hw->priv;
446
447 carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
448
449 ieee80211_stop_queues(ar->hw);
450
451 mutex_lock(&ar->mutex);
452 if (IS_ACCEPTING_CMD(ar)) {
453 RCU_INIT_POINTER(ar->beacon_iter, NULL);
454
455 carl9170_led_set_state(ar, 0);
456
457 /* stop DMA */
458 carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 0);
459 carl9170_usb_stop(ar);
460 }
461
462 carl9170_zap_queues(ar);
463 mutex_unlock(&ar->mutex);
464
465 carl9170_cancel_worker(ar);
466 }
467
468 static void carl9170_restart_work(struct work_struct *work)
469 {
470 struct ar9170 *ar = container_of(work, struct ar9170,
471 restart_work);
472 int err = -EIO;
473
474 ar->usedkeys = 0;
475 ar->filter_state = 0;
476 carl9170_cancel_worker(ar);
477
478 mutex_lock(&ar->mutex);
479 if (!ar->force_usb_reset) {
480 err = carl9170_usb_restart(ar);
481 if (net_ratelimit()) {
482 if (err)
483 dev_err(&ar->udev->dev, "Failed to restart device (%d).\n", err);
484 else
485 dev_info(&ar->udev->dev, "device restarted successfully.\n");
486 }
487 }
488 carl9170_zap_queues(ar);
489 mutex_unlock(&ar->mutex);
490
491 if (!err && !ar->force_usb_reset) {
492 ar->restart_counter++;
493 atomic_set(&ar->pending_restarts, 0);
494
495 ieee80211_restart_hw(ar->hw);
496 } else {
497 /*
498 * The reset was unsuccessful and the device seems to
499 * be dead. But there's still one option: a low-level
500 * usb subsystem reset...
501 */
502
503 carl9170_usb_reset(ar);
504 }
505 }
506
507 void carl9170_restart(struct ar9170 *ar, const enum carl9170_restart_reasons r)
508 {
509 carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
510
511 /*
512 * Sometimes, an error can trigger several different reset events.
513 * By ignoring these *surplus* reset events, the device won't be
514 * killed again, right after it has recovered.
515 */
516 if (atomic_inc_return(&ar->pending_restarts) > 1) {
517 dev_dbg(&ar->udev->dev, "ignoring restart (%d)\n", r);
518 return;
519 }
520
521 ieee80211_stop_queues(ar->hw);
522
523 dev_err(&ar->udev->dev, "restart device (%d)\n", r);
524
525 if (!WARN_ON(r == CARL9170_RR_NO_REASON) ||
526 !WARN_ON(r >= __CARL9170_RR_LAST))
527 ar->last_reason = r;
528
529 if (!ar->registered)
530 return;
531
532 if (!IS_ACCEPTING_CMD(ar) || ar->needs_full_reset)
533 ar->force_usb_reset = true;
534
535 ieee80211_queue_work(ar->hw, &ar->restart_work);
536
537 /*
538 * At this point, the device instance might have vanished/disabled.
539 * So, don't put any code which access the ar9170 struct
540 * without proper protection.
541 */
542 }
543
544 static void carl9170_ping_work(struct work_struct *work)
545 {
546 struct ar9170 *ar = container_of(work, struct ar9170, ping_work);
547 int err;
548
549 if (!IS_STARTED(ar))
550 return;
551
552 mutex_lock(&ar->mutex);
553 err = carl9170_echo_test(ar, 0xdeadbeef);
554 if (err)
555 carl9170_restart(ar, CARL9170_RR_UNRESPONSIVE_DEVICE);
556 mutex_unlock(&ar->mutex);
557 }
558
559 static int carl9170_init_interface(struct ar9170 *ar,
560 struct ieee80211_vif *vif)
561 {
562 struct ath_common *common = &ar->common;
563 int err;
564
565 if (!vif) {
566 WARN_ON_ONCE(IS_STARTED(ar));
567 return 0;
568 }
569
570 memcpy(common->macaddr, vif->addr, ETH_ALEN);
571
572 /* We have to fall back to software crypto, whenever
573 * the user choose to participates in an IBSS. HW
574 * offload for IBSS RSN is not supported by this driver.
575 *
576 * NOTE: If the previous main interface has already
577 * disabled hw crypto offload, we have to keep this
578 * previous disable_offload setting as it was.
579 * Altough ideally, we should notify mac80211 and tell
580 * it to forget about any HW crypto offload for now.
581 */
582 ar->disable_offload |= ((vif->type != NL80211_IFTYPE_STATION) &&
583 (vif->type != NL80211_IFTYPE_AP));
584
585 /* While the driver supports HW offload in a single
586 * P2P client configuration, it doesn't support HW
587 * offload in the favourit, concurrent P2P GO+CLIENT
588 * configuration. Hence, HW offload will always be
589 * disabled for P2P.
590 */
591 ar->disable_offload |= vif->p2p;
592
593 ar->rx_software_decryption = ar->disable_offload;
594
595 err = carl9170_set_operating_mode(ar);
596 return err;
597 }
598
599 static int carl9170_op_add_interface(struct ieee80211_hw *hw,
600 struct ieee80211_vif *vif)
601 {
602 struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
603 struct ieee80211_vif *main_vif, *old_main = NULL;
604 struct ar9170 *ar = hw->priv;
605 int vif_id = -1, err = 0;
606
607 mutex_lock(&ar->mutex);
608 rcu_read_lock();
609 if (vif_priv->active) {
610 /*
611 * Skip the interface structure initialization,
612 * if the vif survived the _restart call.
613 */
614 vif_id = vif_priv->id;
615 vif_priv->enable_beacon = false;
616
617 spin_lock_bh(&ar->beacon_lock);
618 dev_kfree_skb_any(vif_priv->beacon);
619 vif_priv->beacon = NULL;
620 spin_unlock_bh(&ar->beacon_lock);
621
622 goto init;
623 }
624
625 /* Because the AR9170 HW's MAC doesn't provide full support for
626 * multiple, independent interfaces [of different operation modes].
627 * We have to select ONE main interface [main mode of HW], but we
628 * can have multiple slaves [AKA: entry in the ACK-table].
629 *
630 * The first (from HEAD/TOP) interface in the ar->vif_list is
631 * always the main intf. All following intfs in this list
632 * are considered to be slave intfs.
633 */
634 main_vif = carl9170_get_main_vif(ar);
635
636 if (main_vif) {
637 switch (main_vif->type) {
638 case NL80211_IFTYPE_STATION:
639 if (vif->type == NL80211_IFTYPE_STATION)
640 break;
641
642 /* P2P GO [master] use-case
643 * Because the P2P GO station is selected dynamically
644 * by all participating peers of a WIFI Direct network,
645 * the driver has be able to change the main interface
646 * operating mode on the fly.
647 */
648 if (main_vif->p2p && vif->p2p &&
649 vif->type == NL80211_IFTYPE_AP) {
650 old_main = main_vif;
651 break;
652 }
653
654 err = -EBUSY;
655 rcu_read_unlock();
656
657 goto unlock;
658
659 case NL80211_IFTYPE_MESH_POINT:
660 case NL80211_IFTYPE_AP:
661 if ((vif->type == NL80211_IFTYPE_STATION) ||
662 (vif->type == NL80211_IFTYPE_WDS) ||
663 (vif->type == NL80211_IFTYPE_AP) ||
664 (vif->type == NL80211_IFTYPE_MESH_POINT))
665 break;
666
667 err = -EBUSY;
668 rcu_read_unlock();
669 goto unlock;
670
671 default:
672 rcu_read_unlock();
673 goto unlock;
674 }
675 }
676
677 vif_id = bitmap_find_free_region(&ar->vif_bitmap, ar->fw.vif_num, 0);
678
679 if (vif_id < 0) {
680 rcu_read_unlock();
681
682 err = -ENOSPC;
683 goto unlock;
684 }
685
686 BUG_ON(ar->vif_priv[vif_id].id != vif_id);
687
688 vif_priv->active = true;
689 vif_priv->id = vif_id;
690 vif_priv->enable_beacon = false;
691 ar->vifs++;
692 if (old_main) {
693 /* We end up in here, if the main interface is being replaced.
694 * Put the new main interface at the HEAD of the list and the
695 * previous inteface will automatically become second in line.
696 */
697 list_add_rcu(&vif_priv->list, &ar->vif_list);
698 } else {
699 /* Add new inteface. If the list is empty, it will become the
700 * main inteface, otherwise it will be slave.
701 */
702 list_add_tail_rcu(&vif_priv->list, &ar->vif_list);
703 }
704 rcu_assign_pointer(ar->vif_priv[vif_id].vif, vif);
705
706 init:
707 main_vif = carl9170_get_main_vif(ar);
708
709 if (main_vif == vif) {
710 rcu_assign_pointer(ar->beacon_iter, vif_priv);
711 rcu_read_unlock();
712
713 if (old_main) {
714 struct carl9170_vif_info *old_main_priv =
715 (void *) old_main->drv_priv;
716 /* downgrade old main intf to slave intf.
717 * NOTE: We are no longer under rcu_read_lock.
718 * But we are still holding ar->mutex, so the
719 * vif data [id, addr] is safe.
720 */
721 err = carl9170_mod_virtual_mac(ar, old_main_priv->id,
722 old_main->addr);
723 if (err)
724 goto unlock;
725 }
726
727 err = carl9170_init_interface(ar, vif);
728 if (err)
729 goto unlock;
730 } else {
731 rcu_read_unlock();
732 err = carl9170_mod_virtual_mac(ar, vif_id, vif->addr);
733
734 if (err)
735 goto unlock;
736 }
737
738 if (ar->fw.tx_seq_table) {
739 err = carl9170_write_reg(ar, ar->fw.tx_seq_table + vif_id * 4,
740 0);
741 if (err)
742 goto unlock;
743 }
744
745 unlock:
746 if (err && (vif_id >= 0)) {
747 vif_priv->active = false;
748 bitmap_release_region(&ar->vif_bitmap, vif_id, 0);
749 ar->vifs--;
750 RCU_INIT_POINTER(ar->vif_priv[vif_id].vif, NULL);
751 list_del_rcu(&vif_priv->list);
752 mutex_unlock(&ar->mutex);
753 synchronize_rcu();
754 } else {
755 if (ar->vifs > 1)
756 ar->ps.off_override |= PS_OFF_VIF;
757
758 mutex_unlock(&ar->mutex);
759 }
760
761 return err;
762 }
763
764 static void carl9170_op_remove_interface(struct ieee80211_hw *hw,
765 struct ieee80211_vif *vif)
766 {
767 struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
768 struct ieee80211_vif *main_vif;
769 struct ar9170 *ar = hw->priv;
770 unsigned int id;
771
772 mutex_lock(&ar->mutex);
773
774 if (WARN_ON_ONCE(!vif_priv->active))
775 goto unlock;
776
777 ar->vifs--;
778
779 rcu_read_lock();
780 main_vif = carl9170_get_main_vif(ar);
781
782 id = vif_priv->id;
783
784 vif_priv->active = false;
785 WARN_ON(vif_priv->enable_beacon);
786 vif_priv->enable_beacon = false;
787 list_del_rcu(&vif_priv->list);
788 RCU_INIT_POINTER(ar->vif_priv[id].vif, NULL);
789
790 if (vif == main_vif) {
791 rcu_read_unlock();
792
793 if (ar->vifs) {
794 WARN_ON(carl9170_init_interface(ar,
795 carl9170_get_main_vif(ar)));
796 } else {
797 carl9170_set_operating_mode(ar);
798 }
799 } else {
800 rcu_read_unlock();
801
802 WARN_ON(carl9170_mod_virtual_mac(ar, id, NULL));
803 }
804
805 carl9170_update_beacon(ar, false);
806 carl9170_flush_cab(ar, id);
807
808 spin_lock_bh(&ar->beacon_lock);
809 dev_kfree_skb_any(vif_priv->beacon);
810 vif_priv->beacon = NULL;
811 spin_unlock_bh(&ar->beacon_lock);
812
813 bitmap_release_region(&ar->vif_bitmap, id, 0);
814
815 carl9170_set_beacon_timers(ar);
816
817 if (ar->vifs == 1)
818 ar->ps.off_override &= ~PS_OFF_VIF;
819
820 unlock:
821 mutex_unlock(&ar->mutex);
822
823 synchronize_rcu();
824 }
825
826 void carl9170_ps_check(struct ar9170 *ar)
827 {
828 ieee80211_queue_work(ar->hw, &ar->ps_work);
829 }
830
831 /* caller must hold ar->mutex */
832 static int carl9170_ps_update(struct ar9170 *ar)
833 {
834 bool ps = false;
835 int err = 0;
836
837 if (!ar->ps.off_override)
838 ps = (ar->hw->conf.flags & IEEE80211_CONF_PS);
839
840 if (ps != ar->ps.state) {
841 err = carl9170_powersave(ar, ps);
842 if (err)
843 return err;
844
845 if (ar->ps.state && !ps) {
846 ar->ps.sleep_ms = jiffies_to_msecs(jiffies -
847 ar->ps.last_action);
848 }
849
850 if (ps)
851 ar->ps.last_slept = jiffies;
852
853 ar->ps.last_action = jiffies;
854 ar->ps.state = ps;
855 }
856
857 return 0;
858 }
859
860 static void carl9170_ps_work(struct work_struct *work)
861 {
862 struct ar9170 *ar = container_of(work, struct ar9170,
863 ps_work);
864 mutex_lock(&ar->mutex);
865 if (IS_STARTED(ar))
866 WARN_ON_ONCE(carl9170_ps_update(ar) != 0);
867 mutex_unlock(&ar->mutex);
868 }
869
870 static int carl9170_update_survey(struct ar9170 *ar, bool flush, bool noise)
871 {
872 int err;
873
874 if (noise) {
875 err = carl9170_get_noisefloor(ar);
876 if (err)
877 return err;
878 }
879
880 if (ar->fw.hw_counters) {
881 err = carl9170_collect_tally(ar);
882 if (err)
883 return err;
884 }
885
886 if (flush)
887 memset(&ar->tally, 0, sizeof(ar->tally));
888
889 return 0;
890 }
891
892 static void carl9170_stat_work(struct work_struct *work)
893 {
894 struct ar9170 *ar = container_of(work, struct ar9170, stat_work.work);
895 int err;
896
897 mutex_lock(&ar->mutex);
898 err = carl9170_update_survey(ar, false, true);
899 mutex_unlock(&ar->mutex);
900
901 if (err)
902 return;
903
904 ieee80211_queue_delayed_work(ar->hw, &ar->stat_work,
905 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK)));
906 }
907
908 static int carl9170_op_config(struct ieee80211_hw *hw, u32 changed)
909 {
910 struct ar9170 *ar = hw->priv;
911 int err = 0;
912
913 mutex_lock(&ar->mutex);
914 if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) {
915 /* TODO */
916 err = 0;
917 }
918
919 if (changed & IEEE80211_CONF_CHANGE_PS) {
920 err = carl9170_ps_update(ar);
921 if (err)
922 goto out;
923 }
924
925 if (changed & IEEE80211_CONF_CHANGE_SMPS) {
926 /* TODO */
927 err = 0;
928 }
929
930 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
931 enum nl80211_channel_type channel_type =
932 cfg80211_get_chandef_type(&hw->conf.chandef);
933
934 /* adjust slot time for 5 GHz */
935 err = carl9170_set_slot_time(ar);
936 if (err)
937 goto out;
938
939 err = carl9170_update_survey(ar, true, false);
940 if (err)
941 goto out;
942
943 err = carl9170_set_channel(ar, hw->conf.chandef.chan,
944 channel_type);
945 if (err)
946 goto out;
947
948 err = carl9170_update_survey(ar, false, true);
949 if (err)
950 goto out;
951
952 err = carl9170_set_dyn_sifs_ack(ar);
953 if (err)
954 goto out;
955
956 err = carl9170_set_rts_cts_rate(ar);
957 if (err)
958 goto out;
959 }
960
961 if (changed & IEEE80211_CONF_CHANGE_POWER) {
962 err = carl9170_set_mac_tpc(ar, ar->hw->conf.chandef.chan);
963 if (err)
964 goto out;
965 }
966
967 out:
968 mutex_unlock(&ar->mutex);
969 return err;
970 }
971
972 static u64 carl9170_op_prepare_multicast(struct ieee80211_hw *hw,
973 struct netdev_hw_addr_list *mc_list)
974 {
975 struct netdev_hw_addr *ha;
976 u64 mchash;
977
978 /* always get broadcast frames */
979 mchash = 1ULL << (0xff >> 2);
980
981 netdev_hw_addr_list_for_each(ha, mc_list)
982 mchash |= 1ULL << (ha->addr[5] >> 2);
983
984 return mchash;
985 }
986
987 static void carl9170_op_configure_filter(struct ieee80211_hw *hw,
988 unsigned int changed_flags,
989 unsigned int *new_flags,
990 u64 multicast)
991 {
992 struct ar9170 *ar = hw->priv;
993
994 /* mask supported flags */
995 *new_flags &= FIF_ALLMULTI | ar->rx_filter_caps;
996
997 if (!IS_ACCEPTING_CMD(ar))
998 return;
999
1000 mutex_lock(&ar->mutex);
1001
1002 ar->filter_state = *new_flags;
1003 /*
1004 * We can support more by setting the sniffer bit and
1005 * then checking the error flags, later.
1006 */
1007
1008 if (*new_flags & FIF_ALLMULTI)
1009 multicast = ~0ULL;
1010
1011 if (multicast != ar->cur_mc_hash)
1012 WARN_ON(carl9170_update_multicast(ar, multicast));
1013
1014 if (changed_flags & FIF_OTHER_BSS) {
1015 ar->sniffer_enabled = !!(*new_flags & FIF_OTHER_BSS);
1016
1017 WARN_ON(carl9170_set_operating_mode(ar));
1018 }
1019
1020 if (ar->fw.rx_filter && changed_flags & ar->rx_filter_caps) {
1021 u32 rx_filter = 0;
1022
1023 if (!ar->fw.ba_filter)
1024 rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
1025
1026 if (!(*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL)))
1027 rx_filter |= CARL9170_RX_FILTER_BAD;
1028
1029 if (!(*new_flags & FIF_CONTROL))
1030 rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
1031
1032 if (!(*new_flags & FIF_PSPOLL))
1033 rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL;
1034
1035 if (!(*new_flags & FIF_OTHER_BSS)) {
1036 rx_filter |= CARL9170_RX_FILTER_OTHER_RA;
1037 rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL;
1038 }
1039
1040 WARN_ON(carl9170_rx_filter(ar, rx_filter));
1041 }
1042
1043 mutex_unlock(&ar->mutex);
1044 }
1045
1046
1047 static void carl9170_op_bss_info_changed(struct ieee80211_hw *hw,
1048 struct ieee80211_vif *vif,
1049 struct ieee80211_bss_conf *bss_conf,
1050 u32 changed)
1051 {
1052 struct ar9170 *ar = hw->priv;
1053 struct ath_common *common = &ar->common;
1054 int err = 0;
1055 struct carl9170_vif_info *vif_priv;
1056 struct ieee80211_vif *main_vif;
1057
1058 mutex_lock(&ar->mutex);
1059 vif_priv = (void *) vif->drv_priv;
1060 main_vif = carl9170_get_main_vif(ar);
1061 if (WARN_ON(!main_vif))
1062 goto out;
1063
1064 if (changed & BSS_CHANGED_BEACON_ENABLED) {
1065 struct carl9170_vif_info *iter;
1066 int i = 0;
1067
1068 vif_priv->enable_beacon = bss_conf->enable_beacon;
1069 rcu_read_lock();
1070 list_for_each_entry_rcu(iter, &ar->vif_list, list) {
1071 if (iter->active && iter->enable_beacon)
1072 i++;
1073
1074 }
1075 rcu_read_unlock();
1076
1077 ar->beacon_enabled = i;
1078 }
1079
1080 if (changed & BSS_CHANGED_BEACON) {
1081 err = carl9170_update_beacon(ar, false);
1082 if (err)
1083 goto out;
1084 }
1085
1086 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON |
1087 BSS_CHANGED_BEACON_INT)) {
1088
1089 if (main_vif != vif) {
1090 bss_conf->beacon_int = main_vif->bss_conf.beacon_int;
1091 bss_conf->dtim_period = main_vif->bss_conf.dtim_period;
1092 }
1093
1094 /*
1095 * Therefore a hard limit for the broadcast traffic should
1096 * prevent false alarms.
1097 */
1098 if (vif->type != NL80211_IFTYPE_STATION &&
1099 (bss_conf->beacon_int * bss_conf->dtim_period >=
1100 (CARL9170_QUEUE_STUCK_TIMEOUT / 2))) {
1101 err = -EINVAL;
1102 goto out;
1103 }
1104
1105 err = carl9170_set_beacon_timers(ar);
1106 if (err)
1107 goto out;
1108 }
1109
1110 if (changed & BSS_CHANGED_HT) {
1111 /* TODO */
1112 err = 0;
1113 if (err)
1114 goto out;
1115 }
1116
1117 if (main_vif != vif)
1118 goto out;
1119
1120 /*
1121 * The following settings can only be changed by the
1122 * master interface.
1123 */
1124
1125 if (changed & BSS_CHANGED_BSSID) {
1126 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
1127 err = carl9170_set_operating_mode(ar);
1128 if (err)
1129 goto out;
1130 }
1131
1132 if (changed & BSS_CHANGED_ASSOC) {
1133 ar->common.curaid = bss_conf->aid;
1134 err = carl9170_set_beacon_timers(ar);
1135 if (err)
1136 goto out;
1137 }
1138
1139 if (changed & BSS_CHANGED_ERP_SLOT) {
1140 err = carl9170_set_slot_time(ar);
1141 if (err)
1142 goto out;
1143 }
1144
1145 if (changed & BSS_CHANGED_BASIC_RATES) {
1146 err = carl9170_set_mac_rates(ar);
1147 if (err)
1148 goto out;
1149 }
1150
1151 out:
1152 WARN_ON_ONCE(err && IS_STARTED(ar));
1153 mutex_unlock(&ar->mutex);
1154 }
1155
1156 static u64 carl9170_op_get_tsf(struct ieee80211_hw *hw,
1157 struct ieee80211_vif *vif)
1158 {
1159 struct ar9170 *ar = hw->priv;
1160 struct carl9170_tsf_rsp tsf;
1161 int err;
1162
1163 mutex_lock(&ar->mutex);
1164 err = carl9170_exec_cmd(ar, CARL9170_CMD_READ_TSF,
1165 0, NULL, sizeof(tsf), &tsf);
1166 mutex_unlock(&ar->mutex);
1167 if (WARN_ON(err))
1168 return 0;
1169
1170 return le64_to_cpu(tsf.tsf_64);
1171 }
1172
1173 static int carl9170_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1174 struct ieee80211_vif *vif,
1175 struct ieee80211_sta *sta,
1176 struct ieee80211_key_conf *key)
1177 {
1178 struct ar9170 *ar = hw->priv;
1179 int err = 0, i;
1180 u8 ktype;
1181
1182 if (ar->disable_offload || !vif)
1183 return -EOPNOTSUPP;
1184
1185 /* Fall back to software encryption whenever the driver is connected
1186 * to more than one network.
1187 *
1188 * This is very unfortunate, because some machines cannot handle
1189 * the high througput speed in 802.11n networks.
1190 */
1191
1192 if (!is_main_vif(ar, vif)) {
1193 mutex_lock(&ar->mutex);
1194 goto err_softw;
1195 }
1196
1197 /*
1198 * While the hardware supports *catch-all* key, for offloading
1199 * group-key en-/de-cryption. The way of how the hardware
1200 * decides which keyId maps to which key, remains a mystery...
1201 */
1202 if ((vif->type != NL80211_IFTYPE_STATION &&
1203 vif->type != NL80211_IFTYPE_ADHOC) &&
1204 !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
1205 return -EOPNOTSUPP;
1206
1207 switch (key->cipher) {
1208 case WLAN_CIPHER_SUITE_WEP40:
1209 ktype = AR9170_ENC_ALG_WEP64;
1210 break;
1211 case WLAN_CIPHER_SUITE_WEP104:
1212 ktype = AR9170_ENC_ALG_WEP128;
1213 break;
1214 case WLAN_CIPHER_SUITE_TKIP:
1215 ktype = AR9170_ENC_ALG_TKIP;
1216 break;
1217 case WLAN_CIPHER_SUITE_CCMP:
1218 ktype = AR9170_ENC_ALG_AESCCMP;
1219 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
1220 break;
1221 default:
1222 return -EOPNOTSUPP;
1223 }
1224
1225 mutex_lock(&ar->mutex);
1226 if (cmd == SET_KEY) {
1227 if (!IS_STARTED(ar)) {
1228 err = -EOPNOTSUPP;
1229 goto out;
1230 }
1231
1232 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
1233 sta = NULL;
1234
1235 i = 64 + key->keyidx;
1236 } else {
1237 for (i = 0; i < 64; i++)
1238 if (!(ar->usedkeys & BIT(i)))
1239 break;
1240 if (i == 64)
1241 goto err_softw;
1242 }
1243
1244 key->hw_key_idx = i;
1245
1246 err = carl9170_upload_key(ar, i, sta ? sta->addr : NULL,
1247 ktype, 0, key->key,
1248 min_t(u8, 16, key->keylen));
1249 if (err)
1250 goto out;
1251
1252 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
1253 err = carl9170_upload_key(ar, i, sta ? sta->addr :
1254 NULL, ktype, 1,
1255 key->key + 16, 16);
1256 if (err)
1257 goto out;
1258
1259 /*
1260 * hardware is not capable generating MMIC
1261 * of fragmented frames!
1262 */
1263 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
1264 }
1265
1266 if (i < 64)
1267 ar->usedkeys |= BIT(i);
1268
1269 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1270 } else {
1271 if (!IS_STARTED(ar)) {
1272 /* The device is gone... together with the key ;-) */
1273 err = 0;
1274 goto out;
1275 }
1276
1277 if (key->hw_key_idx < 64) {
1278 ar->usedkeys &= ~BIT(key->hw_key_idx);
1279 } else {
1280 err = carl9170_upload_key(ar, key->hw_key_idx, NULL,
1281 AR9170_ENC_ALG_NONE, 0,
1282 NULL, 0);
1283 if (err)
1284 goto out;
1285
1286 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
1287 err = carl9170_upload_key(ar, key->hw_key_idx,
1288 NULL,
1289 AR9170_ENC_ALG_NONE,
1290 1, NULL, 0);
1291 if (err)
1292 goto out;
1293 }
1294
1295 }
1296
1297 err = carl9170_disable_key(ar, key->hw_key_idx);
1298 if (err)
1299 goto out;
1300 }
1301
1302 out:
1303 mutex_unlock(&ar->mutex);
1304 return err;
1305
1306 err_softw:
1307 if (!ar->rx_software_decryption) {
1308 ar->rx_software_decryption = true;
1309 carl9170_set_operating_mode(ar);
1310 }
1311 mutex_unlock(&ar->mutex);
1312 return -ENOSPC;
1313 }
1314
1315 static int carl9170_op_sta_add(struct ieee80211_hw *hw,
1316 struct ieee80211_vif *vif,
1317 struct ieee80211_sta *sta)
1318 {
1319 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1320 unsigned int i;
1321
1322 atomic_set(&sta_info->pending_frames, 0);
1323
1324 if (sta->ht_cap.ht_supported) {
1325 if (sta->ht_cap.ampdu_density > 6) {
1326 /*
1327 * HW does support 16us AMPDU density.
1328 * No HT-Xmit for station.
1329 */
1330
1331 return 0;
1332 }
1333
1334 for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++)
1335 RCU_INIT_POINTER(sta_info->agg[i], NULL);
1336
1337 sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor);
1338 sta_info->ht_sta = true;
1339 }
1340
1341 return 0;
1342 }
1343
1344 static int carl9170_op_sta_remove(struct ieee80211_hw *hw,
1345 struct ieee80211_vif *vif,
1346 struct ieee80211_sta *sta)
1347 {
1348 struct ar9170 *ar = hw->priv;
1349 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1350 unsigned int i;
1351 bool cleanup = false;
1352
1353 if (sta->ht_cap.ht_supported) {
1354
1355 sta_info->ht_sta = false;
1356
1357 rcu_read_lock();
1358 for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++) {
1359 struct carl9170_sta_tid *tid_info;
1360
1361 tid_info = rcu_dereference(sta_info->agg[i]);
1362 RCU_INIT_POINTER(sta_info->agg[i], NULL);
1363
1364 if (!tid_info)
1365 continue;
1366
1367 spin_lock_bh(&ar->tx_ampdu_list_lock);
1368 if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
1369 tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
1370 spin_unlock_bh(&ar->tx_ampdu_list_lock);
1371 cleanup = true;
1372 }
1373 rcu_read_unlock();
1374
1375 if (cleanup)
1376 carl9170_ampdu_gc(ar);
1377 }
1378
1379 return 0;
1380 }
1381
1382 static int carl9170_op_conf_tx(struct ieee80211_hw *hw,
1383 struct ieee80211_vif *vif, u16 queue,
1384 const struct ieee80211_tx_queue_params *param)
1385 {
1386 struct ar9170 *ar = hw->priv;
1387 int ret;
1388
1389 mutex_lock(&ar->mutex);
1390 if (queue < ar->hw->queues) {
1391 memcpy(&ar->edcf[ar9170_qmap[queue]], param, sizeof(*param));
1392 ret = carl9170_set_qos(ar);
1393 } else {
1394 ret = -EINVAL;
1395 }
1396
1397 mutex_unlock(&ar->mutex);
1398 return ret;
1399 }
1400
1401 static void carl9170_ampdu_work(struct work_struct *work)
1402 {
1403 struct ar9170 *ar = container_of(work, struct ar9170,
1404 ampdu_work);
1405
1406 if (!IS_STARTED(ar))
1407 return;
1408
1409 mutex_lock(&ar->mutex);
1410 carl9170_ampdu_gc(ar);
1411 mutex_unlock(&ar->mutex);
1412 }
1413
1414 static int carl9170_op_ampdu_action(struct ieee80211_hw *hw,
1415 struct ieee80211_vif *vif,
1416 enum ieee80211_ampdu_mlme_action action,
1417 struct ieee80211_sta *sta,
1418 u16 tid, u16 *ssn, u8 buf_size)
1419 {
1420 struct ar9170 *ar = hw->priv;
1421 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1422 struct carl9170_sta_tid *tid_info;
1423
1424 if (modparam_noht)
1425 return -EOPNOTSUPP;
1426
1427 switch (action) {
1428 case IEEE80211_AMPDU_TX_START:
1429 if (!sta_info->ht_sta)
1430 return -EOPNOTSUPP;
1431
1432 tid_info = kzalloc(sizeof(struct carl9170_sta_tid),
1433 GFP_ATOMIC);
1434 if (!tid_info)
1435 return -ENOMEM;
1436
1437 tid_info->hsn = tid_info->bsn = tid_info->snx = (*ssn);
1438 tid_info->state = CARL9170_TID_STATE_PROGRESS;
1439 tid_info->tid = tid;
1440 tid_info->max = sta_info->ampdu_max_len;
1441 tid_info->sta = sta;
1442 tid_info->vif = vif;
1443
1444 INIT_LIST_HEAD(&tid_info->list);
1445 INIT_LIST_HEAD(&tid_info->tmp_list);
1446 skb_queue_head_init(&tid_info->queue);
1447 spin_lock_init(&tid_info->lock);
1448
1449 spin_lock_bh(&ar->tx_ampdu_list_lock);
1450 ar->tx_ampdu_list_len++;
1451 list_add_tail_rcu(&tid_info->list, &ar->tx_ampdu_list);
1452 rcu_assign_pointer(sta_info->agg[tid], tid_info);
1453 spin_unlock_bh(&ar->tx_ampdu_list_lock);
1454
1455 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1456 break;
1457
1458 case IEEE80211_AMPDU_TX_STOP_CONT:
1459 case IEEE80211_AMPDU_TX_STOP_FLUSH:
1460 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1461 rcu_read_lock();
1462 tid_info = rcu_dereference(sta_info->agg[tid]);
1463 if (tid_info) {
1464 spin_lock_bh(&ar->tx_ampdu_list_lock);
1465 if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
1466 tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
1467 spin_unlock_bh(&ar->tx_ampdu_list_lock);
1468 }
1469
1470 RCU_INIT_POINTER(sta_info->agg[tid], NULL);
1471 rcu_read_unlock();
1472
1473 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1474 ieee80211_queue_work(ar->hw, &ar->ampdu_work);
1475 break;
1476
1477 case IEEE80211_AMPDU_TX_OPERATIONAL:
1478 rcu_read_lock();
1479 tid_info = rcu_dereference(sta_info->agg[tid]);
1480
1481 sta_info->stats[tid].clear = true;
1482 sta_info->stats[tid].req = false;
1483
1484 if (tid_info) {
1485 bitmap_zero(tid_info->bitmap, CARL9170_BAW_SIZE);
1486 tid_info->state = CARL9170_TID_STATE_IDLE;
1487 }
1488 rcu_read_unlock();
1489
1490 if (WARN_ON_ONCE(!tid_info))
1491 return -EFAULT;
1492
1493 break;
1494
1495 case IEEE80211_AMPDU_RX_START:
1496 case IEEE80211_AMPDU_RX_STOP:
1497 /* Handled by hardware */
1498 break;
1499
1500 default:
1501 return -EOPNOTSUPP;
1502 }
1503
1504 return 0;
1505 }
1506
1507 #ifdef CONFIG_CARL9170_WPC
1508 static int carl9170_register_wps_button(struct ar9170 *ar)
1509 {
1510 struct input_dev *input;
1511 int err;
1512
1513 if (!(ar->features & CARL9170_WPS_BUTTON))
1514 return 0;
1515
1516 input = input_allocate_device();
1517 if (!input)
1518 return -ENOMEM;
1519
1520 snprintf(ar->wps.name, sizeof(ar->wps.name), "%s WPS Button",
1521 wiphy_name(ar->hw->wiphy));
1522
1523 snprintf(ar->wps.phys, sizeof(ar->wps.phys),
1524 "ieee80211/%s/input0", wiphy_name(ar->hw->wiphy));
1525
1526 input->name = ar->wps.name;
1527 input->phys = ar->wps.phys;
1528 input->id.bustype = BUS_USB;
1529 input->dev.parent = &ar->hw->wiphy->dev;
1530
1531 input_set_capability(input, EV_KEY, KEY_WPS_BUTTON);
1532
1533 err = input_register_device(input);
1534 if (err) {
1535 input_free_device(input);
1536 return err;
1537 }
1538
1539 ar->wps.pbc = input;
1540 return 0;
1541 }
1542 #endif /* CONFIG_CARL9170_WPC */
1543
1544 #ifdef CONFIG_CARL9170_HWRNG
1545 static int carl9170_rng_get(struct ar9170 *ar)
1546 {
1547
1548 #define RW (CARL9170_MAX_CMD_PAYLOAD_LEN / sizeof(u32))
1549 #define RB (CARL9170_MAX_CMD_PAYLOAD_LEN)
1550
1551 static const __le32 rng_load[RW] = {
1552 [0 ... (RW - 1)] = cpu_to_le32(AR9170_RAND_REG_NUM)};
1553
1554 u32 buf[RW];
1555
1556 unsigned int i, off = 0, transfer, count;
1557 int err;
1558
1559 BUILD_BUG_ON(RB > CARL9170_MAX_CMD_PAYLOAD_LEN);
1560
1561 if (!IS_ACCEPTING_CMD(ar) || !ar->rng.initialized)
1562 return -EAGAIN;
1563
1564 count = ARRAY_SIZE(ar->rng.cache);
1565 while (count) {
1566 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
1567 RB, (u8 *) rng_load,
1568 RB, (u8 *) buf);
1569 if (err)
1570 return err;
1571
1572 transfer = min_t(unsigned int, count, RW);
1573 for (i = 0; i < transfer; i++)
1574 ar->rng.cache[off + i] = buf[i];
1575
1576 off += transfer;
1577 count -= transfer;
1578 }
1579
1580 ar->rng.cache_idx = 0;
1581
1582 #undef RW
1583 #undef RB
1584 return 0;
1585 }
1586
1587 static int carl9170_rng_read(struct hwrng *rng, u32 *data)
1588 {
1589 struct ar9170 *ar = (struct ar9170 *)rng->priv;
1590 int ret = -EIO;
1591
1592 mutex_lock(&ar->mutex);
1593 if (ar->rng.cache_idx >= ARRAY_SIZE(ar->rng.cache)) {
1594 ret = carl9170_rng_get(ar);
1595 if (ret) {
1596 mutex_unlock(&ar->mutex);
1597 return ret;
1598 }
1599 }
1600
1601 *data = ar->rng.cache[ar->rng.cache_idx++];
1602 mutex_unlock(&ar->mutex);
1603
1604 return sizeof(u16);
1605 }
1606
1607 static void carl9170_unregister_hwrng(struct ar9170 *ar)
1608 {
1609 if (ar->rng.initialized) {
1610 hwrng_unregister(&ar->rng.rng);
1611 ar->rng.initialized = false;
1612 }
1613 }
1614
1615 static int carl9170_register_hwrng(struct ar9170 *ar)
1616 {
1617 int err;
1618
1619 snprintf(ar->rng.name, ARRAY_SIZE(ar->rng.name),
1620 "%s_%s", KBUILD_MODNAME, wiphy_name(ar->hw->wiphy));
1621 ar->rng.rng.name = ar->rng.name;
1622 ar->rng.rng.data_read = carl9170_rng_read;
1623 ar->rng.rng.priv = (unsigned long)ar;
1624
1625 if (WARN_ON(ar->rng.initialized))
1626 return -EALREADY;
1627
1628 err = hwrng_register(&ar->rng.rng);
1629 if (err) {
1630 dev_err(&ar->udev->dev, "Failed to register the random "
1631 "number generator (%d)\n", err);
1632 return err;
1633 }
1634
1635 ar->rng.initialized = true;
1636
1637 err = carl9170_rng_get(ar);
1638 if (err) {
1639 carl9170_unregister_hwrng(ar);
1640 return err;
1641 }
1642
1643 return 0;
1644 }
1645 #endif /* CONFIG_CARL9170_HWRNG */
1646
1647 static int carl9170_op_get_survey(struct ieee80211_hw *hw, int idx,
1648 struct survey_info *survey)
1649 {
1650 struct ar9170 *ar = hw->priv;
1651 struct ieee80211_channel *chan;
1652 struct ieee80211_supported_band *band;
1653 int err, b, i;
1654
1655 chan = ar->channel;
1656 if (!chan)
1657 return -ENODEV;
1658
1659 if (idx == chan->hw_value) {
1660 mutex_lock(&ar->mutex);
1661 err = carl9170_update_survey(ar, false, true);
1662 mutex_unlock(&ar->mutex);
1663 if (err)
1664 return err;
1665 }
1666
1667 for (b = 0; b < IEEE80211_NUM_BANDS; b++) {
1668 band = ar->hw->wiphy->bands[b];
1669
1670 if (!band)
1671 continue;
1672
1673 for (i = 0; i < band->n_channels; i++) {
1674 if (band->channels[i].hw_value == idx) {
1675 chan = &band->channels[i];
1676 goto found;
1677 }
1678 }
1679 }
1680 return -ENOENT;
1681
1682 found:
1683 memcpy(survey, &ar->survey[idx], sizeof(*survey));
1684
1685 survey->channel = chan;
1686 survey->filled = SURVEY_INFO_NOISE_DBM;
1687
1688 if (ar->channel == chan)
1689 survey->filled |= SURVEY_INFO_IN_USE;
1690
1691 if (ar->fw.hw_counters) {
1692 survey->filled |= SURVEY_INFO_TIME |
1693 SURVEY_INFO_TIME_BUSY |
1694 SURVEY_INFO_TIME_TX;
1695 }
1696
1697 return 0;
1698 }
1699
1700 static void carl9170_op_flush(struct ieee80211_hw *hw,
1701 struct ieee80211_vif *vif,
1702 u32 queues, bool drop)
1703 {
1704 struct ar9170 *ar = hw->priv;
1705 unsigned int vid;
1706
1707 mutex_lock(&ar->mutex);
1708 for_each_set_bit(vid, &ar->vif_bitmap, ar->fw.vif_num)
1709 carl9170_flush_cab(ar, vid);
1710
1711 carl9170_flush(ar, drop);
1712 mutex_unlock(&ar->mutex);
1713 }
1714
1715 static int carl9170_op_get_stats(struct ieee80211_hw *hw,
1716 struct ieee80211_low_level_stats *stats)
1717 {
1718 struct ar9170 *ar = hw->priv;
1719
1720 memset(stats, 0, sizeof(*stats));
1721 stats->dot11ACKFailureCount = ar->tx_ack_failures;
1722 stats->dot11FCSErrorCount = ar->tx_fcs_errors;
1723 return 0;
1724 }
1725
1726 static void carl9170_op_sta_notify(struct ieee80211_hw *hw,
1727 struct ieee80211_vif *vif,
1728 enum sta_notify_cmd cmd,
1729 struct ieee80211_sta *sta)
1730 {
1731 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1732
1733 switch (cmd) {
1734 case STA_NOTIFY_SLEEP:
1735 sta_info->sleeping = true;
1736 if (atomic_read(&sta_info->pending_frames))
1737 ieee80211_sta_block_awake(hw, sta, true);
1738 break;
1739
1740 case STA_NOTIFY_AWAKE:
1741 sta_info->sleeping = false;
1742 break;
1743 }
1744 }
1745
1746 static bool carl9170_tx_frames_pending(struct ieee80211_hw *hw)
1747 {
1748 struct ar9170 *ar = hw->priv;
1749
1750 return !!atomic_read(&ar->tx_total_queued);
1751 }
1752
1753 static const struct ieee80211_ops carl9170_ops = {
1754 .start = carl9170_op_start,
1755 .stop = carl9170_op_stop,
1756 .tx = carl9170_op_tx,
1757 .flush = carl9170_op_flush,
1758 .add_interface = carl9170_op_add_interface,
1759 .remove_interface = carl9170_op_remove_interface,
1760 .config = carl9170_op_config,
1761 .prepare_multicast = carl9170_op_prepare_multicast,
1762 .configure_filter = carl9170_op_configure_filter,
1763 .conf_tx = carl9170_op_conf_tx,
1764 .bss_info_changed = carl9170_op_bss_info_changed,
1765 .get_tsf = carl9170_op_get_tsf,
1766 .set_key = carl9170_op_set_key,
1767 .sta_add = carl9170_op_sta_add,
1768 .sta_remove = carl9170_op_sta_remove,
1769 .sta_notify = carl9170_op_sta_notify,
1770 .get_survey = carl9170_op_get_survey,
1771 .get_stats = carl9170_op_get_stats,
1772 .ampdu_action = carl9170_op_ampdu_action,
1773 .tx_frames_pending = carl9170_tx_frames_pending,
1774 };
1775
1776 void *carl9170_alloc(size_t priv_size)
1777 {
1778 struct ieee80211_hw *hw;
1779 struct ar9170 *ar;
1780 struct sk_buff *skb;
1781 int i;
1782
1783 /*
1784 * this buffer is used for rx stream reconstruction.
1785 * Under heavy load this device (or the transport layer?)
1786 * tends to split the streams into separate rx descriptors.
1787 */
1788
1789 skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL);
1790 if (!skb)
1791 goto err_nomem;
1792
1793 hw = ieee80211_alloc_hw(priv_size, &carl9170_ops);
1794 if (!hw)
1795 goto err_nomem;
1796
1797 ar = hw->priv;
1798 ar->hw = hw;
1799 ar->rx_failover = skb;
1800
1801 memset(&ar->rx_plcp, 0, sizeof(struct ar9170_rx_head));
1802 ar->rx_has_plcp = false;
1803
1804 /*
1805 * Here's a hidden pitfall!
1806 *
1807 * All 4 AC queues work perfectly well under _legacy_ operation.
1808 * However as soon as aggregation is enabled, the traffic flow
1809 * gets very bumpy. Therefore we have to _switch_ to a
1810 * software AC with a single HW queue.
1811 */
1812 hw->queues = __AR9170_NUM_TXQ;
1813
1814 mutex_init(&ar->mutex);
1815 spin_lock_init(&ar->beacon_lock);
1816 spin_lock_init(&ar->cmd_lock);
1817 spin_lock_init(&ar->tx_stats_lock);
1818 spin_lock_init(&ar->tx_ampdu_list_lock);
1819 spin_lock_init(&ar->mem_lock);
1820 spin_lock_init(&ar->state_lock);
1821 atomic_set(&ar->pending_restarts, 0);
1822 ar->vifs = 0;
1823 for (i = 0; i < ar->hw->queues; i++) {
1824 skb_queue_head_init(&ar->tx_status[i]);
1825 skb_queue_head_init(&ar->tx_pending[i]);
1826
1827 INIT_LIST_HEAD(&ar->bar_list[i]);
1828 spin_lock_init(&ar->bar_list_lock[i]);
1829 }
1830 INIT_WORK(&ar->ps_work, carl9170_ps_work);
1831 INIT_WORK(&ar->ping_work, carl9170_ping_work);
1832 INIT_WORK(&ar->restart_work, carl9170_restart_work);
1833 INIT_WORK(&ar->ampdu_work, carl9170_ampdu_work);
1834 INIT_DELAYED_WORK(&ar->stat_work, carl9170_stat_work);
1835 INIT_DELAYED_WORK(&ar->tx_janitor, carl9170_tx_janitor);
1836 INIT_LIST_HEAD(&ar->tx_ampdu_list);
1837 rcu_assign_pointer(ar->tx_ampdu_iter,
1838 (struct carl9170_sta_tid *) &ar->tx_ampdu_list);
1839
1840 bitmap_zero(&ar->vif_bitmap, ar->fw.vif_num);
1841 INIT_LIST_HEAD(&ar->vif_list);
1842 init_completion(&ar->tx_flush);
1843
1844 /* firmware decides which modes we support */
1845 hw->wiphy->interface_modes = 0;
1846
1847 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1848 ieee80211_hw_set(hw, MFP_CAPABLE);
1849 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1850 ieee80211_hw_set(hw, SUPPORTS_PS);
1851 ieee80211_hw_set(hw, PS_NULLFUNC_STACK);
1852 ieee80211_hw_set(hw, NEED_DTIM_BEFORE_ASSOC);
1853 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
1854 ieee80211_hw_set(hw, SIGNAL_DBM);
1855 ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
1856
1857 if (!modparam_noht) {
1858 /*
1859 * see the comment above, why we allow the user
1860 * to disable HT by a module parameter.
1861 */
1862 ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1863 }
1864
1865 hw->extra_tx_headroom = sizeof(struct _carl9170_tx_superframe);
1866 hw->sta_data_size = sizeof(struct carl9170_sta_info);
1867 hw->vif_data_size = sizeof(struct carl9170_vif_info);
1868
1869 hw->max_rates = CARL9170_TX_MAX_RATES;
1870 hw->max_rate_tries = CARL9170_TX_USER_RATE_TRIES;
1871
1872 for (i = 0; i < ARRAY_SIZE(ar->noise); i++)
1873 ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */
1874
1875 return ar;
1876
1877 err_nomem:
1878 kfree_skb(skb);
1879 return ERR_PTR(-ENOMEM);
1880 }
1881
1882 static int carl9170_read_eeprom(struct ar9170 *ar)
1883 {
1884 #define RW 8 /* number of words to read at once */
1885 #define RB (sizeof(u32) * RW)
1886 u8 *eeprom = (void *)&ar->eeprom;
1887 __le32 offsets[RW];
1888 int i, j, err;
1889
1890 BUILD_BUG_ON(sizeof(ar->eeprom) & 3);
1891
1892 BUILD_BUG_ON(RB > CARL9170_MAX_CMD_LEN - 4);
1893 #ifndef __CHECKER__
1894 /* don't want to handle trailing remains */
1895 BUILD_BUG_ON(sizeof(ar->eeprom) % RB);
1896 #endif
1897
1898 for (i = 0; i < sizeof(ar->eeprom) / RB; i++) {
1899 for (j = 0; j < RW; j++)
1900 offsets[j] = cpu_to_le32(AR9170_EEPROM_START +
1901 RB * i + 4 * j);
1902
1903 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
1904 RB, (u8 *) &offsets,
1905 RB, eeprom + RB * i);
1906 if (err)
1907 return err;
1908 }
1909
1910 #undef RW
1911 #undef RB
1912 return 0;
1913 }
1914
1915 static int carl9170_parse_eeprom(struct ar9170 *ar)
1916 {
1917 struct ath_regulatory *regulatory = &ar->common.regulatory;
1918 unsigned int rx_streams, tx_streams, tx_params = 0;
1919 int bands = 0;
1920 int chans = 0;
1921
1922 if (ar->eeprom.length == cpu_to_le16(0xffff))
1923 return -ENODATA;
1924
1925 rx_streams = hweight8(ar->eeprom.rx_mask);
1926 tx_streams = hweight8(ar->eeprom.tx_mask);
1927
1928 if (rx_streams != tx_streams) {
1929 tx_params = IEEE80211_HT_MCS_TX_RX_DIFF;
1930
1931 WARN_ON(!(tx_streams >= 1 && tx_streams <=
1932 IEEE80211_HT_MCS_TX_MAX_STREAMS));
1933
1934 tx_params = (tx_streams - 1) <<
1935 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
1936
1937 carl9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params;
1938 carl9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params;
1939 }
1940
1941 if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) {
1942 ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1943 &carl9170_band_2GHz;
1944 chans += carl9170_band_2GHz.n_channels;
1945 bands++;
1946 }
1947 if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) {
1948 ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1949 &carl9170_band_5GHz;
1950 chans += carl9170_band_5GHz.n_channels;
1951 bands++;
1952 }
1953
1954 if (!bands)
1955 return -EINVAL;
1956
1957 ar->survey = kzalloc(sizeof(struct survey_info) * chans, GFP_KERNEL);
1958 if (!ar->survey)
1959 return -ENOMEM;
1960 ar->num_channels = chans;
1961
1962 regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]);
1963
1964 /* second part of wiphy init */
1965 SET_IEEE80211_PERM_ADDR(ar->hw, ar->eeprom.mac_address);
1966
1967 return 0;
1968 }
1969
1970 static void carl9170_reg_notifier(struct wiphy *wiphy,
1971 struct regulatory_request *request)
1972 {
1973 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1974 struct ar9170 *ar = hw->priv;
1975
1976 ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory);
1977 }
1978
1979 int carl9170_register(struct ar9170 *ar)
1980 {
1981 struct ath_regulatory *regulatory = &ar->common.regulatory;
1982 int err = 0, i;
1983
1984 if (WARN_ON(ar->mem_bitmap))
1985 return -EINVAL;
1986
1987 ar->mem_bitmap = kzalloc(roundup(ar->fw.mem_blocks, BITS_PER_LONG) *
1988 sizeof(unsigned long), GFP_KERNEL);
1989
1990 if (!ar->mem_bitmap)
1991 return -ENOMEM;
1992
1993 /* try to read EEPROM, init MAC addr */
1994 err = carl9170_read_eeprom(ar);
1995 if (err)
1996 return err;
1997
1998 err = carl9170_parse_eeprom(ar);
1999 if (err)
2000 return err;
2001
2002 err = ath_regd_init(regulatory, ar->hw->wiphy,
2003 carl9170_reg_notifier);
2004 if (err)
2005 return err;
2006
2007 if (modparam_noht) {
2008 carl9170_band_2GHz.ht_cap.ht_supported = false;
2009 carl9170_band_5GHz.ht_cap.ht_supported = false;
2010 }
2011
2012 for (i = 0; i < ar->fw.vif_num; i++) {
2013 ar->vif_priv[i].id = i;
2014 ar->vif_priv[i].vif = NULL;
2015 }
2016
2017 err = ieee80211_register_hw(ar->hw);
2018 if (err)
2019 return err;
2020
2021 /* mac80211 interface is now registered */
2022 ar->registered = true;
2023
2024 if (!ath_is_world_regd(regulatory))
2025 regulatory_hint(ar->hw->wiphy, regulatory->alpha2);
2026
2027 #ifdef CONFIG_CARL9170_DEBUGFS
2028 carl9170_debugfs_register(ar);
2029 #endif /* CONFIG_CARL9170_DEBUGFS */
2030
2031 err = carl9170_led_init(ar);
2032 if (err)
2033 goto err_unreg;
2034
2035 #ifdef CONFIG_CARL9170_LEDS
2036 err = carl9170_led_register(ar);
2037 if (err)
2038 goto err_unreg;
2039 #endif /* CONFIG_CARL9170_LEDS */
2040
2041 #ifdef CONFIG_CARL9170_WPC
2042 err = carl9170_register_wps_button(ar);
2043 if (err)
2044 goto err_unreg;
2045 #endif /* CONFIG_CARL9170_WPC */
2046
2047 #ifdef CONFIG_CARL9170_HWRNG
2048 err = carl9170_register_hwrng(ar);
2049 if (err)
2050 goto err_unreg;
2051 #endif /* CONFIG_CARL9170_HWRNG */
2052
2053 dev_info(&ar->udev->dev, "Atheros AR9170 is registered as '%s'\n",
2054 wiphy_name(ar->hw->wiphy));
2055
2056 return 0;
2057
2058 err_unreg:
2059 carl9170_unregister(ar);
2060 return err;
2061 }
2062
2063 void carl9170_unregister(struct ar9170 *ar)
2064 {
2065 if (!ar->registered)
2066 return;
2067
2068 ar->registered = false;
2069
2070 #ifdef CONFIG_CARL9170_LEDS
2071 carl9170_led_unregister(ar);
2072 #endif /* CONFIG_CARL9170_LEDS */
2073
2074 #ifdef CONFIG_CARL9170_DEBUGFS
2075 carl9170_debugfs_unregister(ar);
2076 #endif /* CONFIG_CARL9170_DEBUGFS */
2077
2078 #ifdef CONFIG_CARL9170_WPC
2079 if (ar->wps.pbc) {
2080 input_unregister_device(ar->wps.pbc);
2081 ar->wps.pbc = NULL;
2082 }
2083 #endif /* CONFIG_CARL9170_WPC */
2084
2085 #ifdef CONFIG_CARL9170_HWRNG
2086 carl9170_unregister_hwrng(ar);
2087 #endif /* CONFIG_CARL9170_HWRNG */
2088
2089 carl9170_cancel_worker(ar);
2090 cancel_work_sync(&ar->restart_work);
2091
2092 ieee80211_unregister_hw(ar->hw);
2093 }
2094
2095 void carl9170_free(struct ar9170 *ar)
2096 {
2097 WARN_ON(ar->registered);
2098 WARN_ON(IS_INITIALIZED(ar));
2099
2100 kfree_skb(ar->rx_failover);
2101 ar->rx_failover = NULL;
2102
2103 kfree(ar->mem_bitmap);
2104 ar->mem_bitmap = NULL;
2105
2106 kfree(ar->survey);
2107 ar->survey = NULL;
2108
2109 mutex_destroy(&ar->mutex);
2110
2111 ieee80211_free_hw(ar->hw);
2112 }