]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath/carl9170/tx.c
Merge tag 'v3.2-rc2' into staging/for_v3.3
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath / carl9170 / tx.c
1 /*
2 * Atheros CARL9170 driver
3 *
4 * 802.11 xmit & status routines
5 *
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, see
21 * http://www.gnu.org/licenses/.
22 *
23 * This file incorporates work covered by the following copyright and
24 * permission notice:
25 * Copyright (c) 2007-2008 Atheros Communications, Inc.
26 *
27 * Permission to use, copy, modify, and/or distribute this software for any
28 * purpose with or without fee is hereby granted, provided that the above
29 * copyright notice and this permission notice appear in all copies.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38 */
39
40 #include <linux/init.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <linux/etherdevice.h>
44 #include <net/mac80211.h>
45 #include "carl9170.h"
46 #include "hw.h"
47 #include "cmd.h"
48
49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
50 unsigned int queue)
51 {
52 if (unlikely(modparam_noht)) {
53 return queue;
54 } else {
55 /*
56 * This is just another workaround, until
57 * someone figures out how to get QoS and
58 * AMPDU to play nicely together.
59 */
60
61 return 2; /* AC_BE */
62 }
63 }
64
65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
66 struct sk_buff *skb)
67 {
68 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
69 }
70
71 static bool is_mem_full(struct ar9170 *ar)
72 {
73 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
74 atomic_read(&ar->mem_free_blocks));
75 }
76
77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
78 {
79 int queue, i;
80 bool mem_full;
81
82 atomic_inc(&ar->tx_total_queued);
83
84 queue = skb_get_queue_mapping(skb);
85 spin_lock_bh(&ar->tx_stats_lock);
86
87 /*
88 * The driver has to accept the frame, regardless if the queue is
89 * full to the brim, or not. We have to do the queuing internally,
90 * since mac80211 assumes that a driver which can operate with
91 * aggregated frames does not reject frames for this reason.
92 */
93 ar->tx_stats[queue].len++;
94 ar->tx_stats[queue].count++;
95
96 mem_full = is_mem_full(ar);
97 for (i = 0; i < ar->hw->queues; i++) {
98 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
99 ieee80211_stop_queue(ar->hw, i);
100 ar->queue_stop_timeout[i] = jiffies;
101 }
102 }
103
104 spin_unlock_bh(&ar->tx_stats_lock);
105 }
106
107 /* needs rcu_read_lock */
108 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
109 struct sk_buff *skb)
110 {
111 struct _carl9170_tx_superframe *super = (void *) skb->data;
112 struct ieee80211_hdr *hdr = (void *) super->frame_data;
113 struct ieee80211_vif *vif;
114 unsigned int vif_id;
115
116 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
117 CARL9170_TX_SUPER_MISC_VIF_ID_S;
118
119 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
120 return NULL;
121
122 vif = rcu_dereference(ar->vif_priv[vif_id].vif);
123 if (unlikely(!vif))
124 return NULL;
125
126 /*
127 * Normally we should use wrappers like ieee80211_get_DA to get
128 * the correct peer ieee80211_sta.
129 *
130 * But there is a problem with indirect traffic (broadcasts, or
131 * data which is designated for other stations) in station mode.
132 * The frame will be directed to the AP for distribution and not
133 * to the actual destination.
134 */
135
136 return ieee80211_find_sta(vif, hdr->addr1);
137 }
138
139 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
140 {
141 struct ieee80211_sta *sta;
142 struct carl9170_sta_info *sta_info;
143
144 rcu_read_lock();
145 sta = __carl9170_get_tx_sta(ar, skb);
146 if (unlikely(!sta))
147 goto out_rcu;
148
149 sta_info = (struct carl9170_sta_info *) sta->drv_priv;
150 if (atomic_dec_return(&sta_info->pending_frames) == 0)
151 ieee80211_sta_block_awake(ar->hw, sta, false);
152
153 out_rcu:
154 rcu_read_unlock();
155 }
156
157 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
158 {
159 int queue;
160
161 queue = skb_get_queue_mapping(skb);
162
163 spin_lock_bh(&ar->tx_stats_lock);
164
165 ar->tx_stats[queue].len--;
166
167 if (!is_mem_full(ar)) {
168 unsigned int i;
169 for (i = 0; i < ar->hw->queues; i++) {
170 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
171 continue;
172
173 if (ieee80211_queue_stopped(ar->hw, i)) {
174 unsigned long tmp;
175
176 tmp = jiffies - ar->queue_stop_timeout[i];
177 if (tmp > ar->max_queue_stop_timeout[i])
178 ar->max_queue_stop_timeout[i] = tmp;
179 }
180
181 ieee80211_wake_queue(ar->hw, i);
182 }
183 }
184
185 spin_unlock_bh(&ar->tx_stats_lock);
186
187 if (atomic_dec_and_test(&ar->tx_total_queued))
188 complete(&ar->tx_flush);
189 }
190
191 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
192 {
193 struct _carl9170_tx_superframe *super = (void *) skb->data;
194 unsigned int chunks;
195 int cookie = -1;
196
197 atomic_inc(&ar->mem_allocs);
198
199 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
200 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
201 atomic_add(chunks, &ar->mem_free_blocks);
202 return -ENOSPC;
203 }
204
205 spin_lock_bh(&ar->mem_lock);
206 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
207 spin_unlock_bh(&ar->mem_lock);
208
209 if (unlikely(cookie < 0)) {
210 atomic_add(chunks, &ar->mem_free_blocks);
211 return -ENOSPC;
212 }
213
214 super = (void *) skb->data;
215
216 /*
217 * Cookie #0 serves two special purposes:
218 * 1. The firmware might use it generate BlockACK frames
219 * in responds of an incoming BlockAckReqs.
220 *
221 * 2. Prevent double-free bugs.
222 */
223 super->s.cookie = (u8) cookie + 1;
224 return 0;
225 }
226
227 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
228 {
229 struct _carl9170_tx_superframe *super = (void *) skb->data;
230 int cookie;
231
232 /* make a local copy of the cookie */
233 cookie = super->s.cookie;
234 /* invalidate cookie */
235 super->s.cookie = 0;
236
237 /*
238 * Do a out-of-bounds check on the cookie:
239 *
240 * * cookie "0" is reserved and won't be assigned to any
241 * out-going frame. Internally however, it is used to
242 * mark no longer/un-accounted frames and serves as a
243 * cheap way of preventing frames from being freed
244 * twice by _accident_. NB: There is a tiny race...
245 *
246 * * obviously, cookie number is limited by the amount
247 * of available memory blocks, so the number can
248 * never execeed the mem_blocks count.
249 */
250 if (unlikely(WARN_ON_ONCE(cookie == 0) ||
251 WARN_ON_ONCE(cookie > ar->fw.mem_blocks)))
252 return;
253
254 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
255 &ar->mem_free_blocks);
256
257 spin_lock_bh(&ar->mem_lock);
258 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
259 spin_unlock_bh(&ar->mem_lock);
260 }
261
262 /* Called from any context */
263 static void carl9170_tx_release(struct kref *ref)
264 {
265 struct ar9170 *ar;
266 struct carl9170_tx_info *arinfo;
267 struct ieee80211_tx_info *txinfo;
268 struct sk_buff *skb;
269
270 arinfo = container_of(ref, struct carl9170_tx_info, ref);
271 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
272 rate_driver_data);
273 skb = container_of((void *) txinfo, struct sk_buff, cb);
274
275 ar = arinfo->ar;
276 if (WARN_ON_ONCE(!ar))
277 return;
278
279 BUILD_BUG_ON(
280 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
281
282 memset(&txinfo->status.ampdu_ack_len, 0,
283 sizeof(struct ieee80211_tx_info) -
284 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
285
286 if (atomic_read(&ar->tx_total_queued))
287 ar->tx_schedule = true;
288
289 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
290 if (!atomic_read(&ar->tx_ampdu_upload))
291 ar->tx_ampdu_schedule = true;
292
293 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
294 struct _carl9170_tx_superframe *super;
295
296 super = (void *)skb->data;
297 txinfo->status.ampdu_len = super->s.rix;
298 txinfo->status.ampdu_ack_len = super->s.cnt;
299 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
300 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
301 /*
302 * drop redundant tx_status reports:
303 *
304 * 1. ampdu_ack_len of the final tx_status does
305 * include the feedback of this particular frame.
306 *
307 * 2. tx_status_irqsafe only queues up to 128
308 * tx feedback reports and discards the rest.
309 *
310 * 3. minstrel_ht is picky, it only accepts
311 * reports of frames with the TX_STATUS_AMPDU flag.
312 *
313 * 4. mac80211 is not particularly interested in
314 * feedback either [CTL_REQ_TX_STATUS not set]
315 */
316
317 dev_kfree_skb_any(skb);
318 return;
319 } else {
320 /*
321 * Either the frame transmission has failed or
322 * mac80211 requested tx status.
323 */
324 }
325 }
326
327 skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
328 ieee80211_tx_status_irqsafe(ar->hw, skb);
329 }
330
331 void carl9170_tx_get_skb(struct sk_buff *skb)
332 {
333 struct carl9170_tx_info *arinfo = (void *)
334 (IEEE80211_SKB_CB(skb))->rate_driver_data;
335 kref_get(&arinfo->ref);
336 }
337
338 int carl9170_tx_put_skb(struct sk_buff *skb)
339 {
340 struct carl9170_tx_info *arinfo = (void *)
341 (IEEE80211_SKB_CB(skb))->rate_driver_data;
342
343 return kref_put(&arinfo->ref, carl9170_tx_release);
344 }
345
346 /* Caller must hold the tid_info->lock & rcu_read_lock */
347 static void carl9170_tx_shift_bm(struct ar9170 *ar,
348 struct carl9170_sta_tid *tid_info, u16 seq)
349 {
350 u16 off;
351
352 off = SEQ_DIFF(seq, tid_info->bsn);
353
354 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
355 return;
356
357 /*
358 * Sanity check. For each MPDU we set the bit in bitmap and
359 * clear it once we received the tx_status.
360 * But if the bit is already cleared then we've been bitten
361 * by a bug.
362 */
363 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
364
365 off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
366 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
367 return;
368
369 if (!bitmap_empty(tid_info->bitmap, off))
370 off = find_first_bit(tid_info->bitmap, off);
371
372 tid_info->bsn += off;
373 tid_info->bsn &= 0x0fff;
374
375 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
376 off, CARL9170_BAW_BITS);
377 }
378
379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
380 struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
381 {
382 struct _carl9170_tx_superframe *super = (void *) skb->data;
383 struct ieee80211_hdr *hdr = (void *) super->frame_data;
384 struct ieee80211_sta *sta;
385 struct carl9170_sta_info *sta_info;
386 struct carl9170_sta_tid *tid_info;
387 u8 tid;
388
389 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
390 txinfo->flags & IEEE80211_TX_CTL_INJECTED ||
391 (!(super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_AGGR))))
392 return;
393
394 rcu_read_lock();
395 sta = __carl9170_get_tx_sta(ar, skb);
396 if (unlikely(!sta))
397 goto out_rcu;
398
399 tid = get_tid_h(hdr);
400
401 sta_info = (void *) sta->drv_priv;
402 tid_info = rcu_dereference(sta_info->agg[tid]);
403 if (!tid_info)
404 goto out_rcu;
405
406 spin_lock_bh(&tid_info->lock);
407 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
408 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
409
410 if (sta_info->stats[tid].clear) {
411 sta_info->stats[tid].clear = false;
412 sta_info->stats[tid].req = false;
413 sta_info->stats[tid].ampdu_len = 0;
414 sta_info->stats[tid].ampdu_ack_len = 0;
415 }
416
417 sta_info->stats[tid].ampdu_len++;
418 if (txinfo->status.rates[0].count == 1)
419 sta_info->stats[tid].ampdu_ack_len++;
420
421 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
422 sta_info->stats[tid].req = true;
423
424 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
425 super->s.rix = sta_info->stats[tid].ampdu_len;
426 super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
427 txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
428 if (sta_info->stats[tid].req)
429 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
430
431 sta_info->stats[tid].clear = true;
432 }
433 spin_unlock_bh(&tid_info->lock);
434
435 out_rcu:
436 rcu_read_unlock();
437 }
438
439 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
440 const bool success)
441 {
442 struct ieee80211_tx_info *txinfo;
443
444 carl9170_tx_accounting_free(ar, skb);
445
446 txinfo = IEEE80211_SKB_CB(skb);
447
448 if (success)
449 txinfo->flags |= IEEE80211_TX_STAT_ACK;
450 else
451 ar->tx_ack_failures++;
452
453 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
454 carl9170_tx_status_process_ampdu(ar, skb, txinfo);
455
456 carl9170_tx_ps_unblock(ar, skb);
457 carl9170_tx_put_skb(skb);
458 }
459
460 /* This function may be called form any context */
461 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
462 {
463 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
464
465 atomic_dec(&ar->tx_total_pending);
466
467 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
468 atomic_dec(&ar->tx_ampdu_upload);
469
470 if (carl9170_tx_put_skb(skb))
471 tasklet_hi_schedule(&ar->usb_tasklet);
472 }
473
474 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
475 struct sk_buff_head *queue)
476 {
477 struct sk_buff *skb;
478
479 spin_lock_bh(&queue->lock);
480 skb_queue_walk(queue, skb) {
481 struct _carl9170_tx_superframe *txc = (void *) skb->data;
482
483 if (txc->s.cookie != cookie)
484 continue;
485
486 __skb_unlink(skb, queue);
487 spin_unlock_bh(&queue->lock);
488
489 carl9170_release_dev_space(ar, skb);
490 return skb;
491 }
492 spin_unlock_bh(&queue->lock);
493
494 return NULL;
495 }
496
497 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
498 unsigned int tries, struct ieee80211_tx_info *txinfo)
499 {
500 unsigned int i;
501
502 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
503 if (txinfo->status.rates[i].idx < 0)
504 break;
505
506 if (i == rix) {
507 txinfo->status.rates[i].count = tries;
508 i++;
509 break;
510 }
511 }
512
513 for (; i < IEEE80211_TX_MAX_RATES; i++) {
514 txinfo->status.rates[i].idx = -1;
515 txinfo->status.rates[i].count = 0;
516 }
517 }
518
519 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
520 {
521 int i;
522 struct sk_buff *skb;
523 struct ieee80211_tx_info *txinfo;
524 struct carl9170_tx_info *arinfo;
525 bool restart = false;
526
527 for (i = 0; i < ar->hw->queues; i++) {
528 spin_lock_bh(&ar->tx_status[i].lock);
529
530 skb = skb_peek(&ar->tx_status[i]);
531
532 if (!skb)
533 goto next;
534
535 txinfo = IEEE80211_SKB_CB(skb);
536 arinfo = (void *) txinfo->rate_driver_data;
537
538 if (time_is_before_jiffies(arinfo->timeout +
539 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
540 restart = true;
541
542 next:
543 spin_unlock_bh(&ar->tx_status[i].lock);
544 }
545
546 if (restart) {
547 /*
548 * At least one queue has been stuck for long enough.
549 * Give the device a kick and hope it gets back to
550 * work.
551 *
552 * possible reasons may include:
553 * - frames got lost/corrupted (bad connection to the device)
554 * - stalled rx processing/usb controller hiccups
555 * - firmware errors/bugs
556 * - every bug you can think of.
557 * - all bugs you can't...
558 * - ...
559 */
560 carl9170_restart(ar, CARL9170_RR_STUCK_TX);
561 }
562 }
563
564 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
565 {
566 struct carl9170_sta_tid *iter;
567 struct sk_buff *skb;
568 struct ieee80211_tx_info *txinfo;
569 struct carl9170_tx_info *arinfo;
570 struct ieee80211_sta *sta;
571
572 rcu_read_lock();
573 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
574 if (iter->state < CARL9170_TID_STATE_IDLE)
575 continue;
576
577 spin_lock_bh(&iter->lock);
578 skb = skb_peek(&iter->queue);
579 if (!skb)
580 goto unlock;
581
582 txinfo = IEEE80211_SKB_CB(skb);
583 arinfo = (void *)txinfo->rate_driver_data;
584 if (time_is_after_jiffies(arinfo->timeout +
585 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
586 goto unlock;
587
588 sta = __carl9170_get_tx_sta(ar, skb);
589 if (WARN_ON(!sta))
590 goto unlock;
591
592 ieee80211_stop_tx_ba_session(sta, iter->tid);
593 unlock:
594 spin_unlock_bh(&iter->lock);
595
596 }
597 rcu_read_unlock();
598 }
599
600 void carl9170_tx_janitor(struct work_struct *work)
601 {
602 struct ar9170 *ar = container_of(work, struct ar9170,
603 tx_janitor.work);
604 if (!IS_STARTED(ar))
605 return;
606
607 ar->tx_janitor_last_run = jiffies;
608
609 carl9170_check_queue_stop_timeout(ar);
610 carl9170_tx_ampdu_timeout(ar);
611
612 if (!atomic_read(&ar->tx_total_queued))
613 return;
614
615 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
616 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
617 }
618
619 static void __carl9170_tx_process_status(struct ar9170 *ar,
620 const uint8_t cookie, const uint8_t info)
621 {
622 struct sk_buff *skb;
623 struct ieee80211_tx_info *txinfo;
624 unsigned int r, t, q;
625 bool success = true;
626
627 q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE];
628
629 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
630 if (!skb) {
631 /*
632 * We have lost the race to another thread.
633 */
634
635 return ;
636 }
637
638 txinfo = IEEE80211_SKB_CB(skb);
639
640 if (!(info & CARL9170_TX_STATUS_SUCCESS))
641 success = false;
642
643 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
644 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
645
646 carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
647 carl9170_tx_status(ar, skb, success);
648 }
649
650 void carl9170_tx_process_status(struct ar9170 *ar,
651 const struct carl9170_rsp *cmd)
652 {
653 unsigned int i;
654
655 for (i = 0; i < cmd->hdr.ext; i++) {
656 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
657 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
658 (void *) cmd, cmd->hdr.len + 4);
659 break;
660 }
661
662 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
663 cmd->_tx_status[i].info);
664 }
665 }
666
667 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
668 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate,
669 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
670 {
671 struct ieee80211_rate *rate = NULL;
672 u8 *txpower;
673 unsigned int idx;
674
675 idx = txrate->idx;
676 *tpc = 0;
677 *phyrate = 0;
678
679 if (txrate->flags & IEEE80211_TX_RC_MCS) {
680 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
681 /* +1 dBm for HT40 */
682 *tpc += 2;
683
684 if (info->band == IEEE80211_BAND_2GHZ)
685 txpower = ar->power_2G_ht40;
686 else
687 txpower = ar->power_5G_ht40;
688 } else {
689 if (info->band == IEEE80211_BAND_2GHZ)
690 txpower = ar->power_2G_ht20;
691 else
692 txpower = ar->power_5G_ht20;
693 }
694
695 *phyrate = txrate->idx;
696 *tpc += txpower[idx & 7];
697 } else {
698 if (info->band == IEEE80211_BAND_2GHZ) {
699 if (idx < 4)
700 txpower = ar->power_2G_cck;
701 else
702 txpower = ar->power_2G_ofdm;
703 } else {
704 txpower = ar->power_5G_leg;
705 idx += 4;
706 }
707
708 rate = &__carl9170_ratetable[idx];
709 *tpc += txpower[(rate->hw_value & 0x30) >> 4];
710 *phyrate = rate->hw_value & 0xf;
711 }
712
713 if (ar->eeprom.tx_mask == 1) {
714 *chains = AR9170_TX_PHY_TXCHAIN_1;
715 } else {
716 if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
717 rate && rate->bitrate >= 360)
718 *chains = AR9170_TX_PHY_TXCHAIN_1;
719 else
720 *chains = AR9170_TX_PHY_TXCHAIN_2;
721 }
722 }
723
724 static __le32 carl9170_tx_physet(struct ar9170 *ar,
725 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
726 {
727 unsigned int power = 0, chains = 0, phyrate = 0;
728 __le32 tmp;
729
730 tmp = cpu_to_le32(0);
731
732 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
733 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
734 AR9170_TX_PHY_BW_S);
735 /* this works because 40 MHz is 2 and dup is 3 */
736 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
737 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
738 AR9170_TX_PHY_BW_S);
739
740 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
741 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
742
743 if (txrate->flags & IEEE80211_TX_RC_MCS) {
744 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
745
746 /* heavy clip control */
747 tmp |= cpu_to_le32((txrate->idx & 0x7) <<
748 AR9170_TX_PHY_TX_HEAVY_CLIP_S);
749
750 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
751
752 /*
753 * green field preamble does not work.
754 *
755 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
756 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
757 */
758 } else {
759 if (info->band == IEEE80211_BAND_2GHZ) {
760 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
761 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK);
762 else
763 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
764 } else {
765 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
766 }
767
768 /*
769 * short preamble seems to be broken too.
770 *
771 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
772 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
773 */
774 }
775 carl9170_tx_rate_tpc_chains(ar, info, txrate,
776 &phyrate, &power, &chains);
777
778 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
779 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power));
780 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains));
781 return tmp;
782 }
783
784 static bool carl9170_tx_rts_check(struct ar9170 *ar,
785 struct ieee80211_tx_rate *rate,
786 bool ampdu, bool multi)
787 {
788 switch (ar->erp_mode) {
789 case CARL9170_ERP_AUTO:
790 if (ampdu)
791 break;
792
793 case CARL9170_ERP_MAC80211:
794 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
795 break;
796
797 case CARL9170_ERP_RTS:
798 if (likely(!multi))
799 return true;
800
801 default:
802 break;
803 }
804
805 return false;
806 }
807
808 static bool carl9170_tx_cts_check(struct ar9170 *ar,
809 struct ieee80211_tx_rate *rate)
810 {
811 switch (ar->erp_mode) {
812 case CARL9170_ERP_AUTO:
813 case CARL9170_ERP_MAC80211:
814 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
815 break;
816
817 case CARL9170_ERP_CTS:
818 return true;
819
820 default:
821 break;
822 }
823
824 return false;
825 }
826
827 static int carl9170_tx_prepare(struct ar9170 *ar, struct sk_buff *skb)
828 {
829 struct ieee80211_hdr *hdr;
830 struct _carl9170_tx_superframe *txc;
831 struct carl9170_vif_info *cvif;
832 struct ieee80211_tx_info *info;
833 struct ieee80211_tx_rate *txrate;
834 struct ieee80211_sta *sta;
835 struct carl9170_tx_info *arinfo;
836 unsigned int hw_queue;
837 int i;
838 __le16 mac_tmp;
839 u16 len;
840 bool ampdu, no_ack;
841
842 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
843 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
844 CARL9170_TX_SUPERDESC_LEN);
845
846 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
847 AR9170_TX_HWDESC_LEN);
848
849 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
850
851 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
852 ((CARL9170_TX_SUPER_MISC_VIF_ID >>
853 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
854
855 hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)];
856
857 hdr = (void *)skb->data;
858 info = IEEE80211_SKB_CB(skb);
859 len = skb->len;
860
861 /*
862 * Note: If the frame was sent through a monitor interface,
863 * the ieee80211_vif pointer can be NULL.
864 */
865 if (likely(info->control.vif))
866 cvif = (void *) info->control.vif->drv_priv;
867 else
868 cvif = NULL;
869
870 sta = info->control.sta;
871
872 txc = (void *)skb_push(skb, sizeof(*txc));
873 memset(txc, 0, sizeof(*txc));
874
875 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
876
877 if (likely(cvif))
878 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
879
880 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
881 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
882
883 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
884 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;
885
886 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
887 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
888
889 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
890 AR9170_TX_MAC_BACKOFF);
891 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
892 AR9170_TX_MAC_QOS);
893
894 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
895 if (unlikely(no_ack))
896 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
897
898 if (info->control.hw_key) {
899 len += info->control.hw_key->icv_len;
900
901 switch (info->control.hw_key->cipher) {
902 case WLAN_CIPHER_SUITE_WEP40:
903 case WLAN_CIPHER_SUITE_WEP104:
904 case WLAN_CIPHER_SUITE_TKIP:
905 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
906 break;
907 case WLAN_CIPHER_SUITE_CCMP:
908 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
909 break;
910 default:
911 WARN_ON(1);
912 goto err_out;
913 }
914 }
915
916 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
917 if (ampdu) {
918 unsigned int density, factor;
919
920 if (unlikely(!sta || !cvif))
921 goto err_out;
922
923 factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor);
924 density = sta->ht_cap.ampdu_density;
925
926 if (density) {
927 /*
928 * Watch out!
929 *
930 * Otus uses slightly different density values than
931 * those from the 802.11n spec.
932 */
933
934 density = max_t(unsigned int, density + 1, 7u);
935 }
936
937 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
938 txc->s.ampdu_settings, density);
939
940 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
941 txc->s.ampdu_settings, factor);
942
943 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
944 txrate = &info->control.rates[i];
945 if (txrate->idx >= 0) {
946 txc->s.ri[i] =
947 CARL9170_TX_SUPER_RI_AMPDU;
948
949 if (WARN_ON(!(txrate->flags &
950 IEEE80211_TX_RC_MCS))) {
951 /*
952 * Not sure if it's even possible
953 * to aggregate non-ht rates with
954 * this HW.
955 */
956 goto err_out;
957 }
958 continue;
959 }
960
961 txrate->idx = 0;
962 txrate->count = ar->hw->max_rate_tries;
963 }
964
965 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
966 }
967
968 /*
969 * NOTE: For the first rate, the ERP & AMPDU flags are directly
970 * taken from mac_control. For all fallback rate, the firmware
971 * updates the mac_control flags from the rate info field.
972 */
973 for (i = 1; i < CARL9170_TX_MAX_RATES; i++) {
974 txrate = &info->control.rates[i];
975 if (txrate->idx < 0)
976 break;
977
978 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
979 txrate->count);
980
981 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
982 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
983 CARL9170_TX_SUPER_RI_ERP_PROT_S);
984 else if (carl9170_tx_cts_check(ar, txrate))
985 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
986 CARL9170_TX_SUPER_RI_ERP_PROT_S);
987
988 txc->s.rr[i - 1] = carl9170_tx_physet(ar, info, txrate);
989 }
990
991 txrate = &info->control.rates[0];
992 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[0], txrate->count);
993
994 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
995 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
996 else if (carl9170_tx_cts_check(ar, txrate))
997 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
998
999 txc->s.len = cpu_to_le16(skb->len);
1000 txc->f.length = cpu_to_le16(len + FCS_LEN);
1001 txc->f.mac_control = mac_tmp;
1002 txc->f.phy_control = carl9170_tx_physet(ar, info, txrate);
1003
1004 arinfo = (void *)info->rate_driver_data;
1005 arinfo->timeout = jiffies;
1006 arinfo->ar = ar;
1007 kref_init(&arinfo->ref);
1008 return 0;
1009
1010 err_out:
1011 skb_pull(skb, sizeof(*txc));
1012 return -EINVAL;
1013 }
1014
1015 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
1016 {
1017 struct _carl9170_tx_superframe *super;
1018
1019 super = (void *) skb->data;
1020 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
1021 }
1022
1023 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
1024 {
1025 struct _carl9170_tx_superframe *super;
1026 int tmp;
1027
1028 super = (void *) skb->data;
1029
1030 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
1031 CARL9170_TX_SUPER_AMPDU_DENSITY_S;
1032
1033 /*
1034 * If you haven't noticed carl9170_tx_prepare has already filled
1035 * in all ampdu spacing & factor parameters.
1036 * Now it's the time to check whenever the settings have to be
1037 * updated by the firmware, or if everything is still the same.
1038 *
1039 * There's no sane way to handle different density values with
1040 * this hardware, so we may as well just do the compare in the
1041 * driver.
1042 */
1043
1044 if (tmp != ar->current_density) {
1045 ar->current_density = tmp;
1046 super->s.ampdu_settings |=
1047 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
1048 }
1049
1050 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
1051 CARL9170_TX_SUPER_AMPDU_FACTOR_S;
1052
1053 if (tmp != ar->current_factor) {
1054 ar->current_factor = tmp;
1055 super->s.ampdu_settings |=
1056 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
1057 }
1058 }
1059
1060 static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest,
1061 struct sk_buff *_src)
1062 {
1063 struct _carl9170_tx_superframe *dest, *src;
1064
1065 dest = (void *) _dest->data;
1066 src = (void *) _src->data;
1067
1068 /*
1069 * The mac80211 rate control algorithm expects that all MPDUs in
1070 * an AMPDU share the same tx vectors.
1071 * This is not really obvious right now, because the hardware
1072 * does the AMPDU setup according to its own rulebook.
1073 * Our nicely assembled, strictly monotonic increasing mpdu
1074 * chains will be broken up, mashed back together...
1075 */
1076
1077 return (dest->f.phy_control == src->f.phy_control);
1078 }
1079
1080 static void carl9170_tx_ampdu(struct ar9170 *ar)
1081 {
1082 struct sk_buff_head agg;
1083 struct carl9170_sta_tid *tid_info;
1084 struct sk_buff *skb, *first;
1085 unsigned int i = 0, done_ampdus = 0;
1086 u16 seq, queue, tmpssn;
1087
1088 atomic_inc(&ar->tx_ampdu_scheduler);
1089 ar->tx_ampdu_schedule = false;
1090
1091 if (atomic_read(&ar->tx_ampdu_upload))
1092 return;
1093
1094 if (!ar->tx_ampdu_list_len)
1095 return;
1096
1097 __skb_queue_head_init(&agg);
1098
1099 rcu_read_lock();
1100 tid_info = rcu_dereference(ar->tx_ampdu_iter);
1101 if (WARN_ON_ONCE(!tid_info)) {
1102 rcu_read_unlock();
1103 return;
1104 }
1105
1106 retry:
1107 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
1108 i++;
1109
1110 if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
1111 continue;
1112
1113 queue = TID_TO_WME_AC(tid_info->tid);
1114
1115 spin_lock_bh(&tid_info->lock);
1116 if (tid_info->state != CARL9170_TID_STATE_XMIT)
1117 goto processed;
1118
1119 tid_info->counter++;
1120 first = skb_peek(&tid_info->queue);
1121 tmpssn = carl9170_get_seq(first);
1122 seq = tid_info->snx;
1123
1124 if (unlikely(tmpssn != seq)) {
1125 tid_info->state = CARL9170_TID_STATE_IDLE;
1126
1127 goto processed;
1128 }
1129
1130 while ((skb = skb_peek(&tid_info->queue))) {
1131 /* strict 0, 1, ..., n - 1, n frame sequence order */
1132 if (unlikely(carl9170_get_seq(skb) != seq))
1133 break;
1134
1135 /* don't upload more than AMPDU FACTOR allows. */
1136 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
1137 (tid_info->max - 1)))
1138 break;
1139
1140 if (!carl9170_tx_rate_check(ar, skb, first))
1141 break;
1142
1143 atomic_inc(&ar->tx_ampdu_upload);
1144 tid_info->snx = seq = SEQ_NEXT(seq);
1145 __skb_unlink(skb, &tid_info->queue);
1146
1147 __skb_queue_tail(&agg, skb);
1148
1149 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
1150 break;
1151 }
1152
1153 if (skb_queue_empty(&tid_info->queue) ||
1154 carl9170_get_seq(skb_peek(&tid_info->queue)) !=
1155 tid_info->snx) {
1156 /*
1157 * stop TID, if A-MPDU frames are still missing,
1158 * or whenever the queue is empty.
1159 */
1160
1161 tid_info->state = CARL9170_TID_STATE_IDLE;
1162 }
1163 done_ampdus++;
1164
1165 processed:
1166 spin_unlock_bh(&tid_info->lock);
1167
1168 if (skb_queue_empty(&agg))
1169 continue;
1170
1171 /* apply ampdu spacing & factor settings */
1172 carl9170_set_ampdu_params(ar, skb_peek(&agg));
1173
1174 /* set aggregation push bit */
1175 carl9170_set_immba(ar, skb_peek_tail(&agg));
1176
1177 spin_lock_bh(&ar->tx_pending[queue].lock);
1178 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
1179 spin_unlock_bh(&ar->tx_pending[queue].lock);
1180 ar->tx_schedule = true;
1181 }
1182 if ((done_ampdus++ == 0) && (i++ == 0))
1183 goto retry;
1184
1185 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
1186 rcu_read_unlock();
1187 }
1188
1189 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
1190 struct sk_buff_head *queue)
1191 {
1192 struct sk_buff *skb;
1193 struct ieee80211_tx_info *info;
1194 struct carl9170_tx_info *arinfo;
1195
1196 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
1197
1198 spin_lock_bh(&queue->lock);
1199 skb = skb_peek(queue);
1200 if (unlikely(!skb))
1201 goto err_unlock;
1202
1203 if (carl9170_alloc_dev_space(ar, skb))
1204 goto err_unlock;
1205
1206 __skb_unlink(skb, queue);
1207 spin_unlock_bh(&queue->lock);
1208
1209 info = IEEE80211_SKB_CB(skb);
1210 arinfo = (void *) info->rate_driver_data;
1211
1212 arinfo->timeout = jiffies;
1213 return skb;
1214
1215 err_unlock:
1216 spin_unlock_bh(&queue->lock);
1217 return NULL;
1218 }
1219
1220 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
1221 {
1222 struct _carl9170_tx_superframe *super;
1223 uint8_t q = 0;
1224
1225 ar->tx_dropped++;
1226
1227 super = (void *)skb->data;
1228 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
1229 ar9170_qmap[carl9170_get_queue(ar, skb)]);
1230 __carl9170_tx_process_status(ar, super->s.cookie, q);
1231 }
1232
1233 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
1234 {
1235 struct ieee80211_sta *sta;
1236 struct carl9170_sta_info *sta_info;
1237
1238 rcu_read_lock();
1239 sta = __carl9170_get_tx_sta(ar, skb);
1240 if (!sta)
1241 goto out_rcu;
1242
1243 sta_info = (void *) sta->drv_priv;
1244 if (unlikely(sta_info->sleeping)) {
1245 struct ieee80211_tx_info *tx_info;
1246
1247 rcu_read_unlock();
1248
1249 tx_info = IEEE80211_SKB_CB(skb);
1250 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1251 atomic_dec(&ar->tx_ampdu_upload);
1252
1253 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1254 carl9170_tx_status(ar, skb, false);
1255 return true;
1256 }
1257
1258 out_rcu:
1259 rcu_read_unlock();
1260 return false;
1261 }
1262
1263 static void carl9170_tx(struct ar9170 *ar)
1264 {
1265 struct sk_buff *skb;
1266 unsigned int i, q;
1267 bool schedule_garbagecollector = false;
1268
1269 ar->tx_schedule = false;
1270
1271 if (unlikely(!IS_STARTED(ar)))
1272 return;
1273
1274 carl9170_usb_handle_tx_err(ar);
1275
1276 for (i = 0; i < ar->hw->queues; i++) {
1277 while (!skb_queue_empty(&ar->tx_pending[i])) {
1278 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
1279 if (unlikely(!skb))
1280 break;
1281
1282 if (unlikely(carl9170_tx_ps_drop(ar, skb)))
1283 continue;
1284
1285 atomic_inc(&ar->tx_total_pending);
1286
1287 q = __carl9170_get_queue(ar, i);
1288 /*
1289 * NB: tx_status[i] vs. tx_status[q],
1290 * TODO: Move into pick_skb or alloc_dev_space.
1291 */
1292 skb_queue_tail(&ar->tx_status[q], skb);
1293
1294 /*
1295 * increase ref count to "2".
1296 * Ref counting is the easiest way to solve the
1297 * race between the urb's completion routine:
1298 * carl9170_tx_callback
1299 * and wlan tx status functions:
1300 * carl9170_tx_status/janitor.
1301 */
1302 carl9170_tx_get_skb(skb);
1303
1304 carl9170_usb_tx(ar, skb);
1305 schedule_garbagecollector = true;
1306 }
1307 }
1308
1309 if (!schedule_garbagecollector)
1310 return;
1311
1312 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
1313 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
1314 }
1315
1316 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1317 struct ieee80211_sta *sta, struct sk_buff *skb)
1318 {
1319 struct _carl9170_tx_superframe *super = (void *) skb->data;
1320 struct carl9170_sta_info *sta_info;
1321 struct carl9170_sta_tid *agg;
1322 struct sk_buff *iter;
1323 u16 tid, seq, qseq, off;
1324 bool run = false;
1325
1326 tid = carl9170_get_tid(skb);
1327 seq = carl9170_get_seq(skb);
1328 sta_info = (void *) sta->drv_priv;
1329
1330 rcu_read_lock();
1331 agg = rcu_dereference(sta_info->agg[tid]);
1332
1333 if (!agg)
1334 goto err_unlock_rcu;
1335
1336 spin_lock_bh(&agg->lock);
1337 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
1338 goto err_unlock;
1339
1340 /* check if sequence is within the BA window */
1341 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
1342 goto err_unlock;
1343
1344 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
1345 goto err_unlock;
1346
1347 off = SEQ_DIFF(seq, agg->bsn);
1348 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
1349 goto err_unlock;
1350
1351 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
1352 __skb_queue_tail(&agg->queue, skb);
1353 agg->hsn = seq;
1354 goto queued;
1355 }
1356
1357 skb_queue_reverse_walk(&agg->queue, iter) {
1358 qseq = carl9170_get_seq(iter);
1359
1360 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
1361 __skb_queue_after(&agg->queue, iter, skb);
1362 goto queued;
1363 }
1364 }
1365
1366 __skb_queue_head(&agg->queue, skb);
1367 queued:
1368
1369 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
1370 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
1371 agg->state = CARL9170_TID_STATE_XMIT;
1372 run = true;
1373 }
1374 }
1375
1376 spin_unlock_bh(&agg->lock);
1377 rcu_read_unlock();
1378
1379 return run;
1380
1381 err_unlock:
1382 spin_unlock_bh(&agg->lock);
1383
1384 err_unlock_rcu:
1385 rcu_read_unlock();
1386 super->f.mac_control &= ~cpu_to_le16(AR9170_TX_MAC_AGGR);
1387 carl9170_tx_status(ar, skb, false);
1388 ar->tx_dropped++;
1389 return false;
1390 }
1391
1392 void carl9170_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
1393 {
1394 struct ar9170 *ar = hw->priv;
1395 struct ieee80211_tx_info *info;
1396 struct ieee80211_sta *sta;
1397 bool run;
1398
1399 if (unlikely(!IS_STARTED(ar)))
1400 goto err_free;
1401
1402 info = IEEE80211_SKB_CB(skb);
1403 sta = info->control.sta;
1404
1405 if (unlikely(carl9170_tx_prepare(ar, skb)))
1406 goto err_free;
1407
1408 carl9170_tx_accounting(ar, skb);
1409 /*
1410 * from now on, one has to use carl9170_tx_status to free
1411 * all ressouces which are associated with the frame.
1412 */
1413
1414 if (sta) {
1415 struct carl9170_sta_info *stai = (void *) sta->drv_priv;
1416 atomic_inc(&stai->pending_frames);
1417 }
1418
1419 if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1420 run = carl9170_tx_ampdu_queue(ar, sta, skb);
1421 if (run)
1422 carl9170_tx_ampdu(ar);
1423
1424 } else {
1425 unsigned int queue = skb_get_queue_mapping(skb);
1426
1427 skb_queue_tail(&ar->tx_pending[queue], skb);
1428 }
1429
1430 carl9170_tx(ar);
1431 return;
1432
1433 err_free:
1434 ar->tx_dropped++;
1435 dev_kfree_skb_any(skb);
1436 }
1437
1438 void carl9170_tx_scheduler(struct ar9170 *ar)
1439 {
1440
1441 if (ar->tx_ampdu_schedule)
1442 carl9170_tx_ampdu(ar);
1443
1444 if (ar->tx_schedule)
1445 carl9170_tx(ar);
1446 }
1447
1448 int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
1449 {
1450 struct sk_buff *skb = NULL;
1451 struct carl9170_vif_info *cvif;
1452 struct ieee80211_tx_info *txinfo;
1453 struct ieee80211_tx_rate *rate;
1454 __le32 *data, *old = NULL;
1455 unsigned int plcp, power, chains;
1456 u32 word, ht1, off, addr, len;
1457 int i = 0, err = 0;
1458
1459 rcu_read_lock();
1460 cvif = rcu_dereference(ar->beacon_iter);
1461 retry:
1462 if (ar->vifs == 0 || !cvif)
1463 goto out_unlock;
1464
1465 list_for_each_entry_continue_rcu(cvif, &ar->vif_list, list) {
1466 if (cvif->active && cvif->enable_beacon)
1467 goto found;
1468 }
1469
1470 if (!ar->beacon_enabled || i++)
1471 goto out_unlock;
1472
1473 goto retry;
1474
1475 found:
1476 rcu_assign_pointer(ar->beacon_iter, cvif);
1477
1478 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
1479 NULL, NULL);
1480
1481 if (!skb) {
1482 err = -ENOMEM;
1483 goto err_free;
1484 }
1485
1486 txinfo = IEEE80211_SKB_CB(skb);
1487 spin_lock_bh(&ar->beacon_lock);
1488 data = (__le32 *)skb->data;
1489 if (cvif->beacon)
1490 old = (__le32 *)cvif->beacon->data;
1491
1492 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
1493 addr = ar->fw.beacon_addr + off;
1494 len = roundup(skb->len + FCS_LEN, 4);
1495
1496 if ((off + len) > ar->fw.beacon_max_len) {
1497 if (net_ratelimit()) {
1498 wiphy_err(ar->hw->wiphy, "beacon does not "
1499 "fit into device memory!\n");
1500 }
1501 err = -EINVAL;
1502 goto err_unlock;
1503 }
1504
1505 if (len > AR9170_MAC_BCN_LENGTH_MAX) {
1506 if (net_ratelimit()) {
1507 wiphy_err(ar->hw->wiphy, "no support for beacons "
1508 "bigger than %d (yours:%d).\n",
1509 AR9170_MAC_BCN_LENGTH_MAX, len);
1510 }
1511
1512 err = -EMSGSIZE;
1513 goto err_unlock;
1514 }
1515
1516 ht1 = AR9170_MAC_BCN_HT1_TX_ANT0;
1517 rate = &txinfo->control.rates[0];
1518 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, &plcp, &power, &chains);
1519 if (!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
1520 if (plcp <= AR9170_TX_PHY_RATE_CCK_11M)
1521 plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
1522 else
1523 plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
1524 } else {
1525 ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
1526 if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1527 plcp |= AR9170_MAC_BCN_HT2_SGI;
1528
1529 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1530 ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED;
1531 plcp |= AR9170_MAC_BCN_HT2_BW40;
1532 }
1533 if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
1534 ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP;
1535 plcp |= AR9170_MAC_BCN_HT2_BW40;
1536 }
1537
1538 SET_VAL(AR9170_MAC_BCN_HT2_LEN, plcp, skb->len + FCS_LEN);
1539 }
1540
1541 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, ht1, 7);
1542 SET_VAL(AR9170_MAC_BCN_HT1_TPC, ht1, power);
1543 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, ht1, chains);
1544 if (chains == AR9170_TX_PHY_TXCHAIN_2)
1545 ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1;
1546
1547 carl9170_async_regwrite_begin(ar);
1548 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1);
1549 if (!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS))
1550 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp);
1551 else
1552 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp);
1553
1554 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
1555 /*
1556 * XXX: This accesses beyond skb data for up
1557 * to the last 3 bytes!!
1558 */
1559
1560 if (old && (data[i] == old[i]))
1561 continue;
1562
1563 word = le32_to_cpu(data[i]);
1564 carl9170_async_regwrite(addr + 4 * i, word);
1565 }
1566 carl9170_async_regwrite_finish();
1567
1568 dev_kfree_skb_any(cvif->beacon);
1569 cvif->beacon = NULL;
1570
1571 err = carl9170_async_regwrite_result();
1572 if (!err)
1573 cvif->beacon = skb;
1574 spin_unlock_bh(&ar->beacon_lock);
1575 if (err)
1576 goto err_free;
1577
1578 if (submit) {
1579 err = carl9170_bcn_ctrl(ar, cvif->id,
1580 CARL9170_BCN_CTRL_CAB_TRIGGER,
1581 addr, skb->len + FCS_LEN);
1582
1583 if (err)
1584 goto err_free;
1585 }
1586 out_unlock:
1587 rcu_read_unlock();
1588 return 0;
1589
1590 err_unlock:
1591 spin_unlock_bh(&ar->beacon_lock);
1592
1593 err_free:
1594 rcu_read_unlock();
1595 dev_kfree_skb_any(skb);
1596 return err;
1597 }