]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/wireless/ath/wil6210/txrx.c
networking: make skb_push & __skb_push return void pointers
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / wireless / ath / wil6210 / txrx.c
1 /*
2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/etherdevice.h>
18 #include <net/ieee80211_radiotap.h>
19 #include <linux/if_arp.h>
20 #include <linux/moduleparam.h>
21 #include <linux/ip.h>
22 #include <linux/ipv6.h>
23 #include <net/ipv6.h>
24 #include <linux/prefetch.h>
25
26 #include "wil6210.h"
27 #include "wmi.h"
28 #include "txrx.h"
29 #include "trace.h"
30
31 static bool rtap_include_phy_info;
32 module_param(rtap_include_phy_info, bool, 0444);
33 MODULE_PARM_DESC(rtap_include_phy_info,
34 " Include PHY info in the radiotap header, default - no");
35
36 bool rx_align_2;
37 module_param(rx_align_2, bool, 0444);
38 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
39
40 bool rx_large_buf;
41 module_param(rx_large_buf, bool, 0444);
42 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
43
44 static inline uint wil_rx_snaplen(void)
45 {
46 return rx_align_2 ? 6 : 0;
47 }
48
49 static inline int wil_vring_is_empty(struct vring *vring)
50 {
51 return vring->swhead == vring->swtail;
52 }
53
54 static inline u32 wil_vring_next_tail(struct vring *vring)
55 {
56 return (vring->swtail + 1) % vring->size;
57 }
58
59 static inline void wil_vring_advance_head(struct vring *vring, int n)
60 {
61 vring->swhead = (vring->swhead + n) % vring->size;
62 }
63
64 static inline int wil_vring_is_full(struct vring *vring)
65 {
66 return wil_vring_next_tail(vring) == vring->swhead;
67 }
68
69 /* Used space in Tx Vring */
70 static inline int wil_vring_used_tx(struct vring *vring)
71 {
72 u32 swhead = vring->swhead;
73 u32 swtail = vring->swtail;
74 return (vring->size + swhead - swtail) % vring->size;
75 }
76
77 /* Available space in Tx Vring */
78 static inline int wil_vring_avail_tx(struct vring *vring)
79 {
80 return vring->size - wil_vring_used_tx(vring) - 1;
81 }
82
83 /* wil_vring_wmark_low - low watermark for available descriptor space */
84 static inline int wil_vring_wmark_low(struct vring *vring)
85 {
86 return vring->size/8;
87 }
88
89 /* wil_vring_wmark_high - high watermark for available descriptor space */
90 static inline int wil_vring_wmark_high(struct vring *vring)
91 {
92 return vring->size/4;
93 }
94
95 /* returns true if num avail descriptors is lower than wmark_low */
96 static inline int wil_vring_avail_low(struct vring *vring)
97 {
98 return wil_vring_avail_tx(vring) < wil_vring_wmark_low(vring);
99 }
100
101 /* returns true if num avail descriptors is higher than wmark_high */
102 static inline int wil_vring_avail_high(struct vring *vring)
103 {
104 return wil_vring_avail_tx(vring) > wil_vring_wmark_high(vring);
105 }
106
107 /* wil_val_in_range - check if value in [min,max) */
108 static inline bool wil_val_in_range(int val, int min, int max)
109 {
110 return val >= min && val < max;
111 }
112
113 static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
114 {
115 struct device *dev = wil_to_dev(wil);
116 size_t sz = vring->size * sizeof(vring->va[0]);
117 uint i;
118
119 wil_dbg_misc(wil, "vring_alloc:\n");
120
121 BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
122
123 vring->swhead = 0;
124 vring->swtail = 0;
125 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
126 if (!vring->ctx) {
127 vring->va = NULL;
128 return -ENOMEM;
129 }
130
131 /* vring->va should be aligned on its size rounded up to power of 2
132 * This is granted by the dma_alloc_coherent.
133 *
134 * HW has limitation that all vrings addresses must share the same
135 * upper 16 msb bits part of 48 bits address. To workaround that,
136 * if we are using 48 bit addresses switch to 32 bit allocation
137 * before allocating vring memory.
138 *
139 * There's no check for the return value of dma_set_mask_and_coherent,
140 * since we assume if we were able to set the mask during
141 * initialization in this system it will not fail if we set it again
142 */
143 if (wil->use_extended_dma_addr)
144 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
145
146 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
147 if (!vring->va) {
148 kfree(vring->ctx);
149 vring->ctx = NULL;
150 return -ENOMEM;
151 }
152
153 if (wil->use_extended_dma_addr)
154 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
155
156 /* initially, all descriptors are SW owned
157 * For Tx and Rx, ownership bit is at the same location, thus
158 * we can use any
159 */
160 for (i = 0; i < vring->size; i++) {
161 volatile struct vring_tx_desc *_d = &vring->va[i].tx;
162
163 _d->dma.status = TX_DMA_STATUS_DU;
164 }
165
166 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
167 vring->va, &vring->pa, vring->ctx);
168
169 return 0;
170 }
171
172 static void wil_txdesc_unmap(struct device *dev, struct vring_tx_desc *d,
173 struct wil_ctx *ctx)
174 {
175 dma_addr_t pa = wil_desc_addr(&d->dma.addr);
176 u16 dmalen = le16_to_cpu(d->dma.length);
177
178 switch (ctx->mapped_as) {
179 case wil_mapped_as_single:
180 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
181 break;
182 case wil_mapped_as_page:
183 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
184 break;
185 default:
186 break;
187 }
188 }
189
190 static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
191 int tx)
192 {
193 struct device *dev = wil_to_dev(wil);
194 size_t sz = vring->size * sizeof(vring->va[0]);
195
196 lockdep_assert_held(&wil->mutex);
197 if (tx) {
198 int vring_index = vring - wil->vring_tx;
199
200 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
201 vring_index, vring->size, vring->va,
202 &vring->pa, vring->ctx);
203 } else {
204 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
205 vring->size, vring->va,
206 &vring->pa, vring->ctx);
207 }
208
209 while (!wil_vring_is_empty(vring)) {
210 dma_addr_t pa;
211 u16 dmalen;
212 struct wil_ctx *ctx;
213
214 if (tx) {
215 struct vring_tx_desc dd, *d = &dd;
216 volatile struct vring_tx_desc *_d =
217 &vring->va[vring->swtail].tx;
218
219 ctx = &vring->ctx[vring->swtail];
220 if (!ctx) {
221 wil_dbg_txrx(wil,
222 "ctx(%d) was already completed\n",
223 vring->swtail);
224 vring->swtail = wil_vring_next_tail(vring);
225 continue;
226 }
227 *d = *_d;
228 wil_txdesc_unmap(dev, d, ctx);
229 if (ctx->skb)
230 dev_kfree_skb_any(ctx->skb);
231 vring->swtail = wil_vring_next_tail(vring);
232 } else { /* rx */
233 struct vring_rx_desc dd, *d = &dd;
234 volatile struct vring_rx_desc *_d =
235 &vring->va[vring->swhead].rx;
236
237 ctx = &vring->ctx[vring->swhead];
238 *d = *_d;
239 pa = wil_desc_addr(&d->dma.addr);
240 dmalen = le16_to_cpu(d->dma.length);
241 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
242 kfree_skb(ctx->skb);
243 wil_vring_advance_head(vring, 1);
244 }
245 }
246 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
247 kfree(vring->ctx);
248 vring->pa = 0;
249 vring->va = NULL;
250 vring->ctx = NULL;
251 }
252
253 /**
254 * Allocate one skb for Rx VRING
255 *
256 * Safe to call from IRQ
257 */
258 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
259 u32 i, int headroom)
260 {
261 struct device *dev = wil_to_dev(wil);
262 unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
263 struct vring_rx_desc dd, *d = &dd;
264 volatile struct vring_rx_desc *_d = &vring->va[i].rx;
265 dma_addr_t pa;
266 struct sk_buff *skb = dev_alloc_skb(sz + headroom);
267
268 if (unlikely(!skb))
269 return -ENOMEM;
270
271 skb_reserve(skb, headroom);
272 skb_put(skb, sz);
273
274 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
275 if (unlikely(dma_mapping_error(dev, pa))) {
276 kfree_skb(skb);
277 return -ENOMEM;
278 }
279
280 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
281 wil_desc_addr_set(&d->dma.addr, pa);
282 /* ip_length don't care */
283 /* b11 don't care */
284 /* error don't care */
285 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
286 d->dma.length = cpu_to_le16(sz);
287 *_d = *d;
288 vring->ctx[i].skb = skb;
289
290 return 0;
291 }
292
293 /**
294 * Adds radiotap header
295 *
296 * Any error indicated as "Bad FCS"
297 *
298 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
299 * - Rx descriptor: 32 bytes
300 * - Phy info
301 */
302 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
303 struct sk_buff *skb)
304 {
305 struct wireless_dev *wdev = wil->wdev;
306 struct wil6210_rtap {
307 struct ieee80211_radiotap_header rthdr;
308 /* fields should be in the order of bits in rthdr.it_present */
309 /* flags */
310 u8 flags;
311 /* channel */
312 __le16 chnl_freq __aligned(2);
313 __le16 chnl_flags;
314 /* MCS */
315 u8 mcs_present;
316 u8 mcs_flags;
317 u8 mcs_index;
318 } __packed;
319 struct wil6210_rtap_vendor {
320 struct wil6210_rtap rtap;
321 /* vendor */
322 u8 vendor_oui[3] __aligned(2);
323 u8 vendor_ns;
324 __le16 vendor_skip;
325 u8 vendor_data[0];
326 } __packed;
327 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
328 struct wil6210_rtap_vendor *rtap_vendor;
329 int rtap_len = sizeof(struct wil6210_rtap);
330 int phy_length = 0; /* phy info header size, bytes */
331 static char phy_data[128];
332 struct ieee80211_channel *ch = wdev->preset_chandef.chan;
333
334 if (rtap_include_phy_info) {
335 rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
336 /* calculate additional length */
337 if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
338 /**
339 * PHY info starts from 8-byte boundary
340 * there are 8-byte lines, last line may be partially
341 * written (HW bug), thus FW configures for last line
342 * to be excessive. Driver skips this last line.
343 */
344 int len = min_t(int, 8 + sizeof(phy_data),
345 wil_rxdesc_phy_length(d));
346
347 if (len > 8) {
348 void *p = skb_tail_pointer(skb);
349 void *pa = PTR_ALIGN(p, 8);
350
351 if (skb_tailroom(skb) >= len + (pa - p)) {
352 phy_length = len - 8;
353 memcpy(phy_data, pa, phy_length);
354 }
355 }
356 }
357 rtap_len += phy_length;
358 }
359
360 if (skb_headroom(skb) < rtap_len &&
361 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
362 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
363 return;
364 }
365
366 rtap_vendor = skb_push(skb, rtap_len);
367 memset(rtap_vendor, 0, rtap_len);
368
369 rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
370 rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
371 rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
372 (1 << IEEE80211_RADIOTAP_FLAGS) |
373 (1 << IEEE80211_RADIOTAP_CHANNEL) |
374 (1 << IEEE80211_RADIOTAP_MCS));
375 if (d->dma.status & RX_DMA_STATUS_ERROR)
376 rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
377
378 rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
379 rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
380
381 rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
382 rtap_vendor->rtap.mcs_flags = 0;
383 rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
384
385 if (rtap_include_phy_info) {
386 rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
387 IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
388 /* OUI for Wilocity 04:ce:14 */
389 rtap_vendor->vendor_oui[0] = 0x04;
390 rtap_vendor->vendor_oui[1] = 0xce;
391 rtap_vendor->vendor_oui[2] = 0x14;
392 rtap_vendor->vendor_ns = 1;
393 /* Rx descriptor + PHY data */
394 rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
395 phy_length);
396 memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
397 memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
398 phy_length);
399 }
400 }
401
402 /* similar to ieee80211_ version, but FC contain only 1-st byte */
403 static inline int wil_is_back_req(u8 fc)
404 {
405 return (fc & (IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
406 (IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
407 }
408
409 /**
410 * reap 1 frame from @swhead
411 *
412 * Rx descriptor copied to skb->cb
413 *
414 * Safe to call from IRQ
415 */
416 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
417 struct vring *vring)
418 {
419 struct device *dev = wil_to_dev(wil);
420 struct net_device *ndev = wil_to_ndev(wil);
421 volatile struct vring_rx_desc *_d;
422 struct vring_rx_desc *d;
423 struct sk_buff *skb;
424 dma_addr_t pa;
425 unsigned int snaplen = wil_rx_snaplen();
426 unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
427 u16 dmalen;
428 u8 ftype;
429 int cid;
430 int i;
431 struct wil_net_stats *stats;
432
433 BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
434
435 again:
436 if (unlikely(wil_vring_is_empty(vring)))
437 return NULL;
438
439 i = (int)vring->swhead;
440 _d = &vring->va[i].rx;
441 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
442 /* it is not error, we just reached end of Rx done area */
443 return NULL;
444 }
445
446 skb = vring->ctx[i].skb;
447 vring->ctx[i].skb = NULL;
448 wil_vring_advance_head(vring, 1);
449 if (!skb) {
450 wil_err(wil, "No Rx skb at [%d]\n", i);
451 goto again;
452 }
453 d = wil_skb_rxdesc(skb);
454 *d = *_d;
455 pa = wil_desc_addr(&d->dma.addr);
456
457 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
458 dmalen = le16_to_cpu(d->dma.length);
459
460 trace_wil6210_rx(i, d);
461 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
462 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
463 (const void *)d, sizeof(*d), false);
464
465 cid = wil_rxdesc_cid(d);
466 stats = &wil->sta[cid].stats;
467
468 if (unlikely(dmalen > sz)) {
469 wil_err(wil, "Rx size too large: %d bytes!\n", dmalen);
470 stats->rx_large_frame++;
471 kfree_skb(skb);
472 goto again;
473 }
474 skb_trim(skb, dmalen);
475
476 prefetch(skb->data);
477
478 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
479 skb->data, skb_headlen(skb), false);
480
481 stats->last_mcs_rx = wil_rxdesc_mcs(d);
482 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
483 stats->rx_per_mcs[stats->last_mcs_rx]++;
484
485 /* use radiotap header only if required */
486 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
487 wil_rx_add_radiotap_header(wil, skb);
488
489 /* no extra checks if in sniffer mode */
490 if (ndev->type != ARPHRD_ETHER)
491 return skb;
492 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
493 * Driver should recognize it by frame type, that is found
494 * in Rx descriptor. If type is not data, it is 802.11 frame as is
495 */
496 ftype = wil_rxdesc_ftype(d) << 2;
497 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
498 u8 fc1 = wil_rxdesc_fc1(d);
499 int mid = wil_rxdesc_mid(d);
500 int tid = wil_rxdesc_tid(d);
501 u16 seq = wil_rxdesc_seq(d);
502
503 wil_dbg_txrx(wil,
504 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
505 fc1, mid, cid, tid, seq);
506 stats->rx_non_data_frame++;
507 if (wil_is_back_req(fc1)) {
508 wil_dbg_txrx(wil,
509 "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
510 mid, cid, tid, seq);
511 wil_rx_bar(wil, cid, tid, seq);
512 } else {
513 /* print again all info. One can enable only this
514 * without overhead for printing every Rx frame
515 */
516 wil_dbg_txrx(wil,
517 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
518 fc1, mid, cid, tid, seq);
519 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
520 (const void *)d, sizeof(*d), false);
521 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
522 skb->data, skb_headlen(skb), false);
523 }
524 kfree_skb(skb);
525 goto again;
526 }
527
528 if (unlikely(skb->len < ETH_HLEN + snaplen)) {
529 wil_err(wil, "Short frame, len = %d\n", skb->len);
530 stats->rx_short_frame++;
531 kfree_skb(skb);
532 goto again;
533 }
534
535 /* L4 IDENT is on when HW calculated checksum, check status
536 * and in case of error drop the packet
537 * higher stack layers will handle retransmission (if required)
538 */
539 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
540 /* L4 protocol identified, csum calculated */
541 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
542 skb->ip_summed = CHECKSUM_UNNECESSARY;
543 /* If HW reports bad checksum, let IP stack re-check it
544 * For example, HW don't understand Microsoft IP stack that
545 * mis-calculates TCP checksum - if it should be 0x0,
546 * it writes 0xffff in violation of RFC 1624
547 */
548 }
549
550 if (snaplen) {
551 /* Packet layout
552 * +-------+-------+---------+------------+------+
553 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
554 * +-------+-------+---------+------------+------+
555 * Need to remove SNAP, shifting SA and DA forward
556 */
557 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
558 skb_pull(skb, snaplen);
559 }
560
561 return skb;
562 }
563
564 /**
565 * allocate and fill up to @count buffers in rx ring
566 * buffers posted at @swtail
567 */
568 static int wil_rx_refill(struct wil6210_priv *wil, int count)
569 {
570 struct net_device *ndev = wil_to_ndev(wil);
571 struct vring *v = &wil->vring_rx;
572 u32 next_tail;
573 int rc = 0;
574 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
575 WIL6210_RTAP_SIZE : 0;
576
577 for (; next_tail = wil_vring_next_tail(v),
578 (next_tail != v->swhead) && (count-- > 0);
579 v->swtail = next_tail) {
580 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
581 if (unlikely(rc)) {
582 wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
583 rc, v->swtail);
584 break;
585 }
586 }
587
588 /* make sure all writes to descriptors (shared memory) are done before
589 * committing them to HW
590 */
591 wmb();
592
593 wil_w(wil, v->hwtail, v->swtail);
594
595 return rc;
596 }
597
598 /**
599 * reverse_memcmp - Compare two areas of memory, in reverse order
600 * @cs: One area of memory
601 * @ct: Another area of memory
602 * @count: The size of the area.
603 *
604 * Cut'n'paste from original memcmp (see lib/string.c)
605 * with minimal modifications
606 */
607 static int reverse_memcmp(const void *cs, const void *ct, size_t count)
608 {
609 const unsigned char *su1, *su2;
610 int res = 0;
611
612 for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
613 --su1, --su2, count--) {
614 res = *su1 - *su2;
615 if (res)
616 break;
617 }
618 return res;
619 }
620
621 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
622 {
623 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
624 int cid = wil_rxdesc_cid(d);
625 int tid = wil_rxdesc_tid(d);
626 int key_id = wil_rxdesc_key_id(d);
627 int mc = wil_rxdesc_mcast(d);
628 struct wil_sta_info *s = &wil->sta[cid];
629 struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
630 &s->tid_crypto_rx[tid];
631 struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
632 const u8 *pn = (u8 *)&d->mac.pn_15_0;
633
634 if (!cc->key_set) {
635 wil_err_ratelimited(wil,
636 "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
637 cid, tid, mc, key_id);
638 return -EINVAL;
639 }
640
641 if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
642 wil_err_ratelimited(wil,
643 "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
644 cid, tid, mc, key_id, pn, cc->pn);
645 return -EINVAL;
646 }
647 memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
648
649 return 0;
650 }
651
652 /*
653 * Pass Rx packet to the netif. Update statistics.
654 * Called in softirq context (NAPI poll).
655 */
656 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
657 {
658 gro_result_t rc = GRO_NORMAL;
659 struct wil6210_priv *wil = ndev_to_wil(ndev);
660 struct wireless_dev *wdev = wil_to_wdev(wil);
661 unsigned int len = skb->len;
662 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
663 int cid = wil_rxdesc_cid(d); /* always 0..7, no need to check */
664 int security = wil_rxdesc_security(d);
665 struct ethhdr *eth = (void *)skb->data;
666 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
667 * is not suitable, need to look at data
668 */
669 int mcast = is_multicast_ether_addr(eth->h_dest);
670 struct wil_net_stats *stats = &wil->sta[cid].stats;
671 struct sk_buff *xmit_skb = NULL;
672 static const char * const gro_res_str[] = {
673 [GRO_MERGED] = "GRO_MERGED",
674 [GRO_MERGED_FREE] = "GRO_MERGED_FREE",
675 [GRO_HELD] = "GRO_HELD",
676 [GRO_NORMAL] = "GRO_NORMAL",
677 [GRO_DROP] = "GRO_DROP",
678 };
679
680 if (ndev->features & NETIF_F_RXHASH)
681 /* fake L4 to ensure it won't be re-calculated later
682 * set hash to any non-zero value to activate rps
683 * mechanism, core will be chosen according
684 * to user-level rps configuration.
685 */
686 skb_set_hash(skb, 1, PKT_HASH_TYPE_L4);
687
688 skb_orphan(skb);
689
690 if (security && (wil_rx_crypto_check(wil, skb) != 0)) {
691 rc = GRO_DROP;
692 dev_kfree_skb(skb);
693 stats->rx_replay++;
694 goto stats;
695 }
696
697 if (wdev->iftype == NL80211_IFTYPE_AP && !wil->ap_isolate) {
698 if (mcast) {
699 /* send multicast frames both to higher layers in
700 * local net stack and back to the wireless medium
701 */
702 xmit_skb = skb_copy(skb, GFP_ATOMIC);
703 } else {
704 int xmit_cid = wil_find_cid(wil, eth->h_dest);
705
706 if (xmit_cid >= 0) {
707 /* The destination station is associated to
708 * this AP (in this VLAN), so send the frame
709 * directly to it and do not pass it to local
710 * net stack.
711 */
712 xmit_skb = skb;
713 skb = NULL;
714 }
715 }
716 }
717 if (xmit_skb) {
718 /* Send to wireless media and increase priority by 256 to
719 * keep the received priority instead of reclassifying
720 * the frame (see cfg80211_classify8021d).
721 */
722 xmit_skb->dev = ndev;
723 xmit_skb->priority += 256;
724 xmit_skb->protocol = htons(ETH_P_802_3);
725 skb_reset_network_header(xmit_skb);
726 skb_reset_mac_header(xmit_skb);
727 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
728 dev_queue_xmit(xmit_skb);
729 }
730
731 if (skb) { /* deliver to local stack */
732
733 skb->protocol = eth_type_trans(skb, ndev);
734 rc = napi_gro_receive(&wil->napi_rx, skb);
735 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
736 len, gro_res_str[rc]);
737 }
738 stats:
739 /* statistics. rc set to GRO_NORMAL for AP bridging */
740 if (unlikely(rc == GRO_DROP)) {
741 ndev->stats.rx_dropped++;
742 stats->rx_dropped++;
743 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
744 } else {
745 ndev->stats.rx_packets++;
746 stats->rx_packets++;
747 ndev->stats.rx_bytes += len;
748 stats->rx_bytes += len;
749 if (mcast)
750 ndev->stats.multicast++;
751 }
752 }
753
754 /**
755 * Proceed all completed skb's from Rx VRING
756 *
757 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
758 */
759 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
760 {
761 struct net_device *ndev = wil_to_ndev(wil);
762 struct vring *v = &wil->vring_rx;
763 struct sk_buff *skb;
764
765 if (unlikely(!v->va)) {
766 wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
767 return;
768 }
769 wil_dbg_txrx(wil, "rx_handle\n");
770 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
771 (*quota)--;
772
773 if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
774 skb->dev = ndev;
775 skb_reset_mac_header(skb);
776 skb->ip_summed = CHECKSUM_UNNECESSARY;
777 skb->pkt_type = PACKET_OTHERHOST;
778 skb->protocol = htons(ETH_P_802_2);
779 wil_netif_rx_any(skb, ndev);
780 } else {
781 wil_rx_reorder(wil, skb);
782 }
783 }
784 wil_rx_refill(wil, v->size);
785 }
786
787 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
788 {
789 wil->rx_buf_len = rx_large_buf ?
790 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
791 if (mtu_max > wil->rx_buf_len) {
792 /* do not allow RX buffers to be smaller than mtu_max, for
793 * backward compatibility (mtu_max parameter was also used
794 * to support receiving large packets)
795 */
796 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
797 wil->rx_buf_len = mtu_max;
798 }
799 }
800
801 int wil_rx_init(struct wil6210_priv *wil, u16 size)
802 {
803 struct vring *vring = &wil->vring_rx;
804 int rc;
805
806 wil_dbg_misc(wil, "rx_init\n");
807
808 if (vring->va) {
809 wil_err(wil, "Rx ring already allocated\n");
810 return -EINVAL;
811 }
812
813 wil_rx_buf_len_init(wil);
814
815 vring->size = size;
816 rc = wil_vring_alloc(wil, vring);
817 if (rc)
818 return rc;
819
820 rc = wmi_rx_chain_add(wil, vring);
821 if (rc)
822 goto err_free;
823
824 rc = wil_rx_refill(wil, vring->size);
825 if (rc)
826 goto err_free;
827
828 return 0;
829 err_free:
830 wil_vring_free(wil, vring, 0);
831
832 return rc;
833 }
834
835 void wil_rx_fini(struct wil6210_priv *wil)
836 {
837 struct vring *vring = &wil->vring_rx;
838
839 wil_dbg_misc(wil, "rx_fini\n");
840
841 if (vring->va)
842 wil_vring_free(wil, vring, 0);
843 }
844
845 static inline void wil_tx_data_init(struct vring_tx_data *txdata)
846 {
847 spin_lock_bh(&txdata->lock);
848 txdata->dot1x_open = 0;
849 txdata->enabled = 0;
850 txdata->idle = 0;
851 txdata->last_idle = 0;
852 txdata->begin = 0;
853 txdata->agg_wsize = 0;
854 txdata->agg_timeout = 0;
855 txdata->agg_amsdu = 0;
856 txdata->addba_in_progress = false;
857 spin_unlock_bh(&txdata->lock);
858 }
859
860 int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
861 int cid, int tid)
862 {
863 int rc;
864 struct wmi_vring_cfg_cmd cmd = {
865 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
866 .vring_cfg = {
867 .tx_sw_ring = {
868 .max_mpdu_size =
869 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
870 .ring_size = cpu_to_le16(size),
871 },
872 .ringid = id,
873 .cidxtid = mk_cidxtid(cid, tid),
874 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
875 .mac_ctrl = 0,
876 .to_resolution = 0,
877 .agg_max_wsize = 0,
878 .schd_params = {
879 .priority = cpu_to_le16(0),
880 .timeslot_us = cpu_to_le16(0xfff),
881 },
882 },
883 };
884 struct {
885 struct wmi_cmd_hdr wmi;
886 struct wmi_vring_cfg_done_event cmd;
887 } __packed reply;
888 struct vring *vring = &wil->vring_tx[id];
889 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
890
891 wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
892 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
893 lockdep_assert_held(&wil->mutex);
894
895 if (vring->va) {
896 wil_err(wil, "Tx ring [%d] already allocated\n", id);
897 rc = -EINVAL;
898 goto out;
899 }
900
901 wil_tx_data_init(txdata);
902 vring->size = size;
903 rc = wil_vring_alloc(wil, vring);
904 if (rc)
905 goto out;
906
907 wil->vring2cid_tid[id][0] = cid;
908 wil->vring2cid_tid[id][1] = tid;
909
910 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
911
912 if (!wil->privacy)
913 txdata->dot1x_open = true;
914 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
915 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
916 if (rc)
917 goto out_free;
918
919 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
920 wil_err(wil, "Tx config failed, status 0x%02x\n",
921 reply.cmd.status);
922 rc = -EINVAL;
923 goto out_free;
924 }
925
926 spin_lock_bh(&txdata->lock);
927 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
928 txdata->enabled = 1;
929 spin_unlock_bh(&txdata->lock);
930
931 if (txdata->dot1x_open && (agg_wsize >= 0))
932 wil_addba_tx_request(wil, id, agg_wsize);
933
934 return 0;
935 out_free:
936 spin_lock_bh(&txdata->lock);
937 txdata->dot1x_open = false;
938 txdata->enabled = 0;
939 spin_unlock_bh(&txdata->lock);
940 wil_vring_free(wil, vring, 1);
941 wil->vring2cid_tid[id][0] = WIL6210_MAX_CID;
942 wil->vring2cid_tid[id][1] = 0;
943
944 out:
945
946 return rc;
947 }
948
949 int wil_vring_init_bcast(struct wil6210_priv *wil, int id, int size)
950 {
951 int rc;
952 struct wmi_bcast_vring_cfg_cmd cmd = {
953 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
954 .vring_cfg = {
955 .tx_sw_ring = {
956 .max_mpdu_size =
957 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
958 .ring_size = cpu_to_le16(size),
959 },
960 .ringid = id,
961 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
962 },
963 };
964 struct {
965 struct wmi_cmd_hdr wmi;
966 struct wmi_vring_cfg_done_event cmd;
967 } __packed reply;
968 struct vring *vring = &wil->vring_tx[id];
969 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
970
971 wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
972 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
973 lockdep_assert_held(&wil->mutex);
974
975 if (vring->va) {
976 wil_err(wil, "Tx ring [%d] already allocated\n", id);
977 rc = -EINVAL;
978 goto out;
979 }
980
981 wil_tx_data_init(txdata);
982 vring->size = size;
983 rc = wil_vring_alloc(wil, vring);
984 if (rc)
985 goto out;
986
987 wil->vring2cid_tid[id][0] = WIL6210_MAX_CID; /* CID */
988 wil->vring2cid_tid[id][1] = 0; /* TID */
989
990 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
991
992 if (!wil->privacy)
993 txdata->dot1x_open = true;
994 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, &cmd, sizeof(cmd),
995 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
996 if (rc)
997 goto out_free;
998
999 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1000 wil_err(wil, "Tx config failed, status 0x%02x\n",
1001 reply.cmd.status);
1002 rc = -EINVAL;
1003 goto out_free;
1004 }
1005
1006 spin_lock_bh(&txdata->lock);
1007 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1008 txdata->enabled = 1;
1009 spin_unlock_bh(&txdata->lock);
1010
1011 return 0;
1012 out_free:
1013 spin_lock_bh(&txdata->lock);
1014 txdata->enabled = 0;
1015 txdata->dot1x_open = false;
1016 spin_unlock_bh(&txdata->lock);
1017 wil_vring_free(wil, vring, 1);
1018 out:
1019
1020 return rc;
1021 }
1022
1023 void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
1024 {
1025 struct vring *vring = &wil->vring_tx[id];
1026 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
1027
1028 lockdep_assert_held(&wil->mutex);
1029
1030 if (!vring->va)
1031 return;
1032
1033 wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
1034
1035 spin_lock_bh(&txdata->lock);
1036 txdata->dot1x_open = false;
1037 txdata->enabled = 0; /* no Tx can be in progress or start anew */
1038 spin_unlock_bh(&txdata->lock);
1039 /* napi_synchronize waits for completion of the current NAPI but will
1040 * not prevent the next NAPI run.
1041 * Add a memory barrier to guarantee that txdata->enabled is zeroed
1042 * before napi_synchronize so that the next scheduled NAPI will not
1043 * handle this vring
1044 */
1045 wmb();
1046 /* make sure NAPI won't touch this vring */
1047 if (test_bit(wil_status_napi_en, wil->status))
1048 napi_synchronize(&wil->napi_tx);
1049
1050 wil_vring_free(wil, vring, 1);
1051 }
1052
1053 static struct vring *wil_find_tx_ucast(struct wil6210_priv *wil,
1054 struct sk_buff *skb)
1055 {
1056 int i;
1057 struct ethhdr *eth = (void *)skb->data;
1058 int cid = wil_find_cid(wil, eth->h_dest);
1059
1060 if (cid < 0)
1061 return NULL;
1062
1063 /* TODO: fix for multiple TID */
1064 for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) {
1065 if (!wil->vring_tx_data[i].dot1x_open &&
1066 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1067 continue;
1068 if (wil->vring2cid_tid[i][0] == cid) {
1069 struct vring *v = &wil->vring_tx[i];
1070 struct vring_tx_data *txdata = &wil->vring_tx_data[i];
1071
1072 wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1073 eth->h_dest, i);
1074 if (v->va && txdata->enabled) {
1075 return v;
1076 } else {
1077 wil_dbg_txrx(wil,
1078 "find_tx_ucast: vring[%d] not valid\n",
1079 i);
1080 return NULL;
1081 }
1082 }
1083 }
1084
1085 return NULL;
1086 }
1087
1088 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1089 struct sk_buff *skb);
1090
1091 static struct vring *wil_find_tx_vring_sta(struct wil6210_priv *wil,
1092 struct sk_buff *skb)
1093 {
1094 struct vring *v;
1095 int i;
1096 u8 cid;
1097 struct vring_tx_data *txdata;
1098
1099 /* In the STA mode, it is expected to have only 1 VRING
1100 * for the AP we connected to.
1101 * find 1-st vring eligible for this skb and use it.
1102 */
1103 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1104 v = &wil->vring_tx[i];
1105 txdata = &wil->vring_tx_data[i];
1106 if (!v->va || !txdata->enabled)
1107 continue;
1108
1109 cid = wil->vring2cid_tid[i][0];
1110 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1111 continue;
1112
1113 if (!wil->vring_tx_data[i].dot1x_open &&
1114 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1115 continue;
1116
1117 wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1118
1119 return v;
1120 }
1121
1122 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1123
1124 return NULL;
1125 }
1126
1127 /* Use one of 2 strategies:
1128 *
1129 * 1. New (real broadcast):
1130 * use dedicated broadcast vring
1131 * 2. Old (pseudo-DMS):
1132 * Find 1-st vring and return it;
1133 * duplicate skb and send it to other active vrings;
1134 * in all cases override dest address to unicast peer's address
1135 * Use old strategy when new is not supported yet:
1136 * - for PBSS
1137 */
1138 static struct vring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1139 struct sk_buff *skb)
1140 {
1141 struct vring *v;
1142 struct vring_tx_data *txdata;
1143 int i = wil->bcast_vring;
1144
1145 if (i < 0)
1146 return NULL;
1147 v = &wil->vring_tx[i];
1148 txdata = &wil->vring_tx_data[i];
1149 if (!v->va || !txdata->enabled)
1150 return NULL;
1151 if (!wil->vring_tx_data[i].dot1x_open &&
1152 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1153 return NULL;
1154
1155 return v;
1156 }
1157
1158 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1159 struct sk_buff *skb, int vring_index)
1160 {
1161 struct ethhdr *eth = (void *)skb->data;
1162 int cid = wil->vring2cid_tid[vring_index][0];
1163
1164 ether_addr_copy(eth->h_dest, wil->sta[cid].addr);
1165 }
1166
1167 static struct vring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1168 struct sk_buff *skb)
1169 {
1170 struct vring *v, *v2;
1171 struct sk_buff *skb2;
1172 int i;
1173 u8 cid;
1174 struct ethhdr *eth = (void *)skb->data;
1175 char *src = eth->h_source;
1176 struct vring_tx_data *txdata;
1177
1178 /* find 1-st vring eligible for data */
1179 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1180 v = &wil->vring_tx[i];
1181 txdata = &wil->vring_tx_data[i];
1182 if (!v->va || !txdata->enabled)
1183 continue;
1184
1185 cid = wil->vring2cid_tid[i][0];
1186 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1187 continue;
1188 if (!wil->vring_tx_data[i].dot1x_open &&
1189 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1190 continue;
1191
1192 /* don't Tx back to source when re-routing Rx->Tx at the AP */
1193 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1194 continue;
1195
1196 goto found;
1197 }
1198
1199 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1200
1201 return NULL;
1202
1203 found:
1204 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1205 wil_set_da_for_vring(wil, skb, i);
1206
1207 /* find other active vrings and duplicate skb for each */
1208 for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1209 v2 = &wil->vring_tx[i];
1210 if (!v2->va)
1211 continue;
1212 cid = wil->vring2cid_tid[i][0];
1213 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1214 continue;
1215 if (!wil->vring_tx_data[i].dot1x_open &&
1216 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1217 continue;
1218
1219 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1220 continue;
1221
1222 skb2 = skb_copy(skb, GFP_ATOMIC);
1223 if (skb2) {
1224 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1225 wil_set_da_for_vring(wil, skb2, i);
1226 wil_tx_vring(wil, v2, skb2);
1227 } else {
1228 wil_err(wil, "skb_copy failed\n");
1229 }
1230 }
1231
1232 return v;
1233 }
1234
1235 static int wil_tx_desc_map(struct vring_tx_desc *d, dma_addr_t pa, u32 len,
1236 int vring_index)
1237 {
1238 wil_desc_addr_set(&d->dma.addr, pa);
1239 d->dma.ip_length = 0;
1240 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1241 d->dma.b11 = 0/*14 | BIT(7)*/;
1242 d->dma.error = 0;
1243 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1244 d->dma.length = cpu_to_le16((u16)len);
1245 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1246 d->mac.d[0] = 0;
1247 d->mac.d[1] = 0;
1248 d->mac.d[2] = 0;
1249 d->mac.ucode_cmd = 0;
1250 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
1251 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1252 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1253
1254 return 0;
1255 }
1256
1257 static inline
1258 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1259 {
1260 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1261 }
1262
1263 /**
1264 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1265 * @skb is used to obtain the protocol and headers length.
1266 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1267 * 2 - middle, 3 - last descriptor.
1268 */
1269
1270 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1271 struct sk_buff *skb,
1272 int tso_desc_type, bool is_ipv4,
1273 int tcp_hdr_len, int skb_net_hdr_len)
1274 {
1275 d->dma.b11 = ETH_HLEN; /* MAC header length */
1276 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1277
1278 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1279 /* L4 header len: TCP header length */
1280 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1281
1282 /* Setup TSO: bit and desc type */
1283 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1284 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1285 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1286
1287 d->dma.ip_length = skb_net_hdr_len;
1288 /* Enable TCP/UDP checksum */
1289 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1290 /* Calculate pseudo-header */
1291 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1292 }
1293
1294 /**
1295 * Sets the descriptor @d up for csum. The corresponding
1296 * @skb is used to obtain the protocol and headers length.
1297 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1298 * Note, if d==NULL, the function only returns the protocol result.
1299 *
1300 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1301 * is "if unrolling" to optimize the critical path.
1302 */
1303
1304 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1305 struct sk_buff *skb){
1306 int protocol;
1307
1308 if (skb->ip_summed != CHECKSUM_PARTIAL)
1309 return 0;
1310
1311 d->dma.b11 = ETH_HLEN; /* MAC header length */
1312
1313 switch (skb->protocol) {
1314 case cpu_to_be16(ETH_P_IP):
1315 protocol = ip_hdr(skb)->protocol;
1316 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1317 break;
1318 case cpu_to_be16(ETH_P_IPV6):
1319 protocol = ipv6_hdr(skb)->nexthdr;
1320 break;
1321 default:
1322 return -EINVAL;
1323 }
1324
1325 switch (protocol) {
1326 case IPPROTO_TCP:
1327 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1328 /* L4 header len: TCP header length */
1329 d->dma.d0 |=
1330 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1331 break;
1332 case IPPROTO_UDP:
1333 /* L4 header len: UDP header length */
1334 d->dma.d0 |=
1335 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1336 break;
1337 default:
1338 return -EINVAL;
1339 }
1340
1341 d->dma.ip_length = skb_network_header_len(skb);
1342 /* Enable TCP/UDP checksum */
1343 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1344 /* Calculate pseudo-header */
1345 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1346
1347 return 0;
1348 }
1349
1350 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1351 {
1352 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1353 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1354 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1355 }
1356
1357 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1358 {
1359 d->dma.d0 |= wil_tso_type_lst <<
1360 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1361 }
1362
1363 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct vring *vring,
1364 struct sk_buff *skb)
1365 {
1366 struct device *dev = wil_to_dev(wil);
1367
1368 /* point to descriptors in shared memory */
1369 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1370 *_first_desc = NULL;
1371
1372 /* pointers to shadow descriptors */
1373 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1374 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1375 *first_desc = &first_desc_mem;
1376
1377 /* pointer to shadow descriptors' context */
1378 struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1379
1380 int descs_used = 0; /* total number of used descriptors */
1381 int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1382
1383 u32 swhead = vring->swhead;
1384 int used, avail = wil_vring_avail_tx(vring);
1385 int nr_frags = skb_shinfo(skb)->nr_frags;
1386 int min_desc_required = nr_frags + 1;
1387 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */
1388 int f, len, hdrlen, headlen;
1389 int vring_index = vring - wil->vring_tx;
1390 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1391 uint i = swhead;
1392 dma_addr_t pa;
1393 const skb_frag_t *frag = NULL;
1394 int rem_data = mss;
1395 int lenmss;
1396 int hdr_compensation_need = true;
1397 int desc_tso_type = wil_tso_type_first;
1398 bool is_ipv4;
1399 int tcp_hdr_len;
1400 int skb_net_hdr_len;
1401 int gso_type;
1402 int rc = -EINVAL;
1403
1404 wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1405 vring_index);
1406
1407 if (unlikely(!txdata->enabled))
1408 return -EINVAL;
1409
1410 /* A typical page 4K is 3-4 payloads, we assume each fragment
1411 * is a full payload, that's how min_desc_required has been
1412 * calculated. In real we might need more or less descriptors,
1413 * this is the initial check only.
1414 */
1415 if (unlikely(avail < min_desc_required)) {
1416 wil_err_ratelimited(wil,
1417 "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1418 vring_index, min_desc_required);
1419 return -ENOMEM;
1420 }
1421
1422 /* Header Length = MAC header len + IP header len + TCP header len*/
1423 hdrlen = ETH_HLEN +
1424 (int)skb_network_header_len(skb) +
1425 tcp_hdrlen(skb);
1426
1427 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1428 switch (gso_type) {
1429 case SKB_GSO_TCPV4:
1430 /* TCP v4, zero out the IP length and IPv4 checksum fields
1431 * as required by the offloading doc
1432 */
1433 ip_hdr(skb)->tot_len = 0;
1434 ip_hdr(skb)->check = 0;
1435 is_ipv4 = true;
1436 break;
1437 case SKB_GSO_TCPV6:
1438 /* TCP v6, zero out the payload length */
1439 ipv6_hdr(skb)->payload_len = 0;
1440 is_ipv4 = false;
1441 break;
1442 default:
1443 /* other than TCPv4 or TCPv6 types are not supported for TSO.
1444 * It is also illegal for both to be set simultaneously
1445 */
1446 return -EINVAL;
1447 }
1448
1449 if (skb->ip_summed != CHECKSUM_PARTIAL)
1450 return -EINVAL;
1451
1452 /* tcp header length and skb network header length are fixed for all
1453 * packet's descriptors - read then once here
1454 */
1455 tcp_hdr_len = tcp_hdrlen(skb);
1456 skb_net_hdr_len = skb_network_header_len(skb);
1457
1458 _hdr_desc = &vring->va[i].tx;
1459
1460 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1461 if (unlikely(dma_mapping_error(dev, pa))) {
1462 wil_err(wil, "TSO: Skb head DMA map error\n");
1463 goto err_exit;
1464 }
1465
1466 wil_tx_desc_map(hdr_desc, pa, hdrlen, vring_index);
1467 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1468 tcp_hdr_len, skb_net_hdr_len);
1469 wil_tx_last_desc(hdr_desc);
1470
1471 vring->ctx[i].mapped_as = wil_mapped_as_single;
1472 hdr_ctx = &vring->ctx[i];
1473
1474 descs_used++;
1475 headlen = skb_headlen(skb) - hdrlen;
1476
1477 for (f = headlen ? -1 : 0; f < nr_frags; f++) {
1478 if (headlen) {
1479 len = headlen;
1480 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1481 len);
1482 } else {
1483 frag = &skb_shinfo(skb)->frags[f];
1484 len = frag->size;
1485 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1486 }
1487
1488 while (len) {
1489 wil_dbg_txrx(wil,
1490 "TSO: len %d, rem_data %d, descs_used %d\n",
1491 len, rem_data, descs_used);
1492
1493 if (descs_used == avail) {
1494 wil_err_ratelimited(wil, "TSO: ring overflow\n");
1495 rc = -ENOMEM;
1496 goto mem_error;
1497 }
1498
1499 lenmss = min_t(int, rem_data, len);
1500 i = (swhead + descs_used) % vring->size;
1501 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1502
1503 if (!headlen) {
1504 pa = skb_frag_dma_map(dev, frag,
1505 frag->size - len, lenmss,
1506 DMA_TO_DEVICE);
1507 vring->ctx[i].mapped_as = wil_mapped_as_page;
1508 } else {
1509 pa = dma_map_single(dev,
1510 skb->data +
1511 skb_headlen(skb) - headlen,
1512 lenmss,
1513 DMA_TO_DEVICE);
1514 vring->ctx[i].mapped_as = wil_mapped_as_single;
1515 headlen -= lenmss;
1516 }
1517
1518 if (unlikely(dma_mapping_error(dev, pa))) {
1519 wil_err(wil, "TSO: DMA map page error\n");
1520 goto mem_error;
1521 }
1522
1523 _desc = &vring->va[i].tx;
1524
1525 if (!_first_desc) {
1526 _first_desc = _desc;
1527 first_ctx = &vring->ctx[i];
1528 d = first_desc;
1529 } else {
1530 d = &desc_mem;
1531 }
1532
1533 wil_tx_desc_map(d, pa, lenmss, vring_index);
1534 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1535 is_ipv4, tcp_hdr_len,
1536 skb_net_hdr_len);
1537
1538 /* use tso_type_first only once */
1539 desc_tso_type = wil_tso_type_mid;
1540
1541 descs_used++; /* desc used so far */
1542 sg_desc_cnt++; /* desc used for this segment */
1543 len -= lenmss;
1544 rem_data -= lenmss;
1545
1546 wil_dbg_txrx(wil,
1547 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1548 len, rem_data, descs_used, sg_desc_cnt);
1549
1550 /* Close the segment if reached mss size or last frag*/
1551 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1552 if (hdr_compensation_need) {
1553 /* first segment include hdr desc for
1554 * release
1555 */
1556 hdr_ctx->nr_frags = sg_desc_cnt;
1557 wil_tx_desc_set_nr_frags(first_desc,
1558 sg_desc_cnt +
1559 1);
1560 hdr_compensation_need = false;
1561 } else {
1562 wil_tx_desc_set_nr_frags(first_desc,
1563 sg_desc_cnt);
1564 }
1565 first_ctx->nr_frags = sg_desc_cnt - 1;
1566
1567 wil_tx_last_desc(d);
1568
1569 /* first descriptor may also be the last
1570 * for this mss - make sure not to copy
1571 * it twice
1572 */
1573 if (first_desc != d)
1574 *_first_desc = *first_desc;
1575
1576 /*last descriptor will be copied at the end
1577 * of this TS processing
1578 */
1579 if (f < nr_frags - 1 || len > 0)
1580 *_desc = *d;
1581
1582 rem_data = mss;
1583 _first_desc = NULL;
1584 sg_desc_cnt = 0;
1585 } else if (first_desc != d) /* update mid descriptor */
1586 *_desc = *d;
1587 }
1588 }
1589
1590 /* first descriptor may also be the last.
1591 * in this case d pointer is invalid
1592 */
1593 if (_first_desc == _desc)
1594 d = first_desc;
1595
1596 /* Last data descriptor */
1597 wil_set_tx_desc_last_tso(d);
1598 *_desc = *d;
1599
1600 /* Fill the total number of descriptors in first desc (hdr)*/
1601 wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1602 *_hdr_desc = *hdr_desc;
1603
1604 /* hold reference to skb
1605 * to prevent skb release before accounting
1606 * in case of immediate "tx done"
1607 */
1608 vring->ctx[i].skb = skb_get(skb);
1609
1610 /* performance monitoring */
1611 used = wil_vring_used_tx(vring);
1612 if (wil_val_in_range(vring_idle_trsh,
1613 used, used + descs_used)) {
1614 txdata->idle += get_cycles() - txdata->last_idle;
1615 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1616 vring_index, used, used + descs_used);
1617 }
1618
1619 /* Make sure to advance the head only after descriptor update is done.
1620 * This will prevent a race condition where the completion thread
1621 * will see the DU bit set from previous run and will handle the
1622 * skb before it was completed.
1623 */
1624 wmb();
1625
1626 /* advance swhead */
1627 wil_vring_advance_head(vring, descs_used);
1628 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1629
1630 /* make sure all writes to descriptors (shared memory) are done before
1631 * committing them to HW
1632 */
1633 wmb();
1634
1635 wil_w(wil, vring->hwtail, vring->swhead);
1636 return 0;
1637
1638 mem_error:
1639 while (descs_used > 0) {
1640 struct wil_ctx *ctx;
1641
1642 i = (swhead + descs_used - 1) % vring->size;
1643 d = (struct vring_tx_desc *)&vring->va[i].tx;
1644 _desc = &vring->va[i].tx;
1645 *d = *_desc;
1646 _desc->dma.status = TX_DMA_STATUS_DU;
1647 ctx = &vring->ctx[i];
1648 wil_txdesc_unmap(dev, d, ctx);
1649 memset(ctx, 0, sizeof(*ctx));
1650 descs_used--;
1651 }
1652 err_exit:
1653 return rc;
1654 }
1655
1656 static int __wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1657 struct sk_buff *skb)
1658 {
1659 struct device *dev = wil_to_dev(wil);
1660 struct vring_tx_desc dd, *d = &dd;
1661 volatile struct vring_tx_desc *_d;
1662 u32 swhead = vring->swhead;
1663 int avail = wil_vring_avail_tx(vring);
1664 int nr_frags = skb_shinfo(skb)->nr_frags;
1665 uint f = 0;
1666 int vring_index = vring - wil->vring_tx;
1667 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1668 uint i = swhead;
1669 dma_addr_t pa;
1670 int used;
1671 bool mcast = (vring_index == wil->bcast_vring);
1672 uint len = skb_headlen(skb);
1673
1674 wil_dbg_txrx(wil, "tx_vring: %d bytes to vring %d\n", skb->len,
1675 vring_index);
1676
1677 if (unlikely(!txdata->enabled))
1678 return -EINVAL;
1679
1680 if (unlikely(avail < 1 + nr_frags)) {
1681 wil_err_ratelimited(wil,
1682 "Tx ring[%2d] full. No space for %d fragments\n",
1683 vring_index, 1 + nr_frags);
1684 return -ENOMEM;
1685 }
1686 _d = &vring->va[i].tx;
1687
1688 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1689
1690 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", vring_index,
1691 skb_headlen(skb), skb->data, &pa);
1692 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1693 skb->data, skb_headlen(skb), false);
1694
1695 if (unlikely(dma_mapping_error(dev, pa)))
1696 return -EINVAL;
1697 vring->ctx[i].mapped_as = wil_mapped_as_single;
1698 /* 1-st segment */
1699 wil_tx_desc_map(d, pa, len, vring_index);
1700 if (unlikely(mcast)) {
1701 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1702 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1703 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1704 }
1705 /* Process TCP/UDP checksum offloading */
1706 if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1707 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1708 vring_index);
1709 goto dma_error;
1710 }
1711
1712 vring->ctx[i].nr_frags = nr_frags;
1713 wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1714
1715 /* middle segments */
1716 for (; f < nr_frags; f++) {
1717 const struct skb_frag_struct *frag =
1718 &skb_shinfo(skb)->frags[f];
1719 int len = skb_frag_size(frag);
1720
1721 *_d = *d;
1722 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1723 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1724 (const void *)d, sizeof(*d), false);
1725 i = (swhead + f + 1) % vring->size;
1726 _d = &vring->va[i].tx;
1727 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1728 DMA_TO_DEVICE);
1729 if (unlikely(dma_mapping_error(dev, pa))) {
1730 wil_err(wil, "Tx[%2d] failed to map fragment\n",
1731 vring_index);
1732 goto dma_error;
1733 }
1734 vring->ctx[i].mapped_as = wil_mapped_as_page;
1735 wil_tx_desc_map(d, pa, len, vring_index);
1736 /* no need to check return code -
1737 * if it succeeded for 1-st descriptor,
1738 * it will succeed here too
1739 */
1740 wil_tx_desc_offload_setup(d, skb);
1741 }
1742 /* for the last seg only */
1743 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1744 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1745 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1746 *_d = *d;
1747 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1748 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1749 (const void *)d, sizeof(*d), false);
1750
1751 /* hold reference to skb
1752 * to prevent skb release before accounting
1753 * in case of immediate "tx done"
1754 */
1755 vring->ctx[i].skb = skb_get(skb);
1756
1757 /* performance monitoring */
1758 used = wil_vring_used_tx(vring);
1759 if (wil_val_in_range(vring_idle_trsh,
1760 used, used + nr_frags + 1)) {
1761 txdata->idle += get_cycles() - txdata->last_idle;
1762 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1763 vring_index, used, used + nr_frags + 1);
1764 }
1765
1766 /* Make sure to advance the head only after descriptor update is done.
1767 * This will prevent a race condition where the completion thread
1768 * will see the DU bit set from previous run and will handle the
1769 * skb before it was completed.
1770 */
1771 wmb();
1772
1773 /* advance swhead */
1774 wil_vring_advance_head(vring, nr_frags + 1);
1775 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", vring_index, swhead,
1776 vring->swhead);
1777 trace_wil6210_tx(vring_index, swhead, skb->len, nr_frags);
1778
1779 /* make sure all writes to descriptors (shared memory) are done before
1780 * committing them to HW
1781 */
1782 wmb();
1783
1784 wil_w(wil, vring->hwtail, vring->swhead);
1785
1786 return 0;
1787 dma_error:
1788 /* unmap what we have mapped */
1789 nr_frags = f + 1; /* frags mapped + one for skb head */
1790 for (f = 0; f < nr_frags; f++) {
1791 struct wil_ctx *ctx;
1792
1793 i = (swhead + f) % vring->size;
1794 ctx = &vring->ctx[i];
1795 _d = &vring->va[i].tx;
1796 *d = *_d;
1797 _d->dma.status = TX_DMA_STATUS_DU;
1798 wil_txdesc_unmap(dev, d, ctx);
1799
1800 memset(ctx, 0, sizeof(*ctx));
1801 }
1802
1803 return -EINVAL;
1804 }
1805
1806 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1807 struct sk_buff *skb)
1808 {
1809 int vring_index = vring - wil->vring_tx;
1810 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1811 int rc;
1812
1813 spin_lock(&txdata->lock);
1814
1815 rc = (skb_is_gso(skb) ? __wil_tx_vring_tso : __wil_tx_vring)
1816 (wil, vring, skb);
1817
1818 spin_unlock(&txdata->lock);
1819
1820 return rc;
1821 }
1822
1823 /**
1824 * Check status of tx vrings and stop/wake net queues if needed
1825 *
1826 * This function does one of two checks:
1827 * In case check_stop is true, will check if net queues need to be stopped. If
1828 * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
1829 * In case check_stop is false, will check if net queues need to be waked. If
1830 * the conditions for waking are met, netif_tx_wake_all_queues() is called.
1831 * vring is the vring which is currently being modified by either adding
1832 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
1833 * be null when irrelevant (e.g. connect/disconnect events).
1834 *
1835 * The implementation is to stop net queues if modified vring has low
1836 * descriptor availability. Wake if all vrings are not in low descriptor
1837 * availability and modified vring has high descriptor availability.
1838 */
1839 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
1840 struct vring *vring,
1841 bool check_stop)
1842 {
1843 int i;
1844
1845 if (vring)
1846 wil_dbg_txrx(wil, "vring %d, check_stop=%d, stopped=%d",
1847 (int)(vring - wil->vring_tx), check_stop,
1848 wil->net_queue_stopped);
1849 else
1850 wil_dbg_txrx(wil, "check_stop=%d, stopped=%d",
1851 check_stop, wil->net_queue_stopped);
1852
1853 if (check_stop == wil->net_queue_stopped)
1854 /* net queues already in desired state */
1855 return;
1856
1857 if (check_stop) {
1858 if (!vring || unlikely(wil_vring_avail_low(vring))) {
1859 /* not enough room in the vring */
1860 netif_tx_stop_all_queues(wil_to_ndev(wil));
1861 wil->net_queue_stopped = true;
1862 wil_dbg_txrx(wil, "netif_tx_stop called\n");
1863 }
1864 return;
1865 }
1866
1867 /* check wake */
1868 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1869 struct vring *cur_vring = &wil->vring_tx[i];
1870 struct vring_tx_data *txdata = &wil->vring_tx_data[i];
1871
1872 if (!cur_vring->va || !txdata->enabled || cur_vring == vring)
1873 continue;
1874
1875 if (wil_vring_avail_low(cur_vring)) {
1876 wil_dbg_txrx(wil, "vring %d full, can't wake\n",
1877 (int)(cur_vring - wil->vring_tx));
1878 return;
1879 }
1880 }
1881
1882 if (!vring || wil_vring_avail_high(vring)) {
1883 /* enough room in the vring */
1884 wil_dbg_txrx(wil, "calling netif_tx_wake\n");
1885 netif_tx_wake_all_queues(wil_to_ndev(wil));
1886 wil->net_queue_stopped = false;
1887 }
1888 }
1889
1890 void wil_update_net_queues(struct wil6210_priv *wil, struct vring *vring,
1891 bool check_stop)
1892 {
1893 spin_lock(&wil->net_queue_lock);
1894 __wil_update_net_queues(wil, vring, check_stop);
1895 spin_unlock(&wil->net_queue_lock);
1896 }
1897
1898 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct vring *vring,
1899 bool check_stop)
1900 {
1901 spin_lock_bh(&wil->net_queue_lock);
1902 __wil_update_net_queues(wil, vring, check_stop);
1903 spin_unlock_bh(&wil->net_queue_lock);
1904 }
1905
1906 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1907 {
1908 struct wil6210_priv *wil = ndev_to_wil(ndev);
1909 struct ethhdr *eth = (void *)skb->data;
1910 bool bcast = is_multicast_ether_addr(eth->h_dest);
1911 struct vring *vring;
1912 static bool pr_once_fw;
1913 int rc;
1914
1915 wil_dbg_txrx(wil, "start_xmit\n");
1916 if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
1917 if (!pr_once_fw) {
1918 wil_err(wil, "FW not ready\n");
1919 pr_once_fw = true;
1920 }
1921 goto drop;
1922 }
1923 if (unlikely(!test_bit(wil_status_fwconnected, wil->status))) {
1924 wil_dbg_ratelimited(wil, "FW not connected, packet dropped\n");
1925 goto drop;
1926 }
1927 if (unlikely(wil->wdev->iftype == NL80211_IFTYPE_MONITOR)) {
1928 wil_err(wil, "Xmit in monitor mode not supported\n");
1929 goto drop;
1930 }
1931 pr_once_fw = false;
1932
1933 /* find vring */
1934 if (wil->wdev->iftype == NL80211_IFTYPE_STATION && !wil->pbss) {
1935 /* in STA mode (ESS), all to same VRING (to AP) */
1936 vring = wil_find_tx_vring_sta(wil, skb);
1937 } else if (bcast) {
1938 if (wil->pbss)
1939 /* in pbss, no bcast VRING - duplicate skb in
1940 * all stations VRINGs
1941 */
1942 vring = wil_find_tx_bcast_2(wil, skb);
1943 else if (wil->wdev->iftype == NL80211_IFTYPE_AP)
1944 /* AP has a dedicated bcast VRING */
1945 vring = wil_find_tx_bcast_1(wil, skb);
1946 else
1947 /* unexpected combination, fallback to duplicating
1948 * the skb in all stations VRINGs
1949 */
1950 vring = wil_find_tx_bcast_2(wil, skb);
1951 } else {
1952 /* unicast, find specific VRING by dest. address */
1953 vring = wil_find_tx_ucast(wil, skb);
1954 }
1955 if (unlikely(!vring)) {
1956 wil_dbg_txrx(wil, "No Tx VRING found for %pM\n", eth->h_dest);
1957 goto drop;
1958 }
1959 /* set up vring entry */
1960 rc = wil_tx_vring(wil, vring, skb);
1961
1962 switch (rc) {
1963 case 0:
1964 /* shall we stop net queues? */
1965 wil_update_net_queues_bh(wil, vring, true);
1966 /* statistics will be updated on the tx_complete */
1967 dev_kfree_skb_any(skb);
1968 return NETDEV_TX_OK;
1969 case -ENOMEM:
1970 return NETDEV_TX_BUSY;
1971 default:
1972 break; /* goto drop; */
1973 }
1974 drop:
1975 ndev->stats.tx_dropped++;
1976 dev_kfree_skb_any(skb);
1977
1978 return NET_XMIT_DROP;
1979 }
1980
1981 static inline bool wil_need_txstat(struct sk_buff *skb)
1982 {
1983 struct ethhdr *eth = (void *)skb->data;
1984
1985 return is_unicast_ether_addr(eth->h_dest) && skb->sk &&
1986 (skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS);
1987 }
1988
1989 static inline void wil_consume_skb(struct sk_buff *skb, bool acked)
1990 {
1991 if (unlikely(wil_need_txstat(skb)))
1992 skb_complete_wifi_ack(skb, acked);
1993 else
1994 acked ? dev_consume_skb_any(skb) : dev_kfree_skb_any(skb);
1995 }
1996
1997 /**
1998 * Clean up transmitted skb's from the Tx VRING
1999 *
2000 * Return number of descriptors cleared
2001 *
2002 * Safe to call from IRQ
2003 */
2004 int wil_tx_complete(struct wil6210_priv *wil, int ringid)
2005 {
2006 struct net_device *ndev = wil_to_ndev(wil);
2007 struct device *dev = wil_to_dev(wil);
2008 struct vring *vring = &wil->vring_tx[ringid];
2009 struct vring_tx_data *txdata = &wil->vring_tx_data[ringid];
2010 int done = 0;
2011 int cid = wil->vring2cid_tid[ringid][0];
2012 struct wil_net_stats *stats = NULL;
2013 volatile struct vring_tx_desc *_d;
2014 int used_before_complete;
2015 int used_new;
2016
2017 if (unlikely(!vring->va)) {
2018 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2019 return 0;
2020 }
2021
2022 if (unlikely(!txdata->enabled)) {
2023 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2024 return 0;
2025 }
2026
2027 wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2028
2029 used_before_complete = wil_vring_used_tx(vring);
2030
2031 if (cid < WIL6210_MAX_CID)
2032 stats = &wil->sta[cid].stats;
2033
2034 while (!wil_vring_is_empty(vring)) {
2035 int new_swtail;
2036 struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2037 /**
2038 * For the fragmented skb, HW will set DU bit only for the
2039 * last fragment. look for it.
2040 * In TSO the first DU will include hdr desc
2041 */
2042 int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2043 /* TODO: check we are not past head */
2044
2045 _d = &vring->va[lf].tx;
2046 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2047 break;
2048
2049 new_swtail = (lf + 1) % vring->size;
2050 while (vring->swtail != new_swtail) {
2051 struct vring_tx_desc dd, *d = &dd;
2052 u16 dmalen;
2053 struct sk_buff *skb;
2054
2055 ctx = &vring->ctx[vring->swtail];
2056 skb = ctx->skb;
2057 _d = &vring->va[vring->swtail].tx;
2058
2059 *d = *_d;
2060
2061 dmalen = le16_to_cpu(d->dma.length);
2062 trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2063 d->dma.error);
2064 wil_dbg_txrx(wil,
2065 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2066 ringid, vring->swtail, dmalen,
2067 d->dma.status, d->dma.error);
2068 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2069 (const void *)d, sizeof(*d), false);
2070
2071 wil_txdesc_unmap(dev, d, ctx);
2072
2073 if (skb) {
2074 if (likely(d->dma.error == 0)) {
2075 ndev->stats.tx_packets++;
2076 ndev->stats.tx_bytes += skb->len;
2077 if (stats) {
2078 stats->tx_packets++;
2079 stats->tx_bytes += skb->len;
2080 }
2081 } else {
2082 ndev->stats.tx_errors++;
2083 if (stats)
2084 stats->tx_errors++;
2085 }
2086 wil_consume_skb(skb, d->dma.error == 0);
2087 }
2088 memset(ctx, 0, sizeof(*ctx));
2089 /* Make sure the ctx is zeroed before updating the tail
2090 * to prevent a case where wil_tx_vring will see
2091 * this descriptor as used and handle it before ctx zero
2092 * is completed.
2093 */
2094 wmb();
2095 /* There is no need to touch HW descriptor:
2096 * - ststus bit TX_DMA_STATUS_DU is set by design,
2097 * so hardware will not try to process this desc.,
2098 * - rest of descriptor will be initialized on Tx.
2099 */
2100 vring->swtail = wil_vring_next_tail(vring);
2101 done++;
2102 }
2103 }
2104
2105 /* performance monitoring */
2106 used_new = wil_vring_used_tx(vring);
2107 if (wil_val_in_range(vring_idle_trsh,
2108 used_new, used_before_complete)) {
2109 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2110 ringid, used_before_complete, used_new);
2111 txdata->last_idle = get_cycles();
2112 }
2113
2114 /* shall we wake net queues? */
2115 if (done)
2116 wil_update_net_queues(wil, vring, false);
2117
2118 return done;
2119 }