]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ath5k/base.c
mac80211: use hardware flags for signal/noise units
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ath5k / base.c
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43 #include <linux/version.h>
44 #include <linux/module.h>
45 #include <linux/delay.h>
46 #include <linux/if.h>
47 #include <linux/netdevice.h>
48 #include <linux/cache.h>
49 #include <linux/pci.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
52
53 #include <net/ieee80211_radiotap.h>
54
55 #include <asm/unaligned.h>
56
57 #include "base.h"
58 #include "reg.h"
59 #include "debug.h"
60
61 enum {
62 ATH_LED_TX,
63 ATH_LED_RX,
64 };
65
66 static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
67
68
69 /******************\
70 * Internal defines *
71 \******************/
72
73 /* Module info */
74 MODULE_AUTHOR("Jiri Slaby");
75 MODULE_AUTHOR("Nick Kossifidis");
76 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
77 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
78 MODULE_LICENSE("Dual BSD/GPL");
79 MODULE_VERSION("0.5.0 (EXPERIMENTAL)");
80
81
82 /* Known PCI ids */
83 static struct pci_device_id ath5k_pci_id_table[] __devinitdata = {
84 { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
85 { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
86 { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
87 { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
88 { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
89 { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
90 { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
91 { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
92 { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
93 { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
94 { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
95 { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
96 { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
97 { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
98 { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
99 { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
100 { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* 5424 Condor (PCI-E)*/
101 { PCI_VDEVICE(ATHEROS, 0x0023), .driver_data = AR5K_AR5212 }, /* 5416 */
102 { PCI_VDEVICE(ATHEROS, 0x0024), .driver_data = AR5K_AR5212 }, /* 5418 */
103 { 0 }
104 };
105 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
106
107 /* Known SREVs */
108 static struct ath5k_srev_name srev_names[] = {
109 { "5210", AR5K_VERSION_VER, AR5K_SREV_VER_AR5210 },
110 { "5311", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311 },
111 { "5311A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311A },
112 { "5311B", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311B },
113 { "5211", AR5K_VERSION_VER, AR5K_SREV_VER_AR5211 },
114 { "5212", AR5K_VERSION_VER, AR5K_SREV_VER_AR5212 },
115 { "5213", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213 },
116 { "5213A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213A },
117 { "2413", AR5K_VERSION_VER, AR5K_SREV_VER_AR2413 },
118 { "2414", AR5K_VERSION_VER, AR5K_SREV_VER_AR2414 },
119 { "2424", AR5K_VERSION_VER, AR5K_SREV_VER_AR2424 },
120 { "5424", AR5K_VERSION_VER, AR5K_SREV_VER_AR5424 },
121 { "5413", AR5K_VERSION_VER, AR5K_SREV_VER_AR5413 },
122 { "5414", AR5K_VERSION_VER, AR5K_SREV_VER_AR5414 },
123 { "5416", AR5K_VERSION_VER, AR5K_SREV_VER_AR5416 },
124 { "5418", AR5K_VERSION_VER, AR5K_SREV_VER_AR5418 },
125 { "2425", AR5K_VERSION_VER, AR5K_SREV_VER_AR2425 },
126 { "xxxxx", AR5K_VERSION_VER, AR5K_SREV_UNKNOWN },
127 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
128 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
129 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
130 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
131 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
132 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
133 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
134 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC0 },
135 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC1 },
136 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC2 },
137 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
138 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
139 };
140
141 /*
142 * Prototypes - PCI stack related functions
143 */
144 static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
145 const struct pci_device_id *id);
146 static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
147 #ifdef CONFIG_PM
148 static int ath5k_pci_suspend(struct pci_dev *pdev,
149 pm_message_t state);
150 static int ath5k_pci_resume(struct pci_dev *pdev);
151 #else
152 #define ath5k_pci_suspend NULL
153 #define ath5k_pci_resume NULL
154 #endif /* CONFIG_PM */
155
156 static struct pci_driver ath5k_pci_driver = {
157 .name = "ath5k_pci",
158 .id_table = ath5k_pci_id_table,
159 .probe = ath5k_pci_probe,
160 .remove = __devexit_p(ath5k_pci_remove),
161 .suspend = ath5k_pci_suspend,
162 .resume = ath5k_pci_resume,
163 };
164
165
166
167 /*
168 * Prototypes - MAC 802.11 stack related functions
169 */
170 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
171 struct ieee80211_tx_control *ctl);
172 static int ath5k_reset(struct ieee80211_hw *hw);
173 static int ath5k_start(struct ieee80211_hw *hw);
174 static void ath5k_stop(struct ieee80211_hw *hw);
175 static int ath5k_add_interface(struct ieee80211_hw *hw,
176 struct ieee80211_if_init_conf *conf);
177 static void ath5k_remove_interface(struct ieee80211_hw *hw,
178 struct ieee80211_if_init_conf *conf);
179 static int ath5k_config(struct ieee80211_hw *hw,
180 struct ieee80211_conf *conf);
181 static int ath5k_config_interface(struct ieee80211_hw *hw,
182 struct ieee80211_vif *vif,
183 struct ieee80211_if_conf *conf);
184 static void ath5k_configure_filter(struct ieee80211_hw *hw,
185 unsigned int changed_flags,
186 unsigned int *new_flags,
187 int mc_count, struct dev_mc_list *mclist);
188 static int ath5k_set_key(struct ieee80211_hw *hw,
189 enum set_key_cmd cmd,
190 const u8 *local_addr, const u8 *addr,
191 struct ieee80211_key_conf *key);
192 static int ath5k_get_stats(struct ieee80211_hw *hw,
193 struct ieee80211_low_level_stats *stats);
194 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
195 struct ieee80211_tx_queue_stats *stats);
196 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
197 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
198 static int ath5k_beacon_update(struct ieee80211_hw *hw,
199 struct sk_buff *skb,
200 struct ieee80211_tx_control *ctl);
201
202 static struct ieee80211_ops ath5k_hw_ops = {
203 .tx = ath5k_tx,
204 .start = ath5k_start,
205 .stop = ath5k_stop,
206 .add_interface = ath5k_add_interface,
207 .remove_interface = ath5k_remove_interface,
208 .config = ath5k_config,
209 .config_interface = ath5k_config_interface,
210 .configure_filter = ath5k_configure_filter,
211 .set_key = ath5k_set_key,
212 .get_stats = ath5k_get_stats,
213 .conf_tx = NULL,
214 .get_tx_stats = ath5k_get_tx_stats,
215 .get_tsf = ath5k_get_tsf,
216 .reset_tsf = ath5k_reset_tsf,
217 .beacon_update = ath5k_beacon_update,
218 };
219
220 /*
221 * Prototypes - Internal functions
222 */
223 /* Attach detach */
224 static int ath5k_attach(struct pci_dev *pdev,
225 struct ieee80211_hw *hw);
226 static void ath5k_detach(struct pci_dev *pdev,
227 struct ieee80211_hw *hw);
228 /* Channel/mode setup */
229 static inline short ath5k_ieee2mhz(short chan);
230 static unsigned int ath5k_copy_rates(struct ieee80211_rate *rates,
231 const struct ath5k_rate_table *rt,
232 unsigned int max);
233 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
234 struct ieee80211_channel *channels,
235 unsigned int mode,
236 unsigned int max);
237 static int ath5k_getchannels(struct ieee80211_hw *hw);
238 static int ath5k_chan_set(struct ath5k_softc *sc,
239 struct ieee80211_channel *chan);
240 static void ath5k_setcurmode(struct ath5k_softc *sc,
241 unsigned int mode);
242 static void ath5k_mode_setup(struct ath5k_softc *sc);
243 static void ath5k_set_total_hw_rates(struct ath5k_softc *sc);
244
245 /* Descriptor setup */
246 static int ath5k_desc_alloc(struct ath5k_softc *sc,
247 struct pci_dev *pdev);
248 static void ath5k_desc_free(struct ath5k_softc *sc,
249 struct pci_dev *pdev);
250 /* Buffers setup */
251 static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
252 struct ath5k_buf *bf);
253 static int ath5k_txbuf_setup(struct ath5k_softc *sc,
254 struct ath5k_buf *bf,
255 struct ieee80211_tx_control *ctl);
256
257 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
258 struct ath5k_buf *bf)
259 {
260 BUG_ON(!bf);
261 if (!bf->skb)
262 return;
263 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
264 PCI_DMA_TODEVICE);
265 dev_kfree_skb(bf->skb);
266 bf->skb = NULL;
267 }
268
269 /* Queues setup */
270 static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
271 int qtype, int subtype);
272 static int ath5k_beaconq_setup(struct ath5k_hw *ah);
273 static int ath5k_beaconq_config(struct ath5k_softc *sc);
274 static void ath5k_txq_drainq(struct ath5k_softc *sc,
275 struct ath5k_txq *txq);
276 static void ath5k_txq_cleanup(struct ath5k_softc *sc);
277 static void ath5k_txq_release(struct ath5k_softc *sc);
278 /* Rx handling */
279 static int ath5k_rx_start(struct ath5k_softc *sc);
280 static void ath5k_rx_stop(struct ath5k_softc *sc);
281 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
282 struct ath5k_desc *ds,
283 struct sk_buff *skb,
284 struct ath5k_rx_status *rs);
285 static void ath5k_tasklet_rx(unsigned long data);
286 /* Tx handling */
287 static void ath5k_tx_processq(struct ath5k_softc *sc,
288 struct ath5k_txq *txq);
289 static void ath5k_tasklet_tx(unsigned long data);
290 /* Beacon handling */
291 static int ath5k_beacon_setup(struct ath5k_softc *sc,
292 struct ath5k_buf *bf,
293 struct ieee80211_tx_control *ctl);
294 static void ath5k_beacon_send(struct ath5k_softc *sc);
295 static void ath5k_beacon_config(struct ath5k_softc *sc);
296 static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
297
298 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
299 {
300 u64 tsf = ath5k_hw_get_tsf64(ah);
301
302 if ((tsf & 0x7fff) < rstamp)
303 tsf -= 0x8000;
304
305 return (tsf & ~0x7fff) | rstamp;
306 }
307
308 /* Interrupt handling */
309 static int ath5k_init(struct ath5k_softc *sc);
310 static int ath5k_stop_locked(struct ath5k_softc *sc);
311 static int ath5k_stop_hw(struct ath5k_softc *sc);
312 static irqreturn_t ath5k_intr(int irq, void *dev_id);
313 static void ath5k_tasklet_reset(unsigned long data);
314
315 static void ath5k_calibrate(unsigned long data);
316 /* LED functions */
317 static void ath5k_led_off(unsigned long data);
318 static void ath5k_led_blink(struct ath5k_softc *sc,
319 unsigned int on,
320 unsigned int off);
321 static void ath5k_led_event(struct ath5k_softc *sc,
322 int event);
323
324
325 /*
326 * Module init/exit functions
327 */
328 static int __init
329 init_ath5k_pci(void)
330 {
331 int ret;
332
333 ath5k_debug_init();
334
335 ret = pci_register_driver(&ath5k_pci_driver);
336 if (ret) {
337 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
338 return ret;
339 }
340
341 return 0;
342 }
343
344 static void __exit
345 exit_ath5k_pci(void)
346 {
347 pci_unregister_driver(&ath5k_pci_driver);
348
349 ath5k_debug_finish();
350 }
351
352 module_init(init_ath5k_pci);
353 module_exit(exit_ath5k_pci);
354
355
356 /********************\
357 * PCI Initialization *
358 \********************/
359
360 static const char *
361 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
362 {
363 const char *name = "xxxxx";
364 unsigned int i;
365
366 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
367 if (srev_names[i].sr_type != type)
368 continue;
369 if ((val & 0xff) < srev_names[i + 1].sr_val) {
370 name = srev_names[i].sr_name;
371 break;
372 }
373 }
374
375 return name;
376 }
377
378 static int __devinit
379 ath5k_pci_probe(struct pci_dev *pdev,
380 const struct pci_device_id *id)
381 {
382 void __iomem *mem;
383 struct ath5k_softc *sc;
384 struct ieee80211_hw *hw;
385 int ret;
386 u8 csz;
387
388 ret = pci_enable_device(pdev);
389 if (ret) {
390 dev_err(&pdev->dev, "can't enable device\n");
391 goto err;
392 }
393
394 /* XXX 32-bit addressing only */
395 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
396 if (ret) {
397 dev_err(&pdev->dev, "32-bit DMA not available\n");
398 goto err_dis;
399 }
400
401 /*
402 * Cache line size is used to size and align various
403 * structures used to communicate with the hardware.
404 */
405 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
406 if (csz == 0) {
407 /*
408 * Linux 2.4.18 (at least) writes the cache line size
409 * register as a 16-bit wide register which is wrong.
410 * We must have this setup properly for rx buffer
411 * DMA to work so force a reasonable value here if it
412 * comes up zero.
413 */
414 csz = L1_CACHE_BYTES / sizeof(u32);
415 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
416 }
417 /*
418 * The default setting of latency timer yields poor results,
419 * set it to the value used by other systems. It may be worth
420 * tweaking this setting more.
421 */
422 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
423
424 /* Enable bus mastering */
425 pci_set_master(pdev);
426
427 /*
428 * Disable the RETRY_TIMEOUT register (0x41) to keep
429 * PCI Tx retries from interfering with C3 CPU state.
430 */
431 pci_write_config_byte(pdev, 0x41, 0);
432
433 ret = pci_request_region(pdev, 0, "ath5k");
434 if (ret) {
435 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
436 goto err_dis;
437 }
438
439 mem = pci_iomap(pdev, 0, 0);
440 if (!mem) {
441 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
442 ret = -EIO;
443 goto err_reg;
444 }
445
446 /*
447 * Allocate hw (mac80211 main struct)
448 * and hw->priv (driver private data)
449 */
450 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
451 if (hw == NULL) {
452 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
453 ret = -ENOMEM;
454 goto err_map;
455 }
456
457 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
458
459 /* Initialize driver private data */
460 SET_IEEE80211_DEV(hw, &pdev->dev);
461 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
462 IEEE80211_HW_SIGNAL_DBM |
463 IEEE80211_HW_NOISE_DBM;
464 hw->extra_tx_headroom = 2;
465 hw->channel_change_time = 5000;
466 sc = hw->priv;
467 sc->hw = hw;
468 sc->pdev = pdev;
469
470 ath5k_debug_init_device(sc);
471
472 /*
473 * Mark the device as detached to avoid processing
474 * interrupts until setup is complete.
475 */
476 __set_bit(ATH_STAT_INVALID, sc->status);
477
478 sc->iobase = mem; /* So we can unmap it on detach */
479 sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
480 sc->opmode = IEEE80211_IF_TYPE_STA;
481 mutex_init(&sc->lock);
482 spin_lock_init(&sc->rxbuflock);
483 spin_lock_init(&sc->txbuflock);
484
485 /* Set private data */
486 pci_set_drvdata(pdev, hw);
487
488 /* Enable msi for devices that support it */
489 pci_enable_msi(pdev);
490
491 /* Setup interrupt handler */
492 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
493 if (ret) {
494 ATH5K_ERR(sc, "request_irq failed\n");
495 goto err_free;
496 }
497
498 /* Initialize device */
499 sc->ah = ath5k_hw_attach(sc, id->driver_data);
500 if (IS_ERR(sc->ah)) {
501 ret = PTR_ERR(sc->ah);
502 goto err_irq;
503 }
504
505 /* Finish private driver data initialization */
506 ret = ath5k_attach(pdev, hw);
507 if (ret)
508 goto err_ah;
509
510 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
511 ath5k_chip_name(AR5K_VERSION_VER,sc->ah->ah_mac_srev),
512 sc->ah->ah_mac_srev,
513 sc->ah->ah_phy_revision);
514
515 if (!sc->ah->ah_single_chip) {
516 /* Single chip radio (!RF5111) */
517 if (sc->ah->ah_radio_5ghz_revision &&
518 !sc->ah->ah_radio_2ghz_revision) {
519 /* No 5GHz support -> report 2GHz radio */
520 if (!test_bit(AR5K_MODE_11A,
521 sc->ah->ah_capabilities.cap_mode)) {
522 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
523 ath5k_chip_name(AR5K_VERSION_RAD,
524 sc->ah->ah_radio_5ghz_revision),
525 sc->ah->ah_radio_5ghz_revision);
526 /* No 2GHz support (5110 and some
527 * 5Ghz only cards) -> report 5Ghz radio */
528 } else if (!test_bit(AR5K_MODE_11B,
529 sc->ah->ah_capabilities.cap_mode)) {
530 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
531 ath5k_chip_name(AR5K_VERSION_RAD,
532 sc->ah->ah_radio_5ghz_revision),
533 sc->ah->ah_radio_5ghz_revision);
534 /* Multiband radio */
535 } else {
536 ATH5K_INFO(sc, "RF%s multiband radio found"
537 " (0x%x)\n",
538 ath5k_chip_name(AR5K_VERSION_RAD,
539 sc->ah->ah_radio_5ghz_revision),
540 sc->ah->ah_radio_5ghz_revision);
541 }
542 }
543 /* Multi chip radio (RF5111 - RF2111) ->
544 * report both 2GHz/5GHz radios */
545 else if (sc->ah->ah_radio_5ghz_revision &&
546 sc->ah->ah_radio_2ghz_revision){
547 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
548 ath5k_chip_name(AR5K_VERSION_RAD,
549 sc->ah->ah_radio_5ghz_revision),
550 sc->ah->ah_radio_5ghz_revision);
551 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
552 ath5k_chip_name(AR5K_VERSION_RAD,
553 sc->ah->ah_radio_2ghz_revision),
554 sc->ah->ah_radio_2ghz_revision);
555 }
556 }
557
558
559 /* ready to process interrupts */
560 __clear_bit(ATH_STAT_INVALID, sc->status);
561
562 return 0;
563 err_ah:
564 ath5k_hw_detach(sc->ah);
565 err_irq:
566 free_irq(pdev->irq, sc);
567 err_free:
568 pci_disable_msi(pdev);
569 ieee80211_free_hw(hw);
570 err_map:
571 pci_iounmap(pdev, mem);
572 err_reg:
573 pci_release_region(pdev, 0);
574 err_dis:
575 pci_disable_device(pdev);
576 err:
577 return ret;
578 }
579
580 static void __devexit
581 ath5k_pci_remove(struct pci_dev *pdev)
582 {
583 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
584 struct ath5k_softc *sc = hw->priv;
585
586 ath5k_debug_finish_device(sc);
587 ath5k_detach(pdev, hw);
588 ath5k_hw_detach(sc->ah);
589 free_irq(pdev->irq, sc);
590 pci_disable_msi(pdev);
591 pci_iounmap(pdev, sc->iobase);
592 pci_release_region(pdev, 0);
593 pci_disable_device(pdev);
594 ieee80211_free_hw(hw);
595 }
596
597 #ifdef CONFIG_PM
598 static int
599 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
600 {
601 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
602 struct ath5k_softc *sc = hw->priv;
603
604 if (test_bit(ATH_STAT_LEDSOFT, sc->status))
605 ath5k_hw_set_gpio(sc->ah, sc->led_pin, 1);
606
607 ath5k_stop_hw(sc);
608 pci_save_state(pdev);
609 pci_disable_device(pdev);
610 pci_set_power_state(pdev, PCI_D3hot);
611
612 return 0;
613 }
614
615 static int
616 ath5k_pci_resume(struct pci_dev *pdev)
617 {
618 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
619 struct ath5k_softc *sc = hw->priv;
620 struct ath5k_hw *ah = sc->ah;
621 int i, err;
622
623 err = pci_set_power_state(pdev, PCI_D0);
624 if (err)
625 return err;
626
627 err = pci_enable_device(pdev);
628 if (err)
629 return err;
630
631 pci_restore_state(pdev);
632 /*
633 * Suspend/Resume resets the PCI configuration space, so we have to
634 * re-disable the RETRY_TIMEOUT register (0x41) to keep
635 * PCI Tx retries from interfering with C3 CPU state
636 */
637 pci_write_config_byte(pdev, 0x41, 0);
638
639 ath5k_init(sc);
640 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
641 ath5k_hw_set_gpio_output(ah, sc->led_pin);
642 ath5k_hw_set_gpio(ah, sc->led_pin, 0);
643 }
644
645 /*
646 * Reset the key cache since some parts do not
647 * reset the contents on initial power up or resume.
648 *
649 * FIXME: This may need to be revisited when mac80211 becomes
650 * aware of suspend/resume.
651 */
652 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
653 ath5k_hw_reset_key(ah, i);
654
655 return 0;
656 }
657 #endif /* CONFIG_PM */
658
659
660
661 /***********************\
662 * Driver Initialization *
663 \***********************/
664
665 static int
666 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
667 {
668 struct ath5k_softc *sc = hw->priv;
669 struct ath5k_hw *ah = sc->ah;
670 u8 mac[ETH_ALEN];
671 unsigned int i;
672 int ret;
673
674 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
675
676 /*
677 * Check if the MAC has multi-rate retry support.
678 * We do this by trying to setup a fake extended
679 * descriptor. MAC's that don't have support will
680 * return false w/o doing anything. MAC's that do
681 * support it will return true w/o doing anything.
682 */
683 ret = ah->ah_setup_xtx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
684 if (ret < 0)
685 goto err;
686 if (ret > 0)
687 __set_bit(ATH_STAT_MRRETRY, sc->status);
688
689 /*
690 * Reset the key cache since some parts do not
691 * reset the contents on initial power up.
692 */
693 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
694 ath5k_hw_reset_key(ah, i);
695
696 /*
697 * Collect the channel list. The 802.11 layer
698 * is resposible for filtering this list based
699 * on settings like the phy mode and regulatory
700 * domain restrictions.
701 */
702 ret = ath5k_getchannels(hw);
703 if (ret) {
704 ATH5K_ERR(sc, "can't get channels\n");
705 goto err;
706 }
707
708 /* Set *_rates so we can map hw rate index */
709 ath5k_set_total_hw_rates(sc);
710
711 /* NB: setup here so ath5k_rate_update is happy */
712 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
713 ath5k_setcurmode(sc, AR5K_MODE_11A);
714 else
715 ath5k_setcurmode(sc, AR5K_MODE_11B);
716
717 /*
718 * Allocate tx+rx descriptors and populate the lists.
719 */
720 ret = ath5k_desc_alloc(sc, pdev);
721 if (ret) {
722 ATH5K_ERR(sc, "can't allocate descriptors\n");
723 goto err;
724 }
725
726 /*
727 * Allocate hardware transmit queues: one queue for
728 * beacon frames and one data queue for each QoS
729 * priority. Note that hw functions handle reseting
730 * these queues at the needed time.
731 */
732 ret = ath5k_beaconq_setup(ah);
733 if (ret < 0) {
734 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
735 goto err_desc;
736 }
737 sc->bhalq = ret;
738
739 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
740 if (IS_ERR(sc->txq)) {
741 ATH5K_ERR(sc, "can't setup xmit queue\n");
742 ret = PTR_ERR(sc->txq);
743 goto err_bhal;
744 }
745
746 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
747 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
748 tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
749 setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
750 setup_timer(&sc->led_tim, ath5k_led_off, (unsigned long)sc);
751
752 sc->led_on = 0; /* low true */
753 /*
754 * Auto-enable soft led processing for IBM cards and for
755 * 5211 minipci cards.
756 */
757 if (pdev->device == PCI_DEVICE_ID_ATHEROS_AR5212_IBM ||
758 pdev->device == PCI_DEVICE_ID_ATHEROS_AR5211) {
759 __set_bit(ATH_STAT_LEDSOFT, sc->status);
760 sc->led_pin = 0;
761 }
762 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
763 if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ) {
764 __set_bit(ATH_STAT_LEDSOFT, sc->status);
765 sc->led_pin = 0;
766 }
767 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
768 ath5k_hw_set_gpio_output(ah, sc->led_pin);
769 ath5k_hw_set_gpio(ah, sc->led_pin, !sc->led_on);
770 }
771
772 ath5k_hw_get_lladdr(ah, mac);
773 SET_IEEE80211_PERM_ADDR(hw, mac);
774 /* All MAC address bits matter for ACKs */
775 memset(sc->bssidmask, 0xff, ETH_ALEN);
776 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
777
778 ret = ieee80211_register_hw(hw);
779 if (ret) {
780 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
781 goto err_queues;
782 }
783
784 return 0;
785 err_queues:
786 ath5k_txq_release(sc);
787 err_bhal:
788 ath5k_hw_release_tx_queue(ah, sc->bhalq);
789 err_desc:
790 ath5k_desc_free(sc, pdev);
791 err:
792 return ret;
793 }
794
795 static void
796 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
797 {
798 struct ath5k_softc *sc = hw->priv;
799
800 /*
801 * NB: the order of these is important:
802 * o call the 802.11 layer before detaching ath5k_hw to
803 * insure callbacks into the driver to delete global
804 * key cache entries can be handled
805 * o reclaim the tx queue data structures after calling
806 * the 802.11 layer as we'll get called back to reclaim
807 * node state and potentially want to use them
808 * o to cleanup the tx queues the hal is called, so detach
809 * it last
810 * XXX: ??? detach ath5k_hw ???
811 * Other than that, it's straightforward...
812 */
813 ieee80211_unregister_hw(hw);
814 ath5k_desc_free(sc, pdev);
815 ath5k_txq_release(sc);
816 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
817
818 /*
819 * NB: can't reclaim these until after ieee80211_ifdetach
820 * returns because we'll get called back to reclaim node
821 * state and potentially want to use them.
822 */
823 }
824
825
826
827
828 /********************\
829 * Channel/mode setup *
830 \********************/
831
832 /*
833 * Convert IEEE channel number to MHz frequency.
834 */
835 static inline short
836 ath5k_ieee2mhz(short chan)
837 {
838 if (chan <= 14 || chan >= 27)
839 return ieee80211chan2mhz(chan);
840 else
841 return 2212 + chan * 20;
842 }
843
844 static unsigned int
845 ath5k_copy_rates(struct ieee80211_rate *rates,
846 const struct ath5k_rate_table *rt,
847 unsigned int max)
848 {
849 unsigned int i, count;
850
851 if (rt == NULL)
852 return 0;
853
854 for (i = 0, count = 0; i < rt->rate_count && max > 0; i++) {
855 rates[count].bitrate = rt->rates[i].rate_kbps / 100;
856 rates[count].hw_value = rt->rates[i].rate_code;
857 rates[count].flags = rt->rates[i].modulation;
858 count++;
859 max--;
860 }
861
862 return count;
863 }
864
865 static unsigned int
866 ath5k_copy_channels(struct ath5k_hw *ah,
867 struct ieee80211_channel *channels,
868 unsigned int mode,
869 unsigned int max)
870 {
871 unsigned int i, count, size, chfreq, freq, ch;
872
873 if (!test_bit(mode, ah->ah_modes))
874 return 0;
875
876 switch (mode) {
877 case AR5K_MODE_11A:
878 case AR5K_MODE_11A_TURBO:
879 /* 1..220, but 2GHz frequencies are filtered by check_channel */
880 size = 220 ;
881 chfreq = CHANNEL_5GHZ;
882 break;
883 case AR5K_MODE_11B:
884 case AR5K_MODE_11G:
885 case AR5K_MODE_11G_TURBO:
886 size = 26;
887 chfreq = CHANNEL_2GHZ;
888 break;
889 default:
890 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
891 return 0;
892 }
893
894 for (i = 0, count = 0; i < size && max > 0; i++) {
895 ch = i + 1 ;
896 freq = ath5k_ieee2mhz(ch);
897
898 /* Check if channel is supported by the chipset */
899 if (!ath5k_channel_ok(ah, freq, chfreq))
900 continue;
901
902 /* Write channel info and increment counter */
903 channels[count].center_freq = freq;
904 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
905 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
906 switch (mode) {
907 case AR5K_MODE_11A:
908 case AR5K_MODE_11G:
909 channels[count].hw_value = chfreq | CHANNEL_OFDM;
910 break;
911 case AR5K_MODE_11A_TURBO:
912 case AR5K_MODE_11G_TURBO:
913 channels[count].hw_value = chfreq |
914 CHANNEL_OFDM | CHANNEL_TURBO;
915 break;
916 case AR5K_MODE_11B:
917 channels[count].hw_value = CHANNEL_B;
918 }
919
920 count++;
921 max--;
922 }
923
924 return count;
925 }
926
927 static int
928 ath5k_getchannels(struct ieee80211_hw *hw)
929 {
930 struct ath5k_softc *sc = hw->priv;
931 struct ath5k_hw *ah = sc->ah;
932 struct ieee80211_supported_band *sbands = sc->sbands;
933 const struct ath5k_rate_table *hw_rates;
934 unsigned int max_r, max_c, count_r, count_c;
935 int mode2g = AR5K_MODE_11G;
936
937 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
938
939 max_r = ARRAY_SIZE(sc->rates);
940 max_c = ARRAY_SIZE(sc->channels);
941 count_r = count_c = 0;
942
943 /* 2GHz band */
944 if (!test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
945 mode2g = AR5K_MODE_11B;
946 if (!test_bit(AR5K_MODE_11B,
947 sc->ah->ah_capabilities.cap_mode))
948 mode2g = -1;
949 }
950
951 if (mode2g > 0) {
952 struct ieee80211_supported_band *sband =
953 &sbands[IEEE80211_BAND_2GHZ];
954
955 sband->bitrates = sc->rates;
956 sband->channels = sc->channels;
957
958 sband->band = IEEE80211_BAND_2GHZ;
959 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
960 mode2g, max_c);
961
962 hw_rates = ath5k_hw_get_rate_table(ah, mode2g);
963 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
964 hw_rates, max_r);
965
966 count_c = sband->n_channels;
967 count_r = sband->n_bitrates;
968
969 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
970
971 max_r -= count_r;
972 max_c -= count_c;
973
974 }
975
976 /* 5GHz band */
977
978 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
979 struct ieee80211_supported_band *sband =
980 &sbands[IEEE80211_BAND_5GHZ];
981
982 sband->bitrates = &sc->rates[count_r];
983 sband->channels = &sc->channels[count_c];
984
985 sband->band = IEEE80211_BAND_5GHZ;
986 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
987 AR5K_MODE_11A, max_c);
988
989 hw_rates = ath5k_hw_get_rate_table(ah, AR5K_MODE_11A);
990 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
991 hw_rates, max_r);
992
993 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
994 }
995
996 ath5k_debug_dump_bands(sc);
997
998 return 0;
999 }
1000
1001 /*
1002 * Set/change channels. If the channel is really being changed,
1003 * it's done by reseting the chip. To accomplish this we must
1004 * first cleanup any pending DMA, then restart stuff after a la
1005 * ath5k_init.
1006 */
1007 static int
1008 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1009 {
1010 struct ath5k_hw *ah = sc->ah;
1011 int ret;
1012
1013 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1014 sc->curchan->center_freq, chan->center_freq);
1015
1016 if (chan->center_freq != sc->curchan->center_freq ||
1017 chan->hw_value != sc->curchan->hw_value) {
1018
1019 sc->curchan = chan;
1020 sc->curband = &sc->sbands[chan->band];
1021
1022 /*
1023 * To switch channels clear any pending DMA operations;
1024 * wait long enough for the RX fifo to drain, reset the
1025 * hardware at the new frequency, and then re-enable
1026 * the relevant bits of the h/w.
1027 */
1028 ath5k_hw_set_intr(ah, 0); /* disable interrupts */
1029 ath5k_txq_cleanup(sc); /* clear pending tx frames */
1030 ath5k_rx_stop(sc); /* turn off frame recv */
1031 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
1032 if (ret) {
1033 ATH5K_ERR(sc, "%s: unable to reset channel "
1034 "(%u Mhz)\n", __func__, chan->center_freq);
1035 return ret;
1036 }
1037
1038 ath5k_hw_set_txpower_limit(sc->ah, 0);
1039
1040 /*
1041 * Re-enable rx framework.
1042 */
1043 ret = ath5k_rx_start(sc);
1044 if (ret) {
1045 ATH5K_ERR(sc, "%s: unable to restart recv logic\n",
1046 __func__);
1047 return ret;
1048 }
1049
1050 /*
1051 * Change channels and update the h/w rate map
1052 * if we're switching; e.g. 11a to 11b/g.
1053 *
1054 * XXX needed?
1055 */
1056 /* ath5k_chan_change(sc, chan); */
1057
1058 ath5k_beacon_config(sc);
1059 /*
1060 * Re-enable interrupts.
1061 */
1062 ath5k_hw_set_intr(ah, sc->imask);
1063 }
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * TODO: CLEAN THIS !!!
1070 */
1071 static void
1072 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1073 {
1074 if (unlikely(test_bit(ATH_STAT_LEDSOFT, sc->status))) {
1075 /* from Atheros NDIS driver, w/ permission */
1076 static const struct {
1077 u16 rate; /* tx/rx 802.11 rate */
1078 u16 timeOn; /* LED on time (ms) */
1079 u16 timeOff; /* LED off time (ms) */
1080 } blinkrates[] = {
1081 { 108, 40, 10 },
1082 { 96, 44, 11 },
1083 { 72, 50, 13 },
1084 { 48, 57, 14 },
1085 { 36, 67, 16 },
1086 { 24, 80, 20 },
1087 { 22, 100, 25 },
1088 { 18, 133, 34 },
1089 { 12, 160, 40 },
1090 { 10, 200, 50 },
1091 { 6, 240, 58 },
1092 { 4, 267, 66 },
1093 { 2, 400, 100 },
1094 { 0, 500, 130 }
1095 };
1096 const struct ath5k_rate_table *rt =
1097 ath5k_hw_get_rate_table(sc->ah, mode);
1098 unsigned int i, j;
1099
1100 BUG_ON(rt == NULL);
1101
1102 memset(sc->hwmap, 0, sizeof(sc->hwmap));
1103 for (i = 0; i < 32; i++) {
1104 u8 ix = rt->rate_code_to_index[i];
1105 if (ix == 0xff) {
1106 sc->hwmap[i].ledon = msecs_to_jiffies(500);
1107 sc->hwmap[i].ledoff = msecs_to_jiffies(130);
1108 continue;
1109 }
1110 sc->hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
1111 /* receive frames include FCS */
1112 sc->hwmap[i].rxflags = sc->hwmap[i].txflags |
1113 IEEE80211_RADIOTAP_F_FCS;
1114 /* setup blink rate table to avoid per-packet lookup */
1115 for (j = 0; j < ARRAY_SIZE(blinkrates) - 1; j++)
1116 if (blinkrates[j].rate == /* XXX why 7f? */
1117 (rt->rates[ix].dot11_rate&0x7f))
1118 break;
1119
1120 sc->hwmap[i].ledon = msecs_to_jiffies(blinkrates[j].
1121 timeOn);
1122 sc->hwmap[i].ledoff = msecs_to_jiffies(blinkrates[j].
1123 timeOff);
1124 }
1125 }
1126
1127 sc->curmode = mode;
1128
1129 if (mode == AR5K_MODE_11A) {
1130 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1131 } else {
1132 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1133 }
1134 }
1135
1136 static void
1137 ath5k_mode_setup(struct ath5k_softc *sc)
1138 {
1139 struct ath5k_hw *ah = sc->ah;
1140 u32 rfilt;
1141
1142 /* configure rx filter */
1143 rfilt = sc->filter_flags;
1144 ath5k_hw_set_rx_filter(ah, rfilt);
1145
1146 if (ath5k_hw_hasbssidmask(ah))
1147 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1148
1149 /* configure operational mode */
1150 ath5k_hw_set_opmode(ah);
1151
1152 ath5k_hw_set_mcast_filter(ah, 0, 0);
1153 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1154 }
1155
1156 /*
1157 * Match the hw provided rate index (through descriptors)
1158 * to an index for sc->curband->bitrates, so it can be used
1159 * by the stack.
1160 *
1161 * This one is a little bit tricky but i think i'm right
1162 * about this...
1163 *
1164 * We have 4 rate tables in the following order:
1165 * XR (4 rates)
1166 * 802.11a (8 rates)
1167 * 802.11b (4 rates)
1168 * 802.11g (12 rates)
1169 * that make the hw rate table.
1170 *
1171 * Lets take a 5211 for example that supports a and b modes only.
1172 * First comes the 802.11a table and then 802.11b (total 12 rates).
1173 * When hw returns eg. 11 it points to the last 802.11b rate (11Mbit),
1174 * if it returns 2 it points to the second 802.11a rate etc.
1175 *
1176 * Same goes for 5212 who has xr/a/b/g support (total 28 rates).
1177 * First comes the XR table, then 802.11a, 802.11b and 802.11g.
1178 * When hw returns eg. 27 it points to the last 802.11g rate (54Mbits) etc
1179 */
1180 static void
1181 ath5k_set_total_hw_rates(struct ath5k_softc *sc) {
1182
1183 struct ath5k_hw *ah = sc->ah;
1184
1185 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
1186 sc->a_rates = 8;
1187
1188 if (test_bit(AR5K_MODE_11B, ah->ah_modes))
1189 sc->b_rates = 4;
1190
1191 if (test_bit(AR5K_MODE_11G, ah->ah_modes))
1192 sc->g_rates = 12;
1193
1194 /* XXX: Need to see what what happens when
1195 xr disable bits in eeprom are set */
1196 if (ah->ah_version >= AR5K_AR5212)
1197 sc->xr_rates = 4;
1198
1199 }
1200
1201 static inline int
1202 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix) {
1203
1204 int mac80211_rix;
1205
1206 if(sc->curband->band == IEEE80211_BAND_2GHZ) {
1207 /* We setup a g ratetable for both b/g modes */
1208 mac80211_rix =
1209 hw_rix - sc->b_rates - sc->a_rates - sc->xr_rates;
1210 } else {
1211 mac80211_rix = hw_rix - sc->xr_rates;
1212 }
1213
1214 /* Something went wrong, fallback to basic rate for this band */
1215 if ((mac80211_rix >= sc->curband->n_bitrates) ||
1216 (mac80211_rix <= 0 ))
1217 mac80211_rix = 1;
1218
1219 return mac80211_rix;
1220 }
1221
1222
1223
1224
1225 /***************\
1226 * Buffers setup *
1227 \***************/
1228
1229 static int
1230 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1231 {
1232 struct ath5k_hw *ah = sc->ah;
1233 struct sk_buff *skb = bf->skb;
1234 struct ath5k_desc *ds;
1235
1236 if (likely(skb == NULL)) {
1237 unsigned int off;
1238
1239 /*
1240 * Allocate buffer with headroom_needed space for the
1241 * fake physical layer header at the start.
1242 */
1243 skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1244 if (unlikely(skb == NULL)) {
1245 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1246 sc->rxbufsize + sc->cachelsz - 1);
1247 return -ENOMEM;
1248 }
1249 /*
1250 * Cache-line-align. This is important (for the
1251 * 5210 at least) as not doing so causes bogus data
1252 * in rx'd frames.
1253 */
1254 off = ((unsigned long)skb->data) % sc->cachelsz;
1255 if (off != 0)
1256 skb_reserve(skb, sc->cachelsz - off);
1257
1258 bf->skb = skb;
1259 bf->skbaddr = pci_map_single(sc->pdev,
1260 skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1261 if (unlikely(pci_dma_mapping_error(bf->skbaddr))) {
1262 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1263 dev_kfree_skb(skb);
1264 bf->skb = NULL;
1265 return -ENOMEM;
1266 }
1267 }
1268
1269 /*
1270 * Setup descriptors. For receive we always terminate
1271 * the descriptor list with a self-linked entry so we'll
1272 * not get overrun under high load (as can happen with a
1273 * 5212 when ANI processing enables PHY error frames).
1274 *
1275 * To insure the last descriptor is self-linked we create
1276 * each descriptor as self-linked and add it to the end. As
1277 * each additional descriptor is added the previous self-linked
1278 * entry is ``fixed'' naturally. This should be safe even
1279 * if DMA is happening. When processing RX interrupts we
1280 * never remove/process the last, self-linked, entry on the
1281 * descriptor list. This insures the hardware always has
1282 * someplace to write a new frame.
1283 */
1284 ds = bf->desc;
1285 ds->ds_link = bf->daddr; /* link to self */
1286 ds->ds_data = bf->skbaddr;
1287 ath5k_hw_setup_rx_desc(ah, ds,
1288 skb_tailroom(skb), /* buffer size */
1289 0);
1290
1291 if (sc->rxlink != NULL)
1292 *sc->rxlink = bf->daddr;
1293 sc->rxlink = &ds->ds_link;
1294 return 0;
1295 }
1296
1297 static int
1298 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
1299 struct ieee80211_tx_control *ctl)
1300 {
1301 struct ath5k_hw *ah = sc->ah;
1302 struct ath5k_txq *txq = sc->txq;
1303 struct ath5k_desc *ds = bf->desc;
1304 struct sk_buff *skb = bf->skb;
1305 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1306 int ret;
1307
1308 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1309 bf->ctl = *ctl;
1310 /* XXX endianness */
1311 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1312 PCI_DMA_TODEVICE);
1313
1314 if (ctl->flags & IEEE80211_TXCTL_NO_ACK)
1315 flags |= AR5K_TXDESC_NOACK;
1316
1317 pktlen = skb->len;
1318
1319 if (!(ctl->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) {
1320 keyidx = ctl->hw_key->hw_key_idx;
1321 pktlen += ctl->icv_len;
1322 }
1323
1324 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1325 ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1326 (sc->power_level * 2), ctl->tx_rate->hw_value,
1327 ctl->retry_limit, keyidx, 0, flags, 0, 0);
1328 if (ret)
1329 goto err_unmap;
1330
1331 ds->ds_link = 0;
1332 ds->ds_data = bf->skbaddr;
1333
1334 spin_lock_bh(&txq->lock);
1335 list_add_tail(&bf->list, &txq->q);
1336 sc->tx_stats[txq->qnum].len++;
1337 if (txq->link == NULL) /* is this first packet? */
1338 ath5k_hw_put_tx_buf(ah, txq->qnum, bf->daddr);
1339 else /* no, so only link it */
1340 *txq->link = bf->daddr;
1341
1342 txq->link = &ds->ds_link;
1343 ath5k_hw_tx_start(ah, txq->qnum);
1344 spin_unlock_bh(&txq->lock);
1345
1346 return 0;
1347 err_unmap:
1348 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1349 return ret;
1350 }
1351
1352 /*******************\
1353 * Descriptors setup *
1354 \*******************/
1355
1356 static int
1357 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1358 {
1359 struct ath5k_desc *ds;
1360 struct ath5k_buf *bf;
1361 dma_addr_t da;
1362 unsigned int i;
1363 int ret;
1364
1365 /* allocate descriptors */
1366 sc->desc_len = sizeof(struct ath5k_desc) *
1367 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1368 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1369 if (sc->desc == NULL) {
1370 ATH5K_ERR(sc, "can't allocate descriptors\n");
1371 ret = -ENOMEM;
1372 goto err;
1373 }
1374 ds = sc->desc;
1375 da = sc->desc_daddr;
1376 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1377 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1378
1379 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1380 sizeof(struct ath5k_buf), GFP_KERNEL);
1381 if (bf == NULL) {
1382 ATH5K_ERR(sc, "can't allocate bufptr\n");
1383 ret = -ENOMEM;
1384 goto err_free;
1385 }
1386 sc->bufptr = bf;
1387
1388 INIT_LIST_HEAD(&sc->rxbuf);
1389 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1390 bf->desc = ds;
1391 bf->daddr = da;
1392 list_add_tail(&bf->list, &sc->rxbuf);
1393 }
1394
1395 INIT_LIST_HEAD(&sc->txbuf);
1396 sc->txbuf_len = ATH_TXBUF;
1397 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1398 da += sizeof(*ds)) {
1399 bf->desc = ds;
1400 bf->daddr = da;
1401 list_add_tail(&bf->list, &sc->txbuf);
1402 }
1403
1404 /* beacon buffer */
1405 bf->desc = ds;
1406 bf->daddr = da;
1407 sc->bbuf = bf;
1408
1409 return 0;
1410 err_free:
1411 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1412 err:
1413 sc->desc = NULL;
1414 return ret;
1415 }
1416
1417 static void
1418 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1419 {
1420 struct ath5k_buf *bf;
1421
1422 ath5k_txbuf_free(sc, sc->bbuf);
1423 list_for_each_entry(bf, &sc->txbuf, list)
1424 ath5k_txbuf_free(sc, bf);
1425 list_for_each_entry(bf, &sc->rxbuf, list)
1426 ath5k_txbuf_free(sc, bf);
1427
1428 /* Free memory associated with all descriptors */
1429 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1430
1431 kfree(sc->bufptr);
1432 sc->bufptr = NULL;
1433 }
1434
1435
1436
1437
1438
1439 /**************\
1440 * Queues setup *
1441 \**************/
1442
1443 static struct ath5k_txq *
1444 ath5k_txq_setup(struct ath5k_softc *sc,
1445 int qtype, int subtype)
1446 {
1447 struct ath5k_hw *ah = sc->ah;
1448 struct ath5k_txq *txq;
1449 struct ath5k_txq_info qi = {
1450 .tqi_subtype = subtype,
1451 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1452 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1453 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
1454 };
1455 int qnum;
1456
1457 /*
1458 * Enable interrupts only for EOL and DESC conditions.
1459 * We mark tx descriptors to receive a DESC interrupt
1460 * when a tx queue gets deep; otherwise waiting for the
1461 * EOL to reap descriptors. Note that this is done to
1462 * reduce interrupt load and this only defers reaping
1463 * descriptors, never transmitting frames. Aside from
1464 * reducing interrupts this also permits more concurrency.
1465 * The only potential downside is if the tx queue backs
1466 * up in which case the top half of the kernel may backup
1467 * due to a lack of tx descriptors.
1468 */
1469 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1470 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1471 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1472 if (qnum < 0) {
1473 /*
1474 * NB: don't print a message, this happens
1475 * normally on parts with too few tx queues
1476 */
1477 return ERR_PTR(qnum);
1478 }
1479 if (qnum >= ARRAY_SIZE(sc->txqs)) {
1480 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1481 qnum, ARRAY_SIZE(sc->txqs));
1482 ath5k_hw_release_tx_queue(ah, qnum);
1483 return ERR_PTR(-EINVAL);
1484 }
1485 txq = &sc->txqs[qnum];
1486 if (!txq->setup) {
1487 txq->qnum = qnum;
1488 txq->link = NULL;
1489 INIT_LIST_HEAD(&txq->q);
1490 spin_lock_init(&txq->lock);
1491 txq->setup = true;
1492 }
1493 return &sc->txqs[qnum];
1494 }
1495
1496 static int
1497 ath5k_beaconq_setup(struct ath5k_hw *ah)
1498 {
1499 struct ath5k_txq_info qi = {
1500 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1501 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1502 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1503 /* NB: for dynamic turbo, don't enable any other interrupts */
1504 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1505 };
1506
1507 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1508 }
1509
1510 static int
1511 ath5k_beaconq_config(struct ath5k_softc *sc)
1512 {
1513 struct ath5k_hw *ah = sc->ah;
1514 struct ath5k_txq_info qi;
1515 int ret;
1516
1517 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1518 if (ret)
1519 return ret;
1520 if (sc->opmode == IEEE80211_IF_TYPE_AP) {
1521 /*
1522 * Always burst out beacon and CAB traffic
1523 * (aifs = cwmin = cwmax = 0)
1524 */
1525 qi.tqi_aifs = 0;
1526 qi.tqi_cw_min = 0;
1527 qi.tqi_cw_max = 0;
1528 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
1529 /*
1530 * Adhoc mode; backoff between 0 and (2 * cw_min).
1531 */
1532 qi.tqi_aifs = 0;
1533 qi.tqi_cw_min = 0;
1534 qi.tqi_cw_max = 2 * ah->ah_cw_min;
1535 }
1536
1537 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1538 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1539 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1540
1541 ret = ath5k_hw_setup_tx_queueprops(ah, sc->bhalq, &qi);
1542 if (ret) {
1543 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1544 "hardware queue!\n", __func__);
1545 return ret;
1546 }
1547
1548 return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1549 }
1550
1551 static void
1552 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1553 {
1554 struct ath5k_buf *bf, *bf0;
1555
1556 /*
1557 * NB: this assumes output has been stopped and
1558 * we do not need to block ath5k_tx_tasklet
1559 */
1560 spin_lock_bh(&txq->lock);
1561 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1562 ath5k_debug_printtxbuf(sc, bf);
1563
1564 ath5k_txbuf_free(sc, bf);
1565
1566 spin_lock_bh(&sc->txbuflock);
1567 sc->tx_stats[txq->qnum].len--;
1568 list_move_tail(&bf->list, &sc->txbuf);
1569 sc->txbuf_len++;
1570 spin_unlock_bh(&sc->txbuflock);
1571 }
1572 txq->link = NULL;
1573 spin_unlock_bh(&txq->lock);
1574 }
1575
1576 /*
1577 * Drain the transmit queues and reclaim resources.
1578 */
1579 static void
1580 ath5k_txq_cleanup(struct ath5k_softc *sc)
1581 {
1582 struct ath5k_hw *ah = sc->ah;
1583 unsigned int i;
1584
1585 /* XXX return value */
1586 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1587 /* don't touch the hardware if marked invalid */
1588 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1589 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1590 ath5k_hw_get_tx_buf(ah, sc->bhalq));
1591 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1592 if (sc->txqs[i].setup) {
1593 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1594 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1595 "link %p\n",
1596 sc->txqs[i].qnum,
1597 ath5k_hw_get_tx_buf(ah,
1598 sc->txqs[i].qnum),
1599 sc->txqs[i].link);
1600 }
1601 }
1602 ieee80211_start_queues(sc->hw); /* XXX move to callers */
1603
1604 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1605 if (sc->txqs[i].setup)
1606 ath5k_txq_drainq(sc, &sc->txqs[i]);
1607 }
1608
1609 static void
1610 ath5k_txq_release(struct ath5k_softc *sc)
1611 {
1612 struct ath5k_txq *txq = sc->txqs;
1613 unsigned int i;
1614
1615 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1616 if (txq->setup) {
1617 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1618 txq->setup = false;
1619 }
1620 }
1621
1622
1623
1624
1625 /*************\
1626 * RX Handling *
1627 \*************/
1628
1629 /*
1630 * Enable the receive h/w following a reset.
1631 */
1632 static int
1633 ath5k_rx_start(struct ath5k_softc *sc)
1634 {
1635 struct ath5k_hw *ah = sc->ah;
1636 struct ath5k_buf *bf;
1637 int ret;
1638
1639 sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1640
1641 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1642 sc->cachelsz, sc->rxbufsize);
1643
1644 sc->rxlink = NULL;
1645
1646 spin_lock_bh(&sc->rxbuflock);
1647 list_for_each_entry(bf, &sc->rxbuf, list) {
1648 ret = ath5k_rxbuf_setup(sc, bf);
1649 if (ret != 0) {
1650 spin_unlock_bh(&sc->rxbuflock);
1651 goto err;
1652 }
1653 }
1654 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1655 spin_unlock_bh(&sc->rxbuflock);
1656
1657 ath5k_hw_put_rx_buf(ah, bf->daddr);
1658 ath5k_hw_start_rx(ah); /* enable recv descriptors */
1659 ath5k_mode_setup(sc); /* set filters, etc. */
1660 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1661
1662 return 0;
1663 err:
1664 return ret;
1665 }
1666
1667 /*
1668 * Disable the receive h/w in preparation for a reset.
1669 */
1670 static void
1671 ath5k_rx_stop(struct ath5k_softc *sc)
1672 {
1673 struct ath5k_hw *ah = sc->ah;
1674
1675 ath5k_hw_stop_pcu_recv(ah); /* disable PCU */
1676 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1677 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
1678 mdelay(3); /* 3ms is long enough for 1 frame */
1679
1680 ath5k_debug_printrxbuffs(sc, ah);
1681
1682 sc->rxlink = NULL; /* just in case */
1683 }
1684
1685 static unsigned int
1686 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1687 struct sk_buff *skb, struct ath5k_rx_status *rs)
1688 {
1689 struct ieee80211_hdr *hdr = (void *)skb->data;
1690 unsigned int keyix, hlen = ieee80211_get_hdrlen_from_skb(skb);
1691
1692 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1693 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1694 return RX_FLAG_DECRYPTED;
1695
1696 /* Apparently when a default key is used to decrypt the packet
1697 the hw does not set the index used to decrypt. In such cases
1698 get the index from the packet. */
1699 if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED) &&
1700 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1701 skb->len >= hlen + 4) {
1702 keyix = skb->data[hlen + 3] >> 6;
1703
1704 if (test_bit(keyix, sc->keymap))
1705 return RX_FLAG_DECRYPTED;
1706 }
1707
1708 return 0;
1709 }
1710
1711
1712 static void
1713 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1714 struct ieee80211_rx_status *rxs)
1715 {
1716 u64 tsf, bc_tstamp;
1717 u32 hw_tu;
1718 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1719
1720 if ((le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_FTYPE) ==
1721 IEEE80211_FTYPE_MGMT &&
1722 (le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE) ==
1723 IEEE80211_STYPE_BEACON &&
1724 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1725 memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1726 /*
1727 * Received an IBSS beacon with the same BSSID. Hardware *must*
1728 * have updated the local TSF. We have to work around various
1729 * hardware bugs, though...
1730 */
1731 tsf = ath5k_hw_get_tsf64(sc->ah);
1732 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1733 hw_tu = TSF_TO_TU(tsf);
1734
1735 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1736 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1737 (unsigned long long)bc_tstamp,
1738 (unsigned long long)rxs->mactime,
1739 (unsigned long long)(rxs->mactime - bc_tstamp),
1740 (unsigned long long)tsf);
1741
1742 /*
1743 * Sometimes the HW will give us a wrong tstamp in the rx
1744 * status, causing the timestamp extension to go wrong.
1745 * (This seems to happen especially with beacon frames bigger
1746 * than 78 byte (incl. FCS))
1747 * But we know that the receive timestamp must be later than the
1748 * timestamp of the beacon since HW must have synced to that.
1749 *
1750 * NOTE: here we assume mactime to be after the frame was
1751 * received, not like mac80211 which defines it at the start.
1752 */
1753 if (bc_tstamp > rxs->mactime) {
1754 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1755 "fixing mactime from %llx to %llx\n",
1756 (unsigned long long)rxs->mactime,
1757 (unsigned long long)tsf);
1758 rxs->mactime = tsf;
1759 }
1760
1761 /*
1762 * Local TSF might have moved higher than our beacon timers,
1763 * in that case we have to update them to continue sending
1764 * beacons. This also takes care of synchronizing beacon sending
1765 * times with other stations.
1766 */
1767 if (hw_tu >= sc->nexttbtt)
1768 ath5k_beacon_update_timers(sc, bc_tstamp);
1769 }
1770 }
1771
1772
1773 static void
1774 ath5k_tasklet_rx(unsigned long data)
1775 {
1776 struct ieee80211_rx_status rxs = {};
1777 struct ath5k_rx_status rs = {};
1778 struct sk_buff *skb;
1779 struct ath5k_softc *sc = (void *)data;
1780 struct ath5k_buf *bf;
1781 struct ath5k_desc *ds;
1782 int ret;
1783 int hdrlen;
1784 int pad;
1785
1786 spin_lock(&sc->rxbuflock);
1787 do {
1788 if (unlikely(list_empty(&sc->rxbuf))) {
1789 ATH5K_WARN(sc, "empty rx buf pool\n");
1790 break;
1791 }
1792 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1793 BUG_ON(bf->skb == NULL);
1794 skb = bf->skb;
1795 ds = bf->desc;
1796
1797 /* TODO only one segment */
1798 pci_dma_sync_single_for_cpu(sc->pdev, sc->desc_daddr,
1799 sc->desc_len, PCI_DMA_FROMDEVICE);
1800
1801 if (unlikely(ds->ds_link == bf->daddr)) /* this is the end */
1802 break;
1803
1804 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1805 if (unlikely(ret == -EINPROGRESS))
1806 break;
1807 else if (unlikely(ret)) {
1808 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1809 spin_unlock(&sc->rxbuflock);
1810 return;
1811 }
1812
1813 if (unlikely(rs.rs_more)) {
1814 ATH5K_WARN(sc, "unsupported jumbo\n");
1815 goto next;
1816 }
1817
1818 if (unlikely(rs.rs_status)) {
1819 if (rs.rs_status & AR5K_RXERR_PHY)
1820 goto next;
1821 if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1822 /*
1823 * Decrypt error. If the error occurred
1824 * because there was no hardware key, then
1825 * let the frame through so the upper layers
1826 * can process it. This is necessary for 5210
1827 * parts which have no way to setup a ``clear''
1828 * key cache entry.
1829 *
1830 * XXX do key cache faulting
1831 */
1832 if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1833 !(rs.rs_status & AR5K_RXERR_CRC))
1834 goto accept;
1835 }
1836 if (rs.rs_status & AR5K_RXERR_MIC) {
1837 rxs.flag |= RX_FLAG_MMIC_ERROR;
1838 goto accept;
1839 }
1840
1841 /* let crypto-error packets fall through in MNTR */
1842 if ((rs.rs_status &
1843 ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1844 sc->opmode != IEEE80211_IF_TYPE_MNTR)
1845 goto next;
1846 }
1847 accept:
1848 pci_dma_sync_single_for_cpu(sc->pdev, bf->skbaddr,
1849 rs.rs_datalen, PCI_DMA_FROMDEVICE);
1850 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1851 PCI_DMA_FROMDEVICE);
1852 bf->skb = NULL;
1853
1854 skb_put(skb, rs.rs_datalen);
1855
1856 /*
1857 * the hardware adds a padding to 4 byte boundaries between
1858 * the header and the payload data if the header length is
1859 * not multiples of 4 - remove it
1860 */
1861 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1862 if (hdrlen & 3) {
1863 pad = hdrlen % 4;
1864 memmove(skb->data + pad, skb->data, hdrlen);
1865 skb_pull(skb, pad);
1866 }
1867
1868 /*
1869 * always extend the mac timestamp, since this information is
1870 * also needed for proper IBSS merging.
1871 *
1872 * XXX: it might be too late to do it here, since rs_tstamp is
1873 * 15bit only. that means TSF extension has to be done within
1874 * 32768usec (about 32ms). it might be necessary to move this to
1875 * the interrupt handler, like it is done in madwifi.
1876 *
1877 * Unfortunately we don't know when the hardware takes the rx
1878 * timestamp (beginning of phy frame, data frame, end of rx?).
1879 * The only thing we know is that it is hardware specific...
1880 * On AR5213 it seems the rx timestamp is at the end of the
1881 * frame, but i'm not sure.
1882 *
1883 * NOTE: mac80211 defines mactime at the beginning of the first
1884 * data symbol. Since we don't have any time references it's
1885 * impossible to comply to that. This affects IBSS merge only
1886 * right now, so it's not too bad...
1887 */
1888 rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1889 rxs.flag |= RX_FLAG_TSFT;
1890
1891 rxs.freq = sc->curchan->center_freq;
1892 rxs.band = sc->curband->band;
1893
1894 rxs.noise = sc->ah->ah_noise_floor;
1895 rxs.signal = rxs.noise + rs.rs_rssi;
1896 rxs.qual = rs.rs_rssi * 100 / 64;
1897
1898 rxs.antenna = rs.rs_antenna;
1899 rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1900 rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1901
1902 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1903
1904 /* check beacons in IBSS mode */
1905 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
1906 ath5k_check_ibss_tsf(sc, skb, &rxs);
1907
1908 __ieee80211_rx(sc->hw, skb, &rxs);
1909 sc->led_rxrate = rs.rs_rate;
1910 ath5k_led_event(sc, ATH_LED_RX);
1911 next:
1912 list_move_tail(&bf->list, &sc->rxbuf);
1913 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1914 spin_unlock(&sc->rxbuflock);
1915 }
1916
1917
1918
1919
1920 /*************\
1921 * TX Handling *
1922 \*************/
1923
1924 static void
1925 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1926 {
1927 struct ieee80211_tx_status txs = {};
1928 struct ath5k_tx_status ts = {};
1929 struct ath5k_buf *bf, *bf0;
1930 struct ath5k_desc *ds;
1931 struct sk_buff *skb;
1932 int ret;
1933
1934 spin_lock(&txq->lock);
1935 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1936 ds = bf->desc;
1937
1938 /* TODO only one segment */
1939 pci_dma_sync_single_for_cpu(sc->pdev, sc->desc_daddr,
1940 sc->desc_len, PCI_DMA_FROMDEVICE);
1941 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1942 if (unlikely(ret == -EINPROGRESS))
1943 break;
1944 else if (unlikely(ret)) {
1945 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1946 ret, txq->qnum);
1947 break;
1948 }
1949
1950 skb = bf->skb;
1951 bf->skb = NULL;
1952 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1953 PCI_DMA_TODEVICE);
1954
1955 txs.control = bf->ctl;
1956 txs.retry_count = ts.ts_shortretry + ts.ts_longretry / 6;
1957 if (unlikely(ts.ts_status)) {
1958 sc->ll_stats.dot11ACKFailureCount++;
1959 if (ts.ts_status & AR5K_TXERR_XRETRY)
1960 txs.excessive_retries = 1;
1961 else if (ts.ts_status & AR5K_TXERR_FILT)
1962 txs.flags |= IEEE80211_TX_STATUS_TX_FILTERED;
1963 } else {
1964 txs.flags |= IEEE80211_TX_STATUS_ACK;
1965 txs.ack_signal = ts.ts_rssi;
1966 }
1967
1968 ieee80211_tx_status(sc->hw, skb, &txs);
1969 sc->tx_stats[txq->qnum].count++;
1970
1971 spin_lock(&sc->txbuflock);
1972 sc->tx_stats[txq->qnum].len--;
1973 list_move_tail(&bf->list, &sc->txbuf);
1974 sc->txbuf_len++;
1975 spin_unlock(&sc->txbuflock);
1976 }
1977 if (likely(list_empty(&txq->q)))
1978 txq->link = NULL;
1979 spin_unlock(&txq->lock);
1980 if (sc->txbuf_len > ATH_TXBUF / 5)
1981 ieee80211_wake_queues(sc->hw);
1982 }
1983
1984 static void
1985 ath5k_tasklet_tx(unsigned long data)
1986 {
1987 struct ath5k_softc *sc = (void *)data;
1988
1989 ath5k_tx_processq(sc, sc->txq);
1990
1991 ath5k_led_event(sc, ATH_LED_TX);
1992 }
1993
1994
1995
1996
1997 /*****************\
1998 * Beacon handling *
1999 \*****************/
2000
2001 /*
2002 * Setup the beacon frame for transmit.
2003 */
2004 static int
2005 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
2006 struct ieee80211_tx_control *ctl)
2007 {
2008 struct sk_buff *skb = bf->skb;
2009 struct ath5k_hw *ah = sc->ah;
2010 struct ath5k_desc *ds;
2011 int ret, antenna = 0;
2012 u32 flags;
2013
2014 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
2015 PCI_DMA_TODEVICE);
2016 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
2017 "skbaddr %llx\n", skb, skb->data, skb->len,
2018 (unsigned long long)bf->skbaddr);
2019 if (pci_dma_mapping_error(bf->skbaddr)) {
2020 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
2021 return -EIO;
2022 }
2023
2024 ds = bf->desc;
2025
2026 flags = AR5K_TXDESC_NOACK;
2027 if (sc->opmode == IEEE80211_IF_TYPE_IBSS && ath5k_hw_hasveol(ah)) {
2028 ds->ds_link = bf->daddr; /* self-linked */
2029 flags |= AR5K_TXDESC_VEOL;
2030 /*
2031 * Let hardware handle antenna switching if txantenna is not set
2032 */
2033 } else {
2034 ds->ds_link = 0;
2035 /*
2036 * Switch antenna every 4 beacons if txantenna is not set
2037 * XXX assumes two antennas
2038 */
2039 if (antenna == 0)
2040 antenna = sc->bsent & 4 ? 2 : 1;
2041 }
2042
2043 ds->ds_data = bf->skbaddr;
2044 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
2045 ieee80211_get_hdrlen_from_skb(skb),
2046 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
2047 ctl->tx_rate->hw_value, 1, AR5K_TXKEYIX_INVALID,
2048 antenna, flags, 0, 0);
2049 if (ret)
2050 goto err_unmap;
2051
2052 return 0;
2053 err_unmap:
2054 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
2055 return ret;
2056 }
2057
2058 /*
2059 * Transmit a beacon frame at SWBA. Dynamic updates to the
2060 * frame contents are done as needed and the slot time is
2061 * also adjusted based on current state.
2062 *
2063 * this is usually called from interrupt context (ath5k_intr())
2064 * but also from ath5k_beacon_config() in IBSS mode which in turn
2065 * can be called from a tasklet and user context
2066 */
2067 static void
2068 ath5k_beacon_send(struct ath5k_softc *sc)
2069 {
2070 struct ath5k_buf *bf = sc->bbuf;
2071 struct ath5k_hw *ah = sc->ah;
2072
2073 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
2074
2075 if (unlikely(bf->skb == NULL || sc->opmode == IEEE80211_IF_TYPE_STA ||
2076 sc->opmode == IEEE80211_IF_TYPE_MNTR)) {
2077 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
2078 return;
2079 }
2080 /*
2081 * Check if the previous beacon has gone out. If
2082 * not don't don't try to post another, skip this
2083 * period and wait for the next. Missed beacons
2084 * indicate a problem and should not occur. If we
2085 * miss too many consecutive beacons reset the device.
2086 */
2087 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2088 sc->bmisscount++;
2089 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2090 "missed %u consecutive beacons\n", sc->bmisscount);
2091 if (sc->bmisscount > 3) { /* NB: 3 is a guess */
2092 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2093 "stuck beacon time (%u missed)\n",
2094 sc->bmisscount);
2095 tasklet_schedule(&sc->restq);
2096 }
2097 return;
2098 }
2099 if (unlikely(sc->bmisscount != 0)) {
2100 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2101 "resume beacon xmit after %u misses\n",
2102 sc->bmisscount);
2103 sc->bmisscount = 0;
2104 }
2105
2106 /*
2107 * Stop any current dma and put the new frame on the queue.
2108 * This should never fail since we check above that no frames
2109 * are still pending on the queue.
2110 */
2111 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2112 ATH5K_WARN(sc, "beacon queue %u didn't stop?\n", sc->bhalq);
2113 /* NB: hw still stops DMA, so proceed */
2114 }
2115 pci_dma_sync_single_for_cpu(sc->pdev, bf->skbaddr, bf->skb->len,
2116 PCI_DMA_TODEVICE);
2117
2118 ath5k_hw_put_tx_buf(ah, sc->bhalq, bf->daddr);
2119 ath5k_hw_tx_start(ah, sc->bhalq);
2120 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2121 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2122
2123 sc->bsent++;
2124 }
2125
2126
2127 /**
2128 * ath5k_beacon_update_timers - update beacon timers
2129 *
2130 * @sc: struct ath5k_softc pointer we are operating on
2131 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2132 * beacon timer update based on the current HW TSF.
2133 *
2134 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2135 * of a received beacon or the current local hardware TSF and write it to the
2136 * beacon timer registers.
2137 *
2138 * This is called in a variety of situations, e.g. when a beacon is received,
2139 * when a TSF update has been detected, but also when an new IBSS is created or
2140 * when we otherwise know we have to update the timers, but we keep it in this
2141 * function to have it all together in one place.
2142 */
2143 static void
2144 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2145 {
2146 struct ath5k_hw *ah = sc->ah;
2147 u32 nexttbtt, intval, hw_tu, bc_tu;
2148 u64 hw_tsf;
2149
2150 intval = sc->bintval & AR5K_BEACON_PERIOD;
2151 if (WARN_ON(!intval))
2152 return;
2153
2154 /* beacon TSF converted to TU */
2155 bc_tu = TSF_TO_TU(bc_tsf);
2156
2157 /* current TSF converted to TU */
2158 hw_tsf = ath5k_hw_get_tsf64(ah);
2159 hw_tu = TSF_TO_TU(hw_tsf);
2160
2161 #define FUDGE 3
2162 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2163 if (bc_tsf == -1) {
2164 /*
2165 * no beacons received, called internally.
2166 * just need to refresh timers based on HW TSF.
2167 */
2168 nexttbtt = roundup(hw_tu + FUDGE, intval);
2169 } else if (bc_tsf == 0) {
2170 /*
2171 * no beacon received, probably called by ath5k_reset_tsf().
2172 * reset TSF to start with 0.
2173 */
2174 nexttbtt = intval;
2175 intval |= AR5K_BEACON_RESET_TSF;
2176 } else if (bc_tsf > hw_tsf) {
2177 /*
2178 * beacon received, SW merge happend but HW TSF not yet updated.
2179 * not possible to reconfigure timers yet, but next time we
2180 * receive a beacon with the same BSSID, the hardware will
2181 * automatically update the TSF and then we need to reconfigure
2182 * the timers.
2183 */
2184 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2185 "need to wait for HW TSF sync\n");
2186 return;
2187 } else {
2188 /*
2189 * most important case for beacon synchronization between STA.
2190 *
2191 * beacon received and HW TSF has been already updated by HW.
2192 * update next TBTT based on the TSF of the beacon, but make
2193 * sure it is ahead of our local TSF timer.
2194 */
2195 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2196 }
2197 #undef FUDGE
2198
2199 sc->nexttbtt = nexttbtt;
2200
2201 intval |= AR5K_BEACON_ENA;
2202 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2203
2204 /*
2205 * debugging output last in order to preserve the time critical aspect
2206 * of this function
2207 */
2208 if (bc_tsf == -1)
2209 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2210 "reconfigured timers based on HW TSF\n");
2211 else if (bc_tsf == 0)
2212 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2213 "reset HW TSF and timers\n");
2214 else
2215 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2216 "updated timers based on beacon TSF\n");
2217
2218 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2219 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2220 (unsigned long long) bc_tsf,
2221 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2222 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2223 intval & AR5K_BEACON_PERIOD,
2224 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2225 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2226 }
2227
2228
2229 /**
2230 * ath5k_beacon_config - Configure the beacon queues and interrupts
2231 *
2232 * @sc: struct ath5k_softc pointer we are operating on
2233 *
2234 * When operating in station mode we want to receive a BMISS interrupt when we
2235 * stop seeing beacons from the AP we've associated with so we can look for
2236 * another AP to associate with.
2237 *
2238 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2239 * interrupts to detect TSF updates only.
2240 *
2241 * AP mode is missing.
2242 */
2243 static void
2244 ath5k_beacon_config(struct ath5k_softc *sc)
2245 {
2246 struct ath5k_hw *ah = sc->ah;
2247
2248 ath5k_hw_set_intr(ah, 0);
2249 sc->bmisscount = 0;
2250
2251 if (sc->opmode == IEEE80211_IF_TYPE_STA) {
2252 sc->imask |= AR5K_INT_BMISS;
2253 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2254 /*
2255 * In IBSS mode we use a self-linked tx descriptor and let the
2256 * hardware send the beacons automatically. We have to load it
2257 * only once here.
2258 * We use the SWBA interrupt only to keep track of the beacon
2259 * timers in order to detect automatic TSF updates.
2260 */
2261 ath5k_beaconq_config(sc);
2262
2263 sc->imask |= AR5K_INT_SWBA;
2264
2265 if (ath5k_hw_hasveol(ah))
2266 ath5k_beacon_send(sc);
2267 }
2268 /* TODO else AP */
2269
2270 ath5k_hw_set_intr(ah, sc->imask);
2271 }
2272
2273
2274 /********************\
2275 * Interrupt handling *
2276 \********************/
2277
2278 static int
2279 ath5k_init(struct ath5k_softc *sc)
2280 {
2281 int ret;
2282
2283 mutex_lock(&sc->lock);
2284
2285 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2286
2287 /*
2288 * Stop anything previously setup. This is safe
2289 * no matter this is the first time through or not.
2290 */
2291 ath5k_stop_locked(sc);
2292
2293 /*
2294 * The basic interface to setting the hardware in a good
2295 * state is ``reset''. On return the hardware is known to
2296 * be powered up and with interrupts disabled. This must
2297 * be followed by initialization of the appropriate bits
2298 * and then setup of the interrupt mask.
2299 */
2300 sc->curchan = sc->hw->conf.channel;
2301 sc->curband = &sc->sbands[sc->curchan->band];
2302 ret = ath5k_hw_reset(sc->ah, sc->opmode, sc->curchan, false);
2303 if (ret) {
2304 ATH5K_ERR(sc, "unable to reset hardware: %d\n", ret);
2305 goto done;
2306 }
2307 /*
2308 * This is needed only to setup initial state
2309 * but it's best done after a reset.
2310 */
2311 ath5k_hw_set_txpower_limit(sc->ah, 0);
2312
2313 /*
2314 * Setup the hardware after reset: the key cache
2315 * is filled as needed and the receive engine is
2316 * set going. Frame transmit is handled entirely
2317 * in the frame output path; there's nothing to do
2318 * here except setup the interrupt mask.
2319 */
2320 ret = ath5k_rx_start(sc);
2321 if (ret)
2322 goto done;
2323
2324 /*
2325 * Enable interrupts.
2326 */
2327 sc->imask = AR5K_INT_RX | AR5K_INT_TX | AR5K_INT_RXEOL |
2328 AR5K_INT_RXORN | AR5K_INT_FATAL | AR5K_INT_GLOBAL |
2329 AR5K_INT_MIB;
2330
2331 ath5k_hw_set_intr(sc->ah, sc->imask);
2332 /* Set ack to be sent at low bit-rates */
2333 ath5k_hw_set_ack_bitrate_high(sc->ah, false);
2334
2335 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2336 msecs_to_jiffies(ath5k_calinterval * 1000)));
2337
2338 ret = 0;
2339 done:
2340 mutex_unlock(&sc->lock);
2341 return ret;
2342 }
2343
2344 static int
2345 ath5k_stop_locked(struct ath5k_softc *sc)
2346 {
2347 struct ath5k_hw *ah = sc->ah;
2348
2349 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2350 test_bit(ATH_STAT_INVALID, sc->status));
2351
2352 /*
2353 * Shutdown the hardware and driver:
2354 * stop output from above
2355 * disable interrupts
2356 * turn off timers
2357 * turn off the radio
2358 * clear transmit machinery
2359 * clear receive machinery
2360 * drain and release tx queues
2361 * reclaim beacon resources
2362 * power down hardware
2363 *
2364 * Note that some of this work is not possible if the
2365 * hardware is gone (invalid).
2366 */
2367 ieee80211_stop_queues(sc->hw);
2368
2369 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2370 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
2371 del_timer_sync(&sc->led_tim);
2372 ath5k_hw_set_gpio(ah, sc->led_pin, !sc->led_on);
2373 __clear_bit(ATH_STAT_LEDBLINKING, sc->status);
2374 }
2375 ath5k_hw_set_intr(ah, 0);
2376 }
2377 ath5k_txq_cleanup(sc);
2378 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2379 ath5k_rx_stop(sc);
2380 ath5k_hw_phy_disable(ah);
2381 } else
2382 sc->rxlink = NULL;
2383
2384 return 0;
2385 }
2386
2387 /*
2388 * Stop the device, grabbing the top-level lock to protect
2389 * against concurrent entry through ath5k_init (which can happen
2390 * if another thread does a system call and the thread doing the
2391 * stop is preempted).
2392 */
2393 static int
2394 ath5k_stop_hw(struct ath5k_softc *sc)
2395 {
2396 int ret;
2397
2398 mutex_lock(&sc->lock);
2399 ret = ath5k_stop_locked(sc);
2400 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2401 /*
2402 * Set the chip in full sleep mode. Note that we are
2403 * careful to do this only when bringing the interface
2404 * completely to a stop. When the chip is in this state
2405 * it must be carefully woken up or references to
2406 * registers in the PCI clock domain may freeze the bus
2407 * (and system). This varies by chip and is mostly an
2408 * issue with newer parts that go to sleep more quickly.
2409 */
2410 if (sc->ah->ah_mac_srev >= 0x78) {
2411 /*
2412 * XXX
2413 * don't put newer MAC revisions > 7.8 to sleep because
2414 * of the above mentioned problems
2415 */
2416 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2417 "not putting device to sleep\n");
2418 } else {
2419 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2420 "putting device to full sleep\n");
2421 ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2422 }
2423 }
2424 ath5k_txbuf_free(sc, sc->bbuf);
2425 mutex_unlock(&sc->lock);
2426
2427 del_timer_sync(&sc->calib_tim);
2428
2429 return ret;
2430 }
2431
2432 static irqreturn_t
2433 ath5k_intr(int irq, void *dev_id)
2434 {
2435 struct ath5k_softc *sc = dev_id;
2436 struct ath5k_hw *ah = sc->ah;
2437 enum ath5k_int status;
2438 unsigned int counter = 1000;
2439
2440 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2441 !ath5k_hw_is_intr_pending(ah)))
2442 return IRQ_NONE;
2443
2444 do {
2445 /*
2446 * Figure out the reason(s) for the interrupt. Note
2447 * that get_isr returns a pseudo-ISR that may include
2448 * bits we haven't explicitly enabled so we mask the
2449 * value to insure we only process bits we requested.
2450 */
2451 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2452 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2453 status, sc->imask);
2454 status &= sc->imask; /* discard unasked for bits */
2455 if (unlikely(status & AR5K_INT_FATAL)) {
2456 /*
2457 * Fatal errors are unrecoverable.
2458 * Typically these are caused by DMA errors.
2459 */
2460 tasklet_schedule(&sc->restq);
2461 } else if (unlikely(status & AR5K_INT_RXORN)) {
2462 tasklet_schedule(&sc->restq);
2463 } else {
2464 if (status & AR5K_INT_SWBA) {
2465 /*
2466 * Software beacon alert--time to send a beacon.
2467 * Handle beacon transmission directly; deferring
2468 * this is too slow to meet timing constraints
2469 * under load.
2470 *
2471 * In IBSS mode we use this interrupt just to
2472 * keep track of the next TBTT (target beacon
2473 * transmission time) in order to detect wether
2474 * automatic TSF updates happened.
2475 */
2476 if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2477 /* XXX: only if VEOL suppported */
2478 u64 tsf = ath5k_hw_get_tsf64(ah);
2479 sc->nexttbtt += sc->bintval;
2480 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2481 "SWBA nexttbtt: %x hw_tu: %x "
2482 "TSF: %llx\n",
2483 sc->nexttbtt,
2484 TSF_TO_TU(tsf),
2485 (unsigned long long) tsf);
2486 } else {
2487 ath5k_beacon_send(sc);
2488 }
2489 }
2490 if (status & AR5K_INT_RXEOL) {
2491 /*
2492 * NB: the hardware should re-read the link when
2493 * RXE bit is written, but it doesn't work at
2494 * least on older hardware revs.
2495 */
2496 sc->rxlink = NULL;
2497 }
2498 if (status & AR5K_INT_TXURN) {
2499 /* bump tx trigger level */
2500 ath5k_hw_update_tx_triglevel(ah, true);
2501 }
2502 if (status & AR5K_INT_RX)
2503 tasklet_schedule(&sc->rxtq);
2504 if (status & AR5K_INT_TX)
2505 tasklet_schedule(&sc->txtq);
2506 if (status & AR5K_INT_BMISS) {
2507 }
2508 if (status & AR5K_INT_MIB) {
2509 /*
2510 * These stats are also used for ANI i think
2511 * so how about updating them more often ?
2512 */
2513 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2514 }
2515 }
2516 } while (ath5k_hw_is_intr_pending(ah) && counter-- > 0);
2517
2518 if (unlikely(!counter))
2519 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2520
2521 return IRQ_HANDLED;
2522 }
2523
2524 static void
2525 ath5k_tasklet_reset(unsigned long data)
2526 {
2527 struct ath5k_softc *sc = (void *)data;
2528
2529 ath5k_reset(sc->hw);
2530 }
2531
2532 /*
2533 * Periodically recalibrate the PHY to account
2534 * for temperature/environment changes.
2535 */
2536 static void
2537 ath5k_calibrate(unsigned long data)
2538 {
2539 struct ath5k_softc *sc = (void *)data;
2540 struct ath5k_hw *ah = sc->ah;
2541
2542 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2543 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2544 sc->curchan->hw_value);
2545
2546 if (ath5k_hw_get_rf_gain(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2547 /*
2548 * Rfgain is out of bounds, reset the chip
2549 * to load new gain values.
2550 */
2551 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2552 ath5k_reset(sc->hw);
2553 }
2554 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2555 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2556 ieee80211_frequency_to_channel(
2557 sc->curchan->center_freq));
2558
2559 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2560 msecs_to_jiffies(ath5k_calinterval * 1000)));
2561 }
2562
2563
2564
2565 /***************\
2566 * LED functions *
2567 \***************/
2568
2569 static void
2570 ath5k_led_off(unsigned long data)
2571 {
2572 struct ath5k_softc *sc = (void *)data;
2573
2574 if (test_bit(ATH_STAT_LEDENDBLINK, sc->status))
2575 __clear_bit(ATH_STAT_LEDBLINKING, sc->status);
2576 else {
2577 __set_bit(ATH_STAT_LEDENDBLINK, sc->status);
2578 ath5k_hw_set_gpio(sc->ah, sc->led_pin, !sc->led_on);
2579 mod_timer(&sc->led_tim, jiffies + sc->led_off);
2580 }
2581 }
2582
2583 /*
2584 * Blink the LED according to the specified on/off times.
2585 */
2586 static void
2587 ath5k_led_blink(struct ath5k_softc *sc, unsigned int on,
2588 unsigned int off)
2589 {
2590 ATH5K_DBG(sc, ATH5K_DEBUG_LED, "on %u off %u\n", on, off);
2591 ath5k_hw_set_gpio(sc->ah, sc->led_pin, sc->led_on);
2592 __set_bit(ATH_STAT_LEDBLINKING, sc->status);
2593 __clear_bit(ATH_STAT_LEDENDBLINK, sc->status);
2594 sc->led_off = off;
2595 mod_timer(&sc->led_tim, jiffies + on);
2596 }
2597
2598 static void
2599 ath5k_led_event(struct ath5k_softc *sc, int event)
2600 {
2601 if (likely(!test_bit(ATH_STAT_LEDSOFT, sc->status)))
2602 return;
2603 if (unlikely(test_bit(ATH_STAT_LEDBLINKING, sc->status)))
2604 return; /* don't interrupt active blink */
2605 switch (event) {
2606 case ATH_LED_TX:
2607 ath5k_led_blink(sc, sc->hwmap[sc->led_txrate].ledon,
2608 sc->hwmap[sc->led_txrate].ledoff);
2609 break;
2610 case ATH_LED_RX:
2611 ath5k_led_blink(sc, sc->hwmap[sc->led_rxrate].ledon,
2612 sc->hwmap[sc->led_rxrate].ledoff);
2613 break;
2614 }
2615 }
2616
2617
2618
2619
2620 /********************\
2621 * Mac80211 functions *
2622 \********************/
2623
2624 static int
2625 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
2626 struct ieee80211_tx_control *ctl)
2627 {
2628 struct ath5k_softc *sc = hw->priv;
2629 struct ath5k_buf *bf;
2630 unsigned long flags;
2631 int hdrlen;
2632 int pad;
2633
2634 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
2635
2636 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2637 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2638
2639 /*
2640 * the hardware expects the header padded to 4 byte boundaries
2641 * if this is not the case we add the padding after the header
2642 */
2643 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2644 if (hdrlen & 3) {
2645 pad = hdrlen % 4;
2646 if (skb_headroom(skb) < pad) {
2647 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2648 " headroom to pad %d\n", hdrlen, pad);
2649 return -1;
2650 }
2651 skb_push(skb, pad);
2652 memmove(skb->data, skb->data+pad, hdrlen);
2653 }
2654
2655 sc->led_txrate = ctl->tx_rate->hw_value;
2656
2657 spin_lock_irqsave(&sc->txbuflock, flags);
2658 if (list_empty(&sc->txbuf)) {
2659 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2660 spin_unlock_irqrestore(&sc->txbuflock, flags);
2661 ieee80211_stop_queue(hw, ctl->queue);
2662 return -1;
2663 }
2664 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2665 list_del(&bf->list);
2666 sc->txbuf_len--;
2667 if (list_empty(&sc->txbuf))
2668 ieee80211_stop_queues(hw);
2669 spin_unlock_irqrestore(&sc->txbuflock, flags);
2670
2671 bf->skb = skb;
2672
2673 if (ath5k_txbuf_setup(sc, bf, ctl)) {
2674 bf->skb = NULL;
2675 spin_lock_irqsave(&sc->txbuflock, flags);
2676 list_add_tail(&bf->list, &sc->txbuf);
2677 sc->txbuf_len++;
2678 spin_unlock_irqrestore(&sc->txbuflock, flags);
2679 dev_kfree_skb_any(skb);
2680 return 0;
2681 }
2682
2683 return 0;
2684 }
2685
2686 static int
2687 ath5k_reset(struct ieee80211_hw *hw)
2688 {
2689 struct ath5k_softc *sc = hw->priv;
2690 struct ath5k_hw *ah = sc->ah;
2691 int ret;
2692
2693 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2694
2695 ath5k_hw_set_intr(ah, 0);
2696 ath5k_txq_cleanup(sc);
2697 ath5k_rx_stop(sc);
2698
2699 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2700 if (unlikely(ret)) {
2701 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2702 goto err;
2703 }
2704 ath5k_hw_set_txpower_limit(sc->ah, 0);
2705
2706 ret = ath5k_rx_start(sc);
2707 if (unlikely(ret)) {
2708 ATH5K_ERR(sc, "can't start recv logic\n");
2709 goto err;
2710 }
2711 /*
2712 * We may be doing a reset in response to an ioctl
2713 * that changes the channel so update any state that
2714 * might change as a result.
2715 *
2716 * XXX needed?
2717 */
2718 /* ath5k_chan_change(sc, c); */
2719 ath5k_beacon_config(sc);
2720 /* intrs are started by ath5k_beacon_config */
2721
2722 ieee80211_wake_queues(hw);
2723
2724 return 0;
2725 err:
2726 return ret;
2727 }
2728
2729 static int ath5k_start(struct ieee80211_hw *hw)
2730 {
2731 return ath5k_init(hw->priv);
2732 }
2733
2734 static void ath5k_stop(struct ieee80211_hw *hw)
2735 {
2736 ath5k_stop_hw(hw->priv);
2737 }
2738
2739 static int ath5k_add_interface(struct ieee80211_hw *hw,
2740 struct ieee80211_if_init_conf *conf)
2741 {
2742 struct ath5k_softc *sc = hw->priv;
2743 int ret;
2744
2745 mutex_lock(&sc->lock);
2746 if (sc->vif) {
2747 ret = 0;
2748 goto end;
2749 }
2750
2751 sc->vif = conf->vif;
2752
2753 switch (conf->type) {
2754 case IEEE80211_IF_TYPE_STA:
2755 case IEEE80211_IF_TYPE_IBSS:
2756 case IEEE80211_IF_TYPE_MNTR:
2757 sc->opmode = conf->type;
2758 break;
2759 default:
2760 ret = -EOPNOTSUPP;
2761 goto end;
2762 }
2763 ret = 0;
2764 end:
2765 mutex_unlock(&sc->lock);
2766 return ret;
2767 }
2768
2769 static void
2770 ath5k_remove_interface(struct ieee80211_hw *hw,
2771 struct ieee80211_if_init_conf *conf)
2772 {
2773 struct ath5k_softc *sc = hw->priv;
2774
2775 mutex_lock(&sc->lock);
2776 if (sc->vif != conf->vif)
2777 goto end;
2778
2779 sc->vif = NULL;
2780 end:
2781 mutex_unlock(&sc->lock);
2782 }
2783
2784 /*
2785 * TODO: Phy disable/diversity etc
2786 */
2787 static int
2788 ath5k_config(struct ieee80211_hw *hw,
2789 struct ieee80211_conf *conf)
2790 {
2791 struct ath5k_softc *sc = hw->priv;
2792
2793 sc->bintval = conf->beacon_int;
2794 sc->power_level = conf->power_level;
2795
2796 return ath5k_chan_set(sc, conf->channel);
2797 }
2798
2799 static int
2800 ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2801 struct ieee80211_if_conf *conf)
2802 {
2803 struct ath5k_softc *sc = hw->priv;
2804 struct ath5k_hw *ah = sc->ah;
2805 int ret;
2806
2807 /* Set to a reasonable value. Note that this will
2808 * be set to mac80211's value at ath5k_config(). */
2809 sc->bintval = 1000;
2810 mutex_lock(&sc->lock);
2811 if (sc->vif != vif) {
2812 ret = -EIO;
2813 goto unlock;
2814 }
2815 if (conf->bssid) {
2816 /* Cache for later use during resets */
2817 memcpy(ah->ah_bssid, conf->bssid, ETH_ALEN);
2818 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2819 * a clean way of letting us retrieve this yet. */
2820 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
2821 }
2822 mutex_unlock(&sc->lock);
2823
2824 return ath5k_reset(hw);
2825 unlock:
2826 mutex_unlock(&sc->lock);
2827 return ret;
2828 }
2829
2830 #define SUPPORTED_FIF_FLAGS \
2831 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2832 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2833 FIF_BCN_PRBRESP_PROMISC
2834 /*
2835 * o always accept unicast, broadcast, and multicast traffic
2836 * o multicast traffic for all BSSIDs will be enabled if mac80211
2837 * says it should be
2838 * o maintain current state of phy ofdm or phy cck error reception.
2839 * If the hardware detects any of these type of errors then
2840 * ath5k_hw_get_rx_filter() will pass to us the respective
2841 * hardware filters to be able to receive these type of frames.
2842 * o probe request frames are accepted only when operating in
2843 * hostap, adhoc, or monitor modes
2844 * o enable promiscuous mode according to the interface state
2845 * o accept beacons:
2846 * - when operating in adhoc mode so the 802.11 layer creates
2847 * node table entries for peers,
2848 * - when operating in station mode for collecting rssi data when
2849 * the station is otherwise quiet, or
2850 * - when scanning
2851 */
2852 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2853 unsigned int changed_flags,
2854 unsigned int *new_flags,
2855 int mc_count, struct dev_mc_list *mclist)
2856 {
2857 struct ath5k_softc *sc = hw->priv;
2858 struct ath5k_hw *ah = sc->ah;
2859 u32 mfilt[2], val, rfilt;
2860 u8 pos;
2861 int i;
2862
2863 mfilt[0] = 0;
2864 mfilt[1] = 0;
2865
2866 /* Only deal with supported flags */
2867 changed_flags &= SUPPORTED_FIF_FLAGS;
2868 *new_flags &= SUPPORTED_FIF_FLAGS;
2869
2870 /* If HW detects any phy or radar errors, leave those filters on.
2871 * Also, always enable Unicast, Broadcasts and Multicast
2872 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2873 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2874 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2875 AR5K_RX_FILTER_MCAST);
2876
2877 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2878 if (*new_flags & FIF_PROMISC_IN_BSS) {
2879 rfilt |= AR5K_RX_FILTER_PROM;
2880 __set_bit(ATH_STAT_PROMISC, sc->status);
2881 }
2882 else
2883 __clear_bit(ATH_STAT_PROMISC, sc->status);
2884 }
2885
2886 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2887 if (*new_flags & FIF_ALLMULTI) {
2888 mfilt[0] = ~0;
2889 mfilt[1] = ~0;
2890 } else {
2891 for (i = 0; i < mc_count; i++) {
2892 if (!mclist)
2893 break;
2894 /* calculate XOR of eight 6-bit values */
2895 val = get_unaligned_le32(mclist->dmi_addr + 0);
2896 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2897 val = get_unaligned_le32(mclist->dmi_addr + 3);
2898 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2899 pos &= 0x3f;
2900 mfilt[pos / 32] |= (1 << (pos % 32));
2901 /* XXX: we might be able to just do this instead,
2902 * but not sure, needs testing, if we do use this we'd
2903 * neet to inform below to not reset the mcast */
2904 /* ath5k_hw_set_mcast_filterindex(ah,
2905 * mclist->dmi_addr[5]); */
2906 mclist = mclist->next;
2907 }
2908 }
2909
2910 /* This is the best we can do */
2911 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2912 rfilt |= AR5K_RX_FILTER_PHYERR;
2913
2914 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2915 * and probes for any BSSID, this needs testing */
2916 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2917 rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2918
2919 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2920 * set we should only pass on control frames for this
2921 * station. This needs testing. I believe right now this
2922 * enables *all* control frames, which is OK.. but
2923 * but we should see if we can improve on granularity */
2924 if (*new_flags & FIF_CONTROL)
2925 rfilt |= AR5K_RX_FILTER_CONTROL;
2926
2927 /* Additional settings per mode -- this is per ath5k */
2928
2929 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2930
2931 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2932 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2933 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2934 if (sc->opmode != IEEE80211_IF_TYPE_STA)
2935 rfilt |= AR5K_RX_FILTER_PROBEREQ;
2936 if (sc->opmode != IEEE80211_IF_TYPE_AP &&
2937 test_bit(ATH_STAT_PROMISC, sc->status))
2938 rfilt |= AR5K_RX_FILTER_PROM;
2939 if (sc->opmode == IEEE80211_IF_TYPE_STA ||
2940 sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2941 rfilt |= AR5K_RX_FILTER_BEACON;
2942 }
2943
2944 /* Set filters */
2945 ath5k_hw_set_rx_filter(ah,rfilt);
2946
2947 /* Set multicast bits */
2948 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2949 /* Set the cached hw filter flags, this will alter actually
2950 * be set in HW */
2951 sc->filter_flags = rfilt;
2952 }
2953
2954 static int
2955 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2956 const u8 *local_addr, const u8 *addr,
2957 struct ieee80211_key_conf *key)
2958 {
2959 struct ath5k_softc *sc = hw->priv;
2960 int ret = 0;
2961
2962 switch(key->alg) {
2963 case ALG_WEP:
2964 /* XXX: fix hardware encryption, its not working. For now
2965 * allow software encryption */
2966 /* break; */
2967 case ALG_TKIP:
2968 case ALG_CCMP:
2969 return -EOPNOTSUPP;
2970 default:
2971 WARN_ON(1);
2972 return -EINVAL;
2973 }
2974
2975 mutex_lock(&sc->lock);
2976
2977 switch (cmd) {
2978 case SET_KEY:
2979 ret = ath5k_hw_set_key(sc->ah, key->keyidx, key, addr);
2980 if (ret) {
2981 ATH5K_ERR(sc, "can't set the key\n");
2982 goto unlock;
2983 }
2984 __set_bit(key->keyidx, sc->keymap);
2985 key->hw_key_idx = key->keyidx;
2986 break;
2987 case DISABLE_KEY:
2988 ath5k_hw_reset_key(sc->ah, key->keyidx);
2989 __clear_bit(key->keyidx, sc->keymap);
2990 break;
2991 default:
2992 ret = -EINVAL;
2993 goto unlock;
2994 }
2995
2996 unlock:
2997 mutex_unlock(&sc->lock);
2998 return ret;
2999 }
3000
3001 static int
3002 ath5k_get_stats(struct ieee80211_hw *hw,
3003 struct ieee80211_low_level_stats *stats)
3004 {
3005 struct ath5k_softc *sc = hw->priv;
3006 struct ath5k_hw *ah = sc->ah;
3007
3008 /* Force update */
3009 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3010
3011 memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3012
3013 return 0;
3014 }
3015
3016 static int
3017 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3018 struct ieee80211_tx_queue_stats *stats)
3019 {
3020 struct ath5k_softc *sc = hw->priv;
3021
3022 memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3023
3024 return 0;
3025 }
3026
3027 static u64
3028 ath5k_get_tsf(struct ieee80211_hw *hw)
3029 {
3030 struct ath5k_softc *sc = hw->priv;
3031
3032 return ath5k_hw_get_tsf64(sc->ah);
3033 }
3034
3035 static void
3036 ath5k_reset_tsf(struct ieee80211_hw *hw)
3037 {
3038 struct ath5k_softc *sc = hw->priv;
3039
3040 /*
3041 * in IBSS mode we need to update the beacon timers too.
3042 * this will also reset the TSF if we call it with 0
3043 */
3044 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
3045 ath5k_beacon_update_timers(sc, 0);
3046 else
3047 ath5k_hw_reset_tsf(sc->ah);
3048 }
3049
3050 static int
3051 ath5k_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
3052 struct ieee80211_tx_control *ctl)
3053 {
3054 struct ath5k_softc *sc = hw->priv;
3055 int ret;
3056
3057 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
3058
3059 mutex_lock(&sc->lock);
3060
3061 if (sc->opmode != IEEE80211_IF_TYPE_IBSS) {
3062 ret = -EIO;
3063 goto end;
3064 }
3065
3066 ath5k_txbuf_free(sc, sc->bbuf);
3067 sc->bbuf->skb = skb;
3068 ret = ath5k_beacon_setup(sc, sc->bbuf, ctl);
3069 if (ret)
3070 sc->bbuf->skb = NULL;
3071 else
3072 ath5k_beacon_config(sc);
3073
3074 end:
3075 mutex_unlock(&sc->lock);
3076 return ret;
3077 }
3078