]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ath9k/eeprom.c
Merge branch 'next' into for-linus
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ath9k / eeprom.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18
19 static void ath9k_hw_analog_shift_rmw(struct ath_hw *ah,
20 u32 reg, u32 mask,
21 u32 shift, u32 val)
22 {
23 u32 regVal;
24
25 regVal = REG_READ(ah, reg) & ~mask;
26 regVal |= (val << shift) & mask;
27
28 REG_WRITE(ah, reg, regVal);
29
30 if (ah->config.analog_shiftreg)
31 udelay(100);
32
33 return;
34 }
35
36 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
37 {
38
39 if (fbin == AR5416_BCHAN_UNUSED)
40 return fbin;
41
42 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
43 }
44
45 static inline int16_t ath9k_hw_interpolate(u16 target,
46 u16 srcLeft, u16 srcRight,
47 int16_t targetLeft,
48 int16_t targetRight)
49 {
50 int16_t rv;
51
52 if (srcRight == srcLeft) {
53 rv = targetLeft;
54 } else {
55 rv = (int16_t) (((target - srcLeft) * targetRight +
56 (srcRight - target) * targetLeft) /
57 (srcRight - srcLeft));
58 }
59 return rv;
60 }
61
62 static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
63 u16 listSize, u16 *indexL,
64 u16 *indexR)
65 {
66 u16 i;
67
68 if (target <= pList[0]) {
69 *indexL = *indexR = 0;
70 return true;
71 }
72 if (target >= pList[listSize - 1]) {
73 *indexL = *indexR = (u16) (listSize - 1);
74 return true;
75 }
76
77 for (i = 0; i < listSize - 1; i++) {
78 if (pList[i] == target) {
79 *indexL = *indexR = i;
80 return true;
81 }
82 if (target < pList[i + 1]) {
83 *indexL = i;
84 *indexR = (u16) (i + 1);
85 return false;
86 }
87 }
88 return false;
89 }
90
91 static inline bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
92 {
93 struct ath_softc *sc = ah->ah_sc;
94
95 return sc->bus_ops->eeprom_read(ah, off, data);
96 }
97
98 static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
99 u8 *pVpdList, u16 numIntercepts,
100 u8 *pRetVpdList)
101 {
102 u16 i, k;
103 u8 currPwr = pwrMin;
104 u16 idxL = 0, idxR = 0;
105
106 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
107 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
108 numIntercepts, &(idxL),
109 &(idxR));
110 if (idxR < 1)
111 idxR = 1;
112 if (idxL == numIntercepts - 1)
113 idxL = (u16) (numIntercepts - 2);
114 if (pPwrList[idxL] == pPwrList[idxR])
115 k = pVpdList[idxL];
116 else
117 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
118 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
119 (pPwrList[idxR] - pPwrList[idxL]));
120 pRetVpdList[i] = (u8) k;
121 currPwr += 2;
122 }
123
124 return true;
125 }
126
127 static void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
128 struct ath9k_channel *chan,
129 struct cal_target_power_leg *powInfo,
130 u16 numChannels,
131 struct cal_target_power_leg *pNewPower,
132 u16 numRates, bool isExtTarget)
133 {
134 struct chan_centers centers;
135 u16 clo, chi;
136 int i;
137 int matchIndex = -1, lowIndex = -1;
138 u16 freq;
139
140 ath9k_hw_get_channel_centers(ah, chan, &centers);
141 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
142
143 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
144 IS_CHAN_2GHZ(chan))) {
145 matchIndex = 0;
146 } else {
147 for (i = 0; (i < numChannels) &&
148 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
149 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
150 IS_CHAN_2GHZ(chan))) {
151 matchIndex = i;
152 break;
153 } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
154 IS_CHAN_2GHZ(chan))) &&
155 (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
156 IS_CHAN_2GHZ(chan)))) {
157 lowIndex = i - 1;
158 break;
159 }
160 }
161 if ((matchIndex == -1) && (lowIndex == -1))
162 matchIndex = i - 1;
163 }
164
165 if (matchIndex != -1) {
166 *pNewPower = powInfo[matchIndex];
167 } else {
168 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
169 IS_CHAN_2GHZ(chan));
170 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
171 IS_CHAN_2GHZ(chan));
172
173 for (i = 0; i < numRates; i++) {
174 pNewPower->tPow2x[i] =
175 (u8)ath9k_hw_interpolate(freq, clo, chi,
176 powInfo[lowIndex].tPow2x[i],
177 powInfo[lowIndex + 1].tPow2x[i]);
178 }
179 }
180 }
181
182 static void ath9k_get_txgain_index(struct ath_hw *ah,
183 struct ath9k_channel *chan,
184 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
185 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
186 {
187 u8 pcdac, i = 0;
188 u16 idxL = 0, idxR = 0, numPiers;
189 bool match;
190 struct chan_centers centers;
191
192 ath9k_hw_get_channel_centers(ah, chan, &centers);
193
194 for (numPiers = 0; numPiers < availPiers; numPiers++)
195 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
196 break;
197
198 match = ath9k_hw_get_lower_upper_index(
199 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
200 calChans, numPiers, &idxL, &idxR);
201 if (match) {
202 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
203 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
204 } else {
205 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
206 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
207 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
208 }
209
210 while (pcdac > ah->originalGain[i] &&
211 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
212 i++;
213
214 *pcdacIdx = i;
215 return;
216 }
217
218 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
219 u32 initTxGain,
220 int txPower,
221 u8 *pPDADCValues)
222 {
223 u32 i;
224 u32 offset;
225
226 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
227 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
228 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
229 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
230
231 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
232 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
233
234 offset = txPower;
235 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
236 if (i < offset)
237 pPDADCValues[i] = 0x0;
238 else
239 pPDADCValues[i] = 0xFF;
240 }
241
242
243
244
245 static void ath9k_hw_get_target_powers(struct ath_hw *ah,
246 struct ath9k_channel *chan,
247 struct cal_target_power_ht *powInfo,
248 u16 numChannels,
249 struct cal_target_power_ht *pNewPower,
250 u16 numRates, bool isHt40Target)
251 {
252 struct chan_centers centers;
253 u16 clo, chi;
254 int i;
255 int matchIndex = -1, lowIndex = -1;
256 u16 freq;
257
258 ath9k_hw_get_channel_centers(ah, chan, &centers);
259 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
260
261 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
262 matchIndex = 0;
263 } else {
264 for (i = 0; (i < numChannels) &&
265 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
266 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
267 IS_CHAN_2GHZ(chan))) {
268 matchIndex = i;
269 break;
270 } else
271 if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
272 IS_CHAN_2GHZ(chan))) &&
273 (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
274 IS_CHAN_2GHZ(chan)))) {
275 lowIndex = i - 1;
276 break;
277 }
278 }
279 if ((matchIndex == -1) && (lowIndex == -1))
280 matchIndex = i - 1;
281 }
282
283 if (matchIndex != -1) {
284 *pNewPower = powInfo[matchIndex];
285 } else {
286 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
287 IS_CHAN_2GHZ(chan));
288 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
289 IS_CHAN_2GHZ(chan));
290
291 for (i = 0; i < numRates; i++) {
292 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
293 clo, chi,
294 powInfo[lowIndex].tPow2x[i],
295 powInfo[lowIndex + 1].tPow2x[i]);
296 }
297 }
298 }
299
300 static u16 ath9k_hw_get_max_edge_power(u16 freq,
301 struct cal_ctl_edges *pRdEdgesPower,
302 bool is2GHz, int num_band_edges)
303 {
304 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
305 int i;
306
307 for (i = 0; (i < num_band_edges) &&
308 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
309 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
310 twiceMaxEdgePower = pRdEdgesPower[i].tPower;
311 break;
312 } else if ((i > 0) &&
313 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
314 is2GHz))) {
315 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
316 is2GHz) < freq &&
317 pRdEdgesPower[i - 1].flag) {
318 twiceMaxEdgePower =
319 pRdEdgesPower[i - 1].tPower;
320 }
321 break;
322 }
323 }
324
325 return twiceMaxEdgePower;
326 }
327
328 /****************************************/
329 /* EEPROM Operations for 4K sized cards */
330 /****************************************/
331
332 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
333 {
334 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
335 }
336
337 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
338 {
339 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
340 }
341
342 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
343 {
344 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
345 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
346 int addr, eep_start_loc = 0;
347
348 eep_start_loc = 64;
349
350 if (!ath9k_hw_use_flash(ah)) {
351 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
352 "Reading from EEPROM, not flash\n");
353 }
354
355 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
356 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
357 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
358 "Unable to read eeprom region \n");
359 return false;
360 }
361 eep_data++;
362 }
363
364 return true;
365 #undef SIZE_EEPROM_4K
366 }
367
368 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
369 {
370 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
371 struct ar5416_eeprom_4k *eep =
372 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
373 u16 *eepdata, temp, magic, magic2;
374 u32 sum = 0, el;
375 bool need_swap = false;
376 int i, addr;
377
378
379 if (!ath9k_hw_use_flash(ah)) {
380 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
381 &magic)) {
382 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
383 "Reading Magic # failed\n");
384 return false;
385 }
386
387 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
388 "Read Magic = 0x%04X\n", magic);
389
390 if (magic != AR5416_EEPROM_MAGIC) {
391 magic2 = swab16(magic);
392
393 if (magic2 == AR5416_EEPROM_MAGIC) {
394 need_swap = true;
395 eepdata = (u16 *) (&ah->eeprom);
396
397 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
398 temp = swab16(*eepdata);
399 *eepdata = temp;
400 eepdata++;
401 }
402 } else {
403 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
404 "Invalid EEPROM Magic. "
405 "endianness mismatch.\n");
406 return -EINVAL;
407 }
408 }
409 }
410
411 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
412 need_swap ? "True" : "False");
413
414 if (need_swap)
415 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
416 else
417 el = ah->eeprom.map4k.baseEepHeader.length;
418
419 if (el > sizeof(struct ar5416_eeprom_4k))
420 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
421 else
422 el = el / sizeof(u16);
423
424 eepdata = (u16 *)(&ah->eeprom);
425
426 for (i = 0; i < el; i++)
427 sum ^= *eepdata++;
428
429 if (need_swap) {
430 u32 integer;
431 u16 word;
432
433 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
434 "EEPROM Endianness is not native.. Changing\n");
435
436 word = swab16(eep->baseEepHeader.length);
437 eep->baseEepHeader.length = word;
438
439 word = swab16(eep->baseEepHeader.checksum);
440 eep->baseEepHeader.checksum = word;
441
442 word = swab16(eep->baseEepHeader.version);
443 eep->baseEepHeader.version = word;
444
445 word = swab16(eep->baseEepHeader.regDmn[0]);
446 eep->baseEepHeader.regDmn[0] = word;
447
448 word = swab16(eep->baseEepHeader.regDmn[1]);
449 eep->baseEepHeader.regDmn[1] = word;
450
451 word = swab16(eep->baseEepHeader.rfSilent);
452 eep->baseEepHeader.rfSilent = word;
453
454 word = swab16(eep->baseEepHeader.blueToothOptions);
455 eep->baseEepHeader.blueToothOptions = word;
456
457 word = swab16(eep->baseEepHeader.deviceCap);
458 eep->baseEepHeader.deviceCap = word;
459
460 integer = swab32(eep->modalHeader.antCtrlCommon);
461 eep->modalHeader.antCtrlCommon = integer;
462
463 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
464 integer = swab32(eep->modalHeader.antCtrlChain[i]);
465 eep->modalHeader.antCtrlChain[i] = integer;
466 }
467
468 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
469 word = swab16(eep->modalHeader.spurChans[i].spurChan);
470 eep->modalHeader.spurChans[i].spurChan = word;
471 }
472 }
473
474 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
475 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
476 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
477 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
478 sum, ah->eep_ops->get_eeprom_ver(ah));
479 return -EINVAL;
480 }
481
482 return 0;
483 #undef EEPROM_4K_SIZE
484 }
485
486 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
487 enum eeprom_param param)
488 {
489 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
490 struct modal_eep_4k_header *pModal = &eep->modalHeader;
491 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
492
493 switch (param) {
494 case EEP_NFTHRESH_2:
495 return pModal->noiseFloorThreshCh[0];
496 case AR_EEPROM_MAC(0):
497 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
498 case AR_EEPROM_MAC(1):
499 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
500 case AR_EEPROM_MAC(2):
501 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
502 case EEP_REG_0:
503 return pBase->regDmn[0];
504 case EEP_REG_1:
505 return pBase->regDmn[1];
506 case EEP_OP_CAP:
507 return pBase->deviceCap;
508 case EEP_OP_MODE:
509 return pBase->opCapFlags;
510 case EEP_RF_SILENT:
511 return pBase->rfSilent;
512 case EEP_OB_2:
513 return pModal->ob_01;
514 case EEP_DB_2:
515 return pModal->db1_01;
516 case EEP_MINOR_REV:
517 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
518 case EEP_TX_MASK:
519 return pBase->txMask;
520 case EEP_RX_MASK:
521 return pBase->rxMask;
522 case EEP_FRAC_N_5G:
523 return 0;
524 default:
525 return 0;
526 }
527 }
528
529 static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
530 struct ath9k_channel *chan,
531 struct cal_data_per_freq_4k *pRawDataSet,
532 u8 *bChans, u16 availPiers,
533 u16 tPdGainOverlap, int16_t *pMinCalPower,
534 u16 *pPdGainBoundaries, u8 *pPDADCValues,
535 u16 numXpdGains)
536 {
537 #define TMP_VAL_VPD_TABLE \
538 ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
539 int i, j, k;
540 int16_t ss;
541 u16 idxL = 0, idxR = 0, numPiers;
542 static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
543 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
544 static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
545 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
546 static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
547 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
548
549 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
550 u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
551 u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
552 int16_t vpdStep;
553 int16_t tmpVal;
554 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
555 bool match;
556 int16_t minDelta = 0;
557 struct chan_centers centers;
558 #define PD_GAIN_BOUNDARY_DEFAULT 58;
559
560 ath9k_hw_get_channel_centers(ah, chan, &centers);
561
562 for (numPiers = 0; numPiers < availPiers; numPiers++) {
563 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
564 break;
565 }
566
567 match = ath9k_hw_get_lower_upper_index(
568 (u8)FREQ2FBIN(centers.synth_center,
569 IS_CHAN_2GHZ(chan)), bChans, numPiers,
570 &idxL, &idxR);
571
572 if (match) {
573 for (i = 0; i < numXpdGains; i++) {
574 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
575 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
576 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
577 pRawDataSet[idxL].pwrPdg[i],
578 pRawDataSet[idxL].vpdPdg[i],
579 AR5416_EEP4K_PD_GAIN_ICEPTS,
580 vpdTableI[i]);
581 }
582 } else {
583 for (i = 0; i < numXpdGains; i++) {
584 pVpdL = pRawDataSet[idxL].vpdPdg[i];
585 pPwrL = pRawDataSet[idxL].pwrPdg[i];
586 pVpdR = pRawDataSet[idxR].vpdPdg[i];
587 pPwrR = pRawDataSet[idxR].pwrPdg[i];
588
589 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
590
591 maxPwrT4[i] =
592 min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
593 pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
594
595
596 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
597 pPwrL, pVpdL,
598 AR5416_EEP4K_PD_GAIN_ICEPTS,
599 vpdTableL[i]);
600 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
601 pPwrR, pVpdR,
602 AR5416_EEP4K_PD_GAIN_ICEPTS,
603 vpdTableR[i]);
604
605 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
606 vpdTableI[i][j] =
607 (u8)(ath9k_hw_interpolate((u16)
608 FREQ2FBIN(centers.
609 synth_center,
610 IS_CHAN_2GHZ
611 (chan)),
612 bChans[idxL], bChans[idxR],
613 vpdTableL[i][j], vpdTableR[i][j]));
614 }
615 }
616 }
617
618 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
619
620 k = 0;
621
622 for (i = 0; i < numXpdGains; i++) {
623 if (i == (numXpdGains - 1))
624 pPdGainBoundaries[i] =
625 (u16)(maxPwrT4[i] / 2);
626 else
627 pPdGainBoundaries[i] =
628 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
629
630 pPdGainBoundaries[i] =
631 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
632
633 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
634 minDelta = pPdGainBoundaries[0] - 23;
635 pPdGainBoundaries[0] = 23;
636 } else {
637 minDelta = 0;
638 }
639
640 if (i == 0) {
641 if (AR_SREV_9280_10_OR_LATER(ah))
642 ss = (int16_t)(0 - (minPwrT4[i] / 2));
643 else
644 ss = 0;
645 } else {
646 ss = (int16_t)((pPdGainBoundaries[i - 1] -
647 (minPwrT4[i] / 2)) -
648 tPdGainOverlap + 1 + minDelta);
649 }
650 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
651 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
652
653 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
654 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
655 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
656 ss++;
657 }
658
659 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
660 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
661 (minPwrT4[i] / 2));
662 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
663 tgtIndex : sizeCurrVpdTable;
664
665 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
666 pPDADCValues[k++] = vpdTableI[i][ss++];
667
668 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
669 vpdTableI[i][sizeCurrVpdTable - 2]);
670 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
671
672 if (tgtIndex >= maxIndex) {
673 while ((ss <= tgtIndex) &&
674 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
675 tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
676 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
677 255 : tmpVal);
678 ss++;
679 }
680 }
681 }
682
683 while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
684 pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
685 i++;
686 }
687
688 while (k < AR5416_NUM_PDADC_VALUES) {
689 pPDADCValues[k] = pPDADCValues[k - 1];
690 k++;
691 }
692
693 return;
694 #undef TMP_VAL_VPD_TABLE
695 }
696
697 static bool ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
698 struct ath9k_channel *chan,
699 int16_t *pTxPowerIndexOffset)
700 {
701 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
702 struct cal_data_per_freq_4k *pRawDataset;
703 u8 *pCalBChans = NULL;
704 u16 pdGainOverlap_t2;
705 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
706 u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
707 u16 numPiers, i, j;
708 int16_t tMinCalPower;
709 u16 numXpdGain, xpdMask;
710 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
711 u32 reg32, regOffset, regChainOffset;
712
713 xpdMask = pEepData->modalHeader.xpdGain;
714
715 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
716 AR5416_EEP_MINOR_VER_2) {
717 pdGainOverlap_t2 =
718 pEepData->modalHeader.pdGainOverlap;
719 } else {
720 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
721 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
722 }
723
724 pCalBChans = pEepData->calFreqPier2G;
725 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
726
727 numXpdGain = 0;
728
729 for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
730 if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
731 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
732 break;
733 xpdGainValues[numXpdGain] =
734 (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
735 numXpdGain++;
736 }
737 }
738
739 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
740 (numXpdGain - 1) & 0x3);
741 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
742 xpdGainValues[0]);
743 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
744 xpdGainValues[1]);
745 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
746
747 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
748 if (AR_SREV_5416_20_OR_LATER(ah) &&
749 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
750 (i != 0)) {
751 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
752 } else
753 regChainOffset = i * 0x1000;
754
755 if (pEepData->baseEepHeader.txMask & (1 << i)) {
756 pRawDataset = pEepData->calPierData2G[i];
757
758 ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
759 pRawDataset, pCalBChans,
760 numPiers, pdGainOverlap_t2,
761 &tMinCalPower, gainBoundaries,
762 pdadcValues, numXpdGain);
763
764 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
765 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
766 SM(pdGainOverlap_t2,
767 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
768 | SM(gainBoundaries[0],
769 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
770 | SM(gainBoundaries[1],
771 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
772 | SM(gainBoundaries[2],
773 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
774 | SM(gainBoundaries[3],
775 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
776 }
777
778 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
779 for (j = 0; j < 32; j++) {
780 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
781 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
782 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
783 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
784 REG_WRITE(ah, regOffset, reg32);
785
786 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
787 "PDADC (%d,%4x): %4.4x %8.8x\n",
788 i, regChainOffset, regOffset,
789 reg32);
790 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
791 "PDADC: Chain %d | "
792 "PDADC %3d Value %3d | "
793 "PDADC %3d Value %3d | "
794 "PDADC %3d Value %3d | "
795 "PDADC %3d Value %3d |\n",
796 i, 4 * j, pdadcValues[4 * j],
797 4 * j + 1, pdadcValues[4 * j + 1],
798 4 * j + 2, pdadcValues[4 * j + 2],
799 4 * j + 3,
800 pdadcValues[4 * j + 3]);
801
802 regOffset += 4;
803 }
804 }
805 }
806
807 *pTxPowerIndexOffset = 0;
808
809 return true;
810 }
811
812 static bool ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
813 struct ath9k_channel *chan,
814 int16_t *ratesArray,
815 u16 cfgCtl,
816 u16 AntennaReduction,
817 u16 twiceMaxRegulatoryPower,
818 u16 powerLimit)
819 {
820 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
821 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
822 static const u16 tpScaleReductionTable[5] =
823 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
824
825 int i;
826 int16_t twiceLargestAntenna;
827 struct cal_ctl_data_4k *rep;
828 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
829 0, { 0, 0, 0, 0}
830 };
831 struct cal_target_power_leg targetPowerOfdmExt = {
832 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
833 0, { 0, 0, 0, 0 }
834 };
835 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
836 0, {0, 0, 0, 0}
837 };
838 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
839 u16 ctlModesFor11g[] =
840 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
841 CTL_2GHT40
842 };
843 u16 numCtlModes, *pCtlMode, ctlMode, freq;
844 struct chan_centers centers;
845 int tx_chainmask;
846 u16 twiceMinEdgePower;
847
848 tx_chainmask = ah->txchainmask;
849
850 ath9k_hw_get_channel_centers(ah, chan, &centers);
851
852 twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
853
854 twiceLargestAntenna = (int16_t)min(AntennaReduction -
855 twiceLargestAntenna, 0);
856
857 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
858
859 if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
860 maxRegAllowedPower -=
861 (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
862 }
863
864 scaledPower = min(powerLimit, maxRegAllowedPower);
865 scaledPower = max((u16)0, scaledPower);
866
867 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
868 pCtlMode = ctlModesFor11g;
869
870 ath9k_hw_get_legacy_target_powers(ah, chan,
871 pEepData->calTargetPowerCck,
872 AR5416_NUM_2G_CCK_TARGET_POWERS,
873 &targetPowerCck, 4, false);
874 ath9k_hw_get_legacy_target_powers(ah, chan,
875 pEepData->calTargetPower2G,
876 AR5416_NUM_2G_20_TARGET_POWERS,
877 &targetPowerOfdm, 4, false);
878 ath9k_hw_get_target_powers(ah, chan,
879 pEepData->calTargetPower2GHT20,
880 AR5416_NUM_2G_20_TARGET_POWERS,
881 &targetPowerHt20, 8, false);
882
883 if (IS_CHAN_HT40(chan)) {
884 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
885 ath9k_hw_get_target_powers(ah, chan,
886 pEepData->calTargetPower2GHT40,
887 AR5416_NUM_2G_40_TARGET_POWERS,
888 &targetPowerHt40, 8, true);
889 ath9k_hw_get_legacy_target_powers(ah, chan,
890 pEepData->calTargetPowerCck,
891 AR5416_NUM_2G_CCK_TARGET_POWERS,
892 &targetPowerCckExt, 4, true);
893 ath9k_hw_get_legacy_target_powers(ah, chan,
894 pEepData->calTargetPower2G,
895 AR5416_NUM_2G_20_TARGET_POWERS,
896 &targetPowerOfdmExt, 4, true);
897 }
898
899 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
900 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
901 (pCtlMode[ctlMode] == CTL_2GHT40);
902 if (isHt40CtlMode)
903 freq = centers.synth_center;
904 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
905 freq = centers.ext_center;
906 else
907 freq = centers.ctl_center;
908
909 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
910 ah->eep_ops->get_eeprom_rev(ah) <= 2)
911 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
912
913 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
914 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
915 "EXT_ADDITIVE %d\n",
916 ctlMode, numCtlModes, isHt40CtlMode,
917 (pCtlMode[ctlMode] & EXT_ADDITIVE));
918
919 for (i = 0; (i < AR5416_NUM_CTLS) &&
920 pEepData->ctlIndex[i]; i++) {
921 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
922 " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
923 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
924 "chan %d\n",
925 i, cfgCtl, pCtlMode[ctlMode],
926 pEepData->ctlIndex[i], chan->channel);
927
928 if ((((cfgCtl & ~CTL_MODE_M) |
929 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
930 pEepData->ctlIndex[i]) ||
931 (((cfgCtl & ~CTL_MODE_M) |
932 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
933 ((pEepData->ctlIndex[i] & CTL_MODE_M) |
934 SD_NO_CTL))) {
935 rep = &(pEepData->ctlData[i]);
936
937 twiceMinEdgePower =
938 ath9k_hw_get_max_edge_power(freq,
939 rep->ctlEdges[ar5416_get_ntxchains
940 (tx_chainmask) - 1],
941 IS_CHAN_2GHZ(chan),
942 AR5416_EEP4K_NUM_BAND_EDGES);
943
944 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
945 " MATCH-EE_IDX %d: ch %d is2 %d "
946 "2xMinEdge %d chainmask %d chains %d\n",
947 i, freq, IS_CHAN_2GHZ(chan),
948 twiceMinEdgePower, tx_chainmask,
949 ar5416_get_ntxchains
950 (tx_chainmask));
951 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
952 twiceMaxEdgePower =
953 min(twiceMaxEdgePower,
954 twiceMinEdgePower);
955 } else {
956 twiceMaxEdgePower = twiceMinEdgePower;
957 break;
958 }
959 }
960 }
961
962 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
963
964 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
965 " SEL-Min ctlMode %d pCtlMode %d "
966 "2xMaxEdge %d sP %d minCtlPwr %d\n",
967 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
968 scaledPower, minCtlPower);
969
970 switch (pCtlMode[ctlMode]) {
971 case CTL_11B:
972 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
973 i++) {
974 targetPowerCck.tPow2x[i] =
975 min((u16)targetPowerCck.tPow2x[i],
976 minCtlPower);
977 }
978 break;
979 case CTL_11G:
980 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
981 i++) {
982 targetPowerOfdm.tPow2x[i] =
983 min((u16)targetPowerOfdm.tPow2x[i],
984 minCtlPower);
985 }
986 break;
987 case CTL_2GHT20:
988 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
989 i++) {
990 targetPowerHt20.tPow2x[i] =
991 min((u16)targetPowerHt20.tPow2x[i],
992 minCtlPower);
993 }
994 break;
995 case CTL_11B_EXT:
996 targetPowerCckExt.tPow2x[0] = min((u16)
997 targetPowerCckExt.tPow2x[0],
998 minCtlPower);
999 break;
1000 case CTL_11G_EXT:
1001 targetPowerOfdmExt.tPow2x[0] = min((u16)
1002 targetPowerOfdmExt.tPow2x[0],
1003 minCtlPower);
1004 break;
1005 case CTL_2GHT40:
1006 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
1007 i++) {
1008 targetPowerHt40.tPow2x[i] =
1009 min((u16)targetPowerHt40.tPow2x[i],
1010 minCtlPower);
1011 }
1012 break;
1013 default:
1014 break;
1015 }
1016 }
1017
1018 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1019 ratesArray[rate18mb] = ratesArray[rate24mb] =
1020 targetPowerOfdm.tPow2x[0];
1021 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1022 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1023 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1024 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1025
1026 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1027 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1028
1029 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1030 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
1031 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
1032 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
1033
1034 if (IS_CHAN_HT40(chan)) {
1035 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1036 ratesArray[rateHt40_0 + i] =
1037 targetPowerHt40.tPow2x[i];
1038 }
1039 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1040 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1041 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1042 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
1043 }
1044 return true;
1045 }
1046
1047 static int ath9k_hw_4k_set_txpower(struct ath_hw *ah,
1048 struct ath9k_channel *chan,
1049 u16 cfgCtl,
1050 u8 twiceAntennaReduction,
1051 u8 twiceMaxRegulatoryPower,
1052 u8 powerLimit)
1053 {
1054 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
1055 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
1056 int16_t ratesArray[Ar5416RateSize];
1057 int16_t txPowerIndexOffset = 0;
1058 u8 ht40PowerIncForPdadc = 2;
1059 int i;
1060
1061 memset(ratesArray, 0, sizeof(ratesArray));
1062
1063 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1064 AR5416_EEP_MINOR_VER_2) {
1065 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1066 }
1067
1068 if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan,
1069 &ratesArray[0], cfgCtl,
1070 twiceAntennaReduction,
1071 twiceMaxRegulatoryPower,
1072 powerLimit)) {
1073 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1074 "ath9k_hw_set_txpower: unable to set "
1075 "tx power per rate table\n");
1076 return -EIO;
1077 }
1078
1079 if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) {
1080 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1081 "ath9k_hw_set_txpower: unable to set power table\n");
1082 return -EIO;
1083 }
1084
1085 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1086 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1087 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1088 ratesArray[i] = AR5416_MAX_RATE_POWER;
1089 }
1090
1091 if (AR_SREV_9280_10_OR_LATER(ah)) {
1092 for (i = 0; i < Ar5416RateSize; i++)
1093 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1094 }
1095
1096 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1097 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1098 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1099 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1100 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1101 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1102 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1103 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1104 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1105 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1106
1107 if (IS_CHAN_2GHZ(chan)) {
1108 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1109 ATH9K_POW_SM(ratesArray[rate2s], 24)
1110 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1111 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1112 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1113 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1114 ATH9K_POW_SM(ratesArray[rate11s], 24)
1115 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1116 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1117 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1118 }
1119
1120 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1121 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1122 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1123 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1124 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1125 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1126 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1127 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1128 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1129 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1130
1131 if (IS_CHAN_HT40(chan)) {
1132 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1133 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1134 ht40PowerIncForPdadc, 24)
1135 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1136 ht40PowerIncForPdadc, 16)
1137 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1138 ht40PowerIncForPdadc, 8)
1139 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1140 ht40PowerIncForPdadc, 0));
1141 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1142 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1143 ht40PowerIncForPdadc, 24)
1144 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1145 ht40PowerIncForPdadc, 16)
1146 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1147 ht40PowerIncForPdadc, 8)
1148 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1149 ht40PowerIncForPdadc, 0));
1150
1151 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1152 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1153 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1154 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1155 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1156 }
1157
1158 i = rate6mb;
1159
1160 if (IS_CHAN_HT40(chan))
1161 i = rateHt40_0;
1162 else if (IS_CHAN_HT20(chan))
1163 i = rateHt20_0;
1164
1165 if (AR_SREV_9280_10_OR_LATER(ah))
1166 ah->regulatory.max_power_level =
1167 ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
1168 else
1169 ah->regulatory.max_power_level = ratesArray[i];
1170
1171 return 0;
1172 }
1173
1174 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
1175 struct ath9k_channel *chan)
1176 {
1177 struct modal_eep_4k_header *pModal;
1178 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
1179 u8 biaslevel;
1180
1181 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
1182 return;
1183
1184 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
1185 return;
1186
1187 pModal = &eep->modalHeader;
1188
1189 if (pModal->xpaBiasLvl != 0xff) {
1190 biaslevel = pModal->xpaBiasLvl;
1191 INI_RA(&ah->iniAddac, 7, 1) =
1192 (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
1193 }
1194 }
1195
1196 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
1197 struct modal_eep_4k_header *pModal,
1198 struct ar5416_eeprom_4k *eep,
1199 u8 txRxAttenLocal, int regChainOffset)
1200 {
1201 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
1202 pModal->antCtrlChain[0]);
1203
1204 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
1205 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
1206 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
1207 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1208 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1209 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1210
1211 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1212 AR5416_EEP_MINOR_VER_3) {
1213 txRxAttenLocal = pModal->txRxAttenCh[0];
1214
1215 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1216 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
1217 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1218 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
1219 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1220 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1221 pModal->xatten2Margin[0]);
1222 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1223 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
1224 }
1225
1226 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
1227 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1228 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
1229 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
1230
1231 if (AR_SREV_9285_11(ah))
1232 REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
1233 }
1234
1235 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
1236 struct ath9k_channel *chan)
1237 {
1238 struct modal_eep_4k_header *pModal;
1239 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
1240 u8 txRxAttenLocal;
1241 u8 ob[5], db1[5], db2[5];
1242 u8 ant_div_control1, ant_div_control2;
1243 u32 regVal;
1244
1245 pModal = &eep->modalHeader;
1246 txRxAttenLocal = 23;
1247
1248 REG_WRITE(ah, AR_PHY_SWITCH_COM,
1249 ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
1250
1251 /* Single chain for 4K EEPROM*/
1252 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal, 0);
1253
1254 /* Initialize Ant Diversity settings from EEPROM */
1255 if (pModal->version == 3) {
1256 ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf);
1257 ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf);
1258 regVal = REG_READ(ah, 0x99ac);
1259 regVal &= (~(0x7f000000));
1260 regVal |= ((ant_div_control1 & 0x1) << 24);
1261 regVal |= (((ant_div_control1 >> 1) & 0x1) << 29);
1262 regVal |= (((ant_div_control1 >> 2) & 0x1) << 30);
1263 regVal |= ((ant_div_control2 & 0x3) << 25);
1264 regVal |= (((ant_div_control2 >> 2) & 0x3) << 27);
1265 REG_WRITE(ah, 0x99ac, regVal);
1266 regVal = REG_READ(ah, 0x99ac);
1267 regVal = REG_READ(ah, 0xa208);
1268 regVal &= (~(0x1 << 13));
1269 regVal |= (((ant_div_control1 >> 3) & 0x1) << 13);
1270 REG_WRITE(ah, 0xa208, regVal);
1271 regVal = REG_READ(ah, 0xa208);
1272 }
1273
1274 if (pModal->version >= 2) {
1275 ob[0] = (pModal->ob_01 & 0xf);
1276 ob[1] = (pModal->ob_01 >> 4) & 0xf;
1277 ob[2] = (pModal->ob_234 & 0xf);
1278 ob[3] = ((pModal->ob_234 >> 4) & 0xf);
1279 ob[4] = ((pModal->ob_234 >> 8) & 0xf);
1280
1281 db1[0] = (pModal->db1_01 & 0xf);
1282 db1[1] = ((pModal->db1_01 >> 4) & 0xf);
1283 db1[2] = (pModal->db1_234 & 0xf);
1284 db1[3] = ((pModal->db1_234 >> 4) & 0xf);
1285 db1[4] = ((pModal->db1_234 >> 8) & 0xf);
1286
1287 db2[0] = (pModal->db2_01 & 0xf);
1288 db2[1] = ((pModal->db2_01 >> 4) & 0xf);
1289 db2[2] = (pModal->db2_234 & 0xf);
1290 db2[3] = ((pModal->db2_234 >> 4) & 0xf);
1291 db2[4] = ((pModal->db2_234 >> 8) & 0xf);
1292
1293 } else if (pModal->version == 1) {
1294 ob[0] = (pModal->ob_01 & 0xf);
1295 ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf;
1296 db1[0] = (pModal->db1_01 & 0xf);
1297 db1[1] = db1[2] = db1[3] =
1298 db1[4] = ((pModal->db1_01 >> 4) & 0xf);
1299 db2[0] = (pModal->db2_01 & 0xf);
1300 db2[1] = db2[2] = db2[3] =
1301 db2[4] = ((pModal->db2_01 >> 4) & 0xf);
1302 } else {
1303 int i;
1304 for (i = 0; i < 5; i++) {
1305 ob[i] = pModal->ob_01;
1306 db1[i] = pModal->db1_01;
1307 db2[i] = pModal->db1_01;
1308 }
1309 }
1310
1311 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1312 AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]);
1313 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1314 AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]);
1315 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1316 AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]);
1317 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1318 AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]);
1319 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1320 AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]);
1321
1322 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1323 AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]);
1324 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1325 AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]);
1326 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1327 AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]);
1328 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1329 AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]);
1330 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1331 AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]);
1332
1333 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1334 AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]);
1335 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1336 AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]);
1337 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1338 AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]);
1339 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1340 AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]);
1341 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1342 AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]);
1343
1344
1345 if (AR_SREV_9285_11(ah))
1346 REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
1347
1348 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1349 pModal->switchSettling);
1350 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1351 pModal->adcDesiredSize);
1352
1353 REG_WRITE(ah, AR_PHY_RF_CTL4,
1354 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1355 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1356 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
1357 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1358
1359 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1360 pModal->txEndToRxOn);
1361 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1362 pModal->thresh62);
1363 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1364 pModal->thresh62);
1365
1366 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1367 AR5416_EEP_MINOR_VER_2) {
1368 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1369 pModal->txFrameToDataStart);
1370 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1371 pModal->txFrameToPaOn);
1372 }
1373
1374 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1375 AR5416_EEP_MINOR_VER_3) {
1376 if (IS_CHAN_HT40(chan))
1377 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1378 AR_PHY_SETTLING_SWITCH,
1379 pModal->swSettleHt40);
1380 }
1381 }
1382
1383 static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
1384 struct ath9k_channel *chan)
1385 {
1386 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
1387 struct modal_eep_4k_header *pModal = &eep->modalHeader;
1388
1389 return pModal->antCtrlCommon & 0xFFFF;
1390 }
1391
1392 static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
1393 enum ieee80211_band freq_band)
1394 {
1395 return 1;
1396 }
1397
1398 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1399 {
1400 #define EEP_MAP4K_SPURCHAN \
1401 (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1402
1403 u16 spur_val = AR_NO_SPUR;
1404
1405 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1406 "Getting spur idx %d is2Ghz. %d val %x\n",
1407 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1408
1409 switch (ah->config.spurmode) {
1410 case SPUR_DISABLE:
1411 break;
1412 case SPUR_ENABLE_IOCTL:
1413 spur_val = ah->config.spurchans[i][is2GHz];
1414 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1415 "Getting spur val from new loc. %d\n", spur_val);
1416 break;
1417 case SPUR_ENABLE_EEPROM:
1418 spur_val = EEP_MAP4K_SPURCHAN;
1419 break;
1420 }
1421
1422 return spur_val;
1423
1424 #undef EEP_MAP4K_SPURCHAN
1425 }
1426
1427 static struct eeprom_ops eep_4k_ops = {
1428 .check_eeprom = ath9k_hw_4k_check_eeprom,
1429 .get_eeprom = ath9k_hw_4k_get_eeprom,
1430 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1431 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1432 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1433 .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
1434 .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
1435 .set_board_values = ath9k_hw_4k_set_board_values,
1436 .set_addac = ath9k_hw_4k_set_addac,
1437 .set_txpower = ath9k_hw_4k_set_txpower,
1438 .get_spur_channel = ath9k_hw_4k_get_spur_channel
1439 };
1440
1441 /************************************************/
1442 /* EEPROM Operations for non-4K (Default) cards */
1443 /************************************************/
1444
1445 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
1446 {
1447 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
1448 }
1449
1450 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
1451 {
1452 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
1453 }
1454
1455 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
1456 {
1457 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
1458 u16 *eep_data = (u16 *)&ah->eeprom.def;
1459 int addr, ar5416_eep_start_loc = 0x100;
1460
1461 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
1462 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
1463 eep_data)) {
1464 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1465 "Unable to read eeprom region\n");
1466 return false;
1467 }
1468 eep_data++;
1469 }
1470 return true;
1471 #undef SIZE_EEPROM_DEF
1472 }
1473
1474 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
1475 {
1476 struct ar5416_eeprom_def *eep =
1477 (struct ar5416_eeprom_def *) &ah->eeprom.def;
1478 u16 *eepdata, temp, magic, magic2;
1479 u32 sum = 0, el;
1480 bool need_swap = false;
1481 int i, addr, size;
1482
1483 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
1484 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Reading Magic # failed\n");
1485 return false;
1486 }
1487
1488 if (!ath9k_hw_use_flash(ah)) {
1489 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1490 "Read Magic = 0x%04X\n", magic);
1491
1492 if (magic != AR5416_EEPROM_MAGIC) {
1493 magic2 = swab16(magic);
1494
1495 if (magic2 == AR5416_EEPROM_MAGIC) {
1496 size = sizeof(struct ar5416_eeprom_def);
1497 need_swap = true;
1498 eepdata = (u16 *) (&ah->eeprom);
1499
1500 for (addr = 0; addr < size / sizeof(u16); addr++) {
1501 temp = swab16(*eepdata);
1502 *eepdata = temp;
1503 eepdata++;
1504 }
1505 } else {
1506 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1507 "Invalid EEPROM Magic. "
1508 "Endianness mismatch.\n");
1509 return -EINVAL;
1510 }
1511 }
1512 }
1513
1514 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
1515 need_swap ? "True" : "False");
1516
1517 if (need_swap)
1518 el = swab16(ah->eeprom.def.baseEepHeader.length);
1519 else
1520 el = ah->eeprom.def.baseEepHeader.length;
1521
1522 if (el > sizeof(struct ar5416_eeprom_def))
1523 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
1524 else
1525 el = el / sizeof(u16);
1526
1527 eepdata = (u16 *)(&ah->eeprom);
1528
1529 for (i = 0; i < el; i++)
1530 sum ^= *eepdata++;
1531
1532 if (need_swap) {
1533 u32 integer, j;
1534 u16 word;
1535
1536 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1537 "EEPROM Endianness is not native.. Changing.\n");
1538
1539 word = swab16(eep->baseEepHeader.length);
1540 eep->baseEepHeader.length = word;
1541
1542 word = swab16(eep->baseEepHeader.checksum);
1543 eep->baseEepHeader.checksum = word;
1544
1545 word = swab16(eep->baseEepHeader.version);
1546 eep->baseEepHeader.version = word;
1547
1548 word = swab16(eep->baseEepHeader.regDmn[0]);
1549 eep->baseEepHeader.regDmn[0] = word;
1550
1551 word = swab16(eep->baseEepHeader.regDmn[1]);
1552 eep->baseEepHeader.regDmn[1] = word;
1553
1554 word = swab16(eep->baseEepHeader.rfSilent);
1555 eep->baseEepHeader.rfSilent = word;
1556
1557 word = swab16(eep->baseEepHeader.blueToothOptions);
1558 eep->baseEepHeader.blueToothOptions = word;
1559
1560 word = swab16(eep->baseEepHeader.deviceCap);
1561 eep->baseEepHeader.deviceCap = word;
1562
1563 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
1564 struct modal_eep_header *pModal =
1565 &eep->modalHeader[j];
1566 integer = swab32(pModal->antCtrlCommon);
1567 pModal->antCtrlCommon = integer;
1568
1569 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1570 integer = swab32(pModal->antCtrlChain[i]);
1571 pModal->antCtrlChain[i] = integer;
1572 }
1573
1574 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
1575 word = swab16(pModal->spurChans[i].spurChan);
1576 pModal->spurChans[i].spurChan = word;
1577 }
1578 }
1579 }
1580
1581 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
1582 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
1583 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1584 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
1585 sum, ah->eep_ops->get_eeprom_ver(ah));
1586 return -EINVAL;
1587 }
1588
1589 return 0;
1590 }
1591
1592 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
1593 enum eeprom_param param)
1594 {
1595 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1596 struct modal_eep_header *pModal = eep->modalHeader;
1597 struct base_eep_header *pBase = &eep->baseEepHeader;
1598
1599 switch (param) {
1600 case EEP_NFTHRESH_5:
1601 return pModal[0].noiseFloorThreshCh[0];
1602 case EEP_NFTHRESH_2:
1603 return pModal[1].noiseFloorThreshCh[0];
1604 case AR_EEPROM_MAC(0):
1605 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
1606 case AR_EEPROM_MAC(1):
1607 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
1608 case AR_EEPROM_MAC(2):
1609 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
1610 case EEP_REG_0:
1611 return pBase->regDmn[0];
1612 case EEP_REG_1:
1613 return pBase->regDmn[1];
1614 case EEP_OP_CAP:
1615 return pBase->deviceCap;
1616 case EEP_OP_MODE:
1617 return pBase->opCapFlags;
1618 case EEP_RF_SILENT:
1619 return pBase->rfSilent;
1620 case EEP_OB_5:
1621 return pModal[0].ob;
1622 case EEP_DB_5:
1623 return pModal[0].db;
1624 case EEP_OB_2:
1625 return pModal[1].ob;
1626 case EEP_DB_2:
1627 return pModal[1].db;
1628 case EEP_MINOR_REV:
1629 return AR5416_VER_MASK;
1630 case EEP_TX_MASK:
1631 return pBase->txMask;
1632 case EEP_RX_MASK:
1633 return pBase->rxMask;
1634 case EEP_RXGAIN_TYPE:
1635 return pBase->rxGainType;
1636 case EEP_TXGAIN_TYPE:
1637 return pBase->txGainType;
1638 case EEP_OL_PWRCTRL:
1639 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
1640 return pBase->openLoopPwrCntl ? true : false;
1641 else
1642 return false;
1643 case EEP_RC_CHAIN_MASK:
1644 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
1645 return pBase->rcChainMask;
1646 else
1647 return 0;
1648 case EEP_DAC_HPWR_5G:
1649 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
1650 return pBase->dacHiPwrMode_5G;
1651 else
1652 return 0;
1653 case EEP_FRAC_N_5G:
1654 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
1655 return pBase->frac_n_5g;
1656 else
1657 return 0;
1658 default:
1659 return 0;
1660 }
1661 }
1662
1663 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
1664 struct modal_eep_header *pModal,
1665 struct ar5416_eeprom_def *eep,
1666 u8 txRxAttenLocal, int regChainOffset, int i)
1667 {
1668 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
1669 txRxAttenLocal = pModal->txRxAttenCh[i];
1670
1671 if (AR_SREV_9280_10_OR_LATER(ah)) {
1672 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1673 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1674 pModal->bswMargin[i]);
1675 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1676 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1677 pModal->bswAtten[i]);
1678 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1679 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1680 pModal->xatten2Margin[i]);
1681 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1682 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1683 pModal->xatten2Db[i]);
1684 } else {
1685 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1686 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
1687 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
1688 | SM(pModal-> bswMargin[i],
1689 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1690 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1691 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
1692 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
1693 | SM(pModal->bswAtten[i],
1694 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1695 }
1696 }
1697
1698 if (AR_SREV_9280_10_OR_LATER(ah)) {
1699 REG_RMW_FIELD(ah,
1700 AR_PHY_RXGAIN + regChainOffset,
1701 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1702 REG_RMW_FIELD(ah,
1703 AR_PHY_RXGAIN + regChainOffset,
1704 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
1705 } else {
1706 REG_WRITE(ah,
1707 AR_PHY_RXGAIN + regChainOffset,
1708 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
1709 ~AR_PHY_RXGAIN_TXRX_ATTEN)
1710 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
1711 REG_WRITE(ah,
1712 AR_PHY_GAIN_2GHZ + regChainOffset,
1713 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
1714 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1715 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1716 }
1717 }
1718
1719 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
1720 struct ath9k_channel *chan)
1721 {
1722 struct modal_eep_header *pModal;
1723 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1724 int i, regChainOffset;
1725 u8 txRxAttenLocal;
1726
1727 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1728 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
1729
1730 REG_WRITE(ah, AR_PHY_SWITCH_COM,
1731 ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
1732
1733 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1734 if (AR_SREV_9280(ah)) {
1735 if (i >= 2)
1736 break;
1737 }
1738
1739 if (AR_SREV_5416_20_OR_LATER(ah) &&
1740 (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
1741 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1742 else
1743 regChainOffset = i * 0x1000;
1744
1745 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
1746 pModal->antCtrlChain[i]);
1747
1748 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
1749 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
1750 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
1751 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1752 SM(pModal->iqCalICh[i],
1753 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1754 SM(pModal->iqCalQCh[i],
1755 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1756
1757 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
1758 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
1759 regChainOffset, i);
1760 }
1761
1762 if (AR_SREV_9280_10_OR_LATER(ah)) {
1763 if (IS_CHAN_2GHZ(chan)) {
1764 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
1765 AR_AN_RF2G1_CH0_OB,
1766 AR_AN_RF2G1_CH0_OB_S,
1767 pModal->ob);
1768 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
1769 AR_AN_RF2G1_CH0_DB,
1770 AR_AN_RF2G1_CH0_DB_S,
1771 pModal->db);
1772 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
1773 AR_AN_RF2G1_CH1_OB,
1774 AR_AN_RF2G1_CH1_OB_S,
1775 pModal->ob_ch1);
1776 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
1777 AR_AN_RF2G1_CH1_DB,
1778 AR_AN_RF2G1_CH1_DB_S,
1779 pModal->db_ch1);
1780 } else {
1781 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
1782 AR_AN_RF5G1_CH0_OB5,
1783 AR_AN_RF5G1_CH0_OB5_S,
1784 pModal->ob);
1785 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
1786 AR_AN_RF5G1_CH0_DB5,
1787 AR_AN_RF5G1_CH0_DB5_S,
1788 pModal->db);
1789 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
1790 AR_AN_RF5G1_CH1_OB5,
1791 AR_AN_RF5G1_CH1_OB5_S,
1792 pModal->ob_ch1);
1793 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
1794 AR_AN_RF5G1_CH1_DB5,
1795 AR_AN_RF5G1_CH1_DB5_S,
1796 pModal->db_ch1);
1797 }
1798 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
1799 AR_AN_TOP2_XPABIAS_LVL,
1800 AR_AN_TOP2_XPABIAS_LVL_S,
1801 pModal->xpaBiasLvl);
1802 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
1803 AR_AN_TOP2_LOCALBIAS,
1804 AR_AN_TOP2_LOCALBIAS_S,
1805 pModal->local_bias);
1806 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1807 pModal->force_xpaon);
1808 }
1809
1810 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1811 pModal->switchSettling);
1812 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1813 pModal->adcDesiredSize);
1814
1815 if (!AR_SREV_9280_10_OR_LATER(ah))
1816 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1817 AR_PHY_DESIRED_SZ_PGA,
1818 pModal->pgaDesiredSize);
1819
1820 REG_WRITE(ah, AR_PHY_RF_CTL4,
1821 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1822 | SM(pModal->txEndToXpaOff,
1823 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1824 | SM(pModal->txFrameToXpaOn,
1825 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1826 | SM(pModal->txFrameToXpaOn,
1827 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1828
1829 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1830 pModal->txEndToRxOn);
1831
1832 if (AR_SREV_9280_10_OR_LATER(ah)) {
1833 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1834 pModal->thresh62);
1835 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
1836 AR_PHY_EXT_CCA0_THRESH62,
1837 pModal->thresh62);
1838 } else {
1839 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1840 pModal->thresh62);
1841 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1842 AR_PHY_EXT_CCA_THRESH62,
1843 pModal->thresh62);
1844 }
1845
1846 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1847 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1848 AR_PHY_TX_END_DATA_START,
1849 pModal->txFrameToDataStart);
1850 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1851 pModal->txFrameToPaOn);
1852 }
1853
1854 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
1855 if (IS_CHAN_HT40(chan))
1856 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1857 AR_PHY_SETTLING_SWITCH,
1858 pModal->swSettleHt40);
1859 }
1860
1861 if (AR_SREV_9280_20_OR_LATER(ah) &&
1862 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
1863 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
1864 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
1865 pModal->miscBits);
1866
1867
1868 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
1869 if (IS_CHAN_2GHZ(chan))
1870 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1871 eep->baseEepHeader.dacLpMode);
1872 else if (eep->baseEepHeader.dacHiPwrMode_5G)
1873 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
1874 else
1875 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1876 eep->baseEepHeader.dacLpMode);
1877
1878 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
1879 pModal->miscBits >> 2);
1880
1881 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
1882 AR_PHY_TX_DESIRED_SCALE_CCK,
1883 eep->baseEepHeader.desiredScaleCCK);
1884 }
1885 }
1886
1887 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
1888 struct ath9k_channel *chan)
1889 {
1890 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
1891 struct modal_eep_header *pModal;
1892 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1893 u8 biaslevel;
1894
1895 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
1896 return;
1897
1898 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
1899 return;
1900
1901 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1902
1903 if (pModal->xpaBiasLvl != 0xff) {
1904 biaslevel = pModal->xpaBiasLvl;
1905 } else {
1906 u16 resetFreqBin, freqBin, freqCount = 0;
1907 struct chan_centers centers;
1908
1909 ath9k_hw_get_channel_centers(ah, chan, &centers);
1910
1911 resetFreqBin = FREQ2FBIN(centers.synth_center,
1912 IS_CHAN_2GHZ(chan));
1913 freqBin = XPA_LVL_FREQ(0) & 0xff;
1914 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
1915
1916 freqCount++;
1917
1918 while (freqCount < 3) {
1919 if (XPA_LVL_FREQ(freqCount) == 0x0)
1920 break;
1921
1922 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
1923 if (resetFreqBin >= freqBin)
1924 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
1925 else
1926 break;
1927 freqCount++;
1928 }
1929 }
1930
1931 if (IS_CHAN_2GHZ(chan)) {
1932 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
1933 7, 1) & (~0x18)) | biaslevel << 3;
1934 } else {
1935 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
1936 6, 1) & (~0xc0)) | biaslevel << 6;
1937 }
1938 #undef XPA_LVL_FREQ
1939 }
1940
1941 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
1942 struct ath9k_channel *chan,
1943 struct cal_data_per_freq *pRawDataSet,
1944 u8 *bChans, u16 availPiers,
1945 u16 tPdGainOverlap, int16_t *pMinCalPower,
1946 u16 *pPdGainBoundaries, u8 *pPDADCValues,
1947 u16 numXpdGains)
1948 {
1949 int i, j, k;
1950 int16_t ss;
1951 u16 idxL = 0, idxR = 0, numPiers;
1952 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
1953 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1954 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
1955 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1956 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
1957 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1958
1959 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
1960 u8 minPwrT4[AR5416_NUM_PD_GAINS];
1961 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
1962 int16_t vpdStep;
1963 int16_t tmpVal;
1964 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
1965 bool match;
1966 int16_t minDelta = 0;
1967 struct chan_centers centers;
1968
1969 ath9k_hw_get_channel_centers(ah, chan, &centers);
1970
1971 for (numPiers = 0; numPiers < availPiers; numPiers++) {
1972 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
1973 break;
1974 }
1975
1976 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
1977 IS_CHAN_2GHZ(chan)),
1978 bChans, numPiers, &idxL, &idxR);
1979
1980 if (match) {
1981 for (i = 0; i < numXpdGains; i++) {
1982 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
1983 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
1984 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
1985 pRawDataSet[idxL].pwrPdg[i],
1986 pRawDataSet[idxL].vpdPdg[i],
1987 AR5416_PD_GAIN_ICEPTS,
1988 vpdTableI[i]);
1989 }
1990 } else {
1991 for (i = 0; i < numXpdGains; i++) {
1992 pVpdL = pRawDataSet[idxL].vpdPdg[i];
1993 pPwrL = pRawDataSet[idxL].pwrPdg[i];
1994 pVpdR = pRawDataSet[idxR].vpdPdg[i];
1995 pPwrR = pRawDataSet[idxR].pwrPdg[i];
1996
1997 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
1998
1999 maxPwrT4[i] =
2000 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
2001 pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2002
2003
2004 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
2005 pPwrL, pVpdL,
2006 AR5416_PD_GAIN_ICEPTS,
2007 vpdTableL[i]);
2008 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
2009 pPwrR, pVpdR,
2010 AR5416_PD_GAIN_ICEPTS,
2011 vpdTableR[i]);
2012
2013 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2014 vpdTableI[i][j] =
2015 (u8)(ath9k_hw_interpolate((u16)
2016 FREQ2FBIN(centers.
2017 synth_center,
2018 IS_CHAN_2GHZ
2019 (chan)),
2020 bChans[idxL], bChans[idxR],
2021 vpdTableL[i][j], vpdTableR[i][j]));
2022 }
2023 }
2024 }
2025
2026 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2027
2028 k = 0;
2029
2030 for (i = 0; i < numXpdGains; i++) {
2031 if (i == (numXpdGains - 1))
2032 pPdGainBoundaries[i] =
2033 (u16)(maxPwrT4[i] / 2);
2034 else
2035 pPdGainBoundaries[i] =
2036 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
2037
2038 pPdGainBoundaries[i] =
2039 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2040
2041 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
2042 minDelta = pPdGainBoundaries[0] - 23;
2043 pPdGainBoundaries[0] = 23;
2044 } else {
2045 minDelta = 0;
2046 }
2047
2048 if (i == 0) {
2049 if (AR_SREV_9280_10_OR_LATER(ah))
2050 ss = (int16_t)(0 - (minPwrT4[i] / 2));
2051 else
2052 ss = 0;
2053 } else {
2054 ss = (int16_t)((pPdGainBoundaries[i - 1] -
2055 (minPwrT4[i] / 2)) -
2056 tPdGainOverlap + 1 + minDelta);
2057 }
2058 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2059 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2060
2061 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2062 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2063 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
2064 ss++;
2065 }
2066
2067 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
2068 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
2069 (minPwrT4[i] / 2));
2070 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
2071 tgtIndex : sizeCurrVpdTable;
2072
2073 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2074 pPDADCValues[k++] = vpdTableI[i][ss++];
2075 }
2076
2077 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
2078 vpdTableI[i][sizeCurrVpdTable - 2]);
2079 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2080
2081 if (tgtIndex > maxIndex) {
2082 while ((ss <= tgtIndex) &&
2083 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2084 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2085 (ss - maxIndex + 1) * vpdStep));
2086 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
2087 255 : tmpVal);
2088 ss++;
2089 }
2090 }
2091 }
2092
2093 while (i < AR5416_PD_GAINS_IN_MASK) {
2094 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
2095 i++;
2096 }
2097
2098 while (k < AR5416_NUM_PDADC_VALUES) {
2099 pPDADCValues[k] = pPDADCValues[k - 1];
2100 k++;
2101 }
2102
2103 return;
2104 }
2105
2106 static bool ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
2107 struct ath9k_channel *chan,
2108 int16_t *pTxPowerIndexOffset)
2109 {
2110 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
2111 #define SM_PDGAIN_B(x, y) \
2112 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
2113
2114 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
2115 struct cal_data_per_freq *pRawDataset;
2116 u8 *pCalBChans = NULL;
2117 u16 pdGainOverlap_t2;
2118 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
2119 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2120 u16 numPiers, i, j;
2121 int16_t tMinCalPower;
2122 u16 numXpdGain, xpdMask;
2123 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
2124 u32 reg32, regOffset, regChainOffset;
2125 int16_t modalIdx;
2126
2127 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
2128 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
2129
2130 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2131 AR5416_EEP_MINOR_VER_2) {
2132 pdGainOverlap_t2 =
2133 pEepData->modalHeader[modalIdx].pdGainOverlap;
2134 } else {
2135 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
2136 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2137 }
2138
2139 if (IS_CHAN_2GHZ(chan)) {
2140 pCalBChans = pEepData->calFreqPier2G;
2141 numPiers = AR5416_NUM_2G_CAL_PIERS;
2142 } else {
2143 pCalBChans = pEepData->calFreqPier5G;
2144 numPiers = AR5416_NUM_5G_CAL_PIERS;
2145 }
2146
2147 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
2148 pRawDataset = pEepData->calPierData2G[0];
2149 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
2150 pRawDataset)->vpdPdg[0][0];
2151 }
2152
2153 numXpdGain = 0;
2154
2155 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2156 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2157 if (numXpdGain >= AR5416_NUM_PD_GAINS)
2158 break;
2159 xpdGainValues[numXpdGain] =
2160 (u16)(AR5416_PD_GAINS_IN_MASK - i);
2161 numXpdGain++;
2162 }
2163 }
2164
2165 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
2166 (numXpdGain - 1) & 0x3);
2167 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
2168 xpdGainValues[0]);
2169 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
2170 xpdGainValues[1]);
2171 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
2172 xpdGainValues[2]);
2173
2174 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2175 if (AR_SREV_5416_20_OR_LATER(ah) &&
2176 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
2177 (i != 0)) {
2178 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
2179 } else
2180 regChainOffset = i * 0x1000;
2181
2182 if (pEepData->baseEepHeader.txMask & (1 << i)) {
2183 if (IS_CHAN_2GHZ(chan))
2184 pRawDataset = pEepData->calPierData2G[i];
2185 else
2186 pRawDataset = pEepData->calPierData5G[i];
2187
2188
2189 if (OLC_FOR_AR9280_20_LATER) {
2190 u8 pcdacIdx;
2191 u8 txPower;
2192
2193 ath9k_get_txgain_index(ah, chan,
2194 (struct calDataPerFreqOpLoop *)pRawDataset,
2195 pCalBChans, numPiers, &txPower, &pcdacIdx);
2196 ath9k_olc_get_pdadcs(ah, pcdacIdx,
2197 txPower/2, pdadcValues);
2198 } else {
2199 ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
2200 chan, pRawDataset,
2201 pCalBChans, numPiers,
2202 pdGainOverlap_t2,
2203 &tMinCalPower,
2204 gainBoundaries,
2205 pdadcValues,
2206 numXpdGain);
2207 }
2208
2209 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
2210 if (OLC_FOR_AR9280_20_LATER) {
2211 REG_WRITE(ah,
2212 AR_PHY_TPCRG5 + regChainOffset,
2213 SM(0x6,
2214 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2215 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
2216 SM_PD_GAIN(3) | SM_PD_GAIN(4));
2217 } else {
2218 REG_WRITE(ah,
2219 AR_PHY_TPCRG5 + regChainOffset,
2220 SM(pdGainOverlap_t2,
2221 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
2222 SM_PDGAIN_B(0, 1) |
2223 SM_PDGAIN_B(1, 2) |
2224 SM_PDGAIN_B(2, 3) |
2225 SM_PDGAIN_B(3, 4));
2226 }
2227 }
2228
2229 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2230 for (j = 0; j < 32; j++) {
2231 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
2232 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
2233 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
2234 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
2235 REG_WRITE(ah, regOffset, reg32);
2236
2237 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
2238 "PDADC (%d,%4x): %4.4x %8.8x\n",
2239 i, regChainOffset, regOffset,
2240 reg32);
2241 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
2242 "PDADC: Chain %d | PDADC %3d "
2243 "Value %3d | PDADC %3d Value %3d | "
2244 "PDADC %3d Value %3d | PDADC %3d "
2245 "Value %3d |\n",
2246 i, 4 * j, pdadcValues[4 * j],
2247 4 * j + 1, pdadcValues[4 * j + 1],
2248 4 * j + 2, pdadcValues[4 * j + 2],
2249 4 * j + 3,
2250 pdadcValues[4 * j + 3]);
2251
2252 regOffset += 4;
2253 }
2254 }
2255 }
2256
2257 *pTxPowerIndexOffset = 0;
2258
2259 return true;
2260 #undef SM_PD_GAIN
2261 #undef SM_PDGAIN_B
2262 }
2263
2264 static bool ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
2265 struct ath9k_channel *chan,
2266 int16_t *ratesArray,
2267 u16 cfgCtl,
2268 u16 AntennaReduction,
2269 u16 twiceMaxRegulatoryPower,
2270 u16 powerLimit)
2271 {
2272 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
2273 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
2274
2275 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
2276 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2277 static const u16 tpScaleReductionTable[5] =
2278 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
2279
2280 int i;
2281 int16_t twiceLargestAntenna;
2282 struct cal_ctl_data *rep;
2283 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
2284 0, { 0, 0, 0, 0}
2285 };
2286 struct cal_target_power_leg targetPowerOfdmExt = {
2287 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
2288 0, { 0, 0, 0, 0 }
2289 };
2290 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
2291 0, {0, 0, 0, 0}
2292 };
2293 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
2294 u16 ctlModesFor11a[] =
2295 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
2296 u16 ctlModesFor11g[] =
2297 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
2298 CTL_2GHT40
2299 };
2300 u16 numCtlModes, *pCtlMode, ctlMode, freq;
2301 struct chan_centers centers;
2302 int tx_chainmask;
2303 u16 twiceMinEdgePower;
2304
2305 tx_chainmask = ah->txchainmask;
2306
2307 ath9k_hw_get_channel_centers(ah, chan, &centers);
2308
2309 twiceLargestAntenna = max(
2310 pEepData->modalHeader
2311 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
2312 pEepData->modalHeader
2313 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
2314
2315 twiceLargestAntenna = max((u8)twiceLargestAntenna,
2316 pEepData->modalHeader
2317 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
2318
2319 twiceLargestAntenna = (int16_t)min(AntennaReduction -
2320 twiceLargestAntenna, 0);
2321
2322 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
2323
2324 if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
2325 maxRegAllowedPower -=
2326 (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
2327 }
2328
2329 scaledPower = min(powerLimit, maxRegAllowedPower);
2330
2331 switch (ar5416_get_ntxchains(tx_chainmask)) {
2332 case 1:
2333 break;
2334 case 2:
2335 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
2336 break;
2337 case 3:
2338 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
2339 break;
2340 }
2341
2342 scaledPower = max((u16)0, scaledPower);
2343
2344 if (IS_CHAN_2GHZ(chan)) {
2345 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
2346 SUB_NUM_CTL_MODES_AT_2G_40;
2347 pCtlMode = ctlModesFor11g;
2348
2349 ath9k_hw_get_legacy_target_powers(ah, chan,
2350 pEepData->calTargetPowerCck,
2351 AR5416_NUM_2G_CCK_TARGET_POWERS,
2352 &targetPowerCck, 4, false);
2353 ath9k_hw_get_legacy_target_powers(ah, chan,
2354 pEepData->calTargetPower2G,
2355 AR5416_NUM_2G_20_TARGET_POWERS,
2356 &targetPowerOfdm, 4, false);
2357 ath9k_hw_get_target_powers(ah, chan,
2358 pEepData->calTargetPower2GHT20,
2359 AR5416_NUM_2G_20_TARGET_POWERS,
2360 &targetPowerHt20, 8, false);
2361
2362 if (IS_CHAN_HT40(chan)) {
2363 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
2364 ath9k_hw_get_target_powers(ah, chan,
2365 pEepData->calTargetPower2GHT40,
2366 AR5416_NUM_2G_40_TARGET_POWERS,
2367 &targetPowerHt40, 8, true);
2368 ath9k_hw_get_legacy_target_powers(ah, chan,
2369 pEepData->calTargetPowerCck,
2370 AR5416_NUM_2G_CCK_TARGET_POWERS,
2371 &targetPowerCckExt, 4, true);
2372 ath9k_hw_get_legacy_target_powers(ah, chan,
2373 pEepData->calTargetPower2G,
2374 AR5416_NUM_2G_20_TARGET_POWERS,
2375 &targetPowerOfdmExt, 4, true);
2376 }
2377 } else {
2378 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
2379 SUB_NUM_CTL_MODES_AT_5G_40;
2380 pCtlMode = ctlModesFor11a;
2381
2382 ath9k_hw_get_legacy_target_powers(ah, chan,
2383 pEepData->calTargetPower5G,
2384 AR5416_NUM_5G_20_TARGET_POWERS,
2385 &targetPowerOfdm, 4, false);
2386 ath9k_hw_get_target_powers(ah, chan,
2387 pEepData->calTargetPower5GHT20,
2388 AR5416_NUM_5G_20_TARGET_POWERS,
2389 &targetPowerHt20, 8, false);
2390
2391 if (IS_CHAN_HT40(chan)) {
2392 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
2393 ath9k_hw_get_target_powers(ah, chan,
2394 pEepData->calTargetPower5GHT40,
2395 AR5416_NUM_5G_40_TARGET_POWERS,
2396 &targetPowerHt40, 8, true);
2397 ath9k_hw_get_legacy_target_powers(ah, chan,
2398 pEepData->calTargetPower5G,
2399 AR5416_NUM_5G_20_TARGET_POWERS,
2400 &targetPowerOfdmExt, 4, true);
2401 }
2402 }
2403
2404 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
2405 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
2406 (pCtlMode[ctlMode] == CTL_2GHT40);
2407 if (isHt40CtlMode)
2408 freq = centers.synth_center;
2409 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
2410 freq = centers.ext_center;
2411 else
2412 freq = centers.ctl_center;
2413
2414 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
2415 ah->eep_ops->get_eeprom_rev(ah) <= 2)
2416 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2417
2418 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
2419 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
2420 "EXT_ADDITIVE %d\n",
2421 ctlMode, numCtlModes, isHt40CtlMode,
2422 (pCtlMode[ctlMode] & EXT_ADDITIVE));
2423
2424 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
2425 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
2426 " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
2427 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
2428 "chan %d\n",
2429 i, cfgCtl, pCtlMode[ctlMode],
2430 pEepData->ctlIndex[i], chan->channel);
2431
2432 if ((((cfgCtl & ~CTL_MODE_M) |
2433 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
2434 pEepData->ctlIndex[i]) ||
2435 (((cfgCtl & ~CTL_MODE_M) |
2436 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
2437 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
2438 rep = &(pEepData->ctlData[i]);
2439
2440 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
2441 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
2442 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
2443
2444 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
2445 " MATCH-EE_IDX %d: ch %d is2 %d "
2446 "2xMinEdge %d chainmask %d chains %d\n",
2447 i, freq, IS_CHAN_2GHZ(chan),
2448 twiceMinEdgePower, tx_chainmask,
2449 ar5416_get_ntxchains
2450 (tx_chainmask));
2451 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2452 twiceMaxEdgePower = min(twiceMaxEdgePower,
2453 twiceMinEdgePower);
2454 } else {
2455 twiceMaxEdgePower = twiceMinEdgePower;
2456 break;
2457 }
2458 }
2459 }
2460
2461 minCtlPower = min(twiceMaxEdgePower, scaledPower);
2462
2463 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
2464 " SEL-Min ctlMode %d pCtlMode %d "
2465 "2xMaxEdge %d sP %d minCtlPwr %d\n",
2466 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
2467 scaledPower, minCtlPower);
2468
2469 switch (pCtlMode[ctlMode]) {
2470 case CTL_11B:
2471 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
2472 targetPowerCck.tPow2x[i] =
2473 min((u16)targetPowerCck.tPow2x[i],
2474 minCtlPower);
2475 }
2476 break;
2477 case CTL_11A:
2478 case CTL_11G:
2479 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
2480 targetPowerOfdm.tPow2x[i] =
2481 min((u16)targetPowerOfdm.tPow2x[i],
2482 minCtlPower);
2483 }
2484 break;
2485 case CTL_5GHT20:
2486 case CTL_2GHT20:
2487 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
2488 targetPowerHt20.tPow2x[i] =
2489 min((u16)targetPowerHt20.tPow2x[i],
2490 minCtlPower);
2491 }
2492 break;
2493 case CTL_11B_EXT:
2494 targetPowerCckExt.tPow2x[0] = min((u16)
2495 targetPowerCckExt.tPow2x[0],
2496 minCtlPower);
2497 break;
2498 case CTL_11A_EXT:
2499 case CTL_11G_EXT:
2500 targetPowerOfdmExt.tPow2x[0] = min((u16)
2501 targetPowerOfdmExt.tPow2x[0],
2502 minCtlPower);
2503 break;
2504 case CTL_5GHT40:
2505 case CTL_2GHT40:
2506 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
2507 targetPowerHt40.tPow2x[i] =
2508 min((u16)targetPowerHt40.tPow2x[i],
2509 minCtlPower);
2510 }
2511 break;
2512 default:
2513 break;
2514 }
2515 }
2516
2517 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
2518 ratesArray[rate18mb] = ratesArray[rate24mb] =
2519 targetPowerOfdm.tPow2x[0];
2520 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
2521 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
2522 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
2523 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
2524
2525 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
2526 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
2527
2528 if (IS_CHAN_2GHZ(chan)) {
2529 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
2530 ratesArray[rate2s] = ratesArray[rate2l] =
2531 targetPowerCck.tPow2x[1];
2532 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
2533 targetPowerCck.tPow2x[2];
2534 ;
2535 ratesArray[rate11s] = ratesArray[rate11l] =
2536 targetPowerCck.tPow2x[3];
2537 ;
2538 }
2539 if (IS_CHAN_HT40(chan)) {
2540 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
2541 ratesArray[rateHt40_0 + i] =
2542 targetPowerHt40.tPow2x[i];
2543 }
2544 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
2545 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
2546 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
2547 if (IS_CHAN_2GHZ(chan)) {
2548 ratesArray[rateExtCck] =
2549 targetPowerCckExt.tPow2x[0];
2550 }
2551 }
2552 return true;
2553 }
2554
2555 static int ath9k_hw_def_set_txpower(struct ath_hw *ah,
2556 struct ath9k_channel *chan,
2557 u16 cfgCtl,
2558 u8 twiceAntennaReduction,
2559 u8 twiceMaxRegulatoryPower,
2560 u8 powerLimit)
2561 {
2562 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
2563 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
2564 struct modal_eep_header *pModal =
2565 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
2566 int16_t ratesArray[Ar5416RateSize];
2567 int16_t txPowerIndexOffset = 0;
2568 u8 ht40PowerIncForPdadc = 2;
2569 int i, cck_ofdm_delta = 0;
2570
2571 memset(ratesArray, 0, sizeof(ratesArray));
2572
2573 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2574 AR5416_EEP_MINOR_VER_2) {
2575 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
2576 }
2577
2578 if (!ath9k_hw_set_def_power_per_rate_table(ah, chan,
2579 &ratesArray[0], cfgCtl,
2580 twiceAntennaReduction,
2581 twiceMaxRegulatoryPower,
2582 powerLimit)) {
2583 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2584 "ath9k_hw_set_txpower: unable to set "
2585 "tx power per rate table\n");
2586 return -EIO;
2587 }
2588
2589 if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) {
2590 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2591 "ath9k_hw_set_txpower: unable to set power table\n");
2592 return -EIO;
2593 }
2594
2595 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
2596 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
2597 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
2598 ratesArray[i] = AR5416_MAX_RATE_POWER;
2599 }
2600
2601 if (AR_SREV_9280_10_OR_LATER(ah)) {
2602 for (i = 0; i < Ar5416RateSize; i++)
2603 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
2604 }
2605
2606 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
2607 ATH9K_POW_SM(ratesArray[rate18mb], 24)
2608 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
2609 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
2610 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
2611 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
2612 ATH9K_POW_SM(ratesArray[rate54mb], 24)
2613 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
2614 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
2615 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
2616
2617 if (IS_CHAN_2GHZ(chan)) {
2618 if (OLC_FOR_AR9280_20_LATER) {
2619 cck_ofdm_delta = 2;
2620 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
2621 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
2622 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
2623 | ATH9K_POW_SM(ratesArray[rateXr], 8)
2624 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
2625 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
2626 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
2627 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
2628 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
2629 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
2630 } else {
2631 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
2632 ATH9K_POW_SM(ratesArray[rate2s], 24)
2633 | ATH9K_POW_SM(ratesArray[rate2l], 16)
2634 | ATH9K_POW_SM(ratesArray[rateXr], 8)
2635 | ATH9K_POW_SM(ratesArray[rate1l], 0));
2636 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
2637 ATH9K_POW_SM(ratesArray[rate11s], 24)
2638 | ATH9K_POW_SM(ratesArray[rate11l], 16)
2639 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
2640 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
2641 }
2642 }
2643
2644 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
2645 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
2646 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
2647 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
2648 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
2649 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
2650 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
2651 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
2652 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
2653 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
2654
2655 if (IS_CHAN_HT40(chan)) {
2656 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
2657 ATH9K_POW_SM(ratesArray[rateHt40_3] +
2658 ht40PowerIncForPdadc, 24)
2659 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
2660 ht40PowerIncForPdadc, 16)
2661 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
2662 ht40PowerIncForPdadc, 8)
2663 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
2664 ht40PowerIncForPdadc, 0));
2665 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
2666 ATH9K_POW_SM(ratesArray[rateHt40_7] +
2667 ht40PowerIncForPdadc, 24)
2668 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
2669 ht40PowerIncForPdadc, 16)
2670 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
2671 ht40PowerIncForPdadc, 8)
2672 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
2673 ht40PowerIncForPdadc, 0));
2674 if (OLC_FOR_AR9280_20_LATER) {
2675 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
2676 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
2677 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
2678 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
2679 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
2680 } else {
2681 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
2682 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
2683 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
2684 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
2685 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
2686 }
2687 }
2688
2689 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2690 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
2691 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
2692
2693 i = rate6mb;
2694
2695 if (IS_CHAN_HT40(chan))
2696 i = rateHt40_0;
2697 else if (IS_CHAN_HT20(chan))
2698 i = rateHt20_0;
2699
2700 if (AR_SREV_9280_10_OR_LATER(ah))
2701 ah->regulatory.max_power_level =
2702 ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
2703 else
2704 ah->regulatory.max_power_level = ratesArray[i];
2705
2706 switch(ar5416_get_ntxchains(ah->txchainmask)) {
2707 case 1:
2708 break;
2709 case 2:
2710 ah->regulatory.max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
2711 break;
2712 case 3:
2713 ah->regulatory.max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
2714 break;
2715 default:
2716 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2717 "Invalid chainmask configuration\n");
2718 break;
2719 }
2720
2721 return 0;
2722 }
2723
2724 static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
2725 enum ieee80211_band freq_band)
2726 {
2727 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
2728 struct modal_eep_header *pModal =
2729 &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
2730 struct base_eep_header *pBase = &eep->baseEepHeader;
2731 u8 num_ant_config;
2732
2733 num_ant_config = 1;
2734
2735 if (pBase->version >= 0x0E0D)
2736 if (pModal->useAnt1)
2737 num_ant_config += 1;
2738
2739 return num_ant_config;
2740 }
2741
2742 static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
2743 struct ath9k_channel *chan)
2744 {
2745 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
2746 struct modal_eep_header *pModal =
2747 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
2748
2749 return pModal->antCtrlCommon & 0xFFFF;
2750 }
2751
2752 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
2753 {
2754 #define EEP_DEF_SPURCHAN \
2755 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
2756
2757 u16 spur_val = AR_NO_SPUR;
2758
2759 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2760 "Getting spur idx %d is2Ghz. %d val %x\n",
2761 i, is2GHz, ah->config.spurchans[i][is2GHz]);
2762
2763 switch (ah->config.spurmode) {
2764 case SPUR_DISABLE:
2765 break;
2766 case SPUR_ENABLE_IOCTL:
2767 spur_val = ah->config.spurchans[i][is2GHz];
2768 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2769 "Getting spur val from new loc. %d\n", spur_val);
2770 break;
2771 case SPUR_ENABLE_EEPROM:
2772 spur_val = EEP_DEF_SPURCHAN;
2773 break;
2774 }
2775
2776 return spur_val;
2777
2778 #undef EEP_DEF_SPURCHAN
2779 }
2780
2781 static struct eeprom_ops eep_def_ops = {
2782 .check_eeprom = ath9k_hw_def_check_eeprom,
2783 .get_eeprom = ath9k_hw_def_get_eeprom,
2784 .fill_eeprom = ath9k_hw_def_fill_eeprom,
2785 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
2786 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
2787 .get_num_ant_config = ath9k_hw_def_get_num_ant_config,
2788 .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
2789 .set_board_values = ath9k_hw_def_set_board_values,
2790 .set_addac = ath9k_hw_def_set_addac,
2791 .set_txpower = ath9k_hw_def_set_txpower,
2792 .get_spur_channel = ath9k_hw_def_get_spur_channel
2793 };
2794
2795 int ath9k_hw_eeprom_attach(struct ath_hw *ah)
2796 {
2797 int status;
2798
2799 if (AR_SREV_9285(ah)) {
2800 ah->eep_map = EEP_MAP_4KBITS;
2801 ah->eep_ops = &eep_4k_ops;
2802 } else {
2803 ah->eep_map = EEP_MAP_DEFAULT;
2804 ah->eep_ops = &eep_def_ops;
2805 }
2806
2807 if (!ah->eep_ops->fill_eeprom(ah))
2808 return -EIO;
2809
2810 status = ah->eep_ops->check_eeprom(ah);
2811
2812 return status;
2813 }