]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ath9k/hw.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "ath9k.h"
21 #include "initvals.h"
22
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26
27 #define ATH9K_CLOCK_RATE_CCK 22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33 enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35 struct ar5416_eeprom_def *pEepData,
36 u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39
40 /********************/
41 /* Helper Functions */
42 /********************/
43
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47
48 if (!ah->curchan) /* should really check for CCK instead */
49 return clks / ATH9K_CLOCK_RATE_CCK;
50 if (conf->channel->band == IEEE80211_BAND_2GHZ)
51 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52
53 return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59
60 if (conf_is_ht40(conf))
61 return ath9k_hw_mac_usec(ah, clks) / 2;
62 else
63 return ath9k_hw_mac_usec(ah, clks);
64 }
65
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69
70 if (!ah->curchan) /* should really check for CCK instead */
71 return usecs *ATH9K_CLOCK_RATE_CCK;
72 if (conf->channel->band == IEEE80211_BAND_2GHZ)
73 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80
81 if (conf_is_ht40(conf))
82 return ath9k_hw_mac_clks(ah, usecs) * 2;
83 else
84 return ath9k_hw_mac_clks(ah, usecs);
85 }
86
87 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
88 {
89 int i;
90
91 BUG_ON(timeout < AH_TIME_QUANTUM);
92
93 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
94 if ((REG_READ(ah, reg) & mask) == val)
95 return true;
96
97 udelay(AH_TIME_QUANTUM);
98 }
99
100 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
101 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
102 timeout, reg, REG_READ(ah, reg), mask, val);
103
104 return false;
105 }
106
107 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
108 {
109 u32 retval;
110 int i;
111
112 for (i = 0, retval = 0; i < n; i++) {
113 retval = (retval << 1) | (val & 1);
114 val >>= 1;
115 }
116 return retval;
117 }
118
119 bool ath9k_get_channel_edges(struct ath_hw *ah,
120 u16 flags, u16 *low,
121 u16 *high)
122 {
123 struct ath9k_hw_capabilities *pCap = &ah->caps;
124
125 if (flags & CHANNEL_5GHZ) {
126 *low = pCap->low_5ghz_chan;
127 *high = pCap->high_5ghz_chan;
128 return true;
129 }
130 if ((flags & CHANNEL_2GHZ)) {
131 *low = pCap->low_2ghz_chan;
132 *high = pCap->high_2ghz_chan;
133 return true;
134 }
135 return false;
136 }
137
138 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
139 struct ath_rate_table *rates,
140 u32 frameLen, u16 rateix,
141 bool shortPreamble)
142 {
143 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
144 u32 kbps;
145
146 kbps = rates->info[rateix].ratekbps;
147
148 if (kbps == 0)
149 return 0;
150
151 switch (rates->info[rateix].phy) {
152 case WLAN_RC_PHY_CCK:
153 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
154 if (shortPreamble && rates->info[rateix].short_preamble)
155 phyTime >>= 1;
156 numBits = frameLen << 3;
157 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
158 break;
159 case WLAN_RC_PHY_OFDM:
160 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
161 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
162 numBits = OFDM_PLCP_BITS + (frameLen << 3);
163 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
164 txTime = OFDM_SIFS_TIME_QUARTER
165 + OFDM_PREAMBLE_TIME_QUARTER
166 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
167 } else if (ah->curchan &&
168 IS_CHAN_HALF_RATE(ah->curchan)) {
169 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
170 numBits = OFDM_PLCP_BITS + (frameLen << 3);
171 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
172 txTime = OFDM_SIFS_TIME_HALF +
173 OFDM_PREAMBLE_TIME_HALF
174 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
175 } else {
176 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
177 numBits = OFDM_PLCP_BITS + (frameLen << 3);
178 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
179 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
180 + (numSymbols * OFDM_SYMBOL_TIME);
181 }
182 break;
183 default:
184 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
185 "Unknown phy %u (rate ix %u)\n",
186 rates->info[rateix].phy, rateix);
187 txTime = 0;
188 break;
189 }
190
191 return txTime;
192 }
193
194 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
195 struct ath9k_channel *chan,
196 struct chan_centers *centers)
197 {
198 int8_t extoff;
199
200 if (!IS_CHAN_HT40(chan)) {
201 centers->ctl_center = centers->ext_center =
202 centers->synth_center = chan->channel;
203 return;
204 }
205
206 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
207 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
208 centers->synth_center =
209 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
210 extoff = 1;
211 } else {
212 centers->synth_center =
213 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
214 extoff = -1;
215 }
216
217 centers->ctl_center =
218 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
219 centers->ext_center =
220 centers->synth_center + (extoff *
221 ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
222 HT40_CHANNEL_CENTER_SHIFT : 15));
223 }
224
225 /******************/
226 /* Chip Revisions */
227 /******************/
228
229 static void ath9k_hw_read_revisions(struct ath_hw *ah)
230 {
231 u32 val;
232
233 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
234
235 if (val == 0xFF) {
236 val = REG_READ(ah, AR_SREV);
237 ah->hw_version.macVersion =
238 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
239 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
240 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
241 } else {
242 if (!AR_SREV_9100(ah))
243 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
244
245 ah->hw_version.macRev = val & AR_SREV_REVISION;
246
247 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
248 ah->is_pciexpress = true;
249 }
250 }
251
252 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
253 {
254 u32 val;
255 int i;
256
257 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
258
259 for (i = 0; i < 8; i++)
260 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
261 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
262 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
263
264 return ath9k_hw_reverse_bits(val, 8);
265 }
266
267 /************************************/
268 /* HW Attach, Detach, Init Routines */
269 /************************************/
270
271 static void ath9k_hw_disablepcie(struct ath_hw *ah)
272 {
273 if (AR_SREV_9100(ah))
274 return;
275
276 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
277 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
278 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
279 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
280 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
281 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
282 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
283 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
284 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
285
286 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
287 }
288
289 static bool ath9k_hw_chip_test(struct ath_hw *ah)
290 {
291 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
292 u32 regHold[2];
293 u32 patternData[4] = { 0x55555555,
294 0xaaaaaaaa,
295 0x66666666,
296 0x99999999 };
297 int i, j;
298
299 for (i = 0; i < 2; i++) {
300 u32 addr = regAddr[i];
301 u32 wrData, rdData;
302
303 regHold[i] = REG_READ(ah, addr);
304 for (j = 0; j < 0x100; j++) {
305 wrData = (j << 16) | j;
306 REG_WRITE(ah, addr, wrData);
307 rdData = REG_READ(ah, addr);
308 if (rdData != wrData) {
309 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
310 "address test failed "
311 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
312 addr, wrData, rdData);
313 return false;
314 }
315 }
316 for (j = 0; j < 4; j++) {
317 wrData = patternData[j];
318 REG_WRITE(ah, addr, wrData);
319 rdData = REG_READ(ah, addr);
320 if (wrData != rdData) {
321 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
322 "address test failed "
323 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
324 addr, wrData, rdData);
325 return false;
326 }
327 }
328 REG_WRITE(ah, regAddr[i], regHold[i]);
329 }
330 udelay(100);
331
332 return true;
333 }
334
335 static const char *ath9k_hw_devname(u16 devid)
336 {
337 switch (devid) {
338 case AR5416_DEVID_PCI:
339 return "Atheros 5416";
340 case AR5416_DEVID_PCIE:
341 return "Atheros 5418";
342 case AR9160_DEVID_PCI:
343 return "Atheros 9160";
344 case AR5416_AR9100_DEVID:
345 return "Atheros 9100";
346 case AR9280_DEVID_PCI:
347 case AR9280_DEVID_PCIE:
348 return "Atheros 9280";
349 case AR9285_DEVID_PCIE:
350 return "Atheros 9285";
351 }
352
353 return NULL;
354 }
355
356 static void ath9k_hw_set_defaults(struct ath_hw *ah)
357 {
358 int i;
359
360 ah->config.dma_beacon_response_time = 2;
361 ah->config.sw_beacon_response_time = 10;
362 ah->config.additional_swba_backoff = 0;
363 ah->config.ack_6mb = 0x0;
364 ah->config.cwm_ignore_extcca = 0;
365 ah->config.pcie_powersave_enable = 0;
366 ah->config.pcie_l1skp_enable = 0;
367 ah->config.pcie_clock_req = 0;
368 ah->config.pcie_power_reset = 0x100;
369 ah->config.pcie_restore = 0;
370 ah->config.pcie_waen = 0;
371 ah->config.analog_shiftreg = 1;
372 ah->config.ht_enable = 1;
373 ah->config.ofdm_trig_low = 200;
374 ah->config.ofdm_trig_high = 500;
375 ah->config.cck_trig_high = 200;
376 ah->config.cck_trig_low = 100;
377 ah->config.enable_ani = 1;
378 ah->config.noise_immunity_level = 4;
379 ah->config.ofdm_weaksignal_det = 1;
380 ah->config.cck_weaksignal_thr = 0;
381 ah->config.spur_immunity_level = 2;
382 ah->config.firstep_level = 0;
383 ah->config.rssi_thr_high = 40;
384 ah->config.rssi_thr_low = 7;
385 ah->config.diversity_control = 0;
386 ah->config.antenna_switch_swap = 0;
387
388 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
389 ah->config.spurchans[i][0] = AR_NO_SPUR;
390 ah->config.spurchans[i][1] = AR_NO_SPUR;
391 }
392
393 ah->config.intr_mitigation = 1;
394
395 /*
396 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
397 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
398 * This means we use it for all AR5416 devices, and the few
399 * minor PCI AR9280 devices out there.
400 *
401 * Serialization is required because these devices do not handle
402 * well the case of two concurrent reads/writes due to the latency
403 * involved. During one read/write another read/write can be issued
404 * on another CPU while the previous read/write may still be working
405 * on our hardware, if we hit this case the hardware poops in a loop.
406 * We prevent this by serializing reads and writes.
407 *
408 * This issue is not present on PCI-Express devices or pre-AR5416
409 * devices (legacy, 802.11abg).
410 */
411 if (num_possible_cpus() > 1)
412 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
413 }
414
415 static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
416 int *status)
417 {
418 struct ath_hw *ah;
419
420 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
421 if (ah == NULL) {
422 DPRINTF(sc, ATH_DBG_FATAL,
423 "Cannot allocate memory for state block\n");
424 *status = -ENOMEM;
425 return NULL;
426 }
427
428 ah->ah_sc = sc;
429 ah->hw_version.magic = AR5416_MAGIC;
430 ah->regulatory.country_code = CTRY_DEFAULT;
431 ah->hw_version.devid = devid;
432 ah->hw_version.subvendorid = 0;
433
434 ah->ah_flags = 0;
435 if ((devid == AR5416_AR9100_DEVID))
436 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
437 if (!AR_SREV_9100(ah))
438 ah->ah_flags = AH_USE_EEPROM;
439
440 ah->regulatory.power_limit = MAX_RATE_POWER;
441 ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
442 ah->atim_window = 0;
443 ah->diversity_control = ah->config.diversity_control;
444 ah->antenna_switch_swap =
445 ah->config.antenna_switch_swap;
446 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
447 ah->beacon_interval = 100;
448 ah->enable_32kHz_clock = DONT_USE_32KHZ;
449 ah->slottime = (u32) -1;
450 ah->acktimeout = (u32) -1;
451 ah->ctstimeout = (u32) -1;
452 ah->globaltxtimeout = (u32) -1;
453
454 ah->gbeacon_rate = 0;
455
456 return ah;
457 }
458
459 static int ath9k_hw_rfattach(struct ath_hw *ah)
460 {
461 bool rfStatus = false;
462 int ecode = 0;
463
464 rfStatus = ath9k_hw_init_rf(ah, &ecode);
465 if (!rfStatus) {
466 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
467 "RF setup failed, status %u\n", ecode);
468 return ecode;
469 }
470
471 return 0;
472 }
473
474 static int ath9k_hw_rf_claim(struct ath_hw *ah)
475 {
476 u32 val;
477
478 REG_WRITE(ah, AR_PHY(0), 0x00000007);
479
480 val = ath9k_hw_get_radiorev(ah);
481 switch (val & AR_RADIO_SREV_MAJOR) {
482 case 0:
483 val = AR_RAD5133_SREV_MAJOR;
484 break;
485 case AR_RAD5133_SREV_MAJOR:
486 case AR_RAD5122_SREV_MAJOR:
487 case AR_RAD2133_SREV_MAJOR:
488 case AR_RAD2122_SREV_MAJOR:
489 break;
490 default:
491 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
492 "5G Radio Chip Rev 0x%02X is not "
493 "supported by this driver\n",
494 ah->hw_version.analog5GhzRev);
495 return -EOPNOTSUPP;
496 }
497
498 ah->hw_version.analog5GhzRev = val;
499
500 return 0;
501 }
502
503 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
504 {
505 u32 sum;
506 int i;
507 u16 eeval;
508
509 sum = 0;
510 for (i = 0; i < 3; i++) {
511 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
512 sum += eeval;
513 ah->macaddr[2 * i] = eeval >> 8;
514 ah->macaddr[2 * i + 1] = eeval & 0xff;
515 }
516 if (sum == 0 || sum == 0xffff * 3) {
517 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
518 "mac address read failed: %pM\n",
519 ah->macaddr);
520 return -EADDRNOTAVAIL;
521 }
522
523 return 0;
524 }
525
526 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
527 {
528 u32 rxgain_type;
529
530 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
531 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
532
533 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
534 INIT_INI_ARRAY(&ah->iniModesRxGain,
535 ar9280Modes_backoff_13db_rxgain_9280_2,
536 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
537 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
538 INIT_INI_ARRAY(&ah->iniModesRxGain,
539 ar9280Modes_backoff_23db_rxgain_9280_2,
540 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
541 else
542 INIT_INI_ARRAY(&ah->iniModesRxGain,
543 ar9280Modes_original_rxgain_9280_2,
544 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
545 } else {
546 INIT_INI_ARRAY(&ah->iniModesRxGain,
547 ar9280Modes_original_rxgain_9280_2,
548 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
549 }
550 }
551
552 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
553 {
554 u32 txgain_type;
555
556 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
557 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
558
559 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
560 INIT_INI_ARRAY(&ah->iniModesTxGain,
561 ar9280Modes_high_power_tx_gain_9280_2,
562 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
563 else
564 INIT_INI_ARRAY(&ah->iniModesTxGain,
565 ar9280Modes_original_tx_gain_9280_2,
566 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
567 } else {
568 INIT_INI_ARRAY(&ah->iniModesTxGain,
569 ar9280Modes_original_tx_gain_9280_2,
570 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
571 }
572 }
573
574 static int ath9k_hw_post_attach(struct ath_hw *ah)
575 {
576 int ecode;
577
578 if (!ath9k_hw_chip_test(ah)) {
579 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
580 "hardware self-test failed\n");
581 return -ENODEV;
582 }
583
584 ecode = ath9k_hw_rf_claim(ah);
585 if (ecode != 0)
586 return ecode;
587
588 ecode = ath9k_hw_eeprom_attach(ah);
589 if (ecode != 0)
590 return ecode;
591
592 DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
593 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
594
595 ecode = ath9k_hw_rfattach(ah);
596 if (ecode != 0)
597 return ecode;
598
599 if (!AR_SREV_9100(ah)) {
600 ath9k_hw_ani_setup(ah);
601 ath9k_hw_ani_attach(ah);
602 }
603
604 return 0;
605 }
606
607 static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
608 int *status)
609 {
610 struct ath_hw *ah;
611 int ecode;
612 u32 i, j;
613
614 ah = ath9k_hw_newstate(devid, sc, status);
615 if (ah == NULL)
616 return NULL;
617
618 ath9k_hw_set_defaults(ah);
619
620 if (ah->config.intr_mitigation != 0)
621 ah->intr_mitigation = true;
622
623 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
624 DPRINTF(sc, ATH_DBG_RESET, "Couldn't reset chip\n");
625 ecode = -EIO;
626 goto bad;
627 }
628
629 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
630 DPRINTF(sc, ATH_DBG_RESET, "Couldn't wakeup chip\n");
631 ecode = -EIO;
632 goto bad;
633 }
634
635 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
636 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
637 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
638 ah->config.serialize_regmode =
639 SER_REG_MODE_ON;
640 } else {
641 ah->config.serialize_regmode =
642 SER_REG_MODE_OFF;
643 }
644 }
645
646 DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
647 ah->config.serialize_regmode);
648
649 if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
650 (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
651 (ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
652 (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
653 DPRINTF(sc, ATH_DBG_RESET,
654 "Mac Chip Rev 0x%02x.%x is not supported by "
655 "this driver\n", ah->hw_version.macVersion,
656 ah->hw_version.macRev);
657 ecode = -EOPNOTSUPP;
658 goto bad;
659 }
660
661 if (AR_SREV_9100(ah)) {
662 ah->iq_caldata.calData = &iq_cal_multi_sample;
663 ah->supp_cals = IQ_MISMATCH_CAL;
664 ah->is_pciexpress = false;
665 }
666 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
667
668 if (AR_SREV_9160_10_OR_LATER(ah)) {
669 if (AR_SREV_9280_10_OR_LATER(ah)) {
670 ah->iq_caldata.calData = &iq_cal_single_sample;
671 ah->adcgain_caldata.calData =
672 &adc_gain_cal_single_sample;
673 ah->adcdc_caldata.calData =
674 &adc_dc_cal_single_sample;
675 ah->adcdc_calinitdata.calData =
676 &adc_init_dc_cal;
677 } else {
678 ah->iq_caldata.calData = &iq_cal_multi_sample;
679 ah->adcgain_caldata.calData =
680 &adc_gain_cal_multi_sample;
681 ah->adcdc_caldata.calData =
682 &adc_dc_cal_multi_sample;
683 ah->adcdc_calinitdata.calData =
684 &adc_init_dc_cal;
685 }
686 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
687 }
688
689 ah->ani_function = ATH9K_ANI_ALL;
690 if (AR_SREV_9280_10_OR_LATER(ah))
691 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
692
693 DPRINTF(sc, ATH_DBG_RESET,
694 "This Mac Chip Rev 0x%02x.%x is \n",
695 ah->hw_version.macVersion, ah->hw_version.macRev);
696
697 if (AR_SREV_9285_12_OR_LATER(ah)) {
698
699 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
700 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
701 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
702 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
703
704 if (ah->config.pcie_clock_req) {
705 INIT_INI_ARRAY(&ah->iniPcieSerdes,
706 ar9285PciePhy_clkreq_off_L1_9285_1_2,
707 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
708 } else {
709 INIT_INI_ARRAY(&ah->iniPcieSerdes,
710 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
711 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
712 2);
713 }
714 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
715 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
716 ARRAY_SIZE(ar9285Modes_9285), 6);
717 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
718 ARRAY_SIZE(ar9285Common_9285), 2);
719
720 if (ah->config.pcie_clock_req) {
721 INIT_INI_ARRAY(&ah->iniPcieSerdes,
722 ar9285PciePhy_clkreq_off_L1_9285,
723 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
724 } else {
725 INIT_INI_ARRAY(&ah->iniPcieSerdes,
726 ar9285PciePhy_clkreq_always_on_L1_9285,
727 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
728 }
729 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
730 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
731 ARRAY_SIZE(ar9280Modes_9280_2), 6);
732 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
733 ARRAY_SIZE(ar9280Common_9280_2), 2);
734
735 if (ah->config.pcie_clock_req) {
736 INIT_INI_ARRAY(&ah->iniPcieSerdes,
737 ar9280PciePhy_clkreq_off_L1_9280,
738 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
739 } else {
740 INIT_INI_ARRAY(&ah->iniPcieSerdes,
741 ar9280PciePhy_clkreq_always_on_L1_9280,
742 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
743 }
744 INIT_INI_ARRAY(&ah->iniModesAdditional,
745 ar9280Modes_fast_clock_9280_2,
746 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
747 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
748 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
749 ARRAY_SIZE(ar9280Modes_9280), 6);
750 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
751 ARRAY_SIZE(ar9280Common_9280), 2);
752 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
753 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
754 ARRAY_SIZE(ar5416Modes_9160), 6);
755 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
756 ARRAY_SIZE(ar5416Common_9160), 2);
757 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
758 ARRAY_SIZE(ar5416Bank0_9160), 2);
759 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
760 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
761 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
762 ARRAY_SIZE(ar5416Bank1_9160), 2);
763 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
764 ARRAY_SIZE(ar5416Bank2_9160), 2);
765 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
766 ARRAY_SIZE(ar5416Bank3_9160), 3);
767 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
768 ARRAY_SIZE(ar5416Bank6_9160), 3);
769 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
770 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
771 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
772 ARRAY_SIZE(ar5416Bank7_9160), 2);
773 if (AR_SREV_9160_11(ah)) {
774 INIT_INI_ARRAY(&ah->iniAddac,
775 ar5416Addac_91601_1,
776 ARRAY_SIZE(ar5416Addac_91601_1), 2);
777 } else {
778 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
779 ARRAY_SIZE(ar5416Addac_9160), 2);
780 }
781 } else if (AR_SREV_9100_OR_LATER(ah)) {
782 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
783 ARRAY_SIZE(ar5416Modes_9100), 6);
784 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
785 ARRAY_SIZE(ar5416Common_9100), 2);
786 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
787 ARRAY_SIZE(ar5416Bank0_9100), 2);
788 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
789 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
790 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
791 ARRAY_SIZE(ar5416Bank1_9100), 2);
792 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
793 ARRAY_SIZE(ar5416Bank2_9100), 2);
794 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
795 ARRAY_SIZE(ar5416Bank3_9100), 3);
796 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
797 ARRAY_SIZE(ar5416Bank6_9100), 3);
798 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
799 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
800 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
801 ARRAY_SIZE(ar5416Bank7_9100), 2);
802 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
803 ARRAY_SIZE(ar5416Addac_9100), 2);
804 } else {
805 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
806 ARRAY_SIZE(ar5416Modes), 6);
807 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
808 ARRAY_SIZE(ar5416Common), 2);
809 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
810 ARRAY_SIZE(ar5416Bank0), 2);
811 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
812 ARRAY_SIZE(ar5416BB_RfGain), 3);
813 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
814 ARRAY_SIZE(ar5416Bank1), 2);
815 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
816 ARRAY_SIZE(ar5416Bank2), 2);
817 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
818 ARRAY_SIZE(ar5416Bank3), 3);
819 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
820 ARRAY_SIZE(ar5416Bank6), 3);
821 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
822 ARRAY_SIZE(ar5416Bank6TPC), 3);
823 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
824 ARRAY_SIZE(ar5416Bank7), 2);
825 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
826 ARRAY_SIZE(ar5416Addac), 2);
827 }
828
829 if (ah->is_pciexpress)
830 ath9k_hw_configpcipowersave(ah, 0);
831 else
832 ath9k_hw_disablepcie(ah);
833
834 ecode = ath9k_hw_post_attach(ah);
835 if (ecode != 0)
836 goto bad;
837
838 if (AR_SREV_9285_12_OR_LATER(ah)) {
839 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
840
841 /* txgain table */
842 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
843 INIT_INI_ARRAY(&ah->iniModesTxGain,
844 ar9285Modes_high_power_tx_gain_9285_1_2,
845 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
846 } else {
847 INIT_INI_ARRAY(&ah->iniModesTxGain,
848 ar9285Modes_original_tx_gain_9285_1_2,
849 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
850 }
851
852 }
853
854 /* rxgain table */
855 if (AR_SREV_9280_20(ah))
856 ath9k_hw_init_rxgain_ini(ah);
857
858 /* txgain table */
859 if (AR_SREV_9280_20(ah))
860 ath9k_hw_init_txgain_ini(ah);
861
862 if (!ath9k_hw_fill_cap_info(ah)) {
863 DPRINTF(sc, ATH_DBG_RESET, "failed ath9k_hw_fill_cap_info\n");
864 ecode = -EINVAL;
865 goto bad;
866 }
867
868 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
869 test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
870
871 /* EEPROM Fixup */
872 for (i = 0; i < ah->iniModes.ia_rows; i++) {
873 u32 reg = INI_RA(&ah->iniModes, i, 0);
874
875 for (j = 1; j < ah->iniModes.ia_columns; j++) {
876 u32 val = INI_RA(&ah->iniModes, i, j);
877
878 INI_RA(&ah->iniModes, i, j) =
879 ath9k_hw_ini_fixup(ah,
880 &ah->eeprom.def,
881 reg, val);
882 }
883 }
884 }
885
886 ecode = ath9k_hw_init_macaddr(ah);
887 if (ecode != 0) {
888 DPRINTF(sc, ATH_DBG_RESET,
889 "failed initializing mac address\n");
890 goto bad;
891 }
892
893 if (AR_SREV_9285(ah))
894 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
895 else
896 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
897
898 ath9k_init_nfcal_hist_buffer(ah);
899
900 return ah;
901 bad:
902 if (ah)
903 ath9k_hw_detach(ah);
904 if (status)
905 *status = ecode;
906
907 return NULL;
908 }
909
910 static void ath9k_hw_init_bb(struct ath_hw *ah,
911 struct ath9k_channel *chan)
912 {
913 u32 synthDelay;
914
915 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
916 if (IS_CHAN_B(chan))
917 synthDelay = (4 * synthDelay) / 22;
918 else
919 synthDelay /= 10;
920
921 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
922
923 udelay(synthDelay + BASE_ACTIVATE_DELAY);
924 }
925
926 static void ath9k_hw_init_qos(struct ath_hw *ah)
927 {
928 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
929 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
930
931 REG_WRITE(ah, AR_QOS_NO_ACK,
932 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
933 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
934 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
935
936 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
937 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
938 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
939 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
940 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
941 }
942
943 static void ath9k_hw_init_pll(struct ath_hw *ah,
944 struct ath9k_channel *chan)
945 {
946 u32 pll;
947
948 if (AR_SREV_9100(ah)) {
949 if (chan && IS_CHAN_5GHZ(chan))
950 pll = 0x1450;
951 else
952 pll = 0x1458;
953 } else {
954 if (AR_SREV_9280_10_OR_LATER(ah)) {
955 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
956
957 if (chan && IS_CHAN_HALF_RATE(chan))
958 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
959 else if (chan && IS_CHAN_QUARTER_RATE(chan))
960 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
961
962 if (chan && IS_CHAN_5GHZ(chan)) {
963 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
964
965
966 if (AR_SREV_9280_20(ah)) {
967 if (((chan->channel % 20) == 0)
968 || ((chan->channel % 10) == 0))
969 pll = 0x2850;
970 else
971 pll = 0x142c;
972 }
973 } else {
974 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
975 }
976
977 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
978
979 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
980
981 if (chan && IS_CHAN_HALF_RATE(chan))
982 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
983 else if (chan && IS_CHAN_QUARTER_RATE(chan))
984 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
985
986 if (chan && IS_CHAN_5GHZ(chan))
987 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
988 else
989 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
990 } else {
991 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
992
993 if (chan && IS_CHAN_HALF_RATE(chan))
994 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
995 else if (chan && IS_CHAN_QUARTER_RATE(chan))
996 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
997
998 if (chan && IS_CHAN_5GHZ(chan))
999 pll |= SM(0xa, AR_RTC_PLL_DIV);
1000 else
1001 pll |= SM(0xb, AR_RTC_PLL_DIV);
1002 }
1003 }
1004 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1005
1006 udelay(RTC_PLL_SETTLE_DELAY);
1007
1008 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1009 }
1010
1011 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1012 {
1013 int rx_chainmask, tx_chainmask;
1014
1015 rx_chainmask = ah->rxchainmask;
1016 tx_chainmask = ah->txchainmask;
1017
1018 switch (rx_chainmask) {
1019 case 0x5:
1020 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1021 AR_PHY_SWAP_ALT_CHAIN);
1022 case 0x3:
1023 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1024 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1025 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1026 break;
1027 }
1028 case 0x1:
1029 case 0x2:
1030 case 0x7:
1031 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1032 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1033 break;
1034 default:
1035 break;
1036 }
1037
1038 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1039 if (tx_chainmask == 0x5) {
1040 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1041 AR_PHY_SWAP_ALT_CHAIN);
1042 }
1043 if (AR_SREV_9100(ah))
1044 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1045 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1046 }
1047
1048 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1049 enum nl80211_iftype opmode)
1050 {
1051 ah->mask_reg = AR_IMR_TXERR |
1052 AR_IMR_TXURN |
1053 AR_IMR_RXERR |
1054 AR_IMR_RXORN |
1055 AR_IMR_BCNMISC;
1056
1057 if (ah->intr_mitigation)
1058 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1059 else
1060 ah->mask_reg |= AR_IMR_RXOK;
1061
1062 ah->mask_reg |= AR_IMR_TXOK;
1063
1064 if (opmode == NL80211_IFTYPE_AP)
1065 ah->mask_reg |= AR_IMR_MIB;
1066
1067 REG_WRITE(ah, AR_IMR, ah->mask_reg);
1068 REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1069
1070 if (!AR_SREV_9100(ah)) {
1071 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1072 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1073 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1074 }
1075 }
1076
1077 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1078 {
1079 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1080 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1081 ah->acktimeout = (u32) -1;
1082 return false;
1083 } else {
1084 REG_RMW_FIELD(ah, AR_TIME_OUT,
1085 AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1086 ah->acktimeout = us;
1087 return true;
1088 }
1089 }
1090
1091 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1092 {
1093 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1094 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1095 ah->ctstimeout = (u32) -1;
1096 return false;
1097 } else {
1098 REG_RMW_FIELD(ah, AR_TIME_OUT,
1099 AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1100 ah->ctstimeout = us;
1101 return true;
1102 }
1103 }
1104
1105 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1106 {
1107 if (tu > 0xFFFF) {
1108 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1109 "bad global tx timeout %u\n", tu);
1110 ah->globaltxtimeout = (u32) -1;
1111 return false;
1112 } else {
1113 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1114 ah->globaltxtimeout = tu;
1115 return true;
1116 }
1117 }
1118
1119 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1120 {
1121 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1122 ah->misc_mode);
1123
1124 if (ah->misc_mode != 0)
1125 REG_WRITE(ah, AR_PCU_MISC,
1126 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1127 if (ah->slottime != (u32) -1)
1128 ath9k_hw_setslottime(ah, ah->slottime);
1129 if (ah->acktimeout != (u32) -1)
1130 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1131 if (ah->ctstimeout != (u32) -1)
1132 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1133 if (ah->globaltxtimeout != (u32) -1)
1134 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1135 }
1136
1137 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1138 {
1139 return vendorid == ATHEROS_VENDOR_ID ?
1140 ath9k_hw_devname(devid) : NULL;
1141 }
1142
1143 void ath9k_hw_detach(struct ath_hw *ah)
1144 {
1145 if (!AR_SREV_9100(ah))
1146 ath9k_hw_ani_detach(ah);
1147
1148 ath9k_hw_rfdetach(ah);
1149 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1150 kfree(ah);
1151 }
1152
1153 struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
1154 {
1155 struct ath_hw *ah = NULL;
1156
1157 switch (devid) {
1158 case AR5416_DEVID_PCI:
1159 case AR5416_DEVID_PCIE:
1160 case AR5416_AR9100_DEVID:
1161 case AR9160_DEVID_PCI:
1162 case AR9280_DEVID_PCI:
1163 case AR9280_DEVID_PCIE:
1164 case AR9285_DEVID_PCIE:
1165 ah = ath9k_hw_do_attach(devid, sc, error);
1166 break;
1167 default:
1168 *error = -ENXIO;
1169 break;
1170 }
1171
1172 return ah;
1173 }
1174
1175 /*******/
1176 /* INI */
1177 /*******/
1178
1179 static void ath9k_hw_override_ini(struct ath_hw *ah,
1180 struct ath9k_channel *chan)
1181 {
1182 /*
1183 * Set the RX_ABORT and RX_DIS and clear if off only after
1184 * RXE is set for MAC. This prevents frames with corrupted
1185 * descriptor status.
1186 */
1187 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1188
1189
1190 if (!AR_SREV_5416_20_OR_LATER(ah) ||
1191 AR_SREV_9280_10_OR_LATER(ah))
1192 return;
1193
1194 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1195 }
1196
1197 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1198 struct ar5416_eeprom_def *pEepData,
1199 u32 reg, u32 value)
1200 {
1201 struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1202
1203 switch (ah->hw_version.devid) {
1204 case AR9280_DEVID_PCI:
1205 if (reg == 0x7894) {
1206 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1207 "ini VAL: %x EEPROM: %x\n", value,
1208 (pBase->version & 0xff));
1209
1210 if ((pBase->version & 0xff) > 0x0a) {
1211 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1212 "PWDCLKIND: %d\n",
1213 pBase->pwdclkind);
1214 value &= ~AR_AN_TOP2_PWDCLKIND;
1215 value |= AR_AN_TOP2_PWDCLKIND &
1216 (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1217 } else {
1218 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1219 "PWDCLKIND Earlier Rev\n");
1220 }
1221
1222 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1223 "final ini VAL: %x\n", value);
1224 }
1225 break;
1226 }
1227
1228 return value;
1229 }
1230
1231 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1232 struct ar5416_eeprom_def *pEepData,
1233 u32 reg, u32 value)
1234 {
1235 if (ah->eep_map == EEP_MAP_4KBITS)
1236 return value;
1237 else
1238 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1239 }
1240
1241 static void ath9k_olc_init(struct ath_hw *ah)
1242 {
1243 u32 i;
1244
1245 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1246 ah->originalGain[i] =
1247 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1248 AR_PHY_TX_GAIN);
1249 ah->PDADCdelta = 0;
1250 }
1251
1252 static int ath9k_hw_process_ini(struct ath_hw *ah,
1253 struct ath9k_channel *chan,
1254 enum ath9k_ht_macmode macmode)
1255 {
1256 int i, regWrites = 0;
1257 struct ieee80211_channel *channel = chan->chan;
1258 u32 modesIndex, freqIndex;
1259 int status;
1260
1261 switch (chan->chanmode) {
1262 case CHANNEL_A:
1263 case CHANNEL_A_HT20:
1264 modesIndex = 1;
1265 freqIndex = 1;
1266 break;
1267 case CHANNEL_A_HT40PLUS:
1268 case CHANNEL_A_HT40MINUS:
1269 modesIndex = 2;
1270 freqIndex = 1;
1271 break;
1272 case CHANNEL_G:
1273 case CHANNEL_G_HT20:
1274 case CHANNEL_B:
1275 modesIndex = 4;
1276 freqIndex = 2;
1277 break;
1278 case CHANNEL_G_HT40PLUS:
1279 case CHANNEL_G_HT40MINUS:
1280 modesIndex = 3;
1281 freqIndex = 2;
1282 break;
1283
1284 default:
1285 return -EINVAL;
1286 }
1287
1288 REG_WRITE(ah, AR_PHY(0), 0x00000007);
1289 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1290 ah->eep_ops->set_addac(ah, chan);
1291
1292 if (AR_SREV_5416_22_OR_LATER(ah)) {
1293 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1294 } else {
1295 struct ar5416IniArray temp;
1296 u32 addacSize =
1297 sizeof(u32) * ah->iniAddac.ia_rows *
1298 ah->iniAddac.ia_columns;
1299
1300 memcpy(ah->addac5416_21,
1301 ah->iniAddac.ia_array, addacSize);
1302
1303 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1304
1305 temp.ia_array = ah->addac5416_21;
1306 temp.ia_columns = ah->iniAddac.ia_columns;
1307 temp.ia_rows = ah->iniAddac.ia_rows;
1308 REG_WRITE_ARRAY(&temp, 1, regWrites);
1309 }
1310
1311 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1312
1313 for (i = 0; i < ah->iniModes.ia_rows; i++) {
1314 u32 reg = INI_RA(&ah->iniModes, i, 0);
1315 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1316
1317 REG_WRITE(ah, reg, val);
1318
1319 if (reg >= 0x7800 && reg < 0x78a0
1320 && ah->config.analog_shiftreg) {
1321 udelay(100);
1322 }
1323
1324 DO_DELAY(regWrites);
1325 }
1326
1327 if (AR_SREV_9280(ah))
1328 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1329
1330 if (AR_SREV_9280(ah) || (AR_SREV_9285(ah) &&
1331 AR_SREV_9285_12_OR_LATER(ah)))
1332 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1333
1334 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1335 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1336 u32 val = INI_RA(&ah->iniCommon, i, 1);
1337
1338 REG_WRITE(ah, reg, val);
1339
1340 if (reg >= 0x7800 && reg < 0x78a0
1341 && ah->config.analog_shiftreg) {
1342 udelay(100);
1343 }
1344
1345 DO_DELAY(regWrites);
1346 }
1347
1348 ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1349
1350 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1351 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1352 regWrites);
1353 }
1354
1355 ath9k_hw_override_ini(ah, chan);
1356 ath9k_hw_set_regs(ah, chan, macmode);
1357 ath9k_hw_init_chain_masks(ah);
1358
1359 if (OLC_FOR_AR9280_20_LATER)
1360 ath9k_olc_init(ah);
1361
1362 status = ah->eep_ops->set_txpower(ah, chan,
1363 ath9k_regd_get_ctl(ah, chan),
1364 channel->max_antenna_gain * 2,
1365 channel->max_power * 2,
1366 min((u32) MAX_RATE_POWER,
1367 (u32) ah->regulatory.power_limit));
1368 if (status != 0) {
1369 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1370 "error init'ing transmit power\n");
1371 return -EIO;
1372 }
1373
1374 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1375 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1376 "ar5416SetRfRegs failed\n");
1377 return -EIO;
1378 }
1379
1380 return 0;
1381 }
1382
1383 /****************************************/
1384 /* Reset and Channel Switching Routines */
1385 /****************************************/
1386
1387 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1388 {
1389 u32 rfMode = 0;
1390
1391 if (chan == NULL)
1392 return;
1393
1394 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1395 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1396
1397 if (!AR_SREV_9280_10_OR_LATER(ah))
1398 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1399 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1400
1401 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1402 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1403
1404 REG_WRITE(ah, AR_PHY_MODE, rfMode);
1405 }
1406
1407 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1408 {
1409 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1410 }
1411
1412 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1413 {
1414 u32 regval;
1415
1416 regval = REG_READ(ah, AR_AHB_MODE);
1417 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1418
1419 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1420 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1421
1422 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1423
1424 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1425 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1426
1427 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1428
1429 if (AR_SREV_9285(ah)) {
1430 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1431 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1432 } else {
1433 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1434 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1435 }
1436 }
1437
1438 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1439 {
1440 u32 val;
1441
1442 val = REG_READ(ah, AR_STA_ID1);
1443 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1444 switch (opmode) {
1445 case NL80211_IFTYPE_AP:
1446 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1447 | AR_STA_ID1_KSRCH_MODE);
1448 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1449 break;
1450 case NL80211_IFTYPE_ADHOC:
1451 case NL80211_IFTYPE_MESH_POINT:
1452 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1453 | AR_STA_ID1_KSRCH_MODE);
1454 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1455 break;
1456 case NL80211_IFTYPE_STATION:
1457 case NL80211_IFTYPE_MONITOR:
1458 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1459 break;
1460 }
1461 }
1462
1463 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1464 u32 coef_scaled,
1465 u32 *coef_mantissa,
1466 u32 *coef_exponent)
1467 {
1468 u32 coef_exp, coef_man;
1469
1470 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1471 if ((coef_scaled >> coef_exp) & 0x1)
1472 break;
1473
1474 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1475
1476 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1477
1478 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1479 *coef_exponent = coef_exp - 16;
1480 }
1481
1482 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1483 struct ath9k_channel *chan)
1484 {
1485 u32 coef_scaled, ds_coef_exp, ds_coef_man;
1486 u32 clockMhzScaled = 0x64000000;
1487 struct chan_centers centers;
1488
1489 if (IS_CHAN_HALF_RATE(chan))
1490 clockMhzScaled = clockMhzScaled >> 1;
1491 else if (IS_CHAN_QUARTER_RATE(chan))
1492 clockMhzScaled = clockMhzScaled >> 2;
1493
1494 ath9k_hw_get_channel_centers(ah, chan, &centers);
1495 coef_scaled = clockMhzScaled / centers.synth_center;
1496
1497 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1498 &ds_coef_exp);
1499
1500 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1501 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1502 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1503 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1504
1505 coef_scaled = (9 * coef_scaled) / 10;
1506
1507 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1508 &ds_coef_exp);
1509
1510 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1511 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1512 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1513 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1514 }
1515
1516 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1517 {
1518 u32 rst_flags;
1519 u32 tmpReg;
1520
1521 if (AR_SREV_9100(ah)) {
1522 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1523 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1524 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1525 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1526 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1527 }
1528
1529 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1530 AR_RTC_FORCE_WAKE_ON_INT);
1531
1532 if (AR_SREV_9100(ah)) {
1533 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1534 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1535 } else {
1536 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1537 if (tmpReg &
1538 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1539 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1540 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1541 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1542 } else {
1543 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1544 }
1545
1546 rst_flags = AR_RTC_RC_MAC_WARM;
1547 if (type == ATH9K_RESET_COLD)
1548 rst_flags |= AR_RTC_RC_MAC_COLD;
1549 }
1550
1551 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1552 udelay(50);
1553
1554 REG_WRITE(ah, AR_RTC_RC, 0);
1555 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1556 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1557 "RTC stuck in MAC reset\n");
1558 return false;
1559 }
1560
1561 if (!AR_SREV_9100(ah))
1562 REG_WRITE(ah, AR_RC, 0);
1563
1564 ath9k_hw_init_pll(ah, NULL);
1565
1566 if (AR_SREV_9100(ah))
1567 udelay(50);
1568
1569 return true;
1570 }
1571
1572 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1573 {
1574 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1575 AR_RTC_FORCE_WAKE_ON_INT);
1576
1577 REG_WRITE(ah, AR_RTC_RESET, 0);
1578 udelay(2);
1579 REG_WRITE(ah, AR_RTC_RESET, 1);
1580
1581 if (!ath9k_hw_wait(ah,
1582 AR_RTC_STATUS,
1583 AR_RTC_STATUS_M,
1584 AR_RTC_STATUS_ON,
1585 AH_WAIT_TIMEOUT)) {
1586 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1587 return false;
1588 }
1589
1590 ath9k_hw_read_revisions(ah);
1591
1592 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1593 }
1594
1595 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1596 {
1597 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1598 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1599
1600 switch (type) {
1601 case ATH9K_RESET_POWER_ON:
1602 return ath9k_hw_set_reset_power_on(ah);
1603 break;
1604 case ATH9K_RESET_WARM:
1605 case ATH9K_RESET_COLD:
1606 return ath9k_hw_set_reset(ah, type);
1607 break;
1608 default:
1609 return false;
1610 }
1611 }
1612
1613 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1614 enum ath9k_ht_macmode macmode)
1615 {
1616 u32 phymode;
1617 u32 enableDacFifo = 0;
1618
1619 if (AR_SREV_9285_10_OR_LATER(ah))
1620 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1621 AR_PHY_FC_ENABLE_DAC_FIFO);
1622
1623 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1624 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1625
1626 if (IS_CHAN_HT40(chan)) {
1627 phymode |= AR_PHY_FC_DYN2040_EN;
1628
1629 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1630 (chan->chanmode == CHANNEL_G_HT40PLUS))
1631 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1632
1633 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1634 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1635 }
1636 REG_WRITE(ah, AR_PHY_TURBO, phymode);
1637
1638 ath9k_hw_set11nmac2040(ah, macmode);
1639
1640 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1641 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1642 }
1643
1644 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1645 struct ath9k_channel *chan)
1646 {
1647 if (OLC_FOR_AR9280_20_LATER) {
1648 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1649 return false;
1650 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1651 return false;
1652
1653 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1654 return false;
1655
1656 ah->chip_fullsleep = false;
1657 ath9k_hw_init_pll(ah, chan);
1658 ath9k_hw_set_rfmode(ah, chan);
1659
1660 return true;
1661 }
1662
1663 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1664 struct ath9k_channel *chan,
1665 enum ath9k_ht_macmode macmode)
1666 {
1667 struct ieee80211_channel *channel = chan->chan;
1668 u32 synthDelay, qnum;
1669
1670 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1671 if (ath9k_hw_numtxpending(ah, qnum)) {
1672 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1673 "Transmit frames pending on queue %d\n", qnum);
1674 return false;
1675 }
1676 }
1677
1678 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1679 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1680 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1681 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1682 "Could not kill baseband RX\n");
1683 return false;
1684 }
1685
1686 ath9k_hw_set_regs(ah, chan, macmode);
1687
1688 if (AR_SREV_9280_10_OR_LATER(ah)) {
1689 if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
1690 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1691 "failed to set channel\n");
1692 return false;
1693 }
1694 } else {
1695 if (!(ath9k_hw_set_channel(ah, chan))) {
1696 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1697 "failed to set channel\n");
1698 return false;
1699 }
1700 }
1701
1702 if (ah->eep_ops->set_txpower(ah, chan,
1703 ath9k_regd_get_ctl(ah, chan),
1704 channel->max_antenna_gain * 2,
1705 channel->max_power * 2,
1706 min((u32) MAX_RATE_POWER,
1707 (u32) ah->regulatory.power_limit)) != 0) {
1708 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1709 "error init'ing transmit power\n");
1710 return false;
1711 }
1712
1713 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1714 if (IS_CHAN_B(chan))
1715 synthDelay = (4 * synthDelay) / 22;
1716 else
1717 synthDelay /= 10;
1718
1719 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1720
1721 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1722
1723 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1724 ath9k_hw_set_delta_slope(ah, chan);
1725
1726 if (AR_SREV_9280_10_OR_LATER(ah))
1727 ath9k_hw_9280_spur_mitigate(ah, chan);
1728 else
1729 ath9k_hw_spur_mitigate(ah, chan);
1730
1731 if (!chan->oneTimeCalsDone)
1732 chan->oneTimeCalsDone = true;
1733
1734 return true;
1735 }
1736
1737 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1738 {
1739 int bb_spur = AR_NO_SPUR;
1740 int freq;
1741 int bin, cur_bin;
1742 int bb_spur_off, spur_subchannel_sd;
1743 int spur_freq_sd;
1744 int spur_delta_phase;
1745 int denominator;
1746 int upper, lower, cur_vit_mask;
1747 int tmp, newVal;
1748 int i;
1749 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1750 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1751 };
1752 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1753 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1754 };
1755 int inc[4] = { 0, 100, 0, 0 };
1756 struct chan_centers centers;
1757
1758 int8_t mask_m[123];
1759 int8_t mask_p[123];
1760 int8_t mask_amt;
1761 int tmp_mask;
1762 int cur_bb_spur;
1763 bool is2GHz = IS_CHAN_2GHZ(chan);
1764
1765 memset(&mask_m, 0, sizeof(int8_t) * 123);
1766 memset(&mask_p, 0, sizeof(int8_t) * 123);
1767
1768 ath9k_hw_get_channel_centers(ah, chan, &centers);
1769 freq = centers.synth_center;
1770
1771 ah->config.spurmode = SPUR_ENABLE_EEPROM;
1772 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1773 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1774
1775 if (is2GHz)
1776 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1777 else
1778 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1779
1780 if (AR_NO_SPUR == cur_bb_spur)
1781 break;
1782 cur_bb_spur = cur_bb_spur - freq;
1783
1784 if (IS_CHAN_HT40(chan)) {
1785 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1786 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1787 bb_spur = cur_bb_spur;
1788 break;
1789 }
1790 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1791 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1792 bb_spur = cur_bb_spur;
1793 break;
1794 }
1795 }
1796
1797 if (AR_NO_SPUR == bb_spur) {
1798 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1799 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1800 return;
1801 } else {
1802 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1803 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1804 }
1805
1806 bin = bb_spur * 320;
1807
1808 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1809
1810 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1811 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1812 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1813 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1814 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1815
1816 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1817 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1818 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1819 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1820 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1821 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1822
1823 if (IS_CHAN_HT40(chan)) {
1824 if (bb_spur < 0) {
1825 spur_subchannel_sd = 1;
1826 bb_spur_off = bb_spur + 10;
1827 } else {
1828 spur_subchannel_sd = 0;
1829 bb_spur_off = bb_spur - 10;
1830 }
1831 } else {
1832 spur_subchannel_sd = 0;
1833 bb_spur_off = bb_spur;
1834 }
1835
1836 if (IS_CHAN_HT40(chan))
1837 spur_delta_phase =
1838 ((bb_spur * 262144) /
1839 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1840 else
1841 spur_delta_phase =
1842 ((bb_spur * 524288) /
1843 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1844
1845 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1846 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1847
1848 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1849 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1850 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1851 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1852
1853 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1854 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1855
1856 cur_bin = -6000;
1857 upper = bin + 100;
1858 lower = bin - 100;
1859
1860 for (i = 0; i < 4; i++) {
1861 int pilot_mask = 0;
1862 int chan_mask = 0;
1863 int bp = 0;
1864 for (bp = 0; bp < 30; bp++) {
1865 if ((cur_bin > lower) && (cur_bin < upper)) {
1866 pilot_mask = pilot_mask | 0x1 << bp;
1867 chan_mask = chan_mask | 0x1 << bp;
1868 }
1869 cur_bin += 100;
1870 }
1871 cur_bin += inc[i];
1872 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1873 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1874 }
1875
1876 cur_vit_mask = 6100;
1877 upper = bin + 120;
1878 lower = bin - 120;
1879
1880 for (i = 0; i < 123; i++) {
1881 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1882
1883 /* workaround for gcc bug #37014 */
1884 volatile int tmp_v = abs(cur_vit_mask - bin);
1885
1886 if (tmp_v < 75)
1887 mask_amt = 1;
1888 else
1889 mask_amt = 0;
1890 if (cur_vit_mask < 0)
1891 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1892 else
1893 mask_p[cur_vit_mask / 100] = mask_amt;
1894 }
1895 cur_vit_mask -= 100;
1896 }
1897
1898 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1899 | (mask_m[48] << 26) | (mask_m[49] << 24)
1900 | (mask_m[50] << 22) | (mask_m[51] << 20)
1901 | (mask_m[52] << 18) | (mask_m[53] << 16)
1902 | (mask_m[54] << 14) | (mask_m[55] << 12)
1903 | (mask_m[56] << 10) | (mask_m[57] << 8)
1904 | (mask_m[58] << 6) | (mask_m[59] << 4)
1905 | (mask_m[60] << 2) | (mask_m[61] << 0);
1906 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1907 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1908
1909 tmp_mask = (mask_m[31] << 28)
1910 | (mask_m[32] << 26) | (mask_m[33] << 24)
1911 | (mask_m[34] << 22) | (mask_m[35] << 20)
1912 | (mask_m[36] << 18) | (mask_m[37] << 16)
1913 | (mask_m[48] << 14) | (mask_m[39] << 12)
1914 | (mask_m[40] << 10) | (mask_m[41] << 8)
1915 | (mask_m[42] << 6) | (mask_m[43] << 4)
1916 | (mask_m[44] << 2) | (mask_m[45] << 0);
1917 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1918 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1919
1920 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1921 | (mask_m[18] << 26) | (mask_m[18] << 24)
1922 | (mask_m[20] << 22) | (mask_m[20] << 20)
1923 | (mask_m[22] << 18) | (mask_m[22] << 16)
1924 | (mask_m[24] << 14) | (mask_m[24] << 12)
1925 | (mask_m[25] << 10) | (mask_m[26] << 8)
1926 | (mask_m[27] << 6) | (mask_m[28] << 4)
1927 | (mask_m[29] << 2) | (mask_m[30] << 0);
1928 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1929 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1930
1931 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1932 | (mask_m[2] << 26) | (mask_m[3] << 24)
1933 | (mask_m[4] << 22) | (mask_m[5] << 20)
1934 | (mask_m[6] << 18) | (mask_m[7] << 16)
1935 | (mask_m[8] << 14) | (mask_m[9] << 12)
1936 | (mask_m[10] << 10) | (mask_m[11] << 8)
1937 | (mask_m[12] << 6) | (mask_m[13] << 4)
1938 | (mask_m[14] << 2) | (mask_m[15] << 0);
1939 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1940 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1941
1942 tmp_mask = (mask_p[15] << 28)
1943 | (mask_p[14] << 26) | (mask_p[13] << 24)
1944 | (mask_p[12] << 22) | (mask_p[11] << 20)
1945 | (mask_p[10] << 18) | (mask_p[9] << 16)
1946 | (mask_p[8] << 14) | (mask_p[7] << 12)
1947 | (mask_p[6] << 10) | (mask_p[5] << 8)
1948 | (mask_p[4] << 6) | (mask_p[3] << 4)
1949 | (mask_p[2] << 2) | (mask_p[1] << 0);
1950 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1951 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1952
1953 tmp_mask = (mask_p[30] << 28)
1954 | (mask_p[29] << 26) | (mask_p[28] << 24)
1955 | (mask_p[27] << 22) | (mask_p[26] << 20)
1956 | (mask_p[25] << 18) | (mask_p[24] << 16)
1957 | (mask_p[23] << 14) | (mask_p[22] << 12)
1958 | (mask_p[21] << 10) | (mask_p[20] << 8)
1959 | (mask_p[19] << 6) | (mask_p[18] << 4)
1960 | (mask_p[17] << 2) | (mask_p[16] << 0);
1961 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1962 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1963
1964 tmp_mask = (mask_p[45] << 28)
1965 | (mask_p[44] << 26) | (mask_p[43] << 24)
1966 | (mask_p[42] << 22) | (mask_p[41] << 20)
1967 | (mask_p[40] << 18) | (mask_p[39] << 16)
1968 | (mask_p[38] << 14) | (mask_p[37] << 12)
1969 | (mask_p[36] << 10) | (mask_p[35] << 8)
1970 | (mask_p[34] << 6) | (mask_p[33] << 4)
1971 | (mask_p[32] << 2) | (mask_p[31] << 0);
1972 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1973 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1974
1975 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1976 | (mask_p[59] << 26) | (mask_p[58] << 24)
1977 | (mask_p[57] << 22) | (mask_p[56] << 20)
1978 | (mask_p[55] << 18) | (mask_p[54] << 16)
1979 | (mask_p[53] << 14) | (mask_p[52] << 12)
1980 | (mask_p[51] << 10) | (mask_p[50] << 8)
1981 | (mask_p[49] << 6) | (mask_p[48] << 4)
1982 | (mask_p[47] << 2) | (mask_p[46] << 0);
1983 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1984 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1985 }
1986
1987 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1988 {
1989 int bb_spur = AR_NO_SPUR;
1990 int bin, cur_bin;
1991 int spur_freq_sd;
1992 int spur_delta_phase;
1993 int denominator;
1994 int upper, lower, cur_vit_mask;
1995 int tmp, new;
1996 int i;
1997 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1998 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1999 };
2000 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2001 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2002 };
2003 int inc[4] = { 0, 100, 0, 0 };
2004
2005 int8_t mask_m[123];
2006 int8_t mask_p[123];
2007 int8_t mask_amt;
2008 int tmp_mask;
2009 int cur_bb_spur;
2010 bool is2GHz = IS_CHAN_2GHZ(chan);
2011
2012 memset(&mask_m, 0, sizeof(int8_t) * 123);
2013 memset(&mask_p, 0, sizeof(int8_t) * 123);
2014
2015 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2016 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2017 if (AR_NO_SPUR == cur_bb_spur)
2018 break;
2019 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2020 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2021 bb_spur = cur_bb_spur;
2022 break;
2023 }
2024 }
2025
2026 if (AR_NO_SPUR == bb_spur)
2027 return;
2028
2029 bin = bb_spur * 32;
2030
2031 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2032 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2033 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2034 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2035 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2036
2037 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2038
2039 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2040 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2041 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2042 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2043 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2044 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2045
2046 spur_delta_phase = ((bb_spur * 524288) / 100) &
2047 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2048
2049 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2050 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2051
2052 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2053 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2054 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2055 REG_WRITE(ah, AR_PHY_TIMING11, new);
2056
2057 cur_bin = -6000;
2058 upper = bin + 100;
2059 lower = bin - 100;
2060
2061 for (i = 0; i < 4; i++) {
2062 int pilot_mask = 0;
2063 int chan_mask = 0;
2064 int bp = 0;
2065 for (bp = 0; bp < 30; bp++) {
2066 if ((cur_bin > lower) && (cur_bin < upper)) {
2067 pilot_mask = pilot_mask | 0x1 << bp;
2068 chan_mask = chan_mask | 0x1 << bp;
2069 }
2070 cur_bin += 100;
2071 }
2072 cur_bin += inc[i];
2073 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2074 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2075 }
2076
2077 cur_vit_mask = 6100;
2078 upper = bin + 120;
2079 lower = bin - 120;
2080
2081 for (i = 0; i < 123; i++) {
2082 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2083
2084 /* workaround for gcc bug #37014 */
2085 volatile int tmp_v = abs(cur_vit_mask - bin);
2086
2087 if (tmp_v < 75)
2088 mask_amt = 1;
2089 else
2090 mask_amt = 0;
2091 if (cur_vit_mask < 0)
2092 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2093 else
2094 mask_p[cur_vit_mask / 100] = mask_amt;
2095 }
2096 cur_vit_mask -= 100;
2097 }
2098
2099 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2100 | (mask_m[48] << 26) | (mask_m[49] << 24)
2101 | (mask_m[50] << 22) | (mask_m[51] << 20)
2102 | (mask_m[52] << 18) | (mask_m[53] << 16)
2103 | (mask_m[54] << 14) | (mask_m[55] << 12)
2104 | (mask_m[56] << 10) | (mask_m[57] << 8)
2105 | (mask_m[58] << 6) | (mask_m[59] << 4)
2106 | (mask_m[60] << 2) | (mask_m[61] << 0);
2107 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2108 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2109
2110 tmp_mask = (mask_m[31] << 28)
2111 | (mask_m[32] << 26) | (mask_m[33] << 24)
2112 | (mask_m[34] << 22) | (mask_m[35] << 20)
2113 | (mask_m[36] << 18) | (mask_m[37] << 16)
2114 | (mask_m[48] << 14) | (mask_m[39] << 12)
2115 | (mask_m[40] << 10) | (mask_m[41] << 8)
2116 | (mask_m[42] << 6) | (mask_m[43] << 4)
2117 | (mask_m[44] << 2) | (mask_m[45] << 0);
2118 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2119 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2120
2121 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2122 | (mask_m[18] << 26) | (mask_m[18] << 24)
2123 | (mask_m[20] << 22) | (mask_m[20] << 20)
2124 | (mask_m[22] << 18) | (mask_m[22] << 16)
2125 | (mask_m[24] << 14) | (mask_m[24] << 12)
2126 | (mask_m[25] << 10) | (mask_m[26] << 8)
2127 | (mask_m[27] << 6) | (mask_m[28] << 4)
2128 | (mask_m[29] << 2) | (mask_m[30] << 0);
2129 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2130 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2131
2132 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2133 | (mask_m[2] << 26) | (mask_m[3] << 24)
2134 | (mask_m[4] << 22) | (mask_m[5] << 20)
2135 | (mask_m[6] << 18) | (mask_m[7] << 16)
2136 | (mask_m[8] << 14) | (mask_m[9] << 12)
2137 | (mask_m[10] << 10) | (mask_m[11] << 8)
2138 | (mask_m[12] << 6) | (mask_m[13] << 4)
2139 | (mask_m[14] << 2) | (mask_m[15] << 0);
2140 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2141 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2142
2143 tmp_mask = (mask_p[15] << 28)
2144 | (mask_p[14] << 26) | (mask_p[13] << 24)
2145 | (mask_p[12] << 22) | (mask_p[11] << 20)
2146 | (mask_p[10] << 18) | (mask_p[9] << 16)
2147 | (mask_p[8] << 14) | (mask_p[7] << 12)
2148 | (mask_p[6] << 10) | (mask_p[5] << 8)
2149 | (mask_p[4] << 6) | (mask_p[3] << 4)
2150 | (mask_p[2] << 2) | (mask_p[1] << 0);
2151 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2152 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2153
2154 tmp_mask = (mask_p[30] << 28)
2155 | (mask_p[29] << 26) | (mask_p[28] << 24)
2156 | (mask_p[27] << 22) | (mask_p[26] << 20)
2157 | (mask_p[25] << 18) | (mask_p[24] << 16)
2158 | (mask_p[23] << 14) | (mask_p[22] << 12)
2159 | (mask_p[21] << 10) | (mask_p[20] << 8)
2160 | (mask_p[19] << 6) | (mask_p[18] << 4)
2161 | (mask_p[17] << 2) | (mask_p[16] << 0);
2162 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2163 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2164
2165 tmp_mask = (mask_p[45] << 28)
2166 | (mask_p[44] << 26) | (mask_p[43] << 24)
2167 | (mask_p[42] << 22) | (mask_p[41] << 20)
2168 | (mask_p[40] << 18) | (mask_p[39] << 16)
2169 | (mask_p[38] << 14) | (mask_p[37] << 12)
2170 | (mask_p[36] << 10) | (mask_p[35] << 8)
2171 | (mask_p[34] << 6) | (mask_p[33] << 4)
2172 | (mask_p[32] << 2) | (mask_p[31] << 0);
2173 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2174 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2175
2176 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2177 | (mask_p[59] << 26) | (mask_p[58] << 24)
2178 | (mask_p[57] << 22) | (mask_p[56] << 20)
2179 | (mask_p[55] << 18) | (mask_p[54] << 16)
2180 | (mask_p[53] << 14) | (mask_p[52] << 12)
2181 | (mask_p[51] << 10) | (mask_p[50] << 8)
2182 | (mask_p[49] << 6) | (mask_p[48] << 4)
2183 | (mask_p[47] << 2) | (mask_p[46] << 0);
2184 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2185 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2186 }
2187
2188 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2189 bool bChannelChange)
2190 {
2191 u32 saveLedState;
2192 struct ath_softc *sc = ah->ah_sc;
2193 struct ath9k_channel *curchan = ah->curchan;
2194 u32 saveDefAntenna;
2195 u32 macStaId1;
2196 int i, rx_chainmask, r;
2197
2198 ah->extprotspacing = sc->ht_extprotspacing;
2199 ah->txchainmask = sc->tx_chainmask;
2200 ah->rxchainmask = sc->rx_chainmask;
2201
2202 if (AR_SREV_9285(ah)) {
2203 ah->txchainmask &= 0x1;
2204 ah->rxchainmask &= 0x1;
2205 } else if (AR_SREV_9280(ah)) {
2206 ah->txchainmask &= 0x3;
2207 ah->rxchainmask &= 0x3;
2208 }
2209
2210 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2211 return -EIO;
2212
2213 if (curchan)
2214 ath9k_hw_getnf(ah, curchan);
2215
2216 if (bChannelChange &&
2217 (ah->chip_fullsleep != true) &&
2218 (ah->curchan != NULL) &&
2219 (chan->channel != ah->curchan->channel) &&
2220 ((chan->channelFlags & CHANNEL_ALL) ==
2221 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2222 (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2223 !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2224
2225 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2226 ath9k_hw_loadnf(ah, ah->curchan);
2227 ath9k_hw_start_nfcal(ah);
2228 return 0;
2229 }
2230 }
2231
2232 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2233 if (saveDefAntenna == 0)
2234 saveDefAntenna = 1;
2235
2236 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2237
2238 saveLedState = REG_READ(ah, AR_CFG_LED) &
2239 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2240 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2241
2242 ath9k_hw_mark_phy_inactive(ah);
2243
2244 if (!ath9k_hw_chip_reset(ah, chan)) {
2245 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "chip reset failed\n");
2246 return -EINVAL;
2247 }
2248
2249 if (AR_SREV_9280_10_OR_LATER(ah))
2250 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2251
2252 r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2253 if (r)
2254 return r;
2255
2256 /* Setup MFP options for CCMP */
2257 if (AR_SREV_9280_20_OR_LATER(ah)) {
2258 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2259 * frames when constructing CCMP AAD. */
2260 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2261 0xc7ff);
2262 ah->sw_mgmt_crypto = false;
2263 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2264 /* Disable hardware crypto for management frames */
2265 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2266 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2267 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2268 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2269 ah->sw_mgmt_crypto = true;
2270 } else
2271 ah->sw_mgmt_crypto = true;
2272
2273 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2274 ath9k_hw_set_delta_slope(ah, chan);
2275
2276 if (AR_SREV_9280_10_OR_LATER(ah))
2277 ath9k_hw_9280_spur_mitigate(ah, chan);
2278 else
2279 ath9k_hw_spur_mitigate(ah, chan);
2280
2281 ah->eep_ops->set_board_values(ah, chan);
2282
2283 ath9k_hw_decrease_chain_power(ah, chan);
2284
2285 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2286 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2287 | macStaId1
2288 | AR_STA_ID1_RTS_USE_DEF
2289 | (ah->config.
2290 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2291 | ah->sta_id1_defaults);
2292 ath9k_hw_set_operating_mode(ah, ah->opmode);
2293
2294 REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2295 REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2296
2297 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2298
2299 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2300 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2301 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2302
2303 REG_WRITE(ah, AR_ISR, ~0);
2304
2305 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2306
2307 if (AR_SREV_9280_10_OR_LATER(ah)) {
2308 if (!(ath9k_hw_ar9280_set_channel(ah, chan)))
2309 return -EIO;
2310 } else {
2311 if (!(ath9k_hw_set_channel(ah, chan)))
2312 return -EIO;
2313 }
2314
2315 for (i = 0; i < AR_NUM_DCU; i++)
2316 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2317
2318 ah->intr_txqs = 0;
2319 for (i = 0; i < ah->caps.total_queues; i++)
2320 ath9k_hw_resettxqueue(ah, i);
2321
2322 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2323 ath9k_hw_init_qos(ah);
2324
2325 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2326 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2327 ath9k_enable_rfkill(ah);
2328 #endif
2329 ath9k_hw_init_user_settings(ah);
2330
2331 REG_WRITE(ah, AR_STA_ID1,
2332 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2333
2334 ath9k_hw_set_dma(ah);
2335
2336 REG_WRITE(ah, AR_OBS, 8);
2337
2338 if (ah->intr_mitigation) {
2339
2340 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2341 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2342 }
2343
2344 ath9k_hw_init_bb(ah, chan);
2345
2346 if (!ath9k_hw_init_cal(ah, chan))
2347 return -EIO;;
2348
2349 rx_chainmask = ah->rxchainmask;
2350 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2351 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2352 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2353 }
2354
2355 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2356
2357 if (AR_SREV_9100(ah)) {
2358 u32 mask;
2359 mask = REG_READ(ah, AR_CFG);
2360 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2361 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2362 "CFG Byte Swap Set 0x%x\n", mask);
2363 } else {
2364 mask =
2365 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2366 REG_WRITE(ah, AR_CFG, mask);
2367 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2368 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2369 }
2370 } else {
2371 #ifdef __BIG_ENDIAN
2372 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2373 #endif
2374 }
2375
2376 return 0;
2377 }
2378
2379 /************************/
2380 /* Key Cache Management */
2381 /************************/
2382
2383 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2384 {
2385 u32 keyType;
2386
2387 if (entry >= ah->caps.keycache_size) {
2388 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2389 "entry %u out of range\n", entry);
2390 return false;
2391 }
2392
2393 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2394
2395 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2396 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2397 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2398 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2399 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2400 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2401 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2402 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2403
2404 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2405 u16 micentry = entry + 64;
2406
2407 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2408 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2409 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2410 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2411
2412 }
2413
2414 if (ah->curchan == NULL)
2415 return true;
2416
2417 return true;
2418 }
2419
2420 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2421 {
2422 u32 macHi, macLo;
2423
2424 if (entry >= ah->caps.keycache_size) {
2425 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2426 "entry %u out of range\n", entry);
2427 return false;
2428 }
2429
2430 if (mac != NULL) {
2431 macHi = (mac[5] << 8) | mac[4];
2432 macLo = (mac[3] << 24) |
2433 (mac[2] << 16) |
2434 (mac[1] << 8) |
2435 mac[0];
2436 macLo >>= 1;
2437 macLo |= (macHi & 1) << 31;
2438 macHi >>= 1;
2439 } else {
2440 macLo = macHi = 0;
2441 }
2442 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2443 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2444
2445 return true;
2446 }
2447
2448 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2449 const struct ath9k_keyval *k,
2450 const u8 *mac)
2451 {
2452 const struct ath9k_hw_capabilities *pCap = &ah->caps;
2453 u32 key0, key1, key2, key3, key4;
2454 u32 keyType;
2455
2456 if (entry >= pCap->keycache_size) {
2457 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2458 "entry %u out of range\n", entry);
2459 return false;
2460 }
2461
2462 switch (k->kv_type) {
2463 case ATH9K_CIPHER_AES_OCB:
2464 keyType = AR_KEYTABLE_TYPE_AES;
2465 break;
2466 case ATH9K_CIPHER_AES_CCM:
2467 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2468 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2469 "AES-CCM not supported by mac rev 0x%x\n",
2470 ah->hw_version.macRev);
2471 return false;
2472 }
2473 keyType = AR_KEYTABLE_TYPE_CCM;
2474 break;
2475 case ATH9K_CIPHER_TKIP:
2476 keyType = AR_KEYTABLE_TYPE_TKIP;
2477 if (ATH9K_IS_MIC_ENABLED(ah)
2478 && entry + 64 >= pCap->keycache_size) {
2479 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2480 "entry %u inappropriate for TKIP\n", entry);
2481 return false;
2482 }
2483 break;
2484 case ATH9K_CIPHER_WEP:
2485 if (k->kv_len < LEN_WEP40) {
2486 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2487 "WEP key length %u too small\n", k->kv_len);
2488 return false;
2489 }
2490 if (k->kv_len <= LEN_WEP40)
2491 keyType = AR_KEYTABLE_TYPE_40;
2492 else if (k->kv_len <= LEN_WEP104)
2493 keyType = AR_KEYTABLE_TYPE_104;
2494 else
2495 keyType = AR_KEYTABLE_TYPE_128;
2496 break;
2497 case ATH9K_CIPHER_CLR:
2498 keyType = AR_KEYTABLE_TYPE_CLR;
2499 break;
2500 default:
2501 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2502 "cipher %u not supported\n", k->kv_type);
2503 return false;
2504 }
2505
2506 key0 = get_unaligned_le32(k->kv_val + 0);
2507 key1 = get_unaligned_le16(k->kv_val + 4);
2508 key2 = get_unaligned_le32(k->kv_val + 6);
2509 key3 = get_unaligned_le16(k->kv_val + 10);
2510 key4 = get_unaligned_le32(k->kv_val + 12);
2511 if (k->kv_len <= LEN_WEP104)
2512 key4 &= 0xff;
2513
2514 /*
2515 * Note: Key cache registers access special memory area that requires
2516 * two 32-bit writes to actually update the values in the internal
2517 * memory. Consequently, the exact order and pairs used here must be
2518 * maintained.
2519 */
2520
2521 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2522 u16 micentry = entry + 64;
2523
2524 /*
2525 * Write inverted key[47:0] first to avoid Michael MIC errors
2526 * on frames that could be sent or received at the same time.
2527 * The correct key will be written in the end once everything
2528 * else is ready.
2529 */
2530 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2531 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2532
2533 /* Write key[95:48] */
2534 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2535 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2536
2537 /* Write key[127:96] and key type */
2538 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2539 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2540
2541 /* Write MAC address for the entry */
2542 (void) ath9k_hw_keysetmac(ah, entry, mac);
2543
2544 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2545 /*
2546 * TKIP uses two key cache entries:
2547 * Michael MIC TX/RX keys in the same key cache entry
2548 * (idx = main index + 64):
2549 * key0 [31:0] = RX key [31:0]
2550 * key1 [15:0] = TX key [31:16]
2551 * key1 [31:16] = reserved
2552 * key2 [31:0] = RX key [63:32]
2553 * key3 [15:0] = TX key [15:0]
2554 * key3 [31:16] = reserved
2555 * key4 [31:0] = TX key [63:32]
2556 */
2557 u32 mic0, mic1, mic2, mic3, mic4;
2558
2559 mic0 = get_unaligned_le32(k->kv_mic + 0);
2560 mic2 = get_unaligned_le32(k->kv_mic + 4);
2561 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2562 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2563 mic4 = get_unaligned_le32(k->kv_txmic + 4);
2564
2565 /* Write RX[31:0] and TX[31:16] */
2566 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2567 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2568
2569 /* Write RX[63:32] and TX[15:0] */
2570 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2571 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2572
2573 /* Write TX[63:32] and keyType(reserved) */
2574 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2575 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2576 AR_KEYTABLE_TYPE_CLR);
2577
2578 } else {
2579 /*
2580 * TKIP uses four key cache entries (two for group
2581 * keys):
2582 * Michael MIC TX/RX keys are in different key cache
2583 * entries (idx = main index + 64 for TX and
2584 * main index + 32 + 96 for RX):
2585 * key0 [31:0] = TX/RX MIC key [31:0]
2586 * key1 [31:0] = reserved
2587 * key2 [31:0] = TX/RX MIC key [63:32]
2588 * key3 [31:0] = reserved
2589 * key4 [31:0] = reserved
2590 *
2591 * Upper layer code will call this function separately
2592 * for TX and RX keys when these registers offsets are
2593 * used.
2594 */
2595 u32 mic0, mic2;
2596
2597 mic0 = get_unaligned_le32(k->kv_mic + 0);
2598 mic2 = get_unaligned_le32(k->kv_mic + 4);
2599
2600 /* Write MIC key[31:0] */
2601 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2602 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2603
2604 /* Write MIC key[63:32] */
2605 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2606 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2607
2608 /* Write TX[63:32] and keyType(reserved) */
2609 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2610 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2611 AR_KEYTABLE_TYPE_CLR);
2612 }
2613
2614 /* MAC address registers are reserved for the MIC entry */
2615 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2616 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2617
2618 /*
2619 * Write the correct (un-inverted) key[47:0] last to enable
2620 * TKIP now that all other registers are set with correct
2621 * values.
2622 */
2623 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2624 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2625 } else {
2626 /* Write key[47:0] */
2627 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2628 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2629
2630 /* Write key[95:48] */
2631 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2632 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2633
2634 /* Write key[127:96] and key type */
2635 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2636 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2637
2638 /* Write MAC address for the entry */
2639 (void) ath9k_hw_keysetmac(ah, entry, mac);
2640 }
2641
2642 return true;
2643 }
2644
2645 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2646 {
2647 if (entry < ah->caps.keycache_size) {
2648 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2649 if (val & AR_KEYTABLE_VALID)
2650 return true;
2651 }
2652 return false;
2653 }
2654
2655 /******************************/
2656 /* Power Management (Chipset) */
2657 /******************************/
2658
2659 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2660 {
2661 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2662 if (setChip) {
2663 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2664 AR_RTC_FORCE_WAKE_EN);
2665 if (!AR_SREV_9100(ah))
2666 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2667
2668 REG_CLR_BIT(ah, (AR_RTC_RESET),
2669 AR_RTC_RESET_EN);
2670 }
2671 }
2672
2673 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2674 {
2675 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2676 if (setChip) {
2677 struct ath9k_hw_capabilities *pCap = &ah->caps;
2678
2679 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2680 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2681 AR_RTC_FORCE_WAKE_ON_INT);
2682 } else {
2683 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2684 AR_RTC_FORCE_WAKE_EN);
2685 }
2686 }
2687 }
2688
2689 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2690 {
2691 u32 val;
2692 int i;
2693
2694 if (setChip) {
2695 if ((REG_READ(ah, AR_RTC_STATUS) &
2696 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2697 if (ath9k_hw_set_reset_reg(ah,
2698 ATH9K_RESET_POWER_ON) != true) {
2699 return false;
2700 }
2701 }
2702 if (AR_SREV_9100(ah))
2703 REG_SET_BIT(ah, AR_RTC_RESET,
2704 AR_RTC_RESET_EN);
2705
2706 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2707 AR_RTC_FORCE_WAKE_EN);
2708 udelay(50);
2709
2710 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2711 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2712 if (val == AR_RTC_STATUS_ON)
2713 break;
2714 udelay(50);
2715 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2716 AR_RTC_FORCE_WAKE_EN);
2717 }
2718 if (i == 0) {
2719 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
2720 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2721 return false;
2722 }
2723 }
2724
2725 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2726
2727 return true;
2728 }
2729
2730 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2731 {
2732 int status = true, setChip = true;
2733 static const char *modes[] = {
2734 "AWAKE",
2735 "FULL-SLEEP",
2736 "NETWORK SLEEP",
2737 "UNDEFINED"
2738 };
2739
2740 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s -> %s (%s)\n",
2741 modes[ah->power_mode], modes[mode],
2742 setChip ? "set chip " : "");
2743
2744 switch (mode) {
2745 case ATH9K_PM_AWAKE:
2746 status = ath9k_hw_set_power_awake(ah, setChip);
2747 break;
2748 case ATH9K_PM_FULL_SLEEP:
2749 ath9k_set_power_sleep(ah, setChip);
2750 ah->chip_fullsleep = true;
2751 break;
2752 case ATH9K_PM_NETWORK_SLEEP:
2753 ath9k_set_power_network_sleep(ah, setChip);
2754 break;
2755 default:
2756 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
2757 "Unknown power mode %u\n", mode);
2758 return false;
2759 }
2760 ah->power_mode = mode;
2761
2762 return status;
2763 }
2764
2765 /*
2766 * Helper for ASPM support.
2767 *
2768 * Disable PLL when in L0s as well as receiver clock when in L1.
2769 * This power saving option must be enabled through the SerDes.
2770 *
2771 * Programming the SerDes must go through the same 288 bit serial shift
2772 * register as the other analog registers. Hence the 9 writes.
2773 */
2774 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2775 {
2776 u8 i;
2777
2778 if (ah->is_pciexpress != true)
2779 return;
2780
2781 /* Do not touch SerDes registers */
2782 if (ah->config.pcie_powersave_enable == 2)
2783 return;
2784
2785 /* Nothing to do on restore for 11N */
2786 if (restore)
2787 return;
2788
2789 if (AR_SREV_9280_20_OR_LATER(ah)) {
2790 /*
2791 * AR9280 2.0 or later chips use SerDes values from the
2792 * initvals.h initialized depending on chipset during
2793 * ath9k_hw_do_attach()
2794 */
2795 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2796 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2797 INI_RA(&ah->iniPcieSerdes, i, 1));
2798 }
2799 } else if (AR_SREV_9280(ah) &&
2800 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2801 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2802 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2803
2804 /* RX shut off when elecidle is asserted */
2805 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2806 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2807 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2808
2809 /* Shut off CLKREQ active in L1 */
2810 if (ah->config.pcie_clock_req)
2811 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2812 else
2813 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2814
2815 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2816 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2817 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2818
2819 /* Load the new settings */
2820 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2821
2822 } else {
2823 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2824 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2825
2826 /* RX shut off when elecidle is asserted */
2827 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2828 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2829 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2830
2831 /*
2832 * Ignore ah->ah_config.pcie_clock_req setting for
2833 * pre-AR9280 11n
2834 */
2835 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2836
2837 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2838 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2839 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2840
2841 /* Load the new settings */
2842 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2843 }
2844
2845 udelay(1000);
2846
2847 /* set bit 19 to allow forcing of pcie core into L1 state */
2848 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2849
2850 /* Several PCIe massages to ensure proper behaviour */
2851 if (ah->config.pcie_waen) {
2852 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2853 } else {
2854 if (AR_SREV_9285(ah))
2855 REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2856 /*
2857 * On AR9280 chips bit 22 of 0x4004 needs to be set to
2858 * otherwise card may disappear.
2859 */
2860 else if (AR_SREV_9280(ah))
2861 REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
2862 else
2863 REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
2864 }
2865 }
2866
2867 /**********************/
2868 /* Interrupt Handling */
2869 /**********************/
2870
2871 bool ath9k_hw_intrpend(struct ath_hw *ah)
2872 {
2873 u32 host_isr;
2874
2875 if (AR_SREV_9100(ah))
2876 return true;
2877
2878 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2879 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2880 return true;
2881
2882 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2883 if ((host_isr & AR_INTR_SYNC_DEFAULT)
2884 && (host_isr != AR_INTR_SPURIOUS))
2885 return true;
2886
2887 return false;
2888 }
2889
2890 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2891 {
2892 u32 isr = 0;
2893 u32 mask2 = 0;
2894 struct ath9k_hw_capabilities *pCap = &ah->caps;
2895 u32 sync_cause = 0;
2896 bool fatal_int = false;
2897
2898 if (!AR_SREV_9100(ah)) {
2899 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2900 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2901 == AR_RTC_STATUS_ON) {
2902 isr = REG_READ(ah, AR_ISR);
2903 }
2904 }
2905
2906 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2907 AR_INTR_SYNC_DEFAULT;
2908
2909 *masked = 0;
2910
2911 if (!isr && !sync_cause)
2912 return false;
2913 } else {
2914 *masked = 0;
2915 isr = REG_READ(ah, AR_ISR);
2916 }
2917
2918 if (isr) {
2919 if (isr & AR_ISR_BCNMISC) {
2920 u32 isr2;
2921 isr2 = REG_READ(ah, AR_ISR_S2);
2922 if (isr2 & AR_ISR_S2_TIM)
2923 mask2 |= ATH9K_INT_TIM;
2924 if (isr2 & AR_ISR_S2_DTIM)
2925 mask2 |= ATH9K_INT_DTIM;
2926 if (isr2 & AR_ISR_S2_DTIMSYNC)
2927 mask2 |= ATH9K_INT_DTIMSYNC;
2928 if (isr2 & (AR_ISR_S2_CABEND))
2929 mask2 |= ATH9K_INT_CABEND;
2930 if (isr2 & AR_ISR_S2_GTT)
2931 mask2 |= ATH9K_INT_GTT;
2932 if (isr2 & AR_ISR_S2_CST)
2933 mask2 |= ATH9K_INT_CST;
2934 if (isr2 & AR_ISR_S2_TSFOOR)
2935 mask2 |= ATH9K_INT_TSFOOR;
2936 }
2937
2938 isr = REG_READ(ah, AR_ISR_RAC);
2939 if (isr == 0xffffffff) {
2940 *masked = 0;
2941 return false;
2942 }
2943
2944 *masked = isr & ATH9K_INT_COMMON;
2945
2946 if (ah->intr_mitigation) {
2947 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2948 *masked |= ATH9K_INT_RX;
2949 }
2950
2951 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2952 *masked |= ATH9K_INT_RX;
2953 if (isr &
2954 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2955 AR_ISR_TXEOL)) {
2956 u32 s0_s, s1_s;
2957
2958 *masked |= ATH9K_INT_TX;
2959
2960 s0_s = REG_READ(ah, AR_ISR_S0_S);
2961 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2962 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2963
2964 s1_s = REG_READ(ah, AR_ISR_S1_S);
2965 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2966 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2967 }
2968
2969 if (isr & AR_ISR_RXORN) {
2970 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2971 "receive FIFO overrun interrupt\n");
2972 }
2973
2974 if (!AR_SREV_9100(ah)) {
2975 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2976 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2977 if (isr5 & AR_ISR_S5_TIM_TIMER)
2978 *masked |= ATH9K_INT_TIM_TIMER;
2979 }
2980 }
2981
2982 *masked |= mask2;
2983 }
2984
2985 if (AR_SREV_9100(ah))
2986 return true;
2987
2988 if (sync_cause) {
2989 fatal_int =
2990 (sync_cause &
2991 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2992 ? true : false;
2993
2994 if (fatal_int) {
2995 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2996 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2997 "received PCI FATAL interrupt\n");
2998 }
2999 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3000 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3001 "received PCI PERR interrupt\n");
3002 }
3003 }
3004 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3005 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3006 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3007 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3008 REG_WRITE(ah, AR_RC, 0);
3009 *masked |= ATH9K_INT_FATAL;
3010 }
3011 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3012 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3013 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3014 }
3015
3016 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3017 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3018 }
3019
3020 return true;
3021 }
3022
3023 enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah)
3024 {
3025 return ah->mask_reg;
3026 }
3027
3028 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3029 {
3030 u32 omask = ah->mask_reg;
3031 u32 mask, mask2;
3032 struct ath9k_hw_capabilities *pCap = &ah->caps;
3033
3034 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3035
3036 if (omask & ATH9K_INT_GLOBAL) {
3037 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3038 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3039 (void) REG_READ(ah, AR_IER);
3040 if (!AR_SREV_9100(ah)) {
3041 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3042 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3043
3044 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3045 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3046 }
3047 }
3048
3049 mask = ints & ATH9K_INT_COMMON;
3050 mask2 = 0;
3051
3052 if (ints & ATH9K_INT_TX) {
3053 if (ah->txok_interrupt_mask)
3054 mask |= AR_IMR_TXOK;
3055 if (ah->txdesc_interrupt_mask)
3056 mask |= AR_IMR_TXDESC;
3057 if (ah->txerr_interrupt_mask)
3058 mask |= AR_IMR_TXERR;
3059 if (ah->txeol_interrupt_mask)
3060 mask |= AR_IMR_TXEOL;
3061 }
3062 if (ints & ATH9K_INT_RX) {
3063 mask |= AR_IMR_RXERR;
3064 if (ah->intr_mitigation)
3065 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3066 else
3067 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3068 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3069 mask |= AR_IMR_GENTMR;
3070 }
3071
3072 if (ints & (ATH9K_INT_BMISC)) {
3073 mask |= AR_IMR_BCNMISC;
3074 if (ints & ATH9K_INT_TIM)
3075 mask2 |= AR_IMR_S2_TIM;
3076 if (ints & ATH9K_INT_DTIM)
3077 mask2 |= AR_IMR_S2_DTIM;
3078 if (ints & ATH9K_INT_DTIMSYNC)
3079 mask2 |= AR_IMR_S2_DTIMSYNC;
3080 if (ints & ATH9K_INT_CABEND)
3081 mask2 |= AR_IMR_S2_CABEND;
3082 if (ints & ATH9K_INT_TSFOOR)
3083 mask2 |= AR_IMR_S2_TSFOOR;
3084 }
3085
3086 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3087 mask |= AR_IMR_BCNMISC;
3088 if (ints & ATH9K_INT_GTT)
3089 mask2 |= AR_IMR_S2_GTT;
3090 if (ints & ATH9K_INT_CST)
3091 mask2 |= AR_IMR_S2_CST;
3092 }
3093
3094 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3095 REG_WRITE(ah, AR_IMR, mask);
3096 mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3097 AR_IMR_S2_DTIM |
3098 AR_IMR_S2_DTIMSYNC |
3099 AR_IMR_S2_CABEND |
3100 AR_IMR_S2_CABTO |
3101 AR_IMR_S2_TSFOOR |
3102 AR_IMR_S2_GTT | AR_IMR_S2_CST);
3103 REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3104 ah->mask_reg = ints;
3105
3106 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3107 if (ints & ATH9K_INT_TIM_TIMER)
3108 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3109 else
3110 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3111 }
3112
3113 if (ints & ATH9K_INT_GLOBAL) {
3114 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3115 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3116 if (!AR_SREV_9100(ah)) {
3117 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3118 AR_INTR_MAC_IRQ);
3119 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3120
3121
3122 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3123 AR_INTR_SYNC_DEFAULT);
3124 REG_WRITE(ah, AR_INTR_SYNC_MASK,
3125 AR_INTR_SYNC_DEFAULT);
3126 }
3127 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3128 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3129 }
3130
3131 return omask;
3132 }
3133
3134 /*******************/
3135 /* Beacon Handling */
3136 /*******************/
3137
3138 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3139 {
3140 int flags = 0;
3141
3142 ah->beacon_interval = beacon_period;
3143
3144 switch (ah->opmode) {
3145 case NL80211_IFTYPE_STATION:
3146 case NL80211_IFTYPE_MONITOR:
3147 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3148 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3149 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3150 flags |= AR_TBTT_TIMER_EN;
3151 break;
3152 case NL80211_IFTYPE_ADHOC:
3153 case NL80211_IFTYPE_MESH_POINT:
3154 REG_SET_BIT(ah, AR_TXCFG,
3155 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3156 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3157 TU_TO_USEC(next_beacon +
3158 (ah->atim_window ? ah->
3159 atim_window : 1)));
3160 flags |= AR_NDP_TIMER_EN;
3161 case NL80211_IFTYPE_AP:
3162 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3163 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3164 TU_TO_USEC(next_beacon -
3165 ah->config.
3166 dma_beacon_response_time));
3167 REG_WRITE(ah, AR_NEXT_SWBA,
3168 TU_TO_USEC(next_beacon -
3169 ah->config.
3170 sw_beacon_response_time));
3171 flags |=
3172 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3173 break;
3174 default:
3175 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3176 "%s: unsupported opmode: %d\n",
3177 __func__, ah->opmode);
3178 return;
3179 break;
3180 }
3181
3182 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3183 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3184 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3185 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3186
3187 beacon_period &= ~ATH9K_BEACON_ENA;
3188 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3189 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3190 ath9k_hw_reset_tsf(ah);
3191 }
3192
3193 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3194 }
3195
3196 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3197 const struct ath9k_beacon_state *bs)
3198 {
3199 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3200 struct ath9k_hw_capabilities *pCap = &ah->caps;
3201
3202 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3203
3204 REG_WRITE(ah, AR_BEACON_PERIOD,
3205 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3206 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3207 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3208
3209 REG_RMW_FIELD(ah, AR_RSSI_THR,
3210 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3211
3212 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3213
3214 if (bs->bs_sleepduration > beaconintval)
3215 beaconintval = bs->bs_sleepduration;
3216
3217 dtimperiod = bs->bs_dtimperiod;
3218 if (bs->bs_sleepduration > dtimperiod)
3219 dtimperiod = bs->bs_sleepduration;
3220
3221 if (beaconintval == dtimperiod)
3222 nextTbtt = bs->bs_nextdtim;
3223 else
3224 nextTbtt = bs->bs_nexttbtt;
3225
3226 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3227 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3228 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3229 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3230
3231 REG_WRITE(ah, AR_NEXT_DTIM,
3232 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3233 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3234
3235 REG_WRITE(ah, AR_SLEEP1,
3236 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3237 | AR_SLEEP1_ASSUME_DTIM);
3238
3239 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3240 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3241 else
3242 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3243
3244 REG_WRITE(ah, AR_SLEEP2,
3245 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3246
3247 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3248 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3249
3250 REG_SET_BIT(ah, AR_TIMER_MODE,
3251 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3252 AR_DTIM_TIMER_EN);
3253
3254 /* TSF Out of Range Threshold */
3255 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3256 }
3257
3258 /*******************/
3259 /* HW Capabilities */
3260 /*******************/
3261
3262 bool ath9k_hw_fill_cap_info(struct ath_hw *ah)
3263 {
3264 struct ath9k_hw_capabilities *pCap = &ah->caps;
3265 u16 capField = 0, eeval;
3266
3267 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3268 ah->regulatory.current_rd = eeval;
3269
3270 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3271 if (AR_SREV_9285_10_OR_LATER(ah))
3272 eeval |= AR9285_RDEXT_DEFAULT;
3273 ah->regulatory.current_rd_ext = eeval;
3274
3275 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3276
3277 if (ah->opmode != NL80211_IFTYPE_AP &&
3278 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3279 if (ah->regulatory.current_rd == 0x64 ||
3280 ah->regulatory.current_rd == 0x65)
3281 ah->regulatory.current_rd += 5;
3282 else if (ah->regulatory.current_rd == 0x41)
3283 ah->regulatory.current_rd = 0x43;
3284 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3285 "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3286 }
3287
3288 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3289 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3290
3291 if (eeval & AR5416_OPFLAGS_11A) {
3292 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3293 if (ah->config.ht_enable) {
3294 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3295 set_bit(ATH9K_MODE_11NA_HT20,
3296 pCap->wireless_modes);
3297 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3298 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3299 pCap->wireless_modes);
3300 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3301 pCap->wireless_modes);
3302 }
3303 }
3304 }
3305
3306 if (eeval & AR5416_OPFLAGS_11G) {
3307 set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
3308 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3309 if (ah->config.ht_enable) {
3310 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3311 set_bit(ATH9K_MODE_11NG_HT20,
3312 pCap->wireless_modes);
3313 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3314 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3315 pCap->wireless_modes);
3316 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3317 pCap->wireless_modes);
3318 }
3319 }
3320 }
3321
3322 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3323 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3324 !(eeval & AR5416_OPFLAGS_11A))
3325 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3326 else
3327 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3328
3329 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3330 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3331
3332 pCap->low_2ghz_chan = 2312;
3333 pCap->high_2ghz_chan = 2732;
3334
3335 pCap->low_5ghz_chan = 4920;
3336 pCap->high_5ghz_chan = 6100;
3337
3338 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3339 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3340 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3341
3342 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3343 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3344 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3345
3346 pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
3347
3348 if (ah->config.ht_enable)
3349 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3350 else
3351 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3352
3353 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3354 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3355 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3356 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3357
3358 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3359 pCap->total_queues =
3360 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3361 else
3362 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3363
3364 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3365 pCap->keycache_size =
3366 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3367 else
3368 pCap->keycache_size = AR_KEYTABLE_SIZE;
3369
3370 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3371 pCap->num_mr_retries = 4;
3372 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3373
3374 if (AR_SREV_9285_10_OR_LATER(ah))
3375 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3376 else if (AR_SREV_9280_10_OR_LATER(ah))
3377 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3378 else
3379 pCap->num_gpio_pins = AR_NUM_GPIO;
3380
3381 if (AR_SREV_9280_10_OR_LATER(ah)) {
3382 pCap->hw_caps |= ATH9K_HW_CAP_WOW;
3383 pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3384 } else {
3385 pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
3386 pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3387 }
3388
3389 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3390 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3391 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3392 } else {
3393 pCap->rts_aggr_limit = (8 * 1024);
3394 }
3395
3396 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3397
3398 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3399 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3400 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3401 ah->rfkill_gpio =
3402 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3403 ah->rfkill_polarity =
3404 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3405
3406 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3407 }
3408 #endif
3409
3410 if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3411 (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3412 (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3413 (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3414 (ah->hw_version.macVersion == AR_SREV_VERSION_9280))
3415 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3416 else
3417 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3418
3419 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3420 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3421 else
3422 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3423
3424 if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3425 pCap->reg_cap =
3426 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3427 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3428 AR_EEPROM_EEREGCAP_EN_KK_U2 |
3429 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3430 } else {
3431 pCap->reg_cap =
3432 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3433 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3434 }
3435
3436 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3437
3438 pCap->num_antcfg_5ghz =
3439 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3440 pCap->num_antcfg_2ghz =
3441 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3442
3443 if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3444 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3445 ah->btactive_gpio = 6;
3446 ah->wlanactive_gpio = 5;
3447 }
3448
3449 return true;
3450 }
3451
3452 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3453 u32 capability, u32 *result)
3454 {
3455 switch (type) {
3456 case ATH9K_CAP_CIPHER:
3457 switch (capability) {
3458 case ATH9K_CIPHER_AES_CCM:
3459 case ATH9K_CIPHER_AES_OCB:
3460 case ATH9K_CIPHER_TKIP:
3461 case ATH9K_CIPHER_WEP:
3462 case ATH9K_CIPHER_MIC:
3463 case ATH9K_CIPHER_CLR:
3464 return true;
3465 default:
3466 return false;
3467 }
3468 case ATH9K_CAP_TKIP_MIC:
3469 switch (capability) {
3470 case 0:
3471 return true;
3472 case 1:
3473 return (ah->sta_id1_defaults &
3474 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3475 false;
3476 }
3477 case ATH9K_CAP_TKIP_SPLIT:
3478 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3479 false : true;
3480 case ATH9K_CAP_DIVERSITY:
3481 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3482 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3483 true : false;
3484 case ATH9K_CAP_MCAST_KEYSRCH:
3485 switch (capability) {
3486 case 0:
3487 return true;
3488 case 1:
3489 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3490 return false;
3491 } else {
3492 return (ah->sta_id1_defaults &
3493 AR_STA_ID1_MCAST_KSRCH) ? true :
3494 false;
3495 }
3496 }
3497 return false;
3498 case ATH9K_CAP_TXPOW:
3499 switch (capability) {
3500 case 0:
3501 return 0;
3502 case 1:
3503 *result = ah->regulatory.power_limit;
3504 return 0;
3505 case 2:
3506 *result = ah->regulatory.max_power_level;
3507 return 0;
3508 case 3:
3509 *result = ah->regulatory.tp_scale;
3510 return 0;
3511 }
3512 return false;
3513 case ATH9K_CAP_DS:
3514 return (AR_SREV_9280_20_OR_LATER(ah) &&
3515 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3516 ? false : true;
3517 default:
3518 return false;
3519 }
3520 }
3521
3522 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3523 u32 capability, u32 setting, int *status)
3524 {
3525 u32 v;
3526
3527 switch (type) {
3528 case ATH9K_CAP_TKIP_MIC:
3529 if (setting)
3530 ah->sta_id1_defaults |=
3531 AR_STA_ID1_CRPT_MIC_ENABLE;
3532 else
3533 ah->sta_id1_defaults &=
3534 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3535 return true;
3536 case ATH9K_CAP_DIVERSITY:
3537 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3538 if (setting)
3539 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3540 else
3541 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3542 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3543 return true;
3544 case ATH9K_CAP_MCAST_KEYSRCH:
3545 if (setting)
3546 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3547 else
3548 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3549 return true;
3550 default:
3551 return false;
3552 }
3553 }
3554
3555 /****************************/
3556 /* GPIO / RFKILL / Antennae */
3557 /****************************/
3558
3559 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3560 u32 gpio, u32 type)
3561 {
3562 int addr;
3563 u32 gpio_shift, tmp;
3564
3565 if (gpio > 11)
3566 addr = AR_GPIO_OUTPUT_MUX3;
3567 else if (gpio > 5)
3568 addr = AR_GPIO_OUTPUT_MUX2;
3569 else
3570 addr = AR_GPIO_OUTPUT_MUX1;
3571
3572 gpio_shift = (gpio % 6) * 5;
3573
3574 if (AR_SREV_9280_20_OR_LATER(ah)
3575 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3576 REG_RMW(ah, addr, (type << gpio_shift),
3577 (0x1f << gpio_shift));
3578 } else {
3579 tmp = REG_READ(ah, addr);
3580 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3581 tmp &= ~(0x1f << gpio_shift);
3582 tmp |= (type << gpio_shift);
3583 REG_WRITE(ah, addr, tmp);
3584 }
3585 }
3586
3587 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3588 {
3589 u32 gpio_shift;
3590
3591 ASSERT(gpio < ah->caps.num_gpio_pins);
3592
3593 gpio_shift = gpio << 1;
3594
3595 REG_RMW(ah,
3596 AR_GPIO_OE_OUT,
3597 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3598 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3599 }
3600
3601 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3602 {
3603 #define MS_REG_READ(x, y) \
3604 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3605
3606 if (gpio >= ah->caps.num_gpio_pins)
3607 return 0xffffffff;
3608
3609 if (AR_SREV_9285_10_OR_LATER(ah))
3610 return MS_REG_READ(AR9285, gpio) != 0;
3611 else if (AR_SREV_9280_10_OR_LATER(ah))
3612 return MS_REG_READ(AR928X, gpio) != 0;
3613 else
3614 return MS_REG_READ(AR, gpio) != 0;
3615 }
3616
3617 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3618 u32 ah_signal_type)
3619 {
3620 u32 gpio_shift;
3621
3622 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3623
3624 gpio_shift = 2 * gpio;
3625
3626 REG_RMW(ah,
3627 AR_GPIO_OE_OUT,
3628 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3629 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3630 }
3631
3632 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3633 {
3634 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3635 AR_GPIO_BIT(gpio));
3636 }
3637
3638 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3639 void ath9k_enable_rfkill(struct ath_hw *ah)
3640 {
3641 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3642 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
3643
3644 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
3645 AR_GPIO_INPUT_MUX2_RFSILENT);
3646
3647 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
3648 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
3649 }
3650 #endif
3651
3652 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3653 {
3654 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3655 }
3656
3657 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3658 {
3659 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3660 }
3661
3662 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3663 enum ath9k_ant_setting settings,
3664 struct ath9k_channel *chan,
3665 u8 *tx_chainmask,
3666 u8 *rx_chainmask,
3667 u8 *antenna_cfgd)
3668 {
3669 static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3670
3671 if (AR_SREV_9280(ah)) {
3672 if (!tx_chainmask_cfg) {
3673
3674 tx_chainmask_cfg = *tx_chainmask;
3675 rx_chainmask_cfg = *rx_chainmask;
3676 }
3677
3678 switch (settings) {
3679 case ATH9K_ANT_FIXED_A:
3680 *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3681 *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3682 *antenna_cfgd = true;
3683 break;
3684 case ATH9K_ANT_FIXED_B:
3685 if (ah->caps.tx_chainmask >
3686 ATH9K_ANTENNA1_CHAINMASK) {
3687 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3688 }
3689 *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3690 *antenna_cfgd = true;
3691 break;
3692 case ATH9K_ANT_VARIABLE:
3693 *tx_chainmask = tx_chainmask_cfg;
3694 *rx_chainmask = rx_chainmask_cfg;
3695 *antenna_cfgd = true;
3696 break;
3697 default:
3698 break;
3699 }
3700 } else {
3701 ah->diversity_control = settings;
3702 }
3703
3704 return true;
3705 }
3706
3707 /*********************/
3708 /* General Operation */
3709 /*********************/
3710
3711 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3712 {
3713 u32 bits = REG_READ(ah, AR_RX_FILTER);
3714 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3715
3716 if (phybits & AR_PHY_ERR_RADAR)
3717 bits |= ATH9K_RX_FILTER_PHYRADAR;
3718 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3719 bits |= ATH9K_RX_FILTER_PHYERR;
3720
3721 return bits;
3722 }
3723
3724 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3725 {
3726 u32 phybits;
3727
3728 REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3729 phybits = 0;
3730 if (bits & ATH9K_RX_FILTER_PHYRADAR)
3731 phybits |= AR_PHY_ERR_RADAR;
3732 if (bits & ATH9K_RX_FILTER_PHYERR)
3733 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3734 REG_WRITE(ah, AR_PHY_ERR, phybits);
3735
3736 if (phybits)
3737 REG_WRITE(ah, AR_RXCFG,
3738 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3739 else
3740 REG_WRITE(ah, AR_RXCFG,
3741 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3742 }
3743
3744 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3745 {
3746 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3747 }
3748
3749 bool ath9k_hw_disable(struct ath_hw *ah)
3750 {
3751 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3752 return false;
3753
3754 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3755 }
3756
3757 bool ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3758 {
3759 struct ath9k_channel *chan = ah->curchan;
3760 struct ieee80211_channel *channel = chan->chan;
3761
3762 ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3763
3764 if (ah->eep_ops->set_txpower(ah, chan,
3765 ath9k_regd_get_ctl(ah, chan),
3766 channel->max_antenna_gain * 2,
3767 channel->max_power * 2,
3768 min((u32) MAX_RATE_POWER,
3769 (u32) ah->regulatory.power_limit)) != 0)
3770 return false;
3771
3772 return true;
3773 }
3774
3775 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3776 {
3777 memcpy(ah->macaddr, mac, ETH_ALEN);
3778 }
3779
3780 void ath9k_hw_setopmode(struct ath_hw *ah)
3781 {
3782 ath9k_hw_set_operating_mode(ah, ah->opmode);
3783 }
3784
3785 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3786 {
3787 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3788 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3789 }
3790
3791 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3792 {
3793 REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3794 REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3795 }
3796
3797 void ath9k_hw_write_associd(struct ath_softc *sc)
3798 {
3799 REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3800 REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3801 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3802 }
3803
3804 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3805 {
3806 u64 tsf;
3807
3808 tsf = REG_READ(ah, AR_TSF_U32);
3809 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3810
3811 return tsf;
3812 }
3813
3814 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3815 {
3816 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3817 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3818 }
3819
3820 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3821 {
3822 int count;
3823
3824 count = 0;
3825 while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
3826 count++;
3827 if (count > 10) {
3828 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3829 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3830 break;
3831 }
3832 udelay(10);
3833 }
3834 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3835 }
3836
3837 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3838 {
3839 if (setting)
3840 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3841 else
3842 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3843
3844 return true;
3845 }
3846
3847 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3848 {
3849 if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3850 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3851 ah->slottime = (u32) -1;
3852 return false;
3853 } else {
3854 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3855 ah->slottime = us;
3856 return true;
3857 }
3858 }
3859
3860 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3861 {
3862 u32 macmode;
3863
3864 if (mode == ATH9K_HT_MACMODE_2040 &&
3865 !ah->config.cwm_ignore_extcca)
3866 macmode = AR_2040_JOINED_RX_CLEAR;
3867 else
3868 macmode = 0;
3869
3870 REG_WRITE(ah, AR_2040_MODE, macmode);
3871 }
3872
3873 /***************************/
3874 /* Bluetooth Coexistence */
3875 /***************************/
3876
3877 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3878 {
3879 /* connect bt_active to baseband */
3880 REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3881 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3882 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3883
3884 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3885 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3886
3887 /* Set input mux for bt_active to gpio pin */
3888 REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3889 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3890 ah->btactive_gpio);
3891
3892 /* Configure the desired gpio port for input */
3893 ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3894
3895 /* Configure the desired GPIO port for TX_FRAME output */
3896 ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
3897 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
3898 }