]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ath9k/hw.c
Merge branch 'core/percpu' into percpu-cpumask-x86-for-linus-2
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ath9k / hw.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "ath9k.h"
21 #include "initvals.h"
22
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26
27 #define ATH9K_CLOCK_RATE_CCK 22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33 enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35 struct ar5416_eeprom_def *pEepData,
36 u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39
40 /********************/
41 /* Helper Functions */
42 /********************/
43
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47
48 if (!ah->curchan) /* should really check for CCK instead */
49 return clks / ATH9K_CLOCK_RATE_CCK;
50 if (conf->channel->band == IEEE80211_BAND_2GHZ)
51 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52
53 return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59
60 if (conf_is_ht40(conf))
61 return ath9k_hw_mac_usec(ah, clks) / 2;
62 else
63 return ath9k_hw_mac_usec(ah, clks);
64 }
65
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69
70 if (!ah->curchan) /* should really check for CCK instead */
71 return usecs *ATH9K_CLOCK_RATE_CCK;
72 if (conf->channel->band == IEEE80211_BAND_2GHZ)
73 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80
81 if (conf_is_ht40(conf))
82 return ath9k_hw_mac_clks(ah, usecs) * 2;
83 else
84 return ath9k_hw_mac_clks(ah, usecs);
85 }
86
87 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
88 {
89 int i;
90
91 BUG_ON(timeout < AH_TIME_QUANTUM);
92
93 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
94 if ((REG_READ(ah, reg) & mask) == val)
95 return true;
96
97 udelay(AH_TIME_QUANTUM);
98 }
99
100 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
101 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
102 timeout, reg, REG_READ(ah, reg), mask, val);
103
104 return false;
105 }
106
107 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
108 {
109 u32 retval;
110 int i;
111
112 for (i = 0, retval = 0; i < n; i++) {
113 retval = (retval << 1) | (val & 1);
114 val >>= 1;
115 }
116 return retval;
117 }
118
119 bool ath9k_get_channel_edges(struct ath_hw *ah,
120 u16 flags, u16 *low,
121 u16 *high)
122 {
123 struct ath9k_hw_capabilities *pCap = &ah->caps;
124
125 if (flags & CHANNEL_5GHZ) {
126 *low = pCap->low_5ghz_chan;
127 *high = pCap->high_5ghz_chan;
128 return true;
129 }
130 if ((flags & CHANNEL_2GHZ)) {
131 *low = pCap->low_2ghz_chan;
132 *high = pCap->high_2ghz_chan;
133 return true;
134 }
135 return false;
136 }
137
138 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
139 struct ath_rate_table *rates,
140 u32 frameLen, u16 rateix,
141 bool shortPreamble)
142 {
143 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
144 u32 kbps;
145
146 kbps = rates->info[rateix].ratekbps;
147
148 if (kbps == 0)
149 return 0;
150
151 switch (rates->info[rateix].phy) {
152 case WLAN_RC_PHY_CCK:
153 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
154 if (shortPreamble && rates->info[rateix].short_preamble)
155 phyTime >>= 1;
156 numBits = frameLen << 3;
157 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
158 break;
159 case WLAN_RC_PHY_OFDM:
160 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
161 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
162 numBits = OFDM_PLCP_BITS + (frameLen << 3);
163 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
164 txTime = OFDM_SIFS_TIME_QUARTER
165 + OFDM_PREAMBLE_TIME_QUARTER
166 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
167 } else if (ah->curchan &&
168 IS_CHAN_HALF_RATE(ah->curchan)) {
169 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
170 numBits = OFDM_PLCP_BITS + (frameLen << 3);
171 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
172 txTime = OFDM_SIFS_TIME_HALF +
173 OFDM_PREAMBLE_TIME_HALF
174 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
175 } else {
176 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
177 numBits = OFDM_PLCP_BITS + (frameLen << 3);
178 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
179 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
180 + (numSymbols * OFDM_SYMBOL_TIME);
181 }
182 break;
183 default:
184 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
185 "Unknown phy %u (rate ix %u)\n",
186 rates->info[rateix].phy, rateix);
187 txTime = 0;
188 break;
189 }
190
191 return txTime;
192 }
193
194 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
195 struct ath9k_channel *chan,
196 struct chan_centers *centers)
197 {
198 int8_t extoff;
199
200 if (!IS_CHAN_HT40(chan)) {
201 centers->ctl_center = centers->ext_center =
202 centers->synth_center = chan->channel;
203 return;
204 }
205
206 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
207 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
208 centers->synth_center =
209 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
210 extoff = 1;
211 } else {
212 centers->synth_center =
213 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
214 extoff = -1;
215 }
216
217 centers->ctl_center =
218 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
219 centers->ext_center =
220 centers->synth_center + (extoff *
221 ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
222 HT40_CHANNEL_CENTER_SHIFT : 15));
223 }
224
225 /******************/
226 /* Chip Revisions */
227 /******************/
228
229 static void ath9k_hw_read_revisions(struct ath_hw *ah)
230 {
231 u32 val;
232
233 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
234
235 if (val == 0xFF) {
236 val = REG_READ(ah, AR_SREV);
237 ah->hw_version.macVersion =
238 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
239 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
240 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
241 } else {
242 if (!AR_SREV_9100(ah))
243 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
244
245 ah->hw_version.macRev = val & AR_SREV_REVISION;
246
247 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
248 ah->is_pciexpress = true;
249 }
250 }
251
252 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
253 {
254 u32 val;
255 int i;
256
257 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
258
259 for (i = 0; i < 8; i++)
260 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
261 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
262 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
263
264 return ath9k_hw_reverse_bits(val, 8);
265 }
266
267 /************************************/
268 /* HW Attach, Detach, Init Routines */
269 /************************************/
270
271 static void ath9k_hw_disablepcie(struct ath_hw *ah)
272 {
273 if (AR_SREV_9100(ah))
274 return;
275
276 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
277 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
278 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
279 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
280 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
281 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
282 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
283 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
284 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
285
286 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
287 }
288
289 static bool ath9k_hw_chip_test(struct ath_hw *ah)
290 {
291 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
292 u32 regHold[2];
293 u32 patternData[4] = { 0x55555555,
294 0xaaaaaaaa,
295 0x66666666,
296 0x99999999 };
297 int i, j;
298
299 for (i = 0; i < 2; i++) {
300 u32 addr = regAddr[i];
301 u32 wrData, rdData;
302
303 regHold[i] = REG_READ(ah, addr);
304 for (j = 0; j < 0x100; j++) {
305 wrData = (j << 16) | j;
306 REG_WRITE(ah, addr, wrData);
307 rdData = REG_READ(ah, addr);
308 if (rdData != wrData) {
309 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
310 "address test failed "
311 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
312 addr, wrData, rdData);
313 return false;
314 }
315 }
316 for (j = 0; j < 4; j++) {
317 wrData = patternData[j];
318 REG_WRITE(ah, addr, wrData);
319 rdData = REG_READ(ah, addr);
320 if (wrData != rdData) {
321 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
322 "address test failed "
323 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
324 addr, wrData, rdData);
325 return false;
326 }
327 }
328 REG_WRITE(ah, regAddr[i], regHold[i]);
329 }
330 udelay(100);
331
332 return true;
333 }
334
335 static const char *ath9k_hw_devname(u16 devid)
336 {
337 switch (devid) {
338 case AR5416_DEVID_PCI:
339 return "Atheros 5416";
340 case AR5416_DEVID_PCIE:
341 return "Atheros 5418";
342 case AR9160_DEVID_PCI:
343 return "Atheros 9160";
344 case AR5416_AR9100_DEVID:
345 return "Atheros 9100";
346 case AR9280_DEVID_PCI:
347 case AR9280_DEVID_PCIE:
348 return "Atheros 9280";
349 case AR9285_DEVID_PCIE:
350 return "Atheros 9285";
351 }
352
353 return NULL;
354 }
355
356 static void ath9k_hw_set_defaults(struct ath_hw *ah)
357 {
358 int i;
359
360 ah->config.dma_beacon_response_time = 2;
361 ah->config.sw_beacon_response_time = 10;
362 ah->config.additional_swba_backoff = 0;
363 ah->config.ack_6mb = 0x0;
364 ah->config.cwm_ignore_extcca = 0;
365 ah->config.pcie_powersave_enable = 0;
366 ah->config.pcie_l1skp_enable = 0;
367 ah->config.pcie_clock_req = 0;
368 ah->config.pcie_power_reset = 0x100;
369 ah->config.pcie_restore = 0;
370 ah->config.pcie_waen = 0;
371 ah->config.analog_shiftreg = 1;
372 ah->config.ht_enable = 1;
373 ah->config.ofdm_trig_low = 200;
374 ah->config.ofdm_trig_high = 500;
375 ah->config.cck_trig_high = 200;
376 ah->config.cck_trig_low = 100;
377 ah->config.enable_ani = 1;
378 ah->config.noise_immunity_level = 4;
379 ah->config.ofdm_weaksignal_det = 1;
380 ah->config.cck_weaksignal_thr = 0;
381 ah->config.spur_immunity_level = 2;
382 ah->config.firstep_level = 0;
383 ah->config.rssi_thr_high = 40;
384 ah->config.rssi_thr_low = 7;
385 ah->config.diversity_control = 0;
386 ah->config.antenna_switch_swap = 0;
387
388 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
389 ah->config.spurchans[i][0] = AR_NO_SPUR;
390 ah->config.spurchans[i][1] = AR_NO_SPUR;
391 }
392
393 ah->config.intr_mitigation = 1;
394
395 /*
396 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
397 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
398 * This means we use it for all AR5416 devices, and the few
399 * minor PCI AR9280 devices out there.
400 *
401 * Serialization is required because these devices do not handle
402 * well the case of two concurrent reads/writes due to the latency
403 * involved. During one read/write another read/write can be issued
404 * on another CPU while the previous read/write may still be working
405 * on our hardware, if we hit this case the hardware poops in a loop.
406 * We prevent this by serializing reads and writes.
407 *
408 * This issue is not present on PCI-Express devices or pre-AR5416
409 * devices (legacy, 802.11abg).
410 */
411 if (num_possible_cpus() > 1)
412 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
413 }
414
415 static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
416 int *status)
417 {
418 struct ath_hw *ah;
419
420 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
421 if (ah == NULL) {
422 DPRINTF(sc, ATH_DBG_FATAL,
423 "Cannot allocate memory for state block\n");
424 *status = -ENOMEM;
425 return NULL;
426 }
427
428 ah->ah_sc = sc;
429 ah->hw_version.magic = AR5416_MAGIC;
430 ah->regulatory.country_code = CTRY_DEFAULT;
431 ah->hw_version.devid = devid;
432 ah->hw_version.subvendorid = 0;
433
434 ah->ah_flags = 0;
435 if ((devid == AR5416_AR9100_DEVID))
436 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
437 if (!AR_SREV_9100(ah))
438 ah->ah_flags = AH_USE_EEPROM;
439
440 ah->regulatory.power_limit = MAX_RATE_POWER;
441 ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
442 ah->atim_window = 0;
443 ah->diversity_control = ah->config.diversity_control;
444 ah->antenna_switch_swap =
445 ah->config.antenna_switch_swap;
446 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
447 ah->beacon_interval = 100;
448 ah->enable_32kHz_clock = DONT_USE_32KHZ;
449 ah->slottime = (u32) -1;
450 ah->acktimeout = (u32) -1;
451 ah->ctstimeout = (u32) -1;
452 ah->globaltxtimeout = (u32) -1;
453
454 ah->gbeacon_rate = 0;
455
456 return ah;
457 }
458
459 static int ath9k_hw_rfattach(struct ath_hw *ah)
460 {
461 bool rfStatus = false;
462 int ecode = 0;
463
464 rfStatus = ath9k_hw_init_rf(ah, &ecode);
465 if (!rfStatus) {
466 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
467 "RF setup failed, status %u\n", ecode);
468 return ecode;
469 }
470
471 return 0;
472 }
473
474 static int ath9k_hw_rf_claim(struct ath_hw *ah)
475 {
476 u32 val;
477
478 REG_WRITE(ah, AR_PHY(0), 0x00000007);
479
480 val = ath9k_hw_get_radiorev(ah);
481 switch (val & AR_RADIO_SREV_MAJOR) {
482 case 0:
483 val = AR_RAD5133_SREV_MAJOR;
484 break;
485 case AR_RAD5133_SREV_MAJOR:
486 case AR_RAD5122_SREV_MAJOR:
487 case AR_RAD2133_SREV_MAJOR:
488 case AR_RAD2122_SREV_MAJOR:
489 break;
490 default:
491 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
492 "5G Radio Chip Rev 0x%02X is not "
493 "supported by this driver\n",
494 ah->hw_version.analog5GhzRev);
495 return -EOPNOTSUPP;
496 }
497
498 ah->hw_version.analog5GhzRev = val;
499
500 return 0;
501 }
502
503 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
504 {
505 u32 sum;
506 int i;
507 u16 eeval;
508
509 sum = 0;
510 for (i = 0; i < 3; i++) {
511 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
512 sum += eeval;
513 ah->macaddr[2 * i] = eeval >> 8;
514 ah->macaddr[2 * i + 1] = eeval & 0xff;
515 }
516 if (sum == 0 || sum == 0xffff * 3) {
517 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
518 "mac address read failed: %pM\n",
519 ah->macaddr);
520 return -EADDRNOTAVAIL;
521 }
522
523 return 0;
524 }
525
526 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
527 {
528 u32 rxgain_type;
529
530 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
531 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
532
533 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
534 INIT_INI_ARRAY(&ah->iniModesRxGain,
535 ar9280Modes_backoff_13db_rxgain_9280_2,
536 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
537 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
538 INIT_INI_ARRAY(&ah->iniModesRxGain,
539 ar9280Modes_backoff_23db_rxgain_9280_2,
540 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
541 else
542 INIT_INI_ARRAY(&ah->iniModesRxGain,
543 ar9280Modes_original_rxgain_9280_2,
544 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
545 } else {
546 INIT_INI_ARRAY(&ah->iniModesRxGain,
547 ar9280Modes_original_rxgain_9280_2,
548 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
549 }
550 }
551
552 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
553 {
554 u32 txgain_type;
555
556 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
557 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
558
559 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
560 INIT_INI_ARRAY(&ah->iniModesTxGain,
561 ar9280Modes_high_power_tx_gain_9280_2,
562 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
563 else
564 INIT_INI_ARRAY(&ah->iniModesTxGain,
565 ar9280Modes_original_tx_gain_9280_2,
566 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
567 } else {
568 INIT_INI_ARRAY(&ah->iniModesTxGain,
569 ar9280Modes_original_tx_gain_9280_2,
570 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
571 }
572 }
573
574 static int ath9k_hw_post_attach(struct ath_hw *ah)
575 {
576 int ecode;
577
578 if (!ath9k_hw_chip_test(ah)) {
579 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
580 "hardware self-test failed\n");
581 return -ENODEV;
582 }
583
584 ecode = ath9k_hw_rf_claim(ah);
585 if (ecode != 0)
586 return ecode;
587
588 ecode = ath9k_hw_eeprom_attach(ah);
589 if (ecode != 0)
590 return ecode;
591 ecode = ath9k_hw_rfattach(ah);
592 if (ecode != 0)
593 return ecode;
594
595 if (!AR_SREV_9100(ah)) {
596 ath9k_hw_ani_setup(ah);
597 ath9k_hw_ani_attach(ah);
598 }
599
600 return 0;
601 }
602
603 static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
604 int *status)
605 {
606 struct ath_hw *ah;
607 int ecode;
608 u32 i, j;
609
610 ah = ath9k_hw_newstate(devid, sc, status);
611 if (ah == NULL)
612 return NULL;
613
614 ath9k_hw_set_defaults(ah);
615
616 if (ah->config.intr_mitigation != 0)
617 ah->intr_mitigation = true;
618
619 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
620 DPRINTF(sc, ATH_DBG_RESET, "Couldn't reset chip\n");
621 ecode = -EIO;
622 goto bad;
623 }
624
625 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
626 DPRINTF(sc, ATH_DBG_RESET, "Couldn't wakeup chip\n");
627 ecode = -EIO;
628 goto bad;
629 }
630
631 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
632 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
633 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
634 ah->config.serialize_regmode =
635 SER_REG_MODE_ON;
636 } else {
637 ah->config.serialize_regmode =
638 SER_REG_MODE_OFF;
639 }
640 }
641
642 DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
643 ah->config.serialize_regmode);
644
645 if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
646 (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
647 (ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
648 (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
649 DPRINTF(sc, ATH_DBG_RESET,
650 "Mac Chip Rev 0x%02x.%x is not supported by "
651 "this driver\n", ah->hw_version.macVersion,
652 ah->hw_version.macRev);
653 ecode = -EOPNOTSUPP;
654 goto bad;
655 }
656
657 if (AR_SREV_9100(ah)) {
658 ah->iq_caldata.calData = &iq_cal_multi_sample;
659 ah->supp_cals = IQ_MISMATCH_CAL;
660 ah->is_pciexpress = false;
661 }
662 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
663
664 if (AR_SREV_9160_10_OR_LATER(ah)) {
665 if (AR_SREV_9280_10_OR_LATER(ah)) {
666 ah->iq_caldata.calData = &iq_cal_single_sample;
667 ah->adcgain_caldata.calData =
668 &adc_gain_cal_single_sample;
669 ah->adcdc_caldata.calData =
670 &adc_dc_cal_single_sample;
671 ah->adcdc_calinitdata.calData =
672 &adc_init_dc_cal;
673 } else {
674 ah->iq_caldata.calData = &iq_cal_multi_sample;
675 ah->adcgain_caldata.calData =
676 &adc_gain_cal_multi_sample;
677 ah->adcdc_caldata.calData =
678 &adc_dc_cal_multi_sample;
679 ah->adcdc_calinitdata.calData =
680 &adc_init_dc_cal;
681 }
682 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
683 }
684
685 ah->ani_function = ATH9K_ANI_ALL;
686 if (AR_SREV_9280_10_OR_LATER(ah))
687 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
688
689 DPRINTF(sc, ATH_DBG_RESET,
690 "This Mac Chip Rev 0x%02x.%x is \n",
691 ah->hw_version.macVersion, ah->hw_version.macRev);
692
693 if (AR_SREV_9285_12_OR_LATER(ah)) {
694
695 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
696 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
697 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
698 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
699
700 if (ah->config.pcie_clock_req) {
701 INIT_INI_ARRAY(&ah->iniPcieSerdes,
702 ar9285PciePhy_clkreq_off_L1_9285_1_2,
703 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
704 } else {
705 INIT_INI_ARRAY(&ah->iniPcieSerdes,
706 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
707 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
708 2);
709 }
710 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
711 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
712 ARRAY_SIZE(ar9285Modes_9285), 6);
713 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
714 ARRAY_SIZE(ar9285Common_9285), 2);
715
716 if (ah->config.pcie_clock_req) {
717 INIT_INI_ARRAY(&ah->iniPcieSerdes,
718 ar9285PciePhy_clkreq_off_L1_9285,
719 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
720 } else {
721 INIT_INI_ARRAY(&ah->iniPcieSerdes,
722 ar9285PciePhy_clkreq_always_on_L1_9285,
723 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
724 }
725 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
726 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
727 ARRAY_SIZE(ar9280Modes_9280_2), 6);
728 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
729 ARRAY_SIZE(ar9280Common_9280_2), 2);
730
731 if (ah->config.pcie_clock_req) {
732 INIT_INI_ARRAY(&ah->iniPcieSerdes,
733 ar9280PciePhy_clkreq_off_L1_9280,
734 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
735 } else {
736 INIT_INI_ARRAY(&ah->iniPcieSerdes,
737 ar9280PciePhy_clkreq_always_on_L1_9280,
738 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
739 }
740 INIT_INI_ARRAY(&ah->iniModesAdditional,
741 ar9280Modes_fast_clock_9280_2,
742 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
743 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
744 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
745 ARRAY_SIZE(ar9280Modes_9280), 6);
746 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
747 ARRAY_SIZE(ar9280Common_9280), 2);
748 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
749 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
750 ARRAY_SIZE(ar5416Modes_9160), 6);
751 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
752 ARRAY_SIZE(ar5416Common_9160), 2);
753 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
754 ARRAY_SIZE(ar5416Bank0_9160), 2);
755 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
756 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
757 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
758 ARRAY_SIZE(ar5416Bank1_9160), 2);
759 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
760 ARRAY_SIZE(ar5416Bank2_9160), 2);
761 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
762 ARRAY_SIZE(ar5416Bank3_9160), 3);
763 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
764 ARRAY_SIZE(ar5416Bank6_9160), 3);
765 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
766 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
767 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
768 ARRAY_SIZE(ar5416Bank7_9160), 2);
769 if (AR_SREV_9160_11(ah)) {
770 INIT_INI_ARRAY(&ah->iniAddac,
771 ar5416Addac_91601_1,
772 ARRAY_SIZE(ar5416Addac_91601_1), 2);
773 } else {
774 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
775 ARRAY_SIZE(ar5416Addac_9160), 2);
776 }
777 } else if (AR_SREV_9100_OR_LATER(ah)) {
778 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
779 ARRAY_SIZE(ar5416Modes_9100), 6);
780 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
781 ARRAY_SIZE(ar5416Common_9100), 2);
782 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
783 ARRAY_SIZE(ar5416Bank0_9100), 2);
784 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
785 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
786 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
787 ARRAY_SIZE(ar5416Bank1_9100), 2);
788 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
789 ARRAY_SIZE(ar5416Bank2_9100), 2);
790 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
791 ARRAY_SIZE(ar5416Bank3_9100), 3);
792 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
793 ARRAY_SIZE(ar5416Bank6_9100), 3);
794 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
795 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
796 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
797 ARRAY_SIZE(ar5416Bank7_9100), 2);
798 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
799 ARRAY_SIZE(ar5416Addac_9100), 2);
800 } else {
801 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
802 ARRAY_SIZE(ar5416Modes), 6);
803 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
804 ARRAY_SIZE(ar5416Common), 2);
805 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
806 ARRAY_SIZE(ar5416Bank0), 2);
807 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
808 ARRAY_SIZE(ar5416BB_RfGain), 3);
809 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
810 ARRAY_SIZE(ar5416Bank1), 2);
811 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
812 ARRAY_SIZE(ar5416Bank2), 2);
813 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
814 ARRAY_SIZE(ar5416Bank3), 3);
815 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
816 ARRAY_SIZE(ar5416Bank6), 3);
817 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
818 ARRAY_SIZE(ar5416Bank6TPC), 3);
819 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
820 ARRAY_SIZE(ar5416Bank7), 2);
821 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
822 ARRAY_SIZE(ar5416Addac), 2);
823 }
824
825 if (ah->is_pciexpress)
826 ath9k_hw_configpcipowersave(ah, 0);
827 else
828 ath9k_hw_disablepcie(ah);
829
830 ecode = ath9k_hw_post_attach(ah);
831 if (ecode != 0)
832 goto bad;
833
834 if (AR_SREV_9285_12_OR_LATER(ah)) {
835 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
836
837 /* txgain table */
838 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
839 INIT_INI_ARRAY(&ah->iniModesTxGain,
840 ar9285Modes_high_power_tx_gain_9285_1_2,
841 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
842 } else {
843 INIT_INI_ARRAY(&ah->iniModesTxGain,
844 ar9285Modes_original_tx_gain_9285_1_2,
845 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
846 }
847
848 }
849
850 /* rxgain table */
851 if (AR_SREV_9280_20(ah))
852 ath9k_hw_init_rxgain_ini(ah);
853
854 /* txgain table */
855 if (AR_SREV_9280_20(ah))
856 ath9k_hw_init_txgain_ini(ah);
857
858 if (!ath9k_hw_fill_cap_info(ah)) {
859 DPRINTF(sc, ATH_DBG_RESET, "failed ath9k_hw_fill_cap_info\n");
860 ecode = -EINVAL;
861 goto bad;
862 }
863
864 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
865 test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
866
867 /* EEPROM Fixup */
868 for (i = 0; i < ah->iniModes.ia_rows; i++) {
869 u32 reg = INI_RA(&ah->iniModes, i, 0);
870
871 for (j = 1; j < ah->iniModes.ia_columns; j++) {
872 u32 val = INI_RA(&ah->iniModes, i, j);
873
874 INI_RA(&ah->iniModes, i, j) =
875 ath9k_hw_ini_fixup(ah,
876 &ah->eeprom.def,
877 reg, val);
878 }
879 }
880 }
881
882 ecode = ath9k_hw_init_macaddr(ah);
883 if (ecode != 0) {
884 DPRINTF(sc, ATH_DBG_RESET,
885 "failed initializing mac address\n");
886 goto bad;
887 }
888
889 if (AR_SREV_9285(ah))
890 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
891 else
892 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
893
894 ath9k_init_nfcal_hist_buffer(ah);
895
896 return ah;
897 bad:
898 if (ah)
899 ath9k_hw_detach(ah);
900 if (status)
901 *status = ecode;
902
903 return NULL;
904 }
905
906 static void ath9k_hw_init_bb(struct ath_hw *ah,
907 struct ath9k_channel *chan)
908 {
909 u32 synthDelay;
910
911 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
912 if (IS_CHAN_B(chan))
913 synthDelay = (4 * synthDelay) / 22;
914 else
915 synthDelay /= 10;
916
917 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
918
919 udelay(synthDelay + BASE_ACTIVATE_DELAY);
920 }
921
922 static void ath9k_hw_init_qos(struct ath_hw *ah)
923 {
924 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
925 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
926
927 REG_WRITE(ah, AR_QOS_NO_ACK,
928 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
929 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
930 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
931
932 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
933 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
934 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
935 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
936 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
937 }
938
939 static void ath9k_hw_init_pll(struct ath_hw *ah,
940 struct ath9k_channel *chan)
941 {
942 u32 pll;
943
944 if (AR_SREV_9100(ah)) {
945 if (chan && IS_CHAN_5GHZ(chan))
946 pll = 0x1450;
947 else
948 pll = 0x1458;
949 } else {
950 if (AR_SREV_9280_10_OR_LATER(ah)) {
951 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
952
953 if (chan && IS_CHAN_HALF_RATE(chan))
954 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
955 else if (chan && IS_CHAN_QUARTER_RATE(chan))
956 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
957
958 if (chan && IS_CHAN_5GHZ(chan)) {
959 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
960
961
962 if (AR_SREV_9280_20(ah)) {
963 if (((chan->channel % 20) == 0)
964 || ((chan->channel % 10) == 0))
965 pll = 0x2850;
966 else
967 pll = 0x142c;
968 }
969 } else {
970 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
971 }
972
973 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
974
975 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
976
977 if (chan && IS_CHAN_HALF_RATE(chan))
978 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
979 else if (chan && IS_CHAN_QUARTER_RATE(chan))
980 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
981
982 if (chan && IS_CHAN_5GHZ(chan))
983 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
984 else
985 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
986 } else {
987 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
988
989 if (chan && IS_CHAN_HALF_RATE(chan))
990 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
991 else if (chan && IS_CHAN_QUARTER_RATE(chan))
992 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
993
994 if (chan && IS_CHAN_5GHZ(chan))
995 pll |= SM(0xa, AR_RTC_PLL_DIV);
996 else
997 pll |= SM(0xb, AR_RTC_PLL_DIV);
998 }
999 }
1000 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1001
1002 udelay(RTC_PLL_SETTLE_DELAY);
1003
1004 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1005 }
1006
1007 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1008 {
1009 int rx_chainmask, tx_chainmask;
1010
1011 rx_chainmask = ah->rxchainmask;
1012 tx_chainmask = ah->txchainmask;
1013
1014 switch (rx_chainmask) {
1015 case 0x5:
1016 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1017 AR_PHY_SWAP_ALT_CHAIN);
1018 case 0x3:
1019 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1020 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1021 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1022 break;
1023 }
1024 case 0x1:
1025 case 0x2:
1026 case 0x7:
1027 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1028 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1029 break;
1030 default:
1031 break;
1032 }
1033
1034 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1035 if (tx_chainmask == 0x5) {
1036 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1037 AR_PHY_SWAP_ALT_CHAIN);
1038 }
1039 if (AR_SREV_9100(ah))
1040 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1041 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1042 }
1043
1044 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1045 enum nl80211_iftype opmode)
1046 {
1047 ah->mask_reg = AR_IMR_TXERR |
1048 AR_IMR_TXURN |
1049 AR_IMR_RXERR |
1050 AR_IMR_RXORN |
1051 AR_IMR_BCNMISC;
1052
1053 if (ah->intr_mitigation)
1054 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1055 else
1056 ah->mask_reg |= AR_IMR_RXOK;
1057
1058 ah->mask_reg |= AR_IMR_TXOK;
1059
1060 if (opmode == NL80211_IFTYPE_AP)
1061 ah->mask_reg |= AR_IMR_MIB;
1062
1063 REG_WRITE(ah, AR_IMR, ah->mask_reg);
1064 REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1065
1066 if (!AR_SREV_9100(ah)) {
1067 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1068 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1069 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1070 }
1071 }
1072
1073 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1074 {
1075 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1076 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1077 ah->acktimeout = (u32) -1;
1078 return false;
1079 } else {
1080 REG_RMW_FIELD(ah, AR_TIME_OUT,
1081 AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1082 ah->acktimeout = us;
1083 return true;
1084 }
1085 }
1086
1087 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1088 {
1089 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1090 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1091 ah->ctstimeout = (u32) -1;
1092 return false;
1093 } else {
1094 REG_RMW_FIELD(ah, AR_TIME_OUT,
1095 AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1096 ah->ctstimeout = us;
1097 return true;
1098 }
1099 }
1100
1101 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1102 {
1103 if (tu > 0xFFFF) {
1104 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1105 "bad global tx timeout %u\n", tu);
1106 ah->globaltxtimeout = (u32) -1;
1107 return false;
1108 } else {
1109 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1110 ah->globaltxtimeout = tu;
1111 return true;
1112 }
1113 }
1114
1115 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1116 {
1117 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1118 ah->misc_mode);
1119
1120 if (ah->misc_mode != 0)
1121 REG_WRITE(ah, AR_PCU_MISC,
1122 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1123 if (ah->slottime != (u32) -1)
1124 ath9k_hw_setslottime(ah, ah->slottime);
1125 if (ah->acktimeout != (u32) -1)
1126 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1127 if (ah->ctstimeout != (u32) -1)
1128 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1129 if (ah->globaltxtimeout != (u32) -1)
1130 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1131 }
1132
1133 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1134 {
1135 return vendorid == ATHEROS_VENDOR_ID ?
1136 ath9k_hw_devname(devid) : NULL;
1137 }
1138
1139 void ath9k_hw_detach(struct ath_hw *ah)
1140 {
1141 if (!AR_SREV_9100(ah))
1142 ath9k_hw_ani_detach(ah);
1143
1144 ath9k_hw_rfdetach(ah);
1145 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1146 kfree(ah);
1147 }
1148
1149 struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
1150 {
1151 struct ath_hw *ah = NULL;
1152
1153 switch (devid) {
1154 case AR5416_DEVID_PCI:
1155 case AR5416_DEVID_PCIE:
1156 case AR5416_AR9100_DEVID:
1157 case AR9160_DEVID_PCI:
1158 case AR9280_DEVID_PCI:
1159 case AR9280_DEVID_PCIE:
1160 case AR9285_DEVID_PCIE:
1161 ah = ath9k_hw_do_attach(devid, sc, error);
1162 break;
1163 default:
1164 *error = -ENXIO;
1165 break;
1166 }
1167
1168 return ah;
1169 }
1170
1171 /*******/
1172 /* INI */
1173 /*******/
1174
1175 static void ath9k_hw_override_ini(struct ath_hw *ah,
1176 struct ath9k_channel *chan)
1177 {
1178 /*
1179 * Set the RX_ABORT and RX_DIS and clear if off only after
1180 * RXE is set for MAC. This prevents frames with corrupted
1181 * descriptor status.
1182 */
1183 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1184
1185
1186 if (!AR_SREV_5416_20_OR_LATER(ah) ||
1187 AR_SREV_9280_10_OR_LATER(ah))
1188 return;
1189
1190 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1191 }
1192
1193 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1194 struct ar5416_eeprom_def *pEepData,
1195 u32 reg, u32 value)
1196 {
1197 struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1198
1199 switch (ah->hw_version.devid) {
1200 case AR9280_DEVID_PCI:
1201 if (reg == 0x7894) {
1202 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1203 "ini VAL: %x EEPROM: %x\n", value,
1204 (pBase->version & 0xff));
1205
1206 if ((pBase->version & 0xff) > 0x0a) {
1207 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1208 "PWDCLKIND: %d\n",
1209 pBase->pwdclkind);
1210 value &= ~AR_AN_TOP2_PWDCLKIND;
1211 value |= AR_AN_TOP2_PWDCLKIND &
1212 (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1213 } else {
1214 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1215 "PWDCLKIND Earlier Rev\n");
1216 }
1217
1218 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1219 "final ini VAL: %x\n", value);
1220 }
1221 break;
1222 }
1223
1224 return value;
1225 }
1226
1227 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1228 struct ar5416_eeprom_def *pEepData,
1229 u32 reg, u32 value)
1230 {
1231 if (ah->eep_map == EEP_MAP_4KBITS)
1232 return value;
1233 else
1234 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1235 }
1236
1237 static void ath9k_olc_init(struct ath_hw *ah)
1238 {
1239 u32 i;
1240
1241 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1242 ah->originalGain[i] =
1243 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1244 AR_PHY_TX_GAIN);
1245 ah->PDADCdelta = 0;
1246 }
1247
1248 static int ath9k_hw_process_ini(struct ath_hw *ah,
1249 struct ath9k_channel *chan,
1250 enum ath9k_ht_macmode macmode)
1251 {
1252 int i, regWrites = 0;
1253 struct ieee80211_channel *channel = chan->chan;
1254 u32 modesIndex, freqIndex;
1255 int status;
1256
1257 switch (chan->chanmode) {
1258 case CHANNEL_A:
1259 case CHANNEL_A_HT20:
1260 modesIndex = 1;
1261 freqIndex = 1;
1262 break;
1263 case CHANNEL_A_HT40PLUS:
1264 case CHANNEL_A_HT40MINUS:
1265 modesIndex = 2;
1266 freqIndex = 1;
1267 break;
1268 case CHANNEL_G:
1269 case CHANNEL_G_HT20:
1270 case CHANNEL_B:
1271 modesIndex = 4;
1272 freqIndex = 2;
1273 break;
1274 case CHANNEL_G_HT40PLUS:
1275 case CHANNEL_G_HT40MINUS:
1276 modesIndex = 3;
1277 freqIndex = 2;
1278 break;
1279
1280 default:
1281 return -EINVAL;
1282 }
1283
1284 REG_WRITE(ah, AR_PHY(0), 0x00000007);
1285 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1286 ah->eep_ops->set_addac(ah, chan);
1287
1288 if (AR_SREV_5416_22_OR_LATER(ah)) {
1289 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1290 } else {
1291 struct ar5416IniArray temp;
1292 u32 addacSize =
1293 sizeof(u32) * ah->iniAddac.ia_rows *
1294 ah->iniAddac.ia_columns;
1295
1296 memcpy(ah->addac5416_21,
1297 ah->iniAddac.ia_array, addacSize);
1298
1299 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1300
1301 temp.ia_array = ah->addac5416_21;
1302 temp.ia_columns = ah->iniAddac.ia_columns;
1303 temp.ia_rows = ah->iniAddac.ia_rows;
1304 REG_WRITE_ARRAY(&temp, 1, regWrites);
1305 }
1306
1307 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1308
1309 for (i = 0; i < ah->iniModes.ia_rows; i++) {
1310 u32 reg = INI_RA(&ah->iniModes, i, 0);
1311 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1312
1313 REG_WRITE(ah, reg, val);
1314
1315 if (reg >= 0x7800 && reg < 0x78a0
1316 && ah->config.analog_shiftreg) {
1317 udelay(100);
1318 }
1319
1320 DO_DELAY(regWrites);
1321 }
1322
1323 if (AR_SREV_9280(ah))
1324 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1325
1326 if (AR_SREV_9280(ah) || (AR_SREV_9285(ah) &&
1327 AR_SREV_9285_12_OR_LATER(ah)))
1328 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1329
1330 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1331 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1332 u32 val = INI_RA(&ah->iniCommon, i, 1);
1333
1334 REG_WRITE(ah, reg, val);
1335
1336 if (reg >= 0x7800 && reg < 0x78a0
1337 && ah->config.analog_shiftreg) {
1338 udelay(100);
1339 }
1340
1341 DO_DELAY(regWrites);
1342 }
1343
1344 ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1345
1346 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1347 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1348 regWrites);
1349 }
1350
1351 ath9k_hw_override_ini(ah, chan);
1352 ath9k_hw_set_regs(ah, chan, macmode);
1353 ath9k_hw_init_chain_masks(ah);
1354
1355 if (OLC_FOR_AR9280_20_LATER)
1356 ath9k_olc_init(ah);
1357
1358 status = ah->eep_ops->set_txpower(ah, chan,
1359 ath9k_regd_get_ctl(ah, chan),
1360 channel->max_antenna_gain * 2,
1361 channel->max_power * 2,
1362 min((u32) MAX_RATE_POWER,
1363 (u32) ah->regulatory.power_limit));
1364 if (status != 0) {
1365 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1366 "error init'ing transmit power\n");
1367 return -EIO;
1368 }
1369
1370 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1371 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1372 "ar5416SetRfRegs failed\n");
1373 return -EIO;
1374 }
1375
1376 return 0;
1377 }
1378
1379 /****************************************/
1380 /* Reset and Channel Switching Routines */
1381 /****************************************/
1382
1383 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1384 {
1385 u32 rfMode = 0;
1386
1387 if (chan == NULL)
1388 return;
1389
1390 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1391 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1392
1393 if (!AR_SREV_9280_10_OR_LATER(ah))
1394 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1395 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1396
1397 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1398 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1399
1400 REG_WRITE(ah, AR_PHY_MODE, rfMode);
1401 }
1402
1403 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1404 {
1405 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1406 }
1407
1408 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1409 {
1410 u32 regval;
1411
1412 regval = REG_READ(ah, AR_AHB_MODE);
1413 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1414
1415 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1416 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1417
1418 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1419
1420 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1421 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1422
1423 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1424
1425 if (AR_SREV_9285(ah)) {
1426 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1427 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1428 } else {
1429 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1430 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1431 }
1432 }
1433
1434 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1435 {
1436 u32 val;
1437
1438 val = REG_READ(ah, AR_STA_ID1);
1439 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1440 switch (opmode) {
1441 case NL80211_IFTYPE_AP:
1442 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1443 | AR_STA_ID1_KSRCH_MODE);
1444 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1445 break;
1446 case NL80211_IFTYPE_ADHOC:
1447 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1448 | AR_STA_ID1_KSRCH_MODE);
1449 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1450 break;
1451 case NL80211_IFTYPE_STATION:
1452 case NL80211_IFTYPE_MONITOR:
1453 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1454 break;
1455 }
1456 }
1457
1458 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1459 u32 coef_scaled,
1460 u32 *coef_mantissa,
1461 u32 *coef_exponent)
1462 {
1463 u32 coef_exp, coef_man;
1464
1465 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1466 if ((coef_scaled >> coef_exp) & 0x1)
1467 break;
1468
1469 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1470
1471 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1472
1473 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1474 *coef_exponent = coef_exp - 16;
1475 }
1476
1477 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1478 struct ath9k_channel *chan)
1479 {
1480 u32 coef_scaled, ds_coef_exp, ds_coef_man;
1481 u32 clockMhzScaled = 0x64000000;
1482 struct chan_centers centers;
1483
1484 if (IS_CHAN_HALF_RATE(chan))
1485 clockMhzScaled = clockMhzScaled >> 1;
1486 else if (IS_CHAN_QUARTER_RATE(chan))
1487 clockMhzScaled = clockMhzScaled >> 2;
1488
1489 ath9k_hw_get_channel_centers(ah, chan, &centers);
1490 coef_scaled = clockMhzScaled / centers.synth_center;
1491
1492 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1493 &ds_coef_exp);
1494
1495 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1496 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1497 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1498 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1499
1500 coef_scaled = (9 * coef_scaled) / 10;
1501
1502 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1503 &ds_coef_exp);
1504
1505 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1506 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1507 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1508 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1509 }
1510
1511 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1512 {
1513 u32 rst_flags;
1514 u32 tmpReg;
1515
1516 if (AR_SREV_9100(ah)) {
1517 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1518 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1519 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1520 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1521 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1522 }
1523
1524 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1525 AR_RTC_FORCE_WAKE_ON_INT);
1526
1527 if (AR_SREV_9100(ah)) {
1528 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1529 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1530 } else {
1531 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1532 if (tmpReg &
1533 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1534 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1535 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1536 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1537 } else {
1538 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1539 }
1540
1541 rst_flags = AR_RTC_RC_MAC_WARM;
1542 if (type == ATH9K_RESET_COLD)
1543 rst_flags |= AR_RTC_RC_MAC_COLD;
1544 }
1545
1546 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1547 udelay(50);
1548
1549 REG_WRITE(ah, AR_RTC_RC, 0);
1550 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1551 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1552 "RTC stuck in MAC reset\n");
1553 return false;
1554 }
1555
1556 if (!AR_SREV_9100(ah))
1557 REG_WRITE(ah, AR_RC, 0);
1558
1559 ath9k_hw_init_pll(ah, NULL);
1560
1561 if (AR_SREV_9100(ah))
1562 udelay(50);
1563
1564 return true;
1565 }
1566
1567 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1568 {
1569 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1570 AR_RTC_FORCE_WAKE_ON_INT);
1571
1572 REG_WRITE(ah, AR_RTC_RESET, 0);
1573 udelay(2);
1574 REG_WRITE(ah, AR_RTC_RESET, 1);
1575
1576 if (!ath9k_hw_wait(ah,
1577 AR_RTC_STATUS,
1578 AR_RTC_STATUS_M,
1579 AR_RTC_STATUS_ON,
1580 AH_WAIT_TIMEOUT)) {
1581 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1582 return false;
1583 }
1584
1585 ath9k_hw_read_revisions(ah);
1586
1587 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1588 }
1589
1590 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1591 {
1592 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1593 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1594
1595 switch (type) {
1596 case ATH9K_RESET_POWER_ON:
1597 return ath9k_hw_set_reset_power_on(ah);
1598 break;
1599 case ATH9K_RESET_WARM:
1600 case ATH9K_RESET_COLD:
1601 return ath9k_hw_set_reset(ah, type);
1602 break;
1603 default:
1604 return false;
1605 }
1606 }
1607
1608 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1609 enum ath9k_ht_macmode macmode)
1610 {
1611 u32 phymode;
1612 u32 enableDacFifo = 0;
1613
1614 if (AR_SREV_9285_10_OR_LATER(ah))
1615 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1616 AR_PHY_FC_ENABLE_DAC_FIFO);
1617
1618 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1619 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1620
1621 if (IS_CHAN_HT40(chan)) {
1622 phymode |= AR_PHY_FC_DYN2040_EN;
1623
1624 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1625 (chan->chanmode == CHANNEL_G_HT40PLUS))
1626 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1627
1628 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1629 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1630 }
1631 REG_WRITE(ah, AR_PHY_TURBO, phymode);
1632
1633 ath9k_hw_set11nmac2040(ah, macmode);
1634
1635 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1636 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1637 }
1638
1639 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1640 struct ath9k_channel *chan)
1641 {
1642 if (OLC_FOR_AR9280_20_LATER) {
1643 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1644 return false;
1645 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1646 return false;
1647
1648 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1649 return false;
1650
1651 ah->chip_fullsleep = false;
1652 ath9k_hw_init_pll(ah, chan);
1653 ath9k_hw_set_rfmode(ah, chan);
1654
1655 return true;
1656 }
1657
1658 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1659 struct ath9k_channel *chan,
1660 enum ath9k_ht_macmode macmode)
1661 {
1662 struct ieee80211_channel *channel = chan->chan;
1663 u32 synthDelay, qnum;
1664
1665 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1666 if (ath9k_hw_numtxpending(ah, qnum)) {
1667 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1668 "Transmit frames pending on queue %d\n", qnum);
1669 return false;
1670 }
1671 }
1672
1673 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1674 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1675 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1676 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1677 "Could not kill baseband RX\n");
1678 return false;
1679 }
1680
1681 ath9k_hw_set_regs(ah, chan, macmode);
1682
1683 if (AR_SREV_9280_10_OR_LATER(ah)) {
1684 if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
1685 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1686 "failed to set channel\n");
1687 return false;
1688 }
1689 } else {
1690 if (!(ath9k_hw_set_channel(ah, chan))) {
1691 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1692 "failed to set channel\n");
1693 return false;
1694 }
1695 }
1696
1697 if (ah->eep_ops->set_txpower(ah, chan,
1698 ath9k_regd_get_ctl(ah, chan),
1699 channel->max_antenna_gain * 2,
1700 channel->max_power * 2,
1701 min((u32) MAX_RATE_POWER,
1702 (u32) ah->regulatory.power_limit)) != 0) {
1703 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1704 "error init'ing transmit power\n");
1705 return false;
1706 }
1707
1708 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1709 if (IS_CHAN_B(chan))
1710 synthDelay = (4 * synthDelay) / 22;
1711 else
1712 synthDelay /= 10;
1713
1714 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1715
1716 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1717
1718 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1719 ath9k_hw_set_delta_slope(ah, chan);
1720
1721 if (AR_SREV_9280_10_OR_LATER(ah))
1722 ath9k_hw_9280_spur_mitigate(ah, chan);
1723 else
1724 ath9k_hw_spur_mitigate(ah, chan);
1725
1726 if (!chan->oneTimeCalsDone)
1727 chan->oneTimeCalsDone = true;
1728
1729 return true;
1730 }
1731
1732 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1733 {
1734 int bb_spur = AR_NO_SPUR;
1735 int freq;
1736 int bin, cur_bin;
1737 int bb_spur_off, spur_subchannel_sd;
1738 int spur_freq_sd;
1739 int spur_delta_phase;
1740 int denominator;
1741 int upper, lower, cur_vit_mask;
1742 int tmp, newVal;
1743 int i;
1744 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1745 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1746 };
1747 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1748 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1749 };
1750 int inc[4] = { 0, 100, 0, 0 };
1751 struct chan_centers centers;
1752
1753 int8_t mask_m[123];
1754 int8_t mask_p[123];
1755 int8_t mask_amt;
1756 int tmp_mask;
1757 int cur_bb_spur;
1758 bool is2GHz = IS_CHAN_2GHZ(chan);
1759
1760 memset(&mask_m, 0, sizeof(int8_t) * 123);
1761 memset(&mask_p, 0, sizeof(int8_t) * 123);
1762
1763 ath9k_hw_get_channel_centers(ah, chan, &centers);
1764 freq = centers.synth_center;
1765
1766 ah->config.spurmode = SPUR_ENABLE_EEPROM;
1767 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1768 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1769
1770 if (is2GHz)
1771 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1772 else
1773 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1774
1775 if (AR_NO_SPUR == cur_bb_spur)
1776 break;
1777 cur_bb_spur = cur_bb_spur - freq;
1778
1779 if (IS_CHAN_HT40(chan)) {
1780 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1781 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1782 bb_spur = cur_bb_spur;
1783 break;
1784 }
1785 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1786 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1787 bb_spur = cur_bb_spur;
1788 break;
1789 }
1790 }
1791
1792 if (AR_NO_SPUR == bb_spur) {
1793 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1794 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1795 return;
1796 } else {
1797 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1798 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1799 }
1800
1801 bin = bb_spur * 320;
1802
1803 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1804
1805 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1806 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1807 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1808 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1809 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1810
1811 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1812 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1813 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1814 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1815 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1816 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1817
1818 if (IS_CHAN_HT40(chan)) {
1819 if (bb_spur < 0) {
1820 spur_subchannel_sd = 1;
1821 bb_spur_off = bb_spur + 10;
1822 } else {
1823 spur_subchannel_sd = 0;
1824 bb_spur_off = bb_spur - 10;
1825 }
1826 } else {
1827 spur_subchannel_sd = 0;
1828 bb_spur_off = bb_spur;
1829 }
1830
1831 if (IS_CHAN_HT40(chan))
1832 spur_delta_phase =
1833 ((bb_spur * 262144) /
1834 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1835 else
1836 spur_delta_phase =
1837 ((bb_spur * 524288) /
1838 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1839
1840 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1841 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1842
1843 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1844 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1845 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1846 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1847
1848 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1849 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1850
1851 cur_bin = -6000;
1852 upper = bin + 100;
1853 lower = bin - 100;
1854
1855 for (i = 0; i < 4; i++) {
1856 int pilot_mask = 0;
1857 int chan_mask = 0;
1858 int bp = 0;
1859 for (bp = 0; bp < 30; bp++) {
1860 if ((cur_bin > lower) && (cur_bin < upper)) {
1861 pilot_mask = pilot_mask | 0x1 << bp;
1862 chan_mask = chan_mask | 0x1 << bp;
1863 }
1864 cur_bin += 100;
1865 }
1866 cur_bin += inc[i];
1867 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1868 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1869 }
1870
1871 cur_vit_mask = 6100;
1872 upper = bin + 120;
1873 lower = bin - 120;
1874
1875 for (i = 0; i < 123; i++) {
1876 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1877
1878 /* workaround for gcc bug #37014 */
1879 volatile int tmp_v = abs(cur_vit_mask - bin);
1880
1881 if (tmp_v < 75)
1882 mask_amt = 1;
1883 else
1884 mask_amt = 0;
1885 if (cur_vit_mask < 0)
1886 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1887 else
1888 mask_p[cur_vit_mask / 100] = mask_amt;
1889 }
1890 cur_vit_mask -= 100;
1891 }
1892
1893 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1894 | (mask_m[48] << 26) | (mask_m[49] << 24)
1895 | (mask_m[50] << 22) | (mask_m[51] << 20)
1896 | (mask_m[52] << 18) | (mask_m[53] << 16)
1897 | (mask_m[54] << 14) | (mask_m[55] << 12)
1898 | (mask_m[56] << 10) | (mask_m[57] << 8)
1899 | (mask_m[58] << 6) | (mask_m[59] << 4)
1900 | (mask_m[60] << 2) | (mask_m[61] << 0);
1901 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1902 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1903
1904 tmp_mask = (mask_m[31] << 28)
1905 | (mask_m[32] << 26) | (mask_m[33] << 24)
1906 | (mask_m[34] << 22) | (mask_m[35] << 20)
1907 | (mask_m[36] << 18) | (mask_m[37] << 16)
1908 | (mask_m[48] << 14) | (mask_m[39] << 12)
1909 | (mask_m[40] << 10) | (mask_m[41] << 8)
1910 | (mask_m[42] << 6) | (mask_m[43] << 4)
1911 | (mask_m[44] << 2) | (mask_m[45] << 0);
1912 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1913 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1914
1915 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1916 | (mask_m[18] << 26) | (mask_m[18] << 24)
1917 | (mask_m[20] << 22) | (mask_m[20] << 20)
1918 | (mask_m[22] << 18) | (mask_m[22] << 16)
1919 | (mask_m[24] << 14) | (mask_m[24] << 12)
1920 | (mask_m[25] << 10) | (mask_m[26] << 8)
1921 | (mask_m[27] << 6) | (mask_m[28] << 4)
1922 | (mask_m[29] << 2) | (mask_m[30] << 0);
1923 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1924 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1925
1926 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1927 | (mask_m[2] << 26) | (mask_m[3] << 24)
1928 | (mask_m[4] << 22) | (mask_m[5] << 20)
1929 | (mask_m[6] << 18) | (mask_m[7] << 16)
1930 | (mask_m[8] << 14) | (mask_m[9] << 12)
1931 | (mask_m[10] << 10) | (mask_m[11] << 8)
1932 | (mask_m[12] << 6) | (mask_m[13] << 4)
1933 | (mask_m[14] << 2) | (mask_m[15] << 0);
1934 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1935 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1936
1937 tmp_mask = (mask_p[15] << 28)
1938 | (mask_p[14] << 26) | (mask_p[13] << 24)
1939 | (mask_p[12] << 22) | (mask_p[11] << 20)
1940 | (mask_p[10] << 18) | (mask_p[9] << 16)
1941 | (mask_p[8] << 14) | (mask_p[7] << 12)
1942 | (mask_p[6] << 10) | (mask_p[5] << 8)
1943 | (mask_p[4] << 6) | (mask_p[3] << 4)
1944 | (mask_p[2] << 2) | (mask_p[1] << 0);
1945 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1946 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1947
1948 tmp_mask = (mask_p[30] << 28)
1949 | (mask_p[29] << 26) | (mask_p[28] << 24)
1950 | (mask_p[27] << 22) | (mask_p[26] << 20)
1951 | (mask_p[25] << 18) | (mask_p[24] << 16)
1952 | (mask_p[23] << 14) | (mask_p[22] << 12)
1953 | (mask_p[21] << 10) | (mask_p[20] << 8)
1954 | (mask_p[19] << 6) | (mask_p[18] << 4)
1955 | (mask_p[17] << 2) | (mask_p[16] << 0);
1956 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1957 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1958
1959 tmp_mask = (mask_p[45] << 28)
1960 | (mask_p[44] << 26) | (mask_p[43] << 24)
1961 | (mask_p[42] << 22) | (mask_p[41] << 20)
1962 | (mask_p[40] << 18) | (mask_p[39] << 16)
1963 | (mask_p[38] << 14) | (mask_p[37] << 12)
1964 | (mask_p[36] << 10) | (mask_p[35] << 8)
1965 | (mask_p[34] << 6) | (mask_p[33] << 4)
1966 | (mask_p[32] << 2) | (mask_p[31] << 0);
1967 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1968 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1969
1970 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1971 | (mask_p[59] << 26) | (mask_p[58] << 24)
1972 | (mask_p[57] << 22) | (mask_p[56] << 20)
1973 | (mask_p[55] << 18) | (mask_p[54] << 16)
1974 | (mask_p[53] << 14) | (mask_p[52] << 12)
1975 | (mask_p[51] << 10) | (mask_p[50] << 8)
1976 | (mask_p[49] << 6) | (mask_p[48] << 4)
1977 | (mask_p[47] << 2) | (mask_p[46] << 0);
1978 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1979 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1980 }
1981
1982 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1983 {
1984 int bb_spur = AR_NO_SPUR;
1985 int bin, cur_bin;
1986 int spur_freq_sd;
1987 int spur_delta_phase;
1988 int denominator;
1989 int upper, lower, cur_vit_mask;
1990 int tmp, new;
1991 int i;
1992 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1993 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1994 };
1995 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1996 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1997 };
1998 int inc[4] = { 0, 100, 0, 0 };
1999
2000 int8_t mask_m[123];
2001 int8_t mask_p[123];
2002 int8_t mask_amt;
2003 int tmp_mask;
2004 int cur_bb_spur;
2005 bool is2GHz = IS_CHAN_2GHZ(chan);
2006
2007 memset(&mask_m, 0, sizeof(int8_t) * 123);
2008 memset(&mask_p, 0, sizeof(int8_t) * 123);
2009
2010 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2011 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2012 if (AR_NO_SPUR == cur_bb_spur)
2013 break;
2014 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2015 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2016 bb_spur = cur_bb_spur;
2017 break;
2018 }
2019 }
2020
2021 if (AR_NO_SPUR == bb_spur)
2022 return;
2023
2024 bin = bb_spur * 32;
2025
2026 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2027 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2028 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2029 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2030 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2031
2032 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2033
2034 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2035 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2036 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2037 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2038 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2039 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2040
2041 spur_delta_phase = ((bb_spur * 524288) / 100) &
2042 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2043
2044 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2045 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2046
2047 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2048 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2049 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2050 REG_WRITE(ah, AR_PHY_TIMING11, new);
2051
2052 cur_bin = -6000;
2053 upper = bin + 100;
2054 lower = bin - 100;
2055
2056 for (i = 0; i < 4; i++) {
2057 int pilot_mask = 0;
2058 int chan_mask = 0;
2059 int bp = 0;
2060 for (bp = 0; bp < 30; bp++) {
2061 if ((cur_bin > lower) && (cur_bin < upper)) {
2062 pilot_mask = pilot_mask | 0x1 << bp;
2063 chan_mask = chan_mask | 0x1 << bp;
2064 }
2065 cur_bin += 100;
2066 }
2067 cur_bin += inc[i];
2068 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2069 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2070 }
2071
2072 cur_vit_mask = 6100;
2073 upper = bin + 120;
2074 lower = bin - 120;
2075
2076 for (i = 0; i < 123; i++) {
2077 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2078
2079 /* workaround for gcc bug #37014 */
2080 volatile int tmp_v = abs(cur_vit_mask - bin);
2081
2082 if (tmp_v < 75)
2083 mask_amt = 1;
2084 else
2085 mask_amt = 0;
2086 if (cur_vit_mask < 0)
2087 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2088 else
2089 mask_p[cur_vit_mask / 100] = mask_amt;
2090 }
2091 cur_vit_mask -= 100;
2092 }
2093
2094 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2095 | (mask_m[48] << 26) | (mask_m[49] << 24)
2096 | (mask_m[50] << 22) | (mask_m[51] << 20)
2097 | (mask_m[52] << 18) | (mask_m[53] << 16)
2098 | (mask_m[54] << 14) | (mask_m[55] << 12)
2099 | (mask_m[56] << 10) | (mask_m[57] << 8)
2100 | (mask_m[58] << 6) | (mask_m[59] << 4)
2101 | (mask_m[60] << 2) | (mask_m[61] << 0);
2102 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2103 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2104
2105 tmp_mask = (mask_m[31] << 28)
2106 | (mask_m[32] << 26) | (mask_m[33] << 24)
2107 | (mask_m[34] << 22) | (mask_m[35] << 20)
2108 | (mask_m[36] << 18) | (mask_m[37] << 16)
2109 | (mask_m[48] << 14) | (mask_m[39] << 12)
2110 | (mask_m[40] << 10) | (mask_m[41] << 8)
2111 | (mask_m[42] << 6) | (mask_m[43] << 4)
2112 | (mask_m[44] << 2) | (mask_m[45] << 0);
2113 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2114 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2115
2116 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2117 | (mask_m[18] << 26) | (mask_m[18] << 24)
2118 | (mask_m[20] << 22) | (mask_m[20] << 20)
2119 | (mask_m[22] << 18) | (mask_m[22] << 16)
2120 | (mask_m[24] << 14) | (mask_m[24] << 12)
2121 | (mask_m[25] << 10) | (mask_m[26] << 8)
2122 | (mask_m[27] << 6) | (mask_m[28] << 4)
2123 | (mask_m[29] << 2) | (mask_m[30] << 0);
2124 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2125 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2126
2127 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2128 | (mask_m[2] << 26) | (mask_m[3] << 24)
2129 | (mask_m[4] << 22) | (mask_m[5] << 20)
2130 | (mask_m[6] << 18) | (mask_m[7] << 16)
2131 | (mask_m[8] << 14) | (mask_m[9] << 12)
2132 | (mask_m[10] << 10) | (mask_m[11] << 8)
2133 | (mask_m[12] << 6) | (mask_m[13] << 4)
2134 | (mask_m[14] << 2) | (mask_m[15] << 0);
2135 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2136 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2137
2138 tmp_mask = (mask_p[15] << 28)
2139 | (mask_p[14] << 26) | (mask_p[13] << 24)
2140 | (mask_p[12] << 22) | (mask_p[11] << 20)
2141 | (mask_p[10] << 18) | (mask_p[9] << 16)
2142 | (mask_p[8] << 14) | (mask_p[7] << 12)
2143 | (mask_p[6] << 10) | (mask_p[5] << 8)
2144 | (mask_p[4] << 6) | (mask_p[3] << 4)
2145 | (mask_p[2] << 2) | (mask_p[1] << 0);
2146 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2147 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2148
2149 tmp_mask = (mask_p[30] << 28)
2150 | (mask_p[29] << 26) | (mask_p[28] << 24)
2151 | (mask_p[27] << 22) | (mask_p[26] << 20)
2152 | (mask_p[25] << 18) | (mask_p[24] << 16)
2153 | (mask_p[23] << 14) | (mask_p[22] << 12)
2154 | (mask_p[21] << 10) | (mask_p[20] << 8)
2155 | (mask_p[19] << 6) | (mask_p[18] << 4)
2156 | (mask_p[17] << 2) | (mask_p[16] << 0);
2157 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2158 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2159
2160 tmp_mask = (mask_p[45] << 28)
2161 | (mask_p[44] << 26) | (mask_p[43] << 24)
2162 | (mask_p[42] << 22) | (mask_p[41] << 20)
2163 | (mask_p[40] << 18) | (mask_p[39] << 16)
2164 | (mask_p[38] << 14) | (mask_p[37] << 12)
2165 | (mask_p[36] << 10) | (mask_p[35] << 8)
2166 | (mask_p[34] << 6) | (mask_p[33] << 4)
2167 | (mask_p[32] << 2) | (mask_p[31] << 0);
2168 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2169 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2170
2171 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2172 | (mask_p[59] << 26) | (mask_p[58] << 24)
2173 | (mask_p[57] << 22) | (mask_p[56] << 20)
2174 | (mask_p[55] << 18) | (mask_p[54] << 16)
2175 | (mask_p[53] << 14) | (mask_p[52] << 12)
2176 | (mask_p[51] << 10) | (mask_p[50] << 8)
2177 | (mask_p[49] << 6) | (mask_p[48] << 4)
2178 | (mask_p[47] << 2) | (mask_p[46] << 0);
2179 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2180 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2181 }
2182
2183 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2184 bool bChannelChange)
2185 {
2186 u32 saveLedState;
2187 struct ath_softc *sc = ah->ah_sc;
2188 struct ath9k_channel *curchan = ah->curchan;
2189 u32 saveDefAntenna;
2190 u32 macStaId1;
2191 int i, rx_chainmask, r;
2192
2193 ah->extprotspacing = sc->ht_extprotspacing;
2194 ah->txchainmask = sc->tx_chainmask;
2195 ah->rxchainmask = sc->rx_chainmask;
2196
2197 if (AR_SREV_9285(ah)) {
2198 ah->txchainmask &= 0x1;
2199 ah->rxchainmask &= 0x1;
2200 } else if (AR_SREV_9280(ah)) {
2201 ah->txchainmask &= 0x3;
2202 ah->rxchainmask &= 0x3;
2203 }
2204
2205 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2206 return -EIO;
2207
2208 if (curchan)
2209 ath9k_hw_getnf(ah, curchan);
2210
2211 if (bChannelChange &&
2212 (ah->chip_fullsleep != true) &&
2213 (ah->curchan != NULL) &&
2214 (chan->channel != ah->curchan->channel) &&
2215 ((chan->channelFlags & CHANNEL_ALL) ==
2216 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2217 (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2218 !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2219
2220 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2221 ath9k_hw_loadnf(ah, ah->curchan);
2222 ath9k_hw_start_nfcal(ah);
2223 return 0;
2224 }
2225 }
2226
2227 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2228 if (saveDefAntenna == 0)
2229 saveDefAntenna = 1;
2230
2231 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2232
2233 saveLedState = REG_READ(ah, AR_CFG_LED) &
2234 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2235 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2236
2237 ath9k_hw_mark_phy_inactive(ah);
2238
2239 if (!ath9k_hw_chip_reset(ah, chan)) {
2240 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "chip reset failed\n");
2241 return -EINVAL;
2242 }
2243
2244 if (AR_SREV_9280_10_OR_LATER(ah))
2245 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2246
2247 r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2248 if (r)
2249 return r;
2250
2251 /* Setup MFP options for CCMP */
2252 if (AR_SREV_9280_20_OR_LATER(ah)) {
2253 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2254 * frames when constructing CCMP AAD. */
2255 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2256 0xc7ff);
2257 ah->sw_mgmt_crypto = false;
2258 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2259 /* Disable hardware crypto for management frames */
2260 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2261 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2262 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2263 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2264 ah->sw_mgmt_crypto = true;
2265 } else
2266 ah->sw_mgmt_crypto = true;
2267
2268 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2269 ath9k_hw_set_delta_slope(ah, chan);
2270
2271 if (AR_SREV_9280_10_OR_LATER(ah))
2272 ath9k_hw_9280_spur_mitigate(ah, chan);
2273 else
2274 ath9k_hw_spur_mitigate(ah, chan);
2275
2276 if (!ah->eep_ops->set_board_values(ah, chan)) {
2277 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2278 "error setting board options\n");
2279 return -EIO;
2280 }
2281
2282 ath9k_hw_decrease_chain_power(ah, chan);
2283
2284 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2285 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2286 | macStaId1
2287 | AR_STA_ID1_RTS_USE_DEF
2288 | (ah->config.
2289 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2290 | ah->sta_id1_defaults);
2291 ath9k_hw_set_operating_mode(ah, ah->opmode);
2292
2293 REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2294 REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2295
2296 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2297
2298 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2299 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2300 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2301
2302 REG_WRITE(ah, AR_ISR, ~0);
2303
2304 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2305
2306 if (AR_SREV_9280_10_OR_LATER(ah)) {
2307 if (!(ath9k_hw_ar9280_set_channel(ah, chan)))
2308 return -EIO;
2309 } else {
2310 if (!(ath9k_hw_set_channel(ah, chan)))
2311 return -EIO;
2312 }
2313
2314 for (i = 0; i < AR_NUM_DCU; i++)
2315 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2316
2317 ah->intr_txqs = 0;
2318 for (i = 0; i < ah->caps.total_queues; i++)
2319 ath9k_hw_resettxqueue(ah, i);
2320
2321 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2322 ath9k_hw_init_qos(ah);
2323
2324 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2325 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2326 ath9k_enable_rfkill(ah);
2327 #endif
2328 ath9k_hw_init_user_settings(ah);
2329
2330 REG_WRITE(ah, AR_STA_ID1,
2331 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2332
2333 ath9k_hw_set_dma(ah);
2334
2335 REG_WRITE(ah, AR_OBS, 8);
2336
2337 if (ah->intr_mitigation) {
2338
2339 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2340 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2341 }
2342
2343 ath9k_hw_init_bb(ah, chan);
2344
2345 if (!ath9k_hw_init_cal(ah, chan))
2346 return -EIO;;
2347
2348 rx_chainmask = ah->rxchainmask;
2349 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2350 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2351 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2352 }
2353
2354 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2355
2356 if (AR_SREV_9100(ah)) {
2357 u32 mask;
2358 mask = REG_READ(ah, AR_CFG);
2359 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2360 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2361 "CFG Byte Swap Set 0x%x\n", mask);
2362 } else {
2363 mask =
2364 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2365 REG_WRITE(ah, AR_CFG, mask);
2366 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2367 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2368 }
2369 } else {
2370 #ifdef __BIG_ENDIAN
2371 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2372 #endif
2373 }
2374
2375 return 0;
2376 }
2377
2378 /************************/
2379 /* Key Cache Management */
2380 /************************/
2381
2382 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2383 {
2384 u32 keyType;
2385
2386 if (entry >= ah->caps.keycache_size) {
2387 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2388 "entry %u out of range\n", entry);
2389 return false;
2390 }
2391
2392 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2393
2394 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2395 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2396 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2397 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2398 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2399 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2400 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2401 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2402
2403 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2404 u16 micentry = entry + 64;
2405
2406 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2407 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2408 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2409 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2410
2411 }
2412
2413 if (ah->curchan == NULL)
2414 return true;
2415
2416 return true;
2417 }
2418
2419 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2420 {
2421 u32 macHi, macLo;
2422
2423 if (entry >= ah->caps.keycache_size) {
2424 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2425 "entry %u out of range\n", entry);
2426 return false;
2427 }
2428
2429 if (mac != NULL) {
2430 macHi = (mac[5] << 8) | mac[4];
2431 macLo = (mac[3] << 24) |
2432 (mac[2] << 16) |
2433 (mac[1] << 8) |
2434 mac[0];
2435 macLo >>= 1;
2436 macLo |= (macHi & 1) << 31;
2437 macHi >>= 1;
2438 } else {
2439 macLo = macHi = 0;
2440 }
2441 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2442 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2443
2444 return true;
2445 }
2446
2447 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2448 const struct ath9k_keyval *k,
2449 const u8 *mac)
2450 {
2451 const struct ath9k_hw_capabilities *pCap = &ah->caps;
2452 u32 key0, key1, key2, key3, key4;
2453 u32 keyType;
2454
2455 if (entry >= pCap->keycache_size) {
2456 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2457 "entry %u out of range\n", entry);
2458 return false;
2459 }
2460
2461 switch (k->kv_type) {
2462 case ATH9K_CIPHER_AES_OCB:
2463 keyType = AR_KEYTABLE_TYPE_AES;
2464 break;
2465 case ATH9K_CIPHER_AES_CCM:
2466 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2467 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2468 "AES-CCM not supported by mac rev 0x%x\n",
2469 ah->hw_version.macRev);
2470 return false;
2471 }
2472 keyType = AR_KEYTABLE_TYPE_CCM;
2473 break;
2474 case ATH9K_CIPHER_TKIP:
2475 keyType = AR_KEYTABLE_TYPE_TKIP;
2476 if (ATH9K_IS_MIC_ENABLED(ah)
2477 && entry + 64 >= pCap->keycache_size) {
2478 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2479 "entry %u inappropriate for TKIP\n", entry);
2480 return false;
2481 }
2482 break;
2483 case ATH9K_CIPHER_WEP:
2484 if (k->kv_len < LEN_WEP40) {
2485 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2486 "WEP key length %u too small\n", k->kv_len);
2487 return false;
2488 }
2489 if (k->kv_len <= LEN_WEP40)
2490 keyType = AR_KEYTABLE_TYPE_40;
2491 else if (k->kv_len <= LEN_WEP104)
2492 keyType = AR_KEYTABLE_TYPE_104;
2493 else
2494 keyType = AR_KEYTABLE_TYPE_128;
2495 break;
2496 case ATH9K_CIPHER_CLR:
2497 keyType = AR_KEYTABLE_TYPE_CLR;
2498 break;
2499 default:
2500 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2501 "cipher %u not supported\n", k->kv_type);
2502 return false;
2503 }
2504
2505 key0 = get_unaligned_le32(k->kv_val + 0);
2506 key1 = get_unaligned_le16(k->kv_val + 4);
2507 key2 = get_unaligned_le32(k->kv_val + 6);
2508 key3 = get_unaligned_le16(k->kv_val + 10);
2509 key4 = get_unaligned_le32(k->kv_val + 12);
2510 if (k->kv_len <= LEN_WEP104)
2511 key4 &= 0xff;
2512
2513 /*
2514 * Note: Key cache registers access special memory area that requires
2515 * two 32-bit writes to actually update the values in the internal
2516 * memory. Consequently, the exact order and pairs used here must be
2517 * maintained.
2518 */
2519
2520 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2521 u16 micentry = entry + 64;
2522
2523 /*
2524 * Write inverted key[47:0] first to avoid Michael MIC errors
2525 * on frames that could be sent or received at the same time.
2526 * The correct key will be written in the end once everything
2527 * else is ready.
2528 */
2529 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2530 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2531
2532 /* Write key[95:48] */
2533 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2534 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2535
2536 /* Write key[127:96] and key type */
2537 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2538 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2539
2540 /* Write MAC address for the entry */
2541 (void) ath9k_hw_keysetmac(ah, entry, mac);
2542
2543 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2544 /*
2545 * TKIP uses two key cache entries:
2546 * Michael MIC TX/RX keys in the same key cache entry
2547 * (idx = main index + 64):
2548 * key0 [31:0] = RX key [31:0]
2549 * key1 [15:0] = TX key [31:16]
2550 * key1 [31:16] = reserved
2551 * key2 [31:0] = RX key [63:32]
2552 * key3 [15:0] = TX key [15:0]
2553 * key3 [31:16] = reserved
2554 * key4 [31:0] = TX key [63:32]
2555 */
2556 u32 mic0, mic1, mic2, mic3, mic4;
2557
2558 mic0 = get_unaligned_le32(k->kv_mic + 0);
2559 mic2 = get_unaligned_le32(k->kv_mic + 4);
2560 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2561 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2562 mic4 = get_unaligned_le32(k->kv_txmic + 4);
2563
2564 /* Write RX[31:0] and TX[31:16] */
2565 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2566 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2567
2568 /* Write RX[63:32] and TX[15:0] */
2569 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2570 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2571
2572 /* Write TX[63:32] and keyType(reserved) */
2573 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2574 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2575 AR_KEYTABLE_TYPE_CLR);
2576
2577 } else {
2578 /*
2579 * TKIP uses four key cache entries (two for group
2580 * keys):
2581 * Michael MIC TX/RX keys are in different key cache
2582 * entries (idx = main index + 64 for TX and
2583 * main index + 32 + 96 for RX):
2584 * key0 [31:0] = TX/RX MIC key [31:0]
2585 * key1 [31:0] = reserved
2586 * key2 [31:0] = TX/RX MIC key [63:32]
2587 * key3 [31:0] = reserved
2588 * key4 [31:0] = reserved
2589 *
2590 * Upper layer code will call this function separately
2591 * for TX and RX keys when these registers offsets are
2592 * used.
2593 */
2594 u32 mic0, mic2;
2595
2596 mic0 = get_unaligned_le32(k->kv_mic + 0);
2597 mic2 = get_unaligned_le32(k->kv_mic + 4);
2598
2599 /* Write MIC key[31:0] */
2600 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2601 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2602
2603 /* Write MIC key[63:32] */
2604 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2605 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2606
2607 /* Write TX[63:32] and keyType(reserved) */
2608 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2609 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2610 AR_KEYTABLE_TYPE_CLR);
2611 }
2612
2613 /* MAC address registers are reserved for the MIC entry */
2614 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2615 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2616
2617 /*
2618 * Write the correct (un-inverted) key[47:0] last to enable
2619 * TKIP now that all other registers are set with correct
2620 * values.
2621 */
2622 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2623 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2624 } else {
2625 /* Write key[47:0] */
2626 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2627 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2628
2629 /* Write key[95:48] */
2630 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2631 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2632
2633 /* Write key[127:96] and key type */
2634 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2635 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2636
2637 /* Write MAC address for the entry */
2638 (void) ath9k_hw_keysetmac(ah, entry, mac);
2639 }
2640
2641 return true;
2642 }
2643
2644 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2645 {
2646 if (entry < ah->caps.keycache_size) {
2647 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2648 if (val & AR_KEYTABLE_VALID)
2649 return true;
2650 }
2651 return false;
2652 }
2653
2654 /******************************/
2655 /* Power Management (Chipset) */
2656 /******************************/
2657
2658 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2659 {
2660 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2661 if (setChip) {
2662 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2663 AR_RTC_FORCE_WAKE_EN);
2664 if (!AR_SREV_9100(ah))
2665 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2666
2667 REG_CLR_BIT(ah, (AR_RTC_RESET),
2668 AR_RTC_RESET_EN);
2669 }
2670 }
2671
2672 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2673 {
2674 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2675 if (setChip) {
2676 struct ath9k_hw_capabilities *pCap = &ah->caps;
2677
2678 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2679 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2680 AR_RTC_FORCE_WAKE_ON_INT);
2681 } else {
2682 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2683 AR_RTC_FORCE_WAKE_EN);
2684 }
2685 }
2686 }
2687
2688 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2689 {
2690 u32 val;
2691 int i;
2692
2693 if (setChip) {
2694 if ((REG_READ(ah, AR_RTC_STATUS) &
2695 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2696 if (ath9k_hw_set_reset_reg(ah,
2697 ATH9K_RESET_POWER_ON) != true) {
2698 return false;
2699 }
2700 }
2701 if (AR_SREV_9100(ah))
2702 REG_SET_BIT(ah, AR_RTC_RESET,
2703 AR_RTC_RESET_EN);
2704
2705 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2706 AR_RTC_FORCE_WAKE_EN);
2707 udelay(50);
2708
2709 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2710 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2711 if (val == AR_RTC_STATUS_ON)
2712 break;
2713 udelay(50);
2714 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2715 AR_RTC_FORCE_WAKE_EN);
2716 }
2717 if (i == 0) {
2718 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
2719 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2720 return false;
2721 }
2722 }
2723
2724 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2725
2726 return true;
2727 }
2728
2729 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2730 {
2731 int status = true, setChip = true;
2732 static const char *modes[] = {
2733 "AWAKE",
2734 "FULL-SLEEP",
2735 "NETWORK SLEEP",
2736 "UNDEFINED"
2737 };
2738
2739 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s -> %s (%s)\n",
2740 modes[ah->power_mode], modes[mode],
2741 setChip ? "set chip " : "");
2742
2743 switch (mode) {
2744 case ATH9K_PM_AWAKE:
2745 status = ath9k_hw_set_power_awake(ah, setChip);
2746 break;
2747 case ATH9K_PM_FULL_SLEEP:
2748 ath9k_set_power_sleep(ah, setChip);
2749 ah->chip_fullsleep = true;
2750 break;
2751 case ATH9K_PM_NETWORK_SLEEP:
2752 ath9k_set_power_network_sleep(ah, setChip);
2753 break;
2754 default:
2755 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
2756 "Unknown power mode %u\n", mode);
2757 return false;
2758 }
2759 ah->power_mode = mode;
2760
2761 return status;
2762 }
2763
2764 /*
2765 * Helper for ASPM support.
2766 *
2767 * Disable PLL when in L0s as well as receiver clock when in L1.
2768 * This power saving option must be enabled through the SerDes.
2769 *
2770 * Programming the SerDes must go through the same 288 bit serial shift
2771 * register as the other analog registers. Hence the 9 writes.
2772 */
2773 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2774 {
2775 u8 i;
2776
2777 if (ah->is_pciexpress != true)
2778 return;
2779
2780 /* Do not touch SerDes registers */
2781 if (ah->config.pcie_powersave_enable == 2)
2782 return;
2783
2784 /* Nothing to do on restore for 11N */
2785 if (restore)
2786 return;
2787
2788 if (AR_SREV_9280_20_OR_LATER(ah)) {
2789 /*
2790 * AR9280 2.0 or later chips use SerDes values from the
2791 * initvals.h initialized depending on chipset during
2792 * ath9k_hw_do_attach()
2793 */
2794 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2795 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2796 INI_RA(&ah->iniPcieSerdes, i, 1));
2797 }
2798 } else if (AR_SREV_9280(ah) &&
2799 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2800 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2801 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2802
2803 /* RX shut off when elecidle is asserted */
2804 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2805 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2806 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2807
2808 /* Shut off CLKREQ active in L1 */
2809 if (ah->config.pcie_clock_req)
2810 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2811 else
2812 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2813
2814 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2815 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2816 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2817
2818 /* Load the new settings */
2819 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2820
2821 } else {
2822 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2823 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2824
2825 /* RX shut off when elecidle is asserted */
2826 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2827 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2828 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2829
2830 /*
2831 * Ignore ah->ah_config.pcie_clock_req setting for
2832 * pre-AR9280 11n
2833 */
2834 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2835
2836 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2837 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2838 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2839
2840 /* Load the new settings */
2841 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2842 }
2843
2844 udelay(1000);
2845
2846 /* set bit 19 to allow forcing of pcie core into L1 state */
2847 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2848
2849 /* Several PCIe massages to ensure proper behaviour */
2850 if (ah->config.pcie_waen) {
2851 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2852 } else {
2853 if (AR_SREV_9285(ah))
2854 REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2855 /*
2856 * On AR9280 chips bit 22 of 0x4004 needs to be set to
2857 * otherwise card may disappear.
2858 */
2859 else if (AR_SREV_9280(ah))
2860 REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
2861 else
2862 REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
2863 }
2864 }
2865
2866 /**********************/
2867 /* Interrupt Handling */
2868 /**********************/
2869
2870 bool ath9k_hw_intrpend(struct ath_hw *ah)
2871 {
2872 u32 host_isr;
2873
2874 if (AR_SREV_9100(ah))
2875 return true;
2876
2877 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2878 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2879 return true;
2880
2881 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2882 if ((host_isr & AR_INTR_SYNC_DEFAULT)
2883 && (host_isr != AR_INTR_SPURIOUS))
2884 return true;
2885
2886 return false;
2887 }
2888
2889 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2890 {
2891 u32 isr = 0;
2892 u32 mask2 = 0;
2893 struct ath9k_hw_capabilities *pCap = &ah->caps;
2894 u32 sync_cause = 0;
2895 bool fatal_int = false;
2896
2897 if (!AR_SREV_9100(ah)) {
2898 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2899 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2900 == AR_RTC_STATUS_ON) {
2901 isr = REG_READ(ah, AR_ISR);
2902 }
2903 }
2904
2905 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2906 AR_INTR_SYNC_DEFAULT;
2907
2908 *masked = 0;
2909
2910 if (!isr && !sync_cause)
2911 return false;
2912 } else {
2913 *masked = 0;
2914 isr = REG_READ(ah, AR_ISR);
2915 }
2916
2917 if (isr) {
2918 if (isr & AR_ISR_BCNMISC) {
2919 u32 isr2;
2920 isr2 = REG_READ(ah, AR_ISR_S2);
2921 if (isr2 & AR_ISR_S2_TIM)
2922 mask2 |= ATH9K_INT_TIM;
2923 if (isr2 & AR_ISR_S2_DTIM)
2924 mask2 |= ATH9K_INT_DTIM;
2925 if (isr2 & AR_ISR_S2_DTIMSYNC)
2926 mask2 |= ATH9K_INT_DTIMSYNC;
2927 if (isr2 & (AR_ISR_S2_CABEND))
2928 mask2 |= ATH9K_INT_CABEND;
2929 if (isr2 & AR_ISR_S2_GTT)
2930 mask2 |= ATH9K_INT_GTT;
2931 if (isr2 & AR_ISR_S2_CST)
2932 mask2 |= ATH9K_INT_CST;
2933 if (isr2 & AR_ISR_S2_TSFOOR)
2934 mask2 |= ATH9K_INT_TSFOOR;
2935 }
2936
2937 isr = REG_READ(ah, AR_ISR_RAC);
2938 if (isr == 0xffffffff) {
2939 *masked = 0;
2940 return false;
2941 }
2942
2943 *masked = isr & ATH9K_INT_COMMON;
2944
2945 if (ah->intr_mitigation) {
2946 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2947 *masked |= ATH9K_INT_RX;
2948 }
2949
2950 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2951 *masked |= ATH9K_INT_RX;
2952 if (isr &
2953 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2954 AR_ISR_TXEOL)) {
2955 u32 s0_s, s1_s;
2956
2957 *masked |= ATH9K_INT_TX;
2958
2959 s0_s = REG_READ(ah, AR_ISR_S0_S);
2960 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2961 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2962
2963 s1_s = REG_READ(ah, AR_ISR_S1_S);
2964 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2965 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2966 }
2967
2968 if (isr & AR_ISR_RXORN) {
2969 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2970 "receive FIFO overrun interrupt\n");
2971 }
2972
2973 if (!AR_SREV_9100(ah)) {
2974 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2975 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2976 if (isr5 & AR_ISR_S5_TIM_TIMER)
2977 *masked |= ATH9K_INT_TIM_TIMER;
2978 }
2979 }
2980
2981 *masked |= mask2;
2982 }
2983
2984 if (AR_SREV_9100(ah))
2985 return true;
2986
2987 if (sync_cause) {
2988 fatal_int =
2989 (sync_cause &
2990 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2991 ? true : false;
2992
2993 if (fatal_int) {
2994 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2995 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2996 "received PCI FATAL interrupt\n");
2997 }
2998 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2999 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3000 "received PCI PERR interrupt\n");
3001 }
3002 }
3003 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3004 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3005 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3006 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3007 REG_WRITE(ah, AR_RC, 0);
3008 *masked |= ATH9K_INT_FATAL;
3009 }
3010 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3011 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3012 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3013 }
3014
3015 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3016 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3017 }
3018
3019 return true;
3020 }
3021
3022 enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah)
3023 {
3024 return ah->mask_reg;
3025 }
3026
3027 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3028 {
3029 u32 omask = ah->mask_reg;
3030 u32 mask, mask2;
3031 struct ath9k_hw_capabilities *pCap = &ah->caps;
3032
3033 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3034
3035 if (omask & ATH9K_INT_GLOBAL) {
3036 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3037 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3038 (void) REG_READ(ah, AR_IER);
3039 if (!AR_SREV_9100(ah)) {
3040 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3041 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3042
3043 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3044 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3045 }
3046 }
3047
3048 mask = ints & ATH9K_INT_COMMON;
3049 mask2 = 0;
3050
3051 if (ints & ATH9K_INT_TX) {
3052 if (ah->txok_interrupt_mask)
3053 mask |= AR_IMR_TXOK;
3054 if (ah->txdesc_interrupt_mask)
3055 mask |= AR_IMR_TXDESC;
3056 if (ah->txerr_interrupt_mask)
3057 mask |= AR_IMR_TXERR;
3058 if (ah->txeol_interrupt_mask)
3059 mask |= AR_IMR_TXEOL;
3060 }
3061 if (ints & ATH9K_INT_RX) {
3062 mask |= AR_IMR_RXERR;
3063 if (ah->intr_mitigation)
3064 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3065 else
3066 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3067 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3068 mask |= AR_IMR_GENTMR;
3069 }
3070
3071 if (ints & (ATH9K_INT_BMISC)) {
3072 mask |= AR_IMR_BCNMISC;
3073 if (ints & ATH9K_INT_TIM)
3074 mask2 |= AR_IMR_S2_TIM;
3075 if (ints & ATH9K_INT_DTIM)
3076 mask2 |= AR_IMR_S2_DTIM;
3077 if (ints & ATH9K_INT_DTIMSYNC)
3078 mask2 |= AR_IMR_S2_DTIMSYNC;
3079 if (ints & ATH9K_INT_CABEND)
3080 mask2 |= AR_IMR_S2_CABEND;
3081 if (ints & ATH9K_INT_TSFOOR)
3082 mask2 |= AR_IMR_S2_TSFOOR;
3083 }
3084
3085 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3086 mask |= AR_IMR_BCNMISC;
3087 if (ints & ATH9K_INT_GTT)
3088 mask2 |= AR_IMR_S2_GTT;
3089 if (ints & ATH9K_INT_CST)
3090 mask2 |= AR_IMR_S2_CST;
3091 }
3092
3093 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3094 REG_WRITE(ah, AR_IMR, mask);
3095 mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3096 AR_IMR_S2_DTIM |
3097 AR_IMR_S2_DTIMSYNC |
3098 AR_IMR_S2_CABEND |
3099 AR_IMR_S2_CABTO |
3100 AR_IMR_S2_TSFOOR |
3101 AR_IMR_S2_GTT | AR_IMR_S2_CST);
3102 REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3103 ah->mask_reg = ints;
3104
3105 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3106 if (ints & ATH9K_INT_TIM_TIMER)
3107 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3108 else
3109 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3110 }
3111
3112 if (ints & ATH9K_INT_GLOBAL) {
3113 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3114 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3115 if (!AR_SREV_9100(ah)) {
3116 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3117 AR_INTR_MAC_IRQ);
3118 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3119
3120
3121 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3122 AR_INTR_SYNC_DEFAULT);
3123 REG_WRITE(ah, AR_INTR_SYNC_MASK,
3124 AR_INTR_SYNC_DEFAULT);
3125 }
3126 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3127 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3128 }
3129
3130 return omask;
3131 }
3132
3133 /*******************/
3134 /* Beacon Handling */
3135 /*******************/
3136
3137 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3138 {
3139 int flags = 0;
3140
3141 ah->beacon_interval = beacon_period;
3142
3143 switch (ah->opmode) {
3144 case NL80211_IFTYPE_STATION:
3145 case NL80211_IFTYPE_MONITOR:
3146 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3147 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3148 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3149 flags |= AR_TBTT_TIMER_EN;
3150 break;
3151 case NL80211_IFTYPE_ADHOC:
3152 REG_SET_BIT(ah, AR_TXCFG,
3153 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3154 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3155 TU_TO_USEC(next_beacon +
3156 (ah->atim_window ? ah->
3157 atim_window : 1)));
3158 flags |= AR_NDP_TIMER_EN;
3159 case NL80211_IFTYPE_AP:
3160 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3161 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3162 TU_TO_USEC(next_beacon -
3163 ah->config.
3164 dma_beacon_response_time));
3165 REG_WRITE(ah, AR_NEXT_SWBA,
3166 TU_TO_USEC(next_beacon -
3167 ah->config.
3168 sw_beacon_response_time));
3169 flags |=
3170 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3171 break;
3172 default:
3173 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3174 "%s: unsupported opmode: %d\n",
3175 __func__, ah->opmode);
3176 return;
3177 break;
3178 }
3179
3180 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3181 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3182 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3183 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3184
3185 beacon_period &= ~ATH9K_BEACON_ENA;
3186 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3187 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3188 ath9k_hw_reset_tsf(ah);
3189 }
3190
3191 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3192 }
3193
3194 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3195 const struct ath9k_beacon_state *bs)
3196 {
3197 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3198 struct ath9k_hw_capabilities *pCap = &ah->caps;
3199
3200 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3201
3202 REG_WRITE(ah, AR_BEACON_PERIOD,
3203 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3204 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3205 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3206
3207 REG_RMW_FIELD(ah, AR_RSSI_THR,
3208 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3209
3210 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3211
3212 if (bs->bs_sleepduration > beaconintval)
3213 beaconintval = bs->bs_sleepduration;
3214
3215 dtimperiod = bs->bs_dtimperiod;
3216 if (bs->bs_sleepduration > dtimperiod)
3217 dtimperiod = bs->bs_sleepduration;
3218
3219 if (beaconintval == dtimperiod)
3220 nextTbtt = bs->bs_nextdtim;
3221 else
3222 nextTbtt = bs->bs_nexttbtt;
3223
3224 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3225 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3226 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3227 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3228
3229 REG_WRITE(ah, AR_NEXT_DTIM,
3230 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3231 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3232
3233 REG_WRITE(ah, AR_SLEEP1,
3234 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3235 | AR_SLEEP1_ASSUME_DTIM);
3236
3237 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3238 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3239 else
3240 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3241
3242 REG_WRITE(ah, AR_SLEEP2,
3243 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3244
3245 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3246 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3247
3248 REG_SET_BIT(ah, AR_TIMER_MODE,
3249 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3250 AR_DTIM_TIMER_EN);
3251
3252 /* TSF Out of Range Threshold */
3253 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3254 }
3255
3256 /*******************/
3257 /* HW Capabilities */
3258 /*******************/
3259
3260 bool ath9k_hw_fill_cap_info(struct ath_hw *ah)
3261 {
3262 struct ath9k_hw_capabilities *pCap = &ah->caps;
3263 u16 capField = 0, eeval;
3264
3265 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3266 ah->regulatory.current_rd = eeval;
3267
3268 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3269 if (AR_SREV_9285_10_OR_LATER(ah))
3270 eeval |= AR9285_RDEXT_DEFAULT;
3271 ah->regulatory.current_rd_ext = eeval;
3272
3273 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3274
3275 if (ah->opmode != NL80211_IFTYPE_AP &&
3276 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3277 if (ah->regulatory.current_rd == 0x64 ||
3278 ah->regulatory.current_rd == 0x65)
3279 ah->regulatory.current_rd += 5;
3280 else if (ah->regulatory.current_rd == 0x41)
3281 ah->regulatory.current_rd = 0x43;
3282 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3283 "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3284 }
3285
3286 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3287 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3288
3289 if (eeval & AR5416_OPFLAGS_11A) {
3290 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3291 if (ah->config.ht_enable) {
3292 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3293 set_bit(ATH9K_MODE_11NA_HT20,
3294 pCap->wireless_modes);
3295 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3296 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3297 pCap->wireless_modes);
3298 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3299 pCap->wireless_modes);
3300 }
3301 }
3302 }
3303
3304 if (eeval & AR5416_OPFLAGS_11G) {
3305 set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
3306 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3307 if (ah->config.ht_enable) {
3308 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3309 set_bit(ATH9K_MODE_11NG_HT20,
3310 pCap->wireless_modes);
3311 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3312 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3313 pCap->wireless_modes);
3314 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3315 pCap->wireless_modes);
3316 }
3317 }
3318 }
3319
3320 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3321 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3322 !(eeval & AR5416_OPFLAGS_11A))
3323 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3324 else
3325 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3326
3327 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3328 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3329
3330 pCap->low_2ghz_chan = 2312;
3331 pCap->high_2ghz_chan = 2732;
3332
3333 pCap->low_5ghz_chan = 4920;
3334 pCap->high_5ghz_chan = 6100;
3335
3336 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3337 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3338 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3339
3340 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3341 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3342 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3343
3344 pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
3345
3346 if (ah->config.ht_enable)
3347 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3348 else
3349 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3350
3351 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3352 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3353 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3354 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3355
3356 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3357 pCap->total_queues =
3358 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3359 else
3360 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3361
3362 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3363 pCap->keycache_size =
3364 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3365 else
3366 pCap->keycache_size = AR_KEYTABLE_SIZE;
3367
3368 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3369 pCap->num_mr_retries = 4;
3370 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3371
3372 if (AR_SREV_9285_10_OR_LATER(ah))
3373 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3374 else if (AR_SREV_9280_10_OR_LATER(ah))
3375 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3376 else
3377 pCap->num_gpio_pins = AR_NUM_GPIO;
3378
3379 if (AR_SREV_9280_10_OR_LATER(ah)) {
3380 pCap->hw_caps |= ATH9K_HW_CAP_WOW;
3381 pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3382 } else {
3383 pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
3384 pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3385 }
3386
3387 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3388 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3389 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3390 } else {
3391 pCap->rts_aggr_limit = (8 * 1024);
3392 }
3393
3394 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3395
3396 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3397 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3398 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3399 ah->rfkill_gpio =
3400 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3401 ah->rfkill_polarity =
3402 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3403
3404 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3405 }
3406 #endif
3407
3408 if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3409 (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3410 (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3411 (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3412 (ah->hw_version.macVersion == AR_SREV_VERSION_9280))
3413 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3414 else
3415 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3416
3417 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3418 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3419 else
3420 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3421
3422 if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3423 pCap->reg_cap =
3424 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3425 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3426 AR_EEPROM_EEREGCAP_EN_KK_U2 |
3427 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3428 } else {
3429 pCap->reg_cap =
3430 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3431 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3432 }
3433
3434 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3435
3436 pCap->num_antcfg_5ghz =
3437 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3438 pCap->num_antcfg_2ghz =
3439 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3440
3441 if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3442 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3443 ah->btactive_gpio = 6;
3444 ah->wlanactive_gpio = 5;
3445 }
3446
3447 return true;
3448 }
3449
3450 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3451 u32 capability, u32 *result)
3452 {
3453 switch (type) {
3454 case ATH9K_CAP_CIPHER:
3455 switch (capability) {
3456 case ATH9K_CIPHER_AES_CCM:
3457 case ATH9K_CIPHER_AES_OCB:
3458 case ATH9K_CIPHER_TKIP:
3459 case ATH9K_CIPHER_WEP:
3460 case ATH9K_CIPHER_MIC:
3461 case ATH9K_CIPHER_CLR:
3462 return true;
3463 default:
3464 return false;
3465 }
3466 case ATH9K_CAP_TKIP_MIC:
3467 switch (capability) {
3468 case 0:
3469 return true;
3470 case 1:
3471 return (ah->sta_id1_defaults &
3472 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3473 false;
3474 }
3475 case ATH9K_CAP_TKIP_SPLIT:
3476 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3477 false : true;
3478 case ATH9K_CAP_DIVERSITY:
3479 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3480 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3481 true : false;
3482 case ATH9K_CAP_MCAST_KEYSRCH:
3483 switch (capability) {
3484 case 0:
3485 return true;
3486 case 1:
3487 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3488 return false;
3489 } else {
3490 return (ah->sta_id1_defaults &
3491 AR_STA_ID1_MCAST_KSRCH) ? true :
3492 false;
3493 }
3494 }
3495 return false;
3496 case ATH9K_CAP_TXPOW:
3497 switch (capability) {
3498 case 0:
3499 return 0;
3500 case 1:
3501 *result = ah->regulatory.power_limit;
3502 return 0;
3503 case 2:
3504 *result = ah->regulatory.max_power_level;
3505 return 0;
3506 case 3:
3507 *result = ah->regulatory.tp_scale;
3508 return 0;
3509 }
3510 return false;
3511 case ATH9K_CAP_DS:
3512 return (AR_SREV_9280_20_OR_LATER(ah) &&
3513 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3514 ? false : true;
3515 default:
3516 return false;
3517 }
3518 }
3519
3520 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3521 u32 capability, u32 setting, int *status)
3522 {
3523 u32 v;
3524
3525 switch (type) {
3526 case ATH9K_CAP_TKIP_MIC:
3527 if (setting)
3528 ah->sta_id1_defaults |=
3529 AR_STA_ID1_CRPT_MIC_ENABLE;
3530 else
3531 ah->sta_id1_defaults &=
3532 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3533 return true;
3534 case ATH9K_CAP_DIVERSITY:
3535 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3536 if (setting)
3537 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3538 else
3539 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3540 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3541 return true;
3542 case ATH9K_CAP_MCAST_KEYSRCH:
3543 if (setting)
3544 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3545 else
3546 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3547 return true;
3548 default:
3549 return false;
3550 }
3551 }
3552
3553 /****************************/
3554 /* GPIO / RFKILL / Antennae */
3555 /****************************/
3556
3557 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3558 u32 gpio, u32 type)
3559 {
3560 int addr;
3561 u32 gpio_shift, tmp;
3562
3563 if (gpio > 11)
3564 addr = AR_GPIO_OUTPUT_MUX3;
3565 else if (gpio > 5)
3566 addr = AR_GPIO_OUTPUT_MUX2;
3567 else
3568 addr = AR_GPIO_OUTPUT_MUX1;
3569
3570 gpio_shift = (gpio % 6) * 5;
3571
3572 if (AR_SREV_9280_20_OR_LATER(ah)
3573 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3574 REG_RMW(ah, addr, (type << gpio_shift),
3575 (0x1f << gpio_shift));
3576 } else {
3577 tmp = REG_READ(ah, addr);
3578 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3579 tmp &= ~(0x1f << gpio_shift);
3580 tmp |= (type << gpio_shift);
3581 REG_WRITE(ah, addr, tmp);
3582 }
3583 }
3584
3585 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3586 {
3587 u32 gpio_shift;
3588
3589 ASSERT(gpio < ah->caps.num_gpio_pins);
3590
3591 gpio_shift = gpio << 1;
3592
3593 REG_RMW(ah,
3594 AR_GPIO_OE_OUT,
3595 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3596 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3597 }
3598
3599 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3600 {
3601 #define MS_REG_READ(x, y) \
3602 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3603
3604 if (gpio >= ah->caps.num_gpio_pins)
3605 return 0xffffffff;
3606
3607 if (AR_SREV_9285_10_OR_LATER(ah))
3608 return MS_REG_READ(AR9285, gpio) != 0;
3609 else if (AR_SREV_9280_10_OR_LATER(ah))
3610 return MS_REG_READ(AR928X, gpio) != 0;
3611 else
3612 return MS_REG_READ(AR, gpio) != 0;
3613 }
3614
3615 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3616 u32 ah_signal_type)
3617 {
3618 u32 gpio_shift;
3619
3620 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3621
3622 gpio_shift = 2 * gpio;
3623
3624 REG_RMW(ah,
3625 AR_GPIO_OE_OUT,
3626 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3627 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3628 }
3629
3630 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3631 {
3632 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3633 AR_GPIO_BIT(gpio));
3634 }
3635
3636 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3637 void ath9k_enable_rfkill(struct ath_hw *ah)
3638 {
3639 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3640 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
3641
3642 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
3643 AR_GPIO_INPUT_MUX2_RFSILENT);
3644
3645 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
3646 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
3647 }
3648 #endif
3649
3650 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3651 {
3652 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3653 }
3654
3655 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3656 {
3657 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3658 }
3659
3660 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3661 enum ath9k_ant_setting settings,
3662 struct ath9k_channel *chan,
3663 u8 *tx_chainmask,
3664 u8 *rx_chainmask,
3665 u8 *antenna_cfgd)
3666 {
3667 static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3668
3669 if (AR_SREV_9280(ah)) {
3670 if (!tx_chainmask_cfg) {
3671
3672 tx_chainmask_cfg = *tx_chainmask;
3673 rx_chainmask_cfg = *rx_chainmask;
3674 }
3675
3676 switch (settings) {
3677 case ATH9K_ANT_FIXED_A:
3678 *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3679 *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3680 *antenna_cfgd = true;
3681 break;
3682 case ATH9K_ANT_FIXED_B:
3683 if (ah->caps.tx_chainmask >
3684 ATH9K_ANTENNA1_CHAINMASK) {
3685 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3686 }
3687 *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3688 *antenna_cfgd = true;
3689 break;
3690 case ATH9K_ANT_VARIABLE:
3691 *tx_chainmask = tx_chainmask_cfg;
3692 *rx_chainmask = rx_chainmask_cfg;
3693 *antenna_cfgd = true;
3694 break;
3695 default:
3696 break;
3697 }
3698 } else {
3699 ah->diversity_control = settings;
3700 }
3701
3702 return true;
3703 }
3704
3705 /*********************/
3706 /* General Operation */
3707 /*********************/
3708
3709 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3710 {
3711 u32 bits = REG_READ(ah, AR_RX_FILTER);
3712 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3713
3714 if (phybits & AR_PHY_ERR_RADAR)
3715 bits |= ATH9K_RX_FILTER_PHYRADAR;
3716 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3717 bits |= ATH9K_RX_FILTER_PHYERR;
3718
3719 return bits;
3720 }
3721
3722 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3723 {
3724 u32 phybits;
3725
3726 REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3727 phybits = 0;
3728 if (bits & ATH9K_RX_FILTER_PHYRADAR)
3729 phybits |= AR_PHY_ERR_RADAR;
3730 if (bits & ATH9K_RX_FILTER_PHYERR)
3731 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3732 REG_WRITE(ah, AR_PHY_ERR, phybits);
3733
3734 if (phybits)
3735 REG_WRITE(ah, AR_RXCFG,
3736 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3737 else
3738 REG_WRITE(ah, AR_RXCFG,
3739 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3740 }
3741
3742 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3743 {
3744 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3745 }
3746
3747 bool ath9k_hw_disable(struct ath_hw *ah)
3748 {
3749 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3750 return false;
3751
3752 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3753 }
3754
3755 bool ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3756 {
3757 struct ath9k_channel *chan = ah->curchan;
3758 struct ieee80211_channel *channel = chan->chan;
3759
3760 ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3761
3762 if (ah->eep_ops->set_txpower(ah, chan,
3763 ath9k_regd_get_ctl(ah, chan),
3764 channel->max_antenna_gain * 2,
3765 channel->max_power * 2,
3766 min((u32) MAX_RATE_POWER,
3767 (u32) ah->regulatory.power_limit)) != 0)
3768 return false;
3769
3770 return true;
3771 }
3772
3773 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3774 {
3775 memcpy(ah->macaddr, mac, ETH_ALEN);
3776 }
3777
3778 void ath9k_hw_setopmode(struct ath_hw *ah)
3779 {
3780 ath9k_hw_set_operating_mode(ah, ah->opmode);
3781 }
3782
3783 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3784 {
3785 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3786 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3787 }
3788
3789 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3790 {
3791 REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3792 REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3793 }
3794
3795 void ath9k_hw_write_associd(struct ath_softc *sc)
3796 {
3797 REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3798 REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3799 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3800 }
3801
3802 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3803 {
3804 u64 tsf;
3805
3806 tsf = REG_READ(ah, AR_TSF_U32);
3807 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3808
3809 return tsf;
3810 }
3811
3812 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3813 {
3814 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3815 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3816 }
3817
3818 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3819 {
3820 int count;
3821
3822 count = 0;
3823 while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
3824 count++;
3825 if (count > 10) {
3826 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3827 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3828 break;
3829 }
3830 udelay(10);
3831 }
3832 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3833 }
3834
3835 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3836 {
3837 if (setting)
3838 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3839 else
3840 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3841
3842 return true;
3843 }
3844
3845 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3846 {
3847 if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3848 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3849 ah->slottime = (u32) -1;
3850 return false;
3851 } else {
3852 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3853 ah->slottime = us;
3854 return true;
3855 }
3856 }
3857
3858 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3859 {
3860 u32 macmode;
3861
3862 if (mode == ATH9K_HT_MACMODE_2040 &&
3863 !ah->config.cwm_ignore_extcca)
3864 macmode = AR_2040_JOINED_RX_CLEAR;
3865 else
3866 macmode = 0;
3867
3868 REG_WRITE(ah, AR_2040_MODE, macmode);
3869 }
3870
3871 /***************************/
3872 /* Bluetooth Coexistence */
3873 /***************************/
3874
3875 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3876 {
3877 /* connect bt_active to baseband */
3878 REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3879 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3880 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3881
3882 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3883 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3884
3885 /* Set input mux for bt_active to gpio pin */
3886 REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3887 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3888 ah->btactive_gpio);
3889
3890 /* Configure the desired gpio port for input */
3891 ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3892
3893 /* Configure the desired GPIO port for TX_FRAME output */
3894 ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
3895 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
3896 }