]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/ath9k/recv.c
[ARM] pxa: add e750 MFP config
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / ath9k / recv.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 /*
18 * Implementation of receive path.
19 */
20
21 #include "core.h"
22
23 /*
24 * Setup and link descriptors.
25 *
26 * 11N: we can no longer afford to self link the last descriptor.
27 * MAC acknowledges BA status as long as it copies frames to host
28 * buffer (or rx fifo). This can incorrectly acknowledge packets
29 * to a sender if last desc is self-linked.
30 *
31 * NOTE: Caller should hold the rxbuf lock.
32 */
33
34 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
35 {
36 struct ath_hal *ah = sc->sc_ah;
37 struct ath_desc *ds;
38 struct sk_buff *skb;
39
40 ATH_RXBUF_RESET(bf);
41
42 ds = bf->bf_desc;
43 ds->ds_link = 0; /* link to null */
44 ds->ds_data = bf->bf_buf_addr;
45
46 /* XXX For RADAR?
47 * virtual addr of the beginning of the buffer. */
48 skb = bf->bf_mpdu;
49 ASSERT(skb != NULL);
50 ds->ds_vdata = skb->data;
51
52 /* setup rx descriptors */
53 ath9k_hw_setuprxdesc(ah,
54 ds,
55 skb_tailroom(skb), /* buffer size */
56 0);
57
58 if (sc->sc_rxlink == NULL)
59 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
60 else
61 *sc->sc_rxlink = bf->bf_daddr;
62
63 sc->sc_rxlink = &ds->ds_link;
64 ath9k_hw_rxena(ah);
65 }
66
67 /* Process received BAR frame */
68
69 static int ath_bar_rx(struct ath_softc *sc,
70 struct ath_node *an,
71 struct sk_buff *skb)
72 {
73 struct ieee80211_bar *bar;
74 struct ath_arx_tid *rxtid;
75 struct sk_buff *tskb;
76 struct ath_recv_status *rx_status;
77 int tidno, index, cindex;
78 u16 seqno;
79
80 /* look at BAR contents */
81
82 bar = (struct ieee80211_bar *)skb->data;
83 tidno = (le16_to_cpu(bar->control) & IEEE80211_BAR_CTL_TID_M)
84 >> IEEE80211_BAR_CTL_TID_S;
85 seqno = le16_to_cpu(bar->start_seq_num) >> IEEE80211_SEQ_SEQ_SHIFT;
86
87 /* process BAR - indicate all pending RX frames till the BAR seqno */
88
89 rxtid = &an->an_aggr.rx.tid[tidno];
90
91 spin_lock_bh(&rxtid->tidlock);
92
93 /* get relative index */
94
95 index = ATH_BA_INDEX(rxtid->seq_next, seqno);
96
97 /* drop BAR if old sequence (index is too large) */
98
99 if ((index > rxtid->baw_size) &&
100 (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))))
101 /* discard frame, ieee layer may not treat frame as a dup */
102 goto unlock_and_free;
103
104 /* complete receive processing for all pending frames upto BAR seqno */
105
106 cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
107 while ((rxtid->baw_head != rxtid->baw_tail) &&
108 (rxtid->baw_head != cindex)) {
109 tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
110 rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
111 rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
112
113 if (tskb != NULL)
114 ath_rx_subframe(an, tskb, rx_status);
115
116 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
117 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
118 }
119
120 /* ... and indicate rest of the frames in-order */
121
122 while (rxtid->baw_head != rxtid->baw_tail &&
123 rxtid->rxbuf[rxtid->baw_head].rx_wbuf != NULL) {
124 tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
125 rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
126 rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
127
128 ath_rx_subframe(an, tskb, rx_status);
129
130 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
131 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
132 }
133
134 unlock_and_free:
135 spin_unlock_bh(&rxtid->tidlock);
136 /* free bar itself */
137 dev_kfree_skb(skb);
138 return IEEE80211_FTYPE_CTL;
139 }
140
141 /* Function to handle a subframe of aggregation when HT is enabled */
142
143 static int ath_ampdu_input(struct ath_softc *sc,
144 struct ath_node *an,
145 struct sk_buff *skb,
146 struct ath_recv_status *rx_status)
147 {
148 struct ieee80211_hdr *hdr;
149 struct ath_arx_tid *rxtid;
150 struct ath_rxbuf *rxbuf;
151 u8 type, subtype;
152 u16 rxseq;
153 int tid = 0, index, cindex, rxdiff;
154 __le16 fc;
155 u8 *qc;
156
157 hdr = (struct ieee80211_hdr *)skb->data;
158 fc = hdr->frame_control;
159
160 /* collect stats of frames with non-zero version */
161
162 if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_VERS) != 0) {
163 dev_kfree_skb(skb);
164 return -1;
165 }
166
167 type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
168 subtype = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_STYPE;
169
170 if (ieee80211_is_back_req(fc))
171 return ath_bar_rx(sc, an, skb);
172
173 /* special aggregate processing only for qos unicast data frames */
174
175 if (!ieee80211_is_data(fc) ||
176 !ieee80211_is_data_qos(fc) ||
177 is_multicast_ether_addr(hdr->addr1))
178 return ath_rx_subframe(an, skb, rx_status);
179
180 /* lookup rx tid state */
181
182 if (ieee80211_is_data_qos(fc)) {
183 qc = ieee80211_get_qos_ctl(hdr);
184 tid = qc[0] & 0xf;
185 }
186
187 if (sc->sc_ah->ah_opmode == ATH9K_M_STA) {
188 /* Drop the frame not belonging to me. */
189 if (memcmp(hdr->addr1, sc->sc_myaddr, ETH_ALEN)) {
190 dev_kfree_skb(skb);
191 return -1;
192 }
193 }
194
195 rxtid = &an->an_aggr.rx.tid[tid];
196
197 spin_lock(&rxtid->tidlock);
198
199 rxdiff = (rxtid->baw_tail - rxtid->baw_head) &
200 (ATH_TID_MAX_BUFS - 1);
201
202 /*
203 * If the ADDBA exchange has not been completed by the source,
204 * process via legacy path (i.e. no reordering buffer is needed)
205 */
206 if (!rxtid->addba_exchangecomplete) {
207 spin_unlock(&rxtid->tidlock);
208 return ath_rx_subframe(an, skb, rx_status);
209 }
210
211 /* extract sequence number from recvd frame */
212
213 rxseq = le16_to_cpu(hdr->seq_ctrl) >> IEEE80211_SEQ_SEQ_SHIFT;
214
215 if (rxtid->seq_reset) {
216 rxtid->seq_reset = 0;
217 rxtid->seq_next = rxseq;
218 }
219
220 index = ATH_BA_INDEX(rxtid->seq_next, rxseq);
221
222 /* drop frame if old sequence (index is too large) */
223
224 if (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))) {
225 /* discard frame, ieee layer may not treat frame as a dup */
226 spin_unlock(&rxtid->tidlock);
227 dev_kfree_skb(skb);
228 return IEEE80211_FTYPE_DATA;
229 }
230
231 /* sequence number is beyond block-ack window */
232
233 if (index >= rxtid->baw_size) {
234
235 /* complete receive processing for all pending frames */
236
237 while (index >= rxtid->baw_size) {
238
239 rxbuf = rxtid->rxbuf + rxtid->baw_head;
240
241 if (rxbuf->rx_wbuf != NULL) {
242 ath_rx_subframe(an, rxbuf->rx_wbuf,
243 &rxbuf->rx_status);
244 rxbuf->rx_wbuf = NULL;
245 }
246
247 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
248 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
249
250 index--;
251 }
252 }
253
254 /* add buffer to the recv ba window */
255
256 cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
257 rxbuf = rxtid->rxbuf + cindex;
258
259 if (rxbuf->rx_wbuf != NULL) {
260 spin_unlock(&rxtid->tidlock);
261 /* duplicate frame */
262 dev_kfree_skb(skb);
263 return IEEE80211_FTYPE_DATA;
264 }
265
266 rxbuf->rx_wbuf = skb;
267 rxbuf->rx_time = get_timestamp();
268 rxbuf->rx_status = *rx_status;
269
270 /* advance tail if sequence received is newer
271 * than any received so far */
272
273 if (index >= rxdiff) {
274 rxtid->baw_tail = cindex;
275 INCR(rxtid->baw_tail, ATH_TID_MAX_BUFS);
276 }
277
278 /* indicate all in-order received frames */
279
280 while (rxtid->baw_head != rxtid->baw_tail) {
281 rxbuf = rxtid->rxbuf + rxtid->baw_head;
282 if (!rxbuf->rx_wbuf)
283 break;
284
285 ath_rx_subframe(an, rxbuf->rx_wbuf, &rxbuf->rx_status);
286 rxbuf->rx_wbuf = NULL;
287
288 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
289 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
290 }
291
292 /*
293 * start a timer to flush all received frames if there are pending
294 * receive frames
295 */
296 if (rxtid->baw_head != rxtid->baw_tail)
297 mod_timer(&rxtid->timer, ATH_RX_TIMEOUT);
298 else
299 del_timer_sync(&rxtid->timer);
300
301 spin_unlock(&rxtid->tidlock);
302 return IEEE80211_FTYPE_DATA;
303 }
304
305 /* Timer to flush all received sub-frames */
306
307 static void ath_rx_timer(unsigned long data)
308 {
309 struct ath_arx_tid *rxtid = (struct ath_arx_tid *)data;
310 struct ath_node *an = rxtid->an;
311 struct ath_rxbuf *rxbuf;
312 int nosched;
313
314 spin_lock_bh(&rxtid->tidlock);
315 while (rxtid->baw_head != rxtid->baw_tail) {
316 rxbuf = rxtid->rxbuf + rxtid->baw_head;
317 if (!rxbuf->rx_wbuf) {
318 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
319 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
320 continue;
321 }
322
323 /*
324 * Stop if the next one is a very recent frame.
325 *
326 * Call get_timestamp in every iteration to protect against the
327 * case in which a new frame is received while we are executing
328 * this function. Using a timestamp obtained before entering
329 * the loop could lead to a very large time interval
330 * (a negative value typecast to unsigned), breaking the
331 * function's logic.
332 */
333 if ((get_timestamp() - rxbuf->rx_time) <
334 (ATH_RX_TIMEOUT * HZ / 1000))
335 break;
336
337 ath_rx_subframe(an, rxbuf->rx_wbuf,
338 &rxbuf->rx_status);
339 rxbuf->rx_wbuf = NULL;
340
341 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
342 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
343 }
344
345 /*
346 * start a timer to flush all received frames if there are pending
347 * receive frames
348 */
349 if (rxtid->baw_head != rxtid->baw_tail)
350 nosched = 0;
351 else
352 nosched = 1; /* no need to re-arm the timer again */
353
354 spin_unlock_bh(&rxtid->tidlock);
355 }
356
357 /* Free all pending sub-frames in the re-ordering buffer */
358
359 static void ath_rx_flush_tid(struct ath_softc *sc,
360 struct ath_arx_tid *rxtid, int drop)
361 {
362 struct ath_rxbuf *rxbuf;
363 unsigned long flag;
364
365 spin_lock_irqsave(&rxtid->tidlock, flag);
366 while (rxtid->baw_head != rxtid->baw_tail) {
367 rxbuf = rxtid->rxbuf + rxtid->baw_head;
368 if (!rxbuf->rx_wbuf) {
369 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
370 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
371 continue;
372 }
373
374 if (drop)
375 dev_kfree_skb(rxbuf->rx_wbuf);
376 else
377 ath_rx_subframe(rxtid->an,
378 rxbuf->rx_wbuf,
379 &rxbuf->rx_status);
380
381 rxbuf->rx_wbuf = NULL;
382
383 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
384 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
385 }
386 spin_unlock_irqrestore(&rxtid->tidlock, flag);
387 }
388
389 static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc,
390 u32 len)
391 {
392 struct sk_buff *skb;
393 u32 off;
394
395 /*
396 * Cache-line-align. This is important (for the
397 * 5210 at least) as not doing so causes bogus data
398 * in rx'd frames.
399 */
400
401 skb = dev_alloc_skb(len + sc->sc_cachelsz - 1);
402 if (skb != NULL) {
403 off = ((unsigned long) skb->data) % sc->sc_cachelsz;
404 if (off != 0)
405 skb_reserve(skb, sc->sc_cachelsz - off);
406 } else {
407 DPRINTF(sc, ATH_DBG_FATAL,
408 "%s: skbuff alloc of size %u failed\n",
409 __func__, len);
410 return NULL;
411 }
412
413 return skb;
414 }
415
416 static void ath_rx_requeue(struct ath_softc *sc, struct sk_buff *skb)
417 {
418 struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
419
420 ASSERT(bf != NULL);
421
422 spin_lock_bh(&sc->sc_rxbuflock);
423 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
424 /*
425 * This buffer is still held for hw acess.
426 * Mark it as free to be re-queued it later.
427 */
428 bf->bf_status |= ATH_BUFSTATUS_FREE;
429 } else {
430 /* XXX: we probably never enter here, remove after
431 * verification */
432 list_add_tail(&bf->list, &sc->sc_rxbuf);
433 ath_rx_buf_link(sc, bf);
434 }
435 spin_unlock_bh(&sc->sc_rxbuflock);
436 }
437
438 /*
439 * The skb indicated to upper stack won't be returned to us.
440 * So we have to allocate a new one and queue it by ourselves.
441 */
442 static int ath_rx_indicate(struct ath_softc *sc,
443 struct sk_buff *skb,
444 struct ath_recv_status *status,
445 u16 keyix)
446 {
447 struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
448 struct sk_buff *nskb;
449 int type;
450
451 /* indicate frame to the stack, which will free the old skb. */
452 type = _ath_rx_indicate(sc, skb, status, keyix);
453
454 /* allocate a new skb and queue it to for H/W processing */
455 nskb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
456 if (nskb != NULL) {
457 bf->bf_mpdu = nskb;
458 bf->bf_buf_addr = pci_map_single(sc->pdev, nskb->data,
459 skb_end_pointer(nskb) - nskb->head,
460 PCI_DMA_FROMDEVICE);
461 bf->bf_dmacontext = bf->bf_buf_addr;
462 ATH_RX_CONTEXT(nskb)->ctx_rxbuf = bf;
463
464 /* queue the new wbuf to H/W */
465 ath_rx_requeue(sc, nskb);
466 }
467
468 return type;
469 }
470
471 static void ath_opmode_init(struct ath_softc *sc)
472 {
473 struct ath_hal *ah = sc->sc_ah;
474 u32 rfilt, mfilt[2];
475
476 /* configure rx filter */
477 rfilt = ath_calcrxfilter(sc);
478 ath9k_hw_setrxfilter(ah, rfilt);
479
480 /* configure bssid mask */
481 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
482 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
483
484 /* configure operational mode */
485 ath9k_hw_setopmode(ah);
486
487 /* Handle any link-level address change. */
488 ath9k_hw_setmac(ah, sc->sc_myaddr);
489
490 /* calculate and install multicast filter */
491 mfilt[0] = mfilt[1] = ~0;
492
493 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
494 DPRINTF(sc, ATH_DBG_CONFIG ,
495 "%s: RX filter 0x%x, MC filter %08x:%08x\n",
496 __func__, rfilt, mfilt[0], mfilt[1]);
497 }
498
499 int ath_rx_init(struct ath_softc *sc, int nbufs)
500 {
501 struct sk_buff *skb;
502 struct ath_buf *bf;
503 int error = 0;
504
505 do {
506 spin_lock_init(&sc->sc_rxflushlock);
507 sc->sc_flags &= ~SC_OP_RXFLUSH;
508 spin_lock_init(&sc->sc_rxbuflock);
509
510 /*
511 * Cisco's VPN software requires that drivers be able to
512 * receive encapsulated frames that are larger than the MTU.
513 * Since we can't be sure how large a frame we'll get, setup
514 * to handle the larges on possible.
515 */
516 sc->sc_rxbufsize = roundup(IEEE80211_MAX_MPDU_LEN,
517 min(sc->sc_cachelsz,
518 (u16)64));
519
520 DPRINTF(sc, ATH_DBG_CONFIG, "%s: cachelsz %u rxbufsize %u\n",
521 __func__, sc->sc_cachelsz, sc->sc_rxbufsize);
522
523 /* Initialize rx descriptors */
524
525 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
526 "rx", nbufs, 1);
527 if (error != 0) {
528 DPRINTF(sc, ATH_DBG_FATAL,
529 "%s: failed to allocate rx descriptors: %d\n",
530 __func__, error);
531 break;
532 }
533
534 /* Pre-allocate a wbuf for each rx buffer */
535
536 list_for_each_entry(bf, &sc->sc_rxbuf, list) {
537 skb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
538 if (skb == NULL) {
539 error = -ENOMEM;
540 break;
541 }
542
543 bf->bf_mpdu = skb;
544 bf->bf_buf_addr = pci_map_single(sc->pdev, skb->data,
545 skb_end_pointer(skb) - skb->head,
546 PCI_DMA_FROMDEVICE);
547 bf->bf_dmacontext = bf->bf_buf_addr;
548 ATH_RX_CONTEXT(skb)->ctx_rxbuf = bf;
549 }
550 sc->sc_rxlink = NULL;
551
552 } while (0);
553
554 if (error)
555 ath_rx_cleanup(sc);
556
557 return error;
558 }
559
560 /* Reclaim all rx queue resources */
561
562 void ath_rx_cleanup(struct ath_softc *sc)
563 {
564 struct sk_buff *skb;
565 struct ath_buf *bf;
566
567 list_for_each_entry(bf, &sc->sc_rxbuf, list) {
568 skb = bf->bf_mpdu;
569 if (skb)
570 dev_kfree_skb(skb);
571 }
572
573 /* cleanup rx descriptors */
574
575 if (sc->sc_rxdma.dd_desc_len != 0)
576 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
577 }
578
579 /*
580 * Calculate the receive filter according to the
581 * operating mode and state:
582 *
583 * o always accept unicast, broadcast, and multicast traffic
584 * o maintain current state of phy error reception (the hal
585 * may enable phy error frames for noise immunity work)
586 * o probe request frames are accepted only when operating in
587 * hostap, adhoc, or monitor modes
588 * o enable promiscuous mode according to the interface state
589 * o accept beacons:
590 * - when operating in adhoc mode so the 802.11 layer creates
591 * node table entries for peers,
592 * - when operating in station mode for collecting rssi data when
593 * the station is otherwise quiet, or
594 * - when operating as a repeater so we see repeater-sta beacons
595 * - when scanning
596 */
597
598 u32 ath_calcrxfilter(struct ath_softc *sc)
599 {
600 #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
601
602 u32 rfilt;
603
604 rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
605 | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
606 | ATH9K_RX_FILTER_MCAST;
607
608 /* If not a STA, enable processing of Probe Requests */
609 if (sc->sc_ah->ah_opmode != ATH9K_M_STA)
610 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
611
612 /* Can't set HOSTAP into promiscous mode */
613 if (((sc->sc_ah->ah_opmode != ATH9K_M_HOSTAP) &&
614 (sc->rx_filter & FIF_PROMISC_IN_BSS)) ||
615 (sc->sc_ah->ah_opmode == ATH9K_M_MONITOR)) {
616 rfilt |= ATH9K_RX_FILTER_PROM;
617 /* ??? To prevent from sending ACK */
618 rfilt &= ~ATH9K_RX_FILTER_UCAST;
619 }
620
621 if (((sc->sc_ah->ah_opmode == ATH9K_M_STA) &&
622 (sc->rx_filter & FIF_BCN_PRBRESP_PROMISC)) ||
623 (sc->sc_ah->ah_opmode == ATH9K_M_IBSS))
624 rfilt |= ATH9K_RX_FILTER_BEACON;
625
626 /* If in HOSTAP mode, want to enable reception of PSPOLL frames
627 & beacon frames */
628 if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP)
629 rfilt |= (ATH9K_RX_FILTER_BEACON | ATH9K_RX_FILTER_PSPOLL);
630 return rfilt;
631
632 #undef RX_FILTER_PRESERVE
633 }
634
635 /* Enable the receive h/w following a reset. */
636
637 int ath_startrecv(struct ath_softc *sc)
638 {
639 struct ath_hal *ah = sc->sc_ah;
640 struct ath_buf *bf, *tbf;
641
642 spin_lock_bh(&sc->sc_rxbuflock);
643 if (list_empty(&sc->sc_rxbuf))
644 goto start_recv;
645
646 sc->sc_rxlink = NULL;
647 list_for_each_entry_safe(bf, tbf, &sc->sc_rxbuf, list) {
648 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
649 /* restarting h/w, no need for holding descriptors */
650 bf->bf_status &= ~ATH_BUFSTATUS_STALE;
651 /*
652 * Upper layer may not be done with the frame yet so
653 * we can't just re-queue it to hardware. Remove it
654 * from h/w queue. It'll be re-queued when upper layer
655 * returns the frame and ath_rx_requeue_mpdu is called.
656 */
657 if (!(bf->bf_status & ATH_BUFSTATUS_FREE)) {
658 list_del(&bf->list);
659 continue;
660 }
661 }
662 /* chain descriptors */
663 ath_rx_buf_link(sc, bf);
664 }
665
666 /* We could have deleted elements so the list may be empty now */
667 if (list_empty(&sc->sc_rxbuf))
668 goto start_recv;
669
670 bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
671 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
672 ath9k_hw_rxena(ah); /* enable recv descriptors */
673
674 start_recv:
675 spin_unlock_bh(&sc->sc_rxbuflock);
676 ath_opmode_init(sc); /* set filters, etc. */
677 ath9k_hw_startpcureceive(ah); /* re-enable PCU/DMA engine */
678 return 0;
679 }
680
681 /* Disable the receive h/w in preparation for a reset. */
682
683 bool ath_stoprecv(struct ath_softc *sc)
684 {
685 struct ath_hal *ah = sc->sc_ah;
686 u64 tsf;
687 bool stopped;
688
689 ath9k_hw_stoppcurecv(ah); /* disable PCU */
690 ath9k_hw_setrxfilter(ah, 0); /* clear recv filter */
691 stopped = ath9k_hw_stopdmarecv(ah); /* disable DMA engine */
692 mdelay(3); /* 3ms is long enough for 1 frame */
693 tsf = ath9k_hw_gettsf64(ah);
694 sc->sc_rxlink = NULL; /* just in case */
695 return stopped;
696 }
697
698 /* Flush receive queue */
699
700 void ath_flushrecv(struct ath_softc *sc)
701 {
702 /*
703 * ath_rx_tasklet may be used to handle rx interrupt and flush receive
704 * queue at the same time. Use a lock to serialize the access of rx
705 * queue.
706 * ath_rx_tasklet cannot hold the spinlock while indicating packets.
707 * Instead, do not claim the spinlock but check for a flush in
708 * progress (see references to sc_rxflush)
709 */
710 spin_lock_bh(&sc->sc_rxflushlock);
711 sc->sc_flags |= SC_OP_RXFLUSH;
712
713 ath_rx_tasklet(sc, 1);
714
715 sc->sc_flags &= ~SC_OP_RXFLUSH;
716 spin_unlock_bh(&sc->sc_rxflushlock);
717 }
718
719 /* Process an individual frame */
720
721 int ath_rx_input(struct ath_softc *sc,
722 struct ath_node *an,
723 int is_ampdu,
724 struct sk_buff *skb,
725 struct ath_recv_status *rx_status,
726 enum ATH_RX_TYPE *status)
727 {
728 if (is_ampdu && (sc->sc_flags & SC_OP_RXAGGR)) {
729 *status = ATH_RX_CONSUMED;
730 return ath_ampdu_input(sc, an, skb, rx_status);
731 } else {
732 *status = ATH_RX_NON_CONSUMED;
733 return -1;
734 }
735 }
736
737 /* Process receive queue, as well as LED, etc. */
738
739 int ath_rx_tasklet(struct ath_softc *sc, int flush)
740 {
741 #define PA2DESC(_sc, _pa) \
742 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
743 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
744
745 struct ath_buf *bf, *bf_held = NULL;
746 struct ath_desc *ds;
747 struct ieee80211_hdr *hdr;
748 struct sk_buff *skb = NULL;
749 struct ath_recv_status rx_status;
750 struct ath_hal *ah = sc->sc_ah;
751 int type, rx_processed = 0;
752 u32 phyerr;
753 u8 chainreset = 0;
754 int retval;
755 __le16 fc;
756
757 do {
758 /* If handling rx interrupt and flush is in progress => exit */
759 if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
760 break;
761
762 spin_lock_bh(&sc->sc_rxbuflock);
763 if (list_empty(&sc->sc_rxbuf)) {
764 sc->sc_rxlink = NULL;
765 spin_unlock_bh(&sc->sc_rxbuflock);
766 break;
767 }
768
769 bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
770
771 /*
772 * There is a race condition that BH gets scheduled after sw
773 * writes RxE and before hw re-load the last descriptor to get
774 * the newly chained one. Software must keep the last DONE
775 * descriptor as a holding descriptor - software does so by
776 * marking it with the STALE flag.
777 */
778 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
779 bf_held = bf;
780 if (list_is_last(&bf_held->list, &sc->sc_rxbuf)) {
781 /*
782 * The holding descriptor is the last
783 * descriptor in queue. It's safe to
784 * remove the last holding descriptor
785 * in BH context.
786 */
787 list_del(&bf_held->list);
788 bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
789 sc->sc_rxlink = NULL;
790
791 if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
792 list_add_tail(&bf_held->list,
793 &sc->sc_rxbuf);
794 ath_rx_buf_link(sc, bf_held);
795 }
796 spin_unlock_bh(&sc->sc_rxbuflock);
797 break;
798 }
799 bf = list_entry(bf->list.next, struct ath_buf, list);
800 }
801
802 ds = bf->bf_desc;
803 ++rx_processed;
804
805 /*
806 * Must provide the virtual address of the current
807 * descriptor, the physical address, and the virtual
808 * address of the next descriptor in the h/w chain.
809 * This allows the HAL to look ahead to see if the
810 * hardware is done with a descriptor by checking the
811 * done bit in the following descriptor and the address
812 * of the current descriptor the DMA engine is working
813 * on. All this is necessary because of our use of
814 * a self-linked list to avoid rx overruns.
815 */
816 retval = ath9k_hw_rxprocdesc(ah,
817 ds,
818 bf->bf_daddr,
819 PA2DESC(sc, ds->ds_link),
820 0);
821 if (retval == -EINPROGRESS) {
822 struct ath_buf *tbf;
823 struct ath_desc *tds;
824
825 if (list_is_last(&bf->list, &sc->sc_rxbuf)) {
826 spin_unlock_bh(&sc->sc_rxbuflock);
827 break;
828 }
829
830 tbf = list_entry(bf->list.next, struct ath_buf, list);
831
832 /*
833 * On some hardware the descriptor status words could
834 * get corrupted, including the done bit. Because of
835 * this, check if the next descriptor's done bit is
836 * set or not.
837 *
838 * If the next descriptor's done bit is set, the current
839 * descriptor has been corrupted. Force s/w to discard
840 * this descriptor and continue...
841 */
842
843 tds = tbf->bf_desc;
844 retval = ath9k_hw_rxprocdesc(ah,
845 tds, tbf->bf_daddr,
846 PA2DESC(sc, tds->ds_link), 0);
847 if (retval == -EINPROGRESS) {
848 spin_unlock_bh(&sc->sc_rxbuflock);
849 break;
850 }
851 }
852
853 /* XXX: we do not support frames spanning
854 * multiple descriptors */
855 bf->bf_status |= ATH_BUFSTATUS_DONE;
856
857 skb = bf->bf_mpdu;
858 if (skb == NULL) { /* XXX ??? can this happen */
859 spin_unlock_bh(&sc->sc_rxbuflock);
860 continue;
861 }
862 /*
863 * Now we know it's a completed frame, we can indicate the
864 * frame. Remove the previous holding descriptor and leave
865 * this one in the queue as the new holding descriptor.
866 */
867 if (bf_held) {
868 list_del(&bf_held->list);
869 bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
870 if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
871 list_add_tail(&bf_held->list, &sc->sc_rxbuf);
872 /* try to requeue this descriptor */
873 ath_rx_buf_link(sc, bf_held);
874 }
875 }
876
877 bf->bf_status |= ATH_BUFSTATUS_STALE;
878 bf_held = bf;
879 /*
880 * Release the lock here in case ieee80211_input() return
881 * the frame immediately by calling ath_rx_mpdu_requeue().
882 */
883 spin_unlock_bh(&sc->sc_rxbuflock);
884
885 if (flush) {
886 /*
887 * If we're asked to flush receive queue, directly
888 * chain it back at the queue without processing it.
889 */
890 goto rx_next;
891 }
892
893 hdr = (struct ieee80211_hdr *)skb->data;
894 fc = hdr->frame_control;
895 memset(&rx_status, 0, sizeof(struct ath_recv_status));
896
897 if (ds->ds_rxstat.rs_more) {
898 /*
899 * Frame spans multiple descriptors; this
900 * cannot happen yet as we don't support
901 * jumbograms. If not in monitor mode,
902 * discard the frame.
903 */
904 #ifndef ERROR_FRAMES
905 /*
906 * Enable this if you want to see
907 * error frames in Monitor mode.
908 */
909 if (sc->sc_ah->ah_opmode != ATH9K_M_MONITOR)
910 goto rx_next;
911 #endif
912 /* fall thru for monitor mode handling... */
913 } else if (ds->ds_rxstat.rs_status != 0) {
914 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC)
915 rx_status.flags |= ATH_RX_FCS_ERROR;
916 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY) {
917 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
918 goto rx_next;
919 }
920
921 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) {
922 /*
923 * Decrypt error. We only mark packet status
924 * here and always push up the frame up to let
925 * mac80211 handle the actual error case, be
926 * it no decryption key or real decryption
927 * error. This let us keep statistics there.
928 */
929 rx_status.flags |= ATH_RX_DECRYPT_ERROR;
930 } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) {
931 /*
932 * Demic error. We only mark frame status here
933 * and always push up the frame up to let
934 * mac80211 handle the actual error case. This
935 * let us keep statistics there. Hardware may
936 * post a false-positive MIC error.
937 */
938 if (ieee80211_is_ctl(fc))
939 /*
940 * Sometimes, we get invalid
941 * MIC failures on valid control frames.
942 * Remove these mic errors.
943 */
944 ds->ds_rxstat.rs_status &=
945 ~ATH9K_RXERR_MIC;
946 else
947 rx_status.flags |= ATH_RX_MIC_ERROR;
948 }
949 /*
950 * Reject error frames with the exception of
951 * decryption and MIC failures. For monitor mode,
952 * we also ignore the CRC error.
953 */
954 if (sc->sc_ah->ah_opmode == ATH9K_M_MONITOR) {
955 if (ds->ds_rxstat.rs_status &
956 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
957 ATH9K_RXERR_CRC))
958 goto rx_next;
959 } else {
960 if (ds->ds_rxstat.rs_status &
961 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
962 goto rx_next;
963 }
964 }
965 }
966 /*
967 * The status portion of the descriptor could get corrupted.
968 */
969 if (sc->sc_rxbufsize < ds->ds_rxstat.rs_datalen)
970 goto rx_next;
971 /*
972 * Sync and unmap the frame. At this point we're
973 * committed to passing the sk_buff somewhere so
974 * clear buf_skb; this means a new sk_buff must be
975 * allocated when the rx descriptor is setup again
976 * to receive another frame.
977 */
978 skb_put(skb, ds->ds_rxstat.rs_datalen);
979 skb->protocol = cpu_to_be16(ETH_P_CONTROL);
980 rx_status.tsf = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
981 rx_status.rateieee =
982 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate;
983 rx_status.rateKbps =
984 sc->sc_hwmap[ds->ds_rxstat.rs_rate].rateKbps;
985 rx_status.ratecode = ds->ds_rxstat.rs_rate;
986
987 /* HT rate */
988 if (rx_status.ratecode & 0x80) {
989 /* TODO - add table to avoid division */
990 if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
991 rx_status.flags |= ATH_RX_40MHZ;
992 rx_status.rateKbps =
993 (rx_status.rateKbps * 27) / 13;
994 }
995 if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI)
996 rx_status.rateKbps =
997 (rx_status.rateKbps * 10) / 9;
998 else
999 rx_status.flags |= ATH_RX_SHORT_GI;
1000 }
1001
1002 /* sc_noise_floor is only available when the station
1003 attaches to an AP, so we use a default value
1004 if we are not yet attached. */
1005 rx_status.abs_rssi =
1006 ds->ds_rxstat.rs_rssi + sc->sc_ani.sc_noise_floor;
1007
1008 pci_dma_sync_single_for_cpu(sc->pdev,
1009 bf->bf_buf_addr,
1010 skb_tailroom(skb),
1011 PCI_DMA_FROMDEVICE);
1012 pci_unmap_single(sc->pdev,
1013 bf->bf_buf_addr,
1014 sc->sc_rxbufsize,
1015 PCI_DMA_FROMDEVICE);
1016
1017 /* XXX: Ah! make me more readable, use a helper */
1018 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1019 if (ds->ds_rxstat.rs_moreaggr == 0) {
1020 rx_status.rssictl[0] =
1021 ds->ds_rxstat.rs_rssi_ctl0;
1022 rx_status.rssictl[1] =
1023 ds->ds_rxstat.rs_rssi_ctl1;
1024 rx_status.rssictl[2] =
1025 ds->ds_rxstat.rs_rssi_ctl2;
1026 rx_status.rssi = ds->ds_rxstat.rs_rssi;
1027 if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
1028 rx_status.rssiextn[0] =
1029 ds->ds_rxstat.rs_rssi_ext0;
1030 rx_status.rssiextn[1] =
1031 ds->ds_rxstat.rs_rssi_ext1;
1032 rx_status.rssiextn[2] =
1033 ds->ds_rxstat.rs_rssi_ext2;
1034 rx_status.flags |=
1035 ATH_RX_RSSI_EXTN_VALID;
1036 }
1037 rx_status.flags |= ATH_RX_RSSI_VALID |
1038 ATH_RX_CHAIN_RSSI_VALID;
1039 }
1040 } else {
1041 /*
1042 * Need to insert the "combined" rssi into the
1043 * status structure for upper layer processing
1044 */
1045 rx_status.rssi = ds->ds_rxstat.rs_rssi;
1046 rx_status.flags |= ATH_RX_RSSI_VALID;
1047 }
1048
1049 /* Pass frames up to the stack. */
1050
1051 type = ath_rx_indicate(sc, skb,
1052 &rx_status, ds->ds_rxstat.rs_keyix);
1053
1054 /*
1055 * change the default rx antenna if rx diversity chooses the
1056 * other antenna 3 times in a row.
1057 */
1058 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
1059 if (++sc->sc_rxotherant >= 3)
1060 ath_setdefantenna(sc,
1061 ds->ds_rxstat.rs_antenna);
1062 } else {
1063 sc->sc_rxotherant = 0;
1064 }
1065
1066 #ifdef CONFIG_SLOW_ANT_DIV
1067 if ((rx_status.flags & ATH_RX_RSSI_VALID) &&
1068 ieee80211_is_beacon(fc)) {
1069 ath_slow_ant_div(&sc->sc_antdiv, hdr, &ds->ds_rxstat);
1070 }
1071 #endif
1072 /*
1073 * For frames successfully indicated, the buffer will be
1074 * returned to us by upper layers by calling
1075 * ath_rx_mpdu_requeue, either synchronusly or asynchronously.
1076 * So we don't want to do it here in this loop.
1077 */
1078 continue;
1079
1080 rx_next:
1081 bf->bf_status |= ATH_BUFSTATUS_FREE;
1082 } while (TRUE);
1083
1084 if (chainreset) {
1085 DPRINTF(sc, ATH_DBG_CONFIG,
1086 "%s: Reset rx chain mask. "
1087 "Do internal reset\n", __func__);
1088 ASSERT(flush == 0);
1089 ath_reset(sc, false);
1090 }
1091
1092 return 0;
1093 #undef PA2DESC
1094 }
1095
1096 /* Process ADDBA request in per-TID data structure */
1097
1098 int ath_rx_aggr_start(struct ath_softc *sc,
1099 const u8 *addr,
1100 u16 tid,
1101 u16 *ssn)
1102 {
1103 struct ath_arx_tid *rxtid;
1104 struct ath_node *an;
1105 struct ieee80211_hw *hw = sc->hw;
1106 struct ieee80211_supported_band *sband;
1107 u16 buffersize = 0;
1108
1109 spin_lock_bh(&sc->node_lock);
1110 an = ath_node_find(sc, (u8 *) addr);
1111 spin_unlock_bh(&sc->node_lock);
1112
1113 if (!an) {
1114 DPRINTF(sc, ATH_DBG_AGGR,
1115 "%s: Node not found to initialize RX aggregation\n",
1116 __func__);
1117 return -1;
1118 }
1119
1120 sband = hw->wiphy->bands[hw->conf.channel->band];
1121 buffersize = IEEE80211_MIN_AMPDU_BUF <<
1122 sband->ht_info.ampdu_factor; /* FIXME */
1123
1124 rxtid = &an->an_aggr.rx.tid[tid];
1125
1126 spin_lock_bh(&rxtid->tidlock);
1127 if (sc->sc_flags & SC_OP_RXAGGR) {
1128 /* Allow aggregation reception
1129 * Adjust rx BA window size. Peer might indicate a
1130 * zero buffer size for a _dont_care_ condition.
1131 */
1132 if (buffersize)
1133 rxtid->baw_size = min(buffersize, rxtid->baw_size);
1134
1135 /* set rx sequence number */
1136 rxtid->seq_next = *ssn;
1137
1138 /* Allocate the receive buffers for this TID */
1139 DPRINTF(sc, ATH_DBG_AGGR,
1140 "%s: Allcating rxbuffer for TID %d\n", __func__, tid);
1141
1142 if (rxtid->rxbuf == NULL) {
1143 /*
1144 * If the rxbuff is not NULL at this point, we *probably*
1145 * already allocated the buffer on a previous ADDBA,
1146 * and this is a subsequent ADDBA that got through.
1147 * Don't allocate, but use the value in the pointer,
1148 * we zero it out when we de-allocate.
1149 */
1150 rxtid->rxbuf = kmalloc(ATH_TID_MAX_BUFS *
1151 sizeof(struct ath_rxbuf), GFP_ATOMIC);
1152 }
1153 if (rxtid->rxbuf == NULL) {
1154 DPRINTF(sc, ATH_DBG_AGGR,
1155 "%s: Unable to allocate RX buffer, "
1156 "refusing ADDBA\n", __func__);
1157 } else {
1158 /* Ensure the memory is zeroed out (all internal
1159 * pointers are null) */
1160 memset(rxtid->rxbuf, 0, ATH_TID_MAX_BUFS *
1161 sizeof(struct ath_rxbuf));
1162 DPRINTF(sc, ATH_DBG_AGGR,
1163 "%s: Allocated @%p\n", __func__, rxtid->rxbuf);
1164
1165 /* Allow aggregation reception */
1166 rxtid->addba_exchangecomplete = 1;
1167 }
1168 }
1169 spin_unlock_bh(&rxtid->tidlock);
1170
1171 return 0;
1172 }
1173
1174 /* Process DELBA */
1175
1176 int ath_rx_aggr_stop(struct ath_softc *sc,
1177 const u8 *addr,
1178 u16 tid)
1179 {
1180 struct ath_node *an;
1181
1182 spin_lock_bh(&sc->node_lock);
1183 an = ath_node_find(sc, (u8 *) addr);
1184 spin_unlock_bh(&sc->node_lock);
1185
1186 if (!an) {
1187 DPRINTF(sc, ATH_DBG_AGGR,
1188 "%s: RX aggr stop for non-existent node\n", __func__);
1189 return -1;
1190 }
1191
1192 ath_rx_aggr_teardown(sc, an, tid);
1193 return 0;
1194 }
1195
1196 /* Rx aggregation tear down */
1197
1198 void ath_rx_aggr_teardown(struct ath_softc *sc,
1199 struct ath_node *an, u8 tid)
1200 {
1201 struct ath_arx_tid *rxtid = &an->an_aggr.rx.tid[tid];
1202
1203 if (!rxtid->addba_exchangecomplete)
1204 return;
1205
1206 del_timer_sync(&rxtid->timer);
1207 ath_rx_flush_tid(sc, rxtid, 0);
1208 rxtid->addba_exchangecomplete = 0;
1209
1210 /* De-allocate the receive buffer array allocated when addba started */
1211
1212 if (rxtid->rxbuf) {
1213 DPRINTF(sc, ATH_DBG_AGGR,
1214 "%s: Deallocating TID %d rxbuff @%p\n",
1215 __func__, tid, rxtid->rxbuf);
1216 kfree(rxtid->rxbuf);
1217
1218 /* Set pointer to null to avoid reuse*/
1219 rxtid->rxbuf = NULL;
1220 }
1221 }
1222
1223 /* Initialize per-node receive state */
1224
1225 void ath_rx_node_init(struct ath_softc *sc, struct ath_node *an)
1226 {
1227 if (sc->sc_flags & SC_OP_RXAGGR) {
1228 struct ath_arx_tid *rxtid;
1229 int tidno;
1230
1231 /* Init per tid rx state */
1232 for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
1233 tidno < WME_NUM_TID;
1234 tidno++, rxtid++) {
1235 rxtid->an = an;
1236 rxtid->seq_reset = 1;
1237 rxtid->seq_next = 0;
1238 rxtid->baw_size = WME_MAX_BA;
1239 rxtid->baw_head = rxtid->baw_tail = 0;
1240
1241 /*
1242 * Ensure the buffer pointer is null at this point
1243 * (needs to be allocated when addba is received)
1244 */
1245
1246 rxtid->rxbuf = NULL;
1247 setup_timer(&rxtid->timer, ath_rx_timer,
1248 (unsigned long)rxtid);
1249 spin_lock_init(&rxtid->tidlock);
1250
1251 /* ADDBA state */
1252 rxtid->addba_exchangecomplete = 0;
1253 }
1254 }
1255 }
1256
1257 void ath_rx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
1258 {
1259 if (sc->sc_flags & SC_OP_RXAGGR) {
1260 struct ath_arx_tid *rxtid;
1261 int tidno, i;
1262
1263 /* Init per tid rx state */
1264 for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
1265 tidno < WME_NUM_TID;
1266 tidno++, rxtid++) {
1267
1268 if (!rxtid->addba_exchangecomplete)
1269 continue;
1270
1271 /* must cancel timer first */
1272 del_timer_sync(&rxtid->timer);
1273
1274 /* drop any pending sub-frames */
1275 ath_rx_flush_tid(sc, rxtid, 1);
1276
1277 for (i = 0; i < ATH_TID_MAX_BUFS; i++)
1278 ASSERT(rxtid->rxbuf[i].rx_wbuf == NULL);
1279
1280 rxtid->addba_exchangecomplete = 0;
1281 }
1282 }
1283
1284 }
1285
1286 /* Cleanup per-node receive state */
1287
1288 void ath_rx_node_free(struct ath_softc *sc, struct ath_node *an)
1289 {
1290 ath_rx_node_cleanup(sc, an);
1291 }