]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/wireless/brcm80211/brcmsmac/dma.c
Merge branch 'tip/perf/core' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-eoan-kernel.git] / drivers / net / wireless / brcm80211 / brcmsmac / dma.c
1 /*
2 * Copyright (c) 2010 Broadcom Corporation
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/delay.h>
19 #include <linux/pci.h>
20
21 #include <brcmu_utils.h>
22 #include <aiutils.h>
23 #include "types.h"
24 #include "dma.h"
25
26 /*
27 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
28 * a contiguous 8kB physical address.
29 */
30 #define D64RINGALIGN_BITS 13
31 #define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
32 #define D64RINGALIGN (1 << D64RINGALIGN_BITS)
33
34 #define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
35
36 /* transmit channel control */
37 #define D64_XC_XE 0x00000001 /* transmit enable */
38 #define D64_XC_SE 0x00000002 /* transmit suspend request */
39 #define D64_XC_LE 0x00000004 /* loopback enable */
40 #define D64_XC_FL 0x00000010 /* flush request */
41 #define D64_XC_PD 0x00000800 /* parity check disable */
42 #define D64_XC_AE 0x00030000 /* address extension bits */
43 #define D64_XC_AE_SHIFT 16
44
45 /* transmit descriptor table pointer */
46 #define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */
47
48 /* transmit channel status */
49 #define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */
50 #define D64_XS0_XS_MASK 0xf0000000 /* transmit state */
51 #define D64_XS0_XS_SHIFT 28
52 #define D64_XS0_XS_DISABLED 0x00000000 /* disabled */
53 #define D64_XS0_XS_ACTIVE 0x10000000 /* active */
54 #define D64_XS0_XS_IDLE 0x20000000 /* idle wait */
55 #define D64_XS0_XS_STOPPED 0x30000000 /* stopped */
56 #define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */
57
58 #define D64_XS1_AD_MASK 0x00001fff /* active descriptor */
59 #define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */
60 #define D64_XS1_XE_SHIFT 28
61 #define D64_XS1_XE_NOERR 0x00000000 /* no error */
62 #define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */
63 #define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */
64 #define D64_XS1_XE_DTE 0x30000000 /* data transfer error */
65 #define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */
66 #define D64_XS1_XE_COREE 0x50000000 /* core error */
67
68 /* receive channel control */
69 /* receive enable */
70 #define D64_RC_RE 0x00000001
71 /* receive frame offset */
72 #define D64_RC_RO_MASK 0x000000fe
73 #define D64_RC_RO_SHIFT 1
74 /* direct fifo receive (pio) mode */
75 #define D64_RC_FM 0x00000100
76 /* separate rx header descriptor enable */
77 #define D64_RC_SH 0x00000200
78 /* overflow continue */
79 #define D64_RC_OC 0x00000400
80 /* parity check disable */
81 #define D64_RC_PD 0x00000800
82 /* address extension bits */
83 #define D64_RC_AE 0x00030000
84 #define D64_RC_AE_SHIFT 16
85
86 /* flags for dma controller */
87 /* partity enable */
88 #define DMA_CTRL_PEN (1 << 0)
89 /* rx overflow continue */
90 #define DMA_CTRL_ROC (1 << 1)
91 /* allow rx scatter to multiple descriptors */
92 #define DMA_CTRL_RXMULTI (1 << 2)
93 /* Unframed Rx/Tx data */
94 #define DMA_CTRL_UNFRAMED (1 << 3)
95
96 /* receive descriptor table pointer */
97 #define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */
98
99 /* receive channel status */
100 #define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */
101 #define D64_RS0_RS_MASK 0xf0000000 /* receive state */
102 #define D64_RS0_RS_SHIFT 28
103 #define D64_RS0_RS_DISABLED 0x00000000 /* disabled */
104 #define D64_RS0_RS_ACTIVE 0x10000000 /* active */
105 #define D64_RS0_RS_IDLE 0x20000000 /* idle wait */
106 #define D64_RS0_RS_STOPPED 0x30000000 /* stopped */
107 #define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */
108
109 #define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */
110 #define D64_RS1_RE_MASK 0xf0000000 /* receive errors */
111 #define D64_RS1_RE_SHIFT 28
112 #define D64_RS1_RE_NOERR 0x00000000 /* no error */
113 #define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */
114 #define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */
115 #define D64_RS1_RE_DTE 0x30000000 /* data transfer error */
116 #define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */
117 #define D64_RS1_RE_COREE 0x50000000 /* core error */
118
119 /* fifoaddr */
120 #define D64_FA_OFF_MASK 0xffff /* offset */
121 #define D64_FA_SEL_MASK 0xf0000 /* select */
122 #define D64_FA_SEL_SHIFT 16
123 #define D64_FA_SEL_XDD 0x00000 /* transmit dma data */
124 #define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */
125 #define D64_FA_SEL_RDD 0x40000 /* receive dma data */
126 #define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */
127 #define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */
128 #define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */
129 #define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */
130 #define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */
131 #define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */
132 #define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */
133
134 /* descriptor control flags 1 */
135 #define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */
136 #define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */
137 #define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */
138 #define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */
139 #define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */
140
141 /* descriptor control flags 2 */
142 /* buffer byte count. real data len must <= 16KB */
143 #define D64_CTRL2_BC_MASK 0x00007fff
144 /* address extension bits */
145 #define D64_CTRL2_AE 0x00030000
146 #define D64_CTRL2_AE_SHIFT 16
147 /* parity bit */
148 #define D64_CTRL2_PARITY 0x00040000
149
150 /* control flags in the range [27:20] are core-specific and not defined here */
151 #define D64_CTRL_CORE_MASK 0x0ff00000
152
153 #define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */
154 #define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */
155 #define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */
156 #define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */
157
158 /*
159 * packet headroom necessary to accommodate the largest header
160 * in the system, (i.e TXOFF). By doing, we avoid the need to
161 * allocate an extra buffer for the header when bridging to WL.
162 * There is a compile time check in wlc.c which ensure that this
163 * value is at least as big as TXOFF. This value is used in
164 * dma_rxfill().
165 */
166
167 #define BCMEXTRAHDROOM 172
168
169 /* debug/trace */
170 #ifdef BCMDBG
171 #define DMA_ERROR(args) \
172 do { \
173 if (!(*di->msg_level & 1)) \
174 ; \
175 else \
176 printk args; \
177 } while (0)
178 #define DMA_TRACE(args) \
179 do { \
180 if (!(*di->msg_level & 2)) \
181 ; \
182 else \
183 printk args; \
184 } while (0)
185 #else
186 #define DMA_ERROR(args)
187 #define DMA_TRACE(args)
188 #endif /* BCMDBG */
189
190 #define DMA_NONE(args)
191
192 #define MAXNAMEL 8 /* 8 char names */
193
194 /* macros to convert between byte offsets and indexes */
195 #define B2I(bytes, type) ((bytes) / sizeof(type))
196 #define I2B(index, type) ((index) * sizeof(type))
197
198 #define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
199 #define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
200
201 #define PCI64ADDR_HIGH 0x80000000 /* address[63] */
202 #define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
203
204 /*
205 * DMA Descriptor
206 * Descriptors are only read by the hardware, never written back.
207 */
208 struct dma64desc {
209 __le32 ctrl1; /* misc control bits & bufcount */
210 __le32 ctrl2; /* buffer count and address extension */
211 __le32 addrlow; /* memory address of the date buffer, bits 31:0 */
212 __le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
213 };
214
215 /* dma engine software state */
216 struct dma_info {
217 struct dma_pub dma; /* exported structure */
218 uint *msg_level; /* message level pointer */
219 char name[MAXNAMEL]; /* callers name for diag msgs */
220
221 struct pci_dev *pbus; /* bus handle */
222
223 bool dma64; /* this dma engine is operating in 64-bit mode */
224 bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
225
226 /* 64-bit dma tx engine registers */
227 struct dma64regs __iomem *d64txregs;
228 /* 64-bit dma rx engine registers */
229 struct dma64regs __iomem *d64rxregs;
230 /* pointer to dma64 tx descriptor ring */
231 struct dma64desc *txd64;
232 /* pointer to dma64 rx descriptor ring */
233 struct dma64desc *rxd64;
234
235 u16 dmadesc_align; /* alignment requirement for dma descriptors */
236
237 u16 ntxd; /* # tx descriptors tunable */
238 u16 txin; /* index of next descriptor to reclaim */
239 u16 txout; /* index of next descriptor to post */
240 /* pointer to parallel array of pointers to packets */
241 struct sk_buff **txp;
242 /* Aligned physical address of descriptor ring */
243 dma_addr_t txdpa;
244 /* Original physical address of descriptor ring */
245 dma_addr_t txdpaorig;
246 u16 txdalign; /* #bytes added to alloc'd mem to align txd */
247 u32 txdalloc; /* #bytes allocated for the ring */
248 u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
249 * is not just an index, it needs all 13 bits to be
250 * an offset from the addr register.
251 */
252
253 u16 nrxd; /* # rx descriptors tunable */
254 u16 rxin; /* index of next descriptor to reclaim */
255 u16 rxout; /* index of next descriptor to post */
256 /* pointer to parallel array of pointers to packets */
257 struct sk_buff **rxp;
258 /* Aligned physical address of descriptor ring */
259 dma_addr_t rxdpa;
260 /* Original physical address of descriptor ring */
261 dma_addr_t rxdpaorig;
262 u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
263 u32 rxdalloc; /* #bytes allocated for the ring */
264 u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
265
266 /* tunables */
267 unsigned int rxbufsize; /* rx buffer size in bytes, not including
268 * the extra headroom
269 */
270 uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper
271 * stack, e.g. some rx pkt buffers will be
272 * bridged to tx side without byte copying.
273 * The extra headroom needs to be large enough
274 * to fit txheader needs. Some dongle driver may
275 * not need it.
276 */
277 uint nrxpost; /* # rx buffers to keep posted */
278 unsigned int rxoffset; /* rxcontrol offset */
279 /* add to get dma address of descriptor ring, low 32 bits */
280 uint ddoffsetlow;
281 /* high 32 bits */
282 uint ddoffsethigh;
283 /* add to get dma address of data buffer, low 32 bits */
284 uint dataoffsetlow;
285 /* high 32 bits */
286 uint dataoffsethigh;
287 /* descriptor base need to be aligned or not */
288 bool aligndesc_4k;
289 };
290
291 /*
292 * default dma message level (if input msg_level
293 * pointer is null in dma_attach())
294 */
295 static uint dma_msg_level;
296
297 /* Check for odd number of 1's */
298 static u32 parity32(__le32 data)
299 {
300 /* no swap needed for counting 1's */
301 u32 par_data = *(u32 *)&data;
302
303 par_data ^= par_data >> 16;
304 par_data ^= par_data >> 8;
305 par_data ^= par_data >> 4;
306 par_data ^= par_data >> 2;
307 par_data ^= par_data >> 1;
308
309 return par_data & 1;
310 }
311
312 static bool dma64_dd_parity(struct dma64desc *dd)
313 {
314 return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
315 }
316
317 /* descriptor bumping functions */
318
319 static uint xxd(uint x, uint n)
320 {
321 return x & (n - 1); /* faster than %, but n must be power of 2 */
322 }
323
324 static uint txd(struct dma_info *di, uint x)
325 {
326 return xxd(x, di->ntxd);
327 }
328
329 static uint rxd(struct dma_info *di, uint x)
330 {
331 return xxd(x, di->nrxd);
332 }
333
334 static uint nexttxd(struct dma_info *di, uint i)
335 {
336 return txd(di, i + 1);
337 }
338
339 static uint prevtxd(struct dma_info *di, uint i)
340 {
341 return txd(di, i - 1);
342 }
343
344 static uint nextrxd(struct dma_info *di, uint i)
345 {
346 return txd(di, i + 1);
347 }
348
349 static uint ntxdactive(struct dma_info *di, uint h, uint t)
350 {
351 return txd(di, t-h);
352 }
353
354 static uint nrxdactive(struct dma_info *di, uint h, uint t)
355 {
356 return rxd(di, t-h);
357 }
358
359 static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
360 {
361 uint dmactrlflags;
362
363 if (di == NULL) {
364 DMA_ERROR(("_dma_ctrlflags: NULL dma handle\n"));
365 return 0;
366 }
367
368 dmactrlflags = di->dma.dmactrlflags;
369 dmactrlflags &= ~mask;
370 dmactrlflags |= flags;
371
372 /* If trying to enable parity, check if parity is actually supported */
373 if (dmactrlflags & DMA_CTRL_PEN) {
374 u32 control;
375
376 control = R_REG(&di->d64txregs->control);
377 W_REG(&di->d64txregs->control,
378 control | D64_XC_PD);
379 if (R_REG(&di->d64txregs->control) & D64_XC_PD)
380 /* We *can* disable it so it is supported,
381 * restore control register
382 */
383 W_REG(&di->d64txregs->control,
384 control);
385 else
386 /* Not supported, don't allow it to be enabled */
387 dmactrlflags &= ~DMA_CTRL_PEN;
388 }
389
390 di->dma.dmactrlflags = dmactrlflags;
391
392 return dmactrlflags;
393 }
394
395 static bool _dma64_addrext(struct dma64regs __iomem *dma64regs)
396 {
397 u32 w;
398 OR_REG(&dma64regs->control, D64_XC_AE);
399 w = R_REG(&dma64regs->control);
400 AND_REG(&dma64regs->control, ~D64_XC_AE);
401 return (w & D64_XC_AE) == D64_XC_AE;
402 }
403
404 /*
405 * return true if this dma engine supports DmaExtendedAddrChanges,
406 * otherwise false
407 */
408 static bool _dma_isaddrext(struct dma_info *di)
409 {
410 /* DMA64 supports full 32- or 64-bit operation. AE is always valid */
411
412 /* not all tx or rx channel are available */
413 if (di->d64txregs != NULL) {
414 if (!_dma64_addrext(di->d64txregs))
415 DMA_ERROR(("%s: _dma_isaddrext: DMA64 tx doesn't have "
416 "AE set\n", di->name));
417 return true;
418 } else if (di->d64rxregs != NULL) {
419 if (!_dma64_addrext(di->d64rxregs))
420 DMA_ERROR(("%s: _dma_isaddrext: DMA64 rx doesn't have "
421 "AE set\n", di->name));
422 return true;
423 }
424
425 return false;
426 }
427
428 static bool _dma_descriptor_align(struct dma_info *di)
429 {
430 u32 addrl;
431
432 /* Check to see if the descriptors need to be aligned on 4K/8K or not */
433 if (di->d64txregs != NULL) {
434 W_REG(&di->d64txregs->addrlow, 0xff0);
435 addrl = R_REG(&di->d64txregs->addrlow);
436 if (addrl != 0)
437 return false;
438 } else if (di->d64rxregs != NULL) {
439 W_REG(&di->d64rxregs->addrlow, 0xff0);
440 addrl = R_REG(&di->d64rxregs->addrlow);
441 if (addrl != 0)
442 return false;
443 }
444 return true;
445 }
446
447 /*
448 * Descriptor table must start at the DMA hardware dictated alignment, so
449 * allocated memory must be large enough to support this requirement.
450 */
451 static void *dma_alloc_consistent(struct pci_dev *pdev, uint size,
452 u16 align_bits, uint *alloced,
453 dma_addr_t *pap)
454 {
455 if (align_bits) {
456 u16 align = (1 << align_bits);
457 if (!IS_ALIGNED(PAGE_SIZE, align))
458 size += align;
459 *alloced = size;
460 }
461 return pci_alloc_consistent(pdev, size, pap);
462 }
463
464 static
465 u8 dma_align_sizetobits(uint size)
466 {
467 u8 bitpos = 0;
468 while (size >>= 1)
469 bitpos++;
470 return bitpos;
471 }
472
473 /* This function ensures that the DMA descriptor ring will not get allocated
474 * across Page boundary. If the allocation is done across the page boundary
475 * at the first time, then it is freed and the allocation is done at
476 * descriptor ring size aligned location. This will ensure that the ring will
477 * not cross page boundary
478 */
479 static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
480 u16 *alignbits, uint *alloced,
481 dma_addr_t *descpa)
482 {
483 void *va;
484 u32 desc_strtaddr;
485 u32 alignbytes = 1 << *alignbits;
486
487 va = dma_alloc_consistent(di->pbus, size, *alignbits, alloced, descpa);
488
489 if (NULL == va)
490 return NULL;
491
492 desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
493 if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
494 & boundary)) {
495 *alignbits = dma_align_sizetobits(size);
496 pci_free_consistent(di->pbus, size, va, *descpa);
497 va = dma_alloc_consistent(di->pbus, size, *alignbits,
498 alloced, descpa);
499 }
500 return va;
501 }
502
503 static bool dma64_alloc(struct dma_info *di, uint direction)
504 {
505 u16 size;
506 uint ddlen;
507 void *va;
508 uint alloced = 0;
509 u16 align;
510 u16 align_bits;
511
512 ddlen = sizeof(struct dma64desc);
513
514 size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
515 align_bits = di->dmadesc_align;
516 align = (1 << align_bits);
517
518 if (direction == DMA_TX) {
519 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
520 &alloced, &di->txdpaorig);
521 if (va == NULL) {
522 DMA_ERROR(("%s: dma64_alloc: DMA_ALLOC_CONSISTENT(ntxd)"
523 " failed\n", di->name));
524 return false;
525 }
526 align = (1 << align_bits);
527 di->txd64 = (struct dma64desc *)
528 roundup((unsigned long)va, align);
529 di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
530 di->txdpa = di->txdpaorig + di->txdalign;
531 di->txdalloc = alloced;
532 } else {
533 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
534 &alloced, &di->rxdpaorig);
535 if (va == NULL) {
536 DMA_ERROR(("%s: dma64_alloc: DMA_ALLOC_CONSISTENT(nrxd)"
537 " failed\n", di->name));
538 return false;
539 }
540 align = (1 << align_bits);
541 di->rxd64 = (struct dma64desc *)
542 roundup((unsigned long)va, align);
543 di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
544 di->rxdpa = di->rxdpaorig + di->rxdalign;
545 di->rxdalloc = alloced;
546 }
547
548 return true;
549 }
550
551 static bool _dma_alloc(struct dma_info *di, uint direction)
552 {
553 return dma64_alloc(di, direction);
554 }
555
556 struct dma_pub *dma_attach(char *name, struct si_pub *sih,
557 void __iomem *dmaregstx, void __iomem *dmaregsrx,
558 uint ntxd, uint nrxd,
559 uint rxbufsize, int rxextheadroom,
560 uint nrxpost, uint rxoffset, uint *msg_level)
561 {
562 struct dma_info *di;
563 uint size;
564
565 /* allocate private info structure */
566 di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
567 if (di == NULL)
568 return NULL;
569
570 di->msg_level = msg_level ? msg_level : &dma_msg_level;
571
572
573 di->dma64 = ((ai_core_sflags(sih, 0, 0) & SISF_DMA64) == SISF_DMA64);
574
575 /* init dma reg pointer */
576 di->d64txregs = (struct dma64regs __iomem *) dmaregstx;
577 di->d64rxregs = (struct dma64regs __iomem *) dmaregsrx;
578
579 /*
580 * Default flags (which can be changed by the driver calling
581 * dma_ctrlflags before enable): For backwards compatibility
582 * both Rx Overflow Continue and Parity are DISABLED.
583 */
584 _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
585
586 DMA_TRACE(("%s: dma_attach: %s flags 0x%x ntxd %d nrxd %d "
587 "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
588 "dmaregstx %p dmaregsrx %p\n", name, "DMA64",
589 di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
590 rxextheadroom, nrxpost, rxoffset, dmaregstx, dmaregsrx));
591
592 /* make a private copy of our callers name */
593 strncpy(di->name, name, MAXNAMEL);
594 di->name[MAXNAMEL - 1] = '\0';
595
596 di->pbus = ((struct si_info *)sih)->pbus;
597
598 /* save tunables */
599 di->ntxd = (u16) ntxd;
600 di->nrxd = (u16) nrxd;
601
602 /* the actual dma size doesn't include the extra headroom */
603 di->rxextrahdrroom =
604 (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
605 if (rxbufsize > BCMEXTRAHDROOM)
606 di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
607 else
608 di->rxbufsize = (u16) rxbufsize;
609
610 di->nrxpost = (u16) nrxpost;
611 di->rxoffset = (u8) rxoffset;
612
613 /*
614 * figure out the DMA physical address offset for dd and data
615 * PCI/PCIE: they map silicon backplace address to zero
616 * based memory, need offset
617 * Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
618 * swapped region for data buffer, not descriptor
619 */
620 di->ddoffsetlow = 0;
621 di->dataoffsetlow = 0;
622 /* add offset for pcie with DMA64 bus */
623 di->ddoffsetlow = 0;
624 di->ddoffsethigh = SI_PCIE_DMA_H32;
625 di->dataoffsetlow = di->ddoffsetlow;
626 di->dataoffsethigh = di->ddoffsethigh;
627 /* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
628 if ((ai_coreid(sih) == SDIOD_CORE_ID)
629 && ((ai_corerev(sih) > 0) && (ai_corerev(sih) <= 2)))
630 di->addrext = 0;
631 else if ((ai_coreid(sih) == I2S_CORE_ID) &&
632 ((ai_corerev(sih) == 0) || (ai_corerev(sih) == 1)))
633 di->addrext = 0;
634 else
635 di->addrext = _dma_isaddrext(di);
636
637 /* does the descriptor need to be aligned and if yes, on 4K/8K or not */
638 di->aligndesc_4k = _dma_descriptor_align(di);
639 if (di->aligndesc_4k) {
640 di->dmadesc_align = D64RINGALIGN_BITS;
641 if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
642 /* for smaller dd table, HW relax alignment reqmnt */
643 di->dmadesc_align = D64RINGALIGN_BITS - 1;
644 } else {
645 di->dmadesc_align = 4; /* 16 byte alignment */
646 }
647
648 DMA_NONE(("DMA descriptor align_needed %d, align %d\n",
649 di->aligndesc_4k, di->dmadesc_align));
650
651 /* allocate tx packet pointer vector */
652 if (ntxd) {
653 size = ntxd * sizeof(void *);
654 di->txp = kzalloc(size, GFP_ATOMIC);
655 if (di->txp == NULL)
656 goto fail;
657 }
658
659 /* allocate rx packet pointer vector */
660 if (nrxd) {
661 size = nrxd * sizeof(void *);
662 di->rxp = kzalloc(size, GFP_ATOMIC);
663 if (di->rxp == NULL)
664 goto fail;
665 }
666
667 /*
668 * allocate transmit descriptor ring, only need ntxd descriptors
669 * but it must be aligned
670 */
671 if (ntxd) {
672 if (!_dma_alloc(di, DMA_TX))
673 goto fail;
674 }
675
676 /*
677 * allocate receive descriptor ring, only need nrxd descriptors
678 * but it must be aligned
679 */
680 if (nrxd) {
681 if (!_dma_alloc(di, DMA_RX))
682 goto fail;
683 }
684
685 if ((di->ddoffsetlow != 0) && !di->addrext) {
686 if (di->txdpa > SI_PCI_DMA_SZ) {
687 DMA_ERROR(("%s: dma_attach: txdpa 0x%x: addrext not "
688 "supported\n", di->name, (u32)di->txdpa));
689 goto fail;
690 }
691 if (di->rxdpa > SI_PCI_DMA_SZ) {
692 DMA_ERROR(("%s: dma_attach: rxdpa 0x%x: addrext not "
693 "supported\n", di->name, (u32)di->rxdpa));
694 goto fail;
695 }
696 }
697
698 DMA_TRACE(("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x "
699 "dataoffsethigh " "0x%x addrext %d\n", di->ddoffsetlow,
700 di->ddoffsethigh, di->dataoffsetlow, di->dataoffsethigh,
701 di->addrext));
702
703 return (struct dma_pub *) di;
704
705 fail:
706 dma_detach((struct dma_pub *)di);
707 return NULL;
708 }
709
710 static inline void
711 dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
712 dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
713 {
714 u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
715
716 /* PCI bus with big(>1G) physical address, use address extension */
717 if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
718 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
719 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
720 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
721 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
722 } else {
723 /* address extension for 32-bit PCI */
724 u32 ae;
725
726 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
727 pa &= ~PCI32ADDR_HIGH;
728
729 ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
730 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
731 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
732 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
733 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
734 }
735 if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
736 if (dma64_dd_parity(&ddring[outidx]))
737 ddring[outidx].ctrl2 =
738 cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
739 }
740 }
741
742 /* !! may be called with core in reset */
743 void dma_detach(struct dma_pub *pub)
744 {
745 struct dma_info *di = (struct dma_info *)pub;
746
747 DMA_TRACE(("%s: dma_detach\n", di->name));
748
749 /* free dma descriptor rings */
750 if (di->txd64)
751 pci_free_consistent(di->pbus, di->txdalloc,
752 ((s8 *)di->txd64 - di->txdalign),
753 (di->txdpaorig));
754 if (di->rxd64)
755 pci_free_consistent(di->pbus, di->rxdalloc,
756 ((s8 *)di->rxd64 - di->rxdalign),
757 (di->rxdpaorig));
758
759 /* free packet pointer vectors */
760 kfree(di->txp);
761 kfree(di->rxp);
762
763 /* free our private info structure */
764 kfree(di);
765
766 }
767
768 /* initialize descriptor table base address */
769 static void
770 _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
771 {
772 if (!di->aligndesc_4k) {
773 if (direction == DMA_TX)
774 di->xmtptrbase = pa;
775 else
776 di->rcvptrbase = pa;
777 }
778
779 if ((di->ddoffsetlow == 0)
780 || !(pa & PCI32ADDR_HIGH)) {
781 if (direction == DMA_TX) {
782 W_REG(&di->d64txregs->addrlow, pa + di->ddoffsetlow);
783 W_REG(&di->d64txregs->addrhigh, di->ddoffsethigh);
784 } else {
785 W_REG(&di->d64rxregs->addrlow, pa + di->ddoffsetlow);
786 W_REG(&di->d64rxregs->addrhigh, di->ddoffsethigh);
787 }
788 } else {
789 /* DMA64 32bits address extension */
790 u32 ae;
791
792 /* shift the high bit(s) from pa to ae */
793 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
794 pa &= ~PCI32ADDR_HIGH;
795
796 if (direction == DMA_TX) {
797 W_REG(&di->d64txregs->addrlow, pa + di->ddoffsetlow);
798 W_REG(&di->d64txregs->addrhigh, di->ddoffsethigh);
799 SET_REG(&di->d64txregs->control,
800 D64_XC_AE, (ae << D64_XC_AE_SHIFT));
801 } else {
802 W_REG(&di->d64rxregs->addrlow, pa + di->ddoffsetlow);
803 W_REG(&di->d64rxregs->addrhigh, di->ddoffsethigh);
804 SET_REG(&di->d64rxregs->control,
805 D64_RC_AE, (ae << D64_RC_AE_SHIFT));
806 }
807 }
808 }
809
810 static void _dma_rxenable(struct dma_info *di)
811 {
812 uint dmactrlflags = di->dma.dmactrlflags;
813 u32 control;
814
815 DMA_TRACE(("%s: dma_rxenable\n", di->name));
816
817 control =
818 (R_REG(&di->d64rxregs->control) & D64_RC_AE) |
819 D64_RC_RE;
820
821 if ((dmactrlflags & DMA_CTRL_PEN) == 0)
822 control |= D64_RC_PD;
823
824 if (dmactrlflags & DMA_CTRL_ROC)
825 control |= D64_RC_OC;
826
827 W_REG(&di->d64rxregs->control,
828 ((di->rxoffset << D64_RC_RO_SHIFT) | control));
829 }
830
831 void dma_rxinit(struct dma_pub *pub)
832 {
833 struct dma_info *di = (struct dma_info *)pub;
834
835 DMA_TRACE(("%s: dma_rxinit\n", di->name));
836
837 if (di->nrxd == 0)
838 return;
839
840 di->rxin = di->rxout = 0;
841
842 /* clear rx descriptor ring */
843 memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
844
845 /* DMA engine with out alignment requirement requires table to be inited
846 * before enabling the engine
847 */
848 if (!di->aligndesc_4k)
849 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
850
851 _dma_rxenable(di);
852
853 if (di->aligndesc_4k)
854 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
855 }
856
857 static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
858 {
859 uint i, curr;
860 struct sk_buff *rxp;
861 dma_addr_t pa;
862
863 i = di->rxin;
864
865 /* return if no packets posted */
866 if (i == di->rxout)
867 return NULL;
868
869 curr =
870 B2I(((R_REG(&di->d64rxregs->status0) & D64_RS0_CD_MASK) -
871 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
872
873 /* ignore curr if forceall */
874 if (!forceall && (i == curr))
875 return NULL;
876
877 /* get the packet pointer that corresponds to the rx descriptor */
878 rxp = di->rxp[i];
879 di->rxp[i] = NULL;
880
881 pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
882
883 /* clear this packet from the descriptor ring */
884 pci_unmap_single(di->pbus, pa, di->rxbufsize, PCI_DMA_FROMDEVICE);
885
886 di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
887 di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
888
889 di->rxin = nextrxd(di, i);
890
891 return rxp;
892 }
893
894 static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
895 {
896 if (di->nrxd == 0)
897 return NULL;
898
899 return dma64_getnextrxp(di, forceall);
900 }
901
902 /*
903 * !! rx entry routine
904 * returns a pointer to the next frame received, or NULL if there are no more
905 * if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
906 * supported with pkts chain
907 * otherwise, it's treated as giant pkt and will be tossed.
908 * The DMA scattering starts with normal DMA header, followed by first
909 * buffer data. After it reaches the max size of buffer, the data continues
910 * in next DMA descriptor buffer WITHOUT DMA header
911 */
912 struct sk_buff *dma_rx(struct dma_pub *pub)
913 {
914 struct dma_info *di = (struct dma_info *)pub;
915 struct sk_buff *p, *head, *tail;
916 uint len;
917 uint pkt_len;
918 int resid = 0;
919
920 next_frame:
921 head = _dma_getnextrxp(di, false);
922 if (head == NULL)
923 return NULL;
924
925 len = le16_to_cpu(*(__le16 *) (head->data));
926 DMA_TRACE(("%s: dma_rx len %d\n", di->name, len));
927 dma_spin_for_len(len, head);
928
929 /* set actual length */
930 pkt_len = min((di->rxoffset + len), di->rxbufsize);
931 __skb_trim(head, pkt_len);
932 resid = len - (di->rxbufsize - di->rxoffset);
933
934 /* check for single or multi-buffer rx */
935 if (resid > 0) {
936 tail = head;
937 while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
938 tail->next = p;
939 pkt_len = min_t(uint, resid, di->rxbufsize);
940 __skb_trim(p, pkt_len);
941
942 tail = p;
943 resid -= di->rxbufsize;
944 }
945
946 #ifdef BCMDBG
947 if (resid > 0) {
948 uint cur;
949 cur =
950 B2I(((R_REG(&di->d64rxregs->status0) &
951 D64_RS0_CD_MASK) -
952 di->rcvptrbase) & D64_RS0_CD_MASK,
953 struct dma64desc);
954 DMA_ERROR(("dma_rx, rxin %d rxout %d, hw_curr %d\n",
955 di->rxin, di->rxout, cur));
956 }
957 #endif /* BCMDBG */
958
959 if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
960 DMA_ERROR(("%s: dma_rx: bad frame length (%d)\n",
961 di->name, len));
962 brcmu_pkt_buf_free_skb(head);
963 di->dma.rxgiants++;
964 goto next_frame;
965 }
966 }
967
968 return head;
969 }
970
971 static bool dma64_rxidle(struct dma_info *di)
972 {
973 DMA_TRACE(("%s: dma_rxidle\n", di->name));
974
975 if (di->nrxd == 0)
976 return true;
977
978 return ((R_REG(&di->d64rxregs->status0) & D64_RS0_CD_MASK) ==
979 (R_REG(&di->d64rxregs->ptr) & D64_RS0_CD_MASK));
980 }
981
982 /*
983 * post receive buffers
984 * return false is refill failed completely and ring is empty this will stall
985 * the rx dma and user might want to call rxfill again asap. This unlikely
986 * happens on memory-rich NIC, but often on memory-constrained dongle
987 */
988 bool dma_rxfill(struct dma_pub *pub)
989 {
990 struct dma_info *di = (struct dma_info *)pub;
991 struct sk_buff *p;
992 u16 rxin, rxout;
993 u32 flags = 0;
994 uint n;
995 uint i;
996 dma_addr_t pa;
997 uint extra_offset = 0;
998 bool ring_empty;
999
1000 ring_empty = false;
1001
1002 /*
1003 * Determine how many receive buffers we're lacking
1004 * from the full complement, allocate, initialize,
1005 * and post them, then update the chip rx lastdscr.
1006 */
1007
1008 rxin = di->rxin;
1009 rxout = di->rxout;
1010
1011 n = di->nrxpost - nrxdactive(di, rxin, rxout);
1012
1013 DMA_TRACE(("%s: dma_rxfill: post %d\n", di->name, n));
1014
1015 if (di->rxbufsize > BCMEXTRAHDROOM)
1016 extra_offset = di->rxextrahdrroom;
1017
1018 for (i = 0; i < n; i++) {
1019 /*
1020 * the di->rxbufsize doesn't include the extra headroom,
1021 * we need to add it to the size to be allocated
1022 */
1023 p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1024
1025 if (p == NULL) {
1026 DMA_ERROR(("%s: dma_rxfill: out of rxbufs\n",
1027 di->name));
1028 if (i == 0 && dma64_rxidle(di)) {
1029 DMA_ERROR(("%s: rxfill64: ring is empty !\n",
1030 di->name));
1031 ring_empty = true;
1032 }
1033 di->dma.rxnobuf++;
1034 break;
1035 }
1036 /* reserve an extra headroom, if applicable */
1037 if (extra_offset)
1038 skb_pull(p, extra_offset);
1039
1040 /* Do a cached write instead of uncached write since DMA_MAP
1041 * will flush the cache.
1042 */
1043 *(u32 *) (p->data) = 0;
1044
1045 pa = pci_map_single(di->pbus, p->data,
1046 di->rxbufsize, PCI_DMA_FROMDEVICE);
1047
1048 /* save the free packet pointer */
1049 di->rxp[rxout] = p;
1050
1051 /* reset flags for each descriptor */
1052 flags = 0;
1053 if (rxout == (di->nrxd - 1))
1054 flags = D64_CTRL1_EOT;
1055
1056 dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1057 di->rxbufsize);
1058 rxout = nextrxd(di, rxout);
1059 }
1060
1061 di->rxout = rxout;
1062
1063 /* update the chip lastdscr pointer */
1064 W_REG(&di->d64rxregs->ptr,
1065 di->rcvptrbase + I2B(rxout, struct dma64desc));
1066
1067 return ring_empty;
1068 }
1069
1070 void dma_rxreclaim(struct dma_pub *pub)
1071 {
1072 struct dma_info *di = (struct dma_info *)pub;
1073 struct sk_buff *p;
1074
1075 DMA_TRACE(("%s: dma_rxreclaim\n", di->name));
1076
1077 while ((p = _dma_getnextrxp(di, true)))
1078 brcmu_pkt_buf_free_skb(p);
1079 }
1080
1081 void dma_counterreset(struct dma_pub *pub)
1082 {
1083 /* reset all software counters */
1084 pub->rxgiants = 0;
1085 pub->rxnobuf = 0;
1086 pub->txnobuf = 0;
1087 }
1088
1089 /* get the address of the var in order to change later */
1090 unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1091 {
1092 struct dma_info *di = (struct dma_info *)pub;
1093
1094 if (!strcmp(name, "&txavail"))
1095 return (unsigned long)&(di->dma.txavail);
1096 return 0;
1097 }
1098
1099 /* 64-bit DMA functions */
1100
1101 void dma_txinit(struct dma_pub *pub)
1102 {
1103 struct dma_info *di = (struct dma_info *)pub;
1104 u32 control = D64_XC_XE;
1105
1106 DMA_TRACE(("%s: dma_txinit\n", di->name));
1107
1108 if (di->ntxd == 0)
1109 return;
1110
1111 di->txin = di->txout = 0;
1112 di->dma.txavail = di->ntxd - 1;
1113
1114 /* clear tx descriptor ring */
1115 memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1116
1117 /* DMA engine with out alignment requirement requires table to be inited
1118 * before enabling the engine
1119 */
1120 if (!di->aligndesc_4k)
1121 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1122
1123 if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1124 control |= D64_XC_PD;
1125 OR_REG(&di->d64txregs->control, control);
1126
1127 /* DMA engine with alignment requirement requires table to be inited
1128 * before enabling the engine
1129 */
1130 if (di->aligndesc_4k)
1131 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1132 }
1133
1134 void dma_txsuspend(struct dma_pub *pub)
1135 {
1136 struct dma_info *di = (struct dma_info *)pub;
1137
1138 DMA_TRACE(("%s: dma_txsuspend\n", di->name));
1139
1140 if (di->ntxd == 0)
1141 return;
1142
1143 OR_REG(&di->d64txregs->control, D64_XC_SE);
1144 }
1145
1146 void dma_txresume(struct dma_pub *pub)
1147 {
1148 struct dma_info *di = (struct dma_info *)pub;
1149
1150 DMA_TRACE(("%s: dma_txresume\n", di->name));
1151
1152 if (di->ntxd == 0)
1153 return;
1154
1155 AND_REG(&di->d64txregs->control, ~D64_XC_SE);
1156 }
1157
1158 bool dma_txsuspended(struct dma_pub *pub)
1159 {
1160 struct dma_info *di = (struct dma_info *)pub;
1161
1162 return (di->ntxd == 0) ||
1163 ((R_REG(&di->d64txregs->control) & D64_XC_SE) ==
1164 D64_XC_SE);
1165 }
1166
1167 void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1168 {
1169 struct dma_info *di = (struct dma_info *)pub;
1170 struct sk_buff *p;
1171
1172 DMA_TRACE(("%s: dma_txreclaim %s\n", di->name,
1173 (range == DMA_RANGE_ALL) ? "all" :
1174 ((range ==
1175 DMA_RANGE_TRANSMITTED) ? "transmitted" :
1176 "transferred")));
1177
1178 if (di->txin == di->txout)
1179 return;
1180
1181 while ((p = dma_getnexttxp(pub, range))) {
1182 /* For unframed data, we don't have any packets to free */
1183 if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1184 brcmu_pkt_buf_free_skb(p);
1185 }
1186 }
1187
1188 bool dma_txreset(struct dma_pub *pub)
1189 {
1190 struct dma_info *di = (struct dma_info *)pub;
1191 u32 status;
1192
1193 if (di->ntxd == 0)
1194 return true;
1195
1196 /* suspend tx DMA first */
1197 W_REG(&di->d64txregs->control, D64_XC_SE);
1198 SPINWAIT(((status =
1199 (R_REG(&di->d64txregs->status0) & D64_XS0_XS_MASK))
1200 != D64_XS0_XS_DISABLED) && (status != D64_XS0_XS_IDLE)
1201 && (status != D64_XS0_XS_STOPPED), 10000);
1202
1203 W_REG(&di->d64txregs->control, 0);
1204 SPINWAIT(((status =
1205 (R_REG(&di->d64txregs->status0) & D64_XS0_XS_MASK))
1206 != D64_XS0_XS_DISABLED), 10000);
1207
1208 /* wait for the last transaction to complete */
1209 udelay(300);
1210
1211 return status == D64_XS0_XS_DISABLED;
1212 }
1213
1214 bool dma_rxreset(struct dma_pub *pub)
1215 {
1216 struct dma_info *di = (struct dma_info *)pub;
1217 u32 status;
1218
1219 if (di->nrxd == 0)
1220 return true;
1221
1222 W_REG(&di->d64rxregs->control, 0);
1223 SPINWAIT(((status =
1224 (R_REG(&di->d64rxregs->status0) & D64_RS0_RS_MASK))
1225 != D64_RS0_RS_DISABLED), 10000);
1226
1227 return status == D64_RS0_RS_DISABLED;
1228 }
1229
1230 /*
1231 * !! tx entry routine
1232 * WARNING: call must check the return value for error.
1233 * the error(toss frames) could be fatal and cause many subsequent hard
1234 * to debug problems
1235 */
1236 int dma_txfast(struct dma_pub *pub, struct sk_buff *p0, bool commit)
1237 {
1238 struct dma_info *di = (struct dma_info *)pub;
1239 struct sk_buff *p, *next;
1240 unsigned char *data;
1241 uint len;
1242 u16 txout;
1243 u32 flags = 0;
1244 dma_addr_t pa;
1245
1246 DMA_TRACE(("%s: dma_txfast\n", di->name));
1247
1248 txout = di->txout;
1249
1250 /*
1251 * Walk the chain of packet buffers
1252 * allocating and initializing transmit descriptor entries.
1253 */
1254 for (p = p0; p; p = next) {
1255 data = p->data;
1256 len = p->len;
1257 next = p->next;
1258
1259 /* return nonzero if out of tx descriptors */
1260 if (nexttxd(di, txout) == di->txin)
1261 goto outoftxd;
1262
1263 if (len == 0)
1264 continue;
1265
1266 /* get physical address of buffer start */
1267 pa = pci_map_single(di->pbus, data, len, PCI_DMA_TODEVICE);
1268
1269 flags = 0;
1270 if (p == p0)
1271 flags |= D64_CTRL1_SOF;
1272
1273 /* With a DMA segment list, Descriptor table is filled
1274 * using the segment list instead of looping over
1275 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1276 * is when end of segment list is reached.
1277 */
1278 if (next == NULL)
1279 flags |= (D64_CTRL1_IOC | D64_CTRL1_EOF);
1280 if (txout == (di->ntxd - 1))
1281 flags |= D64_CTRL1_EOT;
1282
1283 dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1284
1285 txout = nexttxd(di, txout);
1286 }
1287
1288 /* if last txd eof not set, fix it */
1289 if (!(flags & D64_CTRL1_EOF))
1290 di->txd64[prevtxd(di, txout)].ctrl1 =
1291 cpu_to_le32(flags | D64_CTRL1_IOC | D64_CTRL1_EOF);
1292
1293 /* save the packet */
1294 di->txp[prevtxd(di, txout)] = p0;
1295
1296 /* bump the tx descriptor index */
1297 di->txout = txout;
1298
1299 /* kick the chip */
1300 if (commit)
1301 W_REG(&di->d64txregs->ptr,
1302 di->xmtptrbase + I2B(txout, struct dma64desc));
1303
1304 /* tx flow control */
1305 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
1306
1307 return 0;
1308
1309 outoftxd:
1310 DMA_ERROR(("%s: dma_txfast: out of txds !!!\n", di->name));
1311 brcmu_pkt_buf_free_skb(p0);
1312 di->dma.txavail = 0;
1313 di->dma.txnobuf++;
1314 return -1;
1315 }
1316
1317 /*
1318 * Reclaim next completed txd (txds if using chained buffers) in the range
1319 * specified and return associated packet.
1320 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1321 * transmitted as noted by the hardware "CurrDescr" pointer.
1322 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1323 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1324 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1325 * return associated packet regardless of the value of hardware pointers.
1326 */
1327 struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1328 {
1329 struct dma_info *di = (struct dma_info *)pub;
1330 u16 start, end, i;
1331 u16 active_desc;
1332 struct sk_buff *txp;
1333
1334 DMA_TRACE(("%s: dma_getnexttxp %s\n", di->name,
1335 (range == DMA_RANGE_ALL) ? "all" :
1336 ((range ==
1337 DMA_RANGE_TRANSMITTED) ? "transmitted" :
1338 "transferred")));
1339
1340 if (di->ntxd == 0)
1341 return NULL;
1342
1343 txp = NULL;
1344
1345 start = di->txin;
1346 if (range == DMA_RANGE_ALL)
1347 end = di->txout;
1348 else {
1349 struct dma64regs __iomem *dregs = di->d64txregs;
1350
1351 end = (u16) (B2I(((R_REG(&dregs->status0) &
1352 D64_XS0_CD_MASK) -
1353 di->xmtptrbase) & D64_XS0_CD_MASK,
1354 struct dma64desc));
1355
1356 if (range == DMA_RANGE_TRANSFERED) {
1357 active_desc =
1358 (u16) (R_REG(&dregs->status1) &
1359 D64_XS1_AD_MASK);
1360 active_desc =
1361 (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1362 active_desc = B2I(active_desc, struct dma64desc);
1363 if (end != active_desc)
1364 end = prevtxd(di, active_desc);
1365 }
1366 }
1367
1368 if ((start == 0) && (end > di->txout))
1369 goto bogus;
1370
1371 for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1372 dma_addr_t pa;
1373 uint size;
1374
1375 pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1376
1377 size =
1378 (le32_to_cpu(di->txd64[i].ctrl2) &
1379 D64_CTRL2_BC_MASK);
1380
1381 di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1382 di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1383
1384 txp = di->txp[i];
1385 di->txp[i] = NULL;
1386
1387 pci_unmap_single(di->pbus, pa, size, PCI_DMA_TODEVICE);
1388 }
1389
1390 di->txin = i;
1391
1392 /* tx flow control */
1393 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
1394
1395 return txp;
1396
1397 bogus:
1398 DMA_NONE(("dma_getnexttxp: bogus curr: start %d end %d txout %d "
1399 "force %d\n", start, end, di->txout, forceall));
1400 return NULL;
1401 }
1402
1403 /*
1404 * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1405 * modified. The modified portion of the packet is not under control of the DMA
1406 * engine. This function calls a caller-supplied function for each packet in
1407 * the caller specified dma chain.
1408 */
1409 void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1410 (void *pkt, void *arg_a), void *arg_a)
1411 {
1412 struct dma_info *di = (struct dma_info *) dmah;
1413 uint i = di->txin;
1414 uint end = di->txout;
1415 struct sk_buff *skb;
1416 struct ieee80211_tx_info *tx_info;
1417
1418 while (i != end) {
1419 skb = (struct sk_buff *)di->txp[i];
1420 if (skb != NULL) {
1421 tx_info = (struct ieee80211_tx_info *)skb->cb;
1422 (callback_fnc)(tx_info, arg_a);
1423 }
1424 i = nexttxd(di, i);
1425 }
1426 }