]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/wireless/intel/ipw2x00/ipw2100.c
Merge branch 'drm-next-4.18' of git://people.freedesktop.org/~agd5f/linux into drm...
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / wireless / intel / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <linux/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static const struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 unsigned long now = get_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = get_seconds();
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and initialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w initialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int err = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 err = ipw2100_power_cycle_adapter(priv);
1761 if (err) {
1762 printk(KERN_WARNING DRV_NAME
1763 ": %s: Could not cycle adapter.\n",
1764 priv->net_dev->name);
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 err = ipw2100_start_adapter(priv);
1772 if (err) {
1773 printk(KERN_ERR DRV_NAME
1774 ": %s: Failed to start the firmware.\n",
1775 priv->net_dev->name);
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 err = ipw2100_get_hw_features(priv);
1783 if (err) {
1784 printk(KERN_ERR DRV_NAME
1785 ": %s: Failed to determine HW features.\n",
1786 priv->net_dev->name);
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794 lock = LOCK_NONE;
1795 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1796 if (err) {
1797 printk(KERN_ERR DRV_NAME
1798 ": %s: Failed to clear ordinal lock.\n",
1799 priv->net_dev->name);
1800 goto exit;
1801 }
1802
1803 priv->status &= ~STATUS_SCANNING;
1804
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1808
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 schedule_delayed_work(&priv->rf_kill,
1812 round_jiffies_relative(HZ));
1813 }
1814
1815 deferred = 1;
1816 }
1817
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1820
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 err = ipw2100_adapter_setup(priv);
1824 if (err) {
1825 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1826 priv->net_dev->name);
1827 goto exit;
1828 }
1829
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 err = ipw2100_enable_adapter(priv);
1833 if (err) {
1834 printk(KERN_ERR DRV_NAME ": "
1835 "%s: failed in call to enable adapter.\n",
1836 priv->net_dev->name);
1837 ipw2100_hw_stop_adapter(priv);
1838 goto exit;
1839 }
1840
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1844 }
1845
1846 exit:
1847 return err;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1856 };
1857 int associated = priv->status & STATUS_ASSOCIATED;
1858
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1863 }
1864
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1869 }
1870
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1874
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1884
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905 struct ipw2100_priv *priv = libipw_priv(dev);
1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 struct wireless_dev *wdev = &priv->ieee->wdev;
1908 int i;
1909
1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912 /* fill-out priv->ieee->bg_band */
1913 if (geo->bg_channels) {
1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916 bg_band->band = NL80211_BAND_2GHZ;
1917 bg_band->n_channels = geo->bg_channels;
1918 bg_band->channels = kcalloc(geo->bg_channels,
1919 sizeof(struct ieee80211_channel),
1920 GFP_KERNEL);
1921 if (!bg_band->channels) {
1922 ipw2100_down(priv);
1923 return -ENOMEM;
1924 }
1925 /* translate geo->bg to bg_band.channels */
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 bg_band->channels[i].band = NL80211_BAND_2GHZ;
1928 bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 bg_band->channels[i].flags |=
1933 IEEE80211_CHAN_NO_IR;
1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_NO_IR;
1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_RADAR;
1940 /* No equivalent for LIBIPW_CH_80211H_RULES,
1941 LIBIPW_CH_UNIFORM_SPREADING, or
1942 LIBIPW_CH_B_ONLY... */
1943 }
1944 /* point at bitrate info */
1945 bg_band->bitrates = ipw2100_bg_rates;
1946 bg_band->n_bitrates = RATE_COUNT;
1947
1948 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1949 }
1950
1951 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 if (wiphy_register(wdev->wiphy))
1956 return -EIO;
1957 return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962 struct ipw2100_priv *priv =
1963 container_of(work, struct ipw2100_priv, reset_work.work);
1964 unsigned long flags;
1965 union iwreq_data wrqu = {
1966 .ap_addr = {
1967 .sa_family = ARPHRD_ETHER}
1968 };
1969 int associated = priv->status & STATUS_ASSOCIATED;
1970
1971 spin_lock_irqsave(&priv->low_lock, flags);
1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 priv->resets++;
1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 priv->status |= STATUS_SECURITY_UPDATED;
1976
1977 /* Force a power cycle even if interface hasn't been opened
1978 * yet */
1979 cancel_delayed_work(&priv->reset_work);
1980 priv->status |= STATUS_RESET_PENDING;
1981 spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983 mutex_lock(&priv->action_mutex);
1984 /* stop timed checks so that they don't interfere with reset */
1985 priv->stop_hang_check = 1;
1986 cancel_delayed_work(&priv->hang_check);
1987
1988 /* We have to signal any supplicant if we are disassociating */
1989 if (associated)
1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992 ipw2100_up(priv, 0);
1993 mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 int ret;
2002 unsigned int len, essid_len;
2003 char essid[IW_ESSID_MAX_SIZE];
2004 u32 txrate;
2005 u32 chan;
2006 char *txratename;
2007 u8 bssid[ETH_ALEN];
2008
2009 /*
2010 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011 * an actual MAC of the AP. Seems like FW sets this
2012 * address too late. Read it later and expose through
2013 * /proc or schedule a later task to query and update
2014 */
2015
2016 essid_len = IW_ESSID_MAX_SIZE;
2017 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018 essid, &essid_len);
2019 if (ret) {
2020 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021 __LINE__);
2022 return;
2023 }
2024
2025 len = sizeof(u32);
2026 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027 if (ret) {
2028 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029 __LINE__);
2030 return;
2031 }
2032
2033 len = sizeof(u32);
2034 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035 if (ret) {
2036 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037 __LINE__);
2038 return;
2039 }
2040 len = ETH_ALEN;
2041 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042 &len);
2043 if (ret) {
2044 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045 __LINE__);
2046 return;
2047 }
2048 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050 switch (txrate) {
2051 case TX_RATE_1_MBIT:
2052 txratename = "1Mbps";
2053 break;
2054 case TX_RATE_2_MBIT:
2055 txratename = "2Mbsp";
2056 break;
2057 case TX_RATE_5_5_MBIT:
2058 txratename = "5.5Mbps";
2059 break;
2060 case TX_RATE_11_MBIT:
2061 txratename = "11Mbps";
2062 break;
2063 default:
2064 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065 txratename = "unknown rate";
2066 break;
2067 }
2068
2069 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070 priv->net_dev->name, essid_len, essid,
2071 txratename, chan, bssid);
2072
2073 /* now we copy read ssid into dev */
2074 if (!(priv->config & CFG_STATIC_ESSID)) {
2075 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076 memcpy(priv->essid, essid, priv->essid_len);
2077 }
2078 priv->channel = chan;
2079 memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081 priv->status |= STATUS_ASSOCIATING;
2082 priv->connect_start = get_seconds();
2083
2084 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088 int length, int batch_mode)
2089 {
2090 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091 struct host_command cmd = {
2092 .host_command = SSID,
2093 .host_command_sequence = 0,
2094 .host_command_length = ssid_len
2095 };
2096 int err;
2097
2098 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099
2100 if (ssid_len)
2101 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103 if (!batch_mode) {
2104 err = ipw2100_disable_adapter(priv);
2105 if (err)
2106 return err;
2107 }
2108
2109 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110 * disable auto association -- so we cheat by setting a bogus SSID */
2111 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112 int i;
2113 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115 bogus[i] = 0x18 + i;
2116 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117 }
2118
2119 /* NOTE: We always send the SSID command even if the provided ESSID is
2120 * the same as what we currently think is set. */
2121
2122 err = ipw2100_hw_send_command(priv, &cmd);
2123 if (!err) {
2124 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125 memcpy(priv->essid, essid, ssid_len);
2126 priv->essid_len = ssid_len;
2127 }
2128
2129 if (!batch_mode) {
2130 if (ipw2100_enable_adapter(priv))
2131 err = -EIO;
2132 }
2133
2134 return err;
2135 }
2136
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141 priv->bssid);
2142
2143 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144
2145 if (priv->status & STATUS_STOPPING) {
2146 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147 return;
2148 }
2149
2150 eth_zero_addr(priv->bssid);
2151 eth_zero_addr(priv->ieee->bssid);
2152
2153 netif_carrier_off(priv->net_dev);
2154 netif_stop_queue(priv->net_dev);
2155
2156 if (!(priv->status & STATUS_RUNNING))
2157 return;
2158
2159 if (priv->status & STATUS_SECURITY_UPDATED)
2160 schedule_delayed_work(&priv->security_work, 0);
2161
2162 schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168 priv->net_dev->name);
2169
2170 /* RF_KILL is now enabled (else we wouldn't be here) */
2171 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172 priv->status |= STATUS_RF_KILL_HW;
2173
2174 /* Make sure the RF Kill check timer is running */
2175 priv->stop_rf_kill = 0;
2176 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182 scan_event.work);
2183 union iwreq_data wrqu;
2184
2185 wrqu.data.length = 0;
2186 wrqu.data.flags = 0;
2187 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192 IPW_DEBUG_SCAN("scan complete\n");
2193 /* Age the scan results... */
2194 priv->ieee->scans++;
2195 priv->status &= ~STATUS_SCANNING;
2196
2197 /* Only userspace-requested scan completion events go out immediately */
2198 if (!priv->user_requested_scan) {
2199 schedule_delayed_work(&priv->scan_event,
2200 round_jiffies_relative(msecs_to_jiffies(4000)));
2201 } else {
2202 priv->user_requested_scan = 0;
2203 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204 }
2205 }
2206
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210 int status;
2211 void (*cb) (struct ipw2100_priv * priv, u32 status);
2212 char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217 int status;
2218 void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif /* CONFIG_IPW2100_DEBUG */
2221
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224 IPW_DEBUG_SCAN("Scanning...\n");
2225 priv->status |= STATUS_SCANNING;
2226 }
2227
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241 IPW2100_HANDLER(-1, NULL)
2242 };
2243
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246 int i;
2247
2248 if (status == IPW_STATE_SCANNING &&
2249 priv->status & STATUS_ASSOCIATED &&
2250 !(priv->status & STATUS_SCANNING)) {
2251 IPW_DEBUG_INFO("Scan detected while associated, with "
2252 "no scan request. Restarting firmware.\n");
2253
2254 /* Wake up any sleeping jobs */
2255 schedule_reset(priv);
2256 }
2257
2258 for (i = 0; status_handlers[i].status != -1; i++) {
2259 if (status == status_handlers[i].status) {
2260 IPW_DEBUG_NOTIF("Status change: %s\n",
2261 status_handlers[i].name);
2262 if (status_handlers[i].cb)
2263 status_handlers[i].cb(priv, status);
2264 priv->wstats.status = status;
2265 return;
2266 }
2267 }
2268
2269 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273 struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278 command_types[cmd->host_command_reg],
2279 cmd->host_command_reg);
2280 }
2281 #endif
2282 if (cmd->host_command_reg == HOST_COMPLETE)
2283 priv->status |= STATUS_ENABLED;
2284
2285 if (cmd->host_command_reg == CARD_DISABLE)
2286 priv->status &= ~STATUS_ENABLED;
2287
2288 priv->status &= ~STATUS_CMD_ACTIVE;
2289
2290 wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295 "COMMAND_STATUS_VAL",
2296 "STATUS_CHANGE_VAL",
2297 "P80211_DATA_VAL",
2298 "P8023_DATA_VAL",
2299 "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304 struct ipw2100_rx_packet *packet)
2305 {
2306 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307 if (!packet->skb)
2308 return -ENOMEM;
2309
2310 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312 sizeof(struct ipw2100_rx),
2313 PCI_DMA_FROMDEVICE);
2314 if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2315 dev_kfree_skb(packet->skb);
2316 return -ENOMEM;
2317 }
2318
2319 return 0;
2320 }
2321
2322 #define SEARCH_ERROR 0xffffffff
2323 #define SEARCH_FAIL 0xfffffffe
2324 #define SEARCH_SUCCESS 0xfffffff0
2325 #define SEARCH_DISCARD 0
2326 #define SEARCH_SNAPSHOT 1
2327
2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2330 {
2331 int i;
2332 if (!priv->snapshot[0])
2333 return;
2334 for (i = 0; i < 0x30; i++)
2335 kfree(priv->snapshot[i]);
2336 priv->snapshot[0] = NULL;
2337 }
2338
2339 #ifdef IPW2100_DEBUG_C3
2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2341 {
2342 int i;
2343 if (priv->snapshot[0])
2344 return 1;
2345 for (i = 0; i < 0x30; i++) {
2346 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2347 if (!priv->snapshot[i]) {
2348 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2349 "buffer %d\n", priv->net_dev->name, i);
2350 while (i > 0)
2351 kfree(priv->snapshot[--i]);
2352 priv->snapshot[0] = NULL;
2353 return 0;
2354 }
2355 }
2356
2357 return 1;
2358 }
2359
2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2361 size_t len, int mode)
2362 {
2363 u32 i, j;
2364 u32 tmp;
2365 u8 *s, *d;
2366 u32 ret;
2367
2368 s = in_buf;
2369 if (mode == SEARCH_SNAPSHOT) {
2370 if (!ipw2100_snapshot_alloc(priv))
2371 mode = SEARCH_DISCARD;
2372 }
2373
2374 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2375 read_nic_dword(priv->net_dev, i, &tmp);
2376 if (mode == SEARCH_SNAPSHOT)
2377 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2378 if (ret == SEARCH_FAIL) {
2379 d = (u8 *) & tmp;
2380 for (j = 0; j < 4; j++) {
2381 if (*s != *d) {
2382 s = in_buf;
2383 continue;
2384 }
2385
2386 s++;
2387 d++;
2388
2389 if ((s - in_buf) == len)
2390 ret = (i + j) - len + 1;
2391 }
2392 } else if (mode == SEARCH_DISCARD)
2393 return ret;
2394 }
2395
2396 return ret;
2397 }
2398 #endif
2399
2400 /*
2401 *
2402 * 0) Disconnect the SKB from the firmware (just unmap)
2403 * 1) Pack the ETH header into the SKB
2404 * 2) Pass the SKB to the network stack
2405 *
2406 * When packet is provided by the firmware, it contains the following:
2407 *
2408 * . libipw_hdr
2409 * . libipw_snap_hdr
2410 *
2411 * The size of the constructed ethernet
2412 *
2413 */
2414 #ifdef IPW2100_RX_DEBUG
2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2416 #endif
2417
2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2419 {
2420 #ifdef IPW2100_DEBUG_C3
2421 struct ipw2100_status *status = &priv->status_queue.drv[i];
2422 u32 match, reg;
2423 int j;
2424 #endif
2425
2426 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2427 i * sizeof(struct ipw2100_status));
2428
2429 #ifdef IPW2100_DEBUG_C3
2430 /* Halt the firmware so we can get a good image */
2431 write_register(priv->net_dev, IPW_REG_RESET_REG,
2432 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2433 j = 5;
2434 do {
2435 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2436 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2437
2438 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2439 break;
2440 } while (j--);
2441
2442 match = ipw2100_match_buf(priv, (u8 *) status,
2443 sizeof(struct ipw2100_status),
2444 SEARCH_SNAPSHOT);
2445 if (match < SEARCH_SUCCESS)
2446 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2447 "offset 0x%06X, length %d:\n",
2448 priv->net_dev->name, match,
2449 sizeof(struct ipw2100_status));
2450 else
2451 IPW_DEBUG_INFO("%s: No DMA status match in "
2452 "Firmware.\n", priv->net_dev->name);
2453
2454 printk_buf((u8 *) priv->status_queue.drv,
2455 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2456 #endif
2457
2458 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2459 priv->net_dev->stats.rx_errors++;
2460 schedule_reset(priv);
2461 }
2462
2463 static void isr_rx(struct ipw2100_priv *priv, int i,
2464 struct libipw_rx_stats *stats)
2465 {
2466 struct net_device *dev = priv->net_dev;
2467 struct ipw2100_status *status = &priv->status_queue.drv[i];
2468 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469
2470 IPW_DEBUG_RX("Handler...\n");
2471
2472 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2473 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2474 " Dropping.\n",
2475 dev->name,
2476 status->frame_size, skb_tailroom(packet->skb));
2477 dev->stats.rx_errors++;
2478 return;
2479 }
2480
2481 if (unlikely(!netif_running(dev))) {
2482 dev->stats.rx_errors++;
2483 priv->wstats.discard.misc++;
2484 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2485 return;
2486 }
2487
2488 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2489 !(priv->status & STATUS_ASSOCIATED))) {
2490 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2491 priv->wstats.discard.misc++;
2492 return;
2493 }
2494
2495 pci_unmap_single(priv->pci_dev,
2496 packet->dma_addr,
2497 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2498
2499 skb_put(packet->skb, status->frame_size);
2500
2501 #ifdef IPW2100_RX_DEBUG
2502 /* Make a copy of the frame so we can dump it to the logs if
2503 * libipw_rx fails */
2504 skb_copy_from_linear_data(packet->skb, packet_data,
2505 min_t(u32, status->frame_size,
2506 IPW_RX_NIC_BUFFER_LENGTH));
2507 #endif
2508
2509 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2510 #ifdef IPW2100_RX_DEBUG
2511 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2512 dev->name);
2513 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2514 #endif
2515 dev->stats.rx_errors++;
2516
2517 /* libipw_rx failed, so it didn't free the SKB */
2518 dev_kfree_skb_any(packet->skb);
2519 packet->skb = NULL;
2520 }
2521
2522 /* We need to allocate a new SKB and attach it to the RDB. */
2523 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524 printk(KERN_WARNING DRV_NAME ": "
2525 "%s: Unable to allocate SKB onto RBD ring - disabling "
2526 "adapter.\n", dev->name);
2527 /* TODO: schedule adapter shutdown */
2528 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529 }
2530
2531 /* Update the RDB entry */
2532 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534
2535 #ifdef CONFIG_IPW2100_MONITOR
2536
2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2538 struct libipw_rx_stats *stats)
2539 {
2540 struct net_device *dev = priv->net_dev;
2541 struct ipw2100_status *status = &priv->status_queue.drv[i];
2542 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2543
2544 /* Magic struct that slots into the radiotap header -- no reason
2545 * to build this manually element by element, we can write it much
2546 * more efficiently than we can parse it. ORDER MATTERS HERE */
2547 struct ipw_rt_hdr {
2548 struct ieee80211_radiotap_header rt_hdr;
2549 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2550 } *ipw_rt;
2551
2552 IPW_DEBUG_RX("Handler...\n");
2553
2554 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2555 sizeof(struct ipw_rt_hdr))) {
2556 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2557 " Dropping.\n",
2558 dev->name,
2559 status->frame_size,
2560 skb_tailroom(packet->skb));
2561 dev->stats.rx_errors++;
2562 return;
2563 }
2564
2565 if (unlikely(!netif_running(dev))) {
2566 dev->stats.rx_errors++;
2567 priv->wstats.discard.misc++;
2568 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2569 return;
2570 }
2571
2572 if (unlikely(priv->config & CFG_CRC_CHECK &&
2573 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2574 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2575 dev->stats.rx_errors++;
2576 return;
2577 }
2578
2579 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2580 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2581 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2582 packet->skb->data, status->frame_size);
2583
2584 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2585
2586 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2587 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2588 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2589
2590 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2591
2592 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2593
2594 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2595
2596 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2597 dev->stats.rx_errors++;
2598
2599 /* libipw_rx failed, so it didn't free the SKB */
2600 dev_kfree_skb_any(packet->skb);
2601 packet->skb = NULL;
2602 }
2603
2604 /* We need to allocate a new SKB and attach it to the RDB. */
2605 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2606 IPW_DEBUG_WARNING(
2607 "%s: Unable to allocate SKB onto RBD ring - disabling "
2608 "adapter.\n", dev->name);
2609 /* TODO: schedule adapter shutdown */
2610 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611 }
2612
2613 /* Update the RDB entry */
2614 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 }
2616
2617 #endif
2618
2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2620 {
2621 struct ipw2100_status *status = &priv->status_queue.drv[i];
2622 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2623 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2624
2625 switch (frame_type) {
2626 case COMMAND_STATUS_VAL:
2627 return (status->frame_size != sizeof(u->rx_data.command));
2628 case STATUS_CHANGE_VAL:
2629 return (status->frame_size != sizeof(u->rx_data.status));
2630 case HOST_NOTIFICATION_VAL:
2631 return (status->frame_size < sizeof(u->rx_data.notification));
2632 case P80211_DATA_VAL:
2633 case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635 return 0;
2636 #else
2637 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2638 case IEEE80211_FTYPE_MGMT:
2639 case IEEE80211_FTYPE_CTL:
2640 return 0;
2641 case IEEE80211_FTYPE_DATA:
2642 return (status->frame_size >
2643 IPW_MAX_802_11_PAYLOAD_LENGTH);
2644 }
2645 #endif
2646 }
2647
2648 return 1;
2649 }
2650
2651 /*
2652 * ipw2100 interrupts are disabled at this point, and the ISR
2653 * is the only code that calls this method. So, we do not need
2654 * to play with any locks.
2655 *
2656 * RX Queue works as follows:
2657 *
2658 * Read index - firmware places packet in entry identified by the
2659 * Read index and advances Read index. In this manner,
2660 * Read index will always point to the next packet to
2661 * be filled--but not yet valid.
2662 *
2663 * Write index - driver fills this entry with an unused RBD entry.
2664 * This entry has not filled by the firmware yet.
2665 *
2666 * In between the W and R indexes are the RBDs that have been received
2667 * but not yet processed.
2668 *
2669 * The process of handling packets will start at WRITE + 1 and advance
2670 * until it reaches the READ index.
2671 *
2672 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673 *
2674 */
2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2676 {
2677 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2678 struct ipw2100_status_queue *sq = &priv->status_queue;
2679 struct ipw2100_rx_packet *packet;
2680 u16 frame_type;
2681 u32 r, w, i, s;
2682 struct ipw2100_rx *u;
2683 struct libipw_rx_stats stats = {
2684 .mac_time = jiffies,
2685 };
2686
2687 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2688 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2689
2690 if (r >= rxq->entries) {
2691 IPW_DEBUG_RX("exit - bad read index\n");
2692 return;
2693 }
2694
2695 i = (rxq->next + 1) % rxq->entries;
2696 s = i;
2697 while (i != r) {
2698 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2699 r, rxq->next, i); */
2700
2701 packet = &priv->rx_buffers[i];
2702
2703 /* Sync the DMA for the RX buffer so CPU is sure to get
2704 * the correct values */
2705 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2706 sizeof(struct ipw2100_rx),
2707 PCI_DMA_FROMDEVICE);
2708
2709 if (unlikely(ipw2100_corruption_check(priv, i))) {
2710 ipw2100_corruption_detected(priv, i);
2711 goto increment;
2712 }
2713
2714 u = packet->rxp;
2715 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2716 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2717 stats.len = sq->drv[i].frame_size;
2718
2719 stats.mask = 0;
2720 if (stats.rssi != 0)
2721 stats.mask |= LIBIPW_STATMASK_RSSI;
2722 stats.freq = LIBIPW_24GHZ_BAND;
2723
2724 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2725 priv->net_dev->name, frame_types[frame_type],
2726 stats.len);
2727
2728 switch (frame_type) {
2729 case COMMAND_STATUS_VAL:
2730 /* Reset Rx watchdog */
2731 isr_rx_complete_command(priv, &u->rx_data.command);
2732 break;
2733
2734 case STATUS_CHANGE_VAL:
2735 isr_status_change(priv, u->rx_data.status);
2736 break;
2737
2738 case P80211_DATA_VAL:
2739 case P8023_DATA_VAL:
2740 #ifdef CONFIG_IPW2100_MONITOR
2741 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2742 isr_rx_monitor(priv, i, &stats);
2743 break;
2744 }
2745 #endif
2746 if (stats.len < sizeof(struct libipw_hdr_3addr))
2747 break;
2748 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2749 case IEEE80211_FTYPE_MGMT:
2750 libipw_rx_mgt(priv->ieee,
2751 &u->rx_data.header, &stats);
2752 break;
2753
2754 case IEEE80211_FTYPE_CTL:
2755 break;
2756
2757 case IEEE80211_FTYPE_DATA:
2758 isr_rx(priv, i, &stats);
2759 break;
2760
2761 }
2762 break;
2763 }
2764
2765 increment:
2766 /* clear status field associated with this RBD */
2767 rxq->drv[i].status.info.field = 0;
2768
2769 i = (i + 1) % rxq->entries;
2770 }
2771
2772 if (i != s) {
2773 /* backtrack one entry, wrapping to end if at 0 */
2774 rxq->next = (i ? i : rxq->entries) - 1;
2775
2776 write_register(priv->net_dev,
2777 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2778 }
2779 }
2780
2781 /*
2782 * __ipw2100_tx_process
2783 *
2784 * This routine will determine whether the next packet on
2785 * the fw_pend_list has been processed by the firmware yet.
2786 *
2787 * If not, then it does nothing and returns.
2788 *
2789 * If so, then it removes the item from the fw_pend_list, frees
2790 * any associated storage, and places the item back on the
2791 * free list of its source (either msg_free_list or tx_free_list)
2792 *
2793 * TX Queue works as follows:
2794 *
2795 * Read index - points to the next TBD that the firmware will
2796 * process. The firmware will read the data, and once
2797 * done processing, it will advance the Read index.
2798 *
2799 * Write index - driver fills this entry with an constructed TBD
2800 * entry. The Write index is not advanced until the
2801 * packet has been configured.
2802 *
2803 * In between the W and R indexes are the TBDs that have NOT been
2804 * processed. Lagging behind the R index are packets that have
2805 * been processed but have not been freed by the driver.
2806 *
2807 * In order to free old storage, an internal index will be maintained
2808 * that points to the next packet to be freed. When all used
2809 * packets have been freed, the oldest index will be the same as the
2810 * firmware's read index.
2811 *
2812 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2813 *
2814 * Because the TBD structure can not contain arbitrary data, the
2815 * driver must keep an internal queue of cached allocations such that
2816 * it can put that data back into the tx_free_list and msg_free_list
2817 * for use by future command and data packets.
2818 *
2819 */
2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2821 {
2822 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2823 struct ipw2100_bd *tbd;
2824 struct list_head *element;
2825 struct ipw2100_tx_packet *packet;
2826 int descriptors_used;
2827 int e, i;
2828 u32 r, w, frag_num = 0;
2829
2830 if (list_empty(&priv->fw_pend_list))
2831 return 0;
2832
2833 element = priv->fw_pend_list.next;
2834
2835 packet = list_entry(element, struct ipw2100_tx_packet, list);
2836 tbd = &txq->drv[packet->index];
2837
2838 /* Determine how many TBD entries must be finished... */
2839 switch (packet->type) {
2840 case COMMAND:
2841 /* COMMAND uses only one slot; don't advance */
2842 descriptors_used = 1;
2843 e = txq->oldest;
2844 break;
2845
2846 case DATA:
2847 /* DATA uses two slots; advance and loop position. */
2848 descriptors_used = tbd->num_fragments;
2849 frag_num = tbd->num_fragments - 1;
2850 e = txq->oldest + frag_num;
2851 e %= txq->entries;
2852 break;
2853
2854 default:
2855 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2856 priv->net_dev->name);
2857 return 0;
2858 }
2859
2860 /* if the last TBD is not done by NIC yet, then packet is
2861 * not ready to be released.
2862 *
2863 */
2864 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2865 &r);
2866 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2867 &w);
2868 if (w != txq->next)
2869 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2870 priv->net_dev->name);
2871
2872 /*
2873 * txq->next is the index of the last packet written txq->oldest is
2874 * the index of the r is the index of the next packet to be read by
2875 * firmware
2876 */
2877
2878 /*
2879 * Quick graphic to help you visualize the following
2880 * if / else statement
2881 *
2882 * ===>| s---->|===============
2883 * e>|
2884 * | a | b | c | d | e | f | g | h | i | j | k | l
2885 * r---->|
2886 * w
2887 *
2888 * w - updated by driver
2889 * r - updated by firmware
2890 * s - start of oldest BD entry (txq->oldest)
2891 * e - end of oldest BD entry
2892 *
2893 */
2894 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2895 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2896 return 0;
2897 }
2898
2899 list_del(element);
2900 DEC_STAT(&priv->fw_pend_stat);
2901
2902 #ifdef CONFIG_IPW2100_DEBUG
2903 {
2904 i = txq->oldest;
2905 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2906 &txq->drv[i],
2907 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2908 txq->drv[i].host_addr, txq->drv[i].buf_length);
2909
2910 if (packet->type == DATA) {
2911 i = (i + 1) % txq->entries;
2912
2913 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2914 &txq->drv[i],
2915 (u32) (txq->nic + i *
2916 sizeof(struct ipw2100_bd)),
2917 (u32) txq->drv[i].host_addr,
2918 txq->drv[i].buf_length);
2919 }
2920 }
2921 #endif
2922
2923 switch (packet->type) {
2924 case DATA:
2925 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2926 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2927 "Expecting DATA TBD but pulled "
2928 "something else: ids %d=%d.\n",
2929 priv->net_dev->name, txq->oldest, packet->index);
2930
2931 /* DATA packet; we have to unmap and free the SKB */
2932 for (i = 0; i < frag_num; i++) {
2933 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2934
2935 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2936 (packet->index + 1 + i) % txq->entries,
2937 tbd->host_addr, tbd->buf_length);
2938
2939 pci_unmap_single(priv->pci_dev,
2940 tbd->host_addr,
2941 tbd->buf_length, PCI_DMA_TODEVICE);
2942 }
2943
2944 libipw_txb_free(packet->info.d_struct.txb);
2945 packet->info.d_struct.txb = NULL;
2946
2947 list_add_tail(element, &priv->tx_free_list);
2948 INC_STAT(&priv->tx_free_stat);
2949
2950 /* We have a free slot in the Tx queue, so wake up the
2951 * transmit layer if it is stopped. */
2952 if (priv->status & STATUS_ASSOCIATED)
2953 netif_wake_queue(priv->net_dev);
2954
2955 /* A packet was processed by the hardware, so update the
2956 * watchdog */
2957 netif_trans_update(priv->net_dev);
2958
2959 break;
2960
2961 case COMMAND:
2962 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2963 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2964 "Expecting COMMAND TBD but pulled "
2965 "something else: ids %d=%d.\n",
2966 priv->net_dev->name, txq->oldest, packet->index);
2967
2968 #ifdef CONFIG_IPW2100_DEBUG
2969 if (packet->info.c_struct.cmd->host_command_reg <
2970 ARRAY_SIZE(command_types))
2971 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2972 command_types[packet->info.c_struct.cmd->
2973 host_command_reg],
2974 packet->info.c_struct.cmd->
2975 host_command_reg,
2976 packet->info.c_struct.cmd->cmd_status_reg);
2977 #endif
2978
2979 list_add_tail(element, &priv->msg_free_list);
2980 INC_STAT(&priv->msg_free_stat);
2981 break;
2982 }
2983
2984 /* advance oldest used TBD pointer to start of next entry */
2985 txq->oldest = (e + 1) % txq->entries;
2986 /* increase available TBDs number */
2987 txq->available += descriptors_used;
2988 SET_STAT(&priv->txq_stat, txq->available);
2989
2990 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2991 jiffies - packet->jiffy_start);
2992
2993 return (!list_empty(&priv->fw_pend_list));
2994 }
2995
2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2997 {
2998 int i = 0;
2999
3000 while (__ipw2100_tx_process(priv) && i < 200)
3001 i++;
3002
3003 if (i == 200) {
3004 printk(KERN_WARNING DRV_NAME ": "
3005 "%s: Driver is running slow (%d iters).\n",
3006 priv->net_dev->name, i);
3007 }
3008 }
3009
3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3011 {
3012 struct list_head *element;
3013 struct ipw2100_tx_packet *packet;
3014 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3015 struct ipw2100_bd *tbd;
3016 int next = txq->next;
3017
3018 while (!list_empty(&priv->msg_pend_list)) {
3019 /* if there isn't enough space in TBD queue, then
3020 * don't stuff a new one in.
3021 * NOTE: 3 are needed as a command will take one,
3022 * and there is a minimum of 2 that must be
3023 * maintained between the r and w indexes
3024 */
3025 if (txq->available <= 3) {
3026 IPW_DEBUG_TX("no room in tx_queue\n");
3027 break;
3028 }
3029
3030 element = priv->msg_pend_list.next;
3031 list_del(element);
3032 DEC_STAT(&priv->msg_pend_stat);
3033
3034 packet = list_entry(element, struct ipw2100_tx_packet, list);
3035
3036 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3037 &txq->drv[txq->next],
3038 (u32) (txq->nic + txq->next *
3039 sizeof(struct ipw2100_bd)));
3040
3041 packet->index = txq->next;
3042
3043 tbd = &txq->drv[txq->next];
3044
3045 /* initialize TBD */
3046 tbd->host_addr = packet->info.c_struct.cmd_phys;
3047 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3048 /* not marking number of fragments causes problems
3049 * with f/w debug version */
3050 tbd->num_fragments = 1;
3051 tbd->status.info.field =
3052 IPW_BD_STATUS_TX_FRAME_COMMAND |
3053 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3054
3055 /* update TBD queue counters */
3056 txq->next++;
3057 txq->next %= txq->entries;
3058 txq->available--;
3059 DEC_STAT(&priv->txq_stat);
3060
3061 list_add_tail(element, &priv->fw_pend_list);
3062 INC_STAT(&priv->fw_pend_stat);
3063 }
3064
3065 if (txq->next != next) {
3066 /* kick off the DMA by notifying firmware the
3067 * write index has moved; make sure TBD stores are sync'd */
3068 wmb();
3069 write_register(priv->net_dev,
3070 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3071 txq->next);
3072 }
3073 }
3074
3075 /*
3076 * ipw2100_tx_send_data
3077 *
3078 */
3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3080 {
3081 struct list_head *element;
3082 struct ipw2100_tx_packet *packet;
3083 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3084 struct ipw2100_bd *tbd;
3085 int next = txq->next;
3086 int i = 0;
3087 struct ipw2100_data_header *ipw_hdr;
3088 struct libipw_hdr_3addr *hdr;
3089
3090 while (!list_empty(&priv->tx_pend_list)) {
3091 /* if there isn't enough space in TBD queue, then
3092 * don't stuff a new one in.
3093 * NOTE: 4 are needed as a data will take two,
3094 * and there is a minimum of 2 that must be
3095 * maintained between the r and w indexes
3096 */
3097 element = priv->tx_pend_list.next;
3098 packet = list_entry(element, struct ipw2100_tx_packet, list);
3099
3100 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3101 IPW_MAX_BDS)) {
3102 /* TODO: Support merging buffers if more than
3103 * IPW_MAX_BDS are used */
3104 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3105 "Increase fragmentation level.\n",
3106 priv->net_dev->name);
3107 }
3108
3109 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3110 IPW_DEBUG_TX("no room in tx_queue\n");
3111 break;
3112 }
3113
3114 list_del(element);
3115 DEC_STAT(&priv->tx_pend_stat);
3116
3117 tbd = &txq->drv[txq->next];
3118
3119 packet->index = txq->next;
3120
3121 ipw_hdr = packet->info.d_struct.data;
3122 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3123 fragments[0]->data;
3124
3125 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3126 /* To DS: Addr1 = BSSID, Addr2 = SA,
3127 Addr3 = DA */
3128 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3129 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3130 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3131 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3132 Addr3 = BSSID */
3133 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3134 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3135 }
3136
3137 ipw_hdr->host_command_reg = SEND;
3138 ipw_hdr->host_command_reg1 = 0;
3139
3140 /* For now we only support host based encryption */
3141 ipw_hdr->needs_encryption = 0;
3142 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3143 if (packet->info.d_struct.txb->nr_frags > 1)
3144 ipw_hdr->fragment_size =
3145 packet->info.d_struct.txb->frag_size -
3146 LIBIPW_3ADDR_LEN;
3147 else
3148 ipw_hdr->fragment_size = 0;
3149
3150 tbd->host_addr = packet->info.d_struct.data_phys;
3151 tbd->buf_length = sizeof(struct ipw2100_data_header);
3152 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3153 tbd->status.info.field =
3154 IPW_BD_STATUS_TX_FRAME_802_3 |
3155 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3156 txq->next++;
3157 txq->next %= txq->entries;
3158
3159 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3160 packet->index, tbd->host_addr, tbd->buf_length);
3161 #ifdef CONFIG_IPW2100_DEBUG
3162 if (packet->info.d_struct.txb->nr_frags > 1)
3163 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3164 packet->info.d_struct.txb->nr_frags);
3165 #endif
3166
3167 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3168 tbd = &txq->drv[txq->next];
3169 if (i == packet->info.d_struct.txb->nr_frags - 1)
3170 tbd->status.info.field =
3171 IPW_BD_STATUS_TX_FRAME_802_3 |
3172 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3173 else
3174 tbd->status.info.field =
3175 IPW_BD_STATUS_TX_FRAME_802_3 |
3176 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3177
3178 tbd->buf_length = packet->info.d_struct.txb->
3179 fragments[i]->len - LIBIPW_3ADDR_LEN;
3180
3181 tbd->host_addr = pci_map_single(priv->pci_dev,
3182 packet->info.d_struct.
3183 txb->fragments[i]->
3184 data +
3185 LIBIPW_3ADDR_LEN,
3186 tbd->buf_length,
3187 PCI_DMA_TODEVICE);
3188 if (pci_dma_mapping_error(priv->pci_dev,
3189 tbd->host_addr)) {
3190 IPW_DEBUG_TX("dma mapping error\n");
3191 break;
3192 }
3193
3194 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3195 txq->next, tbd->host_addr,
3196 tbd->buf_length);
3197
3198 pci_dma_sync_single_for_device(priv->pci_dev,
3199 tbd->host_addr,
3200 tbd->buf_length,
3201 PCI_DMA_TODEVICE);
3202
3203 txq->next++;
3204 txq->next %= txq->entries;
3205 }
3206
3207 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3208 SET_STAT(&priv->txq_stat, txq->available);
3209
3210 list_add_tail(element, &priv->fw_pend_list);
3211 INC_STAT(&priv->fw_pend_stat);
3212 }
3213
3214 if (txq->next != next) {
3215 /* kick off the DMA by notifying firmware the
3216 * write index has moved; make sure TBD stores are sync'd */
3217 write_register(priv->net_dev,
3218 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3219 txq->next);
3220 }
3221 }
3222
3223 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3224 {
3225 struct net_device *dev = priv->net_dev;
3226 unsigned long flags;
3227 u32 inta, tmp;
3228
3229 spin_lock_irqsave(&priv->low_lock, flags);
3230 ipw2100_disable_interrupts(priv);
3231
3232 read_register(dev, IPW_REG_INTA, &inta);
3233
3234 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3235 (unsigned long)inta & IPW_INTERRUPT_MASK);
3236
3237 priv->in_isr++;
3238 priv->interrupts++;
3239
3240 /* We do not loop and keep polling for more interrupts as this
3241 * is frowned upon and doesn't play nicely with other potentially
3242 * chained IRQs */
3243 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3244 (unsigned long)inta & IPW_INTERRUPT_MASK);
3245
3246 if (inta & IPW2100_INTA_FATAL_ERROR) {
3247 printk(KERN_WARNING DRV_NAME
3248 ": Fatal interrupt. Scheduling firmware restart.\n");
3249 priv->inta_other++;
3250 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3251
3252 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3253 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3254 priv->net_dev->name, priv->fatal_error);
3255
3256 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3257 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3258 priv->net_dev->name, tmp);
3259
3260 /* Wake up any sleeping jobs */
3261 schedule_reset(priv);
3262 }
3263
3264 if (inta & IPW2100_INTA_PARITY_ERROR) {
3265 printk(KERN_ERR DRV_NAME
3266 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3267 priv->inta_other++;
3268 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3269 }
3270
3271 if (inta & IPW2100_INTA_RX_TRANSFER) {
3272 IPW_DEBUG_ISR("RX interrupt\n");
3273
3274 priv->rx_interrupts++;
3275
3276 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3277
3278 __ipw2100_rx_process(priv);
3279 __ipw2100_tx_complete(priv);
3280 }
3281
3282 if (inta & IPW2100_INTA_TX_TRANSFER) {
3283 IPW_DEBUG_ISR("TX interrupt\n");
3284
3285 priv->tx_interrupts++;
3286
3287 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3288
3289 __ipw2100_tx_complete(priv);
3290 ipw2100_tx_send_commands(priv);
3291 ipw2100_tx_send_data(priv);
3292 }
3293
3294 if (inta & IPW2100_INTA_TX_COMPLETE) {
3295 IPW_DEBUG_ISR("TX complete\n");
3296 priv->inta_other++;
3297 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3298
3299 __ipw2100_tx_complete(priv);
3300 }
3301
3302 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3303 /* ipw2100_handle_event(dev); */
3304 priv->inta_other++;
3305 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3306 }
3307
3308 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3309 IPW_DEBUG_ISR("FW init done interrupt\n");
3310 priv->inta_other++;
3311
3312 read_register(dev, IPW_REG_INTA, &tmp);
3313 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3314 IPW2100_INTA_PARITY_ERROR)) {
3315 write_register(dev, IPW_REG_INTA,
3316 IPW2100_INTA_FATAL_ERROR |
3317 IPW2100_INTA_PARITY_ERROR);
3318 }
3319
3320 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3321 }
3322
3323 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3324 IPW_DEBUG_ISR("Status change interrupt\n");
3325 priv->inta_other++;
3326 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3327 }
3328
3329 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3330 IPW_DEBUG_ISR("slave host mode interrupt\n");
3331 priv->inta_other++;
3332 write_register(dev, IPW_REG_INTA,
3333 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3334 }
3335
3336 priv->in_isr--;
3337 ipw2100_enable_interrupts(priv);
3338
3339 spin_unlock_irqrestore(&priv->low_lock, flags);
3340
3341 IPW_DEBUG_ISR("exit\n");
3342 }
3343
3344 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3345 {
3346 struct ipw2100_priv *priv = data;
3347 u32 inta, inta_mask;
3348
3349 if (!data)
3350 return IRQ_NONE;
3351
3352 spin_lock(&priv->low_lock);
3353
3354 /* We check to see if we should be ignoring interrupts before
3355 * we touch the hardware. During ucode load if we try and handle
3356 * an interrupt we can cause keyboard problems as well as cause
3357 * the ucode to fail to initialize */
3358 if (!(priv->status & STATUS_INT_ENABLED)) {
3359 /* Shared IRQ */
3360 goto none;
3361 }
3362
3363 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3364 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3365
3366 if (inta == 0xFFFFFFFF) {
3367 /* Hardware disappeared */
3368 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3369 goto none;
3370 }
3371
3372 inta &= IPW_INTERRUPT_MASK;
3373
3374 if (!(inta & inta_mask)) {
3375 /* Shared interrupt */
3376 goto none;
3377 }
3378
3379 /* We disable the hardware interrupt here just to prevent unneeded
3380 * calls to be made. We disable this again within the actual
3381 * work tasklet, so if another part of the code re-enables the
3382 * interrupt, that is fine */
3383 ipw2100_disable_interrupts(priv);
3384
3385 tasklet_schedule(&priv->irq_tasklet);
3386 spin_unlock(&priv->low_lock);
3387
3388 return IRQ_HANDLED;
3389 none:
3390 spin_unlock(&priv->low_lock);
3391 return IRQ_NONE;
3392 }
3393
3394 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3395 struct net_device *dev, int pri)
3396 {
3397 struct ipw2100_priv *priv = libipw_priv(dev);
3398 struct list_head *element;
3399 struct ipw2100_tx_packet *packet;
3400 unsigned long flags;
3401
3402 spin_lock_irqsave(&priv->low_lock, flags);
3403
3404 if (!(priv->status & STATUS_ASSOCIATED)) {
3405 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3406 priv->net_dev->stats.tx_carrier_errors++;
3407 netif_stop_queue(dev);
3408 goto fail_unlock;
3409 }
3410
3411 if (list_empty(&priv->tx_free_list))
3412 goto fail_unlock;
3413
3414 element = priv->tx_free_list.next;
3415 packet = list_entry(element, struct ipw2100_tx_packet, list);
3416
3417 packet->info.d_struct.txb = txb;
3418
3419 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3420 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3421
3422 packet->jiffy_start = jiffies;
3423
3424 list_del(element);
3425 DEC_STAT(&priv->tx_free_stat);
3426
3427 list_add_tail(element, &priv->tx_pend_list);
3428 INC_STAT(&priv->tx_pend_stat);
3429
3430 ipw2100_tx_send_data(priv);
3431
3432 spin_unlock_irqrestore(&priv->low_lock, flags);
3433 return NETDEV_TX_OK;
3434
3435 fail_unlock:
3436 netif_stop_queue(dev);
3437 spin_unlock_irqrestore(&priv->low_lock, flags);
3438 return NETDEV_TX_BUSY;
3439 }
3440
3441 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3442 {
3443 int i, j, err = -EINVAL;
3444 void *v;
3445 dma_addr_t p;
3446
3447 priv->msg_buffers =
3448 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3449 GFP_KERNEL);
3450 if (!priv->msg_buffers)
3451 return -ENOMEM;
3452
3453 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3454 v = pci_zalloc_consistent(priv->pci_dev,
3455 sizeof(struct ipw2100_cmd_header),
3456 &p);
3457 if (!v) {
3458 printk(KERN_ERR DRV_NAME ": "
3459 "%s: PCI alloc failed for msg "
3460 "buffers.\n", priv->net_dev->name);
3461 err = -ENOMEM;
3462 break;
3463 }
3464
3465 priv->msg_buffers[i].type = COMMAND;
3466 priv->msg_buffers[i].info.c_struct.cmd =
3467 (struct ipw2100_cmd_header *)v;
3468 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3469 }
3470
3471 if (i == IPW_COMMAND_POOL_SIZE)
3472 return 0;
3473
3474 for (j = 0; j < i; j++) {
3475 pci_free_consistent(priv->pci_dev,
3476 sizeof(struct ipw2100_cmd_header),
3477 priv->msg_buffers[j].info.c_struct.cmd,
3478 priv->msg_buffers[j].info.c_struct.
3479 cmd_phys);
3480 }
3481
3482 kfree(priv->msg_buffers);
3483 priv->msg_buffers = NULL;
3484
3485 return err;
3486 }
3487
3488 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3489 {
3490 int i;
3491
3492 INIT_LIST_HEAD(&priv->msg_free_list);
3493 INIT_LIST_HEAD(&priv->msg_pend_list);
3494
3495 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3496 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3497 SET_STAT(&priv->msg_free_stat, i);
3498
3499 return 0;
3500 }
3501
3502 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3503 {
3504 int i;
3505
3506 if (!priv->msg_buffers)
3507 return;
3508
3509 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3510 pci_free_consistent(priv->pci_dev,
3511 sizeof(struct ipw2100_cmd_header),
3512 priv->msg_buffers[i].info.c_struct.cmd,
3513 priv->msg_buffers[i].info.c_struct.
3514 cmd_phys);
3515 }
3516
3517 kfree(priv->msg_buffers);
3518 priv->msg_buffers = NULL;
3519 }
3520
3521 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3522 char *buf)
3523 {
3524 struct pci_dev *pci_dev = to_pci_dev(d);
3525 char *out = buf;
3526 int i, j;
3527 u32 val;
3528
3529 for (i = 0; i < 16; i++) {
3530 out += sprintf(out, "[%08X] ", i * 16);
3531 for (j = 0; j < 16; j += 4) {
3532 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3533 out += sprintf(out, "%08X ", val);
3534 }
3535 out += sprintf(out, "\n");
3536 }
3537
3538 return out - buf;
3539 }
3540
3541 static DEVICE_ATTR(pci, 0444, show_pci, NULL);
3542
3543 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3544 char *buf)
3545 {
3546 struct ipw2100_priv *p = dev_get_drvdata(d);
3547 return sprintf(buf, "0x%08x\n", (int)p->config);
3548 }
3549
3550 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
3551
3552 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3553 char *buf)
3554 {
3555 struct ipw2100_priv *p = dev_get_drvdata(d);
3556 return sprintf(buf, "0x%08x\n", (int)p->status);
3557 }
3558
3559 static DEVICE_ATTR(status, 0444, show_status, NULL);
3560
3561 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3562 char *buf)
3563 {
3564 struct ipw2100_priv *p = dev_get_drvdata(d);
3565 return sprintf(buf, "0x%08x\n", (int)p->capability);
3566 }
3567
3568 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
3569
3570 #define IPW2100_REG(x) { IPW_ ##x, #x }
3571 static const struct {
3572 u32 addr;
3573 const char *name;
3574 } hw_data[] = {
3575 IPW2100_REG(REG_GP_CNTRL),
3576 IPW2100_REG(REG_GPIO),
3577 IPW2100_REG(REG_INTA),
3578 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3579 #define IPW2100_NIC(x, s) { x, #x, s }
3580 static const struct {
3581 u32 addr;
3582 const char *name;
3583 size_t size;
3584 } nic_data[] = {
3585 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3586 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3587 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3588 static const struct {
3589 u8 index;
3590 const char *name;
3591 const char *desc;
3592 } ord_data[] = {
3593 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3594 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3595 "successful Host Tx's (MSDU)"),
3596 IPW2100_ORD(STAT_TX_DIR_DATA,
3597 "successful Directed Tx's (MSDU)"),
3598 IPW2100_ORD(STAT_TX_DIR_DATA1,
3599 "successful Directed Tx's (MSDU) @ 1MB"),
3600 IPW2100_ORD(STAT_TX_DIR_DATA2,
3601 "successful Directed Tx's (MSDU) @ 2MB"),
3602 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3603 "successful Directed Tx's (MSDU) @ 5_5MB"),
3604 IPW2100_ORD(STAT_TX_DIR_DATA11,
3605 "successful Directed Tx's (MSDU) @ 11MB"),
3606 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3607 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3608 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3609 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3610 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3611 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3612 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3613 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3614 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3615 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3616 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3617 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3618 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3619 IPW2100_ORD(STAT_TX_ASSN_RESP,
3620 "successful Association response Tx's"),
3621 IPW2100_ORD(STAT_TX_REASSN,
3622 "successful Reassociation Tx's"),
3623 IPW2100_ORD(STAT_TX_REASSN_RESP,
3624 "successful Reassociation response Tx's"),
3625 IPW2100_ORD(STAT_TX_PROBE,
3626 "probes successfully transmitted"),
3627 IPW2100_ORD(STAT_TX_PROBE_RESP,
3628 "probe responses successfully transmitted"),
3629 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3630 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3631 IPW2100_ORD(STAT_TX_DISASSN,
3632 "successful Disassociation TX"),
3633 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3634 IPW2100_ORD(STAT_TX_DEAUTH,
3635 "successful Deauthentication TX"),
3636 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3637 "Total successful Tx data bytes"),
3638 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3639 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3640 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3641 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3642 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3643 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3644 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3645 "times max tries in a hop failed"),
3646 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3647 "times disassociation failed"),
3648 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3649 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3650 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3651 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3652 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3653 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3654 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3655 "directed packets at 5.5MB"),
3656 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3657 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3658 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3659 "nondirected packets at 1MB"),
3660 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3661 "nondirected packets at 2MB"),
3662 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3663 "nondirected packets at 5.5MB"),
3664 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3665 "nondirected packets at 11MB"),
3666 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3667 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3668 "Rx CTS"),
3669 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3670 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3671 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3672 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3673 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3674 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3675 IPW2100_ORD(STAT_RX_REASSN_RESP,
3676 "Reassociation response Rx's"),
3677 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3678 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3679 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3680 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3681 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3682 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3683 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3684 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3685 "Total rx data bytes received"),
3686 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3687 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3688 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3689 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3690 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3691 IPW2100_ORD(STAT_RX_DUPLICATE1,
3692 "duplicate rx packets at 1MB"),
3693 IPW2100_ORD(STAT_RX_DUPLICATE2,
3694 "duplicate rx packets at 2MB"),
3695 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3696 "duplicate rx packets at 5.5MB"),
3697 IPW2100_ORD(STAT_RX_DUPLICATE11,
3698 "duplicate rx packets at 11MB"),
3699 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3700 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3701 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3702 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3703 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3704 "rx frames with invalid protocol"),
3705 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3706 IPW2100_ORD(STAT_RX_NO_BUFFER,
3707 "rx frames rejected due to no buffer"),
3708 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3709 "rx frames dropped due to missing fragment"),
3710 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3711 "rx frames dropped due to non-sequential fragment"),
3712 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3713 "rx frames dropped due to unmatched 1st frame"),
3714 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3715 "rx frames dropped due to uncompleted frame"),
3716 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3717 "ICV errors during decryption"),
3718 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3719 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3720 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3721 "poll response timeouts"),
3722 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3723 "timeouts waiting for last {broad,multi}cast pkt"),
3724 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3725 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3726 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3727 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3728 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3729 "current calculation of % missed beacons"),
3730 IPW2100_ORD(STAT_PERCENT_RETRIES,
3731 "current calculation of % missed tx retries"),
3732 IPW2100_ORD(ASSOCIATED_AP_PTR,
3733 "0 if not associated, else pointer to AP table entry"),
3734 IPW2100_ORD(AVAILABLE_AP_CNT,
3735 "AP's decsribed in the AP table"),
3736 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3737 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3738 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3739 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3740 "failures due to response fail"),
3741 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3742 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3743 IPW2100_ORD(STAT_ROAM_INHIBIT,
3744 "times roaming was inhibited due to activity"),
3745 IPW2100_ORD(RSSI_AT_ASSN,
3746 "RSSI of associated AP at time of association"),
3747 IPW2100_ORD(STAT_ASSN_CAUSE1,
3748 "reassociation: no probe response or TX on hop"),
3749 IPW2100_ORD(STAT_ASSN_CAUSE2,
3750 "reassociation: poor tx/rx quality"),
3751 IPW2100_ORD(STAT_ASSN_CAUSE3,
3752 "reassociation: tx/rx quality (excessive AP load"),
3753 IPW2100_ORD(STAT_ASSN_CAUSE4,
3754 "reassociation: AP RSSI level"),
3755 IPW2100_ORD(STAT_ASSN_CAUSE5,
3756 "reassociations due to load leveling"),
3757 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3758 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3759 "times authentication response failed"),
3760 IPW2100_ORD(STATION_TABLE_CNT,
3761 "entries in association table"),
3762 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3763 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3764 IPW2100_ORD(COUNTRY_CODE,
3765 "IEEE country code as recv'd from beacon"),
3766 IPW2100_ORD(COUNTRY_CHANNELS,
3767 "channels supported by country"),
3768 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3769 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3770 IPW2100_ORD(ANTENNA_DIVERSITY,
3771 "TRUE if antenna diversity is disabled"),
3772 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3773 IPW2100_ORD(OUR_FREQ,
3774 "current radio freq lower digits - channel ID"),
3775 IPW2100_ORD(RTC_TIME, "current RTC time"),
3776 IPW2100_ORD(PORT_TYPE, "operating mode"),
3777 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3778 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3779 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3780 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3781 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3782 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3783 IPW2100_ORD(CAPABILITIES,
3784 "Management frame capability field"),
3785 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3786 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3787 IPW2100_ORD(RTS_THRESHOLD,
3788 "Min packet length for RTS handshaking"),
3789 IPW2100_ORD(INT_MODE, "International mode"),
3790 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3791 "protocol frag threshold"),
3792 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3793 "EEPROM offset in SRAM"),
3794 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3795 "EEPROM size in SRAM"),
3796 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3797 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3798 "EEPROM IBSS 11b channel set"),
3799 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3800 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3801 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3802 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3803 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3804
3805 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3806 char *buf)
3807 {
3808 int i;
3809 struct ipw2100_priv *priv = dev_get_drvdata(d);
3810 struct net_device *dev = priv->net_dev;
3811 char *out = buf;
3812 u32 val = 0;
3813
3814 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3815
3816 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3817 read_register(dev, hw_data[i].addr, &val);
3818 out += sprintf(out, "%30s [%08X] : %08X\n",
3819 hw_data[i].name, hw_data[i].addr, val);
3820 }
3821
3822 return out - buf;
3823 }
3824
3825 static DEVICE_ATTR(registers, 0444, show_registers, NULL);
3826
3827 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3828 char *buf)
3829 {
3830 struct ipw2100_priv *priv = dev_get_drvdata(d);
3831 struct net_device *dev = priv->net_dev;
3832 char *out = buf;
3833 int i;
3834
3835 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3836
3837 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3838 u8 tmp8;
3839 u16 tmp16;
3840 u32 tmp32;
3841
3842 switch (nic_data[i].size) {
3843 case 1:
3844 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3845 out += sprintf(out, "%30s [%08X] : %02X\n",
3846 nic_data[i].name, nic_data[i].addr,
3847 tmp8);
3848 break;
3849 case 2:
3850 read_nic_word(dev, nic_data[i].addr, &tmp16);
3851 out += sprintf(out, "%30s [%08X] : %04X\n",
3852 nic_data[i].name, nic_data[i].addr,
3853 tmp16);
3854 break;
3855 case 4:
3856 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3857 out += sprintf(out, "%30s [%08X] : %08X\n",
3858 nic_data[i].name, nic_data[i].addr,
3859 tmp32);
3860 break;
3861 }
3862 }
3863 return out - buf;
3864 }
3865
3866 static DEVICE_ATTR(hardware, 0444, show_hardware, NULL);
3867
3868 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3869 char *buf)
3870 {
3871 struct ipw2100_priv *priv = dev_get_drvdata(d);
3872 struct net_device *dev = priv->net_dev;
3873 static unsigned long loop = 0;
3874 int len = 0;
3875 u32 buffer[4];
3876 int i;
3877 char line[81];
3878
3879 if (loop >= 0x30000)
3880 loop = 0;
3881
3882 /* sysfs provides us PAGE_SIZE buffer */
3883 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3884
3885 if (priv->snapshot[0])
3886 for (i = 0; i < 4; i++)
3887 buffer[i] =
3888 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3889 else
3890 for (i = 0; i < 4; i++)
3891 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3892
3893 if (priv->dump_raw)
3894 len += sprintf(buf + len,
3895 "%c%c%c%c"
3896 "%c%c%c%c"
3897 "%c%c%c%c"
3898 "%c%c%c%c",
3899 ((u8 *) buffer)[0x0],
3900 ((u8 *) buffer)[0x1],
3901 ((u8 *) buffer)[0x2],
3902 ((u8 *) buffer)[0x3],
3903 ((u8 *) buffer)[0x4],
3904 ((u8 *) buffer)[0x5],
3905 ((u8 *) buffer)[0x6],
3906 ((u8 *) buffer)[0x7],
3907 ((u8 *) buffer)[0x8],
3908 ((u8 *) buffer)[0x9],
3909 ((u8 *) buffer)[0xa],
3910 ((u8 *) buffer)[0xb],
3911 ((u8 *) buffer)[0xc],
3912 ((u8 *) buffer)[0xd],
3913 ((u8 *) buffer)[0xe],
3914 ((u8 *) buffer)[0xf]);
3915 else
3916 len += sprintf(buf + len, "%s\n",
3917 snprint_line(line, sizeof(line),
3918 (u8 *) buffer, 16, loop));
3919 loop += 16;
3920 }
3921
3922 return len;
3923 }
3924
3925 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3926 const char *buf, size_t count)
3927 {
3928 struct ipw2100_priv *priv = dev_get_drvdata(d);
3929 struct net_device *dev = priv->net_dev;
3930 const char *p = buf;
3931
3932 (void)dev; /* kill unused-var warning for debug-only code */
3933
3934 if (count < 1)
3935 return count;
3936
3937 if (p[0] == '1' ||
3938 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3939 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3940 dev->name);
3941 priv->dump_raw = 1;
3942
3943 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3944 tolower(p[1]) == 'f')) {
3945 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3946 dev->name);
3947 priv->dump_raw = 0;
3948
3949 } else if (tolower(p[0]) == 'r') {
3950 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3951 ipw2100_snapshot_free(priv);
3952
3953 } else
3954 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3955 "reset = clear memory snapshot\n", dev->name);
3956
3957 return count;
3958 }
3959
3960 static DEVICE_ATTR(memory, 0644, show_memory, store_memory);
3961
3962 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3963 char *buf)
3964 {
3965 struct ipw2100_priv *priv = dev_get_drvdata(d);
3966 u32 val = 0;
3967 int len = 0;
3968 u32 val_len;
3969 static int loop = 0;
3970
3971 if (priv->status & STATUS_RF_KILL_MASK)
3972 return 0;
3973
3974 if (loop >= ARRAY_SIZE(ord_data))
3975 loop = 0;
3976
3977 /* sysfs provides us PAGE_SIZE buffer */
3978 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3979 val_len = sizeof(u32);
3980
3981 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3982 &val_len))
3983 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3984 ord_data[loop].index,
3985 ord_data[loop].desc);
3986 else
3987 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3988 ord_data[loop].index, val,
3989 ord_data[loop].desc);
3990 loop++;
3991 }
3992
3993 return len;
3994 }
3995
3996 static DEVICE_ATTR(ordinals, 0444, show_ordinals, NULL);
3997
3998 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3999 char *buf)
4000 {
4001 struct ipw2100_priv *priv = dev_get_drvdata(d);
4002 char *out = buf;
4003
4004 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4005 priv->interrupts, priv->tx_interrupts,
4006 priv->rx_interrupts, priv->inta_other);
4007 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4008 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4009 #ifdef CONFIG_IPW2100_DEBUG
4010 out += sprintf(out, "packet mismatch image: %s\n",
4011 priv->snapshot[0] ? "YES" : "NO");
4012 #endif
4013
4014 return out - buf;
4015 }
4016
4017 static DEVICE_ATTR(stats, 0444, show_stats, NULL);
4018
4019 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4020 {
4021 int err;
4022
4023 if (mode == priv->ieee->iw_mode)
4024 return 0;
4025
4026 err = ipw2100_disable_adapter(priv);
4027 if (err) {
4028 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4029 priv->net_dev->name, err);
4030 return err;
4031 }
4032
4033 switch (mode) {
4034 case IW_MODE_INFRA:
4035 priv->net_dev->type = ARPHRD_ETHER;
4036 break;
4037 case IW_MODE_ADHOC:
4038 priv->net_dev->type = ARPHRD_ETHER;
4039 break;
4040 #ifdef CONFIG_IPW2100_MONITOR
4041 case IW_MODE_MONITOR:
4042 priv->last_mode = priv->ieee->iw_mode;
4043 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4044 break;
4045 #endif /* CONFIG_IPW2100_MONITOR */
4046 }
4047
4048 priv->ieee->iw_mode = mode;
4049
4050 #ifdef CONFIG_PM
4051 /* Indicate ipw2100_download_firmware download firmware
4052 * from disk instead of memory. */
4053 ipw2100_firmware.version = 0;
4054 #endif
4055
4056 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4057 priv->reset_backoff = 0;
4058 schedule_reset(priv);
4059
4060 return 0;
4061 }
4062
4063 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4064 char *buf)
4065 {
4066 struct ipw2100_priv *priv = dev_get_drvdata(d);
4067 int len = 0;
4068
4069 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4070
4071 if (priv->status & STATUS_ASSOCIATED)
4072 len += sprintf(buf + len, "connected: %lu\n",
4073 get_seconds() - priv->connect_start);
4074 else
4075 len += sprintf(buf + len, "not connected\n");
4076
4077 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4078 DUMP_VAR(status, "08lx");
4079 DUMP_VAR(config, "08lx");
4080 DUMP_VAR(capability, "08lx");
4081
4082 len +=
4083 sprintf(buf + len, "last_rtc: %lu\n",
4084 (unsigned long)priv->last_rtc);
4085
4086 DUMP_VAR(fatal_error, "d");
4087 DUMP_VAR(stop_hang_check, "d");
4088 DUMP_VAR(stop_rf_kill, "d");
4089 DUMP_VAR(messages_sent, "d");
4090
4091 DUMP_VAR(tx_pend_stat.value, "d");
4092 DUMP_VAR(tx_pend_stat.hi, "d");
4093
4094 DUMP_VAR(tx_free_stat.value, "d");
4095 DUMP_VAR(tx_free_stat.lo, "d");
4096
4097 DUMP_VAR(msg_free_stat.value, "d");
4098 DUMP_VAR(msg_free_stat.lo, "d");
4099
4100 DUMP_VAR(msg_pend_stat.value, "d");
4101 DUMP_VAR(msg_pend_stat.hi, "d");
4102
4103 DUMP_VAR(fw_pend_stat.value, "d");
4104 DUMP_VAR(fw_pend_stat.hi, "d");
4105
4106 DUMP_VAR(txq_stat.value, "d");
4107 DUMP_VAR(txq_stat.lo, "d");
4108
4109 DUMP_VAR(ieee->scans, "d");
4110 DUMP_VAR(reset_backoff, "d");
4111
4112 return len;
4113 }
4114
4115 static DEVICE_ATTR(internals, 0444, show_internals, NULL);
4116
4117 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4118 char *buf)
4119 {
4120 struct ipw2100_priv *priv = dev_get_drvdata(d);
4121 char essid[IW_ESSID_MAX_SIZE + 1];
4122 u8 bssid[ETH_ALEN];
4123 u32 chan = 0;
4124 char *out = buf;
4125 unsigned int length;
4126 int ret;
4127
4128 if (priv->status & STATUS_RF_KILL_MASK)
4129 return 0;
4130
4131 memset(essid, 0, sizeof(essid));
4132 memset(bssid, 0, sizeof(bssid));
4133
4134 length = IW_ESSID_MAX_SIZE;
4135 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4136 if (ret)
4137 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4138 __LINE__);
4139
4140 length = sizeof(bssid);
4141 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4142 bssid, &length);
4143 if (ret)
4144 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4145 __LINE__);
4146
4147 length = sizeof(u32);
4148 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4149 if (ret)
4150 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4151 __LINE__);
4152
4153 out += sprintf(out, "ESSID: %s\n", essid);
4154 out += sprintf(out, "BSSID: %pM\n", bssid);
4155 out += sprintf(out, "Channel: %d\n", chan);
4156
4157 return out - buf;
4158 }
4159
4160 static DEVICE_ATTR(bssinfo, 0444, show_bssinfo, NULL);
4161
4162 #ifdef CONFIG_IPW2100_DEBUG
4163 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4164 {
4165 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4166 }
4167
4168 static ssize_t debug_level_store(struct device_driver *d,
4169 const char *buf, size_t count)
4170 {
4171 u32 val;
4172 int ret;
4173
4174 ret = kstrtou32(buf, 0, &val);
4175 if (ret)
4176 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4177 else
4178 ipw2100_debug_level = val;
4179
4180 return strnlen(buf, count);
4181 }
4182 static DRIVER_ATTR_RW(debug_level);
4183 #endif /* CONFIG_IPW2100_DEBUG */
4184
4185 static ssize_t show_fatal_error(struct device *d,
4186 struct device_attribute *attr, char *buf)
4187 {
4188 struct ipw2100_priv *priv = dev_get_drvdata(d);
4189 char *out = buf;
4190 int i;
4191
4192 if (priv->fatal_error)
4193 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4194 else
4195 out += sprintf(out, "0\n");
4196
4197 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4198 if (!priv->fatal_errors[(priv->fatal_index - i) %
4199 IPW2100_ERROR_QUEUE])
4200 continue;
4201
4202 out += sprintf(out, "%d. 0x%08X\n", i,
4203 priv->fatal_errors[(priv->fatal_index - i) %
4204 IPW2100_ERROR_QUEUE]);
4205 }
4206
4207 return out - buf;
4208 }
4209
4210 static ssize_t store_fatal_error(struct device *d,
4211 struct device_attribute *attr, const char *buf,
4212 size_t count)
4213 {
4214 struct ipw2100_priv *priv = dev_get_drvdata(d);
4215 schedule_reset(priv);
4216 return count;
4217 }
4218
4219 static DEVICE_ATTR(fatal_error, 0644, show_fatal_error, store_fatal_error);
4220
4221 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4222 char *buf)
4223 {
4224 struct ipw2100_priv *priv = dev_get_drvdata(d);
4225 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4226 }
4227
4228 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4229 const char *buf, size_t count)
4230 {
4231 struct ipw2100_priv *priv = dev_get_drvdata(d);
4232 struct net_device *dev = priv->net_dev;
4233 unsigned long val;
4234 int ret;
4235
4236 (void)dev; /* kill unused-var warning for debug-only code */
4237
4238 IPW_DEBUG_INFO("enter\n");
4239
4240 ret = kstrtoul(buf, 0, &val);
4241 if (ret) {
4242 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4243 } else {
4244 priv->ieee->scan_age = val;
4245 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4246 }
4247
4248 IPW_DEBUG_INFO("exit\n");
4249 return strnlen(buf, count);
4250 }
4251
4252 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
4253
4254 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4255 char *buf)
4256 {
4257 /* 0 - RF kill not enabled
4258 1 - SW based RF kill active (sysfs)
4259 2 - HW based RF kill active
4260 3 - Both HW and SW baed RF kill active */
4261 struct ipw2100_priv *priv = dev_get_drvdata(d);
4262 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4263 (rf_kill_active(priv) ? 0x2 : 0x0);
4264 return sprintf(buf, "%i\n", val);
4265 }
4266
4267 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4268 {
4269 if ((disable_radio ? 1 : 0) ==
4270 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4271 return 0;
4272
4273 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4274 disable_radio ? "OFF" : "ON");
4275
4276 mutex_lock(&priv->action_mutex);
4277
4278 if (disable_radio) {
4279 priv->status |= STATUS_RF_KILL_SW;
4280 ipw2100_down(priv);
4281 } else {
4282 priv->status &= ~STATUS_RF_KILL_SW;
4283 if (rf_kill_active(priv)) {
4284 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4285 "disabled by HW switch\n");
4286 /* Make sure the RF_KILL check timer is running */
4287 priv->stop_rf_kill = 0;
4288 mod_delayed_work(system_wq, &priv->rf_kill,
4289 round_jiffies_relative(HZ));
4290 } else
4291 schedule_reset(priv);
4292 }
4293
4294 mutex_unlock(&priv->action_mutex);
4295 return 1;
4296 }
4297
4298 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4299 const char *buf, size_t count)
4300 {
4301 struct ipw2100_priv *priv = dev_get_drvdata(d);
4302 ipw_radio_kill_sw(priv, buf[0] == '1');
4303 return count;
4304 }
4305
4306 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
4307
4308 static struct attribute *ipw2100_sysfs_entries[] = {
4309 &dev_attr_hardware.attr,
4310 &dev_attr_registers.attr,
4311 &dev_attr_ordinals.attr,
4312 &dev_attr_pci.attr,
4313 &dev_attr_stats.attr,
4314 &dev_attr_internals.attr,
4315 &dev_attr_bssinfo.attr,
4316 &dev_attr_memory.attr,
4317 &dev_attr_scan_age.attr,
4318 &dev_attr_fatal_error.attr,
4319 &dev_attr_rf_kill.attr,
4320 &dev_attr_cfg.attr,
4321 &dev_attr_status.attr,
4322 &dev_attr_capability.attr,
4323 NULL,
4324 };
4325
4326 static const struct attribute_group ipw2100_attribute_group = {
4327 .attrs = ipw2100_sysfs_entries,
4328 };
4329
4330 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4331 {
4332 struct ipw2100_status_queue *q = &priv->status_queue;
4333
4334 IPW_DEBUG_INFO("enter\n");
4335
4336 q->size = entries * sizeof(struct ipw2100_status);
4337 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4338 if (!q->drv) {
4339 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4340 return -ENOMEM;
4341 }
4342
4343 IPW_DEBUG_INFO("exit\n");
4344
4345 return 0;
4346 }
4347
4348 static void status_queue_free(struct ipw2100_priv *priv)
4349 {
4350 IPW_DEBUG_INFO("enter\n");
4351
4352 if (priv->status_queue.drv) {
4353 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4354 priv->status_queue.drv,
4355 priv->status_queue.nic);
4356 priv->status_queue.drv = NULL;
4357 }
4358
4359 IPW_DEBUG_INFO("exit\n");
4360 }
4361
4362 static int bd_queue_allocate(struct ipw2100_priv *priv,
4363 struct ipw2100_bd_queue *q, int entries)
4364 {
4365 IPW_DEBUG_INFO("enter\n");
4366
4367 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4368
4369 q->entries = entries;
4370 q->size = entries * sizeof(struct ipw2100_bd);
4371 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4372 if (!q->drv) {
4373 IPW_DEBUG_INFO
4374 ("can't allocate shared memory for buffer descriptors\n");
4375 return -ENOMEM;
4376 }
4377
4378 IPW_DEBUG_INFO("exit\n");
4379
4380 return 0;
4381 }
4382
4383 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4384 {
4385 IPW_DEBUG_INFO("enter\n");
4386
4387 if (!q)
4388 return;
4389
4390 if (q->drv) {
4391 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4392 q->drv = NULL;
4393 }
4394
4395 IPW_DEBUG_INFO("exit\n");
4396 }
4397
4398 static void bd_queue_initialize(struct ipw2100_priv *priv,
4399 struct ipw2100_bd_queue *q, u32 base, u32 size,
4400 u32 r, u32 w)
4401 {
4402 IPW_DEBUG_INFO("enter\n");
4403
4404 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4405 (u32) q->nic);
4406
4407 write_register(priv->net_dev, base, q->nic);
4408 write_register(priv->net_dev, size, q->entries);
4409 write_register(priv->net_dev, r, q->oldest);
4410 write_register(priv->net_dev, w, q->next);
4411
4412 IPW_DEBUG_INFO("exit\n");
4413 }
4414
4415 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4416 {
4417 priv->stop_rf_kill = 1;
4418 priv->stop_hang_check = 1;
4419 cancel_delayed_work_sync(&priv->reset_work);
4420 cancel_delayed_work_sync(&priv->security_work);
4421 cancel_delayed_work_sync(&priv->wx_event_work);
4422 cancel_delayed_work_sync(&priv->hang_check);
4423 cancel_delayed_work_sync(&priv->rf_kill);
4424 cancel_delayed_work_sync(&priv->scan_event);
4425 }
4426
4427 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4428 {
4429 int i, j, err = -EINVAL;
4430 void *v;
4431 dma_addr_t p;
4432
4433 IPW_DEBUG_INFO("enter\n");
4434
4435 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4436 if (err) {
4437 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4438 priv->net_dev->name);
4439 return err;
4440 }
4441
4442 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4443 sizeof(struct ipw2100_tx_packet),
4444 GFP_ATOMIC);
4445 if (!priv->tx_buffers) {
4446 bd_queue_free(priv, &priv->tx_queue);
4447 return -ENOMEM;
4448 }
4449
4450 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4451 v = pci_alloc_consistent(priv->pci_dev,
4452 sizeof(struct ipw2100_data_header),
4453 &p);
4454 if (!v) {
4455 printk(KERN_ERR DRV_NAME
4456 ": %s: PCI alloc failed for tx " "buffers.\n",
4457 priv->net_dev->name);
4458 err = -ENOMEM;
4459 break;
4460 }
4461
4462 priv->tx_buffers[i].type = DATA;
4463 priv->tx_buffers[i].info.d_struct.data =
4464 (struct ipw2100_data_header *)v;
4465 priv->tx_buffers[i].info.d_struct.data_phys = p;
4466 priv->tx_buffers[i].info.d_struct.txb = NULL;
4467 }
4468
4469 if (i == TX_PENDED_QUEUE_LENGTH)
4470 return 0;
4471
4472 for (j = 0; j < i; j++) {
4473 pci_free_consistent(priv->pci_dev,
4474 sizeof(struct ipw2100_data_header),
4475 priv->tx_buffers[j].info.d_struct.data,
4476 priv->tx_buffers[j].info.d_struct.
4477 data_phys);
4478 }
4479
4480 kfree(priv->tx_buffers);
4481 priv->tx_buffers = NULL;
4482
4483 return err;
4484 }
4485
4486 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4487 {
4488 int i;
4489
4490 IPW_DEBUG_INFO("enter\n");
4491
4492 /*
4493 * reinitialize packet info lists
4494 */
4495 INIT_LIST_HEAD(&priv->fw_pend_list);
4496 INIT_STAT(&priv->fw_pend_stat);
4497
4498 /*
4499 * reinitialize lists
4500 */
4501 INIT_LIST_HEAD(&priv->tx_pend_list);
4502 INIT_LIST_HEAD(&priv->tx_free_list);
4503 INIT_STAT(&priv->tx_pend_stat);
4504 INIT_STAT(&priv->tx_free_stat);
4505
4506 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4507 /* We simply drop any SKBs that have been queued for
4508 * transmit */
4509 if (priv->tx_buffers[i].info.d_struct.txb) {
4510 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4511 txb);
4512 priv->tx_buffers[i].info.d_struct.txb = NULL;
4513 }
4514
4515 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4516 }
4517
4518 SET_STAT(&priv->tx_free_stat, i);
4519
4520 priv->tx_queue.oldest = 0;
4521 priv->tx_queue.available = priv->tx_queue.entries;
4522 priv->tx_queue.next = 0;
4523 INIT_STAT(&priv->txq_stat);
4524 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4525
4526 bd_queue_initialize(priv, &priv->tx_queue,
4527 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4528 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4529 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4530 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4531
4532 IPW_DEBUG_INFO("exit\n");
4533
4534 }
4535
4536 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4537 {
4538 int i;
4539
4540 IPW_DEBUG_INFO("enter\n");
4541
4542 bd_queue_free(priv, &priv->tx_queue);
4543
4544 if (!priv->tx_buffers)
4545 return;
4546
4547 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4548 if (priv->tx_buffers[i].info.d_struct.txb) {
4549 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4550 txb);
4551 priv->tx_buffers[i].info.d_struct.txb = NULL;
4552 }
4553 if (priv->tx_buffers[i].info.d_struct.data)
4554 pci_free_consistent(priv->pci_dev,
4555 sizeof(struct ipw2100_data_header),
4556 priv->tx_buffers[i].info.d_struct.
4557 data,
4558 priv->tx_buffers[i].info.d_struct.
4559 data_phys);
4560 }
4561
4562 kfree(priv->tx_buffers);
4563 priv->tx_buffers = NULL;
4564
4565 IPW_DEBUG_INFO("exit\n");
4566 }
4567
4568 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4569 {
4570 int i, j, err = -EINVAL;
4571
4572 IPW_DEBUG_INFO("enter\n");
4573
4574 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4575 if (err) {
4576 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4577 return err;
4578 }
4579
4580 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4581 if (err) {
4582 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4583 bd_queue_free(priv, &priv->rx_queue);
4584 return err;
4585 }
4586
4587 /*
4588 * allocate packets
4589 */
4590 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4591 sizeof(struct ipw2100_rx_packet),
4592 GFP_KERNEL);
4593 if (!priv->rx_buffers) {
4594 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4595
4596 bd_queue_free(priv, &priv->rx_queue);
4597
4598 status_queue_free(priv);
4599
4600 return -ENOMEM;
4601 }
4602
4603 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4604 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4605
4606 err = ipw2100_alloc_skb(priv, packet);
4607 if (unlikely(err)) {
4608 err = -ENOMEM;
4609 break;
4610 }
4611
4612 /* The BD holds the cache aligned address */
4613 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4614 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4615 priv->status_queue.drv[i].status_fields = 0;
4616 }
4617
4618 if (i == RX_QUEUE_LENGTH)
4619 return 0;
4620
4621 for (j = 0; j < i; j++) {
4622 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4623 sizeof(struct ipw2100_rx_packet),
4624 PCI_DMA_FROMDEVICE);
4625 dev_kfree_skb(priv->rx_buffers[j].skb);
4626 }
4627
4628 kfree(priv->rx_buffers);
4629 priv->rx_buffers = NULL;
4630
4631 bd_queue_free(priv, &priv->rx_queue);
4632
4633 status_queue_free(priv);
4634
4635 return err;
4636 }
4637
4638 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4639 {
4640 IPW_DEBUG_INFO("enter\n");
4641
4642 priv->rx_queue.oldest = 0;
4643 priv->rx_queue.available = priv->rx_queue.entries - 1;
4644 priv->rx_queue.next = priv->rx_queue.entries - 1;
4645
4646 INIT_STAT(&priv->rxq_stat);
4647 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4648
4649 bd_queue_initialize(priv, &priv->rx_queue,
4650 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4651 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4652 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4653 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4654
4655 /* set up the status queue */
4656 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4657 priv->status_queue.nic);
4658
4659 IPW_DEBUG_INFO("exit\n");
4660 }
4661
4662 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4663 {
4664 int i;
4665
4666 IPW_DEBUG_INFO("enter\n");
4667
4668 bd_queue_free(priv, &priv->rx_queue);
4669 status_queue_free(priv);
4670
4671 if (!priv->rx_buffers)
4672 return;
4673
4674 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4675 if (priv->rx_buffers[i].rxp) {
4676 pci_unmap_single(priv->pci_dev,
4677 priv->rx_buffers[i].dma_addr,
4678 sizeof(struct ipw2100_rx),
4679 PCI_DMA_FROMDEVICE);
4680 dev_kfree_skb(priv->rx_buffers[i].skb);
4681 }
4682 }
4683
4684 kfree(priv->rx_buffers);
4685 priv->rx_buffers = NULL;
4686
4687 IPW_DEBUG_INFO("exit\n");
4688 }
4689
4690 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4691 {
4692 u32 length = ETH_ALEN;
4693 u8 addr[ETH_ALEN];
4694
4695 int err;
4696
4697 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4698 if (err) {
4699 IPW_DEBUG_INFO("MAC address read failed\n");
4700 return -EIO;
4701 }
4702
4703 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4704 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4705
4706 return 0;
4707 }
4708
4709 /********************************************************************
4710 *
4711 * Firmware Commands
4712 *
4713 ********************************************************************/
4714
4715 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4716 {
4717 struct host_command cmd = {
4718 .host_command = ADAPTER_ADDRESS,
4719 .host_command_sequence = 0,
4720 .host_command_length = ETH_ALEN
4721 };
4722 int err;
4723
4724 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4725
4726 IPW_DEBUG_INFO("enter\n");
4727
4728 if (priv->config & CFG_CUSTOM_MAC) {
4729 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4730 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4731 } else
4732 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4733 ETH_ALEN);
4734
4735 err = ipw2100_hw_send_command(priv, &cmd);
4736
4737 IPW_DEBUG_INFO("exit\n");
4738 return err;
4739 }
4740
4741 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4742 int batch_mode)
4743 {
4744 struct host_command cmd = {
4745 .host_command = PORT_TYPE,
4746 .host_command_sequence = 0,
4747 .host_command_length = sizeof(u32)
4748 };
4749 int err;
4750
4751 switch (port_type) {
4752 case IW_MODE_INFRA:
4753 cmd.host_command_parameters[0] = IPW_BSS;
4754 break;
4755 case IW_MODE_ADHOC:
4756 cmd.host_command_parameters[0] = IPW_IBSS;
4757 break;
4758 }
4759
4760 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4761 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4762
4763 if (!batch_mode) {
4764 err = ipw2100_disable_adapter(priv);
4765 if (err) {
4766 printk(KERN_ERR DRV_NAME
4767 ": %s: Could not disable adapter %d\n",
4768 priv->net_dev->name, err);
4769 return err;
4770 }
4771 }
4772
4773 /* send cmd to firmware */
4774 err = ipw2100_hw_send_command(priv, &cmd);
4775
4776 if (!batch_mode)
4777 ipw2100_enable_adapter(priv);
4778
4779 return err;
4780 }
4781
4782 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4783 int batch_mode)
4784 {
4785 struct host_command cmd = {
4786 .host_command = CHANNEL,
4787 .host_command_sequence = 0,
4788 .host_command_length = sizeof(u32)
4789 };
4790 int err;
4791
4792 cmd.host_command_parameters[0] = channel;
4793
4794 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4795
4796 /* If BSS then we don't support channel selection */
4797 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4798 return 0;
4799
4800 if ((channel != 0) &&
4801 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4802 return -EINVAL;
4803
4804 if (!batch_mode) {
4805 err = ipw2100_disable_adapter(priv);
4806 if (err)
4807 return err;
4808 }
4809
4810 err = ipw2100_hw_send_command(priv, &cmd);
4811 if (err) {
4812 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4813 return err;
4814 }
4815
4816 if (channel)
4817 priv->config |= CFG_STATIC_CHANNEL;
4818 else
4819 priv->config &= ~CFG_STATIC_CHANNEL;
4820
4821 priv->channel = channel;
4822
4823 if (!batch_mode) {
4824 err = ipw2100_enable_adapter(priv);
4825 if (err)
4826 return err;
4827 }
4828
4829 return 0;
4830 }
4831
4832 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4833 {
4834 struct host_command cmd = {
4835 .host_command = SYSTEM_CONFIG,
4836 .host_command_sequence = 0,
4837 .host_command_length = 12,
4838 };
4839 u32 ibss_mask, len = sizeof(u32);
4840 int err;
4841
4842 /* Set system configuration */
4843
4844 if (!batch_mode) {
4845 err = ipw2100_disable_adapter(priv);
4846 if (err)
4847 return err;
4848 }
4849
4850 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4851 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4852
4853 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4854 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4855
4856 if (!(priv->config & CFG_LONG_PREAMBLE))
4857 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4858
4859 err = ipw2100_get_ordinal(priv,
4860 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4861 &ibss_mask, &len);
4862 if (err)
4863 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4864
4865 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4866 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4867
4868 /* 11b only */
4869 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4870
4871 err = ipw2100_hw_send_command(priv, &cmd);
4872 if (err)
4873 return err;
4874
4875 /* If IPv6 is configured in the kernel then we don't want to filter out all
4876 * of the multicast packets as IPv6 needs some. */
4877 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4878 cmd.host_command = ADD_MULTICAST;
4879 cmd.host_command_sequence = 0;
4880 cmd.host_command_length = 0;
4881
4882 ipw2100_hw_send_command(priv, &cmd);
4883 #endif
4884 if (!batch_mode) {
4885 err = ipw2100_enable_adapter(priv);
4886 if (err)
4887 return err;
4888 }
4889
4890 return 0;
4891 }
4892
4893 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4894 int batch_mode)
4895 {
4896 struct host_command cmd = {
4897 .host_command = BASIC_TX_RATES,
4898 .host_command_sequence = 0,
4899 .host_command_length = 4
4900 };
4901 int err;
4902
4903 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4904
4905 if (!batch_mode) {
4906 err = ipw2100_disable_adapter(priv);
4907 if (err)
4908 return err;
4909 }
4910
4911 /* Set BASIC TX Rate first */
4912 ipw2100_hw_send_command(priv, &cmd);
4913
4914 /* Set TX Rate */
4915 cmd.host_command = TX_RATES;
4916 ipw2100_hw_send_command(priv, &cmd);
4917
4918 /* Set MSDU TX Rate */
4919 cmd.host_command = MSDU_TX_RATES;
4920 ipw2100_hw_send_command(priv, &cmd);
4921
4922 if (!batch_mode) {
4923 err = ipw2100_enable_adapter(priv);
4924 if (err)
4925 return err;
4926 }
4927
4928 priv->tx_rates = rate;
4929
4930 return 0;
4931 }
4932
4933 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4934 {
4935 struct host_command cmd = {
4936 .host_command = POWER_MODE,
4937 .host_command_sequence = 0,
4938 .host_command_length = 4
4939 };
4940 int err;
4941
4942 cmd.host_command_parameters[0] = power_level;
4943
4944 err = ipw2100_hw_send_command(priv, &cmd);
4945 if (err)
4946 return err;
4947
4948 if (power_level == IPW_POWER_MODE_CAM)
4949 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4950 else
4951 priv->power_mode = IPW_POWER_ENABLED | power_level;
4952
4953 #ifdef IPW2100_TX_POWER
4954 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4955 /* Set beacon interval */
4956 cmd.host_command = TX_POWER_INDEX;
4957 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4958
4959 err = ipw2100_hw_send_command(priv, &cmd);
4960 if (err)
4961 return err;
4962 }
4963 #endif
4964
4965 return 0;
4966 }
4967
4968 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4969 {
4970 struct host_command cmd = {
4971 .host_command = RTS_THRESHOLD,
4972 .host_command_sequence = 0,
4973 .host_command_length = 4
4974 };
4975 int err;
4976
4977 if (threshold & RTS_DISABLED)
4978 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4979 else
4980 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4981
4982 err = ipw2100_hw_send_command(priv, &cmd);
4983 if (err)
4984 return err;
4985
4986 priv->rts_threshold = threshold;
4987
4988 return 0;
4989 }
4990
4991 #if 0
4992 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4993 u32 threshold, int batch_mode)
4994 {
4995 struct host_command cmd = {
4996 .host_command = FRAG_THRESHOLD,
4997 .host_command_sequence = 0,
4998 .host_command_length = 4,
4999 .host_command_parameters[0] = 0,
5000 };
5001 int err;
5002
5003 if (!batch_mode) {
5004 err = ipw2100_disable_adapter(priv);
5005 if (err)
5006 return err;
5007 }
5008
5009 if (threshold == 0)
5010 threshold = DEFAULT_FRAG_THRESHOLD;
5011 else {
5012 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5013 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5014 }
5015
5016 cmd.host_command_parameters[0] = threshold;
5017
5018 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5019
5020 err = ipw2100_hw_send_command(priv, &cmd);
5021
5022 if (!batch_mode)
5023 ipw2100_enable_adapter(priv);
5024
5025 if (!err)
5026 priv->frag_threshold = threshold;
5027
5028 return err;
5029 }
5030 #endif
5031
5032 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5033 {
5034 struct host_command cmd = {
5035 .host_command = SHORT_RETRY_LIMIT,
5036 .host_command_sequence = 0,
5037 .host_command_length = 4
5038 };
5039 int err;
5040
5041 cmd.host_command_parameters[0] = retry;
5042
5043 err = ipw2100_hw_send_command(priv, &cmd);
5044 if (err)
5045 return err;
5046
5047 priv->short_retry_limit = retry;
5048
5049 return 0;
5050 }
5051
5052 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5053 {
5054 struct host_command cmd = {
5055 .host_command = LONG_RETRY_LIMIT,
5056 .host_command_sequence = 0,
5057 .host_command_length = 4
5058 };
5059 int err;
5060
5061 cmd.host_command_parameters[0] = retry;
5062
5063 err = ipw2100_hw_send_command(priv, &cmd);
5064 if (err)
5065 return err;
5066
5067 priv->long_retry_limit = retry;
5068
5069 return 0;
5070 }
5071
5072 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5073 int batch_mode)
5074 {
5075 struct host_command cmd = {
5076 .host_command = MANDATORY_BSSID,
5077 .host_command_sequence = 0,
5078 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5079 };
5080 int err;
5081
5082 #ifdef CONFIG_IPW2100_DEBUG
5083 if (bssid != NULL)
5084 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5085 else
5086 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5087 #endif
5088 /* if BSSID is empty then we disable mandatory bssid mode */
5089 if (bssid != NULL)
5090 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5091
5092 if (!batch_mode) {
5093 err = ipw2100_disable_adapter(priv);
5094 if (err)
5095 return err;
5096 }
5097
5098 err = ipw2100_hw_send_command(priv, &cmd);
5099
5100 if (!batch_mode)
5101 ipw2100_enable_adapter(priv);
5102
5103 return err;
5104 }
5105
5106 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5107 {
5108 struct host_command cmd = {
5109 .host_command = DISASSOCIATION_BSSID,
5110 .host_command_sequence = 0,
5111 .host_command_length = ETH_ALEN
5112 };
5113 int err;
5114 int len;
5115
5116 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5117
5118 len = ETH_ALEN;
5119 /* The Firmware currently ignores the BSSID and just disassociates from
5120 * the currently associated AP -- but in the off chance that a future
5121 * firmware does use the BSSID provided here, we go ahead and try and
5122 * set it to the currently associated AP's BSSID */
5123 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5124
5125 err = ipw2100_hw_send_command(priv, &cmd);
5126
5127 return err;
5128 }
5129
5130 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5131 struct ipw2100_wpa_assoc_frame *, int)
5132 __attribute__ ((unused));
5133
5134 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5135 struct ipw2100_wpa_assoc_frame *wpa_frame,
5136 int batch_mode)
5137 {
5138 struct host_command cmd = {
5139 .host_command = SET_WPA_IE,
5140 .host_command_sequence = 0,
5141 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5142 };
5143 int err;
5144
5145 IPW_DEBUG_HC("SET_WPA_IE\n");
5146
5147 if (!batch_mode) {
5148 err = ipw2100_disable_adapter(priv);
5149 if (err)
5150 return err;
5151 }
5152
5153 memcpy(cmd.host_command_parameters, wpa_frame,
5154 sizeof(struct ipw2100_wpa_assoc_frame));
5155
5156 err = ipw2100_hw_send_command(priv, &cmd);
5157
5158 if (!batch_mode) {
5159 if (ipw2100_enable_adapter(priv))
5160 err = -EIO;
5161 }
5162
5163 return err;
5164 }
5165
5166 struct security_info_params {
5167 u32 allowed_ciphers;
5168 u16 version;
5169 u8 auth_mode;
5170 u8 replay_counters_number;
5171 u8 unicast_using_group;
5172 } __packed;
5173
5174 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5175 int auth_mode,
5176 int security_level,
5177 int unicast_using_group,
5178 int batch_mode)
5179 {
5180 struct host_command cmd = {
5181 .host_command = SET_SECURITY_INFORMATION,
5182 .host_command_sequence = 0,
5183 .host_command_length = sizeof(struct security_info_params)
5184 };
5185 struct security_info_params *security =
5186 (struct security_info_params *)&cmd.host_command_parameters;
5187 int err;
5188 memset(security, 0, sizeof(*security));
5189
5190 /* If shared key AP authentication is turned on, then we need to
5191 * configure the firmware to try and use it.
5192 *
5193 * Actual data encryption/decryption is handled by the host. */
5194 security->auth_mode = auth_mode;
5195 security->unicast_using_group = unicast_using_group;
5196
5197 switch (security_level) {
5198 default:
5199 case SEC_LEVEL_0:
5200 security->allowed_ciphers = IPW_NONE_CIPHER;
5201 break;
5202 case SEC_LEVEL_1:
5203 security->allowed_ciphers = IPW_WEP40_CIPHER |
5204 IPW_WEP104_CIPHER;
5205 break;
5206 case SEC_LEVEL_2:
5207 security->allowed_ciphers = IPW_WEP40_CIPHER |
5208 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5209 break;
5210 case SEC_LEVEL_2_CKIP:
5211 security->allowed_ciphers = IPW_WEP40_CIPHER |
5212 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5213 break;
5214 case SEC_LEVEL_3:
5215 security->allowed_ciphers = IPW_WEP40_CIPHER |
5216 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5217 break;
5218 }
5219
5220 IPW_DEBUG_HC
5221 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5222 security->auth_mode, security->allowed_ciphers, security_level);
5223
5224 security->replay_counters_number = 0;
5225
5226 if (!batch_mode) {
5227 err = ipw2100_disable_adapter(priv);
5228 if (err)
5229 return err;
5230 }
5231
5232 err = ipw2100_hw_send_command(priv, &cmd);
5233
5234 if (!batch_mode)
5235 ipw2100_enable_adapter(priv);
5236
5237 return err;
5238 }
5239
5240 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5241 {
5242 struct host_command cmd = {
5243 .host_command = TX_POWER_INDEX,
5244 .host_command_sequence = 0,
5245 .host_command_length = 4
5246 };
5247 int err = 0;
5248 u32 tmp = tx_power;
5249
5250 if (tx_power != IPW_TX_POWER_DEFAULT)
5251 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5252 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5253
5254 cmd.host_command_parameters[0] = tmp;
5255
5256 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5257 err = ipw2100_hw_send_command(priv, &cmd);
5258 if (!err)
5259 priv->tx_power = tx_power;
5260
5261 return 0;
5262 }
5263
5264 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5265 u32 interval, int batch_mode)
5266 {
5267 struct host_command cmd = {
5268 .host_command = BEACON_INTERVAL,
5269 .host_command_sequence = 0,
5270 .host_command_length = 4
5271 };
5272 int err;
5273
5274 cmd.host_command_parameters[0] = interval;
5275
5276 IPW_DEBUG_INFO("enter\n");
5277
5278 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5279 if (!batch_mode) {
5280 err = ipw2100_disable_adapter(priv);
5281 if (err)
5282 return err;
5283 }
5284
5285 ipw2100_hw_send_command(priv, &cmd);
5286
5287 if (!batch_mode) {
5288 err = ipw2100_enable_adapter(priv);
5289 if (err)
5290 return err;
5291 }
5292 }
5293
5294 IPW_DEBUG_INFO("exit\n");
5295
5296 return 0;
5297 }
5298
5299 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5300 {
5301 ipw2100_tx_initialize(priv);
5302 ipw2100_rx_initialize(priv);
5303 ipw2100_msg_initialize(priv);
5304 }
5305
5306 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5307 {
5308 ipw2100_tx_free(priv);
5309 ipw2100_rx_free(priv);
5310 ipw2100_msg_free(priv);
5311 }
5312
5313 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5314 {
5315 if (ipw2100_tx_allocate(priv) ||
5316 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5317 goto fail;
5318
5319 return 0;
5320
5321 fail:
5322 ipw2100_tx_free(priv);
5323 ipw2100_rx_free(priv);
5324 ipw2100_msg_free(priv);
5325 return -ENOMEM;
5326 }
5327
5328 #define IPW_PRIVACY_CAPABLE 0x0008
5329
5330 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5331 int batch_mode)
5332 {
5333 struct host_command cmd = {
5334 .host_command = WEP_FLAGS,
5335 .host_command_sequence = 0,
5336 .host_command_length = 4
5337 };
5338 int err;
5339
5340 cmd.host_command_parameters[0] = flags;
5341
5342 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5343
5344 if (!batch_mode) {
5345 err = ipw2100_disable_adapter(priv);
5346 if (err) {
5347 printk(KERN_ERR DRV_NAME
5348 ": %s: Could not disable adapter %d\n",
5349 priv->net_dev->name, err);
5350 return err;
5351 }
5352 }
5353
5354 /* send cmd to firmware */
5355 err = ipw2100_hw_send_command(priv, &cmd);
5356
5357 if (!batch_mode)
5358 ipw2100_enable_adapter(priv);
5359
5360 return err;
5361 }
5362
5363 struct ipw2100_wep_key {
5364 u8 idx;
5365 u8 len;
5366 u8 key[13];
5367 };
5368
5369 /* Macros to ease up priting WEP keys */
5370 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5371 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5372 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5373 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5374
5375 /**
5376 * Set a the wep key
5377 *
5378 * @priv: struct to work on
5379 * @idx: index of the key we want to set
5380 * @key: ptr to the key data to set
5381 * @len: length of the buffer at @key
5382 * @batch_mode: FIXME perform the operation in batch mode, not
5383 * disabling the device.
5384 *
5385 * @returns 0 if OK, < 0 errno code on error.
5386 *
5387 * Fill out a command structure with the new wep key, length an
5388 * index and send it down the wire.
5389 */
5390 static int ipw2100_set_key(struct ipw2100_priv *priv,
5391 int idx, char *key, int len, int batch_mode)
5392 {
5393 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5394 struct host_command cmd = {
5395 .host_command = WEP_KEY_INFO,
5396 .host_command_sequence = 0,
5397 .host_command_length = sizeof(struct ipw2100_wep_key),
5398 };
5399 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5400 int err;
5401
5402 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5403 idx, keylen, len);
5404
5405 /* NOTE: We don't check cached values in case the firmware was reset
5406 * or some other problem is occurring. If the user is setting the key,
5407 * then we push the change */
5408
5409 wep_key->idx = idx;
5410 wep_key->len = keylen;
5411
5412 if (keylen) {
5413 memcpy(wep_key->key, key, len);
5414 memset(wep_key->key + len, 0, keylen - len);
5415 }
5416
5417 /* Will be optimized out on debug not being configured in */
5418 if (keylen == 0)
5419 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5420 priv->net_dev->name, wep_key->idx);
5421 else if (keylen == 5)
5422 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5423 priv->net_dev->name, wep_key->idx, wep_key->len,
5424 WEP_STR_64(wep_key->key));
5425 else
5426 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5427 "\n",
5428 priv->net_dev->name, wep_key->idx, wep_key->len,
5429 WEP_STR_128(wep_key->key));
5430
5431 if (!batch_mode) {
5432 err = ipw2100_disable_adapter(priv);
5433 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5434 if (err) {
5435 printk(KERN_ERR DRV_NAME
5436 ": %s: Could not disable adapter %d\n",
5437 priv->net_dev->name, err);
5438 return err;
5439 }
5440 }
5441
5442 /* send cmd to firmware */
5443 err = ipw2100_hw_send_command(priv, &cmd);
5444
5445 if (!batch_mode) {
5446 int err2 = ipw2100_enable_adapter(priv);
5447 if (err == 0)
5448 err = err2;
5449 }
5450 return err;
5451 }
5452
5453 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5454 int idx, int batch_mode)
5455 {
5456 struct host_command cmd = {
5457 .host_command = WEP_KEY_INDEX,
5458 .host_command_sequence = 0,
5459 .host_command_length = 4,
5460 .host_command_parameters = {idx},
5461 };
5462 int err;
5463
5464 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5465
5466 if (idx < 0 || idx > 3)
5467 return -EINVAL;
5468
5469 if (!batch_mode) {
5470 err = ipw2100_disable_adapter(priv);
5471 if (err) {
5472 printk(KERN_ERR DRV_NAME
5473 ": %s: Could not disable adapter %d\n",
5474 priv->net_dev->name, err);
5475 return err;
5476 }
5477 }
5478
5479 /* send cmd to firmware */
5480 err = ipw2100_hw_send_command(priv, &cmd);
5481
5482 if (!batch_mode)
5483 ipw2100_enable_adapter(priv);
5484
5485 return err;
5486 }
5487
5488 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5489 {
5490 int i, err, auth_mode, sec_level, use_group;
5491
5492 if (!(priv->status & STATUS_RUNNING))
5493 return 0;
5494
5495 if (!batch_mode) {
5496 err = ipw2100_disable_adapter(priv);
5497 if (err)
5498 return err;
5499 }
5500
5501 if (!priv->ieee->sec.enabled) {
5502 err =
5503 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5504 SEC_LEVEL_0, 0, 1);
5505 } else {
5506 auth_mode = IPW_AUTH_OPEN;
5507 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5508 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5509 auth_mode = IPW_AUTH_SHARED;
5510 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5511 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5512 }
5513
5514 sec_level = SEC_LEVEL_0;
5515 if (priv->ieee->sec.flags & SEC_LEVEL)
5516 sec_level = priv->ieee->sec.level;
5517
5518 use_group = 0;
5519 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5520 use_group = priv->ieee->sec.unicast_uses_group;
5521
5522 err =
5523 ipw2100_set_security_information(priv, auth_mode, sec_level,
5524 use_group, 1);
5525 }
5526
5527 if (err)
5528 goto exit;
5529
5530 if (priv->ieee->sec.enabled) {
5531 for (i = 0; i < 4; i++) {
5532 if (!(priv->ieee->sec.flags & (1 << i))) {
5533 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5534 priv->ieee->sec.key_sizes[i] = 0;
5535 } else {
5536 err = ipw2100_set_key(priv, i,
5537 priv->ieee->sec.keys[i],
5538 priv->ieee->sec.
5539 key_sizes[i], 1);
5540 if (err)
5541 goto exit;
5542 }
5543 }
5544
5545 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5546 }
5547
5548 /* Always enable privacy so the Host can filter WEP packets if
5549 * encrypted data is sent up */
5550 err =
5551 ipw2100_set_wep_flags(priv,
5552 priv->ieee->sec.
5553 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5554 if (err)
5555 goto exit;
5556
5557 priv->status &= ~STATUS_SECURITY_UPDATED;
5558
5559 exit:
5560 if (!batch_mode)
5561 ipw2100_enable_adapter(priv);
5562
5563 return err;
5564 }
5565
5566 static void ipw2100_security_work(struct work_struct *work)
5567 {
5568 struct ipw2100_priv *priv =
5569 container_of(work, struct ipw2100_priv, security_work.work);
5570
5571 /* If we happen to have reconnected before we get a chance to
5572 * process this, then update the security settings--which causes
5573 * a disassociation to occur */
5574 if (!(priv->status & STATUS_ASSOCIATED) &&
5575 priv->status & STATUS_SECURITY_UPDATED)
5576 ipw2100_configure_security(priv, 0);
5577 }
5578
5579 static void shim__set_security(struct net_device *dev,
5580 struct libipw_security *sec)
5581 {
5582 struct ipw2100_priv *priv = libipw_priv(dev);
5583 int i, force_update = 0;
5584
5585 mutex_lock(&priv->action_mutex);
5586 if (!(priv->status & STATUS_INITIALIZED))
5587 goto done;
5588
5589 for (i = 0; i < 4; i++) {
5590 if (sec->flags & (1 << i)) {
5591 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5592 if (sec->key_sizes[i] == 0)
5593 priv->ieee->sec.flags &= ~(1 << i);
5594 else
5595 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5596 sec->key_sizes[i]);
5597 if (sec->level == SEC_LEVEL_1) {
5598 priv->ieee->sec.flags |= (1 << i);
5599 priv->status |= STATUS_SECURITY_UPDATED;
5600 } else
5601 priv->ieee->sec.flags &= ~(1 << i);
5602 }
5603 }
5604
5605 if ((sec->flags & SEC_ACTIVE_KEY) &&
5606 priv->ieee->sec.active_key != sec->active_key) {
5607 if (sec->active_key <= 3) {
5608 priv->ieee->sec.active_key = sec->active_key;
5609 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5610 } else
5611 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5612
5613 priv->status |= STATUS_SECURITY_UPDATED;
5614 }
5615
5616 if ((sec->flags & SEC_AUTH_MODE) &&
5617 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5618 priv->ieee->sec.auth_mode = sec->auth_mode;
5619 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5620 priv->status |= STATUS_SECURITY_UPDATED;
5621 }
5622
5623 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5624 priv->ieee->sec.flags |= SEC_ENABLED;
5625 priv->ieee->sec.enabled = sec->enabled;
5626 priv->status |= STATUS_SECURITY_UPDATED;
5627 force_update = 1;
5628 }
5629
5630 if (sec->flags & SEC_ENCRYPT)
5631 priv->ieee->sec.encrypt = sec->encrypt;
5632
5633 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5634 priv->ieee->sec.level = sec->level;
5635 priv->ieee->sec.flags |= SEC_LEVEL;
5636 priv->status |= STATUS_SECURITY_UPDATED;
5637 }
5638
5639 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5640 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5641 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5642 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5643 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5644 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5645 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5646 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5647 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5648 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5649
5650 /* As a temporary work around to enable WPA until we figure out why
5651 * wpa_supplicant toggles the security capability of the driver, which
5652 * forces a disassociation with force_update...
5653 *
5654 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5655 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5656 ipw2100_configure_security(priv, 0);
5657 done:
5658 mutex_unlock(&priv->action_mutex);
5659 }
5660
5661 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5662 {
5663 int err;
5664 int batch_mode = 1;
5665 u8 *bssid;
5666
5667 IPW_DEBUG_INFO("enter\n");
5668
5669 err = ipw2100_disable_adapter(priv);
5670 if (err)
5671 return err;
5672 #ifdef CONFIG_IPW2100_MONITOR
5673 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5674 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5675 if (err)
5676 return err;
5677
5678 IPW_DEBUG_INFO("exit\n");
5679
5680 return 0;
5681 }
5682 #endif /* CONFIG_IPW2100_MONITOR */
5683
5684 err = ipw2100_read_mac_address(priv);
5685 if (err)
5686 return -EIO;
5687
5688 err = ipw2100_set_mac_address(priv, batch_mode);
5689 if (err)
5690 return err;
5691
5692 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5693 if (err)
5694 return err;
5695
5696 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5697 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5698 if (err)
5699 return err;
5700 }
5701
5702 err = ipw2100_system_config(priv, batch_mode);
5703 if (err)
5704 return err;
5705
5706 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5707 if (err)
5708 return err;
5709
5710 /* Default to power mode OFF */
5711 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5712 if (err)
5713 return err;
5714
5715 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5716 if (err)
5717 return err;
5718
5719 if (priv->config & CFG_STATIC_BSSID)
5720 bssid = priv->bssid;
5721 else
5722 bssid = NULL;
5723 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5724 if (err)
5725 return err;
5726
5727 if (priv->config & CFG_STATIC_ESSID)
5728 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5729 batch_mode);
5730 else
5731 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5732 if (err)
5733 return err;
5734
5735 err = ipw2100_configure_security(priv, batch_mode);
5736 if (err)
5737 return err;
5738
5739 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5740 err =
5741 ipw2100_set_ibss_beacon_interval(priv,
5742 priv->beacon_interval,
5743 batch_mode);
5744 if (err)
5745 return err;
5746
5747 err = ipw2100_set_tx_power(priv, priv->tx_power);
5748 if (err)
5749 return err;
5750 }
5751
5752 /*
5753 err = ipw2100_set_fragmentation_threshold(
5754 priv, priv->frag_threshold, batch_mode);
5755 if (err)
5756 return err;
5757 */
5758
5759 IPW_DEBUG_INFO("exit\n");
5760
5761 return 0;
5762 }
5763
5764 /*************************************************************************
5765 *
5766 * EXTERNALLY CALLED METHODS
5767 *
5768 *************************************************************************/
5769
5770 /* This method is called by the network layer -- not to be confused with
5771 * ipw2100_set_mac_address() declared above called by this driver (and this
5772 * method as well) to talk to the firmware */
5773 static int ipw2100_set_address(struct net_device *dev, void *p)
5774 {
5775 struct ipw2100_priv *priv = libipw_priv(dev);
5776 struct sockaddr *addr = p;
5777 int err = 0;
5778
5779 if (!is_valid_ether_addr(addr->sa_data))
5780 return -EADDRNOTAVAIL;
5781
5782 mutex_lock(&priv->action_mutex);
5783
5784 priv->config |= CFG_CUSTOM_MAC;
5785 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5786
5787 err = ipw2100_set_mac_address(priv, 0);
5788 if (err)
5789 goto done;
5790
5791 priv->reset_backoff = 0;
5792 mutex_unlock(&priv->action_mutex);
5793 ipw2100_reset_adapter(&priv->reset_work.work);
5794 return 0;
5795
5796 done:
5797 mutex_unlock(&priv->action_mutex);
5798 return err;
5799 }
5800
5801 static int ipw2100_open(struct net_device *dev)
5802 {
5803 struct ipw2100_priv *priv = libipw_priv(dev);
5804 unsigned long flags;
5805 IPW_DEBUG_INFO("dev->open\n");
5806
5807 spin_lock_irqsave(&priv->low_lock, flags);
5808 if (priv->status & STATUS_ASSOCIATED) {
5809 netif_carrier_on(dev);
5810 netif_start_queue(dev);
5811 }
5812 spin_unlock_irqrestore(&priv->low_lock, flags);
5813
5814 return 0;
5815 }
5816
5817 static int ipw2100_close(struct net_device *dev)
5818 {
5819 struct ipw2100_priv *priv = libipw_priv(dev);
5820 unsigned long flags;
5821 struct list_head *element;
5822 struct ipw2100_tx_packet *packet;
5823
5824 IPW_DEBUG_INFO("enter\n");
5825
5826 spin_lock_irqsave(&priv->low_lock, flags);
5827
5828 if (priv->status & STATUS_ASSOCIATED)
5829 netif_carrier_off(dev);
5830 netif_stop_queue(dev);
5831
5832 /* Flush the TX queue ... */
5833 while (!list_empty(&priv->tx_pend_list)) {
5834 element = priv->tx_pend_list.next;
5835 packet = list_entry(element, struct ipw2100_tx_packet, list);
5836
5837 list_del(element);
5838 DEC_STAT(&priv->tx_pend_stat);
5839
5840 libipw_txb_free(packet->info.d_struct.txb);
5841 packet->info.d_struct.txb = NULL;
5842
5843 list_add_tail(element, &priv->tx_free_list);
5844 INC_STAT(&priv->tx_free_stat);
5845 }
5846 spin_unlock_irqrestore(&priv->low_lock, flags);
5847
5848 IPW_DEBUG_INFO("exit\n");
5849
5850 return 0;
5851 }
5852
5853 /*
5854 * TODO: Fix this function... its just wrong
5855 */
5856 static void ipw2100_tx_timeout(struct net_device *dev)
5857 {
5858 struct ipw2100_priv *priv = libipw_priv(dev);
5859
5860 dev->stats.tx_errors++;
5861
5862 #ifdef CONFIG_IPW2100_MONITOR
5863 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5864 return;
5865 #endif
5866
5867 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5868 dev->name);
5869 schedule_reset(priv);
5870 }
5871
5872 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5873 {
5874 /* This is called when wpa_supplicant loads and closes the driver
5875 * interface. */
5876 priv->ieee->wpa_enabled = value;
5877 return 0;
5878 }
5879
5880 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5881 {
5882
5883 struct libipw_device *ieee = priv->ieee;
5884 struct libipw_security sec = {
5885 .flags = SEC_AUTH_MODE,
5886 };
5887 int ret = 0;
5888
5889 if (value & IW_AUTH_ALG_SHARED_KEY) {
5890 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5891 ieee->open_wep = 0;
5892 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5893 sec.auth_mode = WLAN_AUTH_OPEN;
5894 ieee->open_wep = 1;
5895 } else if (value & IW_AUTH_ALG_LEAP) {
5896 sec.auth_mode = WLAN_AUTH_LEAP;
5897 ieee->open_wep = 1;
5898 } else
5899 return -EINVAL;
5900
5901 if (ieee->set_security)
5902 ieee->set_security(ieee->dev, &sec);
5903 else
5904 ret = -EOPNOTSUPP;
5905
5906 return ret;
5907 }
5908
5909 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5910 char *wpa_ie, int wpa_ie_len)
5911 {
5912
5913 struct ipw2100_wpa_assoc_frame frame;
5914
5915 frame.fixed_ie_mask = 0;
5916
5917 /* copy WPA IE */
5918 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5919 frame.var_ie_len = wpa_ie_len;
5920
5921 /* make sure WPA is enabled */
5922 ipw2100_wpa_enable(priv, 1);
5923 ipw2100_set_wpa_ie(priv, &frame, 0);
5924 }
5925
5926 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5927 struct ethtool_drvinfo *info)
5928 {
5929 struct ipw2100_priv *priv = libipw_priv(dev);
5930 char fw_ver[64], ucode_ver[64];
5931
5932 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5933 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5934
5935 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5936 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5937
5938 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5939 fw_ver, priv->eeprom_version, ucode_ver);
5940
5941 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5942 sizeof(info->bus_info));
5943 }
5944
5945 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5946 {
5947 struct ipw2100_priv *priv = libipw_priv(dev);
5948 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5949 }
5950
5951 static const struct ethtool_ops ipw2100_ethtool_ops = {
5952 .get_link = ipw2100_ethtool_get_link,
5953 .get_drvinfo = ipw_ethtool_get_drvinfo,
5954 };
5955
5956 static void ipw2100_hang_check(struct work_struct *work)
5957 {
5958 struct ipw2100_priv *priv =
5959 container_of(work, struct ipw2100_priv, hang_check.work);
5960 unsigned long flags;
5961 u32 rtc = 0xa5a5a5a5;
5962 u32 len = sizeof(rtc);
5963 int restart = 0;
5964
5965 spin_lock_irqsave(&priv->low_lock, flags);
5966
5967 if (priv->fatal_error != 0) {
5968 /* If fatal_error is set then we need to restart */
5969 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5970 priv->net_dev->name);
5971
5972 restart = 1;
5973 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5974 (rtc == priv->last_rtc)) {
5975 /* Check if firmware is hung */
5976 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5977 priv->net_dev->name);
5978
5979 restart = 1;
5980 }
5981
5982 if (restart) {
5983 /* Kill timer */
5984 priv->stop_hang_check = 1;
5985 priv->hangs++;
5986
5987 /* Restart the NIC */
5988 schedule_reset(priv);
5989 }
5990
5991 priv->last_rtc = rtc;
5992
5993 if (!priv->stop_hang_check)
5994 schedule_delayed_work(&priv->hang_check, HZ / 2);
5995
5996 spin_unlock_irqrestore(&priv->low_lock, flags);
5997 }
5998
5999 static void ipw2100_rf_kill(struct work_struct *work)
6000 {
6001 struct ipw2100_priv *priv =
6002 container_of(work, struct ipw2100_priv, rf_kill.work);
6003 unsigned long flags;
6004
6005 spin_lock_irqsave(&priv->low_lock, flags);
6006
6007 if (rf_kill_active(priv)) {
6008 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6009 if (!priv->stop_rf_kill)
6010 schedule_delayed_work(&priv->rf_kill,
6011 round_jiffies_relative(HZ));
6012 goto exit_unlock;
6013 }
6014
6015 /* RF Kill is now disabled, so bring the device back up */
6016
6017 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6018 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6019 "device\n");
6020 schedule_reset(priv);
6021 } else
6022 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6023 "enabled\n");
6024
6025 exit_unlock:
6026 spin_unlock_irqrestore(&priv->low_lock, flags);
6027 }
6028
6029 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6030
6031 static const struct net_device_ops ipw2100_netdev_ops = {
6032 .ndo_open = ipw2100_open,
6033 .ndo_stop = ipw2100_close,
6034 .ndo_start_xmit = libipw_xmit,
6035 .ndo_tx_timeout = ipw2100_tx_timeout,
6036 .ndo_set_mac_address = ipw2100_set_address,
6037 .ndo_validate_addr = eth_validate_addr,
6038 };
6039
6040 /* Look into using netdev destructor to shutdown libipw? */
6041
6042 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6043 void __iomem * ioaddr)
6044 {
6045 struct ipw2100_priv *priv;
6046 struct net_device *dev;
6047
6048 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6049 if (!dev)
6050 return NULL;
6051 priv = libipw_priv(dev);
6052 priv->ieee = netdev_priv(dev);
6053 priv->pci_dev = pci_dev;
6054 priv->net_dev = dev;
6055 priv->ioaddr = ioaddr;
6056
6057 priv->ieee->hard_start_xmit = ipw2100_tx;
6058 priv->ieee->set_security = shim__set_security;
6059
6060 priv->ieee->perfect_rssi = -20;
6061 priv->ieee->worst_rssi = -85;
6062
6063 dev->netdev_ops = &ipw2100_netdev_ops;
6064 dev->ethtool_ops = &ipw2100_ethtool_ops;
6065 dev->wireless_handlers = &ipw2100_wx_handler_def;
6066 priv->wireless_data.libipw = priv->ieee;
6067 dev->wireless_data = &priv->wireless_data;
6068 dev->watchdog_timeo = 3 * HZ;
6069 dev->irq = 0;
6070 dev->min_mtu = 68;
6071 dev->max_mtu = LIBIPW_DATA_LEN;
6072
6073 /* NOTE: We don't use the wireless_handlers hook
6074 * in dev as the system will start throwing WX requests
6075 * to us before we're actually initialized and it just
6076 * ends up causing problems. So, we just handle
6077 * the WX extensions through the ipw2100_ioctl interface */
6078
6079 /* memset() puts everything to 0, so we only have explicitly set
6080 * those values that need to be something else */
6081
6082 /* If power management is turned on, default to AUTO mode */
6083 priv->power_mode = IPW_POWER_AUTO;
6084
6085 #ifdef CONFIG_IPW2100_MONITOR
6086 priv->config |= CFG_CRC_CHECK;
6087 #endif
6088 priv->ieee->wpa_enabled = 0;
6089 priv->ieee->drop_unencrypted = 0;
6090 priv->ieee->privacy_invoked = 0;
6091 priv->ieee->ieee802_1x = 1;
6092
6093 /* Set module parameters */
6094 switch (network_mode) {
6095 case 1:
6096 priv->ieee->iw_mode = IW_MODE_ADHOC;
6097 break;
6098 #ifdef CONFIG_IPW2100_MONITOR
6099 case 2:
6100 priv->ieee->iw_mode = IW_MODE_MONITOR;
6101 break;
6102 #endif
6103 default:
6104 case 0:
6105 priv->ieee->iw_mode = IW_MODE_INFRA;
6106 break;
6107 }
6108
6109 if (disable == 1)
6110 priv->status |= STATUS_RF_KILL_SW;
6111
6112 if (channel != 0 &&
6113 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6114 priv->config |= CFG_STATIC_CHANNEL;
6115 priv->channel = channel;
6116 }
6117
6118 if (associate)
6119 priv->config |= CFG_ASSOCIATE;
6120
6121 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6122 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6123 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6124 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6125 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6126 priv->tx_power = IPW_TX_POWER_DEFAULT;
6127 priv->tx_rates = DEFAULT_TX_RATES;
6128
6129 strcpy(priv->nick, "ipw2100");
6130
6131 spin_lock_init(&priv->low_lock);
6132 mutex_init(&priv->action_mutex);
6133 mutex_init(&priv->adapter_mutex);
6134
6135 init_waitqueue_head(&priv->wait_command_queue);
6136
6137 netif_carrier_off(dev);
6138
6139 INIT_LIST_HEAD(&priv->msg_free_list);
6140 INIT_LIST_HEAD(&priv->msg_pend_list);
6141 INIT_STAT(&priv->msg_free_stat);
6142 INIT_STAT(&priv->msg_pend_stat);
6143
6144 INIT_LIST_HEAD(&priv->tx_free_list);
6145 INIT_LIST_HEAD(&priv->tx_pend_list);
6146 INIT_STAT(&priv->tx_free_stat);
6147 INIT_STAT(&priv->tx_pend_stat);
6148
6149 INIT_LIST_HEAD(&priv->fw_pend_list);
6150 INIT_STAT(&priv->fw_pend_stat);
6151
6152 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6153 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6154 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6155 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6156 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6157 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6158
6159 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6160 ipw2100_irq_tasklet, (unsigned long)priv);
6161
6162 /* NOTE: We do not start the deferred work for status checks yet */
6163 priv->stop_rf_kill = 1;
6164 priv->stop_hang_check = 1;
6165
6166 return dev;
6167 }
6168
6169 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6170 const struct pci_device_id *ent)
6171 {
6172 void __iomem *ioaddr;
6173 struct net_device *dev = NULL;
6174 struct ipw2100_priv *priv = NULL;
6175 int err = 0;
6176 int registered = 0;
6177 u32 val;
6178
6179 IPW_DEBUG_INFO("enter\n");
6180
6181 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6182 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6183 err = -ENODEV;
6184 goto out;
6185 }
6186
6187 ioaddr = pci_iomap(pci_dev, 0, 0);
6188 if (!ioaddr) {
6189 printk(KERN_WARNING DRV_NAME
6190 "Error calling ioremap_nocache.\n");
6191 err = -EIO;
6192 goto fail;
6193 }
6194
6195 /* allocate and initialize our net_device */
6196 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6197 if (!dev) {
6198 printk(KERN_WARNING DRV_NAME
6199 "Error calling ipw2100_alloc_device.\n");
6200 err = -ENOMEM;
6201 goto fail;
6202 }
6203
6204 /* set up PCI mappings for device */
6205 err = pci_enable_device(pci_dev);
6206 if (err) {
6207 printk(KERN_WARNING DRV_NAME
6208 "Error calling pci_enable_device.\n");
6209 return err;
6210 }
6211
6212 priv = libipw_priv(dev);
6213
6214 pci_set_master(pci_dev);
6215 pci_set_drvdata(pci_dev, priv);
6216
6217 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6218 if (err) {
6219 printk(KERN_WARNING DRV_NAME
6220 "Error calling pci_set_dma_mask.\n");
6221 pci_disable_device(pci_dev);
6222 return err;
6223 }
6224
6225 err = pci_request_regions(pci_dev, DRV_NAME);
6226 if (err) {
6227 printk(KERN_WARNING DRV_NAME
6228 "Error calling pci_request_regions.\n");
6229 pci_disable_device(pci_dev);
6230 return err;
6231 }
6232
6233 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6234 * PCI Tx retries from interfering with C3 CPU state */
6235 pci_read_config_dword(pci_dev, 0x40, &val);
6236 if ((val & 0x0000ff00) != 0)
6237 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6238
6239 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6240 printk(KERN_WARNING DRV_NAME
6241 "Device not found via register read.\n");
6242 err = -ENODEV;
6243 goto fail;
6244 }
6245
6246 SET_NETDEV_DEV(dev, &pci_dev->dev);
6247
6248 /* Force interrupts to be shut off on the device */
6249 priv->status |= STATUS_INT_ENABLED;
6250 ipw2100_disable_interrupts(priv);
6251
6252 /* Allocate and initialize the Tx/Rx queues and lists */
6253 if (ipw2100_queues_allocate(priv)) {
6254 printk(KERN_WARNING DRV_NAME
6255 "Error calling ipw2100_queues_allocate.\n");
6256 err = -ENOMEM;
6257 goto fail;
6258 }
6259 ipw2100_queues_initialize(priv);
6260
6261 err = request_irq(pci_dev->irq,
6262 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6263 if (err) {
6264 printk(KERN_WARNING DRV_NAME
6265 "Error calling request_irq: %d.\n", pci_dev->irq);
6266 goto fail;
6267 }
6268 dev->irq = pci_dev->irq;
6269
6270 IPW_DEBUG_INFO("Attempting to register device...\n");
6271
6272 printk(KERN_INFO DRV_NAME
6273 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6274
6275 err = ipw2100_up(priv, 1);
6276 if (err)
6277 goto fail;
6278
6279 err = ipw2100_wdev_init(dev);
6280 if (err)
6281 goto fail;
6282 registered = 1;
6283
6284 /* Bring up the interface. Pre 0.46, after we registered the
6285 * network device we would call ipw2100_up. This introduced a race
6286 * condition with newer hotplug configurations (network was coming
6287 * up and making calls before the device was initialized).
6288 */
6289 err = register_netdev(dev);
6290 if (err) {
6291 printk(KERN_WARNING DRV_NAME
6292 "Error calling register_netdev.\n");
6293 goto fail;
6294 }
6295 registered = 2;
6296
6297 mutex_lock(&priv->action_mutex);
6298
6299 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6300
6301 /* perform this after register_netdev so that dev->name is set */
6302 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6303 if (err)
6304 goto fail_unlock;
6305
6306 /* If the RF Kill switch is disabled, go ahead and complete the
6307 * startup sequence */
6308 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6309 /* Enable the adapter - sends HOST_COMPLETE */
6310 if (ipw2100_enable_adapter(priv)) {
6311 printk(KERN_WARNING DRV_NAME
6312 ": %s: failed in call to enable adapter.\n",
6313 priv->net_dev->name);
6314 ipw2100_hw_stop_adapter(priv);
6315 err = -EIO;
6316 goto fail_unlock;
6317 }
6318
6319 /* Start a scan . . . */
6320 ipw2100_set_scan_options(priv);
6321 ipw2100_start_scan(priv);
6322 }
6323
6324 IPW_DEBUG_INFO("exit\n");
6325
6326 priv->status |= STATUS_INITIALIZED;
6327
6328 mutex_unlock(&priv->action_mutex);
6329 out:
6330 return err;
6331
6332 fail_unlock:
6333 mutex_unlock(&priv->action_mutex);
6334 fail:
6335 if (dev) {
6336 if (registered >= 2)
6337 unregister_netdev(dev);
6338
6339 if (registered) {
6340 wiphy_unregister(priv->ieee->wdev.wiphy);
6341 kfree(priv->ieee->bg_band.channels);
6342 }
6343
6344 ipw2100_hw_stop_adapter(priv);
6345
6346 ipw2100_disable_interrupts(priv);
6347
6348 if (dev->irq)
6349 free_irq(dev->irq, priv);
6350
6351 ipw2100_kill_works(priv);
6352
6353 /* These are safe to call even if they weren't allocated */
6354 ipw2100_queues_free(priv);
6355 sysfs_remove_group(&pci_dev->dev.kobj,
6356 &ipw2100_attribute_group);
6357
6358 free_libipw(dev, 0);
6359 }
6360
6361 pci_iounmap(pci_dev, ioaddr);
6362
6363 pci_release_regions(pci_dev);
6364 pci_disable_device(pci_dev);
6365 goto out;
6366 }
6367
6368 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6369 {
6370 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6371 struct net_device *dev = priv->net_dev;
6372
6373 mutex_lock(&priv->action_mutex);
6374
6375 priv->status &= ~STATUS_INITIALIZED;
6376
6377 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6378
6379 #ifdef CONFIG_PM
6380 if (ipw2100_firmware.version)
6381 ipw2100_release_firmware(priv, &ipw2100_firmware);
6382 #endif
6383 /* Take down the hardware */
6384 ipw2100_down(priv);
6385
6386 /* Release the mutex so that the network subsystem can
6387 * complete any needed calls into the driver... */
6388 mutex_unlock(&priv->action_mutex);
6389
6390 /* Unregister the device first - this results in close()
6391 * being called if the device is open. If we free storage
6392 * first, then close() will crash.
6393 * FIXME: remove the comment above. */
6394 unregister_netdev(dev);
6395
6396 ipw2100_kill_works(priv);
6397
6398 ipw2100_queues_free(priv);
6399
6400 /* Free potential debugging firmware snapshot */
6401 ipw2100_snapshot_free(priv);
6402
6403 free_irq(dev->irq, priv);
6404
6405 pci_iounmap(pci_dev, priv->ioaddr);
6406
6407 /* wiphy_unregister needs to be here, before free_libipw */
6408 wiphy_unregister(priv->ieee->wdev.wiphy);
6409 kfree(priv->ieee->bg_band.channels);
6410 free_libipw(dev, 0);
6411
6412 pci_release_regions(pci_dev);
6413 pci_disable_device(pci_dev);
6414
6415 IPW_DEBUG_INFO("exit\n");
6416 }
6417
6418 #ifdef CONFIG_PM
6419 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6420 {
6421 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6422 struct net_device *dev = priv->net_dev;
6423
6424 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6425
6426 mutex_lock(&priv->action_mutex);
6427 if (priv->status & STATUS_INITIALIZED) {
6428 /* Take down the device; powers it off, etc. */
6429 ipw2100_down(priv);
6430 }
6431
6432 /* Remove the PRESENT state of the device */
6433 netif_device_detach(dev);
6434
6435 pci_save_state(pci_dev);
6436 pci_disable_device(pci_dev);
6437 pci_set_power_state(pci_dev, PCI_D3hot);
6438
6439 priv->suspend_at = get_seconds();
6440
6441 mutex_unlock(&priv->action_mutex);
6442
6443 return 0;
6444 }
6445
6446 static int ipw2100_resume(struct pci_dev *pci_dev)
6447 {
6448 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6449 struct net_device *dev = priv->net_dev;
6450 int err;
6451 u32 val;
6452
6453 if (IPW2100_PM_DISABLED)
6454 return 0;
6455
6456 mutex_lock(&priv->action_mutex);
6457
6458 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6459
6460 pci_set_power_state(pci_dev, PCI_D0);
6461 err = pci_enable_device(pci_dev);
6462 if (err) {
6463 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6464 dev->name);
6465 mutex_unlock(&priv->action_mutex);
6466 return err;
6467 }
6468 pci_restore_state(pci_dev);
6469
6470 /*
6471 * Suspend/Resume resets the PCI configuration space, so we have to
6472 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6473 * from interfering with C3 CPU state. pci_restore_state won't help
6474 * here since it only restores the first 64 bytes pci config header.
6475 */
6476 pci_read_config_dword(pci_dev, 0x40, &val);
6477 if ((val & 0x0000ff00) != 0)
6478 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6479
6480 /* Set the device back into the PRESENT state; this will also wake
6481 * the queue of needed */
6482 netif_device_attach(dev);
6483
6484 priv->suspend_time = get_seconds() - priv->suspend_at;
6485
6486 /* Bring the device back up */
6487 if (!(priv->status & STATUS_RF_KILL_SW))
6488 ipw2100_up(priv, 0);
6489
6490 mutex_unlock(&priv->action_mutex);
6491
6492 return 0;
6493 }
6494 #endif
6495
6496 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6497 {
6498 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6499
6500 /* Take down the device; powers it off, etc. */
6501 ipw2100_down(priv);
6502
6503 pci_disable_device(pci_dev);
6504 }
6505
6506 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6507
6508 static const struct pci_device_id ipw2100_pci_id_table[] = {
6509 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6510 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6511 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6512 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6513 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6514 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6515 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6516 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6517 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6518 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6519 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6520 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6521 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6522
6523 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6524 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6525 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6526 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6527 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6528
6529 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6530 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6531 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6532 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6533 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6534 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6535 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6536
6537 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6538
6539 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6540 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6541 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6542 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6543 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6544 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6545 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6546
6547 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6548 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6549 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6550 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6551 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6552 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6553
6554 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6555 {0,},
6556 };
6557
6558 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6559
6560 static struct pci_driver ipw2100_pci_driver = {
6561 .name = DRV_NAME,
6562 .id_table = ipw2100_pci_id_table,
6563 .probe = ipw2100_pci_init_one,
6564 .remove = ipw2100_pci_remove_one,
6565 #ifdef CONFIG_PM
6566 .suspend = ipw2100_suspend,
6567 .resume = ipw2100_resume,
6568 #endif
6569 .shutdown = ipw2100_shutdown,
6570 };
6571
6572 /**
6573 * Initialize the ipw2100 driver/module
6574 *
6575 * @returns 0 if ok, < 0 errno node con error.
6576 *
6577 * Note: we cannot init the /proc stuff until the PCI driver is there,
6578 * or we risk an unlikely race condition on someone accessing
6579 * uninitialized data in the PCI dev struct through /proc.
6580 */
6581 static int __init ipw2100_init(void)
6582 {
6583 int ret;
6584
6585 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6586 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6587
6588 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6589 PM_QOS_DEFAULT_VALUE);
6590
6591 ret = pci_register_driver(&ipw2100_pci_driver);
6592 if (ret)
6593 goto out;
6594
6595 #ifdef CONFIG_IPW2100_DEBUG
6596 ipw2100_debug_level = debug;
6597 ret = driver_create_file(&ipw2100_pci_driver.driver,
6598 &driver_attr_debug_level);
6599 #endif
6600
6601 out:
6602 return ret;
6603 }
6604
6605 /**
6606 * Cleanup ipw2100 driver registration
6607 */
6608 static void __exit ipw2100_exit(void)
6609 {
6610 /* FIXME: IPG: check that we have no instances of the devices open */
6611 #ifdef CONFIG_IPW2100_DEBUG
6612 driver_remove_file(&ipw2100_pci_driver.driver,
6613 &driver_attr_debug_level);
6614 #endif
6615 pci_unregister_driver(&ipw2100_pci_driver);
6616 pm_qos_remove_request(&ipw2100_pm_qos_req);
6617 }
6618
6619 module_init(ipw2100_init);
6620 module_exit(ipw2100_exit);
6621
6622 static int ipw2100_wx_get_name(struct net_device *dev,
6623 struct iw_request_info *info,
6624 union iwreq_data *wrqu, char *extra)
6625 {
6626 /*
6627 * This can be called at any time. No action lock required
6628 */
6629
6630 struct ipw2100_priv *priv = libipw_priv(dev);
6631 if (!(priv->status & STATUS_ASSOCIATED))
6632 strcpy(wrqu->name, "unassociated");
6633 else
6634 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6635
6636 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6637 return 0;
6638 }
6639
6640 static int ipw2100_wx_set_freq(struct net_device *dev,
6641 struct iw_request_info *info,
6642 union iwreq_data *wrqu, char *extra)
6643 {
6644 struct ipw2100_priv *priv = libipw_priv(dev);
6645 struct iw_freq *fwrq = &wrqu->freq;
6646 int err = 0;
6647
6648 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6649 return -EOPNOTSUPP;
6650
6651 mutex_lock(&priv->action_mutex);
6652 if (!(priv->status & STATUS_INITIALIZED)) {
6653 err = -EIO;
6654 goto done;
6655 }
6656
6657 /* if setting by freq convert to channel */
6658 if (fwrq->e == 1) {
6659 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6660 int f = fwrq->m / 100000;
6661 int c = 0;
6662
6663 while ((c < REG_MAX_CHANNEL) &&
6664 (f != ipw2100_frequencies[c]))
6665 c++;
6666
6667 /* hack to fall through */
6668 fwrq->e = 0;
6669 fwrq->m = c + 1;
6670 }
6671 }
6672
6673 if (fwrq->e > 0 || fwrq->m > 1000) {
6674 err = -EOPNOTSUPP;
6675 goto done;
6676 } else { /* Set the channel */
6677 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6678 err = ipw2100_set_channel(priv, fwrq->m, 0);
6679 }
6680
6681 done:
6682 mutex_unlock(&priv->action_mutex);
6683 return err;
6684 }
6685
6686 static int ipw2100_wx_get_freq(struct net_device *dev,
6687 struct iw_request_info *info,
6688 union iwreq_data *wrqu, char *extra)
6689 {
6690 /*
6691 * This can be called at any time. No action lock required
6692 */
6693
6694 struct ipw2100_priv *priv = libipw_priv(dev);
6695
6696 wrqu->freq.e = 0;
6697
6698 /* If we are associated, trying to associate, or have a statically
6699 * configured CHANNEL then return that; otherwise return ANY */
6700 if (priv->config & CFG_STATIC_CHANNEL ||
6701 priv->status & STATUS_ASSOCIATED)
6702 wrqu->freq.m = priv->channel;
6703 else
6704 wrqu->freq.m = 0;
6705
6706 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6707 return 0;
6708
6709 }
6710
6711 static int ipw2100_wx_set_mode(struct net_device *dev,
6712 struct iw_request_info *info,
6713 union iwreq_data *wrqu, char *extra)
6714 {
6715 struct ipw2100_priv *priv = libipw_priv(dev);
6716 int err = 0;
6717
6718 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6719
6720 if (wrqu->mode == priv->ieee->iw_mode)
6721 return 0;
6722
6723 mutex_lock(&priv->action_mutex);
6724 if (!(priv->status & STATUS_INITIALIZED)) {
6725 err = -EIO;
6726 goto done;
6727 }
6728
6729 switch (wrqu->mode) {
6730 #ifdef CONFIG_IPW2100_MONITOR
6731 case IW_MODE_MONITOR:
6732 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6733 break;
6734 #endif /* CONFIG_IPW2100_MONITOR */
6735 case IW_MODE_ADHOC:
6736 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6737 break;
6738 case IW_MODE_INFRA:
6739 case IW_MODE_AUTO:
6740 default:
6741 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6742 break;
6743 }
6744
6745 done:
6746 mutex_unlock(&priv->action_mutex);
6747 return err;
6748 }
6749
6750 static int ipw2100_wx_get_mode(struct net_device *dev,
6751 struct iw_request_info *info,
6752 union iwreq_data *wrqu, char *extra)
6753 {
6754 /*
6755 * This can be called at any time. No action lock required
6756 */
6757
6758 struct ipw2100_priv *priv = libipw_priv(dev);
6759
6760 wrqu->mode = priv->ieee->iw_mode;
6761 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6762
6763 return 0;
6764 }
6765
6766 #define POWER_MODES 5
6767
6768 /* Values are in microsecond */
6769 static const s32 timeout_duration[POWER_MODES] = {
6770 350000,
6771 250000,
6772 75000,
6773 37000,
6774 25000,
6775 };
6776
6777 static const s32 period_duration[POWER_MODES] = {
6778 400000,
6779 700000,
6780 1000000,
6781 1000000,
6782 1000000
6783 };
6784
6785 static int ipw2100_wx_get_range(struct net_device *dev,
6786 struct iw_request_info *info,
6787 union iwreq_data *wrqu, char *extra)
6788 {
6789 /*
6790 * This can be called at any time. No action lock required
6791 */
6792
6793 struct ipw2100_priv *priv = libipw_priv(dev);
6794 struct iw_range *range = (struct iw_range *)extra;
6795 u16 val;
6796 int i, level;
6797
6798 wrqu->data.length = sizeof(*range);
6799 memset(range, 0, sizeof(*range));
6800
6801 /* Let's try to keep this struct in the same order as in
6802 * linux/include/wireless.h
6803 */
6804
6805 /* TODO: See what values we can set, and remove the ones we can't
6806 * set, or fill them with some default data.
6807 */
6808
6809 /* ~5 Mb/s real (802.11b) */
6810 range->throughput = 5 * 1000 * 1000;
6811
6812 // range->sensitivity; /* signal level threshold range */
6813
6814 range->max_qual.qual = 100;
6815 /* TODO: Find real max RSSI and stick here */
6816 range->max_qual.level = 0;
6817 range->max_qual.noise = 0;
6818 range->max_qual.updated = 7; /* Updated all three */
6819
6820 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6821 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6822 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6823 range->avg_qual.noise = 0;
6824 range->avg_qual.updated = 7; /* Updated all three */
6825
6826 range->num_bitrates = RATE_COUNT;
6827
6828 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6829 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6830 }
6831
6832 range->min_rts = MIN_RTS_THRESHOLD;
6833 range->max_rts = MAX_RTS_THRESHOLD;
6834 range->min_frag = MIN_FRAG_THRESHOLD;
6835 range->max_frag = MAX_FRAG_THRESHOLD;
6836
6837 range->min_pmp = period_duration[0]; /* Minimal PM period */
6838 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6839 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6840 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6841
6842 /* How to decode max/min PM period */
6843 range->pmp_flags = IW_POWER_PERIOD;
6844 /* How to decode max/min PM period */
6845 range->pmt_flags = IW_POWER_TIMEOUT;
6846 /* What PM options are supported */
6847 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6848
6849 range->encoding_size[0] = 5;
6850 range->encoding_size[1] = 13; /* Different token sizes */
6851 range->num_encoding_sizes = 2; /* Number of entry in the list */
6852 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6853 // range->encoding_login_index; /* token index for login token */
6854
6855 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6856 range->txpower_capa = IW_TXPOW_DBM;
6857 range->num_txpower = IW_MAX_TXPOWER;
6858 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6859 i < IW_MAX_TXPOWER;
6860 i++, level -=
6861 ((IPW_TX_POWER_MAX_DBM -
6862 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6863 range->txpower[i] = level / 16;
6864 } else {
6865 range->txpower_capa = 0;
6866 range->num_txpower = 0;
6867 }
6868
6869 /* Set the Wireless Extension versions */
6870 range->we_version_compiled = WIRELESS_EXT;
6871 range->we_version_source = 18;
6872
6873 // range->retry_capa; /* What retry options are supported */
6874 // range->retry_flags; /* How to decode max/min retry limit */
6875 // range->r_time_flags; /* How to decode max/min retry life */
6876 // range->min_retry; /* Minimal number of retries */
6877 // range->max_retry; /* Maximal number of retries */
6878 // range->min_r_time; /* Minimal retry lifetime */
6879 // range->max_r_time; /* Maximal retry lifetime */
6880
6881 range->num_channels = FREQ_COUNT;
6882
6883 val = 0;
6884 for (i = 0; i < FREQ_COUNT; i++) {
6885 // TODO: Include only legal frequencies for some countries
6886 // if (local->channel_mask & (1 << i)) {
6887 range->freq[val].i = i + 1;
6888 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6889 range->freq[val].e = 1;
6890 val++;
6891 // }
6892 if (val == IW_MAX_FREQUENCIES)
6893 break;
6894 }
6895 range->num_frequency = val;
6896
6897 /* Event capability (kernel + driver) */
6898 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6899 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6900 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6901
6902 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6903 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6904
6905 IPW_DEBUG_WX("GET Range\n");
6906
6907 return 0;
6908 }
6909
6910 static int ipw2100_wx_set_wap(struct net_device *dev,
6911 struct iw_request_info *info,
6912 union iwreq_data *wrqu, char *extra)
6913 {
6914 struct ipw2100_priv *priv = libipw_priv(dev);
6915 int err = 0;
6916
6917 // sanity checks
6918 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6919 return -EINVAL;
6920
6921 mutex_lock(&priv->action_mutex);
6922 if (!(priv->status & STATUS_INITIALIZED)) {
6923 err = -EIO;
6924 goto done;
6925 }
6926
6927 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6928 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6929 /* we disable mandatory BSSID association */
6930 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6931 priv->config &= ~CFG_STATIC_BSSID;
6932 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6933 goto done;
6934 }
6935
6936 priv->config |= CFG_STATIC_BSSID;
6937 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6938
6939 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6940
6941 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6942
6943 done:
6944 mutex_unlock(&priv->action_mutex);
6945 return err;
6946 }
6947
6948 static int ipw2100_wx_get_wap(struct net_device *dev,
6949 struct iw_request_info *info,
6950 union iwreq_data *wrqu, char *extra)
6951 {
6952 /*
6953 * This can be called at any time. No action lock required
6954 */
6955
6956 struct ipw2100_priv *priv = libipw_priv(dev);
6957
6958 /* If we are associated, trying to associate, or have a statically
6959 * configured BSSID then return that; otherwise return ANY */
6960 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6961 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6962 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6963 } else
6964 eth_zero_addr(wrqu->ap_addr.sa_data);
6965
6966 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6967 return 0;
6968 }
6969
6970 static int ipw2100_wx_set_essid(struct net_device *dev,
6971 struct iw_request_info *info,
6972 union iwreq_data *wrqu, char *extra)
6973 {
6974 struct ipw2100_priv *priv = libipw_priv(dev);
6975 char *essid = ""; /* ANY */
6976 int length = 0;
6977 int err = 0;
6978
6979 mutex_lock(&priv->action_mutex);
6980 if (!(priv->status & STATUS_INITIALIZED)) {
6981 err = -EIO;
6982 goto done;
6983 }
6984
6985 if (wrqu->essid.flags && wrqu->essid.length) {
6986 length = wrqu->essid.length;
6987 essid = extra;
6988 }
6989
6990 if (length == 0) {
6991 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6992 priv->config &= ~CFG_STATIC_ESSID;
6993 err = ipw2100_set_essid(priv, NULL, 0, 0);
6994 goto done;
6995 }
6996
6997 length = min(length, IW_ESSID_MAX_SIZE);
6998
6999 priv->config |= CFG_STATIC_ESSID;
7000
7001 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7002 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7003 err = 0;
7004 goto done;
7005 }
7006
7007 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7008
7009 priv->essid_len = length;
7010 memcpy(priv->essid, essid, priv->essid_len);
7011
7012 err = ipw2100_set_essid(priv, essid, length, 0);
7013
7014 done:
7015 mutex_unlock(&priv->action_mutex);
7016 return err;
7017 }
7018
7019 static int ipw2100_wx_get_essid(struct net_device *dev,
7020 struct iw_request_info *info,
7021 union iwreq_data *wrqu, char *extra)
7022 {
7023 /*
7024 * This can be called at any time. No action lock required
7025 */
7026
7027 struct ipw2100_priv *priv = libipw_priv(dev);
7028
7029 /* If we are associated, trying to associate, or have a statically
7030 * configured ESSID then return that; otherwise return ANY */
7031 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7032 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7033 priv->essid_len, priv->essid);
7034 memcpy(extra, priv->essid, priv->essid_len);
7035 wrqu->essid.length = priv->essid_len;
7036 wrqu->essid.flags = 1; /* active */
7037 } else {
7038 IPW_DEBUG_WX("Getting essid: ANY\n");
7039 wrqu->essid.length = 0;
7040 wrqu->essid.flags = 0; /* active */
7041 }
7042
7043 return 0;
7044 }
7045
7046 static int ipw2100_wx_set_nick(struct net_device *dev,
7047 struct iw_request_info *info,
7048 union iwreq_data *wrqu, char *extra)
7049 {
7050 /*
7051 * This can be called at any time. No action lock required
7052 */
7053
7054 struct ipw2100_priv *priv = libipw_priv(dev);
7055
7056 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7057 return -E2BIG;
7058
7059 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7060 memset(priv->nick, 0, sizeof(priv->nick));
7061 memcpy(priv->nick, extra, wrqu->data.length);
7062
7063 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7064
7065 return 0;
7066 }
7067
7068 static int ipw2100_wx_get_nick(struct net_device *dev,
7069 struct iw_request_info *info,
7070 union iwreq_data *wrqu, char *extra)
7071 {
7072 /*
7073 * This can be called at any time. No action lock required
7074 */
7075
7076 struct ipw2100_priv *priv = libipw_priv(dev);
7077
7078 wrqu->data.length = strlen(priv->nick);
7079 memcpy(extra, priv->nick, wrqu->data.length);
7080 wrqu->data.flags = 1; /* active */
7081
7082 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7083
7084 return 0;
7085 }
7086
7087 static int ipw2100_wx_set_rate(struct net_device *dev,
7088 struct iw_request_info *info,
7089 union iwreq_data *wrqu, char *extra)
7090 {
7091 struct ipw2100_priv *priv = libipw_priv(dev);
7092 u32 target_rate = wrqu->bitrate.value;
7093 u32 rate;
7094 int err = 0;
7095
7096 mutex_lock(&priv->action_mutex);
7097 if (!(priv->status & STATUS_INITIALIZED)) {
7098 err = -EIO;
7099 goto done;
7100 }
7101
7102 rate = 0;
7103
7104 if (target_rate == 1000000 ||
7105 (!wrqu->bitrate.fixed && target_rate > 1000000))
7106 rate |= TX_RATE_1_MBIT;
7107 if (target_rate == 2000000 ||
7108 (!wrqu->bitrate.fixed && target_rate > 2000000))
7109 rate |= TX_RATE_2_MBIT;
7110 if (target_rate == 5500000 ||
7111 (!wrqu->bitrate.fixed && target_rate > 5500000))
7112 rate |= TX_RATE_5_5_MBIT;
7113 if (target_rate == 11000000 ||
7114 (!wrqu->bitrate.fixed && target_rate > 11000000))
7115 rate |= TX_RATE_11_MBIT;
7116 if (rate == 0)
7117 rate = DEFAULT_TX_RATES;
7118
7119 err = ipw2100_set_tx_rates(priv, rate, 0);
7120
7121 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7122 done:
7123 mutex_unlock(&priv->action_mutex);
7124 return err;
7125 }
7126
7127 static int ipw2100_wx_get_rate(struct net_device *dev,
7128 struct iw_request_info *info,
7129 union iwreq_data *wrqu, char *extra)
7130 {
7131 struct ipw2100_priv *priv = libipw_priv(dev);
7132 int val;
7133 unsigned int len = sizeof(val);
7134 int err = 0;
7135
7136 if (!(priv->status & STATUS_ENABLED) ||
7137 priv->status & STATUS_RF_KILL_MASK ||
7138 !(priv->status & STATUS_ASSOCIATED)) {
7139 wrqu->bitrate.value = 0;
7140 return 0;
7141 }
7142
7143 mutex_lock(&priv->action_mutex);
7144 if (!(priv->status & STATUS_INITIALIZED)) {
7145 err = -EIO;
7146 goto done;
7147 }
7148
7149 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7150 if (err) {
7151 IPW_DEBUG_WX("failed querying ordinals.\n");
7152 goto done;
7153 }
7154
7155 switch (val & TX_RATE_MASK) {
7156 case TX_RATE_1_MBIT:
7157 wrqu->bitrate.value = 1000000;
7158 break;
7159 case TX_RATE_2_MBIT:
7160 wrqu->bitrate.value = 2000000;
7161 break;
7162 case TX_RATE_5_5_MBIT:
7163 wrqu->bitrate.value = 5500000;
7164 break;
7165 case TX_RATE_11_MBIT:
7166 wrqu->bitrate.value = 11000000;
7167 break;
7168 default:
7169 wrqu->bitrate.value = 0;
7170 }
7171
7172 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7173
7174 done:
7175 mutex_unlock(&priv->action_mutex);
7176 return err;
7177 }
7178
7179 static int ipw2100_wx_set_rts(struct net_device *dev,
7180 struct iw_request_info *info,
7181 union iwreq_data *wrqu, char *extra)
7182 {
7183 struct ipw2100_priv *priv = libipw_priv(dev);
7184 int value, err;
7185
7186 /* Auto RTS not yet supported */
7187 if (wrqu->rts.fixed == 0)
7188 return -EINVAL;
7189
7190 mutex_lock(&priv->action_mutex);
7191 if (!(priv->status & STATUS_INITIALIZED)) {
7192 err = -EIO;
7193 goto done;
7194 }
7195
7196 if (wrqu->rts.disabled)
7197 value = priv->rts_threshold | RTS_DISABLED;
7198 else {
7199 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7200 err = -EINVAL;
7201 goto done;
7202 }
7203 value = wrqu->rts.value;
7204 }
7205
7206 err = ipw2100_set_rts_threshold(priv, value);
7207
7208 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7209 done:
7210 mutex_unlock(&priv->action_mutex);
7211 return err;
7212 }
7213
7214 static int ipw2100_wx_get_rts(struct net_device *dev,
7215 struct iw_request_info *info,
7216 union iwreq_data *wrqu, char *extra)
7217 {
7218 /*
7219 * This can be called at any time. No action lock required
7220 */
7221
7222 struct ipw2100_priv *priv = libipw_priv(dev);
7223
7224 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7225 wrqu->rts.fixed = 1; /* no auto select */
7226
7227 /* If RTS is set to the default value, then it is disabled */
7228 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7229
7230 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7231
7232 return 0;
7233 }
7234
7235 static int ipw2100_wx_set_txpow(struct net_device *dev,
7236 struct iw_request_info *info,
7237 union iwreq_data *wrqu, char *extra)
7238 {
7239 struct ipw2100_priv *priv = libipw_priv(dev);
7240 int err = 0, value;
7241
7242 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7243 return -EINPROGRESS;
7244
7245 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7246 return 0;
7247
7248 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7249 return -EINVAL;
7250
7251 if (wrqu->txpower.fixed == 0)
7252 value = IPW_TX_POWER_DEFAULT;
7253 else {
7254 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7255 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7256 return -EINVAL;
7257
7258 value = wrqu->txpower.value;
7259 }
7260
7261 mutex_lock(&priv->action_mutex);
7262 if (!(priv->status & STATUS_INITIALIZED)) {
7263 err = -EIO;
7264 goto done;
7265 }
7266
7267 err = ipw2100_set_tx_power(priv, value);
7268
7269 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7270
7271 done:
7272 mutex_unlock(&priv->action_mutex);
7273 return err;
7274 }
7275
7276 static int ipw2100_wx_get_txpow(struct net_device *dev,
7277 struct iw_request_info *info,
7278 union iwreq_data *wrqu, char *extra)
7279 {
7280 /*
7281 * This can be called at any time. No action lock required
7282 */
7283
7284 struct ipw2100_priv *priv = libipw_priv(dev);
7285
7286 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7287
7288 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7289 wrqu->txpower.fixed = 0;
7290 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7291 } else {
7292 wrqu->txpower.fixed = 1;
7293 wrqu->txpower.value = priv->tx_power;
7294 }
7295
7296 wrqu->txpower.flags = IW_TXPOW_DBM;
7297
7298 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7299
7300 return 0;
7301 }
7302
7303 static int ipw2100_wx_set_frag(struct net_device *dev,
7304 struct iw_request_info *info,
7305 union iwreq_data *wrqu, char *extra)
7306 {
7307 /*
7308 * This can be called at any time. No action lock required
7309 */
7310
7311 struct ipw2100_priv *priv = libipw_priv(dev);
7312
7313 if (!wrqu->frag.fixed)
7314 return -EINVAL;
7315
7316 if (wrqu->frag.disabled) {
7317 priv->frag_threshold |= FRAG_DISABLED;
7318 priv->ieee->fts = DEFAULT_FTS;
7319 } else {
7320 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7321 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7322 return -EINVAL;
7323
7324 priv->ieee->fts = wrqu->frag.value & ~0x1;
7325 priv->frag_threshold = priv->ieee->fts;
7326 }
7327
7328 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7329
7330 return 0;
7331 }
7332
7333 static int ipw2100_wx_get_frag(struct net_device *dev,
7334 struct iw_request_info *info,
7335 union iwreq_data *wrqu, char *extra)
7336 {
7337 /*
7338 * This can be called at any time. No action lock required
7339 */
7340
7341 struct ipw2100_priv *priv = libipw_priv(dev);
7342 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7343 wrqu->frag.fixed = 0; /* no auto select */
7344 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7345
7346 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7347
7348 return 0;
7349 }
7350
7351 static int ipw2100_wx_set_retry(struct net_device *dev,
7352 struct iw_request_info *info,
7353 union iwreq_data *wrqu, char *extra)
7354 {
7355 struct ipw2100_priv *priv = libipw_priv(dev);
7356 int err = 0;
7357
7358 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7359 return -EINVAL;
7360
7361 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7362 return 0;
7363
7364 mutex_lock(&priv->action_mutex);
7365 if (!(priv->status & STATUS_INITIALIZED)) {
7366 err = -EIO;
7367 goto done;
7368 }
7369
7370 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7371 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7372 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7373 wrqu->retry.value);
7374 goto done;
7375 }
7376
7377 if (wrqu->retry.flags & IW_RETRY_LONG) {
7378 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7379 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7380 wrqu->retry.value);
7381 goto done;
7382 }
7383
7384 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7385 if (!err)
7386 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7387
7388 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7389
7390 done:
7391 mutex_unlock(&priv->action_mutex);
7392 return err;
7393 }
7394
7395 static int ipw2100_wx_get_retry(struct net_device *dev,
7396 struct iw_request_info *info,
7397 union iwreq_data *wrqu, char *extra)
7398 {
7399 /*
7400 * This can be called at any time. No action lock required
7401 */
7402
7403 struct ipw2100_priv *priv = libipw_priv(dev);
7404
7405 wrqu->retry.disabled = 0; /* can't be disabled */
7406
7407 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7408 return -EINVAL;
7409
7410 if (wrqu->retry.flags & IW_RETRY_LONG) {
7411 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7412 wrqu->retry.value = priv->long_retry_limit;
7413 } else {
7414 wrqu->retry.flags =
7415 (priv->short_retry_limit !=
7416 priv->long_retry_limit) ?
7417 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7418
7419 wrqu->retry.value = priv->short_retry_limit;
7420 }
7421
7422 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7423
7424 return 0;
7425 }
7426
7427 static int ipw2100_wx_set_scan(struct net_device *dev,
7428 struct iw_request_info *info,
7429 union iwreq_data *wrqu, char *extra)
7430 {
7431 struct ipw2100_priv *priv = libipw_priv(dev);
7432 int err = 0;
7433
7434 mutex_lock(&priv->action_mutex);
7435 if (!(priv->status & STATUS_INITIALIZED)) {
7436 err = -EIO;
7437 goto done;
7438 }
7439
7440 IPW_DEBUG_WX("Initiating scan...\n");
7441
7442 priv->user_requested_scan = 1;
7443 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7444 IPW_DEBUG_WX("Start scan failed.\n");
7445
7446 /* TODO: Mark a scan as pending so when hardware initialized
7447 * a scan starts */
7448 }
7449
7450 done:
7451 mutex_unlock(&priv->action_mutex);
7452 return err;
7453 }
7454
7455 static int ipw2100_wx_get_scan(struct net_device *dev,
7456 struct iw_request_info *info,
7457 union iwreq_data *wrqu, char *extra)
7458 {
7459 /*
7460 * This can be called at any time. No action lock required
7461 */
7462
7463 struct ipw2100_priv *priv = libipw_priv(dev);
7464 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7465 }
7466
7467 /*
7468 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7469 */
7470 static int ipw2100_wx_set_encode(struct net_device *dev,
7471 struct iw_request_info *info,
7472 union iwreq_data *wrqu, char *key)
7473 {
7474 /*
7475 * No check of STATUS_INITIALIZED required
7476 */
7477
7478 struct ipw2100_priv *priv = libipw_priv(dev);
7479 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7480 }
7481
7482 static int ipw2100_wx_get_encode(struct net_device *dev,
7483 struct iw_request_info *info,
7484 union iwreq_data *wrqu, char *key)
7485 {
7486 /*
7487 * This can be called at any time. No action lock required
7488 */
7489
7490 struct ipw2100_priv *priv = libipw_priv(dev);
7491 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7492 }
7493
7494 static int ipw2100_wx_set_power(struct net_device *dev,
7495 struct iw_request_info *info,
7496 union iwreq_data *wrqu, char *extra)
7497 {
7498 struct ipw2100_priv *priv = libipw_priv(dev);
7499 int err = 0;
7500
7501 mutex_lock(&priv->action_mutex);
7502 if (!(priv->status & STATUS_INITIALIZED)) {
7503 err = -EIO;
7504 goto done;
7505 }
7506
7507 if (wrqu->power.disabled) {
7508 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7509 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7510 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7511 goto done;
7512 }
7513
7514 switch (wrqu->power.flags & IW_POWER_MODE) {
7515 case IW_POWER_ON: /* If not specified */
7516 case IW_POWER_MODE: /* If set all mask */
7517 case IW_POWER_ALL_R: /* If explicitly state all */
7518 break;
7519 default: /* Otherwise we don't support it */
7520 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7521 wrqu->power.flags);
7522 err = -EOPNOTSUPP;
7523 goto done;
7524 }
7525
7526 /* If the user hasn't specified a power management mode yet, default
7527 * to BATTERY */
7528 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7529 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7530
7531 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7532
7533 done:
7534 mutex_unlock(&priv->action_mutex);
7535 return err;
7536
7537 }
7538
7539 static int ipw2100_wx_get_power(struct net_device *dev,
7540 struct iw_request_info *info,
7541 union iwreq_data *wrqu, char *extra)
7542 {
7543 /*
7544 * This can be called at any time. No action lock required
7545 */
7546
7547 struct ipw2100_priv *priv = libipw_priv(dev);
7548
7549 if (!(priv->power_mode & IPW_POWER_ENABLED))
7550 wrqu->power.disabled = 1;
7551 else {
7552 wrqu->power.disabled = 0;
7553 wrqu->power.flags = 0;
7554 }
7555
7556 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7557
7558 return 0;
7559 }
7560
7561 /*
7562 * WE-18 WPA support
7563 */
7564
7565 /* SIOCSIWGENIE */
7566 static int ipw2100_wx_set_genie(struct net_device *dev,
7567 struct iw_request_info *info,
7568 union iwreq_data *wrqu, char *extra)
7569 {
7570
7571 struct ipw2100_priv *priv = libipw_priv(dev);
7572 struct libipw_device *ieee = priv->ieee;
7573 u8 *buf;
7574
7575 if (!ieee->wpa_enabled)
7576 return -EOPNOTSUPP;
7577
7578 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7579 (wrqu->data.length && extra == NULL))
7580 return -EINVAL;
7581
7582 if (wrqu->data.length) {
7583 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7584 if (buf == NULL)
7585 return -ENOMEM;
7586
7587 kfree(ieee->wpa_ie);
7588 ieee->wpa_ie = buf;
7589 ieee->wpa_ie_len = wrqu->data.length;
7590 } else {
7591 kfree(ieee->wpa_ie);
7592 ieee->wpa_ie = NULL;
7593 ieee->wpa_ie_len = 0;
7594 }
7595
7596 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7597
7598 return 0;
7599 }
7600
7601 /* SIOCGIWGENIE */
7602 static int ipw2100_wx_get_genie(struct net_device *dev,
7603 struct iw_request_info *info,
7604 union iwreq_data *wrqu, char *extra)
7605 {
7606 struct ipw2100_priv *priv = libipw_priv(dev);
7607 struct libipw_device *ieee = priv->ieee;
7608
7609 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7610 wrqu->data.length = 0;
7611 return 0;
7612 }
7613
7614 if (wrqu->data.length < ieee->wpa_ie_len)
7615 return -E2BIG;
7616
7617 wrqu->data.length = ieee->wpa_ie_len;
7618 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7619
7620 return 0;
7621 }
7622
7623 /* SIOCSIWAUTH */
7624 static int ipw2100_wx_set_auth(struct net_device *dev,
7625 struct iw_request_info *info,
7626 union iwreq_data *wrqu, char *extra)
7627 {
7628 struct ipw2100_priv *priv = libipw_priv(dev);
7629 struct libipw_device *ieee = priv->ieee;
7630 struct iw_param *param = &wrqu->param;
7631 struct lib80211_crypt_data *crypt;
7632 unsigned long flags;
7633 int ret = 0;
7634
7635 switch (param->flags & IW_AUTH_INDEX) {
7636 case IW_AUTH_WPA_VERSION:
7637 case IW_AUTH_CIPHER_PAIRWISE:
7638 case IW_AUTH_CIPHER_GROUP:
7639 case IW_AUTH_KEY_MGMT:
7640 /*
7641 * ipw2200 does not use these parameters
7642 */
7643 break;
7644
7645 case IW_AUTH_TKIP_COUNTERMEASURES:
7646 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7647 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7648 break;
7649
7650 flags = crypt->ops->get_flags(crypt->priv);
7651
7652 if (param->value)
7653 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7654 else
7655 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7656
7657 crypt->ops->set_flags(flags, crypt->priv);
7658
7659 break;
7660
7661 case IW_AUTH_DROP_UNENCRYPTED:{
7662 /* HACK:
7663 *
7664 * wpa_supplicant calls set_wpa_enabled when the driver
7665 * is loaded and unloaded, regardless of if WPA is being
7666 * used. No other calls are made which can be used to
7667 * determine if encryption will be used or not prior to
7668 * association being expected. If encryption is not being
7669 * used, drop_unencrypted is set to false, else true -- we
7670 * can use this to determine if the CAP_PRIVACY_ON bit should
7671 * be set.
7672 */
7673 struct libipw_security sec = {
7674 .flags = SEC_ENABLED,
7675 .enabled = param->value,
7676 };
7677 priv->ieee->drop_unencrypted = param->value;
7678 /* We only change SEC_LEVEL for open mode. Others
7679 * are set by ipw_wpa_set_encryption.
7680 */
7681 if (!param->value) {
7682 sec.flags |= SEC_LEVEL;
7683 sec.level = SEC_LEVEL_0;
7684 } else {
7685 sec.flags |= SEC_LEVEL;
7686 sec.level = SEC_LEVEL_1;
7687 }
7688 if (priv->ieee->set_security)
7689 priv->ieee->set_security(priv->ieee->dev, &sec);
7690 break;
7691 }
7692
7693 case IW_AUTH_80211_AUTH_ALG:
7694 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7695 break;
7696
7697 case IW_AUTH_WPA_ENABLED:
7698 ret = ipw2100_wpa_enable(priv, param->value);
7699 break;
7700
7701 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7702 ieee->ieee802_1x = param->value;
7703 break;
7704
7705 //case IW_AUTH_ROAMING_CONTROL:
7706 case IW_AUTH_PRIVACY_INVOKED:
7707 ieee->privacy_invoked = param->value;
7708 break;
7709
7710 default:
7711 return -EOPNOTSUPP;
7712 }
7713 return ret;
7714 }
7715
7716 /* SIOCGIWAUTH */
7717 static int ipw2100_wx_get_auth(struct net_device *dev,
7718 struct iw_request_info *info,
7719 union iwreq_data *wrqu, char *extra)
7720 {
7721 struct ipw2100_priv *priv = libipw_priv(dev);
7722 struct libipw_device *ieee = priv->ieee;
7723 struct lib80211_crypt_data *crypt;
7724 struct iw_param *param = &wrqu->param;
7725 int ret = 0;
7726
7727 switch (param->flags & IW_AUTH_INDEX) {
7728 case IW_AUTH_WPA_VERSION:
7729 case IW_AUTH_CIPHER_PAIRWISE:
7730 case IW_AUTH_CIPHER_GROUP:
7731 case IW_AUTH_KEY_MGMT:
7732 /*
7733 * wpa_supplicant will control these internally
7734 */
7735 ret = -EOPNOTSUPP;
7736 break;
7737
7738 case IW_AUTH_TKIP_COUNTERMEASURES:
7739 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7740 if (!crypt || !crypt->ops->get_flags) {
7741 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7742 "crypt not set!\n");
7743 break;
7744 }
7745
7746 param->value = (crypt->ops->get_flags(crypt->priv) &
7747 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7748
7749 break;
7750
7751 case IW_AUTH_DROP_UNENCRYPTED:
7752 param->value = ieee->drop_unencrypted;
7753 break;
7754
7755 case IW_AUTH_80211_AUTH_ALG:
7756 param->value = priv->ieee->sec.auth_mode;
7757 break;
7758
7759 case IW_AUTH_WPA_ENABLED:
7760 param->value = ieee->wpa_enabled;
7761 break;
7762
7763 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7764 param->value = ieee->ieee802_1x;
7765 break;
7766
7767 case IW_AUTH_ROAMING_CONTROL:
7768 case IW_AUTH_PRIVACY_INVOKED:
7769 param->value = ieee->privacy_invoked;
7770 break;
7771
7772 default:
7773 return -EOPNOTSUPP;
7774 }
7775 return 0;
7776 }
7777
7778 /* SIOCSIWENCODEEXT */
7779 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7780 struct iw_request_info *info,
7781 union iwreq_data *wrqu, char *extra)
7782 {
7783 struct ipw2100_priv *priv = libipw_priv(dev);
7784 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7785 }
7786
7787 /* SIOCGIWENCODEEXT */
7788 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7789 struct iw_request_info *info,
7790 union iwreq_data *wrqu, char *extra)
7791 {
7792 struct ipw2100_priv *priv = libipw_priv(dev);
7793 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7794 }
7795
7796 /* SIOCSIWMLME */
7797 static int ipw2100_wx_set_mlme(struct net_device *dev,
7798 struct iw_request_info *info,
7799 union iwreq_data *wrqu, char *extra)
7800 {
7801 struct ipw2100_priv *priv = libipw_priv(dev);
7802 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7803 __le16 reason;
7804
7805 reason = cpu_to_le16(mlme->reason_code);
7806
7807 switch (mlme->cmd) {
7808 case IW_MLME_DEAUTH:
7809 // silently ignore
7810 break;
7811
7812 case IW_MLME_DISASSOC:
7813 ipw2100_disassociate_bssid(priv);
7814 break;
7815
7816 default:
7817 return -EOPNOTSUPP;
7818 }
7819 return 0;
7820 }
7821
7822 /*
7823 *
7824 * IWPRIV handlers
7825 *
7826 */
7827 #ifdef CONFIG_IPW2100_MONITOR
7828 static int ipw2100_wx_set_promisc(struct net_device *dev,
7829 struct iw_request_info *info,
7830 union iwreq_data *wrqu, char *extra)
7831 {
7832 struct ipw2100_priv *priv = libipw_priv(dev);
7833 int *parms = (int *)extra;
7834 int enable = (parms[0] > 0);
7835 int err = 0;
7836
7837 mutex_lock(&priv->action_mutex);
7838 if (!(priv->status & STATUS_INITIALIZED)) {
7839 err = -EIO;
7840 goto done;
7841 }
7842
7843 if (enable) {
7844 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7845 err = ipw2100_set_channel(priv, parms[1], 0);
7846 goto done;
7847 }
7848 priv->channel = parms[1];
7849 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7850 } else {
7851 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7852 err = ipw2100_switch_mode(priv, priv->last_mode);
7853 }
7854 done:
7855 mutex_unlock(&priv->action_mutex);
7856 return err;
7857 }
7858
7859 static int ipw2100_wx_reset(struct net_device *dev,
7860 struct iw_request_info *info,
7861 union iwreq_data *wrqu, char *extra)
7862 {
7863 struct ipw2100_priv *priv = libipw_priv(dev);
7864 if (priv->status & STATUS_INITIALIZED)
7865 schedule_reset(priv);
7866 return 0;
7867 }
7868
7869 #endif
7870
7871 static int ipw2100_wx_set_powermode(struct net_device *dev,
7872 struct iw_request_info *info,
7873 union iwreq_data *wrqu, char *extra)
7874 {
7875 struct ipw2100_priv *priv = libipw_priv(dev);
7876 int err = 0, mode = *(int *)extra;
7877
7878 mutex_lock(&priv->action_mutex);
7879 if (!(priv->status & STATUS_INITIALIZED)) {
7880 err = -EIO;
7881 goto done;
7882 }
7883
7884 if ((mode < 0) || (mode > POWER_MODES))
7885 mode = IPW_POWER_AUTO;
7886
7887 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7888 err = ipw2100_set_power_mode(priv, mode);
7889 done:
7890 mutex_unlock(&priv->action_mutex);
7891 return err;
7892 }
7893
7894 #define MAX_POWER_STRING 80
7895 static int ipw2100_wx_get_powermode(struct net_device *dev,
7896 struct iw_request_info *info,
7897 union iwreq_data *wrqu, char *extra)
7898 {
7899 /*
7900 * This can be called at any time. No action lock required
7901 */
7902
7903 struct ipw2100_priv *priv = libipw_priv(dev);
7904 int level = IPW_POWER_LEVEL(priv->power_mode);
7905 s32 timeout, period;
7906
7907 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7908 snprintf(extra, MAX_POWER_STRING,
7909 "Power save level: %d (Off)", level);
7910 } else {
7911 switch (level) {
7912 case IPW_POWER_MODE_CAM:
7913 snprintf(extra, MAX_POWER_STRING,
7914 "Power save level: %d (None)", level);
7915 break;
7916 case IPW_POWER_AUTO:
7917 snprintf(extra, MAX_POWER_STRING,
7918 "Power save level: %d (Auto)", level);
7919 break;
7920 default:
7921 timeout = timeout_duration[level - 1] / 1000;
7922 period = period_duration[level - 1] / 1000;
7923 snprintf(extra, MAX_POWER_STRING,
7924 "Power save level: %d "
7925 "(Timeout %dms, Period %dms)",
7926 level, timeout, period);
7927 }
7928 }
7929
7930 wrqu->data.length = strlen(extra) + 1;
7931
7932 return 0;
7933 }
7934
7935 static int ipw2100_wx_set_preamble(struct net_device *dev,
7936 struct iw_request_info *info,
7937 union iwreq_data *wrqu, char *extra)
7938 {
7939 struct ipw2100_priv *priv = libipw_priv(dev);
7940 int err, mode = *(int *)extra;
7941
7942 mutex_lock(&priv->action_mutex);
7943 if (!(priv->status & STATUS_INITIALIZED)) {
7944 err = -EIO;
7945 goto done;
7946 }
7947
7948 if (mode == 1)
7949 priv->config |= CFG_LONG_PREAMBLE;
7950 else if (mode == 0)
7951 priv->config &= ~CFG_LONG_PREAMBLE;
7952 else {
7953 err = -EINVAL;
7954 goto done;
7955 }
7956
7957 err = ipw2100_system_config(priv, 0);
7958
7959 done:
7960 mutex_unlock(&priv->action_mutex);
7961 return err;
7962 }
7963
7964 static int ipw2100_wx_get_preamble(struct net_device *dev,
7965 struct iw_request_info *info,
7966 union iwreq_data *wrqu, char *extra)
7967 {
7968 /*
7969 * This can be called at any time. No action lock required
7970 */
7971
7972 struct ipw2100_priv *priv = libipw_priv(dev);
7973
7974 if (priv->config & CFG_LONG_PREAMBLE)
7975 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7976 else
7977 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7978
7979 return 0;
7980 }
7981
7982 #ifdef CONFIG_IPW2100_MONITOR
7983 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7984 struct iw_request_info *info,
7985 union iwreq_data *wrqu, char *extra)
7986 {
7987 struct ipw2100_priv *priv = libipw_priv(dev);
7988 int err, mode = *(int *)extra;
7989
7990 mutex_lock(&priv->action_mutex);
7991 if (!(priv->status & STATUS_INITIALIZED)) {
7992 err = -EIO;
7993 goto done;
7994 }
7995
7996 if (mode == 1)
7997 priv->config |= CFG_CRC_CHECK;
7998 else if (mode == 0)
7999 priv->config &= ~CFG_CRC_CHECK;
8000 else {
8001 err = -EINVAL;
8002 goto done;
8003 }
8004 err = 0;
8005
8006 done:
8007 mutex_unlock(&priv->action_mutex);
8008 return err;
8009 }
8010
8011 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8012 struct iw_request_info *info,
8013 union iwreq_data *wrqu, char *extra)
8014 {
8015 /*
8016 * This can be called at any time. No action lock required
8017 */
8018
8019 struct ipw2100_priv *priv = libipw_priv(dev);
8020
8021 if (priv->config & CFG_CRC_CHECK)
8022 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8023 else
8024 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8025
8026 return 0;
8027 }
8028 #endif /* CONFIG_IPW2100_MONITOR */
8029
8030 static iw_handler ipw2100_wx_handlers[] = {
8031 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8032 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8033 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8034 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8035 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8036 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8037 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8038 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8039 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8040 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8041 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8042 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8043 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8044 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8045 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8046 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8047 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8048 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8049 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8050 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8051 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8052 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8053 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8054 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8055 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8056 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8057 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8058 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8059 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8060 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8061 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8062 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8063 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8064 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8065 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8066 };
8067
8068 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8069 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8070 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8071 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8072 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8073 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8074 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8075 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8076
8077 static const struct iw_priv_args ipw2100_private_args[] = {
8078
8079 #ifdef CONFIG_IPW2100_MONITOR
8080 {
8081 IPW2100_PRIV_SET_MONITOR,
8082 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8083 {
8084 IPW2100_PRIV_RESET,
8085 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8086 #endif /* CONFIG_IPW2100_MONITOR */
8087
8088 {
8089 IPW2100_PRIV_SET_POWER,
8090 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8091 {
8092 IPW2100_PRIV_GET_POWER,
8093 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8094 "get_power"},
8095 {
8096 IPW2100_PRIV_SET_LONGPREAMBLE,
8097 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8098 {
8099 IPW2100_PRIV_GET_LONGPREAMBLE,
8100 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8101 #ifdef CONFIG_IPW2100_MONITOR
8102 {
8103 IPW2100_PRIV_SET_CRC_CHECK,
8104 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8105 {
8106 IPW2100_PRIV_GET_CRC_CHECK,
8107 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8108 #endif /* CONFIG_IPW2100_MONITOR */
8109 };
8110
8111 static iw_handler ipw2100_private_handler[] = {
8112 #ifdef CONFIG_IPW2100_MONITOR
8113 ipw2100_wx_set_promisc,
8114 ipw2100_wx_reset,
8115 #else /* CONFIG_IPW2100_MONITOR */
8116 NULL,
8117 NULL,
8118 #endif /* CONFIG_IPW2100_MONITOR */
8119 ipw2100_wx_set_powermode,
8120 ipw2100_wx_get_powermode,
8121 ipw2100_wx_set_preamble,
8122 ipw2100_wx_get_preamble,
8123 #ifdef CONFIG_IPW2100_MONITOR
8124 ipw2100_wx_set_crc_check,
8125 ipw2100_wx_get_crc_check,
8126 #else /* CONFIG_IPW2100_MONITOR */
8127 NULL,
8128 NULL,
8129 #endif /* CONFIG_IPW2100_MONITOR */
8130 };
8131
8132 /*
8133 * Get wireless statistics.
8134 * Called by /proc/net/wireless
8135 * Also called by SIOCGIWSTATS
8136 */
8137 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8138 {
8139 enum {
8140 POOR = 30,
8141 FAIR = 60,
8142 GOOD = 80,
8143 VERY_GOOD = 90,
8144 EXCELLENT = 95,
8145 PERFECT = 100
8146 };
8147 int rssi_qual;
8148 int tx_qual;
8149 int beacon_qual;
8150 int quality;
8151
8152 struct ipw2100_priv *priv = libipw_priv(dev);
8153 struct iw_statistics *wstats;
8154 u32 rssi, tx_retries, missed_beacons, tx_failures;
8155 u32 ord_len = sizeof(u32);
8156
8157 if (!priv)
8158 return (struct iw_statistics *)NULL;
8159
8160 wstats = &priv->wstats;
8161
8162 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8163 * ipw2100_wx_wireless_stats seems to be called before fw is
8164 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8165 * and associated; if not associcated, the values are all meaningless
8166 * anyway, so set them all to NULL and INVALID */
8167 if (!(priv->status & STATUS_ASSOCIATED)) {
8168 wstats->miss.beacon = 0;
8169 wstats->discard.retries = 0;
8170 wstats->qual.qual = 0;
8171 wstats->qual.level = 0;
8172 wstats->qual.noise = 0;
8173 wstats->qual.updated = 7;
8174 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8175 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8176 return wstats;
8177 }
8178
8179 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8180 &missed_beacons, &ord_len))
8181 goto fail_get_ordinal;
8182
8183 /* If we don't have a connection the quality and level is 0 */
8184 if (!(priv->status & STATUS_ASSOCIATED)) {
8185 wstats->qual.qual = 0;
8186 wstats->qual.level = 0;
8187 } else {
8188 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8189 &rssi, &ord_len))
8190 goto fail_get_ordinal;
8191 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8192 if (rssi < 10)
8193 rssi_qual = rssi * POOR / 10;
8194 else if (rssi < 15)
8195 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8196 else if (rssi < 20)
8197 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8198 else if (rssi < 30)
8199 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8200 10 + GOOD;
8201 else
8202 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8203 10 + VERY_GOOD;
8204
8205 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8206 &tx_retries, &ord_len))
8207 goto fail_get_ordinal;
8208
8209 if (tx_retries > 75)
8210 tx_qual = (90 - tx_retries) * POOR / 15;
8211 else if (tx_retries > 70)
8212 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8213 else if (tx_retries > 65)
8214 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8215 else if (tx_retries > 50)
8216 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8217 15 + GOOD;
8218 else
8219 tx_qual = (50 - tx_retries) *
8220 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8221
8222 if (missed_beacons > 50)
8223 beacon_qual = (60 - missed_beacons) * POOR / 10;
8224 else if (missed_beacons > 40)
8225 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8226 10 + POOR;
8227 else if (missed_beacons > 32)
8228 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8229 18 + FAIR;
8230 else if (missed_beacons > 20)
8231 beacon_qual = (32 - missed_beacons) *
8232 (VERY_GOOD - GOOD) / 20 + GOOD;
8233 else
8234 beacon_qual = (20 - missed_beacons) *
8235 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8236
8237 quality = min(tx_qual, rssi_qual);
8238 quality = min(beacon_qual, quality);
8239
8240 #ifdef CONFIG_IPW2100_DEBUG
8241 if (beacon_qual == quality)
8242 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8243 else if (tx_qual == quality)
8244 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8245 else if (quality != 100)
8246 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8247 else
8248 IPW_DEBUG_WX("Quality not clamped.\n");
8249 #endif
8250
8251 wstats->qual.qual = quality;
8252 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8253 }
8254
8255 wstats->qual.noise = 0;
8256 wstats->qual.updated = 7;
8257 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8258
8259 /* FIXME: this is percent and not a # */
8260 wstats->miss.beacon = missed_beacons;
8261
8262 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8263 &tx_failures, &ord_len))
8264 goto fail_get_ordinal;
8265 wstats->discard.retries = tx_failures;
8266
8267 return wstats;
8268
8269 fail_get_ordinal:
8270 IPW_DEBUG_WX("failed querying ordinals.\n");
8271
8272 return (struct iw_statistics *)NULL;
8273 }
8274
8275 static const struct iw_handler_def ipw2100_wx_handler_def = {
8276 .standard = ipw2100_wx_handlers,
8277 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8278 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8279 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8280 .private = (iw_handler *) ipw2100_private_handler,
8281 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8282 .get_wireless_stats = ipw2100_wx_wireless_stats,
8283 };
8284
8285 static void ipw2100_wx_event_work(struct work_struct *work)
8286 {
8287 struct ipw2100_priv *priv =
8288 container_of(work, struct ipw2100_priv, wx_event_work.work);
8289 union iwreq_data wrqu;
8290 unsigned int len = ETH_ALEN;
8291
8292 if (priv->status & STATUS_STOPPING)
8293 return;
8294
8295 mutex_lock(&priv->action_mutex);
8296
8297 IPW_DEBUG_WX("enter\n");
8298
8299 mutex_unlock(&priv->action_mutex);
8300
8301 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8302
8303 /* Fetch BSSID from the hardware */
8304 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8305 priv->status & STATUS_RF_KILL_MASK ||
8306 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8307 &priv->bssid, &len)) {
8308 eth_zero_addr(wrqu.ap_addr.sa_data);
8309 } else {
8310 /* We now have the BSSID, so can finish setting to the full
8311 * associated state */
8312 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8313 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8314 priv->status &= ~STATUS_ASSOCIATING;
8315 priv->status |= STATUS_ASSOCIATED;
8316 netif_carrier_on(priv->net_dev);
8317 netif_wake_queue(priv->net_dev);
8318 }
8319
8320 if (!(priv->status & STATUS_ASSOCIATED)) {
8321 IPW_DEBUG_WX("Configuring ESSID\n");
8322 mutex_lock(&priv->action_mutex);
8323 /* This is a disassociation event, so kick the firmware to
8324 * look for another AP */
8325 if (priv->config & CFG_STATIC_ESSID)
8326 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8327 0);
8328 else
8329 ipw2100_set_essid(priv, NULL, 0, 0);
8330 mutex_unlock(&priv->action_mutex);
8331 }
8332
8333 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8334 }
8335
8336 #define IPW2100_FW_MAJOR_VERSION 1
8337 #define IPW2100_FW_MINOR_VERSION 3
8338
8339 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8340 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8341
8342 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8343 IPW2100_FW_MAJOR_VERSION)
8344
8345 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8346 "." __stringify(IPW2100_FW_MINOR_VERSION)
8347
8348 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8349
8350 /*
8351
8352 BINARY FIRMWARE HEADER FORMAT
8353
8354 offset length desc
8355 0 2 version
8356 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8357 4 4 fw_len
8358 8 4 uc_len
8359 C fw_len firmware data
8360 12 + fw_len uc_len microcode data
8361
8362 */
8363
8364 struct ipw2100_fw_header {
8365 short version;
8366 short mode;
8367 unsigned int fw_size;
8368 unsigned int uc_size;
8369 } __packed;
8370
8371 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8372 {
8373 struct ipw2100_fw_header *h =
8374 (struct ipw2100_fw_header *)fw->fw_entry->data;
8375
8376 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8377 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8378 "(detected version id of %u). "
8379 "See Documentation/networking/README.ipw2100\n",
8380 h->version);
8381 return 1;
8382 }
8383
8384 fw->version = h->version;
8385 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8386 fw->fw.size = h->fw_size;
8387 fw->uc.data = fw->fw.data + h->fw_size;
8388 fw->uc.size = h->uc_size;
8389
8390 return 0;
8391 }
8392
8393 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8394 struct ipw2100_fw *fw)
8395 {
8396 char *fw_name;
8397 int rc;
8398
8399 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8400 priv->net_dev->name);
8401
8402 switch (priv->ieee->iw_mode) {
8403 case IW_MODE_ADHOC:
8404 fw_name = IPW2100_FW_NAME("-i");
8405 break;
8406 #ifdef CONFIG_IPW2100_MONITOR
8407 case IW_MODE_MONITOR:
8408 fw_name = IPW2100_FW_NAME("-p");
8409 break;
8410 #endif
8411 case IW_MODE_INFRA:
8412 default:
8413 fw_name = IPW2100_FW_NAME("");
8414 break;
8415 }
8416
8417 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8418
8419 if (rc < 0) {
8420 printk(KERN_ERR DRV_NAME ": "
8421 "%s: Firmware '%s' not available or load failed.\n",
8422 priv->net_dev->name, fw_name);
8423 return rc;
8424 }
8425 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8426 fw->fw_entry->size);
8427
8428 ipw2100_mod_firmware_load(fw);
8429
8430 return 0;
8431 }
8432
8433 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8434 #ifdef CONFIG_IPW2100_MONITOR
8435 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8436 #endif
8437 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8438
8439 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8440 struct ipw2100_fw *fw)
8441 {
8442 fw->version = 0;
8443 release_firmware(fw->fw_entry);
8444 fw->fw_entry = NULL;
8445 }
8446
8447 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8448 size_t max)
8449 {
8450 char ver[MAX_FW_VERSION_LEN];
8451 u32 len = MAX_FW_VERSION_LEN;
8452 u32 tmp;
8453 int i;
8454 /* firmware version is an ascii string (max len of 14) */
8455 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8456 return -EIO;
8457 tmp = max;
8458 if (len >= max)
8459 len = max - 1;
8460 for (i = 0; i < len; i++)
8461 buf[i] = ver[i];
8462 buf[i] = '\0';
8463 return tmp;
8464 }
8465
8466 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8467 size_t max)
8468 {
8469 u32 ver;
8470 u32 len = sizeof(ver);
8471 /* microcode version is a 32 bit integer */
8472 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8473 return -EIO;
8474 return snprintf(buf, max, "%08X", ver);
8475 }
8476
8477 /*
8478 * On exit, the firmware will have been freed from the fw list
8479 */
8480 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8481 {
8482 /* firmware is constructed of N contiguous entries, each entry is
8483 * structured as:
8484 *
8485 * offset sie desc
8486 * 0 4 address to write to
8487 * 4 2 length of data run
8488 * 6 length data
8489 */
8490 unsigned int addr;
8491 unsigned short len;
8492
8493 const unsigned char *firmware_data = fw->fw.data;
8494 unsigned int firmware_data_left = fw->fw.size;
8495
8496 while (firmware_data_left > 0) {
8497 addr = *(u32 *) (firmware_data);
8498 firmware_data += 4;
8499 firmware_data_left -= 4;
8500
8501 len = *(u16 *) (firmware_data);
8502 firmware_data += 2;
8503 firmware_data_left -= 2;
8504
8505 if (len > 32) {
8506 printk(KERN_ERR DRV_NAME ": "
8507 "Invalid firmware run-length of %d bytes\n",
8508 len);
8509 return -EINVAL;
8510 }
8511
8512 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8513 firmware_data += len;
8514 firmware_data_left -= len;
8515 }
8516
8517 return 0;
8518 }
8519
8520 struct symbol_alive_response {
8521 u8 cmd_id;
8522 u8 seq_num;
8523 u8 ucode_rev;
8524 u8 eeprom_valid;
8525 u16 valid_flags;
8526 u8 IEEE_addr[6];
8527 u16 flags;
8528 u16 pcb_rev;
8529 u16 clock_settle_time; // 1us LSB
8530 u16 powerup_settle_time; // 1us LSB
8531 u16 hop_settle_time; // 1us LSB
8532 u8 date[3]; // month, day, year
8533 u8 time[2]; // hours, minutes
8534 u8 ucode_valid;
8535 };
8536
8537 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8538 struct ipw2100_fw *fw)
8539 {
8540 struct net_device *dev = priv->net_dev;
8541 const unsigned char *microcode_data = fw->uc.data;
8542 unsigned int microcode_data_left = fw->uc.size;
8543 void __iomem *reg = priv->ioaddr;
8544
8545 struct symbol_alive_response response;
8546 int i, j;
8547 u8 data;
8548
8549 /* Symbol control */
8550 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8551 readl(reg);
8552 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8553 readl(reg);
8554
8555 /* HW config */
8556 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8557 readl(reg);
8558 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8559 readl(reg);
8560
8561 /* EN_CS_ACCESS bit to reset control store pointer */
8562 write_nic_byte(dev, 0x210000, 0x40);
8563 readl(reg);
8564 write_nic_byte(dev, 0x210000, 0x0);
8565 readl(reg);
8566 write_nic_byte(dev, 0x210000, 0x40);
8567 readl(reg);
8568
8569 /* copy microcode from buffer into Symbol */
8570
8571 while (microcode_data_left > 0) {
8572 write_nic_byte(dev, 0x210010, *microcode_data++);
8573 write_nic_byte(dev, 0x210010, *microcode_data++);
8574 microcode_data_left -= 2;
8575 }
8576
8577 /* EN_CS_ACCESS bit to reset the control store pointer */
8578 write_nic_byte(dev, 0x210000, 0x0);
8579 readl(reg);
8580
8581 /* Enable System (Reg 0)
8582 * first enable causes garbage in RX FIFO */
8583 write_nic_byte(dev, 0x210000, 0x0);
8584 readl(reg);
8585 write_nic_byte(dev, 0x210000, 0x80);
8586 readl(reg);
8587
8588 /* Reset External Baseband Reg */
8589 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8590 readl(reg);
8591 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8592 readl(reg);
8593
8594 /* HW Config (Reg 5) */
8595 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8596 readl(reg);
8597 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8598 readl(reg);
8599
8600 /* Enable System (Reg 0)
8601 * second enable should be OK */
8602 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8603 readl(reg);
8604 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8605
8606 /* check Symbol is enabled - upped this from 5 as it wasn't always
8607 * catching the update */
8608 for (i = 0; i < 10; i++) {
8609 udelay(10);
8610
8611 /* check Dino is enabled bit */
8612 read_nic_byte(dev, 0x210000, &data);
8613 if (data & 0x1)
8614 break;
8615 }
8616
8617 if (i == 10) {
8618 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8619 dev->name);
8620 return -EIO;
8621 }
8622
8623 /* Get Symbol alive response */
8624 for (i = 0; i < 30; i++) {
8625 /* Read alive response structure */
8626 for (j = 0;
8627 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8628 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8629
8630 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8631 break;
8632 udelay(10);
8633 }
8634
8635 if (i == 30) {
8636 printk(KERN_ERR DRV_NAME
8637 ": %s: No response from Symbol - hw not alive\n",
8638 dev->name);
8639 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8640 return -EIO;
8641 }
8642
8643 return 0;
8644 }