]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/intel/ipw2x00/ipw2200.c
networking: make skb_put & friends return void pointers
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / intel / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 Intel Linux Wireless <ilw@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107 'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116 { .bitrate = 10 },
117 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120 { .bitrate = 60 },
121 { .bitrate = 90 },
122 { .bitrate = 120 },
123 { .bitrate = 180 },
124 { .bitrate = 240 },
125 { .bitrate = 360 },
126 { .bitrate = 480 },
127 { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates 8
132 #define ipw2200_bg_rates (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates 12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136 * There are certianly some conditions that will break this (like feeding it '30')
137 * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139 (((x) <= 14) ? \
140 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141 ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152 QOS_TX3_CW_MIN_OFDM},
153 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154 QOS_TX3_CW_MAX_OFDM},
155 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163 QOS_TX3_CW_MIN_CCK},
164 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165 QOS_TX3_CW_MAX_CCK},
166 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169 QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174 DEF_TX3_CW_MIN_OFDM},
175 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176 DEF_TX3_CW_MAX_OFDM},
177 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185 DEF_TX3_CW_MIN_CCK},
186 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187 DEF_TX3_CW_MAX_CCK},
188 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191 DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204 *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206 *qos_param);
207 #endif /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217 int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235 const u8 * data, u32 len, u32 ofs)
236 {
237 int out, i, j, l;
238 char c;
239
240 out = snprintf(buf, count, "%08X", ofs);
241
242 for (l = 0, i = 0; i < 2; i++) {
243 out += snprintf(buf + out, count - out, " ");
244 for (j = 0; j < 8 && l < len; j++, l++)
245 out += snprintf(buf + out, count - out, "%02X ",
246 data[(i * 8 + j)]);
247 for (; j < 8; j++)
248 out += snprintf(buf + out, count - out, " ");
249 }
250
251 out += snprintf(buf + out, count - out, " ");
252 for (l = 0, i = 0; i < 2; i++) {
253 out += snprintf(buf + out, count - out, " ");
254 for (j = 0; j < 8 && l < len; j++, l++) {
255 c = data[(i * 8 + j)];
256 if (!isascii(c) || !isprint(c))
257 c = '.';
258
259 out += snprintf(buf + out, count - out, "%c", c);
260 }
261
262 for (; j < 8; j++)
263 out += snprintf(buf + out, count - out, " ");
264 }
265
266 return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271 char line[81];
272 u32 ofs = 0;
273 if (!(ipw_debug_level & level))
274 return;
275
276 while (len) {
277 snprint_line(line, sizeof(line), &data[ofs],
278 min(len, 16U), ofs);
279 printk(KERN_DEBUG "%s\n", line);
280 ofs += 16;
281 len -= min(len, 16U);
282 }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287 size_t out = size;
288 u32 ofs = 0;
289 int total = 0;
290
291 while (size && len) {
292 out = snprint_line(output, size, &data[ofs],
293 min_t(size_t, len, 16U), ofs);
294
295 ofs += 16;
296 output += out;
297 size -= out;
298 len -= min_t(size_t, len, 16U);
299 total += out;
300 }
301 return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317 __LINE__, (u32) (b), (u32) (c));
318 _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326 __LINE__, (u32) (b), (u32) (c));
327 _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335 __LINE__, (u32) (b), (u32) (c));
336 _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341 u8 val)
342 {
343 writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349 __LINE__, (u32)(ofs), (u32)(val)); \
350 _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355 u16 val)
356 {
357 writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363 __LINE__, (u32)(ofs), (u32)(val)); \
364 _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369 u32 val)
370 {
371 writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377 __LINE__, (u32)(ofs), (u32)(val)); \
378 _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384 return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390 (u32)(ofs)); \
391 _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397 return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403 (u32)(ofs)); \
404 _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410 return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416 (u32)(ofs)); \
417 _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424 __LINE__, (u32)(b), (u32)(d)); \
425 _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433 __LINE__, (u32)(b), (u32)(d)); \
434 _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
449 u32 dif_len = reg - aligned_addr;
450
451 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
460 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470 u32 word;
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474 return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480 u32 value;
481
482 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487 return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /* for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493 int num)
494 {
495 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
496 u32 dif_len = addr - aligned_addr;
497 u32 i;
498
499 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501 if (num <= 0) {
502 return;
503 }
504
505 /* Read the first dword (or portion) byte by byte */
506 if (unlikely(dif_len)) {
507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 /* Start reading at aligned_addr + dif_len */
509 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511 aligned_addr += 4;
512 }
513
514 /* Read all of the middle dwords as dwords, with auto-increment */
515 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519 /* Read the last dword (or portion) byte by byte */
520 if (unlikely(num)) {
521 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522 for (i = 0; num > 0; i++, num--)
523 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524 }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /* for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530 int num)
531 {
532 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
533 u32 dif_len = addr - aligned_addr;
534 u32 i;
535
536 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538 if (num <= 0) {
539 return;
540 }
541
542 /* Write the first dword (or portion) byte by byte */
543 if (unlikely(dif_len)) {
544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 /* Start writing at aligned_addr + dif_len */
546 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548 aligned_addr += 4;
549 }
550
551 /* Write all of the middle dwords as dwords, with auto-increment */
552 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556 /* Write the last dword (or portion) byte by byte */
557 if (unlikely(num)) {
558 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559 for (i = 0; num > 0; i++, num--, buf++)
560 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561 }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /* for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567 int num)
568 {
569 memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586 if (priv->status & STATUS_INT_ENABLED)
587 return;
588 priv->status |= STATUS_INT_ENABLED;
589 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594 if (!(priv->status & STATUS_INT_ENABLED))
595 return;
596 priv->status &= ~STATUS_INT_ENABLED;
597 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602 unsigned long flags;
603
604 spin_lock_irqsave(&priv->irq_lock, flags);
605 __ipw_enable_interrupts(priv);
606 spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611 unsigned long flags;
612
613 spin_lock_irqsave(&priv->irq_lock, flags);
614 __ipw_disable_interrupts(priv);
615 spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620 switch (val) {
621 case IPW_FW_ERROR_OK:
622 return "ERROR_OK";
623 case IPW_FW_ERROR_FAIL:
624 return "ERROR_FAIL";
625 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626 return "MEMORY_UNDERFLOW";
627 case IPW_FW_ERROR_MEMORY_OVERFLOW:
628 return "MEMORY_OVERFLOW";
629 case IPW_FW_ERROR_BAD_PARAM:
630 return "BAD_PARAM";
631 case IPW_FW_ERROR_BAD_CHECKSUM:
632 return "BAD_CHECKSUM";
633 case IPW_FW_ERROR_NMI_INTERRUPT:
634 return "NMI_INTERRUPT";
635 case IPW_FW_ERROR_BAD_DATABASE:
636 return "BAD_DATABASE";
637 case IPW_FW_ERROR_ALLOC_FAIL:
638 return "ALLOC_FAIL";
639 case IPW_FW_ERROR_DMA_UNDERRUN:
640 return "DMA_UNDERRUN";
641 case IPW_FW_ERROR_DMA_STATUS:
642 return "DMA_STATUS";
643 case IPW_FW_ERROR_DINO_ERROR:
644 return "DINO_ERROR";
645 case IPW_FW_ERROR_EEPROM_ERROR:
646 return "EEPROM_ERROR";
647 case IPW_FW_ERROR_SYSASSERT:
648 return "SYSASSERT";
649 case IPW_FW_ERROR_FATAL_ERROR:
650 return "FATAL_ERROR";
651 default:
652 return "UNKNOWN_ERROR";
653 }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657 struct ipw_fw_error *error)
658 {
659 u32 i;
660
661 if (!error) {
662 IPW_ERROR("Error allocating and capturing error log. "
663 "Nothing to dump.\n");
664 return;
665 }
666
667 IPW_ERROR("Start IPW Error Log Dump:\n");
668 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669 error->status, error->config);
670
671 for (i = 0; i < error->elem_len; i++)
672 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
673 ipw_error_desc(error->elem[i].desc),
674 error->elem[i].time,
675 error->elem[i].blink1,
676 error->elem[i].blink2,
677 error->elem[i].link1,
678 error->elem[i].link2, error->elem[i].data);
679 for (i = 0; i < error->log_len; i++)
680 IPW_ERROR("%i\t0x%08x\t%i\n",
681 error->log[i].time,
682 error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687 return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692 u32 addr, field_info, field_len, field_count, total_len;
693
694 IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696 if (!priv || !val || !len) {
697 IPW_DEBUG_ORD("Invalid argument\n");
698 return -EINVAL;
699 }
700
701 /* verify device ordinal tables have been initialized */
702 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704 return -EINVAL;
705 }
706
707 switch (IPW_ORD_TABLE_ID_MASK & ord) {
708 case IPW_ORD_TABLE_0_MASK:
709 /*
710 * TABLE 0: Direct access to a table of 32 bit values
711 *
712 * This is a very simple table with the data directly
713 * read from the table
714 */
715
716 /* remove the table id from the ordinal */
717 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719 /* boundary check */
720 if (ord > priv->table0_len) {
721 IPW_DEBUG_ORD("ordinal value (%i) longer then "
722 "max (%i)\n", ord, priv->table0_len);
723 return -EINVAL;
724 }
725
726 /* verify we have enough room to store the value */
727 if (*len < sizeof(u32)) {
728 IPW_DEBUG_ORD("ordinal buffer length too small, "
729 "need %zd\n", sizeof(u32));
730 return -EINVAL;
731 }
732
733 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734 ord, priv->table0_addr + (ord << 2));
735
736 *len = sizeof(u32);
737 ord <<= 2;
738 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739 break;
740
741 case IPW_ORD_TABLE_1_MASK:
742 /*
743 * TABLE 1: Indirect access to a table of 32 bit values
744 *
745 * This is a fairly large table of u32 values each
746 * representing starting addr for the data (which is
747 * also a u32)
748 */
749
750 /* remove the table id from the ordinal */
751 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753 /* boundary check */
754 if (ord > priv->table1_len) {
755 IPW_DEBUG_ORD("ordinal value too long\n");
756 return -EINVAL;
757 }
758
759 /* verify we have enough room to store the value */
760 if (*len < sizeof(u32)) {
761 IPW_DEBUG_ORD("ordinal buffer length too small, "
762 "need %zd\n", sizeof(u32));
763 return -EINVAL;
764 }
765
766 *((u32 *) val) =
767 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768 *len = sizeof(u32);
769 break;
770
771 case IPW_ORD_TABLE_2_MASK:
772 /*
773 * TABLE 2: Indirect access to a table of variable sized values
774 *
775 * This table consist of six values, each containing
776 * - dword containing the starting offset of the data
777 * - dword containing the lengh in the first 16bits
778 * and the count in the second 16bits
779 */
780
781 /* remove the table id from the ordinal */
782 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784 /* boundary check */
785 if (ord > priv->table2_len) {
786 IPW_DEBUG_ORD("ordinal value too long\n");
787 return -EINVAL;
788 }
789
790 /* get the address of statistic */
791 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793 /* get the second DW of statistics ;
794 * two 16-bit words - first is length, second is count */
795 field_info =
796 ipw_read_reg32(priv,
797 priv->table2_addr + (ord << 3) +
798 sizeof(u32));
799
800 /* get each entry length */
801 field_len = *((u16 *) & field_info);
802
803 /* get number of entries */
804 field_count = *(((u16 *) & field_info) + 1);
805
806 /* abort if not enough memory */
807 total_len = field_len * field_count;
808 if (total_len > *len) {
809 *len = total_len;
810 return -EINVAL;
811 }
812
813 *len = total_len;
814 if (!total_len)
815 return 0;
816
817 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818 "field_info = 0x%08x\n",
819 addr, total_len, field_info);
820 ipw_read_indirect(priv, addr, val, total_len);
821 break;
822
823 default:
824 IPW_DEBUG_ORD("Invalid ordinal!\n");
825 return -EINVAL;
826
827 }
828
829 return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835 priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838 priv->table0_addr, priv->table0_len);
839
840 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844 priv->table1_addr, priv->table1_len);
845
846 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848 priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851 priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857 reg &= ~IPW_START_STANDBY;
858 if (reg & IPW_GATE_ODMA)
859 reg &= ~IPW_GATE_ODMA;
860 if (reg & IPW_GATE_IDMA)
861 reg &= ~IPW_GATE_IDMA;
862 if (reg & IPW_GATE_ADMA)
863 reg &= ~IPW_GATE_ADMA;
864 return reg;
865 }
866
867 /*
868 * LED behavior:
869 * - On radio ON, turn on any LEDs that require to be on during start
870 * - On initialization, start unassociated blink
871 * - On association, disable unassociated blink
872 * - On disassociation, start unassociated blink
873 * - On radio OFF, turn off any LEDs started during radio on
874 *
875 */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882 unsigned long flags;
883 u32 led;
884
885 /* If configured to not use LEDs, or nic_type is 1,
886 * then we don't toggle a LINK led */
887 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888 return;
889
890 spin_lock_irqsave(&priv->lock, flags);
891
892 if (!(priv->status & STATUS_RF_KILL_MASK) &&
893 !(priv->status & STATUS_LED_LINK_ON)) {
894 IPW_DEBUG_LED("Link LED On\n");
895 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896 led |= priv->led_association_on;
897
898 led = ipw_register_toggle(led);
899
900 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903 priv->status |= STATUS_LED_LINK_ON;
904
905 /* If we aren't associated, schedule turning the LED off */
906 if (!(priv->status & STATUS_ASSOCIATED))
907 schedule_delayed_work(&priv->led_link_off,
908 LD_TIME_LINK_ON);
909 }
910
911 spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916 struct ipw_priv *priv =
917 container_of(work, struct ipw_priv, led_link_on.work);
918 mutex_lock(&priv->mutex);
919 ipw_led_link_on(priv);
920 mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925 unsigned long flags;
926 u32 led;
927
928 /* If configured not to use LEDs, or nic type is 1,
929 * then we don't goggle the LINK led. */
930 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931 return;
932
933 spin_lock_irqsave(&priv->lock, flags);
934
935 if (priv->status & STATUS_LED_LINK_ON) {
936 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937 led &= priv->led_association_off;
938 led = ipw_register_toggle(led);
939
940 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943 IPW_DEBUG_LED("Link LED Off\n");
944
945 priv->status &= ~STATUS_LED_LINK_ON;
946
947 /* If we aren't associated and the radio is on, schedule
948 * turning the LED on (blink while unassociated) */
949 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950 !(priv->status & STATUS_ASSOCIATED))
951 schedule_delayed_work(&priv->led_link_on,
952 LD_TIME_LINK_OFF);
953
954 }
955
956 spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961 struct ipw_priv *priv =
962 container_of(work, struct ipw_priv, led_link_off.work);
963 mutex_lock(&priv->mutex);
964 ipw_led_link_off(priv);
965 mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970 u32 led;
971
972 if (priv->config & CFG_NO_LED)
973 return;
974
975 if (priv->status & STATUS_RF_KILL_MASK)
976 return;
977
978 if (!(priv->status & STATUS_LED_ACT_ON)) {
979 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980 led |= priv->led_activity_on;
981
982 led = ipw_register_toggle(led);
983
984 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987 IPW_DEBUG_LED("Activity LED On\n");
988
989 priv->status |= STATUS_LED_ACT_ON;
990
991 cancel_delayed_work(&priv->led_act_off);
992 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993 } else {
994 /* Reschedule LED off for full time period */
995 cancel_delayed_work(&priv->led_act_off);
996 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997 }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003 unsigned long flags;
1004 spin_lock_irqsave(&priv->lock, flags);
1005 __ipw_led_activity_on(priv);
1006 spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif /* 0 */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012 unsigned long flags;
1013 u32 led;
1014
1015 if (priv->config & CFG_NO_LED)
1016 return;
1017
1018 spin_lock_irqsave(&priv->lock, flags);
1019
1020 if (priv->status & STATUS_LED_ACT_ON) {
1021 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022 led &= priv->led_activity_off;
1023
1024 led = ipw_register_toggle(led);
1025
1026 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031 priv->status &= ~STATUS_LED_ACT_ON;
1032 }
1033
1034 spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039 struct ipw_priv *priv =
1040 container_of(work, struct ipw_priv, led_act_off.work);
1041 mutex_lock(&priv->mutex);
1042 ipw_led_activity_off(priv);
1043 mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048 unsigned long flags;
1049 u32 led;
1050
1051 /* Only nic type 1 supports mode LEDs */
1052 if (priv->config & CFG_NO_LED ||
1053 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054 return;
1055
1056 spin_lock_irqsave(&priv->lock, flags);
1057
1058 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059 if (priv->assoc_network->mode == IEEE_A) {
1060 led |= priv->led_ofdm_on;
1061 led &= priv->led_association_off;
1062 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063 } else if (priv->assoc_network->mode == IEEE_G) {
1064 led |= priv->led_ofdm_on;
1065 led |= priv->led_association_on;
1066 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067 } else {
1068 led &= priv->led_ofdm_off;
1069 led |= priv->led_association_on;
1070 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071 }
1072
1073 led = ipw_register_toggle(led);
1074
1075 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078 spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083 unsigned long flags;
1084 u32 led;
1085
1086 /* Only nic type 1 supports mode LEDs */
1087 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088 return;
1089
1090 spin_lock_irqsave(&priv->lock, flags);
1091
1092 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093 led &= priv->led_ofdm_off;
1094 led &= priv->led_association_off;
1095
1096 led = ipw_register_toggle(led);
1097
1098 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101 spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106 ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111 ipw_led_activity_off(priv);
1112 ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117 /* Set the Link Led on for all nic types */
1118 ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123 ipw_led_activity_off(priv);
1124 ipw_led_link_off(priv);
1125
1126 if (priv->status & STATUS_RF_KILL_MASK)
1127 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134 /* Set the default PINs for the link and activity leds */
1135 priv->led_activity_on = IPW_ACTIVITY_LED;
1136 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138 priv->led_association_on = IPW_ASSOCIATED_LED;
1139 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141 /* Set the default PINs for the OFDM leds */
1142 priv->led_ofdm_on = IPW_OFDM_LED;
1143 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145 switch (priv->nic_type) {
1146 case EEPROM_NIC_TYPE_1:
1147 /* In this NIC type, the LEDs are reversed.... */
1148 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150 priv->led_association_on = IPW_ACTIVITY_LED;
1151 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153 if (!(priv->config & CFG_NO_LED))
1154 ipw_led_band_on(priv);
1155
1156 /* And we don't blink link LEDs for this nic, so
1157 * just return here */
1158 return;
1159
1160 case EEPROM_NIC_TYPE_3:
1161 case EEPROM_NIC_TYPE_2:
1162 case EEPROM_NIC_TYPE_4:
1163 case EEPROM_NIC_TYPE_0:
1164 break;
1165
1166 default:
1167 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168 priv->nic_type);
1169 priv->nic_type = EEPROM_NIC_TYPE_0;
1170 break;
1171 }
1172
1173 if (!(priv->config & CFG_NO_LED)) {
1174 if (priv->status & STATUS_ASSOCIATED)
1175 ipw_led_link_on(priv);
1176 else
1177 ipw_led_link_off(priv);
1178 }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183 ipw_led_activity_off(priv);
1184 ipw_led_link_off(priv);
1185 ipw_led_band_off(priv);
1186 cancel_delayed_work(&priv->led_link_on);
1187 cancel_delayed_work(&priv->led_link_off);
1188 cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192 * The following adds a new attribute to the sysfs representation
1193 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194 * used for controlling the debug level.
1195 *
1196 * See the level definitions in ipw for details.
1197 */
1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199 {
1200 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204 size_t count)
1205 {
1206 char *p = (char *)buf;
1207 u32 val;
1208
1209 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210 p++;
1211 if (p[0] == 'x' || p[0] == 'X')
1212 p++;
1213 val = simple_strtoul(p, &p, 16);
1214 } else
1215 val = simple_strtoul(p, &p, 10);
1216 if (p == buf)
1217 printk(KERN_INFO DRV_NAME
1218 ": %s is not in hex or decimal form.\n", buf);
1219 else
1220 ipw_debug_level = val;
1221
1222 return strnlen(buf, count);
1223 }
1224
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226 show_debug_level, store_debug_level);
1227
1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229 {
1230 /* length = 1st dword in log */
1231 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232 }
1233
1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235 u32 log_len, struct ipw_event *log)
1236 {
1237 u32 base;
1238
1239 if (log_len) {
1240 base = ipw_read32(priv, IPW_EVENT_LOG);
1241 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242 (u8 *) log, sizeof(*log) * log_len);
1243 }
1244 }
1245
1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247 {
1248 struct ipw_fw_error *error;
1249 u32 log_len = ipw_get_event_log_len(priv);
1250 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251 u32 elem_len = ipw_read_reg32(priv, base);
1252
1253 error = kmalloc(sizeof(*error) +
1254 sizeof(*error->elem) * elem_len +
1255 sizeof(*error->log) * log_len, GFP_ATOMIC);
1256 if (!error) {
1257 IPW_ERROR("Memory allocation for firmware error log "
1258 "failed.\n");
1259 return NULL;
1260 }
1261 error->jiffies = jiffies;
1262 error->status = priv->status;
1263 error->config = priv->config;
1264 error->elem_len = elem_len;
1265 error->log_len = log_len;
1266 error->elem = (struct ipw_error_elem *)error->payload;
1267 error->log = (struct ipw_event *)(error->elem + elem_len);
1268
1269 ipw_capture_event_log(priv, log_len, error->log);
1270
1271 if (elem_len)
1272 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273 sizeof(*error->elem) * elem_len);
1274
1275 return error;
1276 }
1277
1278 static ssize_t show_event_log(struct device *d,
1279 struct device_attribute *attr, char *buf)
1280 {
1281 struct ipw_priv *priv = dev_get_drvdata(d);
1282 u32 log_len = ipw_get_event_log_len(priv);
1283 u32 log_size;
1284 struct ipw_event *log;
1285 u32 len = 0, i;
1286
1287 /* not using min() because of its strict type checking */
1288 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289 sizeof(*log) * log_len : PAGE_SIZE;
1290 log = kzalloc(log_size, GFP_KERNEL);
1291 if (!log) {
1292 IPW_ERROR("Unable to allocate memory for log\n");
1293 return 0;
1294 }
1295 log_len = log_size / sizeof(*log);
1296 ipw_capture_event_log(priv, log_len, log);
1297
1298 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299 for (i = 0; i < log_len; i++)
1300 len += snprintf(buf + len, PAGE_SIZE - len,
1301 "\n%08X%08X%08X",
1302 log[i].time, log[i].event, log[i].data);
1303 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304 kfree(log);
1305 return len;
1306 }
1307
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309
1310 static ssize_t show_error(struct device *d,
1311 struct device_attribute *attr, char *buf)
1312 {
1313 struct ipw_priv *priv = dev_get_drvdata(d);
1314 u32 len = 0, i;
1315 if (!priv->error)
1316 return 0;
1317 len += snprintf(buf + len, PAGE_SIZE - len,
1318 "%08lX%08X%08X%08X",
1319 priv->error->jiffies,
1320 priv->error->status,
1321 priv->error->config, priv->error->elem_len);
1322 for (i = 0; i < priv->error->elem_len; i++)
1323 len += snprintf(buf + len, PAGE_SIZE - len,
1324 "\n%08X%08X%08X%08X%08X%08X%08X",
1325 priv->error->elem[i].time,
1326 priv->error->elem[i].desc,
1327 priv->error->elem[i].blink1,
1328 priv->error->elem[i].blink2,
1329 priv->error->elem[i].link1,
1330 priv->error->elem[i].link2,
1331 priv->error->elem[i].data);
1332
1333 len += snprintf(buf + len, PAGE_SIZE - len,
1334 "\n%08X", priv->error->log_len);
1335 for (i = 0; i < priv->error->log_len; i++)
1336 len += snprintf(buf + len, PAGE_SIZE - len,
1337 "\n%08X%08X%08X",
1338 priv->error->log[i].time,
1339 priv->error->log[i].event,
1340 priv->error->log[i].data);
1341 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342 return len;
1343 }
1344
1345 static ssize_t clear_error(struct device *d,
1346 struct device_attribute *attr,
1347 const char *buf, size_t count)
1348 {
1349 struct ipw_priv *priv = dev_get_drvdata(d);
1350
1351 kfree(priv->error);
1352 priv->error = NULL;
1353 return count;
1354 }
1355
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357
1358 static ssize_t show_cmd_log(struct device *d,
1359 struct device_attribute *attr, char *buf)
1360 {
1361 struct ipw_priv *priv = dev_get_drvdata(d);
1362 u32 len = 0, i;
1363 if (!priv->cmdlog)
1364 return 0;
1365 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366 (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1367 i = (i + 1) % priv->cmdlog_len) {
1368 len +=
1369 snprintf(buf + len, PAGE_SIZE - len,
1370 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372 priv->cmdlog[i].cmd.len);
1373 len +=
1374 snprintk_buf(buf + len, PAGE_SIZE - len,
1375 (u8 *) priv->cmdlog[i].cmd.param,
1376 priv->cmdlog[i].cmd.len);
1377 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378 }
1379 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380 return len;
1381 }
1382
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
1388 static ssize_t store_rtap_iface(struct device *d,
1389 struct device_attribute *attr,
1390 const char *buf, size_t count)
1391 {
1392 struct ipw_priv *priv = dev_get_drvdata(d);
1393 int rc = 0;
1394
1395 if (count < 1)
1396 return -EINVAL;
1397
1398 switch (buf[0]) {
1399 case '0':
1400 if (!rtap_iface)
1401 return count;
1402
1403 if (netif_running(priv->prom_net_dev)) {
1404 IPW_WARNING("Interface is up. Cannot unregister.\n");
1405 return count;
1406 }
1407
1408 ipw_prom_free(priv);
1409 rtap_iface = 0;
1410 break;
1411
1412 case '1':
1413 if (rtap_iface)
1414 return count;
1415
1416 rc = ipw_prom_alloc(priv);
1417 if (!rc)
1418 rtap_iface = 1;
1419 break;
1420
1421 default:
1422 return -EINVAL;
1423 }
1424
1425 if (rc) {
1426 IPW_ERROR("Failed to register promiscuous network "
1427 "device (error %d).\n", rc);
1428 }
1429
1430 return count;
1431 }
1432
1433 static ssize_t show_rtap_iface(struct device *d,
1434 struct device_attribute *attr,
1435 char *buf)
1436 {
1437 struct ipw_priv *priv = dev_get_drvdata(d);
1438 if (rtap_iface)
1439 return sprintf(buf, "%s", priv->prom_net_dev->name);
1440 else {
1441 buf[0] = '-';
1442 buf[1] = '1';
1443 buf[2] = '\0';
1444 return 3;
1445 }
1446 }
1447
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449 store_rtap_iface);
1450
1451 static ssize_t store_rtap_filter(struct device *d,
1452 struct device_attribute *attr,
1453 const char *buf, size_t count)
1454 {
1455 struct ipw_priv *priv = dev_get_drvdata(d);
1456
1457 if (!priv->prom_priv) {
1458 IPW_ERROR("Attempting to set filter without "
1459 "rtap_iface enabled.\n");
1460 return -EPERM;
1461 }
1462
1463 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464
1465 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466 BIT_ARG16(priv->prom_priv->filter));
1467
1468 return count;
1469 }
1470
1471 static ssize_t show_rtap_filter(struct device *d,
1472 struct device_attribute *attr,
1473 char *buf)
1474 {
1475 struct ipw_priv *priv = dev_get_drvdata(d);
1476 return sprintf(buf, "0x%04X",
1477 priv->prom_priv ? priv->prom_priv->filter : 0);
1478 }
1479
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481 store_rtap_filter);
1482 #endif
1483
1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485 char *buf)
1486 {
1487 struct ipw_priv *priv = dev_get_drvdata(d);
1488 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489 }
1490
1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492 const char *buf, size_t count)
1493 {
1494 struct ipw_priv *priv = dev_get_drvdata(d);
1495 struct net_device *dev = priv->net_dev;
1496 char buffer[] = "00000000";
1497 unsigned long len =
1498 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499 unsigned long val;
1500 char *p = buffer;
1501
1502 IPW_DEBUG_INFO("enter\n");
1503
1504 strncpy(buffer, buf, len);
1505 buffer[len] = 0;
1506
1507 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508 p++;
1509 if (p[0] == 'x' || p[0] == 'X')
1510 p++;
1511 val = simple_strtoul(p, &p, 16);
1512 } else
1513 val = simple_strtoul(p, &p, 10);
1514 if (p == buffer) {
1515 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516 } else {
1517 priv->ieee->scan_age = val;
1518 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519 }
1520
1521 IPW_DEBUG_INFO("exit\n");
1522 return len;
1523 }
1524
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526
1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528 char *buf)
1529 {
1530 struct ipw_priv *priv = dev_get_drvdata(d);
1531 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532 }
1533
1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535 const char *buf, size_t count)
1536 {
1537 struct ipw_priv *priv = dev_get_drvdata(d);
1538
1539 IPW_DEBUG_INFO("enter\n");
1540
1541 if (count == 0)
1542 return 0;
1543
1544 if (*buf == 0) {
1545 IPW_DEBUG_LED("Disabling LED control.\n");
1546 priv->config |= CFG_NO_LED;
1547 ipw_led_shutdown(priv);
1548 } else {
1549 IPW_DEBUG_LED("Enabling LED control.\n");
1550 priv->config &= ~CFG_NO_LED;
1551 ipw_led_init(priv);
1552 }
1553
1554 IPW_DEBUG_INFO("exit\n");
1555 return count;
1556 }
1557
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559
1560 static ssize_t show_status(struct device *d,
1561 struct device_attribute *attr, char *buf)
1562 {
1563 struct ipw_priv *p = dev_get_drvdata(d);
1564 return sprintf(buf, "0x%08x\n", (int)p->status);
1565 }
1566
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568
1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570 char *buf)
1571 {
1572 struct ipw_priv *p = dev_get_drvdata(d);
1573 return sprintf(buf, "0x%08x\n", (int)p->config);
1574 }
1575
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577
1578 static ssize_t show_nic_type(struct device *d,
1579 struct device_attribute *attr, char *buf)
1580 {
1581 struct ipw_priv *priv = dev_get_drvdata(d);
1582 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583 }
1584
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586
1587 static ssize_t show_ucode_version(struct device *d,
1588 struct device_attribute *attr, char *buf)
1589 {
1590 u32 len = sizeof(u32), tmp = 0;
1591 struct ipw_priv *p = dev_get_drvdata(d);
1592
1593 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594 return 0;
1595
1596 return sprintf(buf, "0x%08x\n", tmp);
1597 }
1598
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600
1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602 char *buf)
1603 {
1604 u32 len = sizeof(u32), tmp = 0;
1605 struct ipw_priv *p = dev_get_drvdata(d);
1606
1607 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608 return 0;
1609
1610 return sprintf(buf, "0x%08x\n", tmp);
1611 }
1612
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614
1615 /*
1616 * Add a device attribute to view/control the delay between eeprom
1617 * operations.
1618 */
1619 static ssize_t show_eeprom_delay(struct device *d,
1620 struct device_attribute *attr, char *buf)
1621 {
1622 struct ipw_priv *p = dev_get_drvdata(d);
1623 int n = p->eeprom_delay;
1624 return sprintf(buf, "%i\n", n);
1625 }
1626 static ssize_t store_eeprom_delay(struct device *d,
1627 struct device_attribute *attr,
1628 const char *buf, size_t count)
1629 {
1630 struct ipw_priv *p = dev_get_drvdata(d);
1631 sscanf(buf, "%i", &p->eeprom_delay);
1632 return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636 show_eeprom_delay, store_eeprom_delay);
1637
1638 static ssize_t show_command_event_reg(struct device *d,
1639 struct device_attribute *attr, char *buf)
1640 {
1641 u32 reg = 0;
1642 struct ipw_priv *p = dev_get_drvdata(d);
1643
1644 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645 return sprintf(buf, "0x%08x\n", reg);
1646 }
1647 static ssize_t store_command_event_reg(struct device *d,
1648 struct device_attribute *attr,
1649 const char *buf, size_t count)
1650 {
1651 u32 reg;
1652 struct ipw_priv *p = dev_get_drvdata(d);
1653
1654 sscanf(buf, "%x", &reg);
1655 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656 return strnlen(buf, count);
1657 }
1658
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660 show_command_event_reg, store_command_event_reg);
1661
1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663 struct device_attribute *attr, char *buf)
1664 {
1665 u32 reg = 0;
1666 struct ipw_priv *p = dev_get_drvdata(d);
1667
1668 reg = ipw_read_reg32(p, 0x301100);
1669 return sprintf(buf, "0x%08x\n", reg);
1670 }
1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672 struct device_attribute *attr,
1673 const char *buf, size_t count)
1674 {
1675 u32 reg;
1676 struct ipw_priv *p = dev_get_drvdata(d);
1677
1678 sscanf(buf, "%x", &reg);
1679 ipw_write_reg32(p, 0x301100, reg);
1680 return strnlen(buf, count);
1681 }
1682
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684 show_mem_gpio_reg, store_mem_gpio_reg);
1685
1686 static ssize_t show_indirect_dword(struct device *d,
1687 struct device_attribute *attr, char *buf)
1688 {
1689 u32 reg = 0;
1690 struct ipw_priv *priv = dev_get_drvdata(d);
1691
1692 if (priv->status & STATUS_INDIRECT_DWORD)
1693 reg = ipw_read_reg32(priv, priv->indirect_dword);
1694 else
1695 reg = 0;
1696
1697 return sprintf(buf, "0x%08x\n", reg);
1698 }
1699 static ssize_t store_indirect_dword(struct device *d,
1700 struct device_attribute *attr,
1701 const char *buf, size_t count)
1702 {
1703 struct ipw_priv *priv = dev_get_drvdata(d);
1704
1705 sscanf(buf, "%x", &priv->indirect_dword);
1706 priv->status |= STATUS_INDIRECT_DWORD;
1707 return strnlen(buf, count);
1708 }
1709
1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711 show_indirect_dword, store_indirect_dword);
1712
1713 static ssize_t show_indirect_byte(struct device *d,
1714 struct device_attribute *attr, char *buf)
1715 {
1716 u8 reg = 0;
1717 struct ipw_priv *priv = dev_get_drvdata(d);
1718
1719 if (priv->status & STATUS_INDIRECT_BYTE)
1720 reg = ipw_read_reg8(priv, priv->indirect_byte);
1721 else
1722 reg = 0;
1723
1724 return sprintf(buf, "0x%02x\n", reg);
1725 }
1726 static ssize_t store_indirect_byte(struct device *d,
1727 struct device_attribute *attr,
1728 const char *buf, size_t count)
1729 {
1730 struct ipw_priv *priv = dev_get_drvdata(d);
1731
1732 sscanf(buf, "%x", &priv->indirect_byte);
1733 priv->status |= STATUS_INDIRECT_BYTE;
1734 return strnlen(buf, count);
1735 }
1736
1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738 show_indirect_byte, store_indirect_byte);
1739
1740 static ssize_t show_direct_dword(struct device *d,
1741 struct device_attribute *attr, char *buf)
1742 {
1743 u32 reg = 0;
1744 struct ipw_priv *priv = dev_get_drvdata(d);
1745
1746 if (priv->status & STATUS_DIRECT_DWORD)
1747 reg = ipw_read32(priv, priv->direct_dword);
1748 else
1749 reg = 0;
1750
1751 return sprintf(buf, "0x%08x\n", reg);
1752 }
1753 static ssize_t store_direct_dword(struct device *d,
1754 struct device_attribute *attr,
1755 const char *buf, size_t count)
1756 {
1757 struct ipw_priv *priv = dev_get_drvdata(d);
1758
1759 sscanf(buf, "%x", &priv->direct_dword);
1760 priv->status |= STATUS_DIRECT_DWORD;
1761 return strnlen(buf, count);
1762 }
1763
1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765 show_direct_dword, store_direct_dword);
1766
1767 static int rf_kill_active(struct ipw_priv *priv)
1768 {
1769 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770 priv->status |= STATUS_RF_KILL_HW;
1771 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772 } else {
1773 priv->status &= ~STATUS_RF_KILL_HW;
1774 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775 }
1776
1777 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778 }
1779
1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781 char *buf)
1782 {
1783 /* 0 - RF kill not enabled
1784 1 - SW based RF kill active (sysfs)
1785 2 - HW based RF kill active
1786 3 - Both HW and SW baed RF kill active */
1787 struct ipw_priv *priv = dev_get_drvdata(d);
1788 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789 (rf_kill_active(priv) ? 0x2 : 0x0);
1790 return sprintf(buf, "%i\n", val);
1791 }
1792
1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794 {
1795 if ((disable_radio ? 1 : 0) ==
1796 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797 return 0;
1798
1799 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1800 disable_radio ? "OFF" : "ON");
1801
1802 if (disable_radio) {
1803 priv->status |= STATUS_RF_KILL_SW;
1804
1805 cancel_delayed_work(&priv->request_scan);
1806 cancel_delayed_work(&priv->request_direct_scan);
1807 cancel_delayed_work(&priv->request_passive_scan);
1808 cancel_delayed_work(&priv->scan_event);
1809 schedule_work(&priv->down);
1810 } else {
1811 priv->status &= ~STATUS_RF_KILL_SW;
1812 if (rf_kill_active(priv)) {
1813 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814 "disabled by HW switch\n");
1815 /* Make sure the RF_KILL check timer is running */
1816 cancel_delayed_work(&priv->rf_kill);
1817 schedule_delayed_work(&priv->rf_kill,
1818 round_jiffies_relative(2 * HZ));
1819 } else
1820 schedule_work(&priv->up);
1821 }
1822
1823 return 1;
1824 }
1825
1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827 const char *buf, size_t count)
1828 {
1829 struct ipw_priv *priv = dev_get_drvdata(d);
1830
1831 ipw_radio_kill_sw(priv, buf[0] == '1');
1832
1833 return count;
1834 }
1835
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837
1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839 char *buf)
1840 {
1841 struct ipw_priv *priv = dev_get_drvdata(d);
1842 int pos = 0, len = 0;
1843 if (priv->config & CFG_SPEED_SCAN) {
1844 while (priv->speed_scan[pos] != 0)
1845 len += sprintf(&buf[len], "%d ",
1846 priv->speed_scan[pos++]);
1847 return len + sprintf(&buf[len], "\n");
1848 }
1849
1850 return sprintf(buf, "0\n");
1851 }
1852
1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854 const char *buf, size_t count)
1855 {
1856 struct ipw_priv *priv = dev_get_drvdata(d);
1857 int channel, pos = 0;
1858 const char *p = buf;
1859
1860 /* list of space separated channels to scan, optionally ending with 0 */
1861 while ((channel = simple_strtol(p, NULL, 0))) {
1862 if (pos == MAX_SPEED_SCAN - 1) {
1863 priv->speed_scan[pos] = 0;
1864 break;
1865 }
1866
1867 if (libipw_is_valid_channel(priv->ieee, channel))
1868 priv->speed_scan[pos++] = channel;
1869 else
1870 IPW_WARNING("Skipping invalid channel request: %d\n",
1871 channel);
1872 p = strchr(p, ' ');
1873 if (!p)
1874 break;
1875 while (*p == ' ' || *p == '\t')
1876 p++;
1877 }
1878
1879 if (pos == 0)
1880 priv->config &= ~CFG_SPEED_SCAN;
1881 else {
1882 priv->speed_scan_pos = 0;
1883 priv->config |= CFG_SPEED_SCAN;
1884 }
1885
1886 return count;
1887 }
1888
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890 store_speed_scan);
1891
1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893 char *buf)
1894 {
1895 struct ipw_priv *priv = dev_get_drvdata(d);
1896 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897 }
1898
1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900 const char *buf, size_t count)
1901 {
1902 struct ipw_priv *priv = dev_get_drvdata(d);
1903 if (buf[0] == '1')
1904 priv->config |= CFG_NET_STATS;
1905 else
1906 priv->config &= ~CFG_NET_STATS;
1907
1908 return count;
1909 }
1910
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912 show_net_stats, store_net_stats);
1913
1914 static ssize_t show_channels(struct device *d,
1915 struct device_attribute *attr,
1916 char *buf)
1917 {
1918 struct ipw_priv *priv = dev_get_drvdata(d);
1919 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920 int len = 0, i;
1921
1922 len = sprintf(&buf[len],
1923 "Displaying %d channels in 2.4Ghz band "
1924 "(802.11bg):\n", geo->bg_channels);
1925
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928 geo->bg[i].channel,
1929 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930 " (radar spectrum)" : "",
1931 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933 ? "" : ", IBSS",
1934 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935 "passive only" : "active/passive",
1936 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937 "B" : "B/G");
1938 }
1939
1940 len += sprintf(&buf[len],
1941 "Displaying %d channels in 5.2Ghz band "
1942 "(802.11a):\n", geo->a_channels);
1943 for (i = 0; i < geo->a_channels; i++) {
1944 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945 geo->a[i].channel,
1946 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947 " (radar spectrum)" : "",
1948 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950 ? "" : ", IBSS",
1951 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952 "passive only" : "active/passive");
1953 }
1954
1955 return len;
1956 }
1957
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959
1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1961 {
1962 union iwreq_data wrqu;
1963 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964 if (priv->status & STATUS_ASSOCIATED)
1965 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966 else
1967 eth_zero_addr(wrqu.ap_addr.sa_data);
1968 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969 }
1970
1971 static void ipw_irq_tasklet(struct ipw_priv *priv)
1972 {
1973 u32 inta, inta_mask, handled = 0;
1974 unsigned long flags;
1975 int rc = 0;
1976
1977 spin_lock_irqsave(&priv->irq_lock, flags);
1978
1979 inta = ipw_read32(priv, IPW_INTA_RW);
1980 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1981
1982 if (inta == 0xFFFFFFFF) {
1983 /* Hardware disappeared */
1984 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985 /* Only handle the cached INTA values */
1986 inta = 0;
1987 }
1988 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1989
1990 /* Add any cached INTA values that need to be handled */
1991 inta |= priv->isr_inta;
1992
1993 spin_unlock_irqrestore(&priv->irq_lock, flags);
1994
1995 spin_lock_irqsave(&priv->lock, flags);
1996
1997 /* handle all the justifications for the interrupt */
1998 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999 ipw_rx(priv);
2000 handled |= IPW_INTA_BIT_RX_TRANSFER;
2001 }
2002
2003 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004 IPW_DEBUG_HC("Command completed.\n");
2005 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006 priv->status &= ~STATUS_HCMD_ACTIVE;
2007 wake_up_interruptible(&priv->wait_command_queue);
2008 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2009 }
2010
2011 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012 IPW_DEBUG_TX("TX_QUEUE_1\n");
2013 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2015 }
2016
2017 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018 IPW_DEBUG_TX("TX_QUEUE_2\n");
2019 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2021 }
2022
2023 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024 IPW_DEBUG_TX("TX_QUEUE_3\n");
2025 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2027 }
2028
2029 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030 IPW_DEBUG_TX("TX_QUEUE_4\n");
2031 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2033 }
2034
2035 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036 IPW_WARNING("STATUS_CHANGE\n");
2037 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2038 }
2039
2040 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2041 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2043 }
2044
2045 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2046 IPW_WARNING("HOST_CMD_DONE\n");
2047 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2048 }
2049
2050 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2051 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2053 }
2054
2055 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2056 IPW_WARNING("PHY_OFF_DONE\n");
2057 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2058 }
2059
2060 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062 priv->status |= STATUS_RF_KILL_HW;
2063 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2064 wake_up_interruptible(&priv->wait_command_queue);
2065 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066 cancel_delayed_work(&priv->request_scan);
2067 cancel_delayed_work(&priv->request_direct_scan);
2068 cancel_delayed_work(&priv->request_passive_scan);
2069 cancel_delayed_work(&priv->scan_event);
2070 schedule_work(&priv->link_down);
2071 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2073 }
2074
2075 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076 IPW_WARNING("Firmware error detected. Restarting.\n");
2077 if (priv->error) {
2078 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080 struct ipw_fw_error *error =
2081 ipw_alloc_error_log(priv);
2082 ipw_dump_error_log(priv, error);
2083 kfree(error);
2084 }
2085 } else {
2086 priv->error = ipw_alloc_error_log(priv);
2087 if (priv->error)
2088 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089 else
2090 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091 "log.\n");
2092 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093 ipw_dump_error_log(priv, priv->error);
2094 }
2095
2096 /* XXX: If hardware encryption is for WPA/WPA2,
2097 * we have to notify the supplicant. */
2098 if (priv->ieee->sec.encrypt) {
2099 priv->status &= ~STATUS_ASSOCIATED;
2100 notify_wx_assoc_event(priv);
2101 }
2102
2103 /* Keep the restart process from trying to send host
2104 * commands by clearing the INIT status bit */
2105 priv->status &= ~STATUS_INIT;
2106
2107 /* Cancel currently queued command. */
2108 priv->status &= ~STATUS_HCMD_ACTIVE;
2109 wake_up_interruptible(&priv->wait_command_queue);
2110
2111 schedule_work(&priv->adapter_restart);
2112 handled |= IPW_INTA_BIT_FATAL_ERROR;
2113 }
2114
2115 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116 IPW_ERROR("Parity error\n");
2117 handled |= IPW_INTA_BIT_PARITY_ERROR;
2118 }
2119
2120 if (handled != inta) {
2121 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2122 }
2123
2124 spin_unlock_irqrestore(&priv->lock, flags);
2125
2126 /* enable all interrupts */
2127 ipw_enable_interrupts(priv);
2128 }
2129
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131 static char *get_cmd_string(u8 cmd)
2132 {
2133 switch (cmd) {
2134 IPW_CMD(HOST_COMPLETE);
2135 IPW_CMD(POWER_DOWN);
2136 IPW_CMD(SYSTEM_CONFIG);
2137 IPW_CMD(MULTICAST_ADDRESS);
2138 IPW_CMD(SSID);
2139 IPW_CMD(ADAPTER_ADDRESS);
2140 IPW_CMD(PORT_TYPE);
2141 IPW_CMD(RTS_THRESHOLD);
2142 IPW_CMD(FRAG_THRESHOLD);
2143 IPW_CMD(POWER_MODE);
2144 IPW_CMD(WEP_KEY);
2145 IPW_CMD(TGI_TX_KEY);
2146 IPW_CMD(SCAN_REQUEST);
2147 IPW_CMD(SCAN_REQUEST_EXT);
2148 IPW_CMD(ASSOCIATE);
2149 IPW_CMD(SUPPORTED_RATES);
2150 IPW_CMD(SCAN_ABORT);
2151 IPW_CMD(TX_FLUSH);
2152 IPW_CMD(QOS_PARAMETERS);
2153 IPW_CMD(DINO_CONFIG);
2154 IPW_CMD(RSN_CAPABILITIES);
2155 IPW_CMD(RX_KEY);
2156 IPW_CMD(CARD_DISABLE);
2157 IPW_CMD(SEED_NUMBER);
2158 IPW_CMD(TX_POWER);
2159 IPW_CMD(COUNTRY_INFO);
2160 IPW_CMD(AIRONET_INFO);
2161 IPW_CMD(AP_TX_POWER);
2162 IPW_CMD(CCKM_INFO);
2163 IPW_CMD(CCX_VER_INFO);
2164 IPW_CMD(SET_CALIBRATION);
2165 IPW_CMD(SENSITIVITY_CALIB);
2166 IPW_CMD(RETRY_LIMIT);
2167 IPW_CMD(IPW_PRE_POWER_DOWN);
2168 IPW_CMD(VAP_BEACON_TEMPLATE);
2169 IPW_CMD(VAP_DTIM_PERIOD);
2170 IPW_CMD(EXT_SUPPORTED_RATES);
2171 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172 IPW_CMD(VAP_QUIET_INTERVALS);
2173 IPW_CMD(VAP_CHANNEL_SWITCH);
2174 IPW_CMD(VAP_MANDATORY_CHANNELS);
2175 IPW_CMD(VAP_CELL_PWR_LIMIT);
2176 IPW_CMD(VAP_CF_PARAM_SET);
2177 IPW_CMD(VAP_SET_BEACONING_STATE);
2178 IPW_CMD(MEASUREMENT);
2179 IPW_CMD(POWER_CAPABILITY);
2180 IPW_CMD(SUPPORTED_CHANNELS);
2181 IPW_CMD(TPC_REPORT);
2182 IPW_CMD(WME_INFO);
2183 IPW_CMD(PRODUCTION_COMMAND);
2184 default:
2185 return "UNKNOWN";
2186 }
2187 }
2188
2189 #define HOST_COMPLETE_TIMEOUT HZ
2190
2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2192 {
2193 int rc = 0;
2194 unsigned long flags;
2195 unsigned long now, end;
2196
2197 spin_lock_irqsave(&priv->lock, flags);
2198 if (priv->status & STATUS_HCMD_ACTIVE) {
2199 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200 get_cmd_string(cmd->cmd));
2201 spin_unlock_irqrestore(&priv->lock, flags);
2202 return -EAGAIN;
2203 }
2204
2205 priv->status |= STATUS_HCMD_ACTIVE;
2206
2207 if (priv->cmdlog) {
2208 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212 cmd->len);
2213 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2214 }
2215
2216 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218 priv->status);
2219
2220 #ifndef DEBUG_CMD_WEP_KEY
2221 if (cmd->cmd == IPW_CMD_WEP_KEY)
2222 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223 else
2224 #endif
2225 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2226
2227 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228 if (rc) {
2229 priv->status &= ~STATUS_HCMD_ACTIVE;
2230 IPW_ERROR("Failed to send %s: Reason %d\n",
2231 get_cmd_string(cmd->cmd), rc);
2232 spin_unlock_irqrestore(&priv->lock, flags);
2233 goto exit;
2234 }
2235 spin_unlock_irqrestore(&priv->lock, flags);
2236
2237 now = jiffies;
2238 end = now + HOST_COMPLETE_TIMEOUT;
2239 again:
2240 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2241 !(priv->
2242 status & STATUS_HCMD_ACTIVE),
2243 end - now);
2244 if (rc < 0) {
2245 now = jiffies;
2246 if (time_before(now, end))
2247 goto again;
2248 rc = 0;
2249 }
2250
2251 if (rc == 0) {
2252 spin_lock_irqsave(&priv->lock, flags);
2253 if (priv->status & STATUS_HCMD_ACTIVE) {
2254 IPW_ERROR("Failed to send %s: Command timed out.\n",
2255 get_cmd_string(cmd->cmd));
2256 priv->status &= ~STATUS_HCMD_ACTIVE;
2257 spin_unlock_irqrestore(&priv->lock, flags);
2258 rc = -EIO;
2259 goto exit;
2260 }
2261 spin_unlock_irqrestore(&priv->lock, flags);
2262 } else
2263 rc = 0;
2264
2265 if (priv->status & STATUS_RF_KILL_HW) {
2266 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267 get_cmd_string(cmd->cmd));
2268 rc = -EIO;
2269 goto exit;
2270 }
2271
2272 exit:
2273 if (priv->cmdlog) {
2274 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275 priv->cmdlog_pos %= priv->cmdlog_len;
2276 }
2277 return rc;
2278 }
2279
2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2281 {
2282 struct host_cmd cmd = {
2283 .cmd = command,
2284 };
2285
2286 return __ipw_send_cmd(priv, &cmd);
2287 }
2288
2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290 void *data)
2291 {
2292 struct host_cmd cmd = {
2293 .cmd = command,
2294 .len = len,
2295 .param = data,
2296 };
2297
2298 return __ipw_send_cmd(priv, &cmd);
2299 }
2300
2301 static int ipw_send_host_complete(struct ipw_priv *priv)
2302 {
2303 if (!priv) {
2304 IPW_ERROR("Invalid args\n");
2305 return -1;
2306 }
2307
2308 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2309 }
2310
2311 static int ipw_send_system_config(struct ipw_priv *priv)
2312 {
2313 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314 sizeof(priv->sys_config),
2315 &priv->sys_config);
2316 }
2317
2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2319 {
2320 if (!priv || !ssid) {
2321 IPW_ERROR("Invalid args\n");
2322 return -1;
2323 }
2324
2325 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326 ssid);
2327 }
2328
2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2330 {
2331 if (!priv || !mac) {
2332 IPW_ERROR("Invalid args\n");
2333 return -1;
2334 }
2335
2336 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337 priv->net_dev->name, mac);
2338
2339 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2340 }
2341
2342 static void ipw_adapter_restart(void *adapter)
2343 {
2344 struct ipw_priv *priv = adapter;
2345
2346 if (priv->status & STATUS_RF_KILL_MASK)
2347 return;
2348
2349 ipw_down(priv);
2350
2351 if (priv->assoc_network &&
2352 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353 ipw_remove_current_network(priv);
2354
2355 if (ipw_up(priv)) {
2356 IPW_ERROR("Failed to up device\n");
2357 return;
2358 }
2359 }
2360
2361 static void ipw_bg_adapter_restart(struct work_struct *work)
2362 {
2363 struct ipw_priv *priv =
2364 container_of(work, struct ipw_priv, adapter_restart);
2365 mutex_lock(&priv->mutex);
2366 ipw_adapter_restart(priv);
2367 mutex_unlock(&priv->mutex);
2368 }
2369
2370 static void ipw_abort_scan(struct ipw_priv *priv);
2371
2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2373
2374 static void ipw_scan_check(void *data)
2375 {
2376 struct ipw_priv *priv = data;
2377
2378 if (priv->status & STATUS_SCAN_ABORTING) {
2379 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380 "adapter after (%dms).\n",
2381 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2382 schedule_work(&priv->adapter_restart);
2383 } else if (priv->status & STATUS_SCANNING) {
2384 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385 "after (%dms).\n",
2386 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2387 ipw_abort_scan(priv);
2388 schedule_delayed_work(&priv->scan_check, HZ);
2389 }
2390 }
2391
2392 static void ipw_bg_scan_check(struct work_struct *work)
2393 {
2394 struct ipw_priv *priv =
2395 container_of(work, struct ipw_priv, scan_check.work);
2396 mutex_lock(&priv->mutex);
2397 ipw_scan_check(priv);
2398 mutex_unlock(&priv->mutex);
2399 }
2400
2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402 struct ipw_scan_request_ext *request)
2403 {
2404 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405 sizeof(*request), request);
2406 }
2407
2408 static int ipw_send_scan_abort(struct ipw_priv *priv)
2409 {
2410 if (!priv) {
2411 IPW_ERROR("Invalid args\n");
2412 return -1;
2413 }
2414
2415 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2416 }
2417
2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2419 {
2420 struct ipw_sensitivity_calib calib = {
2421 .beacon_rssi_raw = cpu_to_le16(sens),
2422 };
2423
2424 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425 &calib);
2426 }
2427
2428 static int ipw_send_associate(struct ipw_priv *priv,
2429 struct ipw_associate *associate)
2430 {
2431 if (!priv || !associate) {
2432 IPW_ERROR("Invalid args\n");
2433 return -1;
2434 }
2435
2436 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437 associate);
2438 }
2439
2440 static int ipw_send_supported_rates(struct ipw_priv *priv,
2441 struct ipw_supported_rates *rates)
2442 {
2443 if (!priv || !rates) {
2444 IPW_ERROR("Invalid args\n");
2445 return -1;
2446 }
2447
2448 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449 rates);
2450 }
2451
2452 static int ipw_set_random_seed(struct ipw_priv *priv)
2453 {
2454 u32 val;
2455
2456 if (!priv) {
2457 IPW_ERROR("Invalid args\n");
2458 return -1;
2459 }
2460
2461 get_random_bytes(&val, sizeof(val));
2462
2463 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2464 }
2465
2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2467 {
2468 __le32 v = cpu_to_le32(phy_off);
2469 if (!priv) {
2470 IPW_ERROR("Invalid args\n");
2471 return -1;
2472 }
2473
2474 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2475 }
2476
2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2478 {
2479 if (!priv || !power) {
2480 IPW_ERROR("Invalid args\n");
2481 return -1;
2482 }
2483
2484 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2485 }
2486
2487 static int ipw_set_tx_power(struct ipw_priv *priv)
2488 {
2489 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490 struct ipw_tx_power tx_power;
2491 s8 max_power;
2492 int i;
2493
2494 memset(&tx_power, 0, sizeof(tx_power));
2495
2496 /* configure device for 'G' band */
2497 tx_power.ieee_mode = IPW_G_MODE;
2498 tx_power.num_channels = geo->bg_channels;
2499 for (i = 0; i < geo->bg_channels; i++) {
2500 max_power = geo->bg[i].max_power;
2501 tx_power.channels_tx_power[i].channel_number =
2502 geo->bg[i].channel;
2503 tx_power.channels_tx_power[i].tx_power = max_power ?
2504 min(max_power, priv->tx_power) : priv->tx_power;
2505 }
2506 if (ipw_send_tx_power(priv, &tx_power))
2507 return -EIO;
2508
2509 /* configure device to also handle 'B' band */
2510 tx_power.ieee_mode = IPW_B_MODE;
2511 if (ipw_send_tx_power(priv, &tx_power))
2512 return -EIO;
2513
2514 /* configure device to also handle 'A' band */
2515 if (priv->ieee->abg_true) {
2516 tx_power.ieee_mode = IPW_A_MODE;
2517 tx_power.num_channels = geo->a_channels;
2518 for (i = 0; i < tx_power.num_channels; i++) {
2519 max_power = geo->a[i].max_power;
2520 tx_power.channels_tx_power[i].channel_number =
2521 geo->a[i].channel;
2522 tx_power.channels_tx_power[i].tx_power = max_power ?
2523 min(max_power, priv->tx_power) : priv->tx_power;
2524 }
2525 if (ipw_send_tx_power(priv, &tx_power))
2526 return -EIO;
2527 }
2528 return 0;
2529 }
2530
2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2532 {
2533 struct ipw_rts_threshold rts_threshold = {
2534 .rts_threshold = cpu_to_le16(rts),
2535 };
2536
2537 if (!priv) {
2538 IPW_ERROR("Invalid args\n");
2539 return -1;
2540 }
2541
2542 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543 sizeof(rts_threshold), &rts_threshold);
2544 }
2545
2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2547 {
2548 struct ipw_frag_threshold frag_threshold = {
2549 .frag_threshold = cpu_to_le16(frag),
2550 };
2551
2552 if (!priv) {
2553 IPW_ERROR("Invalid args\n");
2554 return -1;
2555 }
2556
2557 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558 sizeof(frag_threshold), &frag_threshold);
2559 }
2560
2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2562 {
2563 __le32 param;
2564
2565 if (!priv) {
2566 IPW_ERROR("Invalid args\n");
2567 return -1;
2568 }
2569
2570 /* If on battery, set to 3, if AC set to CAM, else user
2571 * level */
2572 switch (mode) {
2573 case IPW_POWER_BATTERY:
2574 param = cpu_to_le32(IPW_POWER_INDEX_3);
2575 break;
2576 case IPW_POWER_AC:
2577 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2578 break;
2579 default:
2580 param = cpu_to_le32(mode);
2581 break;
2582 }
2583
2584 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585 &param);
2586 }
2587
2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2589 {
2590 struct ipw_retry_limit retry_limit = {
2591 .short_retry_limit = slimit,
2592 .long_retry_limit = llimit
2593 };
2594
2595 if (!priv) {
2596 IPW_ERROR("Invalid args\n");
2597 return -1;
2598 }
2599
2600 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601 &retry_limit);
2602 }
2603
2604 /*
2605 * The IPW device contains a Microwire compatible EEPROM that stores
2606 * various data like the MAC address. Usually the firmware has exclusive
2607 * access to the eeprom, but during device initialization (before the
2608 * device driver has sent the HostComplete command to the firmware) the
2609 * device driver has read access to the EEPROM by way of indirect addressing
2610 * through a couple of memory mapped registers.
2611 *
2612 * The following is a simplified implementation for pulling data out of the
2613 * the eeprom, along with some helper functions to find information in
2614 * the per device private data's copy of the eeprom.
2615 *
2616 * NOTE: To better understand how these functions work (i.e what is a chip
2617 * select and why do have to keep driving the eeprom clock?), read
2618 * just about any data sheet for a Microwire compatible EEPROM.
2619 */
2620
2621 /* write a 32 bit value into the indirect accessor register */
2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2623 {
2624 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2625
2626 /* the eeprom requires some time to complete the operation */
2627 udelay(p->eeprom_delay);
2628 }
2629
2630 /* perform a chip select operation */
2631 static void eeprom_cs(struct ipw_priv *priv)
2632 {
2633 eeprom_write_reg(priv, 0);
2634 eeprom_write_reg(priv, EEPROM_BIT_CS);
2635 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636 eeprom_write_reg(priv, EEPROM_BIT_CS);
2637 }
2638
2639 /* perform a chip select operation */
2640 static void eeprom_disable_cs(struct ipw_priv *priv)
2641 {
2642 eeprom_write_reg(priv, EEPROM_BIT_CS);
2643 eeprom_write_reg(priv, 0);
2644 eeprom_write_reg(priv, EEPROM_BIT_SK);
2645 }
2646
2647 /* push a single bit down to the eeprom */
2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2649 {
2650 int d = (bit ? EEPROM_BIT_DI : 0);
2651 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2653 }
2654
2655 /* push an opcode followed by an address down to the eeprom */
2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2657 {
2658 int i;
2659
2660 eeprom_cs(priv);
2661 eeprom_write_bit(priv, 1);
2662 eeprom_write_bit(priv, op & 2);
2663 eeprom_write_bit(priv, op & 1);
2664 for (i = 7; i >= 0; i--) {
2665 eeprom_write_bit(priv, addr & (1 << i));
2666 }
2667 }
2668
2669 /* pull 16 bits off the eeprom, one bit at a time */
2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2671 {
2672 int i;
2673 u16 r = 0;
2674
2675 /* Send READ Opcode */
2676 eeprom_op(priv, EEPROM_CMD_READ, addr);
2677
2678 /* Send dummy bit */
2679 eeprom_write_reg(priv, EEPROM_BIT_CS);
2680
2681 /* Read the byte off the eeprom one bit at a time */
2682 for (i = 0; i < 16; i++) {
2683 u32 data = 0;
2684 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685 eeprom_write_reg(priv, EEPROM_BIT_CS);
2686 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2687 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2688 }
2689
2690 /* Send another dummy bit */
2691 eeprom_write_reg(priv, 0);
2692 eeprom_disable_cs(priv);
2693
2694 return r;
2695 }
2696
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data */
2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2700 {
2701 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2702 }
2703
2704 static void ipw_read_eeprom(struct ipw_priv *priv)
2705 {
2706 int i;
2707 __le16 *eeprom = (__le16 *) priv->eeprom;
2708
2709 IPW_DEBUG_TRACE(">>\n");
2710
2711 /* read entire contents of eeprom into private buffer */
2712 for (i = 0; i < 128; i++)
2713 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2714
2715 IPW_DEBUG_TRACE("<<\n");
2716 }
2717
2718 /*
2719 * Either the device driver (i.e. the host) or the firmware can
2720 * load eeprom data into the designated region in SRAM. If neither
2721 * happens then the FW will shutdown with a fatal error.
2722 *
2723 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2724 * bit needs region of shared SRAM needs to be non-zero.
2725 */
2726 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2727 {
2728 int i;
2729
2730 IPW_DEBUG_TRACE(">>\n");
2731
2732 /*
2733 If the data looks correct, then copy it to our private
2734 copy. Otherwise let the firmware know to perform the operation
2735 on its own.
2736 */
2737 if (priv->eeprom[EEPROM_VERSION] != 0) {
2738 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2739
2740 /* write the eeprom data to sram */
2741 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2742 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2743
2744 /* Do not load eeprom data on fatal error or suspend */
2745 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2746 } else {
2747 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2748
2749 /* Load eeprom data on fatal error or suspend */
2750 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2751 }
2752
2753 IPW_DEBUG_TRACE("<<\n");
2754 }
2755
2756 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2757 {
2758 count >>= 2;
2759 if (!count)
2760 return;
2761 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2762 while (count--)
2763 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2764 }
2765
2766 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2767 {
2768 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2769 CB_NUMBER_OF_ELEMENTS_SMALL *
2770 sizeof(struct command_block));
2771 }
2772
2773 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2774 { /* start dma engine but no transfers yet */
2775
2776 IPW_DEBUG_FW(">> :\n");
2777
2778 /* Start the dma */
2779 ipw_fw_dma_reset_command_blocks(priv);
2780
2781 /* Write CB base address */
2782 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2783
2784 IPW_DEBUG_FW("<< :\n");
2785 return 0;
2786 }
2787
2788 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2789 {
2790 u32 control = 0;
2791
2792 IPW_DEBUG_FW(">> :\n");
2793
2794 /* set the Stop and Abort bit */
2795 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2796 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2797 priv->sram_desc.last_cb_index = 0;
2798
2799 IPW_DEBUG_FW("<<\n");
2800 }
2801
2802 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2803 struct command_block *cb)
2804 {
2805 u32 address =
2806 IPW_SHARED_SRAM_DMA_CONTROL +
2807 (sizeof(struct command_block) * index);
2808 IPW_DEBUG_FW(">> :\n");
2809
2810 ipw_write_indirect(priv, address, (u8 *) cb,
2811 (int)sizeof(struct command_block));
2812
2813 IPW_DEBUG_FW("<< :\n");
2814 return 0;
2815
2816 }
2817
2818 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2819 {
2820 u32 control = 0;
2821 u32 index = 0;
2822
2823 IPW_DEBUG_FW(">> :\n");
2824
2825 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2826 ipw_fw_dma_write_command_block(priv, index,
2827 &priv->sram_desc.cb_list[index]);
2828
2829 /* Enable the DMA in the CSR register */
2830 ipw_clear_bit(priv, IPW_RESET_REG,
2831 IPW_RESET_REG_MASTER_DISABLED |
2832 IPW_RESET_REG_STOP_MASTER);
2833
2834 /* Set the Start bit. */
2835 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2836 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2837
2838 IPW_DEBUG_FW("<< :\n");
2839 return 0;
2840 }
2841
2842 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2843 {
2844 u32 address;
2845 u32 register_value = 0;
2846 u32 cb_fields_address = 0;
2847
2848 IPW_DEBUG_FW(">> :\n");
2849 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2850 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2851
2852 /* Read the DMA Controlor register */
2853 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2854 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2855
2856 /* Print the CB values */
2857 cb_fields_address = address;
2858 register_value = ipw_read_reg32(priv, cb_fields_address);
2859 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2860
2861 cb_fields_address += sizeof(u32);
2862 register_value = ipw_read_reg32(priv, cb_fields_address);
2863 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2864
2865 cb_fields_address += sizeof(u32);
2866 register_value = ipw_read_reg32(priv, cb_fields_address);
2867 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2868 register_value);
2869
2870 cb_fields_address += sizeof(u32);
2871 register_value = ipw_read_reg32(priv, cb_fields_address);
2872 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2873
2874 IPW_DEBUG_FW(">> :\n");
2875 }
2876
2877 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2878 {
2879 u32 current_cb_address = 0;
2880 u32 current_cb_index = 0;
2881
2882 IPW_DEBUG_FW("<< :\n");
2883 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2884
2885 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2886 sizeof(struct command_block);
2887
2888 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2889 current_cb_index, current_cb_address);
2890
2891 IPW_DEBUG_FW(">> :\n");
2892 return current_cb_index;
2893
2894 }
2895
2896 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2897 u32 src_address,
2898 u32 dest_address,
2899 u32 length,
2900 int interrupt_enabled, int is_last)
2901 {
2902
2903 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2904 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2905 CB_DEST_SIZE_LONG;
2906 struct command_block *cb;
2907 u32 last_cb_element = 0;
2908
2909 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2910 src_address, dest_address, length);
2911
2912 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2913 return -1;
2914
2915 last_cb_element = priv->sram_desc.last_cb_index;
2916 cb = &priv->sram_desc.cb_list[last_cb_element];
2917 priv->sram_desc.last_cb_index++;
2918
2919 /* Calculate the new CB control word */
2920 if (interrupt_enabled)
2921 control |= CB_INT_ENABLED;
2922
2923 if (is_last)
2924 control |= CB_LAST_VALID;
2925
2926 control |= length;
2927
2928 /* Calculate the CB Element's checksum value */
2929 cb->status = control ^ src_address ^ dest_address;
2930
2931 /* Copy the Source and Destination addresses */
2932 cb->dest_addr = dest_address;
2933 cb->source_addr = src_address;
2934
2935 /* Copy the Control Word last */
2936 cb->control = control;
2937
2938 return 0;
2939 }
2940
2941 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2942 int nr, u32 dest_address, u32 len)
2943 {
2944 int ret, i;
2945 u32 size;
2946
2947 IPW_DEBUG_FW(">>\n");
2948 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2949 nr, dest_address, len);
2950
2951 for (i = 0; i < nr; i++) {
2952 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2953 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2954 dest_address +
2955 i * CB_MAX_LENGTH, size,
2956 0, 0);
2957 if (ret) {
2958 IPW_DEBUG_FW_INFO(": Failed\n");
2959 return -1;
2960 } else
2961 IPW_DEBUG_FW_INFO(": Added new cb\n");
2962 }
2963
2964 IPW_DEBUG_FW("<<\n");
2965 return 0;
2966 }
2967
2968 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2969 {
2970 u32 current_index = 0, previous_index;
2971 u32 watchdog = 0;
2972
2973 IPW_DEBUG_FW(">> :\n");
2974
2975 current_index = ipw_fw_dma_command_block_index(priv);
2976 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2977 (int)priv->sram_desc.last_cb_index);
2978
2979 while (current_index < priv->sram_desc.last_cb_index) {
2980 udelay(50);
2981 previous_index = current_index;
2982 current_index = ipw_fw_dma_command_block_index(priv);
2983
2984 if (previous_index < current_index) {
2985 watchdog = 0;
2986 continue;
2987 }
2988 if (++watchdog > 400) {
2989 IPW_DEBUG_FW_INFO("Timeout\n");
2990 ipw_fw_dma_dump_command_block(priv);
2991 ipw_fw_dma_abort(priv);
2992 return -1;
2993 }
2994 }
2995
2996 ipw_fw_dma_abort(priv);
2997
2998 /*Disable the DMA in the CSR register */
2999 ipw_set_bit(priv, IPW_RESET_REG,
3000 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
3001
3002 IPW_DEBUG_FW("<< dmaWaitSync\n");
3003 return 0;
3004 }
3005
3006 static void ipw_remove_current_network(struct ipw_priv *priv)
3007 {
3008 struct list_head *element, *safe;
3009 struct libipw_network *network = NULL;
3010 unsigned long flags;
3011
3012 spin_lock_irqsave(&priv->ieee->lock, flags);
3013 list_for_each_safe(element, safe, &priv->ieee->network_list) {
3014 network = list_entry(element, struct libipw_network, list);
3015 if (ether_addr_equal(network->bssid, priv->bssid)) {
3016 list_del(element);
3017 list_add_tail(&network->list,
3018 &priv->ieee->network_free_list);
3019 }
3020 }
3021 spin_unlock_irqrestore(&priv->ieee->lock, flags);
3022 }
3023
3024 /**
3025 * Check that card is still alive.
3026 * Reads debug register from domain0.
3027 * If card is present, pre-defined value should
3028 * be found there.
3029 *
3030 * @param priv
3031 * @return 1 if card is present, 0 otherwise
3032 */
3033 static inline int ipw_alive(struct ipw_priv *priv)
3034 {
3035 return ipw_read32(priv, 0x90) == 0xd55555d5;
3036 }
3037
3038 /* timeout in msec, attempted in 10-msec quanta */
3039 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3040 int timeout)
3041 {
3042 int i = 0;
3043
3044 do {
3045 if ((ipw_read32(priv, addr) & mask) == mask)
3046 return i;
3047 mdelay(10);
3048 i += 10;
3049 } while (i < timeout);
3050
3051 return -ETIME;
3052 }
3053
3054 /* These functions load the firmware and micro code for the operation of
3055 * the ipw hardware. It assumes the buffer has all the bits for the
3056 * image and the caller is handling the memory allocation and clean up.
3057 */
3058
3059 static int ipw_stop_master(struct ipw_priv *priv)
3060 {
3061 int rc;
3062
3063 IPW_DEBUG_TRACE(">>\n");
3064 /* stop master. typical delay - 0 */
3065 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3066
3067 /* timeout is in msec, polled in 10-msec quanta */
3068 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3069 IPW_RESET_REG_MASTER_DISABLED, 100);
3070 if (rc < 0) {
3071 IPW_ERROR("wait for stop master failed after 100ms\n");
3072 return -1;
3073 }
3074
3075 IPW_DEBUG_INFO("stop master %dms\n", rc);
3076
3077 return rc;
3078 }
3079
3080 static void ipw_arc_release(struct ipw_priv *priv)
3081 {
3082 IPW_DEBUG_TRACE(">>\n");
3083 mdelay(5);
3084
3085 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3086
3087 /* no one knows timing, for safety add some delay */
3088 mdelay(5);
3089 }
3090
3091 struct fw_chunk {
3092 __le32 address;
3093 __le32 length;
3094 };
3095
3096 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3097 {
3098 int rc = 0, i, addr;
3099 u8 cr = 0;
3100 __le16 *image;
3101
3102 image = (__le16 *) data;
3103
3104 IPW_DEBUG_TRACE(">>\n");
3105
3106 rc = ipw_stop_master(priv);
3107
3108 if (rc < 0)
3109 return rc;
3110
3111 for (addr = IPW_SHARED_LOWER_BOUND;
3112 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3113 ipw_write32(priv, addr, 0);
3114 }
3115
3116 /* no ucode (yet) */
3117 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3118 /* destroy DMA queues */
3119 /* reset sequence */
3120
3121 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3122 ipw_arc_release(priv);
3123 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3124 mdelay(1);
3125
3126 /* reset PHY */
3127 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3128 mdelay(1);
3129
3130 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3131 mdelay(1);
3132
3133 /* enable ucode store */
3134 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3135 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3136 mdelay(1);
3137
3138 /* write ucode */
3139 /**
3140 * @bug
3141 * Do NOT set indirect address register once and then
3142 * store data to indirect data register in the loop.
3143 * It seems very reasonable, but in this case DINO do not
3144 * accept ucode. It is essential to set address each time.
3145 */
3146 /* load new ipw uCode */
3147 for (i = 0; i < len / 2; i++)
3148 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3149 le16_to_cpu(image[i]));
3150
3151 /* enable DINO */
3152 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3153 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3154
3155 /* this is where the igx / win driver deveates from the VAP driver. */
3156
3157 /* wait for alive response */
3158 for (i = 0; i < 100; i++) {
3159 /* poll for incoming data */
3160 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3161 if (cr & DINO_RXFIFO_DATA)
3162 break;
3163 mdelay(1);
3164 }
3165
3166 if (cr & DINO_RXFIFO_DATA) {
3167 /* alive_command_responce size is NOT multiple of 4 */
3168 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3169
3170 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3171 response_buffer[i] =
3172 cpu_to_le32(ipw_read_reg32(priv,
3173 IPW_BASEBAND_RX_FIFO_READ));
3174 memcpy(&priv->dino_alive, response_buffer,
3175 sizeof(priv->dino_alive));
3176 if (priv->dino_alive.alive_command == 1
3177 && priv->dino_alive.ucode_valid == 1) {
3178 rc = 0;
3179 IPW_DEBUG_INFO
3180 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3181 "of %02d/%02d/%02d %02d:%02d\n",
3182 priv->dino_alive.software_revision,
3183 priv->dino_alive.software_revision,
3184 priv->dino_alive.device_identifier,
3185 priv->dino_alive.device_identifier,
3186 priv->dino_alive.time_stamp[0],
3187 priv->dino_alive.time_stamp[1],
3188 priv->dino_alive.time_stamp[2],
3189 priv->dino_alive.time_stamp[3],
3190 priv->dino_alive.time_stamp[4]);
3191 } else {
3192 IPW_DEBUG_INFO("Microcode is not alive\n");
3193 rc = -EINVAL;
3194 }
3195 } else {
3196 IPW_DEBUG_INFO("No alive response from DINO\n");
3197 rc = -ETIME;
3198 }
3199
3200 /* disable DINO, otherwise for some reason
3201 firmware have problem getting alive resp. */
3202 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3203
3204 return rc;
3205 }
3206
3207 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3208 {
3209 int ret = -1;
3210 int offset = 0;
3211 struct fw_chunk *chunk;
3212 int total_nr = 0;
3213 int i;
3214 struct pci_pool *pool;
3215 void **virts;
3216 dma_addr_t *phys;
3217
3218 IPW_DEBUG_TRACE("<< :\n");
3219
3220 virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3221 GFP_KERNEL);
3222 if (!virts)
3223 return -ENOMEM;
3224
3225 phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3226 GFP_KERNEL);
3227 if (!phys) {
3228 kfree(virts);
3229 return -ENOMEM;
3230 }
3231 pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3232 if (!pool) {
3233 IPW_ERROR("pci_pool_create failed\n");
3234 kfree(phys);
3235 kfree(virts);
3236 return -ENOMEM;
3237 }
3238
3239 /* Start the Dma */
3240 ret = ipw_fw_dma_enable(priv);
3241
3242 /* the DMA is already ready this would be a bug. */
3243 BUG_ON(priv->sram_desc.last_cb_index > 0);
3244
3245 do {
3246 u32 chunk_len;
3247 u8 *start;
3248 int size;
3249 int nr = 0;
3250
3251 chunk = (struct fw_chunk *)(data + offset);
3252 offset += sizeof(struct fw_chunk);
3253 chunk_len = le32_to_cpu(chunk->length);
3254 start = data + offset;
3255
3256 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3257 for (i = 0; i < nr; i++) {
3258 virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3259 &phys[total_nr]);
3260 if (!virts[total_nr]) {
3261 ret = -ENOMEM;
3262 goto out;
3263 }
3264 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3265 CB_MAX_LENGTH);
3266 memcpy(virts[total_nr], start, size);
3267 start += size;
3268 total_nr++;
3269 /* We don't support fw chunk larger than 64*8K */
3270 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3271 }
3272
3273 /* build DMA packet and queue up for sending */
3274 /* dma to chunk->address, the chunk->length bytes from data +
3275 * offeset*/
3276 /* Dma loading */
3277 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3278 nr, le32_to_cpu(chunk->address),
3279 chunk_len);
3280 if (ret) {
3281 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3282 goto out;
3283 }
3284
3285 offset += chunk_len;
3286 } while (offset < len);
3287
3288 /* Run the DMA and wait for the answer */
3289 ret = ipw_fw_dma_kick(priv);
3290 if (ret) {
3291 IPW_ERROR("dmaKick Failed\n");
3292 goto out;
3293 }
3294
3295 ret = ipw_fw_dma_wait(priv);
3296 if (ret) {
3297 IPW_ERROR("dmaWaitSync Failed\n");
3298 goto out;
3299 }
3300 out:
3301 for (i = 0; i < total_nr; i++)
3302 pci_pool_free(pool, virts[i], phys[i]);
3303
3304 pci_pool_destroy(pool);
3305 kfree(phys);
3306 kfree(virts);
3307
3308 return ret;
3309 }
3310
3311 /* stop nic */
3312 static int ipw_stop_nic(struct ipw_priv *priv)
3313 {
3314 int rc = 0;
3315
3316 /* stop */
3317 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3318
3319 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3320 IPW_RESET_REG_MASTER_DISABLED, 500);
3321 if (rc < 0) {
3322 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3323 return rc;
3324 }
3325
3326 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3327
3328 return rc;
3329 }
3330
3331 static void ipw_start_nic(struct ipw_priv *priv)
3332 {
3333 IPW_DEBUG_TRACE(">>\n");
3334
3335 /* prvHwStartNic release ARC */
3336 ipw_clear_bit(priv, IPW_RESET_REG,
3337 IPW_RESET_REG_MASTER_DISABLED |
3338 IPW_RESET_REG_STOP_MASTER |
3339 CBD_RESET_REG_PRINCETON_RESET);
3340
3341 /* enable power management */
3342 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3343 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3344
3345 IPW_DEBUG_TRACE("<<\n");
3346 }
3347
3348 static int ipw_init_nic(struct ipw_priv *priv)
3349 {
3350 int rc;
3351
3352 IPW_DEBUG_TRACE(">>\n");
3353 /* reset */
3354 /*prvHwInitNic */
3355 /* set "initialization complete" bit to move adapter to D0 state */
3356 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3357
3358 /* low-level PLL activation */
3359 ipw_write32(priv, IPW_READ_INT_REGISTER,
3360 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3361
3362 /* wait for clock stabilization */
3363 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3364 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3365 if (rc < 0)
3366 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3367
3368 /* assert SW reset */
3369 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3370
3371 udelay(10);
3372
3373 /* set "initialization complete" bit to move adapter to D0 state */
3374 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3375
3376 IPW_DEBUG_TRACE(">>\n");
3377 return 0;
3378 }
3379
3380 /* Call this function from process context, it will sleep in request_firmware.
3381 * Probe is an ok place to call this from.
3382 */
3383 static int ipw_reset_nic(struct ipw_priv *priv)
3384 {
3385 int rc = 0;
3386 unsigned long flags;
3387
3388 IPW_DEBUG_TRACE(">>\n");
3389
3390 rc = ipw_init_nic(priv);
3391
3392 spin_lock_irqsave(&priv->lock, flags);
3393 /* Clear the 'host command active' bit... */
3394 priv->status &= ~STATUS_HCMD_ACTIVE;
3395 wake_up_interruptible(&priv->wait_command_queue);
3396 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3397 wake_up_interruptible(&priv->wait_state);
3398 spin_unlock_irqrestore(&priv->lock, flags);
3399
3400 IPW_DEBUG_TRACE("<<\n");
3401 return rc;
3402 }
3403
3404
3405 struct ipw_fw {
3406 __le32 ver;
3407 __le32 boot_size;
3408 __le32 ucode_size;
3409 __le32 fw_size;
3410 u8 data[0];
3411 };
3412
3413 static int ipw_get_fw(struct ipw_priv *priv,
3414 const struct firmware **raw, const char *name)
3415 {
3416 struct ipw_fw *fw;
3417 int rc;
3418
3419 /* ask firmware_class module to get the boot firmware off disk */
3420 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3421 if (rc < 0) {
3422 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3423 return rc;
3424 }
3425
3426 if ((*raw)->size < sizeof(*fw)) {
3427 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3428 return -EINVAL;
3429 }
3430
3431 fw = (void *)(*raw)->data;
3432
3433 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3434 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3435 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3436 name, (*raw)->size);
3437 return -EINVAL;
3438 }
3439
3440 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3441 name,
3442 le32_to_cpu(fw->ver) >> 16,
3443 le32_to_cpu(fw->ver) & 0xff,
3444 (*raw)->size - sizeof(*fw));
3445 return 0;
3446 }
3447
3448 #define IPW_RX_BUF_SIZE (3000)
3449
3450 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3451 struct ipw_rx_queue *rxq)
3452 {
3453 unsigned long flags;
3454 int i;
3455
3456 spin_lock_irqsave(&rxq->lock, flags);
3457
3458 INIT_LIST_HEAD(&rxq->rx_free);
3459 INIT_LIST_HEAD(&rxq->rx_used);
3460
3461 /* Fill the rx_used queue with _all_ of the Rx buffers */
3462 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3463 /* In the reset function, these buffers may have been allocated
3464 * to an SKB, so we need to unmap and free potential storage */
3465 if (rxq->pool[i].skb != NULL) {
3466 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3467 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3468 dev_kfree_skb(rxq->pool[i].skb);
3469 rxq->pool[i].skb = NULL;
3470 }
3471 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3472 }
3473
3474 /* Set us so that we have processed and used all buffers, but have
3475 * not restocked the Rx queue with fresh buffers */
3476 rxq->read = rxq->write = 0;
3477 rxq->free_count = 0;
3478 spin_unlock_irqrestore(&rxq->lock, flags);
3479 }
3480
3481 #ifdef CONFIG_PM
3482 static int fw_loaded = 0;
3483 static const struct firmware *raw = NULL;
3484
3485 static void free_firmware(void)
3486 {
3487 if (fw_loaded) {
3488 release_firmware(raw);
3489 raw = NULL;
3490 fw_loaded = 0;
3491 }
3492 }
3493 #else
3494 #define free_firmware() do {} while (0)
3495 #endif
3496
3497 static int ipw_load(struct ipw_priv *priv)
3498 {
3499 #ifndef CONFIG_PM
3500 const struct firmware *raw = NULL;
3501 #endif
3502 struct ipw_fw *fw;
3503 u8 *boot_img, *ucode_img, *fw_img;
3504 u8 *name = NULL;
3505 int rc = 0, retries = 3;
3506
3507 switch (priv->ieee->iw_mode) {
3508 case IW_MODE_ADHOC:
3509 name = "ipw2200-ibss.fw";
3510 break;
3511 #ifdef CONFIG_IPW2200_MONITOR
3512 case IW_MODE_MONITOR:
3513 name = "ipw2200-sniffer.fw";
3514 break;
3515 #endif
3516 case IW_MODE_INFRA:
3517 name = "ipw2200-bss.fw";
3518 break;
3519 }
3520
3521 if (!name) {
3522 rc = -EINVAL;
3523 goto error;
3524 }
3525
3526 #ifdef CONFIG_PM
3527 if (!fw_loaded) {
3528 #endif
3529 rc = ipw_get_fw(priv, &raw, name);
3530 if (rc < 0)
3531 goto error;
3532 #ifdef CONFIG_PM
3533 }
3534 #endif
3535
3536 fw = (void *)raw->data;
3537 boot_img = &fw->data[0];
3538 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3539 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3540 le32_to_cpu(fw->ucode_size)];
3541
3542 if (!priv->rxq)
3543 priv->rxq = ipw_rx_queue_alloc(priv);
3544 else
3545 ipw_rx_queue_reset(priv, priv->rxq);
3546 if (!priv->rxq) {
3547 IPW_ERROR("Unable to initialize Rx queue\n");
3548 rc = -ENOMEM;
3549 goto error;
3550 }
3551
3552 retry:
3553 /* Ensure interrupts are disabled */
3554 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3555 priv->status &= ~STATUS_INT_ENABLED;
3556
3557 /* ack pending interrupts */
3558 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3559
3560 ipw_stop_nic(priv);
3561
3562 rc = ipw_reset_nic(priv);
3563 if (rc < 0) {
3564 IPW_ERROR("Unable to reset NIC\n");
3565 goto error;
3566 }
3567
3568 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3569 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3570
3571 /* DMA the initial boot firmware into the device */
3572 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3573 if (rc < 0) {
3574 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3575 goto error;
3576 }
3577
3578 /* kick start the device */
3579 ipw_start_nic(priv);
3580
3581 /* wait for the device to finish its initial startup sequence */
3582 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3583 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3584 if (rc < 0) {
3585 IPW_ERROR("device failed to boot initial fw image\n");
3586 goto error;
3587 }
3588 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3589
3590 /* ack fw init done interrupt */
3591 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3592
3593 /* DMA the ucode into the device */
3594 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3595 if (rc < 0) {
3596 IPW_ERROR("Unable to load ucode: %d\n", rc);
3597 goto error;
3598 }
3599
3600 /* stop nic */
3601 ipw_stop_nic(priv);
3602
3603 /* DMA bss firmware into the device */
3604 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3605 if (rc < 0) {
3606 IPW_ERROR("Unable to load firmware: %d\n", rc);
3607 goto error;
3608 }
3609 #ifdef CONFIG_PM
3610 fw_loaded = 1;
3611 #endif
3612
3613 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3614
3615 rc = ipw_queue_reset(priv);
3616 if (rc < 0) {
3617 IPW_ERROR("Unable to initialize queues\n");
3618 goto error;
3619 }
3620
3621 /* Ensure interrupts are disabled */
3622 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3623 /* ack pending interrupts */
3624 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3625
3626 /* kick start the device */
3627 ipw_start_nic(priv);
3628
3629 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3630 if (retries > 0) {
3631 IPW_WARNING("Parity error. Retrying init.\n");
3632 retries--;
3633 goto retry;
3634 }
3635
3636 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3637 rc = -EIO;
3638 goto error;
3639 }
3640
3641 /* wait for the device */
3642 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3643 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3644 if (rc < 0) {
3645 IPW_ERROR("device failed to start within 500ms\n");
3646 goto error;
3647 }
3648 IPW_DEBUG_INFO("device response after %dms\n", rc);
3649
3650 /* ack fw init done interrupt */
3651 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3652
3653 /* read eeprom data */
3654 priv->eeprom_delay = 1;
3655 ipw_read_eeprom(priv);
3656 /* initialize the eeprom region of sram */
3657 ipw_eeprom_init_sram(priv);
3658
3659 /* enable interrupts */
3660 ipw_enable_interrupts(priv);
3661
3662 /* Ensure our queue has valid packets */
3663 ipw_rx_queue_replenish(priv);
3664
3665 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3666
3667 /* ack pending interrupts */
3668 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3669
3670 #ifndef CONFIG_PM
3671 release_firmware(raw);
3672 #endif
3673 return 0;
3674
3675 error:
3676 if (priv->rxq) {
3677 ipw_rx_queue_free(priv, priv->rxq);
3678 priv->rxq = NULL;
3679 }
3680 ipw_tx_queue_free(priv);
3681 release_firmware(raw);
3682 #ifdef CONFIG_PM
3683 fw_loaded = 0;
3684 raw = NULL;
3685 #endif
3686
3687 return rc;
3688 }
3689
3690 /**
3691 * DMA services
3692 *
3693 * Theory of operation
3694 *
3695 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3696 * 2 empty entries always kept in the buffer to protect from overflow.
3697 *
3698 * For Tx queue, there are low mark and high mark limits. If, after queuing
3699 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3700 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3701 * Tx queue resumed.
3702 *
3703 * The IPW operates with six queues, one receive queue in the device's
3704 * sram, one transmit queue for sending commands to the device firmware,
3705 * and four transmit queues for data.
3706 *
3707 * The four transmit queues allow for performing quality of service (qos)
3708 * transmissions as per the 802.11 protocol. Currently Linux does not
3709 * provide a mechanism to the user for utilizing prioritized queues, so
3710 * we only utilize the first data transmit queue (queue1).
3711 */
3712
3713 /**
3714 * Driver allocates buffers of this size for Rx
3715 */
3716
3717 /**
3718 * ipw_rx_queue_space - Return number of free slots available in queue.
3719 */
3720 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3721 {
3722 int s = q->read - q->write;
3723 if (s <= 0)
3724 s += RX_QUEUE_SIZE;
3725 /* keep some buffer to not confuse full and empty queue */
3726 s -= 2;
3727 if (s < 0)
3728 s = 0;
3729 return s;
3730 }
3731
3732 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3733 {
3734 int s = q->last_used - q->first_empty;
3735 if (s <= 0)
3736 s += q->n_bd;
3737 s -= 2; /* keep some reserve to not confuse empty and full situations */
3738 if (s < 0)
3739 s = 0;
3740 return s;
3741 }
3742
3743 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3744 {
3745 return (++index == n_bd) ? 0 : index;
3746 }
3747
3748 /**
3749 * Initialize common DMA queue structure
3750 *
3751 * @param q queue to init
3752 * @param count Number of BD's to allocate. Should be power of 2
3753 * @param read_register Address for 'read' register
3754 * (not offset within BAR, full address)
3755 * @param write_register Address for 'write' register
3756 * (not offset within BAR, full address)
3757 * @param base_register Address for 'base' register
3758 * (not offset within BAR, full address)
3759 * @param size Address for 'size' register
3760 * (not offset within BAR, full address)
3761 */
3762 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3763 int count, u32 read, u32 write, u32 base, u32 size)
3764 {
3765 q->n_bd = count;
3766
3767 q->low_mark = q->n_bd / 4;
3768 if (q->low_mark < 4)
3769 q->low_mark = 4;
3770
3771 q->high_mark = q->n_bd / 8;
3772 if (q->high_mark < 2)
3773 q->high_mark = 2;
3774
3775 q->first_empty = q->last_used = 0;
3776 q->reg_r = read;
3777 q->reg_w = write;
3778
3779 ipw_write32(priv, base, q->dma_addr);
3780 ipw_write32(priv, size, count);
3781 ipw_write32(priv, read, 0);
3782 ipw_write32(priv, write, 0);
3783
3784 _ipw_read32(priv, 0x90);
3785 }
3786
3787 static int ipw_queue_tx_init(struct ipw_priv *priv,
3788 struct clx2_tx_queue *q,
3789 int count, u32 read, u32 write, u32 base, u32 size)
3790 {
3791 struct pci_dev *dev = priv->pci_dev;
3792
3793 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3794 if (!q->txb) {
3795 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3796 return -ENOMEM;
3797 }
3798
3799 q->bd =
3800 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3801 if (!q->bd) {
3802 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3803 sizeof(q->bd[0]) * count);
3804 kfree(q->txb);
3805 q->txb = NULL;
3806 return -ENOMEM;
3807 }
3808
3809 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3810 return 0;
3811 }
3812
3813 /**
3814 * Free one TFD, those at index [txq->q.last_used].
3815 * Do NOT advance any indexes
3816 *
3817 * @param dev
3818 * @param txq
3819 */
3820 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3821 struct clx2_tx_queue *txq)
3822 {
3823 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3824 struct pci_dev *dev = priv->pci_dev;
3825 int i;
3826
3827 /* classify bd */
3828 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3829 /* nothing to cleanup after for host commands */
3830 return;
3831
3832 /* sanity check */
3833 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3834 IPW_ERROR("Too many chunks: %i\n",
3835 le32_to_cpu(bd->u.data.num_chunks));
3836 /** @todo issue fatal error, it is quite serious situation */
3837 return;
3838 }
3839
3840 /* unmap chunks if any */
3841 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3842 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3843 le16_to_cpu(bd->u.data.chunk_len[i]),
3844 PCI_DMA_TODEVICE);
3845 if (txq->txb[txq->q.last_used]) {
3846 libipw_txb_free(txq->txb[txq->q.last_used]);
3847 txq->txb[txq->q.last_used] = NULL;
3848 }
3849 }
3850 }
3851
3852 /**
3853 * Deallocate DMA queue.
3854 *
3855 * Empty queue by removing and destroying all BD's.
3856 * Free all buffers.
3857 *
3858 * @param dev
3859 * @param q
3860 */
3861 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3862 {
3863 struct clx2_queue *q = &txq->q;
3864 struct pci_dev *dev = priv->pci_dev;
3865
3866 if (q->n_bd == 0)
3867 return;
3868
3869 /* first, empty all BD's */
3870 for (; q->first_empty != q->last_used;
3871 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3872 ipw_queue_tx_free_tfd(priv, txq);
3873 }
3874
3875 /* free buffers belonging to queue itself */
3876 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3877 q->dma_addr);
3878 kfree(txq->txb);
3879
3880 /* 0 fill whole structure */
3881 memset(txq, 0, sizeof(*txq));
3882 }
3883
3884 /**
3885 * Destroy all DMA queues and structures
3886 *
3887 * @param priv
3888 */
3889 static void ipw_tx_queue_free(struct ipw_priv *priv)
3890 {
3891 /* Tx CMD queue */
3892 ipw_queue_tx_free(priv, &priv->txq_cmd);
3893
3894 /* Tx queues */
3895 ipw_queue_tx_free(priv, &priv->txq[0]);
3896 ipw_queue_tx_free(priv, &priv->txq[1]);
3897 ipw_queue_tx_free(priv, &priv->txq[2]);
3898 ipw_queue_tx_free(priv, &priv->txq[3]);
3899 }
3900
3901 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3902 {
3903 /* First 3 bytes are manufacturer */
3904 bssid[0] = priv->mac_addr[0];
3905 bssid[1] = priv->mac_addr[1];
3906 bssid[2] = priv->mac_addr[2];
3907
3908 /* Last bytes are random */
3909 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3910
3911 bssid[0] &= 0xfe; /* clear multicast bit */
3912 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3913 }
3914
3915 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3916 {
3917 struct ipw_station_entry entry;
3918 int i;
3919
3920 for (i = 0; i < priv->num_stations; i++) {
3921 if (ether_addr_equal(priv->stations[i], bssid)) {
3922 /* Another node is active in network */
3923 priv->missed_adhoc_beacons = 0;
3924 if (!(priv->config & CFG_STATIC_CHANNEL))
3925 /* when other nodes drop out, we drop out */
3926 priv->config &= ~CFG_ADHOC_PERSIST;
3927
3928 return i;
3929 }
3930 }
3931
3932 if (i == MAX_STATIONS)
3933 return IPW_INVALID_STATION;
3934
3935 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3936
3937 entry.reserved = 0;
3938 entry.support_mode = 0;
3939 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3940 memcpy(priv->stations[i], bssid, ETH_ALEN);
3941 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3942 &entry, sizeof(entry));
3943 priv->num_stations++;
3944
3945 return i;
3946 }
3947
3948 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3949 {
3950 int i;
3951
3952 for (i = 0; i < priv->num_stations; i++)
3953 if (ether_addr_equal(priv->stations[i], bssid))
3954 return i;
3955
3956 return IPW_INVALID_STATION;
3957 }
3958
3959 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3960 {
3961 int err;
3962
3963 if (priv->status & STATUS_ASSOCIATING) {
3964 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3965 schedule_work(&priv->disassociate);
3966 return;
3967 }
3968
3969 if (!(priv->status & STATUS_ASSOCIATED)) {
3970 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3971 return;
3972 }
3973
3974 IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3975 "on channel %d.\n",
3976 priv->assoc_request.bssid,
3977 priv->assoc_request.channel);
3978
3979 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3980 priv->status |= STATUS_DISASSOCIATING;
3981
3982 if (quiet)
3983 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3984 else
3985 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3986
3987 err = ipw_send_associate(priv, &priv->assoc_request);
3988 if (err) {
3989 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3990 "failed.\n");
3991 return;
3992 }
3993
3994 }
3995
3996 static int ipw_disassociate(void *data)
3997 {
3998 struct ipw_priv *priv = data;
3999 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
4000 return 0;
4001 ipw_send_disassociate(data, 0);
4002 netif_carrier_off(priv->net_dev);
4003 return 1;
4004 }
4005
4006 static void ipw_bg_disassociate(struct work_struct *work)
4007 {
4008 struct ipw_priv *priv =
4009 container_of(work, struct ipw_priv, disassociate);
4010 mutex_lock(&priv->mutex);
4011 ipw_disassociate(priv);
4012 mutex_unlock(&priv->mutex);
4013 }
4014
4015 static void ipw_system_config(struct work_struct *work)
4016 {
4017 struct ipw_priv *priv =
4018 container_of(work, struct ipw_priv, system_config);
4019
4020 #ifdef CONFIG_IPW2200_PROMISCUOUS
4021 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4022 priv->sys_config.accept_all_data_frames = 1;
4023 priv->sys_config.accept_non_directed_frames = 1;
4024 priv->sys_config.accept_all_mgmt_bcpr = 1;
4025 priv->sys_config.accept_all_mgmt_frames = 1;
4026 }
4027 #endif
4028
4029 ipw_send_system_config(priv);
4030 }
4031
4032 struct ipw_status_code {
4033 u16 status;
4034 const char *reason;
4035 };
4036
4037 static const struct ipw_status_code ipw_status_codes[] = {
4038 {0x00, "Successful"},
4039 {0x01, "Unspecified failure"},
4040 {0x0A, "Cannot support all requested capabilities in the "
4041 "Capability information field"},
4042 {0x0B, "Reassociation denied due to inability to confirm that "
4043 "association exists"},
4044 {0x0C, "Association denied due to reason outside the scope of this "
4045 "standard"},
4046 {0x0D,
4047 "Responding station does not support the specified authentication "
4048 "algorithm"},
4049 {0x0E,
4050 "Received an Authentication frame with authentication sequence "
4051 "transaction sequence number out of expected sequence"},
4052 {0x0F, "Authentication rejected because of challenge failure"},
4053 {0x10, "Authentication rejected due to timeout waiting for next "
4054 "frame in sequence"},
4055 {0x11, "Association denied because AP is unable to handle additional "
4056 "associated stations"},
4057 {0x12,
4058 "Association denied due to requesting station not supporting all "
4059 "of the datarates in the BSSBasicServiceSet Parameter"},
4060 {0x13,
4061 "Association denied due to requesting station not supporting "
4062 "short preamble operation"},
4063 {0x14,
4064 "Association denied due to requesting station not supporting "
4065 "PBCC encoding"},
4066 {0x15,
4067 "Association denied due to requesting station not supporting "
4068 "channel agility"},
4069 {0x19,
4070 "Association denied due to requesting station not supporting "
4071 "short slot operation"},
4072 {0x1A,
4073 "Association denied due to requesting station not supporting "
4074 "DSSS-OFDM operation"},
4075 {0x28, "Invalid Information Element"},
4076 {0x29, "Group Cipher is not valid"},
4077 {0x2A, "Pairwise Cipher is not valid"},
4078 {0x2B, "AKMP is not valid"},
4079 {0x2C, "Unsupported RSN IE version"},
4080 {0x2D, "Invalid RSN IE Capabilities"},
4081 {0x2E, "Cipher suite is rejected per security policy"},
4082 };
4083
4084 static const char *ipw_get_status_code(u16 status)
4085 {
4086 int i;
4087 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4088 if (ipw_status_codes[i].status == (status & 0xff))
4089 return ipw_status_codes[i].reason;
4090 return "Unknown status value.";
4091 }
4092
4093 static inline void average_init(struct average *avg)
4094 {
4095 memset(avg, 0, sizeof(*avg));
4096 }
4097
4098 #define DEPTH_RSSI 8
4099 #define DEPTH_NOISE 16
4100 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4101 {
4102 return ((depth-1)*prev_avg + val)/depth;
4103 }
4104
4105 static void average_add(struct average *avg, s16 val)
4106 {
4107 avg->sum -= avg->entries[avg->pos];
4108 avg->sum += val;
4109 avg->entries[avg->pos++] = val;
4110 if (unlikely(avg->pos == AVG_ENTRIES)) {
4111 avg->init = 1;
4112 avg->pos = 0;
4113 }
4114 }
4115
4116 static s16 average_value(struct average *avg)
4117 {
4118 if (!unlikely(avg->init)) {
4119 if (avg->pos)
4120 return avg->sum / avg->pos;
4121 return 0;
4122 }
4123
4124 return avg->sum / AVG_ENTRIES;
4125 }
4126
4127 static void ipw_reset_stats(struct ipw_priv *priv)
4128 {
4129 u32 len = sizeof(u32);
4130
4131 priv->quality = 0;
4132
4133 average_init(&priv->average_missed_beacons);
4134 priv->exp_avg_rssi = -60;
4135 priv->exp_avg_noise = -85 + 0x100;
4136
4137 priv->last_rate = 0;
4138 priv->last_missed_beacons = 0;
4139 priv->last_rx_packets = 0;
4140 priv->last_tx_packets = 0;
4141 priv->last_tx_failures = 0;
4142
4143 /* Firmware managed, reset only when NIC is restarted, so we have to
4144 * normalize on the current value */
4145 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4146 &priv->last_rx_err, &len);
4147 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4148 &priv->last_tx_failures, &len);
4149
4150 /* Driver managed, reset with each association */
4151 priv->missed_adhoc_beacons = 0;
4152 priv->missed_beacons = 0;
4153 priv->tx_packets = 0;
4154 priv->rx_packets = 0;
4155
4156 }
4157
4158 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4159 {
4160 u32 i = 0x80000000;
4161 u32 mask = priv->rates_mask;
4162 /* If currently associated in B mode, restrict the maximum
4163 * rate match to B rates */
4164 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4165 mask &= LIBIPW_CCK_RATES_MASK;
4166
4167 /* TODO: Verify that the rate is supported by the current rates
4168 * list. */
4169
4170 while (i && !(mask & i))
4171 i >>= 1;
4172 switch (i) {
4173 case LIBIPW_CCK_RATE_1MB_MASK:
4174 return 1000000;
4175 case LIBIPW_CCK_RATE_2MB_MASK:
4176 return 2000000;
4177 case LIBIPW_CCK_RATE_5MB_MASK:
4178 return 5500000;
4179 case LIBIPW_OFDM_RATE_6MB_MASK:
4180 return 6000000;
4181 case LIBIPW_OFDM_RATE_9MB_MASK:
4182 return 9000000;
4183 case LIBIPW_CCK_RATE_11MB_MASK:
4184 return 11000000;
4185 case LIBIPW_OFDM_RATE_12MB_MASK:
4186 return 12000000;
4187 case LIBIPW_OFDM_RATE_18MB_MASK:
4188 return 18000000;
4189 case LIBIPW_OFDM_RATE_24MB_MASK:
4190 return 24000000;
4191 case LIBIPW_OFDM_RATE_36MB_MASK:
4192 return 36000000;
4193 case LIBIPW_OFDM_RATE_48MB_MASK:
4194 return 48000000;
4195 case LIBIPW_OFDM_RATE_54MB_MASK:
4196 return 54000000;
4197 }
4198
4199 if (priv->ieee->mode == IEEE_B)
4200 return 11000000;
4201 else
4202 return 54000000;
4203 }
4204
4205 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4206 {
4207 u32 rate, len = sizeof(rate);
4208 int err;
4209
4210 if (!(priv->status & STATUS_ASSOCIATED))
4211 return 0;
4212
4213 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4214 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4215 &len);
4216 if (err) {
4217 IPW_DEBUG_INFO("failed querying ordinals.\n");
4218 return 0;
4219 }
4220 } else
4221 return ipw_get_max_rate(priv);
4222
4223 switch (rate) {
4224 case IPW_TX_RATE_1MB:
4225 return 1000000;
4226 case IPW_TX_RATE_2MB:
4227 return 2000000;
4228 case IPW_TX_RATE_5MB:
4229 return 5500000;
4230 case IPW_TX_RATE_6MB:
4231 return 6000000;
4232 case IPW_TX_RATE_9MB:
4233 return 9000000;
4234 case IPW_TX_RATE_11MB:
4235 return 11000000;
4236 case IPW_TX_RATE_12MB:
4237 return 12000000;
4238 case IPW_TX_RATE_18MB:
4239 return 18000000;
4240 case IPW_TX_RATE_24MB:
4241 return 24000000;
4242 case IPW_TX_RATE_36MB:
4243 return 36000000;
4244 case IPW_TX_RATE_48MB:
4245 return 48000000;
4246 case IPW_TX_RATE_54MB:
4247 return 54000000;
4248 }
4249
4250 return 0;
4251 }
4252
4253 #define IPW_STATS_INTERVAL (2 * HZ)
4254 static void ipw_gather_stats(struct ipw_priv *priv)
4255 {
4256 u32 rx_err, rx_err_delta, rx_packets_delta;
4257 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4258 u32 missed_beacons_percent, missed_beacons_delta;
4259 u32 quality = 0;
4260 u32 len = sizeof(u32);
4261 s16 rssi;
4262 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4263 rate_quality;
4264 u32 max_rate;
4265
4266 if (!(priv->status & STATUS_ASSOCIATED)) {
4267 priv->quality = 0;
4268 return;
4269 }
4270
4271 /* Update the statistics */
4272 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4273 &priv->missed_beacons, &len);
4274 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4275 priv->last_missed_beacons = priv->missed_beacons;
4276 if (priv->assoc_request.beacon_interval) {
4277 missed_beacons_percent = missed_beacons_delta *
4278 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4279 (IPW_STATS_INTERVAL * 10);
4280 } else {
4281 missed_beacons_percent = 0;
4282 }
4283 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4284
4285 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4286 rx_err_delta = rx_err - priv->last_rx_err;
4287 priv->last_rx_err = rx_err;
4288
4289 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4290 tx_failures_delta = tx_failures - priv->last_tx_failures;
4291 priv->last_tx_failures = tx_failures;
4292
4293 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4294 priv->last_rx_packets = priv->rx_packets;
4295
4296 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4297 priv->last_tx_packets = priv->tx_packets;
4298
4299 /* Calculate quality based on the following:
4300 *
4301 * Missed beacon: 100% = 0, 0% = 70% missed
4302 * Rate: 60% = 1Mbs, 100% = Max
4303 * Rx and Tx errors represent a straight % of total Rx/Tx
4304 * RSSI: 100% = > -50, 0% = < -80
4305 * Rx errors: 100% = 0, 0% = 50% missed
4306 *
4307 * The lowest computed quality is used.
4308 *
4309 */
4310 #define BEACON_THRESHOLD 5
4311 beacon_quality = 100 - missed_beacons_percent;
4312 if (beacon_quality < BEACON_THRESHOLD)
4313 beacon_quality = 0;
4314 else
4315 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4316 (100 - BEACON_THRESHOLD);
4317 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4318 beacon_quality, missed_beacons_percent);
4319
4320 priv->last_rate = ipw_get_current_rate(priv);
4321 max_rate = ipw_get_max_rate(priv);
4322 rate_quality = priv->last_rate * 40 / max_rate + 60;
4323 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4324 rate_quality, priv->last_rate / 1000000);
4325
4326 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4327 rx_quality = 100 - (rx_err_delta * 100) /
4328 (rx_packets_delta + rx_err_delta);
4329 else
4330 rx_quality = 100;
4331 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4332 rx_quality, rx_err_delta, rx_packets_delta);
4333
4334 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4335 tx_quality = 100 - (tx_failures_delta * 100) /
4336 (tx_packets_delta + tx_failures_delta);
4337 else
4338 tx_quality = 100;
4339 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4340 tx_quality, tx_failures_delta, tx_packets_delta);
4341
4342 rssi = priv->exp_avg_rssi;
4343 signal_quality =
4344 (100 *
4345 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4346 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4347 (priv->ieee->perfect_rssi - rssi) *
4348 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4349 62 * (priv->ieee->perfect_rssi - rssi))) /
4350 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4351 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4352 if (signal_quality > 100)
4353 signal_quality = 100;
4354 else if (signal_quality < 1)
4355 signal_quality = 0;
4356
4357 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4358 signal_quality, rssi);
4359
4360 quality = min(rx_quality, signal_quality);
4361 quality = min(tx_quality, quality);
4362 quality = min(rate_quality, quality);
4363 quality = min(beacon_quality, quality);
4364 if (quality == beacon_quality)
4365 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4366 quality);
4367 if (quality == rate_quality)
4368 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4369 quality);
4370 if (quality == tx_quality)
4371 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4372 quality);
4373 if (quality == rx_quality)
4374 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4375 quality);
4376 if (quality == signal_quality)
4377 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4378 quality);
4379
4380 priv->quality = quality;
4381
4382 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4383 }
4384
4385 static void ipw_bg_gather_stats(struct work_struct *work)
4386 {
4387 struct ipw_priv *priv =
4388 container_of(work, struct ipw_priv, gather_stats.work);
4389 mutex_lock(&priv->mutex);
4390 ipw_gather_stats(priv);
4391 mutex_unlock(&priv->mutex);
4392 }
4393
4394 /* Missed beacon behavior:
4395 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4396 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4397 * Above disassociate threshold, give up and stop scanning.
4398 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4399 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4400 int missed_count)
4401 {
4402 priv->notif_missed_beacons = missed_count;
4403
4404 if (missed_count > priv->disassociate_threshold &&
4405 priv->status & STATUS_ASSOCIATED) {
4406 /* If associated and we've hit the missed
4407 * beacon threshold, disassociate, turn
4408 * off roaming, and abort any active scans */
4409 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4410 IPW_DL_STATE | IPW_DL_ASSOC,
4411 "Missed beacon: %d - disassociate\n", missed_count);
4412 priv->status &= ~STATUS_ROAMING;
4413 if (priv->status & STATUS_SCANNING) {
4414 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4415 IPW_DL_STATE,
4416 "Aborting scan with missed beacon.\n");
4417 schedule_work(&priv->abort_scan);
4418 }
4419
4420 schedule_work(&priv->disassociate);
4421 return;
4422 }
4423
4424 if (priv->status & STATUS_ROAMING) {
4425 /* If we are currently roaming, then just
4426 * print a debug statement... */
4427 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4428 "Missed beacon: %d - roam in progress\n",
4429 missed_count);
4430 return;
4431 }
4432
4433 if (roaming &&
4434 (missed_count > priv->roaming_threshold &&
4435 missed_count <= priv->disassociate_threshold)) {
4436 /* If we are not already roaming, set the ROAM
4437 * bit in the status and kick off a scan.
4438 * This can happen several times before we reach
4439 * disassociate_threshold. */
4440 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4441 "Missed beacon: %d - initiate "
4442 "roaming\n", missed_count);
4443 if (!(priv->status & STATUS_ROAMING)) {
4444 priv->status |= STATUS_ROAMING;
4445 if (!(priv->status & STATUS_SCANNING))
4446 schedule_delayed_work(&priv->request_scan, 0);
4447 }
4448 return;
4449 }
4450
4451 if (priv->status & STATUS_SCANNING &&
4452 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4453 /* Stop scan to keep fw from getting
4454 * stuck (only if we aren't roaming --
4455 * otherwise we'll never scan more than 2 or 3
4456 * channels..) */
4457 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4458 "Aborting scan with missed beacon.\n");
4459 schedule_work(&priv->abort_scan);
4460 }
4461
4462 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4463 }
4464
4465 static void ipw_scan_event(struct work_struct *work)
4466 {
4467 union iwreq_data wrqu;
4468
4469 struct ipw_priv *priv =
4470 container_of(work, struct ipw_priv, scan_event.work);
4471
4472 wrqu.data.length = 0;
4473 wrqu.data.flags = 0;
4474 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4475 }
4476
4477 static void handle_scan_event(struct ipw_priv *priv)
4478 {
4479 /* Only userspace-requested scan completion events go out immediately */
4480 if (!priv->user_requested_scan) {
4481 schedule_delayed_work(&priv->scan_event,
4482 round_jiffies_relative(msecs_to_jiffies(4000)));
4483 } else {
4484 priv->user_requested_scan = 0;
4485 mod_delayed_work(system_wq, &priv->scan_event, 0);
4486 }
4487 }
4488
4489 /**
4490 * Handle host notification packet.
4491 * Called from interrupt routine
4492 */
4493 static void ipw_rx_notification(struct ipw_priv *priv,
4494 struct ipw_rx_notification *notif)
4495 {
4496 u16 size = le16_to_cpu(notif->size);
4497
4498 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4499
4500 switch (notif->subtype) {
4501 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4502 struct notif_association *assoc = &notif->u.assoc;
4503
4504 switch (assoc->state) {
4505 case CMAS_ASSOCIATED:{
4506 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4507 IPW_DL_ASSOC,
4508 "associated: '%*pE' %pM\n",
4509 priv->essid_len, priv->essid,
4510 priv->bssid);
4511
4512 switch (priv->ieee->iw_mode) {
4513 case IW_MODE_INFRA:
4514 memcpy(priv->ieee->bssid,
4515 priv->bssid, ETH_ALEN);
4516 break;
4517
4518 case IW_MODE_ADHOC:
4519 memcpy(priv->ieee->bssid,
4520 priv->bssid, ETH_ALEN);
4521
4522 /* clear out the station table */
4523 priv->num_stations = 0;
4524
4525 IPW_DEBUG_ASSOC
4526 ("queueing adhoc check\n");
4527 schedule_delayed_work(
4528 &priv->adhoc_check,
4529 le16_to_cpu(priv->
4530 assoc_request.
4531 beacon_interval));
4532 break;
4533 }
4534
4535 priv->status &= ~STATUS_ASSOCIATING;
4536 priv->status |= STATUS_ASSOCIATED;
4537 schedule_work(&priv->system_config);
4538
4539 #ifdef CONFIG_IPW2200_QOS
4540 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4541 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4542 if ((priv->status & STATUS_AUTH) &&
4543 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4544 == IEEE80211_STYPE_ASSOC_RESP)) {
4545 if ((sizeof
4546 (struct
4547 libipw_assoc_response)
4548 <= size)
4549 && (size <= 2314)) {
4550 struct
4551 libipw_rx_stats
4552 stats = {
4553 .len = size - 1,
4554 };
4555
4556 IPW_DEBUG_QOS
4557 ("QoS Associate "
4558 "size %d\n", size);
4559 libipw_rx_mgt(priv->
4560 ieee,
4561 (struct
4562 libipw_hdr_4addr
4563 *)
4564 &notif->u.raw, &stats);
4565 }
4566 }
4567 #endif
4568
4569 schedule_work(&priv->link_up);
4570
4571 break;
4572 }
4573
4574 case CMAS_AUTHENTICATED:{
4575 if (priv->
4576 status & (STATUS_ASSOCIATED |
4577 STATUS_AUTH)) {
4578 struct notif_authenticate *auth
4579 = &notif->u.auth;
4580 IPW_DEBUG(IPW_DL_NOTIF |
4581 IPW_DL_STATE |
4582 IPW_DL_ASSOC,
4583 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4584 priv->essid_len,
4585 priv->essid,
4586 priv->bssid,
4587 le16_to_cpu(auth->status),
4588 ipw_get_status_code
4589 (le16_to_cpu
4590 (auth->status)));
4591
4592 priv->status &=
4593 ~(STATUS_ASSOCIATING |
4594 STATUS_AUTH |
4595 STATUS_ASSOCIATED);
4596
4597 schedule_work(&priv->link_down);
4598 break;
4599 }
4600
4601 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4602 IPW_DL_ASSOC,
4603 "authenticated: '%*pE' %pM\n",
4604 priv->essid_len, priv->essid,
4605 priv->bssid);
4606 break;
4607 }
4608
4609 case CMAS_INIT:{
4610 if (priv->status & STATUS_AUTH) {
4611 struct
4612 libipw_assoc_response
4613 *resp;
4614 resp =
4615 (struct
4616 libipw_assoc_response
4617 *)&notif->u.raw;
4618 IPW_DEBUG(IPW_DL_NOTIF |
4619 IPW_DL_STATE |
4620 IPW_DL_ASSOC,
4621 "association failed (0x%04X): %s\n",
4622 le16_to_cpu(resp->status),
4623 ipw_get_status_code
4624 (le16_to_cpu
4625 (resp->status)));
4626 }
4627
4628 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4629 IPW_DL_ASSOC,
4630 "disassociated: '%*pE' %pM\n",
4631 priv->essid_len, priv->essid,
4632 priv->bssid);
4633
4634 priv->status &=
4635 ~(STATUS_DISASSOCIATING |
4636 STATUS_ASSOCIATING |
4637 STATUS_ASSOCIATED | STATUS_AUTH);
4638 if (priv->assoc_network
4639 && (priv->assoc_network->
4640 capability &
4641 WLAN_CAPABILITY_IBSS))
4642 ipw_remove_current_network
4643 (priv);
4644
4645 schedule_work(&priv->link_down);
4646
4647 break;
4648 }
4649
4650 case CMAS_RX_ASSOC_RESP:
4651 break;
4652
4653 default:
4654 IPW_ERROR("assoc: unknown (%d)\n",
4655 assoc->state);
4656 break;
4657 }
4658
4659 break;
4660 }
4661
4662 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4663 struct notif_authenticate *auth = &notif->u.auth;
4664 switch (auth->state) {
4665 case CMAS_AUTHENTICATED:
4666 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4667 "authenticated: '%*pE' %pM\n",
4668 priv->essid_len, priv->essid,
4669 priv->bssid);
4670 priv->status |= STATUS_AUTH;
4671 break;
4672
4673 case CMAS_INIT:
4674 if (priv->status & STATUS_AUTH) {
4675 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4676 IPW_DL_ASSOC,
4677 "authentication failed (0x%04X): %s\n",
4678 le16_to_cpu(auth->status),
4679 ipw_get_status_code(le16_to_cpu
4680 (auth->
4681 status)));
4682 }
4683 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4684 IPW_DL_ASSOC,
4685 "deauthenticated: '%*pE' %pM\n",
4686 priv->essid_len, priv->essid,
4687 priv->bssid);
4688
4689 priv->status &= ~(STATUS_ASSOCIATING |
4690 STATUS_AUTH |
4691 STATUS_ASSOCIATED);
4692
4693 schedule_work(&priv->link_down);
4694 break;
4695
4696 case CMAS_TX_AUTH_SEQ_1:
4697 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4698 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4699 break;
4700 case CMAS_RX_AUTH_SEQ_2:
4701 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4702 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4703 break;
4704 case CMAS_AUTH_SEQ_1_PASS:
4705 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4706 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4707 break;
4708 case CMAS_AUTH_SEQ_1_FAIL:
4709 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4710 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4711 break;
4712 case CMAS_TX_AUTH_SEQ_3:
4713 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4714 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4715 break;
4716 case CMAS_RX_AUTH_SEQ_4:
4717 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4719 break;
4720 case CMAS_AUTH_SEQ_2_PASS:
4721 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4722 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4723 break;
4724 case CMAS_AUTH_SEQ_2_FAIL:
4725 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4726 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4727 break;
4728 case CMAS_TX_ASSOC:
4729 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4730 IPW_DL_ASSOC, "TX_ASSOC\n");
4731 break;
4732 case CMAS_RX_ASSOC_RESP:
4733 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4734 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4735
4736 break;
4737 case CMAS_ASSOCIATED:
4738 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4739 IPW_DL_ASSOC, "ASSOCIATED\n");
4740 break;
4741 default:
4742 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4743 auth->state);
4744 break;
4745 }
4746 break;
4747 }
4748
4749 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4750 struct notif_channel_result *x =
4751 &notif->u.channel_result;
4752
4753 if (size == sizeof(*x)) {
4754 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4755 x->channel_num);
4756 } else {
4757 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4758 "(should be %zd)\n",
4759 size, sizeof(*x));
4760 }
4761 break;
4762 }
4763
4764 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4765 struct notif_scan_complete *x = &notif->u.scan_complete;
4766 if (size == sizeof(*x)) {
4767 IPW_DEBUG_SCAN
4768 ("Scan completed: type %d, %d channels, "
4769 "%d status\n", x->scan_type,
4770 x->num_channels, x->status);
4771 } else {
4772 IPW_ERROR("Scan completed of wrong size %d "
4773 "(should be %zd)\n",
4774 size, sizeof(*x));
4775 }
4776
4777 priv->status &=
4778 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4779
4780 wake_up_interruptible(&priv->wait_state);
4781 cancel_delayed_work(&priv->scan_check);
4782
4783 if (priv->status & STATUS_EXIT_PENDING)
4784 break;
4785
4786 priv->ieee->scans++;
4787
4788 #ifdef CONFIG_IPW2200_MONITOR
4789 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4790 priv->status |= STATUS_SCAN_FORCED;
4791 schedule_delayed_work(&priv->request_scan, 0);
4792 break;
4793 }
4794 priv->status &= ~STATUS_SCAN_FORCED;
4795 #endif /* CONFIG_IPW2200_MONITOR */
4796
4797 /* Do queued direct scans first */
4798 if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4799 schedule_delayed_work(&priv->request_direct_scan, 0);
4800
4801 if (!(priv->status & (STATUS_ASSOCIATED |
4802 STATUS_ASSOCIATING |
4803 STATUS_ROAMING |
4804 STATUS_DISASSOCIATING)))
4805 schedule_work(&priv->associate);
4806 else if (priv->status & STATUS_ROAMING) {
4807 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4808 /* If a scan completed and we are in roam mode, then
4809 * the scan that completed was the one requested as a
4810 * result of entering roam... so, schedule the
4811 * roam work */
4812 schedule_work(&priv->roam);
4813 else
4814 /* Don't schedule if we aborted the scan */
4815 priv->status &= ~STATUS_ROAMING;
4816 } else if (priv->status & STATUS_SCAN_PENDING)
4817 schedule_delayed_work(&priv->request_scan, 0);
4818 else if (priv->config & CFG_BACKGROUND_SCAN
4819 && priv->status & STATUS_ASSOCIATED)
4820 schedule_delayed_work(&priv->request_scan,
4821 round_jiffies_relative(HZ));
4822
4823 /* Send an empty event to user space.
4824 * We don't send the received data on the event because
4825 * it would require us to do complex transcoding, and
4826 * we want to minimise the work done in the irq handler
4827 * Use a request to extract the data.
4828 * Also, we generate this even for any scan, regardless
4829 * on how the scan was initiated. User space can just
4830 * sync on periodic scan to get fresh data...
4831 * Jean II */
4832 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4833 handle_scan_event(priv);
4834 break;
4835 }
4836
4837 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4838 struct notif_frag_length *x = &notif->u.frag_len;
4839
4840 if (size == sizeof(*x))
4841 IPW_ERROR("Frag length: %d\n",
4842 le16_to_cpu(x->frag_length));
4843 else
4844 IPW_ERROR("Frag length of wrong size %d "
4845 "(should be %zd)\n",
4846 size, sizeof(*x));
4847 break;
4848 }
4849
4850 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4851 struct notif_link_deterioration *x =
4852 &notif->u.link_deterioration;
4853
4854 if (size == sizeof(*x)) {
4855 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4856 "link deterioration: type %d, cnt %d\n",
4857 x->silence_notification_type,
4858 x->silence_count);
4859 memcpy(&priv->last_link_deterioration, x,
4860 sizeof(*x));
4861 } else {
4862 IPW_ERROR("Link Deterioration of wrong size %d "
4863 "(should be %zd)\n",
4864 size, sizeof(*x));
4865 }
4866 break;
4867 }
4868
4869 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4870 IPW_ERROR("Dino config\n");
4871 if (priv->hcmd
4872 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4873 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4874
4875 break;
4876 }
4877
4878 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4879 struct notif_beacon_state *x = &notif->u.beacon_state;
4880 if (size != sizeof(*x)) {
4881 IPW_ERROR
4882 ("Beacon state of wrong size %d (should "
4883 "be %zd)\n", size, sizeof(*x));
4884 break;
4885 }
4886
4887 if (le32_to_cpu(x->state) ==
4888 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4889 ipw_handle_missed_beacon(priv,
4890 le32_to_cpu(x->
4891 number));
4892
4893 break;
4894 }
4895
4896 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4897 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4898 if (size == sizeof(*x)) {
4899 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4900 "0x%02x station %d\n",
4901 x->key_state, x->security_type,
4902 x->station_index);
4903 break;
4904 }
4905
4906 IPW_ERROR
4907 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4908 size, sizeof(*x));
4909 break;
4910 }
4911
4912 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4913 struct notif_calibration *x = &notif->u.calibration;
4914
4915 if (size == sizeof(*x)) {
4916 memcpy(&priv->calib, x, sizeof(*x));
4917 IPW_DEBUG_INFO("TODO: Calibration\n");
4918 break;
4919 }
4920
4921 IPW_ERROR
4922 ("Calibration of wrong size %d (should be %zd)\n",
4923 size, sizeof(*x));
4924 break;
4925 }
4926
4927 case HOST_NOTIFICATION_NOISE_STATS:{
4928 if (size == sizeof(u32)) {
4929 priv->exp_avg_noise =
4930 exponential_average(priv->exp_avg_noise,
4931 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4932 DEPTH_NOISE);
4933 break;
4934 }
4935
4936 IPW_ERROR
4937 ("Noise stat is wrong size %d (should be %zd)\n",
4938 size, sizeof(u32));
4939 break;
4940 }
4941
4942 default:
4943 IPW_DEBUG_NOTIF("Unknown notification: "
4944 "subtype=%d,flags=0x%2x,size=%d\n",
4945 notif->subtype, notif->flags, size);
4946 }
4947 }
4948
4949 /**
4950 * Destroys all DMA structures and initialise them again
4951 *
4952 * @param priv
4953 * @return error code
4954 */
4955 static int ipw_queue_reset(struct ipw_priv *priv)
4956 {
4957 int rc = 0;
4958 /** @todo customize queue sizes */
4959 int nTx = 64, nTxCmd = 8;
4960 ipw_tx_queue_free(priv);
4961 /* Tx CMD queue */
4962 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4963 IPW_TX_CMD_QUEUE_READ_INDEX,
4964 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4965 IPW_TX_CMD_QUEUE_BD_BASE,
4966 IPW_TX_CMD_QUEUE_BD_SIZE);
4967 if (rc) {
4968 IPW_ERROR("Tx Cmd queue init failed\n");
4969 goto error;
4970 }
4971 /* Tx queue(s) */
4972 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4973 IPW_TX_QUEUE_0_READ_INDEX,
4974 IPW_TX_QUEUE_0_WRITE_INDEX,
4975 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4976 if (rc) {
4977 IPW_ERROR("Tx 0 queue init failed\n");
4978 goto error;
4979 }
4980 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4981 IPW_TX_QUEUE_1_READ_INDEX,
4982 IPW_TX_QUEUE_1_WRITE_INDEX,
4983 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4984 if (rc) {
4985 IPW_ERROR("Tx 1 queue init failed\n");
4986 goto error;
4987 }
4988 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4989 IPW_TX_QUEUE_2_READ_INDEX,
4990 IPW_TX_QUEUE_2_WRITE_INDEX,
4991 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4992 if (rc) {
4993 IPW_ERROR("Tx 2 queue init failed\n");
4994 goto error;
4995 }
4996 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4997 IPW_TX_QUEUE_3_READ_INDEX,
4998 IPW_TX_QUEUE_3_WRITE_INDEX,
4999 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5000 if (rc) {
5001 IPW_ERROR("Tx 3 queue init failed\n");
5002 goto error;
5003 }
5004 /* statistics */
5005 priv->rx_bufs_min = 0;
5006 priv->rx_pend_max = 0;
5007 return rc;
5008
5009 error:
5010 ipw_tx_queue_free(priv);
5011 return rc;
5012 }
5013
5014 /**
5015 * Reclaim Tx queue entries no more used by NIC.
5016 *
5017 * When FW advances 'R' index, all entries between old and
5018 * new 'R' index need to be reclaimed. As result, some free space
5019 * forms. If there is enough free space (> low mark), wake Tx queue.
5020 *
5021 * @note Need to protect against garbage in 'R' index
5022 * @param priv
5023 * @param txq
5024 * @param qindex
5025 * @return Number of used entries remains in the queue
5026 */
5027 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5028 struct clx2_tx_queue *txq, int qindex)
5029 {
5030 u32 hw_tail;
5031 int used;
5032 struct clx2_queue *q = &txq->q;
5033
5034 hw_tail = ipw_read32(priv, q->reg_r);
5035 if (hw_tail >= q->n_bd) {
5036 IPW_ERROR
5037 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5038 hw_tail, q->n_bd);
5039 goto done;
5040 }
5041 for (; q->last_used != hw_tail;
5042 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5043 ipw_queue_tx_free_tfd(priv, txq);
5044 priv->tx_packets++;
5045 }
5046 done:
5047 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5048 (qindex >= 0))
5049 netif_wake_queue(priv->net_dev);
5050 used = q->first_empty - q->last_used;
5051 if (used < 0)
5052 used += q->n_bd;
5053
5054 return used;
5055 }
5056
5057 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5058 int len, int sync)
5059 {
5060 struct clx2_tx_queue *txq = &priv->txq_cmd;
5061 struct clx2_queue *q = &txq->q;
5062 struct tfd_frame *tfd;
5063
5064 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5065 IPW_ERROR("No space for Tx\n");
5066 return -EBUSY;
5067 }
5068
5069 tfd = &txq->bd[q->first_empty];
5070 txq->txb[q->first_empty] = NULL;
5071
5072 memset(tfd, 0, sizeof(*tfd));
5073 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5074 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5075 priv->hcmd_seq++;
5076 tfd->u.cmd.index = hcmd;
5077 tfd->u.cmd.length = len;
5078 memcpy(tfd->u.cmd.payload, buf, len);
5079 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5080 ipw_write32(priv, q->reg_w, q->first_empty);
5081 _ipw_read32(priv, 0x90);
5082
5083 return 0;
5084 }
5085
5086 /*
5087 * Rx theory of operation
5088 *
5089 * The host allocates 32 DMA target addresses and passes the host address
5090 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5091 * 0 to 31
5092 *
5093 * Rx Queue Indexes
5094 * The host/firmware share two index registers for managing the Rx buffers.
5095 *
5096 * The READ index maps to the first position that the firmware may be writing
5097 * to -- the driver can read up to (but not including) this position and get
5098 * good data.
5099 * The READ index is managed by the firmware once the card is enabled.
5100 *
5101 * The WRITE index maps to the last position the driver has read from -- the
5102 * position preceding WRITE is the last slot the firmware can place a packet.
5103 *
5104 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5105 * WRITE = READ.
5106 *
5107 * During initialization the host sets up the READ queue position to the first
5108 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5109 *
5110 * When the firmware places a packet in a buffer it will advance the READ index
5111 * and fire the RX interrupt. The driver can then query the READ index and
5112 * process as many packets as possible, moving the WRITE index forward as it
5113 * resets the Rx queue buffers with new memory.
5114 *
5115 * The management in the driver is as follows:
5116 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5117 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5118 * to replensish the ipw->rxq->rx_free.
5119 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5120 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5121 * 'processed' and 'read' driver indexes as well)
5122 * + A received packet is processed and handed to the kernel network stack,
5123 * detached from the ipw->rxq. The driver 'processed' index is updated.
5124 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5125 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5126 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5127 * were enough free buffers and RX_STALLED is set it is cleared.
5128 *
5129 *
5130 * Driver sequence:
5131 *
5132 * ipw_rx_queue_alloc() Allocates rx_free
5133 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5134 * ipw_rx_queue_restock
5135 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5136 * queue, updates firmware pointers, and updates
5137 * the WRITE index. If insufficient rx_free buffers
5138 * are available, schedules ipw_rx_queue_replenish
5139 *
5140 * -- enable interrupts --
5141 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5142 * READ INDEX, detaching the SKB from the pool.
5143 * Moves the packet buffer from queue to rx_used.
5144 * Calls ipw_rx_queue_restock to refill any empty
5145 * slots.
5146 * ...
5147 *
5148 */
5149
5150 /*
5151 * If there are slots in the RX queue that need to be restocked,
5152 * and we have free pre-allocated buffers, fill the ranks as much
5153 * as we can pulling from rx_free.
5154 *
5155 * This moves the 'write' index forward to catch up with 'processed', and
5156 * also updates the memory address in the firmware to reference the new
5157 * target buffer.
5158 */
5159 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5160 {
5161 struct ipw_rx_queue *rxq = priv->rxq;
5162 struct list_head *element;
5163 struct ipw_rx_mem_buffer *rxb;
5164 unsigned long flags;
5165 int write;
5166
5167 spin_lock_irqsave(&rxq->lock, flags);
5168 write = rxq->write;
5169 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5170 element = rxq->rx_free.next;
5171 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5172 list_del(element);
5173
5174 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5175 rxb->dma_addr);
5176 rxq->queue[rxq->write] = rxb;
5177 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5178 rxq->free_count--;
5179 }
5180 spin_unlock_irqrestore(&rxq->lock, flags);
5181
5182 /* If the pre-allocated buffer pool is dropping low, schedule to
5183 * refill it */
5184 if (rxq->free_count <= RX_LOW_WATERMARK)
5185 schedule_work(&priv->rx_replenish);
5186
5187 /* If we've added more space for the firmware to place data, tell it */
5188 if (write != rxq->write)
5189 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5190 }
5191
5192 /*
5193 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5194 * Also restock the Rx queue via ipw_rx_queue_restock.
5195 *
5196 * This is called as a scheduled work item (except for during initialization)
5197 */
5198 static void ipw_rx_queue_replenish(void *data)
5199 {
5200 struct ipw_priv *priv = data;
5201 struct ipw_rx_queue *rxq = priv->rxq;
5202 struct list_head *element;
5203 struct ipw_rx_mem_buffer *rxb;
5204 unsigned long flags;
5205
5206 spin_lock_irqsave(&rxq->lock, flags);
5207 while (!list_empty(&rxq->rx_used)) {
5208 element = rxq->rx_used.next;
5209 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5210 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5211 if (!rxb->skb) {
5212 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5213 priv->net_dev->name);
5214 /* We don't reschedule replenish work here -- we will
5215 * call the restock method and if it still needs
5216 * more buffers it will schedule replenish */
5217 break;
5218 }
5219 list_del(element);
5220
5221 rxb->dma_addr =
5222 pci_map_single(priv->pci_dev, rxb->skb->data,
5223 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5224
5225 list_add_tail(&rxb->list, &rxq->rx_free);
5226 rxq->free_count++;
5227 }
5228 spin_unlock_irqrestore(&rxq->lock, flags);
5229
5230 ipw_rx_queue_restock(priv);
5231 }
5232
5233 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5234 {
5235 struct ipw_priv *priv =
5236 container_of(work, struct ipw_priv, rx_replenish);
5237 mutex_lock(&priv->mutex);
5238 ipw_rx_queue_replenish(priv);
5239 mutex_unlock(&priv->mutex);
5240 }
5241
5242 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5243 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5244 * This free routine walks the list of POOL entries and if SKB is set to
5245 * non NULL it is unmapped and freed
5246 */
5247 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5248 {
5249 int i;
5250
5251 if (!rxq)
5252 return;
5253
5254 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5255 if (rxq->pool[i].skb != NULL) {
5256 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5257 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5258 dev_kfree_skb(rxq->pool[i].skb);
5259 }
5260 }
5261
5262 kfree(rxq);
5263 }
5264
5265 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5266 {
5267 struct ipw_rx_queue *rxq;
5268 int i;
5269
5270 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5271 if (unlikely(!rxq)) {
5272 IPW_ERROR("memory allocation failed\n");
5273 return NULL;
5274 }
5275 spin_lock_init(&rxq->lock);
5276 INIT_LIST_HEAD(&rxq->rx_free);
5277 INIT_LIST_HEAD(&rxq->rx_used);
5278
5279 /* Fill the rx_used queue with _all_ of the Rx buffers */
5280 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5281 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5282
5283 /* Set us so that we have processed and used all buffers, but have
5284 * not restocked the Rx queue with fresh buffers */
5285 rxq->read = rxq->write = 0;
5286 rxq->free_count = 0;
5287
5288 return rxq;
5289 }
5290
5291 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5292 {
5293 rate &= ~LIBIPW_BASIC_RATE_MASK;
5294 if (ieee_mode == IEEE_A) {
5295 switch (rate) {
5296 case LIBIPW_OFDM_RATE_6MB:
5297 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5298 1 : 0;
5299 case LIBIPW_OFDM_RATE_9MB:
5300 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5301 1 : 0;
5302 case LIBIPW_OFDM_RATE_12MB:
5303 return priv->
5304 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5305 case LIBIPW_OFDM_RATE_18MB:
5306 return priv->
5307 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5308 case LIBIPW_OFDM_RATE_24MB:
5309 return priv->
5310 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5311 case LIBIPW_OFDM_RATE_36MB:
5312 return priv->
5313 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5314 case LIBIPW_OFDM_RATE_48MB:
5315 return priv->
5316 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5317 case LIBIPW_OFDM_RATE_54MB:
5318 return priv->
5319 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5320 default:
5321 return 0;
5322 }
5323 }
5324
5325 /* B and G mixed */
5326 switch (rate) {
5327 case LIBIPW_CCK_RATE_1MB:
5328 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5329 case LIBIPW_CCK_RATE_2MB:
5330 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5331 case LIBIPW_CCK_RATE_5MB:
5332 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5333 case LIBIPW_CCK_RATE_11MB:
5334 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5335 }
5336
5337 /* If we are limited to B modulations, bail at this point */
5338 if (ieee_mode == IEEE_B)
5339 return 0;
5340
5341 /* G */
5342 switch (rate) {
5343 case LIBIPW_OFDM_RATE_6MB:
5344 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5345 case LIBIPW_OFDM_RATE_9MB:
5346 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5347 case LIBIPW_OFDM_RATE_12MB:
5348 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5349 case LIBIPW_OFDM_RATE_18MB:
5350 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5351 case LIBIPW_OFDM_RATE_24MB:
5352 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5353 case LIBIPW_OFDM_RATE_36MB:
5354 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5355 case LIBIPW_OFDM_RATE_48MB:
5356 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5357 case LIBIPW_OFDM_RATE_54MB:
5358 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5359 }
5360
5361 return 0;
5362 }
5363
5364 static int ipw_compatible_rates(struct ipw_priv *priv,
5365 const struct libipw_network *network,
5366 struct ipw_supported_rates *rates)
5367 {
5368 int num_rates, i;
5369
5370 memset(rates, 0, sizeof(*rates));
5371 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5372 rates->num_rates = 0;
5373 for (i = 0; i < num_rates; i++) {
5374 if (!ipw_is_rate_in_mask(priv, network->mode,
5375 network->rates[i])) {
5376
5377 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5378 IPW_DEBUG_SCAN("Adding masked mandatory "
5379 "rate %02X\n",
5380 network->rates[i]);
5381 rates->supported_rates[rates->num_rates++] =
5382 network->rates[i];
5383 continue;
5384 }
5385
5386 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5387 network->rates[i], priv->rates_mask);
5388 continue;
5389 }
5390
5391 rates->supported_rates[rates->num_rates++] = network->rates[i];
5392 }
5393
5394 num_rates = min(network->rates_ex_len,
5395 (u8) (IPW_MAX_RATES - num_rates));
5396 for (i = 0; i < num_rates; i++) {
5397 if (!ipw_is_rate_in_mask(priv, network->mode,
5398 network->rates_ex[i])) {
5399 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5400 IPW_DEBUG_SCAN("Adding masked mandatory "
5401 "rate %02X\n",
5402 network->rates_ex[i]);
5403 rates->supported_rates[rates->num_rates++] =
5404 network->rates[i];
5405 continue;
5406 }
5407
5408 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5409 network->rates_ex[i], priv->rates_mask);
5410 continue;
5411 }
5412
5413 rates->supported_rates[rates->num_rates++] =
5414 network->rates_ex[i];
5415 }
5416
5417 return 1;
5418 }
5419
5420 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5421 const struct ipw_supported_rates *src)
5422 {
5423 u8 i;
5424 for (i = 0; i < src->num_rates; i++)
5425 dest->supported_rates[i] = src->supported_rates[i];
5426 dest->num_rates = src->num_rates;
5427 }
5428
5429 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5430 * mask should ever be used -- right now all callers to add the scan rates are
5431 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5432 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5433 u8 modulation, u32 rate_mask)
5434 {
5435 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5436 LIBIPW_BASIC_RATE_MASK : 0;
5437
5438 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5439 rates->supported_rates[rates->num_rates++] =
5440 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5441
5442 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5443 rates->supported_rates[rates->num_rates++] =
5444 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5445
5446 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5447 rates->supported_rates[rates->num_rates++] = basic_mask |
5448 LIBIPW_CCK_RATE_5MB;
5449
5450 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5451 rates->supported_rates[rates->num_rates++] = basic_mask |
5452 LIBIPW_CCK_RATE_11MB;
5453 }
5454
5455 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5456 u8 modulation, u32 rate_mask)
5457 {
5458 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5459 LIBIPW_BASIC_RATE_MASK : 0;
5460
5461 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5462 rates->supported_rates[rates->num_rates++] = basic_mask |
5463 LIBIPW_OFDM_RATE_6MB;
5464
5465 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5466 rates->supported_rates[rates->num_rates++] =
5467 LIBIPW_OFDM_RATE_9MB;
5468
5469 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5470 rates->supported_rates[rates->num_rates++] = basic_mask |
5471 LIBIPW_OFDM_RATE_12MB;
5472
5473 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5474 rates->supported_rates[rates->num_rates++] =
5475 LIBIPW_OFDM_RATE_18MB;
5476
5477 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5478 rates->supported_rates[rates->num_rates++] = basic_mask |
5479 LIBIPW_OFDM_RATE_24MB;
5480
5481 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5482 rates->supported_rates[rates->num_rates++] =
5483 LIBIPW_OFDM_RATE_36MB;
5484
5485 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5486 rates->supported_rates[rates->num_rates++] =
5487 LIBIPW_OFDM_RATE_48MB;
5488
5489 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5490 rates->supported_rates[rates->num_rates++] =
5491 LIBIPW_OFDM_RATE_54MB;
5492 }
5493
5494 struct ipw_network_match {
5495 struct libipw_network *network;
5496 struct ipw_supported_rates rates;
5497 };
5498
5499 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5500 struct ipw_network_match *match,
5501 struct libipw_network *network,
5502 int roaming)
5503 {
5504 struct ipw_supported_rates rates;
5505
5506 /* Verify that this network's capability is compatible with the
5507 * current mode (AdHoc or Infrastructure) */
5508 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5509 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5510 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5511 network->ssid_len, network->ssid,
5512 network->bssid);
5513 return 0;
5514 }
5515
5516 if (unlikely(roaming)) {
5517 /* If we are roaming, then ensure check if this is a valid
5518 * network to try and roam to */
5519 if ((network->ssid_len != match->network->ssid_len) ||
5520 memcmp(network->ssid, match->network->ssid,
5521 network->ssid_len)) {
5522 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5523 network->ssid_len, network->ssid,
5524 network->bssid);
5525 return 0;
5526 }
5527 } else {
5528 /* If an ESSID has been configured then compare the broadcast
5529 * ESSID to ours */
5530 if ((priv->config & CFG_STATIC_ESSID) &&
5531 ((network->ssid_len != priv->essid_len) ||
5532 memcmp(network->ssid, priv->essid,
5533 min(network->ssid_len, priv->essid_len)))) {
5534 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5535 network->ssid_len, network->ssid,
5536 network->bssid, priv->essid_len,
5537 priv->essid);
5538 return 0;
5539 }
5540 }
5541
5542 /* If the old network rate is better than this one, don't bother
5543 * testing everything else. */
5544
5545 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5546 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5547 match->network->ssid_len, match->network->ssid);
5548 return 0;
5549 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5550 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5551 match->network->ssid_len, match->network->ssid);
5552 return 0;
5553 }
5554
5555 /* Now go through and see if the requested network is valid... */
5556 if (priv->ieee->scan_age != 0 &&
5557 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5558 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5559 network->ssid_len, network->ssid,
5560 network->bssid,
5561 jiffies_to_msecs(jiffies -
5562 network->last_scanned));
5563 return 0;
5564 }
5565
5566 if ((priv->config & CFG_STATIC_CHANNEL) &&
5567 (network->channel != priv->channel)) {
5568 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5569 network->ssid_len, network->ssid,
5570 network->bssid,
5571 network->channel, priv->channel);
5572 return 0;
5573 }
5574
5575 /* Verify privacy compatibility */
5576 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5577 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5578 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5579 network->ssid_len, network->ssid,
5580 network->bssid,
5581 priv->
5582 capability & CAP_PRIVACY_ON ? "on" : "off",
5583 network->
5584 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5585 "off");
5586 return 0;
5587 }
5588
5589 if (ether_addr_equal(network->bssid, priv->bssid)) {
5590 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5591 network->ssid_len, network->ssid,
5592 network->bssid, priv->bssid);
5593 return 0;
5594 }
5595
5596 /* Filter out any incompatible freq / mode combinations */
5597 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5598 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5599 network->ssid_len, network->ssid,
5600 network->bssid);
5601 return 0;
5602 }
5603
5604 /* Ensure that the rates supported by the driver are compatible with
5605 * this AP, including verification of basic rates (mandatory) */
5606 if (!ipw_compatible_rates(priv, network, &rates)) {
5607 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5608 network->ssid_len, network->ssid,
5609 network->bssid);
5610 return 0;
5611 }
5612
5613 if (rates.num_rates == 0) {
5614 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5615 network->ssid_len, network->ssid,
5616 network->bssid);
5617 return 0;
5618 }
5619
5620 /* TODO: Perform any further minimal comparititive tests. We do not
5621 * want to put too much policy logic here; intelligent scan selection
5622 * should occur within a generic IEEE 802.11 user space tool. */
5623
5624 /* Set up 'new' AP to this network */
5625 ipw_copy_rates(&match->rates, &rates);
5626 match->network = network;
5627 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5628 network->ssid_len, network->ssid, network->bssid);
5629
5630 return 1;
5631 }
5632
5633 static void ipw_merge_adhoc_network(struct work_struct *work)
5634 {
5635 struct ipw_priv *priv =
5636 container_of(work, struct ipw_priv, merge_networks);
5637 struct libipw_network *network = NULL;
5638 struct ipw_network_match match = {
5639 .network = priv->assoc_network
5640 };
5641
5642 if ((priv->status & STATUS_ASSOCIATED) &&
5643 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5644 /* First pass through ROAM process -- look for a better
5645 * network */
5646 unsigned long flags;
5647
5648 spin_lock_irqsave(&priv->ieee->lock, flags);
5649 list_for_each_entry(network, &priv->ieee->network_list, list) {
5650 if (network != priv->assoc_network)
5651 ipw_find_adhoc_network(priv, &match, network,
5652 1);
5653 }
5654 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5655
5656 if (match.network == priv->assoc_network) {
5657 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5658 "merge to.\n");
5659 return;
5660 }
5661
5662 mutex_lock(&priv->mutex);
5663 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5664 IPW_DEBUG_MERGE("remove network %*pE\n",
5665 priv->essid_len, priv->essid);
5666 ipw_remove_current_network(priv);
5667 }
5668
5669 ipw_disassociate(priv);
5670 priv->assoc_network = match.network;
5671 mutex_unlock(&priv->mutex);
5672 return;
5673 }
5674 }
5675
5676 static int ipw_best_network(struct ipw_priv *priv,
5677 struct ipw_network_match *match,
5678 struct libipw_network *network, int roaming)
5679 {
5680 struct ipw_supported_rates rates;
5681
5682 /* Verify that this network's capability is compatible with the
5683 * current mode (AdHoc or Infrastructure) */
5684 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5685 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5686 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5687 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5688 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5689 network->ssid_len, network->ssid,
5690 network->bssid);
5691 return 0;
5692 }
5693
5694 if (unlikely(roaming)) {
5695 /* If we are roaming, then ensure check if this is a valid
5696 * network to try and roam to */
5697 if ((network->ssid_len != match->network->ssid_len) ||
5698 memcmp(network->ssid, match->network->ssid,
5699 network->ssid_len)) {
5700 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5701 network->ssid_len, network->ssid,
5702 network->bssid);
5703 return 0;
5704 }
5705 } else {
5706 /* If an ESSID has been configured then compare the broadcast
5707 * ESSID to ours */
5708 if ((priv->config & CFG_STATIC_ESSID) &&
5709 ((network->ssid_len != priv->essid_len) ||
5710 memcmp(network->ssid, priv->essid,
5711 min(network->ssid_len, priv->essid_len)))) {
5712 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5713 network->ssid_len, network->ssid,
5714 network->bssid, priv->essid_len,
5715 priv->essid);
5716 return 0;
5717 }
5718 }
5719
5720 /* If the old network rate is better than this one, don't bother
5721 * testing everything else. */
5722 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5723 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5724 network->ssid_len, network->ssid,
5725 network->bssid, match->network->ssid_len,
5726 match->network->ssid, match->network->bssid);
5727 return 0;
5728 }
5729
5730 /* If this network has already had an association attempt within the
5731 * last 3 seconds, do not try and associate again... */
5732 if (network->last_associate &&
5733 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5734 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5735 network->ssid_len, network->ssid,
5736 network->bssid,
5737 jiffies_to_msecs(jiffies -
5738 network->last_associate));
5739 return 0;
5740 }
5741
5742 /* Now go through and see if the requested network is valid... */
5743 if (priv->ieee->scan_age != 0 &&
5744 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5745 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5746 network->ssid_len, network->ssid,
5747 network->bssid,
5748 jiffies_to_msecs(jiffies -
5749 network->last_scanned));
5750 return 0;
5751 }
5752
5753 if ((priv->config & CFG_STATIC_CHANNEL) &&
5754 (network->channel != priv->channel)) {
5755 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5756 network->ssid_len, network->ssid,
5757 network->bssid,
5758 network->channel, priv->channel);
5759 return 0;
5760 }
5761
5762 /* Verify privacy compatibility */
5763 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5764 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5765 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5766 network->ssid_len, network->ssid,
5767 network->bssid,
5768 priv->capability & CAP_PRIVACY_ON ? "on" :
5769 "off",
5770 network->capability &
5771 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5772 return 0;
5773 }
5774
5775 if ((priv->config & CFG_STATIC_BSSID) &&
5776 !ether_addr_equal(network->bssid, priv->bssid)) {
5777 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5778 network->ssid_len, network->ssid,
5779 network->bssid, priv->bssid);
5780 return 0;
5781 }
5782
5783 /* Filter out any incompatible freq / mode combinations */
5784 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5785 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5786 network->ssid_len, network->ssid,
5787 network->bssid);
5788 return 0;
5789 }
5790
5791 /* Filter out invalid channel in current GEO */
5792 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5793 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5794 network->ssid_len, network->ssid,
5795 network->bssid);
5796 return 0;
5797 }
5798
5799 /* Ensure that the rates supported by the driver are compatible with
5800 * this AP, including verification of basic rates (mandatory) */
5801 if (!ipw_compatible_rates(priv, network, &rates)) {
5802 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5803 network->ssid_len, network->ssid,
5804 network->bssid);
5805 return 0;
5806 }
5807
5808 if (rates.num_rates == 0) {
5809 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5810 network->ssid_len, network->ssid,
5811 network->bssid);
5812 return 0;
5813 }
5814
5815 /* TODO: Perform any further minimal comparititive tests. We do not
5816 * want to put too much policy logic here; intelligent scan selection
5817 * should occur within a generic IEEE 802.11 user space tool. */
5818
5819 /* Set up 'new' AP to this network */
5820 ipw_copy_rates(&match->rates, &rates);
5821 match->network = network;
5822
5823 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5824 network->ssid_len, network->ssid, network->bssid);
5825
5826 return 1;
5827 }
5828
5829 static void ipw_adhoc_create(struct ipw_priv *priv,
5830 struct libipw_network *network)
5831 {
5832 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5833 int i;
5834
5835 /*
5836 * For the purposes of scanning, we can set our wireless mode
5837 * to trigger scans across combinations of bands, but when it
5838 * comes to creating a new ad-hoc network, we have tell the FW
5839 * exactly which band to use.
5840 *
5841 * We also have the possibility of an invalid channel for the
5842 * chossen band. Attempting to create a new ad-hoc network
5843 * with an invalid channel for wireless mode will trigger a
5844 * FW fatal error.
5845 *
5846 */
5847 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5848 case LIBIPW_52GHZ_BAND:
5849 network->mode = IEEE_A;
5850 i = libipw_channel_to_index(priv->ieee, priv->channel);
5851 BUG_ON(i == -1);
5852 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5853 IPW_WARNING("Overriding invalid channel\n");
5854 priv->channel = geo->a[0].channel;
5855 }
5856 break;
5857
5858 case LIBIPW_24GHZ_BAND:
5859 if (priv->ieee->mode & IEEE_G)
5860 network->mode = IEEE_G;
5861 else
5862 network->mode = IEEE_B;
5863 i = libipw_channel_to_index(priv->ieee, priv->channel);
5864 BUG_ON(i == -1);
5865 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5866 IPW_WARNING("Overriding invalid channel\n");
5867 priv->channel = geo->bg[0].channel;
5868 }
5869 break;
5870
5871 default:
5872 IPW_WARNING("Overriding invalid channel\n");
5873 if (priv->ieee->mode & IEEE_A) {
5874 network->mode = IEEE_A;
5875 priv->channel = geo->a[0].channel;
5876 } else if (priv->ieee->mode & IEEE_G) {
5877 network->mode = IEEE_G;
5878 priv->channel = geo->bg[0].channel;
5879 } else {
5880 network->mode = IEEE_B;
5881 priv->channel = geo->bg[0].channel;
5882 }
5883 break;
5884 }
5885
5886 network->channel = priv->channel;
5887 priv->config |= CFG_ADHOC_PERSIST;
5888 ipw_create_bssid(priv, network->bssid);
5889 network->ssid_len = priv->essid_len;
5890 memcpy(network->ssid, priv->essid, priv->essid_len);
5891 memset(&network->stats, 0, sizeof(network->stats));
5892 network->capability = WLAN_CAPABILITY_IBSS;
5893 if (!(priv->config & CFG_PREAMBLE_LONG))
5894 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5895 if (priv->capability & CAP_PRIVACY_ON)
5896 network->capability |= WLAN_CAPABILITY_PRIVACY;
5897 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5898 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5899 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5900 memcpy(network->rates_ex,
5901 &priv->rates.supported_rates[network->rates_len],
5902 network->rates_ex_len);
5903 network->last_scanned = 0;
5904 network->flags = 0;
5905 network->last_associate = 0;
5906 network->time_stamp[0] = 0;
5907 network->time_stamp[1] = 0;
5908 network->beacon_interval = 100; /* Default */
5909 network->listen_interval = 10; /* Default */
5910 network->atim_window = 0; /* Default */
5911 network->wpa_ie_len = 0;
5912 network->rsn_ie_len = 0;
5913 }
5914
5915 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5916 {
5917 struct ipw_tgi_tx_key key;
5918
5919 if (!(priv->ieee->sec.flags & (1 << index)))
5920 return;
5921
5922 key.key_id = index;
5923 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5924 key.security_type = type;
5925 key.station_index = 0; /* always 0 for BSS */
5926 key.flags = 0;
5927 /* 0 for new key; previous value of counter (after fatal error) */
5928 key.tx_counter[0] = cpu_to_le32(0);
5929 key.tx_counter[1] = cpu_to_le32(0);
5930
5931 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5932 }
5933
5934 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5935 {
5936 struct ipw_wep_key key;
5937 int i;
5938
5939 key.cmd_id = DINO_CMD_WEP_KEY;
5940 key.seq_num = 0;
5941
5942 /* Note: AES keys cannot be set for multiple times.
5943 * Only set it at the first time. */
5944 for (i = 0; i < 4; i++) {
5945 key.key_index = i | type;
5946 if (!(priv->ieee->sec.flags & (1 << i))) {
5947 key.key_size = 0;
5948 continue;
5949 }
5950
5951 key.key_size = priv->ieee->sec.key_sizes[i];
5952 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5953
5954 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5955 }
5956 }
5957
5958 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5959 {
5960 if (priv->ieee->host_encrypt)
5961 return;
5962
5963 switch (level) {
5964 case SEC_LEVEL_3:
5965 priv->sys_config.disable_unicast_decryption = 0;
5966 priv->ieee->host_decrypt = 0;
5967 break;
5968 case SEC_LEVEL_2:
5969 priv->sys_config.disable_unicast_decryption = 1;
5970 priv->ieee->host_decrypt = 1;
5971 break;
5972 case SEC_LEVEL_1:
5973 priv->sys_config.disable_unicast_decryption = 0;
5974 priv->ieee->host_decrypt = 0;
5975 break;
5976 case SEC_LEVEL_0:
5977 priv->sys_config.disable_unicast_decryption = 1;
5978 break;
5979 default:
5980 break;
5981 }
5982 }
5983
5984 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5985 {
5986 if (priv->ieee->host_encrypt)
5987 return;
5988
5989 switch (level) {
5990 case SEC_LEVEL_3:
5991 priv->sys_config.disable_multicast_decryption = 0;
5992 break;
5993 case SEC_LEVEL_2:
5994 priv->sys_config.disable_multicast_decryption = 1;
5995 break;
5996 case SEC_LEVEL_1:
5997 priv->sys_config.disable_multicast_decryption = 0;
5998 break;
5999 case SEC_LEVEL_0:
6000 priv->sys_config.disable_multicast_decryption = 1;
6001 break;
6002 default:
6003 break;
6004 }
6005 }
6006
6007 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6008 {
6009 switch (priv->ieee->sec.level) {
6010 case SEC_LEVEL_3:
6011 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6012 ipw_send_tgi_tx_key(priv,
6013 DCT_FLAG_EXT_SECURITY_CCM,
6014 priv->ieee->sec.active_key);
6015
6016 if (!priv->ieee->host_mc_decrypt)
6017 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6018 break;
6019 case SEC_LEVEL_2:
6020 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6021 ipw_send_tgi_tx_key(priv,
6022 DCT_FLAG_EXT_SECURITY_TKIP,
6023 priv->ieee->sec.active_key);
6024 break;
6025 case SEC_LEVEL_1:
6026 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6027 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6028 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6029 break;
6030 case SEC_LEVEL_0:
6031 default:
6032 break;
6033 }
6034 }
6035
6036 static void ipw_adhoc_check(void *data)
6037 {
6038 struct ipw_priv *priv = data;
6039
6040 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6041 !(priv->config & CFG_ADHOC_PERSIST)) {
6042 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6043 IPW_DL_STATE | IPW_DL_ASSOC,
6044 "Missed beacon: %d - disassociate\n",
6045 priv->missed_adhoc_beacons);
6046 ipw_remove_current_network(priv);
6047 ipw_disassociate(priv);
6048 return;
6049 }
6050
6051 schedule_delayed_work(&priv->adhoc_check,
6052 le16_to_cpu(priv->assoc_request.beacon_interval));
6053 }
6054
6055 static void ipw_bg_adhoc_check(struct work_struct *work)
6056 {
6057 struct ipw_priv *priv =
6058 container_of(work, struct ipw_priv, adhoc_check.work);
6059 mutex_lock(&priv->mutex);
6060 ipw_adhoc_check(priv);
6061 mutex_unlock(&priv->mutex);
6062 }
6063
6064 static void ipw_debug_config(struct ipw_priv *priv)
6065 {
6066 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6067 "[CFG 0x%08X]\n", priv->config);
6068 if (priv->config & CFG_STATIC_CHANNEL)
6069 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6070 else
6071 IPW_DEBUG_INFO("Channel unlocked.\n");
6072 if (priv->config & CFG_STATIC_ESSID)
6073 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6074 priv->essid_len, priv->essid);
6075 else
6076 IPW_DEBUG_INFO("ESSID unlocked.\n");
6077 if (priv->config & CFG_STATIC_BSSID)
6078 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6079 else
6080 IPW_DEBUG_INFO("BSSID unlocked.\n");
6081 if (priv->capability & CAP_PRIVACY_ON)
6082 IPW_DEBUG_INFO("PRIVACY on\n");
6083 else
6084 IPW_DEBUG_INFO("PRIVACY off\n");
6085 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6086 }
6087
6088 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6089 {
6090 /* TODO: Verify that this works... */
6091 struct ipw_fixed_rate fr;
6092 u32 reg;
6093 u16 mask = 0;
6094 u16 new_tx_rates = priv->rates_mask;
6095
6096 /* Identify 'current FW band' and match it with the fixed
6097 * Tx rates */
6098
6099 switch (priv->ieee->freq_band) {
6100 case LIBIPW_52GHZ_BAND: /* A only */
6101 /* IEEE_A */
6102 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6103 /* Invalid fixed rate mask */
6104 IPW_DEBUG_WX
6105 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6106 new_tx_rates = 0;
6107 break;
6108 }
6109
6110 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6111 break;
6112
6113 default: /* 2.4Ghz or Mixed */
6114 /* IEEE_B */
6115 if (mode == IEEE_B) {
6116 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6117 /* Invalid fixed rate mask */
6118 IPW_DEBUG_WX
6119 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6120 new_tx_rates = 0;
6121 }
6122 break;
6123 }
6124
6125 /* IEEE_G */
6126 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6127 LIBIPW_OFDM_RATES_MASK)) {
6128 /* Invalid fixed rate mask */
6129 IPW_DEBUG_WX
6130 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6131 new_tx_rates = 0;
6132 break;
6133 }
6134
6135 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6136 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6137 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6138 }
6139
6140 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6141 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6142 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6143 }
6144
6145 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6146 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6147 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6148 }
6149
6150 new_tx_rates |= mask;
6151 break;
6152 }
6153
6154 fr.tx_rates = cpu_to_le16(new_tx_rates);
6155
6156 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6157 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6158 }
6159
6160 static void ipw_abort_scan(struct ipw_priv *priv)
6161 {
6162 int err;
6163
6164 if (priv->status & STATUS_SCAN_ABORTING) {
6165 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6166 return;
6167 }
6168 priv->status |= STATUS_SCAN_ABORTING;
6169
6170 err = ipw_send_scan_abort(priv);
6171 if (err)
6172 IPW_DEBUG_HC("Request to abort scan failed.\n");
6173 }
6174
6175 static void ipw_add_scan_channels(struct ipw_priv *priv,
6176 struct ipw_scan_request_ext *scan,
6177 int scan_type)
6178 {
6179 int channel_index = 0;
6180 const struct libipw_geo *geo;
6181 int i;
6182
6183 geo = libipw_get_geo(priv->ieee);
6184
6185 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6186 int start = channel_index;
6187 for (i = 0; i < geo->a_channels; i++) {
6188 if ((priv->status & STATUS_ASSOCIATED) &&
6189 geo->a[i].channel == priv->channel)
6190 continue;
6191 channel_index++;
6192 scan->channels_list[channel_index] = geo->a[i].channel;
6193 ipw_set_scan_type(scan, channel_index,
6194 geo->a[i].
6195 flags & LIBIPW_CH_PASSIVE_ONLY ?
6196 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6197 scan_type);
6198 }
6199
6200 if (start != channel_index) {
6201 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6202 (channel_index - start);
6203 channel_index++;
6204 }
6205 }
6206
6207 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6208 int start = channel_index;
6209 if (priv->config & CFG_SPEED_SCAN) {
6210 int index;
6211 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6212 /* nop out the list */
6213 [0] = 0
6214 };
6215
6216 u8 channel;
6217 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6218 channel =
6219 priv->speed_scan[priv->speed_scan_pos];
6220 if (channel == 0) {
6221 priv->speed_scan_pos = 0;
6222 channel = priv->speed_scan[0];
6223 }
6224 if ((priv->status & STATUS_ASSOCIATED) &&
6225 channel == priv->channel) {
6226 priv->speed_scan_pos++;
6227 continue;
6228 }
6229
6230 /* If this channel has already been
6231 * added in scan, break from loop
6232 * and this will be the first channel
6233 * in the next scan.
6234 */
6235 if (channels[channel - 1] != 0)
6236 break;
6237
6238 channels[channel - 1] = 1;
6239 priv->speed_scan_pos++;
6240 channel_index++;
6241 scan->channels_list[channel_index] = channel;
6242 index =
6243 libipw_channel_to_index(priv->ieee, channel);
6244 ipw_set_scan_type(scan, channel_index,
6245 geo->bg[index].
6246 flags &
6247 LIBIPW_CH_PASSIVE_ONLY ?
6248 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6249 : scan_type);
6250 }
6251 } else {
6252 for (i = 0; i < geo->bg_channels; i++) {
6253 if ((priv->status & STATUS_ASSOCIATED) &&
6254 geo->bg[i].channel == priv->channel)
6255 continue;
6256 channel_index++;
6257 scan->channels_list[channel_index] =
6258 geo->bg[i].channel;
6259 ipw_set_scan_type(scan, channel_index,
6260 geo->bg[i].
6261 flags &
6262 LIBIPW_CH_PASSIVE_ONLY ?
6263 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6264 : scan_type);
6265 }
6266 }
6267
6268 if (start != channel_index) {
6269 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6270 (channel_index - start);
6271 }
6272 }
6273 }
6274
6275 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6276 {
6277 /* staying on passive channels longer than the DTIM interval during a
6278 * scan, while associated, causes the firmware to cancel the scan
6279 * without notification. Hence, don't stay on passive channels longer
6280 * than the beacon interval.
6281 */
6282 if (priv->status & STATUS_ASSOCIATED
6283 && priv->assoc_network->beacon_interval > 10)
6284 return priv->assoc_network->beacon_interval - 10;
6285 else
6286 return 120;
6287 }
6288
6289 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6290 {
6291 struct ipw_scan_request_ext scan;
6292 int err = 0, scan_type;
6293
6294 if (!(priv->status & STATUS_INIT) ||
6295 (priv->status & STATUS_EXIT_PENDING))
6296 return 0;
6297
6298 mutex_lock(&priv->mutex);
6299
6300 if (direct && (priv->direct_scan_ssid_len == 0)) {
6301 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6302 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6303 goto done;
6304 }
6305
6306 if (priv->status & STATUS_SCANNING) {
6307 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6308 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6309 STATUS_SCAN_PENDING;
6310 goto done;
6311 }
6312
6313 if (!(priv->status & STATUS_SCAN_FORCED) &&
6314 priv->status & STATUS_SCAN_ABORTING) {
6315 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6316 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6317 STATUS_SCAN_PENDING;
6318 goto done;
6319 }
6320
6321 if (priv->status & STATUS_RF_KILL_MASK) {
6322 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6323 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6324 STATUS_SCAN_PENDING;
6325 goto done;
6326 }
6327
6328 memset(&scan, 0, sizeof(scan));
6329 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6330
6331 if (type == IW_SCAN_TYPE_PASSIVE) {
6332 IPW_DEBUG_WX("use passive scanning\n");
6333 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6334 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6335 cpu_to_le16(ipw_passive_dwell_time(priv));
6336 ipw_add_scan_channels(priv, &scan, scan_type);
6337 goto send_request;
6338 }
6339
6340 /* Use active scan by default. */
6341 if (priv->config & CFG_SPEED_SCAN)
6342 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6343 cpu_to_le16(30);
6344 else
6345 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6346 cpu_to_le16(20);
6347
6348 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6349 cpu_to_le16(20);
6350
6351 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6352 cpu_to_le16(ipw_passive_dwell_time(priv));
6353 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6354
6355 #ifdef CONFIG_IPW2200_MONITOR
6356 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6357 u8 channel;
6358 u8 band = 0;
6359
6360 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6361 case LIBIPW_52GHZ_BAND:
6362 band = (u8) (IPW_A_MODE << 6) | 1;
6363 channel = priv->channel;
6364 break;
6365
6366 case LIBIPW_24GHZ_BAND:
6367 band = (u8) (IPW_B_MODE << 6) | 1;
6368 channel = priv->channel;
6369 break;
6370
6371 default:
6372 band = (u8) (IPW_B_MODE << 6) | 1;
6373 channel = 9;
6374 break;
6375 }
6376
6377 scan.channels_list[0] = band;
6378 scan.channels_list[1] = channel;
6379 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6380
6381 /* NOTE: The card will sit on this channel for this time
6382 * period. Scan aborts are timing sensitive and frequently
6383 * result in firmware restarts. As such, it is best to
6384 * set a small dwell_time here and just keep re-issuing
6385 * scans. Otherwise fast channel hopping will not actually
6386 * hop channels.
6387 *
6388 * TODO: Move SPEED SCAN support to all modes and bands */
6389 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6390 cpu_to_le16(2000);
6391 } else {
6392 #endif /* CONFIG_IPW2200_MONITOR */
6393 /* Honor direct scans first, otherwise if we are roaming make
6394 * this a direct scan for the current network. Finally,
6395 * ensure that every other scan is a fast channel hop scan */
6396 if (direct) {
6397 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6398 priv->direct_scan_ssid_len);
6399 if (err) {
6400 IPW_DEBUG_HC("Attempt to send SSID command "
6401 "failed\n");
6402 goto done;
6403 }
6404
6405 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6406 } else if ((priv->status & STATUS_ROAMING)
6407 || (!(priv->status & STATUS_ASSOCIATED)
6408 && (priv->config & CFG_STATIC_ESSID)
6409 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6410 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6411 if (err) {
6412 IPW_DEBUG_HC("Attempt to send SSID command "
6413 "failed.\n");
6414 goto done;
6415 }
6416
6417 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6418 } else
6419 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6420
6421 ipw_add_scan_channels(priv, &scan, scan_type);
6422 #ifdef CONFIG_IPW2200_MONITOR
6423 }
6424 #endif
6425
6426 send_request:
6427 err = ipw_send_scan_request_ext(priv, &scan);
6428 if (err) {
6429 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6430 goto done;
6431 }
6432
6433 priv->status |= STATUS_SCANNING;
6434 if (direct) {
6435 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6436 priv->direct_scan_ssid_len = 0;
6437 } else
6438 priv->status &= ~STATUS_SCAN_PENDING;
6439
6440 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6441 done:
6442 mutex_unlock(&priv->mutex);
6443 return err;
6444 }
6445
6446 static void ipw_request_passive_scan(struct work_struct *work)
6447 {
6448 struct ipw_priv *priv =
6449 container_of(work, struct ipw_priv, request_passive_scan.work);
6450 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6451 }
6452
6453 static void ipw_request_scan(struct work_struct *work)
6454 {
6455 struct ipw_priv *priv =
6456 container_of(work, struct ipw_priv, request_scan.work);
6457 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6458 }
6459
6460 static void ipw_request_direct_scan(struct work_struct *work)
6461 {
6462 struct ipw_priv *priv =
6463 container_of(work, struct ipw_priv, request_direct_scan.work);
6464 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6465 }
6466
6467 static void ipw_bg_abort_scan(struct work_struct *work)
6468 {
6469 struct ipw_priv *priv =
6470 container_of(work, struct ipw_priv, abort_scan);
6471 mutex_lock(&priv->mutex);
6472 ipw_abort_scan(priv);
6473 mutex_unlock(&priv->mutex);
6474 }
6475
6476 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6477 {
6478 /* This is called when wpa_supplicant loads and closes the driver
6479 * interface. */
6480 priv->ieee->wpa_enabled = value;
6481 return 0;
6482 }
6483
6484 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6485 {
6486 struct libipw_device *ieee = priv->ieee;
6487 struct libipw_security sec = {
6488 .flags = SEC_AUTH_MODE,
6489 };
6490 int ret = 0;
6491
6492 if (value & IW_AUTH_ALG_SHARED_KEY) {
6493 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6494 ieee->open_wep = 0;
6495 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6496 sec.auth_mode = WLAN_AUTH_OPEN;
6497 ieee->open_wep = 1;
6498 } else if (value & IW_AUTH_ALG_LEAP) {
6499 sec.auth_mode = WLAN_AUTH_LEAP;
6500 ieee->open_wep = 1;
6501 } else
6502 return -EINVAL;
6503
6504 if (ieee->set_security)
6505 ieee->set_security(ieee->dev, &sec);
6506 else
6507 ret = -EOPNOTSUPP;
6508
6509 return ret;
6510 }
6511
6512 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6513 int wpa_ie_len)
6514 {
6515 /* make sure WPA is enabled */
6516 ipw_wpa_enable(priv, 1);
6517 }
6518
6519 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6520 char *capabilities, int length)
6521 {
6522 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6523
6524 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6525 capabilities);
6526 }
6527
6528 /*
6529 * WE-18 support
6530 */
6531
6532 /* SIOCSIWGENIE */
6533 static int ipw_wx_set_genie(struct net_device *dev,
6534 struct iw_request_info *info,
6535 union iwreq_data *wrqu, char *extra)
6536 {
6537 struct ipw_priv *priv = libipw_priv(dev);
6538 struct libipw_device *ieee = priv->ieee;
6539 u8 *buf;
6540 int err = 0;
6541
6542 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6543 (wrqu->data.length && extra == NULL))
6544 return -EINVAL;
6545
6546 if (wrqu->data.length) {
6547 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6548 if (buf == NULL) {
6549 err = -ENOMEM;
6550 goto out;
6551 }
6552
6553 kfree(ieee->wpa_ie);
6554 ieee->wpa_ie = buf;
6555 ieee->wpa_ie_len = wrqu->data.length;
6556 } else {
6557 kfree(ieee->wpa_ie);
6558 ieee->wpa_ie = NULL;
6559 ieee->wpa_ie_len = 0;
6560 }
6561
6562 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6563 out:
6564 return err;
6565 }
6566
6567 /* SIOCGIWGENIE */
6568 static int ipw_wx_get_genie(struct net_device *dev,
6569 struct iw_request_info *info,
6570 union iwreq_data *wrqu, char *extra)
6571 {
6572 struct ipw_priv *priv = libipw_priv(dev);
6573 struct libipw_device *ieee = priv->ieee;
6574 int err = 0;
6575
6576 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6577 wrqu->data.length = 0;
6578 goto out;
6579 }
6580
6581 if (wrqu->data.length < ieee->wpa_ie_len) {
6582 err = -E2BIG;
6583 goto out;
6584 }
6585
6586 wrqu->data.length = ieee->wpa_ie_len;
6587 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6588
6589 out:
6590 return err;
6591 }
6592
6593 static int wext_cipher2level(int cipher)
6594 {
6595 switch (cipher) {
6596 case IW_AUTH_CIPHER_NONE:
6597 return SEC_LEVEL_0;
6598 case IW_AUTH_CIPHER_WEP40:
6599 case IW_AUTH_CIPHER_WEP104:
6600 return SEC_LEVEL_1;
6601 case IW_AUTH_CIPHER_TKIP:
6602 return SEC_LEVEL_2;
6603 case IW_AUTH_CIPHER_CCMP:
6604 return SEC_LEVEL_3;
6605 default:
6606 return -1;
6607 }
6608 }
6609
6610 /* SIOCSIWAUTH */
6611 static int ipw_wx_set_auth(struct net_device *dev,
6612 struct iw_request_info *info,
6613 union iwreq_data *wrqu, char *extra)
6614 {
6615 struct ipw_priv *priv = libipw_priv(dev);
6616 struct libipw_device *ieee = priv->ieee;
6617 struct iw_param *param = &wrqu->param;
6618 struct lib80211_crypt_data *crypt;
6619 unsigned long flags;
6620 int ret = 0;
6621
6622 switch (param->flags & IW_AUTH_INDEX) {
6623 case IW_AUTH_WPA_VERSION:
6624 break;
6625 case IW_AUTH_CIPHER_PAIRWISE:
6626 ipw_set_hw_decrypt_unicast(priv,
6627 wext_cipher2level(param->value));
6628 break;
6629 case IW_AUTH_CIPHER_GROUP:
6630 ipw_set_hw_decrypt_multicast(priv,
6631 wext_cipher2level(param->value));
6632 break;
6633 case IW_AUTH_KEY_MGMT:
6634 /*
6635 * ipw2200 does not use these parameters
6636 */
6637 break;
6638
6639 case IW_AUTH_TKIP_COUNTERMEASURES:
6640 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6641 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6642 break;
6643
6644 flags = crypt->ops->get_flags(crypt->priv);
6645
6646 if (param->value)
6647 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6648 else
6649 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6650
6651 crypt->ops->set_flags(flags, crypt->priv);
6652
6653 break;
6654
6655 case IW_AUTH_DROP_UNENCRYPTED:{
6656 /* HACK:
6657 *
6658 * wpa_supplicant calls set_wpa_enabled when the driver
6659 * is loaded and unloaded, regardless of if WPA is being
6660 * used. No other calls are made which can be used to
6661 * determine if encryption will be used or not prior to
6662 * association being expected. If encryption is not being
6663 * used, drop_unencrypted is set to false, else true -- we
6664 * can use this to determine if the CAP_PRIVACY_ON bit should
6665 * be set.
6666 */
6667 struct libipw_security sec = {
6668 .flags = SEC_ENABLED,
6669 .enabled = param->value,
6670 };
6671 priv->ieee->drop_unencrypted = param->value;
6672 /* We only change SEC_LEVEL for open mode. Others
6673 * are set by ipw_wpa_set_encryption.
6674 */
6675 if (!param->value) {
6676 sec.flags |= SEC_LEVEL;
6677 sec.level = SEC_LEVEL_0;
6678 } else {
6679 sec.flags |= SEC_LEVEL;
6680 sec.level = SEC_LEVEL_1;
6681 }
6682 if (priv->ieee->set_security)
6683 priv->ieee->set_security(priv->ieee->dev, &sec);
6684 break;
6685 }
6686
6687 case IW_AUTH_80211_AUTH_ALG:
6688 ret = ipw_wpa_set_auth_algs(priv, param->value);
6689 break;
6690
6691 case IW_AUTH_WPA_ENABLED:
6692 ret = ipw_wpa_enable(priv, param->value);
6693 ipw_disassociate(priv);
6694 break;
6695
6696 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6697 ieee->ieee802_1x = param->value;
6698 break;
6699
6700 case IW_AUTH_PRIVACY_INVOKED:
6701 ieee->privacy_invoked = param->value;
6702 break;
6703
6704 default:
6705 return -EOPNOTSUPP;
6706 }
6707 return ret;
6708 }
6709
6710 /* SIOCGIWAUTH */
6711 static int ipw_wx_get_auth(struct net_device *dev,
6712 struct iw_request_info *info,
6713 union iwreq_data *wrqu, char *extra)
6714 {
6715 struct ipw_priv *priv = libipw_priv(dev);
6716 struct libipw_device *ieee = priv->ieee;
6717 struct lib80211_crypt_data *crypt;
6718 struct iw_param *param = &wrqu->param;
6719
6720 switch (param->flags & IW_AUTH_INDEX) {
6721 case IW_AUTH_WPA_VERSION:
6722 case IW_AUTH_CIPHER_PAIRWISE:
6723 case IW_AUTH_CIPHER_GROUP:
6724 case IW_AUTH_KEY_MGMT:
6725 /*
6726 * wpa_supplicant will control these internally
6727 */
6728 return -EOPNOTSUPP;
6729
6730 case IW_AUTH_TKIP_COUNTERMEASURES:
6731 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6732 if (!crypt || !crypt->ops->get_flags)
6733 break;
6734
6735 param->value = (crypt->ops->get_flags(crypt->priv) &
6736 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6737
6738 break;
6739
6740 case IW_AUTH_DROP_UNENCRYPTED:
6741 param->value = ieee->drop_unencrypted;
6742 break;
6743
6744 case IW_AUTH_80211_AUTH_ALG:
6745 param->value = ieee->sec.auth_mode;
6746 break;
6747
6748 case IW_AUTH_WPA_ENABLED:
6749 param->value = ieee->wpa_enabled;
6750 break;
6751
6752 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6753 param->value = ieee->ieee802_1x;
6754 break;
6755
6756 case IW_AUTH_ROAMING_CONTROL:
6757 case IW_AUTH_PRIVACY_INVOKED:
6758 param->value = ieee->privacy_invoked;
6759 break;
6760
6761 default:
6762 return -EOPNOTSUPP;
6763 }
6764 return 0;
6765 }
6766
6767 /* SIOCSIWENCODEEXT */
6768 static int ipw_wx_set_encodeext(struct net_device *dev,
6769 struct iw_request_info *info,
6770 union iwreq_data *wrqu, char *extra)
6771 {
6772 struct ipw_priv *priv = libipw_priv(dev);
6773 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6774
6775 if (hwcrypto) {
6776 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6777 /* IPW HW can't build TKIP MIC,
6778 host decryption still needed */
6779 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6780 priv->ieee->host_mc_decrypt = 1;
6781 else {
6782 priv->ieee->host_encrypt = 0;
6783 priv->ieee->host_encrypt_msdu = 1;
6784 priv->ieee->host_decrypt = 1;
6785 }
6786 } else {
6787 priv->ieee->host_encrypt = 0;
6788 priv->ieee->host_encrypt_msdu = 0;
6789 priv->ieee->host_decrypt = 0;
6790 priv->ieee->host_mc_decrypt = 0;
6791 }
6792 }
6793
6794 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6795 }
6796
6797 /* SIOCGIWENCODEEXT */
6798 static int ipw_wx_get_encodeext(struct net_device *dev,
6799 struct iw_request_info *info,
6800 union iwreq_data *wrqu, char *extra)
6801 {
6802 struct ipw_priv *priv = libipw_priv(dev);
6803 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6804 }
6805
6806 /* SIOCSIWMLME */
6807 static int ipw_wx_set_mlme(struct net_device *dev,
6808 struct iw_request_info *info,
6809 union iwreq_data *wrqu, char *extra)
6810 {
6811 struct ipw_priv *priv = libipw_priv(dev);
6812 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6813 __le16 reason;
6814
6815 reason = cpu_to_le16(mlme->reason_code);
6816
6817 switch (mlme->cmd) {
6818 case IW_MLME_DEAUTH:
6819 /* silently ignore */
6820 break;
6821
6822 case IW_MLME_DISASSOC:
6823 ipw_disassociate(priv);
6824 break;
6825
6826 default:
6827 return -EOPNOTSUPP;
6828 }
6829 return 0;
6830 }
6831
6832 #ifdef CONFIG_IPW2200_QOS
6833
6834 /* QoS */
6835 /*
6836 * get the modulation type of the current network or
6837 * the card current mode
6838 */
6839 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6840 {
6841 u8 mode = 0;
6842
6843 if (priv->status & STATUS_ASSOCIATED) {
6844 unsigned long flags;
6845
6846 spin_lock_irqsave(&priv->ieee->lock, flags);
6847 mode = priv->assoc_network->mode;
6848 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6849 } else {
6850 mode = priv->ieee->mode;
6851 }
6852 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6853 return mode;
6854 }
6855
6856 /*
6857 * Handle management frame beacon and probe response
6858 */
6859 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6860 int active_network,
6861 struct libipw_network *network)
6862 {
6863 u32 size = sizeof(struct libipw_qos_parameters);
6864
6865 if (network->capability & WLAN_CAPABILITY_IBSS)
6866 network->qos_data.active = network->qos_data.supported;
6867
6868 if (network->flags & NETWORK_HAS_QOS_MASK) {
6869 if (active_network &&
6870 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6871 network->qos_data.active = network->qos_data.supported;
6872
6873 if ((network->qos_data.active == 1) && (active_network == 1) &&
6874 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6875 (network->qos_data.old_param_count !=
6876 network->qos_data.param_count)) {
6877 network->qos_data.old_param_count =
6878 network->qos_data.param_count;
6879 schedule_work(&priv->qos_activate);
6880 IPW_DEBUG_QOS("QoS parameters change call "
6881 "qos_activate\n");
6882 }
6883 } else {
6884 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6885 memcpy(&network->qos_data.parameters,
6886 &def_parameters_CCK, size);
6887 else
6888 memcpy(&network->qos_data.parameters,
6889 &def_parameters_OFDM, size);
6890
6891 if ((network->qos_data.active == 1) && (active_network == 1)) {
6892 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6893 schedule_work(&priv->qos_activate);
6894 }
6895
6896 network->qos_data.active = 0;
6897 network->qos_data.supported = 0;
6898 }
6899 if ((priv->status & STATUS_ASSOCIATED) &&
6900 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6901 if (!ether_addr_equal(network->bssid, priv->bssid))
6902 if (network->capability & WLAN_CAPABILITY_IBSS)
6903 if ((network->ssid_len ==
6904 priv->assoc_network->ssid_len) &&
6905 !memcmp(network->ssid,
6906 priv->assoc_network->ssid,
6907 network->ssid_len)) {
6908 schedule_work(&priv->merge_networks);
6909 }
6910 }
6911
6912 return 0;
6913 }
6914
6915 /*
6916 * This function set up the firmware to support QoS. It sends
6917 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6918 */
6919 static int ipw_qos_activate(struct ipw_priv *priv,
6920 struct libipw_qos_data *qos_network_data)
6921 {
6922 int err;
6923 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6924 struct libipw_qos_parameters *active_one = NULL;
6925 u32 size = sizeof(struct libipw_qos_parameters);
6926 u32 burst_duration;
6927 int i;
6928 u8 type;
6929
6930 type = ipw_qos_current_mode(priv);
6931
6932 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6933 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6934 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6935 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6936
6937 if (qos_network_data == NULL) {
6938 if (type == IEEE_B) {
6939 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6940 active_one = &def_parameters_CCK;
6941 } else
6942 active_one = &def_parameters_OFDM;
6943
6944 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6945 burst_duration = ipw_qos_get_burst_duration(priv);
6946 for (i = 0; i < QOS_QUEUE_NUM; i++)
6947 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6948 cpu_to_le16(burst_duration);
6949 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6950 if (type == IEEE_B) {
6951 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6952 type);
6953 if (priv->qos_data.qos_enable == 0)
6954 active_one = &def_parameters_CCK;
6955 else
6956 active_one = priv->qos_data.def_qos_parm_CCK;
6957 } else {
6958 if (priv->qos_data.qos_enable == 0)
6959 active_one = &def_parameters_OFDM;
6960 else
6961 active_one = priv->qos_data.def_qos_parm_OFDM;
6962 }
6963 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6964 } else {
6965 unsigned long flags;
6966 int active;
6967
6968 spin_lock_irqsave(&priv->ieee->lock, flags);
6969 active_one = &(qos_network_data->parameters);
6970 qos_network_data->old_param_count =
6971 qos_network_data->param_count;
6972 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6973 active = qos_network_data->supported;
6974 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6975
6976 if (active == 0) {
6977 burst_duration = ipw_qos_get_burst_duration(priv);
6978 for (i = 0; i < QOS_QUEUE_NUM; i++)
6979 qos_parameters[QOS_PARAM_SET_ACTIVE].
6980 tx_op_limit[i] = cpu_to_le16(burst_duration);
6981 }
6982 }
6983
6984 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6985 err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6986 if (err)
6987 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6988
6989 return err;
6990 }
6991
6992 /*
6993 * send IPW_CMD_WME_INFO to the firmware
6994 */
6995 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6996 {
6997 int ret = 0;
6998 struct libipw_qos_information_element qos_info;
6999
7000 if (priv == NULL)
7001 return -1;
7002
7003 qos_info.elementID = QOS_ELEMENT_ID;
7004 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7005
7006 qos_info.version = QOS_VERSION_1;
7007 qos_info.ac_info = 0;
7008
7009 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7010 qos_info.qui_type = QOS_OUI_TYPE;
7011 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7012
7013 ret = ipw_send_qos_info_command(priv, &qos_info);
7014 if (ret != 0) {
7015 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7016 }
7017 return ret;
7018 }
7019
7020 /*
7021 * Set the QoS parameter with the association request structure
7022 */
7023 static int ipw_qos_association(struct ipw_priv *priv,
7024 struct libipw_network *network)
7025 {
7026 int err = 0;
7027 struct libipw_qos_data *qos_data = NULL;
7028 struct libipw_qos_data ibss_data = {
7029 .supported = 1,
7030 .active = 1,
7031 };
7032
7033 switch (priv->ieee->iw_mode) {
7034 case IW_MODE_ADHOC:
7035 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7036
7037 qos_data = &ibss_data;
7038 break;
7039
7040 case IW_MODE_INFRA:
7041 qos_data = &network->qos_data;
7042 break;
7043
7044 default:
7045 BUG();
7046 break;
7047 }
7048
7049 err = ipw_qos_activate(priv, qos_data);
7050 if (err) {
7051 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7052 return err;
7053 }
7054
7055 if (priv->qos_data.qos_enable && qos_data->supported) {
7056 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7057 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7058 return ipw_qos_set_info_element(priv);
7059 }
7060
7061 return 0;
7062 }
7063
7064 /*
7065 * handling the beaconing responses. if we get different QoS setting
7066 * off the network from the associated setting, adjust the QoS
7067 * setting
7068 */
7069 static int ipw_qos_association_resp(struct ipw_priv *priv,
7070 struct libipw_network *network)
7071 {
7072 int ret = 0;
7073 unsigned long flags;
7074 u32 size = sizeof(struct libipw_qos_parameters);
7075 int set_qos_param = 0;
7076
7077 if ((priv == NULL) || (network == NULL) ||
7078 (priv->assoc_network == NULL))
7079 return ret;
7080
7081 if (!(priv->status & STATUS_ASSOCIATED))
7082 return ret;
7083
7084 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7085 return ret;
7086
7087 spin_lock_irqsave(&priv->ieee->lock, flags);
7088 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7089 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7090 sizeof(struct libipw_qos_data));
7091 priv->assoc_network->qos_data.active = 1;
7092 if ((network->qos_data.old_param_count !=
7093 network->qos_data.param_count)) {
7094 set_qos_param = 1;
7095 network->qos_data.old_param_count =
7096 network->qos_data.param_count;
7097 }
7098
7099 } else {
7100 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7101 memcpy(&priv->assoc_network->qos_data.parameters,
7102 &def_parameters_CCK, size);
7103 else
7104 memcpy(&priv->assoc_network->qos_data.parameters,
7105 &def_parameters_OFDM, size);
7106 priv->assoc_network->qos_data.active = 0;
7107 priv->assoc_network->qos_data.supported = 0;
7108 set_qos_param = 1;
7109 }
7110
7111 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7112
7113 if (set_qos_param == 1)
7114 schedule_work(&priv->qos_activate);
7115
7116 return ret;
7117 }
7118
7119 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7120 {
7121 u32 ret = 0;
7122
7123 if ((priv == NULL))
7124 return 0;
7125
7126 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7127 ret = priv->qos_data.burst_duration_CCK;
7128 else
7129 ret = priv->qos_data.burst_duration_OFDM;
7130
7131 return ret;
7132 }
7133
7134 /*
7135 * Initialize the setting of QoS global
7136 */
7137 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7138 int burst_enable, u32 burst_duration_CCK,
7139 u32 burst_duration_OFDM)
7140 {
7141 priv->qos_data.qos_enable = enable;
7142
7143 if (priv->qos_data.qos_enable) {
7144 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7145 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7146 IPW_DEBUG_QOS("QoS is enabled\n");
7147 } else {
7148 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7149 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7150 IPW_DEBUG_QOS("QoS is not enabled\n");
7151 }
7152
7153 priv->qos_data.burst_enable = burst_enable;
7154
7155 if (burst_enable) {
7156 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7157 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7158 } else {
7159 priv->qos_data.burst_duration_CCK = 0;
7160 priv->qos_data.burst_duration_OFDM = 0;
7161 }
7162 }
7163
7164 /*
7165 * map the packet priority to the right TX Queue
7166 */
7167 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7168 {
7169 if (priority > 7 || !priv->qos_data.qos_enable)
7170 priority = 0;
7171
7172 return from_priority_to_tx_queue[priority] - 1;
7173 }
7174
7175 static int ipw_is_qos_active(struct net_device *dev,
7176 struct sk_buff *skb)
7177 {
7178 struct ipw_priv *priv = libipw_priv(dev);
7179 struct libipw_qos_data *qos_data = NULL;
7180 int active, supported;
7181 u8 *daddr = skb->data + ETH_ALEN;
7182 int unicast = !is_multicast_ether_addr(daddr);
7183
7184 if (!(priv->status & STATUS_ASSOCIATED))
7185 return 0;
7186
7187 qos_data = &priv->assoc_network->qos_data;
7188
7189 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7190 if (unicast == 0)
7191 qos_data->active = 0;
7192 else
7193 qos_data->active = qos_data->supported;
7194 }
7195 active = qos_data->active;
7196 supported = qos_data->supported;
7197 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7198 "unicast %d\n",
7199 priv->qos_data.qos_enable, active, supported, unicast);
7200 if (active && priv->qos_data.qos_enable)
7201 return 1;
7202
7203 return 0;
7204
7205 }
7206 /*
7207 * add QoS parameter to the TX command
7208 */
7209 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7210 u16 priority,
7211 struct tfd_data *tfd)
7212 {
7213 int tx_queue_id = 0;
7214
7215
7216 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7217 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7218
7219 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7220 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7221 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7222 }
7223 return 0;
7224 }
7225
7226 /*
7227 * background support to run QoS activate functionality
7228 */
7229 static void ipw_bg_qos_activate(struct work_struct *work)
7230 {
7231 struct ipw_priv *priv =
7232 container_of(work, struct ipw_priv, qos_activate);
7233
7234 mutex_lock(&priv->mutex);
7235
7236 if (priv->status & STATUS_ASSOCIATED)
7237 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7238
7239 mutex_unlock(&priv->mutex);
7240 }
7241
7242 static int ipw_handle_probe_response(struct net_device *dev,
7243 struct libipw_probe_response *resp,
7244 struct libipw_network *network)
7245 {
7246 struct ipw_priv *priv = libipw_priv(dev);
7247 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7248 (network == priv->assoc_network));
7249
7250 ipw_qos_handle_probe_response(priv, active_network, network);
7251
7252 return 0;
7253 }
7254
7255 static int ipw_handle_beacon(struct net_device *dev,
7256 struct libipw_beacon *resp,
7257 struct libipw_network *network)
7258 {
7259 struct ipw_priv *priv = libipw_priv(dev);
7260 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7261 (network == priv->assoc_network));
7262
7263 ipw_qos_handle_probe_response(priv, active_network, network);
7264
7265 return 0;
7266 }
7267
7268 static int ipw_handle_assoc_response(struct net_device *dev,
7269 struct libipw_assoc_response *resp,
7270 struct libipw_network *network)
7271 {
7272 struct ipw_priv *priv = libipw_priv(dev);
7273 ipw_qos_association_resp(priv, network);
7274 return 0;
7275 }
7276
7277 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7278 *qos_param)
7279 {
7280 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7281 sizeof(*qos_param) * 3, qos_param);
7282 }
7283
7284 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7285 *qos_param)
7286 {
7287 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7288 qos_param);
7289 }
7290
7291 #endif /* CONFIG_IPW2200_QOS */
7292
7293 static int ipw_associate_network(struct ipw_priv *priv,
7294 struct libipw_network *network,
7295 struct ipw_supported_rates *rates, int roaming)
7296 {
7297 int err;
7298
7299 if (priv->config & CFG_FIXED_RATE)
7300 ipw_set_fixed_rate(priv, network->mode);
7301
7302 if (!(priv->config & CFG_STATIC_ESSID)) {
7303 priv->essid_len = min(network->ssid_len,
7304 (u8) IW_ESSID_MAX_SIZE);
7305 memcpy(priv->essid, network->ssid, priv->essid_len);
7306 }
7307
7308 network->last_associate = jiffies;
7309
7310 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7311 priv->assoc_request.channel = network->channel;
7312 priv->assoc_request.auth_key = 0;
7313
7314 if ((priv->capability & CAP_PRIVACY_ON) &&
7315 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7316 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7317 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7318
7319 if (priv->ieee->sec.level == SEC_LEVEL_1)
7320 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7321
7322 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7323 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7324 priv->assoc_request.auth_type = AUTH_LEAP;
7325 else
7326 priv->assoc_request.auth_type = AUTH_OPEN;
7327
7328 if (priv->ieee->wpa_ie_len) {
7329 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7330 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7331 priv->ieee->wpa_ie_len);
7332 }
7333
7334 /*
7335 * It is valid for our ieee device to support multiple modes, but
7336 * when it comes to associating to a given network we have to choose
7337 * just one mode.
7338 */
7339 if (network->mode & priv->ieee->mode & IEEE_A)
7340 priv->assoc_request.ieee_mode = IPW_A_MODE;
7341 else if (network->mode & priv->ieee->mode & IEEE_G)
7342 priv->assoc_request.ieee_mode = IPW_G_MODE;
7343 else if (network->mode & priv->ieee->mode & IEEE_B)
7344 priv->assoc_request.ieee_mode = IPW_B_MODE;
7345
7346 priv->assoc_request.capability = cpu_to_le16(network->capability);
7347 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7348 && !(priv->config & CFG_PREAMBLE_LONG)) {
7349 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7350 } else {
7351 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7352
7353 /* Clear the short preamble if we won't be supporting it */
7354 priv->assoc_request.capability &=
7355 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7356 }
7357
7358 /* Clear capability bits that aren't used in Ad Hoc */
7359 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7360 priv->assoc_request.capability &=
7361 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7362
7363 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7364 roaming ? "Rea" : "A",
7365 priv->essid_len, priv->essid,
7366 network->channel,
7367 ipw_modes[priv->assoc_request.ieee_mode],
7368 rates->num_rates,
7369 (priv->assoc_request.preamble_length ==
7370 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7371 network->capability &
7372 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7373 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7374 priv->capability & CAP_PRIVACY_ON ?
7375 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7376 "(open)") : "",
7377 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7378 priv->capability & CAP_PRIVACY_ON ?
7379 '1' + priv->ieee->sec.active_key : '.',
7380 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7381
7382 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7383 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7384 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7385 priv->assoc_request.assoc_type = HC_IBSS_START;
7386 priv->assoc_request.assoc_tsf_msw = 0;
7387 priv->assoc_request.assoc_tsf_lsw = 0;
7388 } else {
7389 if (unlikely(roaming))
7390 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7391 else
7392 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7393 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7394 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7395 }
7396
7397 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7398
7399 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7400 eth_broadcast_addr(priv->assoc_request.dest);
7401 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7402 } else {
7403 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7404 priv->assoc_request.atim_window = 0;
7405 }
7406
7407 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7408
7409 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7410 if (err) {
7411 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7412 return err;
7413 }
7414
7415 rates->ieee_mode = priv->assoc_request.ieee_mode;
7416 rates->purpose = IPW_RATE_CONNECT;
7417 ipw_send_supported_rates(priv, rates);
7418
7419 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7420 priv->sys_config.dot11g_auto_detection = 1;
7421 else
7422 priv->sys_config.dot11g_auto_detection = 0;
7423
7424 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7425 priv->sys_config.answer_broadcast_ssid_probe = 1;
7426 else
7427 priv->sys_config.answer_broadcast_ssid_probe = 0;
7428
7429 err = ipw_send_system_config(priv);
7430 if (err) {
7431 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7432 return err;
7433 }
7434
7435 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7436 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7437 if (err) {
7438 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7439 return err;
7440 }
7441
7442 /*
7443 * If preemption is enabled, it is possible for the association
7444 * to complete before we return from ipw_send_associate. Therefore
7445 * we have to be sure and update our priviate data first.
7446 */
7447 priv->channel = network->channel;
7448 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7449 priv->status |= STATUS_ASSOCIATING;
7450 priv->status &= ~STATUS_SECURITY_UPDATED;
7451
7452 priv->assoc_network = network;
7453
7454 #ifdef CONFIG_IPW2200_QOS
7455 ipw_qos_association(priv, network);
7456 #endif
7457
7458 err = ipw_send_associate(priv, &priv->assoc_request);
7459 if (err) {
7460 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7461 return err;
7462 }
7463
7464 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7465 priv->essid_len, priv->essid, priv->bssid);
7466
7467 return 0;
7468 }
7469
7470 static void ipw_roam(void *data)
7471 {
7472 struct ipw_priv *priv = data;
7473 struct libipw_network *network = NULL;
7474 struct ipw_network_match match = {
7475 .network = priv->assoc_network
7476 };
7477
7478 /* The roaming process is as follows:
7479 *
7480 * 1. Missed beacon threshold triggers the roaming process by
7481 * setting the status ROAM bit and requesting a scan.
7482 * 2. When the scan completes, it schedules the ROAM work
7483 * 3. The ROAM work looks at all of the known networks for one that
7484 * is a better network than the currently associated. If none
7485 * found, the ROAM process is over (ROAM bit cleared)
7486 * 4. If a better network is found, a disassociation request is
7487 * sent.
7488 * 5. When the disassociation completes, the roam work is again
7489 * scheduled. The second time through, the driver is no longer
7490 * associated, and the newly selected network is sent an
7491 * association request.
7492 * 6. At this point ,the roaming process is complete and the ROAM
7493 * status bit is cleared.
7494 */
7495
7496 /* If we are no longer associated, and the roaming bit is no longer
7497 * set, then we are not actively roaming, so just return */
7498 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7499 return;
7500
7501 if (priv->status & STATUS_ASSOCIATED) {
7502 /* First pass through ROAM process -- look for a better
7503 * network */
7504 unsigned long flags;
7505 u8 rssi = priv->assoc_network->stats.rssi;
7506 priv->assoc_network->stats.rssi = -128;
7507 spin_lock_irqsave(&priv->ieee->lock, flags);
7508 list_for_each_entry(network, &priv->ieee->network_list, list) {
7509 if (network != priv->assoc_network)
7510 ipw_best_network(priv, &match, network, 1);
7511 }
7512 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7513 priv->assoc_network->stats.rssi = rssi;
7514
7515 if (match.network == priv->assoc_network) {
7516 IPW_DEBUG_ASSOC("No better APs in this network to "
7517 "roam to.\n");
7518 priv->status &= ~STATUS_ROAMING;
7519 ipw_debug_config(priv);
7520 return;
7521 }
7522
7523 ipw_send_disassociate(priv, 1);
7524 priv->assoc_network = match.network;
7525
7526 return;
7527 }
7528
7529 /* Second pass through ROAM process -- request association */
7530 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7531 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7532 priv->status &= ~STATUS_ROAMING;
7533 }
7534
7535 static void ipw_bg_roam(struct work_struct *work)
7536 {
7537 struct ipw_priv *priv =
7538 container_of(work, struct ipw_priv, roam);
7539 mutex_lock(&priv->mutex);
7540 ipw_roam(priv);
7541 mutex_unlock(&priv->mutex);
7542 }
7543
7544 static int ipw_associate(void *data)
7545 {
7546 struct ipw_priv *priv = data;
7547
7548 struct libipw_network *network = NULL;
7549 struct ipw_network_match match = {
7550 .network = NULL
7551 };
7552 struct ipw_supported_rates *rates;
7553 struct list_head *element;
7554 unsigned long flags;
7555
7556 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7557 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7558 return 0;
7559 }
7560
7561 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7562 IPW_DEBUG_ASSOC("Not attempting association (already in "
7563 "progress)\n");
7564 return 0;
7565 }
7566
7567 if (priv->status & STATUS_DISASSOCIATING) {
7568 IPW_DEBUG_ASSOC("Not attempting association (in "
7569 "disassociating)\n ");
7570 schedule_work(&priv->associate);
7571 return 0;
7572 }
7573
7574 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7575 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7576 "initialized)\n");
7577 return 0;
7578 }
7579
7580 if (!(priv->config & CFG_ASSOCIATE) &&
7581 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7582 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7583 return 0;
7584 }
7585
7586 /* Protect our use of the network_list */
7587 spin_lock_irqsave(&priv->ieee->lock, flags);
7588 list_for_each_entry(network, &priv->ieee->network_list, list)
7589 ipw_best_network(priv, &match, network, 0);
7590
7591 network = match.network;
7592 rates = &match.rates;
7593
7594 if (network == NULL &&
7595 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7596 priv->config & CFG_ADHOC_CREATE &&
7597 priv->config & CFG_STATIC_ESSID &&
7598 priv->config & CFG_STATIC_CHANNEL) {
7599 /* Use oldest network if the free list is empty */
7600 if (list_empty(&priv->ieee->network_free_list)) {
7601 struct libipw_network *oldest = NULL;
7602 struct libipw_network *target;
7603
7604 list_for_each_entry(target, &priv->ieee->network_list, list) {
7605 if ((oldest == NULL) ||
7606 (target->last_scanned < oldest->last_scanned))
7607 oldest = target;
7608 }
7609
7610 /* If there are no more slots, expire the oldest */
7611 list_del(&oldest->list);
7612 target = oldest;
7613 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7614 target->ssid_len, target->ssid,
7615 target->bssid);
7616 list_add_tail(&target->list,
7617 &priv->ieee->network_free_list);
7618 }
7619
7620 element = priv->ieee->network_free_list.next;
7621 network = list_entry(element, struct libipw_network, list);
7622 ipw_adhoc_create(priv, network);
7623 rates = &priv->rates;
7624 list_del(element);
7625 list_add_tail(&network->list, &priv->ieee->network_list);
7626 }
7627 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7628
7629 /* If we reached the end of the list, then we don't have any valid
7630 * matching APs */
7631 if (!network) {
7632 ipw_debug_config(priv);
7633
7634 if (!(priv->status & STATUS_SCANNING)) {
7635 if (!(priv->config & CFG_SPEED_SCAN))
7636 schedule_delayed_work(&priv->request_scan,
7637 SCAN_INTERVAL);
7638 else
7639 schedule_delayed_work(&priv->request_scan, 0);
7640 }
7641
7642 return 0;
7643 }
7644
7645 ipw_associate_network(priv, network, rates, 0);
7646
7647 return 1;
7648 }
7649
7650 static void ipw_bg_associate(struct work_struct *work)
7651 {
7652 struct ipw_priv *priv =
7653 container_of(work, struct ipw_priv, associate);
7654 mutex_lock(&priv->mutex);
7655 ipw_associate(priv);
7656 mutex_unlock(&priv->mutex);
7657 }
7658
7659 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7660 struct sk_buff *skb)
7661 {
7662 struct ieee80211_hdr *hdr;
7663 u16 fc;
7664
7665 hdr = (struct ieee80211_hdr *)skb->data;
7666 fc = le16_to_cpu(hdr->frame_control);
7667 if (!(fc & IEEE80211_FCTL_PROTECTED))
7668 return;
7669
7670 fc &= ~IEEE80211_FCTL_PROTECTED;
7671 hdr->frame_control = cpu_to_le16(fc);
7672 switch (priv->ieee->sec.level) {
7673 case SEC_LEVEL_3:
7674 /* Remove CCMP HDR */
7675 memmove(skb->data + LIBIPW_3ADDR_LEN,
7676 skb->data + LIBIPW_3ADDR_LEN + 8,
7677 skb->len - LIBIPW_3ADDR_LEN - 8);
7678 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7679 break;
7680 case SEC_LEVEL_2:
7681 break;
7682 case SEC_LEVEL_1:
7683 /* Remove IV */
7684 memmove(skb->data + LIBIPW_3ADDR_LEN,
7685 skb->data + LIBIPW_3ADDR_LEN + 4,
7686 skb->len - LIBIPW_3ADDR_LEN - 4);
7687 skb_trim(skb, skb->len - 8); /* IV + ICV */
7688 break;
7689 case SEC_LEVEL_0:
7690 break;
7691 default:
7692 printk(KERN_ERR "Unknown security level %d\n",
7693 priv->ieee->sec.level);
7694 break;
7695 }
7696 }
7697
7698 static void ipw_handle_data_packet(struct ipw_priv *priv,
7699 struct ipw_rx_mem_buffer *rxb,
7700 struct libipw_rx_stats *stats)
7701 {
7702 struct net_device *dev = priv->net_dev;
7703 struct libipw_hdr_4addr *hdr;
7704 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7705
7706 /* We received data from the HW, so stop the watchdog */
7707 netif_trans_update(dev);
7708
7709 /* We only process data packets if the
7710 * interface is open */
7711 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7712 skb_tailroom(rxb->skb))) {
7713 dev->stats.rx_errors++;
7714 priv->wstats.discard.misc++;
7715 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7716 return;
7717 } else if (unlikely(!netif_running(priv->net_dev))) {
7718 dev->stats.rx_dropped++;
7719 priv->wstats.discard.misc++;
7720 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7721 return;
7722 }
7723
7724 /* Advance skb->data to the start of the actual payload */
7725 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7726
7727 /* Set the size of the skb to the size of the frame */
7728 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7729
7730 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7731
7732 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7733 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7734 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7735 (is_multicast_ether_addr(hdr->addr1) ?
7736 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7737 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7738
7739 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7740 dev->stats.rx_errors++;
7741 else { /* libipw_rx succeeded, so it now owns the SKB */
7742 rxb->skb = NULL;
7743 __ipw_led_activity_on(priv);
7744 }
7745 }
7746
7747 #ifdef CONFIG_IPW2200_RADIOTAP
7748 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7749 struct ipw_rx_mem_buffer *rxb,
7750 struct libipw_rx_stats *stats)
7751 {
7752 struct net_device *dev = priv->net_dev;
7753 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7754 struct ipw_rx_frame *frame = &pkt->u.frame;
7755
7756 /* initial pull of some data */
7757 u16 received_channel = frame->received_channel;
7758 u8 antennaAndPhy = frame->antennaAndPhy;
7759 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7760 u16 pktrate = frame->rate;
7761
7762 /* Magic struct that slots into the radiotap header -- no reason
7763 * to build this manually element by element, we can write it much
7764 * more efficiently than we can parse it. ORDER MATTERS HERE */
7765 struct ipw_rt_hdr *ipw_rt;
7766
7767 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7768
7769 /* We received data from the HW, so stop the watchdog */
7770 netif_trans_update(dev);
7771
7772 /* We only process data packets if the
7773 * interface is open */
7774 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7775 skb_tailroom(rxb->skb))) {
7776 dev->stats.rx_errors++;
7777 priv->wstats.discard.misc++;
7778 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7779 return;
7780 } else if (unlikely(!netif_running(priv->net_dev))) {
7781 dev->stats.rx_dropped++;
7782 priv->wstats.discard.misc++;
7783 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7784 return;
7785 }
7786
7787 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7788 * that now */
7789 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7790 /* FIXME: Should alloc bigger skb instead */
7791 dev->stats.rx_dropped++;
7792 priv->wstats.discard.misc++;
7793 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7794 return;
7795 }
7796
7797 /* copy the frame itself */
7798 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7799 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7800
7801 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7802
7803 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7804 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7805 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7806
7807 /* Big bitfield of all the fields we provide in radiotap */
7808 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7809 (1 << IEEE80211_RADIOTAP_TSFT) |
7810 (1 << IEEE80211_RADIOTAP_FLAGS) |
7811 (1 << IEEE80211_RADIOTAP_RATE) |
7812 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7813 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7814 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7815 (1 << IEEE80211_RADIOTAP_ANTENNA));
7816
7817 /* Zero the flags, we'll add to them as we go */
7818 ipw_rt->rt_flags = 0;
7819 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7820 frame->parent_tsf[2] << 16 |
7821 frame->parent_tsf[1] << 8 |
7822 frame->parent_tsf[0]);
7823
7824 /* Convert signal to DBM */
7825 ipw_rt->rt_dbmsignal = antsignal;
7826 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7827
7828 /* Convert the channel data and set the flags */
7829 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7830 if (received_channel > 14) { /* 802.11a */
7831 ipw_rt->rt_chbitmask =
7832 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7833 } else if (antennaAndPhy & 32) { /* 802.11b */
7834 ipw_rt->rt_chbitmask =
7835 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7836 } else { /* 802.11g */
7837 ipw_rt->rt_chbitmask =
7838 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7839 }
7840
7841 /* set the rate in multiples of 500k/s */
7842 switch (pktrate) {
7843 case IPW_TX_RATE_1MB:
7844 ipw_rt->rt_rate = 2;
7845 break;
7846 case IPW_TX_RATE_2MB:
7847 ipw_rt->rt_rate = 4;
7848 break;
7849 case IPW_TX_RATE_5MB:
7850 ipw_rt->rt_rate = 10;
7851 break;
7852 case IPW_TX_RATE_6MB:
7853 ipw_rt->rt_rate = 12;
7854 break;
7855 case IPW_TX_RATE_9MB:
7856 ipw_rt->rt_rate = 18;
7857 break;
7858 case IPW_TX_RATE_11MB:
7859 ipw_rt->rt_rate = 22;
7860 break;
7861 case IPW_TX_RATE_12MB:
7862 ipw_rt->rt_rate = 24;
7863 break;
7864 case IPW_TX_RATE_18MB:
7865 ipw_rt->rt_rate = 36;
7866 break;
7867 case IPW_TX_RATE_24MB:
7868 ipw_rt->rt_rate = 48;
7869 break;
7870 case IPW_TX_RATE_36MB:
7871 ipw_rt->rt_rate = 72;
7872 break;
7873 case IPW_TX_RATE_48MB:
7874 ipw_rt->rt_rate = 96;
7875 break;
7876 case IPW_TX_RATE_54MB:
7877 ipw_rt->rt_rate = 108;
7878 break;
7879 default:
7880 ipw_rt->rt_rate = 0;
7881 break;
7882 }
7883
7884 /* antenna number */
7885 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7886
7887 /* set the preamble flag if we have it */
7888 if ((antennaAndPhy & 64))
7889 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7890
7891 /* Set the size of the skb to the size of the frame */
7892 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7893
7894 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7895
7896 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7897 dev->stats.rx_errors++;
7898 else { /* libipw_rx succeeded, so it now owns the SKB */
7899 rxb->skb = NULL;
7900 /* no LED during capture */
7901 }
7902 }
7903 #endif
7904
7905 #ifdef CONFIG_IPW2200_PROMISCUOUS
7906 #define libipw_is_probe_response(fc) \
7907 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7908 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7909
7910 #define libipw_is_management(fc) \
7911 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7912
7913 #define libipw_is_control(fc) \
7914 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7915
7916 #define libipw_is_data(fc) \
7917 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7918
7919 #define libipw_is_assoc_request(fc) \
7920 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7921
7922 #define libipw_is_reassoc_request(fc) \
7923 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7924
7925 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7926 struct ipw_rx_mem_buffer *rxb,
7927 struct libipw_rx_stats *stats)
7928 {
7929 struct net_device *dev = priv->prom_net_dev;
7930 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7931 struct ipw_rx_frame *frame = &pkt->u.frame;
7932 struct ipw_rt_hdr *ipw_rt;
7933
7934 /* First cache any information we need before we overwrite
7935 * the information provided in the skb from the hardware */
7936 struct ieee80211_hdr *hdr;
7937 u16 channel = frame->received_channel;
7938 u8 phy_flags = frame->antennaAndPhy;
7939 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7940 s8 noise = (s8) le16_to_cpu(frame->noise);
7941 u8 rate = frame->rate;
7942 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7943 struct sk_buff *skb;
7944 int hdr_only = 0;
7945 u16 filter = priv->prom_priv->filter;
7946
7947 /* If the filter is set to not include Rx frames then return */
7948 if (filter & IPW_PROM_NO_RX)
7949 return;
7950
7951 /* We received data from the HW, so stop the watchdog */
7952 netif_trans_update(dev);
7953
7954 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7955 dev->stats.rx_errors++;
7956 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7957 return;
7958 }
7959
7960 /* We only process data packets if the interface is open */
7961 if (unlikely(!netif_running(dev))) {
7962 dev->stats.rx_dropped++;
7963 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7964 return;
7965 }
7966
7967 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7968 * that now */
7969 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7970 /* FIXME: Should alloc bigger skb instead */
7971 dev->stats.rx_dropped++;
7972 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7973 return;
7974 }
7975
7976 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7977 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7978 if (filter & IPW_PROM_NO_MGMT)
7979 return;
7980 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7981 hdr_only = 1;
7982 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7983 if (filter & IPW_PROM_NO_CTL)
7984 return;
7985 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7986 hdr_only = 1;
7987 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7988 if (filter & IPW_PROM_NO_DATA)
7989 return;
7990 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7991 hdr_only = 1;
7992 }
7993
7994 /* Copy the SKB since this is for the promiscuous side */
7995 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7996 if (skb == NULL) {
7997 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7998 return;
7999 }
8000
8001 /* copy the frame data to write after where the radiotap header goes */
8002 ipw_rt = (void *)skb->data;
8003
8004 if (hdr_only)
8005 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8006
8007 memcpy(ipw_rt->payload, hdr, len);
8008
8009 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8010 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8011 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8012
8013 /* Set the size of the skb to the size of the frame */
8014 skb_put(skb, sizeof(*ipw_rt) + len);
8015
8016 /* Big bitfield of all the fields we provide in radiotap */
8017 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8018 (1 << IEEE80211_RADIOTAP_TSFT) |
8019 (1 << IEEE80211_RADIOTAP_FLAGS) |
8020 (1 << IEEE80211_RADIOTAP_RATE) |
8021 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8022 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8023 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8024 (1 << IEEE80211_RADIOTAP_ANTENNA));
8025
8026 /* Zero the flags, we'll add to them as we go */
8027 ipw_rt->rt_flags = 0;
8028 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8029 frame->parent_tsf[2] << 16 |
8030 frame->parent_tsf[1] << 8 |
8031 frame->parent_tsf[0]);
8032
8033 /* Convert to DBM */
8034 ipw_rt->rt_dbmsignal = signal;
8035 ipw_rt->rt_dbmnoise = noise;
8036
8037 /* Convert the channel data and set the flags */
8038 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8039 if (channel > 14) { /* 802.11a */
8040 ipw_rt->rt_chbitmask =
8041 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8042 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8043 ipw_rt->rt_chbitmask =
8044 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8045 } else { /* 802.11g */
8046 ipw_rt->rt_chbitmask =
8047 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8048 }
8049
8050 /* set the rate in multiples of 500k/s */
8051 switch (rate) {
8052 case IPW_TX_RATE_1MB:
8053 ipw_rt->rt_rate = 2;
8054 break;
8055 case IPW_TX_RATE_2MB:
8056 ipw_rt->rt_rate = 4;
8057 break;
8058 case IPW_TX_RATE_5MB:
8059 ipw_rt->rt_rate = 10;
8060 break;
8061 case IPW_TX_RATE_6MB:
8062 ipw_rt->rt_rate = 12;
8063 break;
8064 case IPW_TX_RATE_9MB:
8065 ipw_rt->rt_rate = 18;
8066 break;
8067 case IPW_TX_RATE_11MB:
8068 ipw_rt->rt_rate = 22;
8069 break;
8070 case IPW_TX_RATE_12MB:
8071 ipw_rt->rt_rate = 24;
8072 break;
8073 case IPW_TX_RATE_18MB:
8074 ipw_rt->rt_rate = 36;
8075 break;
8076 case IPW_TX_RATE_24MB:
8077 ipw_rt->rt_rate = 48;
8078 break;
8079 case IPW_TX_RATE_36MB:
8080 ipw_rt->rt_rate = 72;
8081 break;
8082 case IPW_TX_RATE_48MB:
8083 ipw_rt->rt_rate = 96;
8084 break;
8085 case IPW_TX_RATE_54MB:
8086 ipw_rt->rt_rate = 108;
8087 break;
8088 default:
8089 ipw_rt->rt_rate = 0;
8090 break;
8091 }
8092
8093 /* antenna number */
8094 ipw_rt->rt_antenna = (phy_flags & 3);
8095
8096 /* set the preamble flag if we have it */
8097 if (phy_flags & (1 << 6))
8098 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8099
8100 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8101
8102 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8103 dev->stats.rx_errors++;
8104 dev_kfree_skb_any(skb);
8105 }
8106 }
8107 #endif
8108
8109 static int is_network_packet(struct ipw_priv *priv,
8110 struct libipw_hdr_4addr *header)
8111 {
8112 /* Filter incoming packets to determine if they are targeted toward
8113 * this network, discarding packets coming from ourselves */
8114 switch (priv->ieee->iw_mode) {
8115 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8116 /* packets from our adapter are dropped (echo) */
8117 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8118 return 0;
8119
8120 /* {broad,multi}cast packets to our BSSID go through */
8121 if (is_multicast_ether_addr(header->addr1))
8122 return ether_addr_equal(header->addr3, priv->bssid);
8123
8124 /* packets to our adapter go through */
8125 return ether_addr_equal(header->addr1,
8126 priv->net_dev->dev_addr);
8127
8128 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8129 /* packets from our adapter are dropped (echo) */
8130 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8131 return 0;
8132
8133 /* {broad,multi}cast packets to our BSS go through */
8134 if (is_multicast_ether_addr(header->addr1))
8135 return ether_addr_equal(header->addr2, priv->bssid);
8136
8137 /* packets to our adapter go through */
8138 return ether_addr_equal(header->addr1,
8139 priv->net_dev->dev_addr);
8140 }
8141
8142 return 1;
8143 }
8144
8145 #define IPW_PACKET_RETRY_TIME HZ
8146
8147 static int is_duplicate_packet(struct ipw_priv *priv,
8148 struct libipw_hdr_4addr *header)
8149 {
8150 u16 sc = le16_to_cpu(header->seq_ctl);
8151 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8152 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8153 u16 *last_seq, *last_frag;
8154 unsigned long *last_time;
8155
8156 switch (priv->ieee->iw_mode) {
8157 case IW_MODE_ADHOC:
8158 {
8159 struct list_head *p;
8160 struct ipw_ibss_seq *entry = NULL;
8161 u8 *mac = header->addr2;
8162 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8163
8164 list_for_each(p, &priv->ibss_mac_hash[index]) {
8165 entry =
8166 list_entry(p, struct ipw_ibss_seq, list);
8167 if (ether_addr_equal(entry->mac, mac))
8168 break;
8169 }
8170 if (p == &priv->ibss_mac_hash[index]) {
8171 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8172 if (!entry) {
8173 IPW_ERROR
8174 ("Cannot malloc new mac entry\n");
8175 return 0;
8176 }
8177 memcpy(entry->mac, mac, ETH_ALEN);
8178 entry->seq_num = seq;
8179 entry->frag_num = frag;
8180 entry->packet_time = jiffies;
8181 list_add(&entry->list,
8182 &priv->ibss_mac_hash[index]);
8183 return 0;
8184 }
8185 last_seq = &entry->seq_num;
8186 last_frag = &entry->frag_num;
8187 last_time = &entry->packet_time;
8188 break;
8189 }
8190 case IW_MODE_INFRA:
8191 last_seq = &priv->last_seq_num;
8192 last_frag = &priv->last_frag_num;
8193 last_time = &priv->last_packet_time;
8194 break;
8195 default:
8196 return 0;
8197 }
8198 if ((*last_seq == seq) &&
8199 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8200 if (*last_frag == frag)
8201 goto drop;
8202 if (*last_frag + 1 != frag)
8203 /* out-of-order fragment */
8204 goto drop;
8205 } else
8206 *last_seq = seq;
8207
8208 *last_frag = frag;
8209 *last_time = jiffies;
8210 return 0;
8211
8212 drop:
8213 /* Comment this line now since we observed the card receives
8214 * duplicate packets but the FCTL_RETRY bit is not set in the
8215 * IBSS mode with fragmentation enabled.
8216 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8217 return 1;
8218 }
8219
8220 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8221 struct ipw_rx_mem_buffer *rxb,
8222 struct libipw_rx_stats *stats)
8223 {
8224 struct sk_buff *skb = rxb->skb;
8225 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8226 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8227 (skb->data + IPW_RX_FRAME_SIZE);
8228
8229 libipw_rx_mgt(priv->ieee, header, stats);
8230
8231 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8232 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8233 IEEE80211_STYPE_PROBE_RESP) ||
8234 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8235 IEEE80211_STYPE_BEACON))) {
8236 if (ether_addr_equal(header->addr3, priv->bssid))
8237 ipw_add_station(priv, header->addr2);
8238 }
8239
8240 if (priv->config & CFG_NET_STATS) {
8241 IPW_DEBUG_HC("sending stat packet\n");
8242
8243 /* Set the size of the skb to the size of the full
8244 * ipw header and 802.11 frame */
8245 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8246 IPW_RX_FRAME_SIZE);
8247
8248 /* Advance past the ipw packet header to the 802.11 frame */
8249 skb_pull(skb, IPW_RX_FRAME_SIZE);
8250
8251 /* Push the libipw_rx_stats before the 802.11 frame */
8252 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8253
8254 skb->dev = priv->ieee->dev;
8255
8256 /* Point raw at the libipw_stats */
8257 skb_reset_mac_header(skb);
8258
8259 skb->pkt_type = PACKET_OTHERHOST;
8260 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8261 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8262 netif_rx(skb);
8263 rxb->skb = NULL;
8264 }
8265 }
8266
8267 /*
8268 * Main entry function for receiving a packet with 80211 headers. This
8269 * should be called when ever the FW has notified us that there is a new
8270 * skb in the receive queue.
8271 */
8272 static void ipw_rx(struct ipw_priv *priv)
8273 {
8274 struct ipw_rx_mem_buffer *rxb;
8275 struct ipw_rx_packet *pkt;
8276 struct libipw_hdr_4addr *header;
8277 u32 r, w, i;
8278 u8 network_packet;
8279 u8 fill_rx = 0;
8280
8281 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8282 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8283 i = priv->rxq->read;
8284
8285 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8286 fill_rx = 1;
8287
8288 while (i != r) {
8289 rxb = priv->rxq->queue[i];
8290 if (unlikely(rxb == NULL)) {
8291 printk(KERN_CRIT "Queue not allocated!\n");
8292 break;
8293 }
8294 priv->rxq->queue[i] = NULL;
8295
8296 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8297 IPW_RX_BUF_SIZE,
8298 PCI_DMA_FROMDEVICE);
8299
8300 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8301 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8302 pkt->header.message_type,
8303 pkt->header.rx_seq_num, pkt->header.control_bits);
8304
8305 switch (pkt->header.message_type) {
8306 case RX_FRAME_TYPE: /* 802.11 frame */ {
8307 struct libipw_rx_stats stats = {
8308 .rssi = pkt->u.frame.rssi_dbm -
8309 IPW_RSSI_TO_DBM,
8310 .signal =
8311 pkt->u.frame.rssi_dbm -
8312 IPW_RSSI_TO_DBM + 0x100,
8313 .noise =
8314 le16_to_cpu(pkt->u.frame.noise),
8315 .rate = pkt->u.frame.rate,
8316 .mac_time = jiffies,
8317 .received_channel =
8318 pkt->u.frame.received_channel,
8319 .freq =
8320 (pkt->u.frame.
8321 control & (1 << 0)) ?
8322 LIBIPW_24GHZ_BAND :
8323 LIBIPW_52GHZ_BAND,
8324 .len = le16_to_cpu(pkt->u.frame.length),
8325 };
8326
8327 if (stats.rssi != 0)
8328 stats.mask |= LIBIPW_STATMASK_RSSI;
8329 if (stats.signal != 0)
8330 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8331 if (stats.noise != 0)
8332 stats.mask |= LIBIPW_STATMASK_NOISE;
8333 if (stats.rate != 0)
8334 stats.mask |= LIBIPW_STATMASK_RATE;
8335
8336 priv->rx_packets++;
8337
8338 #ifdef CONFIG_IPW2200_PROMISCUOUS
8339 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8340 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8341 #endif
8342
8343 #ifdef CONFIG_IPW2200_MONITOR
8344 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8345 #ifdef CONFIG_IPW2200_RADIOTAP
8346
8347 ipw_handle_data_packet_monitor(priv,
8348 rxb,
8349 &stats);
8350 #else
8351 ipw_handle_data_packet(priv, rxb,
8352 &stats);
8353 #endif
8354 break;
8355 }
8356 #endif
8357
8358 header =
8359 (struct libipw_hdr_4addr *)(rxb->skb->
8360 data +
8361 IPW_RX_FRAME_SIZE);
8362 /* TODO: Check Ad-Hoc dest/source and make sure
8363 * that we are actually parsing these packets
8364 * correctly -- we should probably use the
8365 * frame control of the packet and disregard
8366 * the current iw_mode */
8367
8368 network_packet =
8369 is_network_packet(priv, header);
8370 if (network_packet && priv->assoc_network) {
8371 priv->assoc_network->stats.rssi =
8372 stats.rssi;
8373 priv->exp_avg_rssi =
8374 exponential_average(priv->exp_avg_rssi,
8375 stats.rssi, DEPTH_RSSI);
8376 }
8377
8378 IPW_DEBUG_RX("Frame: len=%u\n",
8379 le16_to_cpu(pkt->u.frame.length));
8380
8381 if (le16_to_cpu(pkt->u.frame.length) <
8382 libipw_get_hdrlen(le16_to_cpu(
8383 header->frame_ctl))) {
8384 IPW_DEBUG_DROP
8385 ("Received packet is too small. "
8386 "Dropping.\n");
8387 priv->net_dev->stats.rx_errors++;
8388 priv->wstats.discard.misc++;
8389 break;
8390 }
8391
8392 switch (WLAN_FC_GET_TYPE
8393 (le16_to_cpu(header->frame_ctl))) {
8394
8395 case IEEE80211_FTYPE_MGMT:
8396 ipw_handle_mgmt_packet(priv, rxb,
8397 &stats);
8398 break;
8399
8400 case IEEE80211_FTYPE_CTL:
8401 break;
8402
8403 case IEEE80211_FTYPE_DATA:
8404 if (unlikely(!network_packet ||
8405 is_duplicate_packet(priv,
8406 header)))
8407 {
8408 IPW_DEBUG_DROP("Dropping: "
8409 "%pM, "
8410 "%pM, "
8411 "%pM\n",
8412 header->addr1,
8413 header->addr2,
8414 header->addr3);
8415 break;
8416 }
8417
8418 ipw_handle_data_packet(priv, rxb,
8419 &stats);
8420
8421 break;
8422 }
8423 break;
8424 }
8425
8426 case RX_HOST_NOTIFICATION_TYPE:{
8427 IPW_DEBUG_RX
8428 ("Notification: subtype=%02X flags=%02X size=%d\n",
8429 pkt->u.notification.subtype,
8430 pkt->u.notification.flags,
8431 le16_to_cpu(pkt->u.notification.size));
8432 ipw_rx_notification(priv, &pkt->u.notification);
8433 break;
8434 }
8435
8436 default:
8437 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8438 pkt->header.message_type);
8439 break;
8440 }
8441
8442 /* For now we just don't re-use anything. We can tweak this
8443 * later to try and re-use notification packets and SKBs that
8444 * fail to Rx correctly */
8445 if (rxb->skb != NULL) {
8446 dev_kfree_skb_any(rxb->skb);
8447 rxb->skb = NULL;
8448 }
8449
8450 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8451 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8452 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8453
8454 i = (i + 1) % RX_QUEUE_SIZE;
8455
8456 /* If there are a lot of unsued frames, restock the Rx queue
8457 * so the ucode won't assert */
8458 if (fill_rx) {
8459 priv->rxq->read = i;
8460 ipw_rx_queue_replenish(priv);
8461 }
8462 }
8463
8464 /* Backtrack one entry */
8465 priv->rxq->read = i;
8466 ipw_rx_queue_restock(priv);
8467 }
8468
8469 #define DEFAULT_RTS_THRESHOLD 2304U
8470 #define MIN_RTS_THRESHOLD 1U
8471 #define MAX_RTS_THRESHOLD 2304U
8472 #define DEFAULT_BEACON_INTERVAL 100U
8473 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8474 #define DEFAULT_LONG_RETRY_LIMIT 4U
8475
8476 /**
8477 * ipw_sw_reset
8478 * @option: options to control different reset behaviour
8479 * 0 = reset everything except the 'disable' module_param
8480 * 1 = reset everything and print out driver info (for probe only)
8481 * 2 = reset everything
8482 */
8483 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8484 {
8485 int band, modulation;
8486 int old_mode = priv->ieee->iw_mode;
8487
8488 /* Initialize module parameter values here */
8489 priv->config = 0;
8490
8491 /* We default to disabling the LED code as right now it causes
8492 * too many systems to lock up... */
8493 if (!led_support)
8494 priv->config |= CFG_NO_LED;
8495
8496 if (associate)
8497 priv->config |= CFG_ASSOCIATE;
8498 else
8499 IPW_DEBUG_INFO("Auto associate disabled.\n");
8500
8501 if (auto_create)
8502 priv->config |= CFG_ADHOC_CREATE;
8503 else
8504 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8505
8506 priv->config &= ~CFG_STATIC_ESSID;
8507 priv->essid_len = 0;
8508 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8509
8510 if (disable && option) {
8511 priv->status |= STATUS_RF_KILL_SW;
8512 IPW_DEBUG_INFO("Radio disabled.\n");
8513 }
8514
8515 if (default_channel != 0) {
8516 priv->config |= CFG_STATIC_CHANNEL;
8517 priv->channel = default_channel;
8518 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8519 /* TODO: Validate that provided channel is in range */
8520 }
8521 #ifdef CONFIG_IPW2200_QOS
8522 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8523 burst_duration_CCK, burst_duration_OFDM);
8524 #endif /* CONFIG_IPW2200_QOS */
8525
8526 switch (network_mode) {
8527 case 1:
8528 priv->ieee->iw_mode = IW_MODE_ADHOC;
8529 priv->net_dev->type = ARPHRD_ETHER;
8530
8531 break;
8532 #ifdef CONFIG_IPW2200_MONITOR
8533 case 2:
8534 priv->ieee->iw_mode = IW_MODE_MONITOR;
8535 #ifdef CONFIG_IPW2200_RADIOTAP
8536 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8537 #else
8538 priv->net_dev->type = ARPHRD_IEEE80211;
8539 #endif
8540 break;
8541 #endif
8542 default:
8543 case 0:
8544 priv->net_dev->type = ARPHRD_ETHER;
8545 priv->ieee->iw_mode = IW_MODE_INFRA;
8546 break;
8547 }
8548
8549 if (hwcrypto) {
8550 priv->ieee->host_encrypt = 0;
8551 priv->ieee->host_encrypt_msdu = 0;
8552 priv->ieee->host_decrypt = 0;
8553 priv->ieee->host_mc_decrypt = 0;
8554 }
8555 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8556
8557 /* IPW2200/2915 is abled to do hardware fragmentation. */
8558 priv->ieee->host_open_frag = 0;
8559
8560 if ((priv->pci_dev->device == 0x4223) ||
8561 (priv->pci_dev->device == 0x4224)) {
8562 if (option == 1)
8563 printk(KERN_INFO DRV_NAME
8564 ": Detected Intel PRO/Wireless 2915ABG Network "
8565 "Connection\n");
8566 priv->ieee->abg_true = 1;
8567 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8568 modulation = LIBIPW_OFDM_MODULATION |
8569 LIBIPW_CCK_MODULATION;
8570 priv->adapter = IPW_2915ABG;
8571 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8572 } else {
8573 if (option == 1)
8574 printk(KERN_INFO DRV_NAME
8575 ": Detected Intel PRO/Wireless 2200BG Network "
8576 "Connection\n");
8577
8578 priv->ieee->abg_true = 0;
8579 band = LIBIPW_24GHZ_BAND;
8580 modulation = LIBIPW_OFDM_MODULATION |
8581 LIBIPW_CCK_MODULATION;
8582 priv->adapter = IPW_2200BG;
8583 priv->ieee->mode = IEEE_G | IEEE_B;
8584 }
8585
8586 priv->ieee->freq_band = band;
8587 priv->ieee->modulation = modulation;
8588
8589 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8590
8591 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8592 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8593
8594 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8595 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8596 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8597
8598 /* If power management is turned on, default to AC mode */
8599 priv->power_mode = IPW_POWER_AC;
8600 priv->tx_power = IPW_TX_POWER_DEFAULT;
8601
8602 return old_mode == priv->ieee->iw_mode;
8603 }
8604
8605 /*
8606 * This file defines the Wireless Extension handlers. It does not
8607 * define any methods of hardware manipulation and relies on the
8608 * functions defined in ipw_main to provide the HW interaction.
8609 *
8610 * The exception to this is the use of the ipw_get_ordinal()
8611 * function used to poll the hardware vs. making unnecessary calls.
8612 *
8613 */
8614
8615 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8616 {
8617 if (channel == 0) {
8618 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8619 priv->config &= ~CFG_STATIC_CHANNEL;
8620 IPW_DEBUG_ASSOC("Attempting to associate with new "
8621 "parameters.\n");
8622 ipw_associate(priv);
8623 return 0;
8624 }
8625
8626 priv->config |= CFG_STATIC_CHANNEL;
8627
8628 if (priv->channel == channel) {
8629 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8630 channel);
8631 return 0;
8632 }
8633
8634 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8635 priv->channel = channel;
8636
8637 #ifdef CONFIG_IPW2200_MONITOR
8638 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8639 int i;
8640 if (priv->status & STATUS_SCANNING) {
8641 IPW_DEBUG_SCAN("Scan abort triggered due to "
8642 "channel change.\n");
8643 ipw_abort_scan(priv);
8644 }
8645
8646 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8647 udelay(10);
8648
8649 if (priv->status & STATUS_SCANNING)
8650 IPW_DEBUG_SCAN("Still scanning...\n");
8651 else
8652 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8653 1000 - i);
8654
8655 return 0;
8656 }
8657 #endif /* CONFIG_IPW2200_MONITOR */
8658
8659 /* Network configuration changed -- force [re]association */
8660 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8661 if (!ipw_disassociate(priv))
8662 ipw_associate(priv);
8663
8664 return 0;
8665 }
8666
8667 static int ipw_wx_set_freq(struct net_device *dev,
8668 struct iw_request_info *info,
8669 union iwreq_data *wrqu, char *extra)
8670 {
8671 struct ipw_priv *priv = libipw_priv(dev);
8672 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8673 struct iw_freq *fwrq = &wrqu->freq;
8674 int ret = 0, i;
8675 u8 channel, flags;
8676 int band;
8677
8678 if (fwrq->m == 0) {
8679 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8680 mutex_lock(&priv->mutex);
8681 ret = ipw_set_channel(priv, 0);
8682 mutex_unlock(&priv->mutex);
8683 return ret;
8684 }
8685 /* if setting by freq convert to channel */
8686 if (fwrq->e == 1) {
8687 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8688 if (channel == 0)
8689 return -EINVAL;
8690 } else
8691 channel = fwrq->m;
8692
8693 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8694 return -EINVAL;
8695
8696 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8697 i = libipw_channel_to_index(priv->ieee, channel);
8698 if (i == -1)
8699 return -EINVAL;
8700
8701 flags = (band == LIBIPW_24GHZ_BAND) ?
8702 geo->bg[i].flags : geo->a[i].flags;
8703 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8704 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8705 return -EINVAL;
8706 }
8707 }
8708
8709 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8710 mutex_lock(&priv->mutex);
8711 ret = ipw_set_channel(priv, channel);
8712 mutex_unlock(&priv->mutex);
8713 return ret;
8714 }
8715
8716 static int ipw_wx_get_freq(struct net_device *dev,
8717 struct iw_request_info *info,
8718 union iwreq_data *wrqu, char *extra)
8719 {
8720 struct ipw_priv *priv = libipw_priv(dev);
8721
8722 wrqu->freq.e = 0;
8723
8724 /* If we are associated, trying to associate, or have a statically
8725 * configured CHANNEL then return that; otherwise return ANY */
8726 mutex_lock(&priv->mutex);
8727 if (priv->config & CFG_STATIC_CHANNEL ||
8728 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8729 int i;
8730
8731 i = libipw_channel_to_index(priv->ieee, priv->channel);
8732 BUG_ON(i == -1);
8733 wrqu->freq.e = 1;
8734
8735 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8736 case LIBIPW_52GHZ_BAND:
8737 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8738 break;
8739
8740 case LIBIPW_24GHZ_BAND:
8741 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8742 break;
8743
8744 default:
8745 BUG();
8746 }
8747 } else
8748 wrqu->freq.m = 0;
8749
8750 mutex_unlock(&priv->mutex);
8751 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8752 return 0;
8753 }
8754
8755 static int ipw_wx_set_mode(struct net_device *dev,
8756 struct iw_request_info *info,
8757 union iwreq_data *wrqu, char *extra)
8758 {
8759 struct ipw_priv *priv = libipw_priv(dev);
8760 int err = 0;
8761
8762 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8763
8764 switch (wrqu->mode) {
8765 #ifdef CONFIG_IPW2200_MONITOR
8766 case IW_MODE_MONITOR:
8767 #endif
8768 case IW_MODE_ADHOC:
8769 case IW_MODE_INFRA:
8770 break;
8771 case IW_MODE_AUTO:
8772 wrqu->mode = IW_MODE_INFRA;
8773 break;
8774 default:
8775 return -EINVAL;
8776 }
8777 if (wrqu->mode == priv->ieee->iw_mode)
8778 return 0;
8779
8780 mutex_lock(&priv->mutex);
8781
8782 ipw_sw_reset(priv, 0);
8783
8784 #ifdef CONFIG_IPW2200_MONITOR
8785 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8786 priv->net_dev->type = ARPHRD_ETHER;
8787
8788 if (wrqu->mode == IW_MODE_MONITOR)
8789 #ifdef CONFIG_IPW2200_RADIOTAP
8790 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8791 #else
8792 priv->net_dev->type = ARPHRD_IEEE80211;
8793 #endif
8794 #endif /* CONFIG_IPW2200_MONITOR */
8795
8796 /* Free the existing firmware and reset the fw_loaded
8797 * flag so ipw_load() will bring in the new firmware */
8798 free_firmware();
8799
8800 priv->ieee->iw_mode = wrqu->mode;
8801
8802 schedule_work(&priv->adapter_restart);
8803 mutex_unlock(&priv->mutex);
8804 return err;
8805 }
8806
8807 static int ipw_wx_get_mode(struct net_device *dev,
8808 struct iw_request_info *info,
8809 union iwreq_data *wrqu, char *extra)
8810 {
8811 struct ipw_priv *priv = libipw_priv(dev);
8812 mutex_lock(&priv->mutex);
8813 wrqu->mode = priv->ieee->iw_mode;
8814 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8815 mutex_unlock(&priv->mutex);
8816 return 0;
8817 }
8818
8819 /* Values are in microsecond */
8820 static const s32 timeout_duration[] = {
8821 350000,
8822 250000,
8823 75000,
8824 37000,
8825 25000,
8826 };
8827
8828 static const s32 period_duration[] = {
8829 400000,
8830 700000,
8831 1000000,
8832 1000000,
8833 1000000
8834 };
8835
8836 static int ipw_wx_get_range(struct net_device *dev,
8837 struct iw_request_info *info,
8838 union iwreq_data *wrqu, char *extra)
8839 {
8840 struct ipw_priv *priv = libipw_priv(dev);
8841 struct iw_range *range = (struct iw_range *)extra;
8842 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8843 int i = 0, j;
8844
8845 wrqu->data.length = sizeof(*range);
8846 memset(range, 0, sizeof(*range));
8847
8848 /* 54Mbs == ~27 Mb/s real (802.11g) */
8849 range->throughput = 27 * 1000 * 1000;
8850
8851 range->max_qual.qual = 100;
8852 /* TODO: Find real max RSSI and stick here */
8853 range->max_qual.level = 0;
8854 range->max_qual.noise = 0;
8855 range->max_qual.updated = 7; /* Updated all three */
8856
8857 range->avg_qual.qual = 70;
8858 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8859 range->avg_qual.level = 0; /* FIXME to real average level */
8860 range->avg_qual.noise = 0;
8861 range->avg_qual.updated = 7; /* Updated all three */
8862 mutex_lock(&priv->mutex);
8863 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8864
8865 for (i = 0; i < range->num_bitrates; i++)
8866 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8867 500000;
8868
8869 range->max_rts = DEFAULT_RTS_THRESHOLD;
8870 range->min_frag = MIN_FRAG_THRESHOLD;
8871 range->max_frag = MAX_FRAG_THRESHOLD;
8872
8873 range->encoding_size[0] = 5;
8874 range->encoding_size[1] = 13;
8875 range->num_encoding_sizes = 2;
8876 range->max_encoding_tokens = WEP_KEYS;
8877
8878 /* Set the Wireless Extension versions */
8879 range->we_version_compiled = WIRELESS_EXT;
8880 range->we_version_source = 18;
8881
8882 i = 0;
8883 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8884 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8885 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8886 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8887 continue;
8888
8889 range->freq[i].i = geo->bg[j].channel;
8890 range->freq[i].m = geo->bg[j].freq * 100000;
8891 range->freq[i].e = 1;
8892 i++;
8893 }
8894 }
8895
8896 if (priv->ieee->mode & IEEE_A) {
8897 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8898 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8899 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8900 continue;
8901
8902 range->freq[i].i = geo->a[j].channel;
8903 range->freq[i].m = geo->a[j].freq * 100000;
8904 range->freq[i].e = 1;
8905 i++;
8906 }
8907 }
8908
8909 range->num_channels = i;
8910 range->num_frequency = i;
8911
8912 mutex_unlock(&priv->mutex);
8913
8914 /* Event capability (kernel + driver) */
8915 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8916 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8917 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8918 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8919 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8920
8921 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8922 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8923
8924 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8925
8926 IPW_DEBUG_WX("GET Range\n");
8927 return 0;
8928 }
8929
8930 static int ipw_wx_set_wap(struct net_device *dev,
8931 struct iw_request_info *info,
8932 union iwreq_data *wrqu, char *extra)
8933 {
8934 struct ipw_priv *priv = libipw_priv(dev);
8935
8936 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8937 return -EINVAL;
8938 mutex_lock(&priv->mutex);
8939 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8940 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8941 /* we disable mandatory BSSID association */
8942 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8943 priv->config &= ~CFG_STATIC_BSSID;
8944 IPW_DEBUG_ASSOC("Attempting to associate with new "
8945 "parameters.\n");
8946 ipw_associate(priv);
8947 mutex_unlock(&priv->mutex);
8948 return 0;
8949 }
8950
8951 priv->config |= CFG_STATIC_BSSID;
8952 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8953 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8954 mutex_unlock(&priv->mutex);
8955 return 0;
8956 }
8957
8958 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8959 wrqu->ap_addr.sa_data);
8960
8961 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8962
8963 /* Network configuration changed -- force [re]association */
8964 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8965 if (!ipw_disassociate(priv))
8966 ipw_associate(priv);
8967
8968 mutex_unlock(&priv->mutex);
8969 return 0;
8970 }
8971
8972 static int ipw_wx_get_wap(struct net_device *dev,
8973 struct iw_request_info *info,
8974 union iwreq_data *wrqu, char *extra)
8975 {
8976 struct ipw_priv *priv = libipw_priv(dev);
8977
8978 /* If we are associated, trying to associate, or have a statically
8979 * configured BSSID then return that; otherwise return ANY */
8980 mutex_lock(&priv->mutex);
8981 if (priv->config & CFG_STATIC_BSSID ||
8982 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8983 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8984 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8985 } else
8986 eth_zero_addr(wrqu->ap_addr.sa_data);
8987
8988 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8989 wrqu->ap_addr.sa_data);
8990 mutex_unlock(&priv->mutex);
8991 return 0;
8992 }
8993
8994 static int ipw_wx_set_essid(struct net_device *dev,
8995 struct iw_request_info *info,
8996 union iwreq_data *wrqu, char *extra)
8997 {
8998 struct ipw_priv *priv = libipw_priv(dev);
8999 int length;
9000
9001 mutex_lock(&priv->mutex);
9002
9003 if (!wrqu->essid.flags)
9004 {
9005 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9006 ipw_disassociate(priv);
9007 priv->config &= ~CFG_STATIC_ESSID;
9008 ipw_associate(priv);
9009 mutex_unlock(&priv->mutex);
9010 return 0;
9011 }
9012
9013 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9014
9015 priv->config |= CFG_STATIC_ESSID;
9016
9017 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9018 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9019 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9020 mutex_unlock(&priv->mutex);
9021 return 0;
9022 }
9023
9024 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9025
9026 priv->essid_len = length;
9027 memcpy(priv->essid, extra, priv->essid_len);
9028
9029 /* Network configuration changed -- force [re]association */
9030 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9031 if (!ipw_disassociate(priv))
9032 ipw_associate(priv);
9033
9034 mutex_unlock(&priv->mutex);
9035 return 0;
9036 }
9037
9038 static int ipw_wx_get_essid(struct net_device *dev,
9039 struct iw_request_info *info,
9040 union iwreq_data *wrqu, char *extra)
9041 {
9042 struct ipw_priv *priv = libipw_priv(dev);
9043
9044 /* If we are associated, trying to associate, or have a statically
9045 * configured ESSID then return that; otherwise return ANY */
9046 mutex_lock(&priv->mutex);
9047 if (priv->config & CFG_STATIC_ESSID ||
9048 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9049 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9050 priv->essid_len, priv->essid);
9051 memcpy(extra, priv->essid, priv->essid_len);
9052 wrqu->essid.length = priv->essid_len;
9053 wrqu->essid.flags = 1; /* active */
9054 } else {
9055 IPW_DEBUG_WX("Getting essid: ANY\n");
9056 wrqu->essid.length = 0;
9057 wrqu->essid.flags = 0; /* active */
9058 }
9059 mutex_unlock(&priv->mutex);
9060 return 0;
9061 }
9062
9063 static int ipw_wx_set_nick(struct net_device *dev,
9064 struct iw_request_info *info,
9065 union iwreq_data *wrqu, char *extra)
9066 {
9067 struct ipw_priv *priv = libipw_priv(dev);
9068
9069 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9070 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9071 return -E2BIG;
9072 mutex_lock(&priv->mutex);
9073 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9074 memset(priv->nick, 0, sizeof(priv->nick));
9075 memcpy(priv->nick, extra, wrqu->data.length);
9076 IPW_DEBUG_TRACE("<<\n");
9077 mutex_unlock(&priv->mutex);
9078 return 0;
9079
9080 }
9081
9082 static int ipw_wx_get_nick(struct net_device *dev,
9083 struct iw_request_info *info,
9084 union iwreq_data *wrqu, char *extra)
9085 {
9086 struct ipw_priv *priv = libipw_priv(dev);
9087 IPW_DEBUG_WX("Getting nick\n");
9088 mutex_lock(&priv->mutex);
9089 wrqu->data.length = strlen(priv->nick);
9090 memcpy(extra, priv->nick, wrqu->data.length);
9091 wrqu->data.flags = 1; /* active */
9092 mutex_unlock(&priv->mutex);
9093 return 0;
9094 }
9095
9096 static int ipw_wx_set_sens(struct net_device *dev,
9097 struct iw_request_info *info,
9098 union iwreq_data *wrqu, char *extra)
9099 {
9100 struct ipw_priv *priv = libipw_priv(dev);
9101 int err = 0;
9102
9103 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9104 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9105 mutex_lock(&priv->mutex);
9106
9107 if (wrqu->sens.fixed == 0)
9108 {
9109 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9110 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9111 goto out;
9112 }
9113 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9114 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9115 err = -EINVAL;
9116 goto out;
9117 }
9118
9119 priv->roaming_threshold = wrqu->sens.value;
9120 priv->disassociate_threshold = 3*wrqu->sens.value;
9121 out:
9122 mutex_unlock(&priv->mutex);
9123 return err;
9124 }
9125
9126 static int ipw_wx_get_sens(struct net_device *dev,
9127 struct iw_request_info *info,
9128 union iwreq_data *wrqu, char *extra)
9129 {
9130 struct ipw_priv *priv = libipw_priv(dev);
9131 mutex_lock(&priv->mutex);
9132 wrqu->sens.fixed = 1;
9133 wrqu->sens.value = priv->roaming_threshold;
9134 mutex_unlock(&priv->mutex);
9135
9136 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9137 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9138
9139 return 0;
9140 }
9141
9142 static int ipw_wx_set_rate(struct net_device *dev,
9143 struct iw_request_info *info,
9144 union iwreq_data *wrqu, char *extra)
9145 {
9146 /* TODO: We should use semaphores or locks for access to priv */
9147 struct ipw_priv *priv = libipw_priv(dev);
9148 u32 target_rate = wrqu->bitrate.value;
9149 u32 fixed, mask;
9150
9151 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9152 /* value = X, fixed = 1 means only rate X */
9153 /* value = X, fixed = 0 means all rates lower equal X */
9154
9155 if (target_rate == -1) {
9156 fixed = 0;
9157 mask = LIBIPW_DEFAULT_RATES_MASK;
9158 /* Now we should reassociate */
9159 goto apply;
9160 }
9161
9162 mask = 0;
9163 fixed = wrqu->bitrate.fixed;
9164
9165 if (target_rate == 1000000 || !fixed)
9166 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9167 if (target_rate == 1000000)
9168 goto apply;
9169
9170 if (target_rate == 2000000 || !fixed)
9171 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9172 if (target_rate == 2000000)
9173 goto apply;
9174
9175 if (target_rate == 5500000 || !fixed)
9176 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9177 if (target_rate == 5500000)
9178 goto apply;
9179
9180 if (target_rate == 6000000 || !fixed)
9181 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9182 if (target_rate == 6000000)
9183 goto apply;
9184
9185 if (target_rate == 9000000 || !fixed)
9186 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9187 if (target_rate == 9000000)
9188 goto apply;
9189
9190 if (target_rate == 11000000 || !fixed)
9191 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9192 if (target_rate == 11000000)
9193 goto apply;
9194
9195 if (target_rate == 12000000 || !fixed)
9196 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9197 if (target_rate == 12000000)
9198 goto apply;
9199
9200 if (target_rate == 18000000 || !fixed)
9201 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9202 if (target_rate == 18000000)
9203 goto apply;
9204
9205 if (target_rate == 24000000 || !fixed)
9206 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9207 if (target_rate == 24000000)
9208 goto apply;
9209
9210 if (target_rate == 36000000 || !fixed)
9211 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9212 if (target_rate == 36000000)
9213 goto apply;
9214
9215 if (target_rate == 48000000 || !fixed)
9216 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9217 if (target_rate == 48000000)
9218 goto apply;
9219
9220 if (target_rate == 54000000 || !fixed)
9221 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9222 if (target_rate == 54000000)
9223 goto apply;
9224
9225 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9226 return -EINVAL;
9227
9228 apply:
9229 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9230 mask, fixed ? "fixed" : "sub-rates");
9231 mutex_lock(&priv->mutex);
9232 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9233 priv->config &= ~CFG_FIXED_RATE;
9234 ipw_set_fixed_rate(priv, priv->ieee->mode);
9235 } else
9236 priv->config |= CFG_FIXED_RATE;
9237
9238 if (priv->rates_mask == mask) {
9239 IPW_DEBUG_WX("Mask set to current mask.\n");
9240 mutex_unlock(&priv->mutex);
9241 return 0;
9242 }
9243
9244 priv->rates_mask = mask;
9245
9246 /* Network configuration changed -- force [re]association */
9247 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9248 if (!ipw_disassociate(priv))
9249 ipw_associate(priv);
9250
9251 mutex_unlock(&priv->mutex);
9252 return 0;
9253 }
9254
9255 static int ipw_wx_get_rate(struct net_device *dev,
9256 struct iw_request_info *info,
9257 union iwreq_data *wrqu, char *extra)
9258 {
9259 struct ipw_priv *priv = libipw_priv(dev);
9260 mutex_lock(&priv->mutex);
9261 wrqu->bitrate.value = priv->last_rate;
9262 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9263 mutex_unlock(&priv->mutex);
9264 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9265 return 0;
9266 }
9267
9268 static int ipw_wx_set_rts(struct net_device *dev,
9269 struct iw_request_info *info,
9270 union iwreq_data *wrqu, char *extra)
9271 {
9272 struct ipw_priv *priv = libipw_priv(dev);
9273 mutex_lock(&priv->mutex);
9274 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9275 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9276 else {
9277 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9278 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9279 mutex_unlock(&priv->mutex);
9280 return -EINVAL;
9281 }
9282 priv->rts_threshold = wrqu->rts.value;
9283 }
9284
9285 ipw_send_rts_threshold(priv, priv->rts_threshold);
9286 mutex_unlock(&priv->mutex);
9287 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9288 return 0;
9289 }
9290
9291 static int ipw_wx_get_rts(struct net_device *dev,
9292 struct iw_request_info *info,
9293 union iwreq_data *wrqu, char *extra)
9294 {
9295 struct ipw_priv *priv = libipw_priv(dev);
9296 mutex_lock(&priv->mutex);
9297 wrqu->rts.value = priv->rts_threshold;
9298 wrqu->rts.fixed = 0; /* no auto select */
9299 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9300 mutex_unlock(&priv->mutex);
9301 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9302 return 0;
9303 }
9304
9305 static int ipw_wx_set_txpow(struct net_device *dev,
9306 struct iw_request_info *info,
9307 union iwreq_data *wrqu, char *extra)
9308 {
9309 struct ipw_priv *priv = libipw_priv(dev);
9310 int err = 0;
9311
9312 mutex_lock(&priv->mutex);
9313 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9314 err = -EINPROGRESS;
9315 goto out;
9316 }
9317
9318 if (!wrqu->power.fixed)
9319 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9320
9321 if (wrqu->power.flags != IW_TXPOW_DBM) {
9322 err = -EINVAL;
9323 goto out;
9324 }
9325
9326 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9327 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9328 err = -EINVAL;
9329 goto out;
9330 }
9331
9332 priv->tx_power = wrqu->power.value;
9333 err = ipw_set_tx_power(priv);
9334 out:
9335 mutex_unlock(&priv->mutex);
9336 return err;
9337 }
9338
9339 static int ipw_wx_get_txpow(struct net_device *dev,
9340 struct iw_request_info *info,
9341 union iwreq_data *wrqu, char *extra)
9342 {
9343 struct ipw_priv *priv = libipw_priv(dev);
9344 mutex_lock(&priv->mutex);
9345 wrqu->power.value = priv->tx_power;
9346 wrqu->power.fixed = 1;
9347 wrqu->power.flags = IW_TXPOW_DBM;
9348 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9349 mutex_unlock(&priv->mutex);
9350
9351 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9352 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9353
9354 return 0;
9355 }
9356
9357 static int ipw_wx_set_frag(struct net_device *dev,
9358 struct iw_request_info *info,
9359 union iwreq_data *wrqu, char *extra)
9360 {
9361 struct ipw_priv *priv = libipw_priv(dev);
9362 mutex_lock(&priv->mutex);
9363 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9364 priv->ieee->fts = DEFAULT_FTS;
9365 else {
9366 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9367 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9368 mutex_unlock(&priv->mutex);
9369 return -EINVAL;
9370 }
9371
9372 priv->ieee->fts = wrqu->frag.value & ~0x1;
9373 }
9374
9375 ipw_send_frag_threshold(priv, wrqu->frag.value);
9376 mutex_unlock(&priv->mutex);
9377 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9378 return 0;
9379 }
9380
9381 static int ipw_wx_get_frag(struct net_device *dev,
9382 struct iw_request_info *info,
9383 union iwreq_data *wrqu, char *extra)
9384 {
9385 struct ipw_priv *priv = libipw_priv(dev);
9386 mutex_lock(&priv->mutex);
9387 wrqu->frag.value = priv->ieee->fts;
9388 wrqu->frag.fixed = 0; /* no auto select */
9389 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9390 mutex_unlock(&priv->mutex);
9391 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9392
9393 return 0;
9394 }
9395
9396 static int ipw_wx_set_retry(struct net_device *dev,
9397 struct iw_request_info *info,
9398 union iwreq_data *wrqu, char *extra)
9399 {
9400 struct ipw_priv *priv = libipw_priv(dev);
9401
9402 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9403 return -EINVAL;
9404
9405 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9406 return 0;
9407
9408 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9409 return -EINVAL;
9410
9411 mutex_lock(&priv->mutex);
9412 if (wrqu->retry.flags & IW_RETRY_SHORT)
9413 priv->short_retry_limit = (u8) wrqu->retry.value;
9414 else if (wrqu->retry.flags & IW_RETRY_LONG)
9415 priv->long_retry_limit = (u8) wrqu->retry.value;
9416 else {
9417 priv->short_retry_limit = (u8) wrqu->retry.value;
9418 priv->long_retry_limit = (u8) wrqu->retry.value;
9419 }
9420
9421 ipw_send_retry_limit(priv, priv->short_retry_limit,
9422 priv->long_retry_limit);
9423 mutex_unlock(&priv->mutex);
9424 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9425 priv->short_retry_limit, priv->long_retry_limit);
9426 return 0;
9427 }
9428
9429 static int ipw_wx_get_retry(struct net_device *dev,
9430 struct iw_request_info *info,
9431 union iwreq_data *wrqu, char *extra)
9432 {
9433 struct ipw_priv *priv = libipw_priv(dev);
9434
9435 mutex_lock(&priv->mutex);
9436 wrqu->retry.disabled = 0;
9437
9438 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9439 mutex_unlock(&priv->mutex);
9440 return -EINVAL;
9441 }
9442
9443 if (wrqu->retry.flags & IW_RETRY_LONG) {
9444 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9445 wrqu->retry.value = priv->long_retry_limit;
9446 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9447 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9448 wrqu->retry.value = priv->short_retry_limit;
9449 } else {
9450 wrqu->retry.flags = IW_RETRY_LIMIT;
9451 wrqu->retry.value = priv->short_retry_limit;
9452 }
9453 mutex_unlock(&priv->mutex);
9454
9455 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9456
9457 return 0;
9458 }
9459
9460 static int ipw_wx_set_scan(struct net_device *dev,
9461 struct iw_request_info *info,
9462 union iwreq_data *wrqu, char *extra)
9463 {
9464 struct ipw_priv *priv = libipw_priv(dev);
9465 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9466 struct delayed_work *work = NULL;
9467
9468 mutex_lock(&priv->mutex);
9469
9470 priv->user_requested_scan = 1;
9471
9472 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9473 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9474 int len = min((int)req->essid_len,
9475 (int)sizeof(priv->direct_scan_ssid));
9476 memcpy(priv->direct_scan_ssid, req->essid, len);
9477 priv->direct_scan_ssid_len = len;
9478 work = &priv->request_direct_scan;
9479 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9480 work = &priv->request_passive_scan;
9481 }
9482 } else {
9483 /* Normal active broadcast scan */
9484 work = &priv->request_scan;
9485 }
9486
9487 mutex_unlock(&priv->mutex);
9488
9489 IPW_DEBUG_WX("Start scan\n");
9490
9491 schedule_delayed_work(work, 0);
9492
9493 return 0;
9494 }
9495
9496 static int ipw_wx_get_scan(struct net_device *dev,
9497 struct iw_request_info *info,
9498 union iwreq_data *wrqu, char *extra)
9499 {
9500 struct ipw_priv *priv = libipw_priv(dev);
9501 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9502 }
9503
9504 static int ipw_wx_set_encode(struct net_device *dev,
9505 struct iw_request_info *info,
9506 union iwreq_data *wrqu, char *key)
9507 {
9508 struct ipw_priv *priv = libipw_priv(dev);
9509 int ret;
9510 u32 cap = priv->capability;
9511
9512 mutex_lock(&priv->mutex);
9513 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9514
9515 /* In IBSS mode, we need to notify the firmware to update
9516 * the beacon info after we changed the capability. */
9517 if (cap != priv->capability &&
9518 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9519 priv->status & STATUS_ASSOCIATED)
9520 ipw_disassociate(priv);
9521
9522 mutex_unlock(&priv->mutex);
9523 return ret;
9524 }
9525
9526 static int ipw_wx_get_encode(struct net_device *dev,
9527 struct iw_request_info *info,
9528 union iwreq_data *wrqu, char *key)
9529 {
9530 struct ipw_priv *priv = libipw_priv(dev);
9531 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9532 }
9533
9534 static int ipw_wx_set_power(struct net_device *dev,
9535 struct iw_request_info *info,
9536 union iwreq_data *wrqu, char *extra)
9537 {
9538 struct ipw_priv *priv = libipw_priv(dev);
9539 int err;
9540 mutex_lock(&priv->mutex);
9541 if (wrqu->power.disabled) {
9542 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9543 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9544 if (err) {
9545 IPW_DEBUG_WX("failed setting power mode.\n");
9546 mutex_unlock(&priv->mutex);
9547 return err;
9548 }
9549 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9550 mutex_unlock(&priv->mutex);
9551 return 0;
9552 }
9553
9554 switch (wrqu->power.flags & IW_POWER_MODE) {
9555 case IW_POWER_ON: /* If not specified */
9556 case IW_POWER_MODE: /* If set all mask */
9557 case IW_POWER_ALL_R: /* If explicitly state all */
9558 break;
9559 default: /* Otherwise we don't support it */
9560 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9561 wrqu->power.flags);
9562 mutex_unlock(&priv->mutex);
9563 return -EOPNOTSUPP;
9564 }
9565
9566 /* If the user hasn't specified a power management mode yet, default
9567 * to BATTERY */
9568 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9569 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9570 else
9571 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9572
9573 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9574 if (err) {
9575 IPW_DEBUG_WX("failed setting power mode.\n");
9576 mutex_unlock(&priv->mutex);
9577 return err;
9578 }
9579
9580 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9581 mutex_unlock(&priv->mutex);
9582 return 0;
9583 }
9584
9585 static int ipw_wx_get_power(struct net_device *dev,
9586 struct iw_request_info *info,
9587 union iwreq_data *wrqu, char *extra)
9588 {
9589 struct ipw_priv *priv = libipw_priv(dev);
9590 mutex_lock(&priv->mutex);
9591 if (!(priv->power_mode & IPW_POWER_ENABLED))
9592 wrqu->power.disabled = 1;
9593 else
9594 wrqu->power.disabled = 0;
9595
9596 mutex_unlock(&priv->mutex);
9597 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9598
9599 return 0;
9600 }
9601
9602 static int ipw_wx_set_powermode(struct net_device *dev,
9603 struct iw_request_info *info,
9604 union iwreq_data *wrqu, char *extra)
9605 {
9606 struct ipw_priv *priv = libipw_priv(dev);
9607 int mode = *(int *)extra;
9608 int err;
9609
9610 mutex_lock(&priv->mutex);
9611 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9612 mode = IPW_POWER_AC;
9613
9614 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9615 err = ipw_send_power_mode(priv, mode);
9616 if (err) {
9617 IPW_DEBUG_WX("failed setting power mode.\n");
9618 mutex_unlock(&priv->mutex);
9619 return err;
9620 }
9621 priv->power_mode = IPW_POWER_ENABLED | mode;
9622 }
9623 mutex_unlock(&priv->mutex);
9624 return 0;
9625 }
9626
9627 #define MAX_WX_STRING 80
9628 static int ipw_wx_get_powermode(struct net_device *dev,
9629 struct iw_request_info *info,
9630 union iwreq_data *wrqu, char *extra)
9631 {
9632 struct ipw_priv *priv = libipw_priv(dev);
9633 int level = IPW_POWER_LEVEL(priv->power_mode);
9634 char *p = extra;
9635
9636 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9637
9638 switch (level) {
9639 case IPW_POWER_AC:
9640 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9641 break;
9642 case IPW_POWER_BATTERY:
9643 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9644 break;
9645 default:
9646 p += snprintf(p, MAX_WX_STRING - (p - extra),
9647 "(Timeout %dms, Period %dms)",
9648 timeout_duration[level - 1] / 1000,
9649 period_duration[level - 1] / 1000);
9650 }
9651
9652 if (!(priv->power_mode & IPW_POWER_ENABLED))
9653 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9654
9655 wrqu->data.length = p - extra + 1;
9656
9657 return 0;
9658 }
9659
9660 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9661 struct iw_request_info *info,
9662 union iwreq_data *wrqu, char *extra)
9663 {
9664 struct ipw_priv *priv = libipw_priv(dev);
9665 int mode = *(int *)extra;
9666 u8 band = 0, modulation = 0;
9667
9668 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9669 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9670 return -EINVAL;
9671 }
9672 mutex_lock(&priv->mutex);
9673 if (priv->adapter == IPW_2915ABG) {
9674 priv->ieee->abg_true = 1;
9675 if (mode & IEEE_A) {
9676 band |= LIBIPW_52GHZ_BAND;
9677 modulation |= LIBIPW_OFDM_MODULATION;
9678 } else
9679 priv->ieee->abg_true = 0;
9680 } else {
9681 if (mode & IEEE_A) {
9682 IPW_WARNING("Attempt to set 2200BG into "
9683 "802.11a mode\n");
9684 mutex_unlock(&priv->mutex);
9685 return -EINVAL;
9686 }
9687
9688 priv->ieee->abg_true = 0;
9689 }
9690
9691 if (mode & IEEE_B) {
9692 band |= LIBIPW_24GHZ_BAND;
9693 modulation |= LIBIPW_CCK_MODULATION;
9694 } else
9695 priv->ieee->abg_true = 0;
9696
9697 if (mode & IEEE_G) {
9698 band |= LIBIPW_24GHZ_BAND;
9699 modulation |= LIBIPW_OFDM_MODULATION;
9700 } else
9701 priv->ieee->abg_true = 0;
9702
9703 priv->ieee->mode = mode;
9704 priv->ieee->freq_band = band;
9705 priv->ieee->modulation = modulation;
9706 init_supported_rates(priv, &priv->rates);
9707
9708 /* Network configuration changed -- force [re]association */
9709 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9710 if (!ipw_disassociate(priv)) {
9711 ipw_send_supported_rates(priv, &priv->rates);
9712 ipw_associate(priv);
9713 }
9714
9715 /* Update the band LEDs */
9716 ipw_led_band_on(priv);
9717
9718 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9719 mode & IEEE_A ? 'a' : '.',
9720 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9721 mutex_unlock(&priv->mutex);
9722 return 0;
9723 }
9724
9725 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9726 struct iw_request_info *info,
9727 union iwreq_data *wrqu, char *extra)
9728 {
9729 struct ipw_priv *priv = libipw_priv(dev);
9730 mutex_lock(&priv->mutex);
9731 switch (priv->ieee->mode) {
9732 case IEEE_A:
9733 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9734 break;
9735 case IEEE_B:
9736 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9737 break;
9738 case IEEE_A | IEEE_B:
9739 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9740 break;
9741 case IEEE_G:
9742 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9743 break;
9744 case IEEE_A | IEEE_G:
9745 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9746 break;
9747 case IEEE_B | IEEE_G:
9748 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9749 break;
9750 case IEEE_A | IEEE_B | IEEE_G:
9751 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9752 break;
9753 default:
9754 strncpy(extra, "unknown", MAX_WX_STRING);
9755 break;
9756 }
9757 extra[MAX_WX_STRING - 1] = '\0';
9758
9759 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9760
9761 wrqu->data.length = strlen(extra) + 1;
9762 mutex_unlock(&priv->mutex);
9763
9764 return 0;
9765 }
9766
9767 static int ipw_wx_set_preamble(struct net_device *dev,
9768 struct iw_request_info *info,
9769 union iwreq_data *wrqu, char *extra)
9770 {
9771 struct ipw_priv *priv = libipw_priv(dev);
9772 int mode = *(int *)extra;
9773 mutex_lock(&priv->mutex);
9774 /* Switching from SHORT -> LONG requires a disassociation */
9775 if (mode == 1) {
9776 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9777 priv->config |= CFG_PREAMBLE_LONG;
9778
9779 /* Network configuration changed -- force [re]association */
9780 IPW_DEBUG_ASSOC
9781 ("[re]association triggered due to preamble change.\n");
9782 if (!ipw_disassociate(priv))
9783 ipw_associate(priv);
9784 }
9785 goto done;
9786 }
9787
9788 if (mode == 0) {
9789 priv->config &= ~CFG_PREAMBLE_LONG;
9790 goto done;
9791 }
9792 mutex_unlock(&priv->mutex);
9793 return -EINVAL;
9794
9795 done:
9796 mutex_unlock(&priv->mutex);
9797 return 0;
9798 }
9799
9800 static int ipw_wx_get_preamble(struct net_device *dev,
9801 struct iw_request_info *info,
9802 union iwreq_data *wrqu, char *extra)
9803 {
9804 struct ipw_priv *priv = libipw_priv(dev);
9805 mutex_lock(&priv->mutex);
9806 if (priv->config & CFG_PREAMBLE_LONG)
9807 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9808 else
9809 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9810 mutex_unlock(&priv->mutex);
9811 return 0;
9812 }
9813
9814 #ifdef CONFIG_IPW2200_MONITOR
9815 static int ipw_wx_set_monitor(struct net_device *dev,
9816 struct iw_request_info *info,
9817 union iwreq_data *wrqu, char *extra)
9818 {
9819 struct ipw_priv *priv = libipw_priv(dev);
9820 int *parms = (int *)extra;
9821 int enable = (parms[0] > 0);
9822 mutex_lock(&priv->mutex);
9823 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9824 if (enable) {
9825 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9826 #ifdef CONFIG_IPW2200_RADIOTAP
9827 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9828 #else
9829 priv->net_dev->type = ARPHRD_IEEE80211;
9830 #endif
9831 schedule_work(&priv->adapter_restart);
9832 }
9833
9834 ipw_set_channel(priv, parms[1]);
9835 } else {
9836 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9837 mutex_unlock(&priv->mutex);
9838 return 0;
9839 }
9840 priv->net_dev->type = ARPHRD_ETHER;
9841 schedule_work(&priv->adapter_restart);
9842 }
9843 mutex_unlock(&priv->mutex);
9844 return 0;
9845 }
9846
9847 #endif /* CONFIG_IPW2200_MONITOR */
9848
9849 static int ipw_wx_reset(struct net_device *dev,
9850 struct iw_request_info *info,
9851 union iwreq_data *wrqu, char *extra)
9852 {
9853 struct ipw_priv *priv = libipw_priv(dev);
9854 IPW_DEBUG_WX("RESET\n");
9855 schedule_work(&priv->adapter_restart);
9856 return 0;
9857 }
9858
9859 static int ipw_wx_sw_reset(struct net_device *dev,
9860 struct iw_request_info *info,
9861 union iwreq_data *wrqu, char *extra)
9862 {
9863 struct ipw_priv *priv = libipw_priv(dev);
9864 union iwreq_data wrqu_sec = {
9865 .encoding = {
9866 .flags = IW_ENCODE_DISABLED,
9867 },
9868 };
9869 int ret;
9870
9871 IPW_DEBUG_WX("SW_RESET\n");
9872
9873 mutex_lock(&priv->mutex);
9874
9875 ret = ipw_sw_reset(priv, 2);
9876 if (!ret) {
9877 free_firmware();
9878 ipw_adapter_restart(priv);
9879 }
9880
9881 /* The SW reset bit might have been toggled on by the 'disable'
9882 * module parameter, so take appropriate action */
9883 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9884
9885 mutex_unlock(&priv->mutex);
9886 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9887 mutex_lock(&priv->mutex);
9888
9889 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9890 /* Configuration likely changed -- force [re]association */
9891 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9892 "reset.\n");
9893 if (!ipw_disassociate(priv))
9894 ipw_associate(priv);
9895 }
9896
9897 mutex_unlock(&priv->mutex);
9898
9899 return 0;
9900 }
9901
9902 /* Rebase the WE IOCTLs to zero for the handler array */
9903 static iw_handler ipw_wx_handlers[] = {
9904 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9905 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9906 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9907 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9908 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9909 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9910 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9911 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9912 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9913 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9914 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9915 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9916 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9917 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9918 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9919 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9920 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9921 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9922 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9923 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9924 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9925 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9926 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9927 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9928 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9929 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9930 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9931 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9932 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9933 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9934 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9935 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9936 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9937 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9938 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9939 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9940 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9941 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9942 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9943 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9944 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9945 };
9946
9947 enum {
9948 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9949 IPW_PRIV_GET_POWER,
9950 IPW_PRIV_SET_MODE,
9951 IPW_PRIV_GET_MODE,
9952 IPW_PRIV_SET_PREAMBLE,
9953 IPW_PRIV_GET_PREAMBLE,
9954 IPW_PRIV_RESET,
9955 IPW_PRIV_SW_RESET,
9956 #ifdef CONFIG_IPW2200_MONITOR
9957 IPW_PRIV_SET_MONITOR,
9958 #endif
9959 };
9960
9961 static struct iw_priv_args ipw_priv_args[] = {
9962 {
9963 .cmd = IPW_PRIV_SET_POWER,
9964 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9965 .name = "set_power"},
9966 {
9967 .cmd = IPW_PRIV_GET_POWER,
9968 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9969 .name = "get_power"},
9970 {
9971 .cmd = IPW_PRIV_SET_MODE,
9972 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9973 .name = "set_mode"},
9974 {
9975 .cmd = IPW_PRIV_GET_MODE,
9976 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9977 .name = "get_mode"},
9978 {
9979 .cmd = IPW_PRIV_SET_PREAMBLE,
9980 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9981 .name = "set_preamble"},
9982 {
9983 .cmd = IPW_PRIV_GET_PREAMBLE,
9984 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9985 .name = "get_preamble"},
9986 {
9987 IPW_PRIV_RESET,
9988 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9989 {
9990 IPW_PRIV_SW_RESET,
9991 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9992 #ifdef CONFIG_IPW2200_MONITOR
9993 {
9994 IPW_PRIV_SET_MONITOR,
9995 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9996 #endif /* CONFIG_IPW2200_MONITOR */
9997 };
9998
9999 static iw_handler ipw_priv_handler[] = {
10000 ipw_wx_set_powermode,
10001 ipw_wx_get_powermode,
10002 ipw_wx_set_wireless_mode,
10003 ipw_wx_get_wireless_mode,
10004 ipw_wx_set_preamble,
10005 ipw_wx_get_preamble,
10006 ipw_wx_reset,
10007 ipw_wx_sw_reset,
10008 #ifdef CONFIG_IPW2200_MONITOR
10009 ipw_wx_set_monitor,
10010 #endif
10011 };
10012
10013 static struct iw_handler_def ipw_wx_handler_def = {
10014 .standard = ipw_wx_handlers,
10015 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10016 .num_private = ARRAY_SIZE(ipw_priv_handler),
10017 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10018 .private = ipw_priv_handler,
10019 .private_args = ipw_priv_args,
10020 .get_wireless_stats = ipw_get_wireless_stats,
10021 };
10022
10023 /*
10024 * Get wireless statistics.
10025 * Called by /proc/net/wireless
10026 * Also called by SIOCGIWSTATS
10027 */
10028 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10029 {
10030 struct ipw_priv *priv = libipw_priv(dev);
10031 struct iw_statistics *wstats;
10032
10033 wstats = &priv->wstats;
10034
10035 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10036 * netdev->get_wireless_stats seems to be called before fw is
10037 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10038 * and associated; if not associcated, the values are all meaningless
10039 * anyway, so set them all to NULL and INVALID */
10040 if (!(priv->status & STATUS_ASSOCIATED)) {
10041 wstats->miss.beacon = 0;
10042 wstats->discard.retries = 0;
10043 wstats->qual.qual = 0;
10044 wstats->qual.level = 0;
10045 wstats->qual.noise = 0;
10046 wstats->qual.updated = 7;
10047 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10048 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10049 return wstats;
10050 }
10051
10052 wstats->qual.qual = priv->quality;
10053 wstats->qual.level = priv->exp_avg_rssi;
10054 wstats->qual.noise = priv->exp_avg_noise;
10055 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10056 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10057
10058 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10059 wstats->discard.retries = priv->last_tx_failures;
10060 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10061
10062 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10063 goto fail_get_ordinal;
10064 wstats->discard.retries += tx_retry; */
10065
10066 return wstats;
10067 }
10068
10069 /* net device stuff */
10070
10071 static void init_sys_config(struct ipw_sys_config *sys_config)
10072 {
10073 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10074 sys_config->bt_coexistence = 0;
10075 sys_config->answer_broadcast_ssid_probe = 0;
10076 sys_config->accept_all_data_frames = 0;
10077 sys_config->accept_non_directed_frames = 1;
10078 sys_config->exclude_unicast_unencrypted = 0;
10079 sys_config->disable_unicast_decryption = 1;
10080 sys_config->exclude_multicast_unencrypted = 0;
10081 sys_config->disable_multicast_decryption = 1;
10082 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10083 antenna = CFG_SYS_ANTENNA_BOTH;
10084 sys_config->antenna_diversity = antenna;
10085 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10086 sys_config->dot11g_auto_detection = 0;
10087 sys_config->enable_cts_to_self = 0;
10088 sys_config->bt_coexist_collision_thr = 0;
10089 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10090 sys_config->silence_threshold = 0x1e;
10091 }
10092
10093 static int ipw_net_open(struct net_device *dev)
10094 {
10095 IPW_DEBUG_INFO("dev->open\n");
10096 netif_start_queue(dev);
10097 return 0;
10098 }
10099
10100 static int ipw_net_stop(struct net_device *dev)
10101 {
10102 IPW_DEBUG_INFO("dev->close\n");
10103 netif_stop_queue(dev);
10104 return 0;
10105 }
10106
10107 /*
10108 todo:
10109
10110 modify to send one tfd per fragment instead of using chunking. otherwise
10111 we need to heavily modify the libipw_skb_to_txb.
10112 */
10113
10114 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10115 int pri)
10116 {
10117 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10118 txb->fragments[0]->data;
10119 int i = 0;
10120 struct tfd_frame *tfd;
10121 #ifdef CONFIG_IPW2200_QOS
10122 int tx_id = ipw_get_tx_queue_number(priv, pri);
10123 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10124 #else
10125 struct clx2_tx_queue *txq = &priv->txq[0];
10126 #endif
10127 struct clx2_queue *q = &txq->q;
10128 u8 id, hdr_len, unicast;
10129 int fc;
10130
10131 if (!(priv->status & STATUS_ASSOCIATED))
10132 goto drop;
10133
10134 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10135 switch (priv->ieee->iw_mode) {
10136 case IW_MODE_ADHOC:
10137 unicast = !is_multicast_ether_addr(hdr->addr1);
10138 id = ipw_find_station(priv, hdr->addr1);
10139 if (id == IPW_INVALID_STATION) {
10140 id = ipw_add_station(priv, hdr->addr1);
10141 if (id == IPW_INVALID_STATION) {
10142 IPW_WARNING("Attempt to send data to "
10143 "invalid cell: %pM\n",
10144 hdr->addr1);
10145 goto drop;
10146 }
10147 }
10148 break;
10149
10150 case IW_MODE_INFRA:
10151 default:
10152 unicast = !is_multicast_ether_addr(hdr->addr3);
10153 id = 0;
10154 break;
10155 }
10156
10157 tfd = &txq->bd[q->first_empty];
10158 txq->txb[q->first_empty] = txb;
10159 memset(tfd, 0, sizeof(*tfd));
10160 tfd->u.data.station_number = id;
10161
10162 tfd->control_flags.message_type = TX_FRAME_TYPE;
10163 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10164
10165 tfd->u.data.cmd_id = DINO_CMD_TX;
10166 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10167
10168 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10169 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10170 else
10171 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10172
10173 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10174 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10175
10176 fc = le16_to_cpu(hdr->frame_ctl);
10177 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10178
10179 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10180
10181 if (likely(unicast))
10182 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10183
10184 if (txb->encrypted && !priv->ieee->host_encrypt) {
10185 switch (priv->ieee->sec.level) {
10186 case SEC_LEVEL_3:
10187 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10188 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10189 /* XXX: ACK flag must be set for CCMP even if it
10190 * is a multicast/broadcast packet, because CCMP
10191 * group communication encrypted by GTK is
10192 * actually done by the AP. */
10193 if (!unicast)
10194 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10195
10196 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10197 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10198 tfd->u.data.key_index = 0;
10199 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10200 break;
10201 case SEC_LEVEL_2:
10202 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10203 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10204 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10205 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10206 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10207 break;
10208 case SEC_LEVEL_1:
10209 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10210 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10211 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10212 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10213 40)
10214 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10215 else
10216 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10217 break;
10218 case SEC_LEVEL_0:
10219 break;
10220 default:
10221 printk(KERN_ERR "Unknown security level %d\n",
10222 priv->ieee->sec.level);
10223 break;
10224 }
10225 } else
10226 /* No hardware encryption */
10227 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10228
10229 #ifdef CONFIG_IPW2200_QOS
10230 if (fc & IEEE80211_STYPE_QOS_DATA)
10231 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10232 #endif /* CONFIG_IPW2200_QOS */
10233
10234 /* payload */
10235 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10236 txb->nr_frags));
10237 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10238 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10239 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10240 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10241 i, le32_to_cpu(tfd->u.data.num_chunks),
10242 txb->fragments[i]->len - hdr_len);
10243 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10244 i, tfd->u.data.num_chunks,
10245 txb->fragments[i]->len - hdr_len);
10246 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10247 txb->fragments[i]->len - hdr_len);
10248
10249 tfd->u.data.chunk_ptr[i] =
10250 cpu_to_le32(pci_map_single
10251 (priv->pci_dev,
10252 txb->fragments[i]->data + hdr_len,
10253 txb->fragments[i]->len - hdr_len,
10254 PCI_DMA_TODEVICE));
10255 tfd->u.data.chunk_len[i] =
10256 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10257 }
10258
10259 if (i != txb->nr_frags) {
10260 struct sk_buff *skb;
10261 u16 remaining_bytes = 0;
10262 int j;
10263
10264 for (j = i; j < txb->nr_frags; j++)
10265 remaining_bytes += txb->fragments[j]->len - hdr_len;
10266
10267 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10268 remaining_bytes);
10269 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10270 if (skb != NULL) {
10271 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10272 for (j = i; j < txb->nr_frags; j++) {
10273 int size = txb->fragments[j]->len - hdr_len;
10274
10275 printk(KERN_INFO "Adding frag %d %d...\n",
10276 j, size);
10277 skb_put_data(skb,
10278 txb->fragments[j]->data + hdr_len,
10279 size);
10280 }
10281 dev_kfree_skb_any(txb->fragments[i]);
10282 txb->fragments[i] = skb;
10283 tfd->u.data.chunk_ptr[i] =
10284 cpu_to_le32(pci_map_single
10285 (priv->pci_dev, skb->data,
10286 remaining_bytes,
10287 PCI_DMA_TODEVICE));
10288
10289 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10290 }
10291 }
10292
10293 /* kick DMA */
10294 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10295 ipw_write32(priv, q->reg_w, q->first_empty);
10296
10297 if (ipw_tx_queue_space(q) < q->high_mark)
10298 netif_stop_queue(priv->net_dev);
10299
10300 return NETDEV_TX_OK;
10301
10302 drop:
10303 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10304 libipw_txb_free(txb);
10305 return NETDEV_TX_OK;
10306 }
10307
10308 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10309 {
10310 struct ipw_priv *priv = libipw_priv(dev);
10311 #ifdef CONFIG_IPW2200_QOS
10312 int tx_id = ipw_get_tx_queue_number(priv, pri);
10313 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10314 #else
10315 struct clx2_tx_queue *txq = &priv->txq[0];
10316 #endif /* CONFIG_IPW2200_QOS */
10317
10318 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10319 return 1;
10320
10321 return 0;
10322 }
10323
10324 #ifdef CONFIG_IPW2200_PROMISCUOUS
10325 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10326 struct libipw_txb *txb)
10327 {
10328 struct libipw_rx_stats dummystats;
10329 struct ieee80211_hdr *hdr;
10330 u8 n;
10331 u16 filter = priv->prom_priv->filter;
10332 int hdr_only = 0;
10333
10334 if (filter & IPW_PROM_NO_TX)
10335 return;
10336
10337 memset(&dummystats, 0, sizeof(dummystats));
10338
10339 /* Filtering of fragment chains is done against the first fragment */
10340 hdr = (void *)txb->fragments[0]->data;
10341 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10342 if (filter & IPW_PROM_NO_MGMT)
10343 return;
10344 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10345 hdr_only = 1;
10346 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10347 if (filter & IPW_PROM_NO_CTL)
10348 return;
10349 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10350 hdr_only = 1;
10351 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10352 if (filter & IPW_PROM_NO_DATA)
10353 return;
10354 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10355 hdr_only = 1;
10356 }
10357
10358 for(n=0; n<txb->nr_frags; ++n) {
10359 struct sk_buff *src = txb->fragments[n];
10360 struct sk_buff *dst;
10361 struct ieee80211_radiotap_header *rt_hdr;
10362 int len;
10363
10364 if (hdr_only) {
10365 hdr = (void *)src->data;
10366 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10367 } else
10368 len = src->len;
10369
10370 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10371 if (!dst)
10372 continue;
10373
10374 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10375
10376 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10377 rt_hdr->it_pad = 0;
10378 rt_hdr->it_present = 0; /* after all, it's just an idea */
10379 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10380
10381 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10382 ieee80211chan2mhz(priv->channel));
10383 if (priv->channel > 14) /* 802.11a */
10384 *(__le16*)skb_put(dst, sizeof(u16)) =
10385 cpu_to_le16(IEEE80211_CHAN_OFDM |
10386 IEEE80211_CHAN_5GHZ);
10387 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10388 *(__le16*)skb_put(dst, sizeof(u16)) =
10389 cpu_to_le16(IEEE80211_CHAN_CCK |
10390 IEEE80211_CHAN_2GHZ);
10391 else /* 802.11g */
10392 *(__le16*)skb_put(dst, sizeof(u16)) =
10393 cpu_to_le16(IEEE80211_CHAN_OFDM |
10394 IEEE80211_CHAN_2GHZ);
10395
10396 rt_hdr->it_len = cpu_to_le16(dst->len);
10397
10398 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10399
10400 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10401 dev_kfree_skb_any(dst);
10402 }
10403 }
10404 #endif
10405
10406 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10407 struct net_device *dev, int pri)
10408 {
10409 struct ipw_priv *priv = libipw_priv(dev);
10410 unsigned long flags;
10411 netdev_tx_t ret;
10412
10413 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10414 spin_lock_irqsave(&priv->lock, flags);
10415
10416 #ifdef CONFIG_IPW2200_PROMISCUOUS
10417 if (rtap_iface && netif_running(priv->prom_net_dev))
10418 ipw_handle_promiscuous_tx(priv, txb);
10419 #endif
10420
10421 ret = ipw_tx_skb(priv, txb, pri);
10422 if (ret == NETDEV_TX_OK)
10423 __ipw_led_activity_on(priv);
10424 spin_unlock_irqrestore(&priv->lock, flags);
10425
10426 return ret;
10427 }
10428
10429 static void ipw_net_set_multicast_list(struct net_device *dev)
10430 {
10431
10432 }
10433
10434 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10435 {
10436 struct ipw_priv *priv = libipw_priv(dev);
10437 struct sockaddr *addr = p;
10438
10439 if (!is_valid_ether_addr(addr->sa_data))
10440 return -EADDRNOTAVAIL;
10441 mutex_lock(&priv->mutex);
10442 priv->config |= CFG_CUSTOM_MAC;
10443 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10444 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10445 priv->net_dev->name, priv->mac_addr);
10446 schedule_work(&priv->adapter_restart);
10447 mutex_unlock(&priv->mutex);
10448 return 0;
10449 }
10450
10451 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10452 struct ethtool_drvinfo *info)
10453 {
10454 struct ipw_priv *p = libipw_priv(dev);
10455 char vers[64];
10456 char date[32];
10457 u32 len;
10458
10459 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10460 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10461
10462 len = sizeof(vers);
10463 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10464 len = sizeof(date);
10465 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10466
10467 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10468 vers, date);
10469 strlcpy(info->bus_info, pci_name(p->pci_dev),
10470 sizeof(info->bus_info));
10471 }
10472
10473 static u32 ipw_ethtool_get_link(struct net_device *dev)
10474 {
10475 struct ipw_priv *priv = libipw_priv(dev);
10476 return (priv->status & STATUS_ASSOCIATED) != 0;
10477 }
10478
10479 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10480 {
10481 return IPW_EEPROM_IMAGE_SIZE;
10482 }
10483
10484 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10485 struct ethtool_eeprom *eeprom, u8 * bytes)
10486 {
10487 struct ipw_priv *p = libipw_priv(dev);
10488
10489 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10490 return -EINVAL;
10491 mutex_lock(&p->mutex);
10492 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10493 mutex_unlock(&p->mutex);
10494 return 0;
10495 }
10496
10497 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10498 struct ethtool_eeprom *eeprom, u8 * bytes)
10499 {
10500 struct ipw_priv *p = libipw_priv(dev);
10501 int i;
10502
10503 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10504 return -EINVAL;
10505 mutex_lock(&p->mutex);
10506 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10507 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10508 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10509 mutex_unlock(&p->mutex);
10510 return 0;
10511 }
10512
10513 static const struct ethtool_ops ipw_ethtool_ops = {
10514 .get_link = ipw_ethtool_get_link,
10515 .get_drvinfo = ipw_ethtool_get_drvinfo,
10516 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10517 .get_eeprom = ipw_ethtool_get_eeprom,
10518 .set_eeprom = ipw_ethtool_set_eeprom,
10519 };
10520
10521 static irqreturn_t ipw_isr(int irq, void *data)
10522 {
10523 struct ipw_priv *priv = data;
10524 u32 inta, inta_mask;
10525
10526 if (!priv)
10527 return IRQ_NONE;
10528
10529 spin_lock(&priv->irq_lock);
10530
10531 if (!(priv->status & STATUS_INT_ENABLED)) {
10532 /* IRQ is disabled */
10533 goto none;
10534 }
10535
10536 inta = ipw_read32(priv, IPW_INTA_RW);
10537 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10538
10539 if (inta == 0xFFFFFFFF) {
10540 /* Hardware disappeared */
10541 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10542 goto none;
10543 }
10544
10545 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10546 /* Shared interrupt */
10547 goto none;
10548 }
10549
10550 /* tell the device to stop sending interrupts */
10551 __ipw_disable_interrupts(priv);
10552
10553 /* ack current interrupts */
10554 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10555 ipw_write32(priv, IPW_INTA_RW, inta);
10556
10557 /* Cache INTA value for our tasklet */
10558 priv->isr_inta = inta;
10559
10560 tasklet_schedule(&priv->irq_tasklet);
10561
10562 spin_unlock(&priv->irq_lock);
10563
10564 return IRQ_HANDLED;
10565 none:
10566 spin_unlock(&priv->irq_lock);
10567 return IRQ_NONE;
10568 }
10569
10570 static void ipw_rf_kill(void *adapter)
10571 {
10572 struct ipw_priv *priv = adapter;
10573 unsigned long flags;
10574
10575 spin_lock_irqsave(&priv->lock, flags);
10576
10577 if (rf_kill_active(priv)) {
10578 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10579 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10580 goto exit_unlock;
10581 }
10582
10583 /* RF Kill is now disabled, so bring the device back up */
10584
10585 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10586 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10587 "device\n");
10588
10589 /* we can not do an adapter restart while inside an irq lock */
10590 schedule_work(&priv->adapter_restart);
10591 } else
10592 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10593 "enabled\n");
10594
10595 exit_unlock:
10596 spin_unlock_irqrestore(&priv->lock, flags);
10597 }
10598
10599 static void ipw_bg_rf_kill(struct work_struct *work)
10600 {
10601 struct ipw_priv *priv =
10602 container_of(work, struct ipw_priv, rf_kill.work);
10603 mutex_lock(&priv->mutex);
10604 ipw_rf_kill(priv);
10605 mutex_unlock(&priv->mutex);
10606 }
10607
10608 static void ipw_link_up(struct ipw_priv *priv)
10609 {
10610 priv->last_seq_num = -1;
10611 priv->last_frag_num = -1;
10612 priv->last_packet_time = 0;
10613
10614 netif_carrier_on(priv->net_dev);
10615
10616 cancel_delayed_work(&priv->request_scan);
10617 cancel_delayed_work(&priv->request_direct_scan);
10618 cancel_delayed_work(&priv->request_passive_scan);
10619 cancel_delayed_work(&priv->scan_event);
10620 ipw_reset_stats(priv);
10621 /* Ensure the rate is updated immediately */
10622 priv->last_rate = ipw_get_current_rate(priv);
10623 ipw_gather_stats(priv);
10624 ipw_led_link_up(priv);
10625 notify_wx_assoc_event(priv);
10626
10627 if (priv->config & CFG_BACKGROUND_SCAN)
10628 schedule_delayed_work(&priv->request_scan, HZ);
10629 }
10630
10631 static void ipw_bg_link_up(struct work_struct *work)
10632 {
10633 struct ipw_priv *priv =
10634 container_of(work, struct ipw_priv, link_up);
10635 mutex_lock(&priv->mutex);
10636 ipw_link_up(priv);
10637 mutex_unlock(&priv->mutex);
10638 }
10639
10640 static void ipw_link_down(struct ipw_priv *priv)
10641 {
10642 ipw_led_link_down(priv);
10643 netif_carrier_off(priv->net_dev);
10644 notify_wx_assoc_event(priv);
10645
10646 /* Cancel any queued work ... */
10647 cancel_delayed_work(&priv->request_scan);
10648 cancel_delayed_work(&priv->request_direct_scan);
10649 cancel_delayed_work(&priv->request_passive_scan);
10650 cancel_delayed_work(&priv->adhoc_check);
10651 cancel_delayed_work(&priv->gather_stats);
10652
10653 ipw_reset_stats(priv);
10654
10655 if (!(priv->status & STATUS_EXIT_PENDING)) {
10656 /* Queue up another scan... */
10657 schedule_delayed_work(&priv->request_scan, 0);
10658 } else
10659 cancel_delayed_work(&priv->scan_event);
10660 }
10661
10662 static void ipw_bg_link_down(struct work_struct *work)
10663 {
10664 struct ipw_priv *priv =
10665 container_of(work, struct ipw_priv, link_down);
10666 mutex_lock(&priv->mutex);
10667 ipw_link_down(priv);
10668 mutex_unlock(&priv->mutex);
10669 }
10670
10671 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10672 {
10673 int ret = 0;
10674
10675 init_waitqueue_head(&priv->wait_command_queue);
10676 init_waitqueue_head(&priv->wait_state);
10677
10678 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10679 INIT_WORK(&priv->associate, ipw_bg_associate);
10680 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10681 INIT_WORK(&priv->system_config, ipw_system_config);
10682 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10683 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10684 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10685 INIT_WORK(&priv->up, ipw_bg_up);
10686 INIT_WORK(&priv->down, ipw_bg_down);
10687 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10688 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10689 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10690 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10691 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10692 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10693 INIT_WORK(&priv->roam, ipw_bg_roam);
10694 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10695 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10696 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10697 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10698 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10699 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10700 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10701
10702 #ifdef CONFIG_IPW2200_QOS
10703 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10704 #endif /* CONFIG_IPW2200_QOS */
10705
10706 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10707 ipw_irq_tasklet, (unsigned long)priv);
10708
10709 return ret;
10710 }
10711
10712 static void shim__set_security(struct net_device *dev,
10713 struct libipw_security *sec)
10714 {
10715 struct ipw_priv *priv = libipw_priv(dev);
10716 int i;
10717 for (i = 0; i < 4; i++) {
10718 if (sec->flags & (1 << i)) {
10719 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10720 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10721 if (sec->key_sizes[i] == 0)
10722 priv->ieee->sec.flags &= ~(1 << i);
10723 else {
10724 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10725 sec->key_sizes[i]);
10726 priv->ieee->sec.flags |= (1 << i);
10727 }
10728 priv->status |= STATUS_SECURITY_UPDATED;
10729 } else if (sec->level != SEC_LEVEL_1)
10730 priv->ieee->sec.flags &= ~(1 << i);
10731 }
10732
10733 if (sec->flags & SEC_ACTIVE_KEY) {
10734 if (sec->active_key <= 3) {
10735 priv->ieee->sec.active_key = sec->active_key;
10736 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10737 } else
10738 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10739 priv->status |= STATUS_SECURITY_UPDATED;
10740 } else
10741 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10742
10743 if ((sec->flags & SEC_AUTH_MODE) &&
10744 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10745 priv->ieee->sec.auth_mode = sec->auth_mode;
10746 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10747 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10748 priv->capability |= CAP_SHARED_KEY;
10749 else
10750 priv->capability &= ~CAP_SHARED_KEY;
10751 priv->status |= STATUS_SECURITY_UPDATED;
10752 }
10753
10754 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10755 priv->ieee->sec.flags |= SEC_ENABLED;
10756 priv->ieee->sec.enabled = sec->enabled;
10757 priv->status |= STATUS_SECURITY_UPDATED;
10758 if (sec->enabled)
10759 priv->capability |= CAP_PRIVACY_ON;
10760 else
10761 priv->capability &= ~CAP_PRIVACY_ON;
10762 }
10763
10764 if (sec->flags & SEC_ENCRYPT)
10765 priv->ieee->sec.encrypt = sec->encrypt;
10766
10767 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10768 priv->ieee->sec.level = sec->level;
10769 priv->ieee->sec.flags |= SEC_LEVEL;
10770 priv->status |= STATUS_SECURITY_UPDATED;
10771 }
10772
10773 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10774 ipw_set_hwcrypto_keys(priv);
10775
10776 /* To match current functionality of ipw2100 (which works well w/
10777 * various supplicants, we don't force a disassociate if the
10778 * privacy capability changes ... */
10779 #if 0
10780 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10781 (((priv->assoc_request.capability &
10782 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10783 (!(priv->assoc_request.capability &
10784 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10785 IPW_DEBUG_ASSOC("Disassociating due to capability "
10786 "change.\n");
10787 ipw_disassociate(priv);
10788 }
10789 #endif
10790 }
10791
10792 static int init_supported_rates(struct ipw_priv *priv,
10793 struct ipw_supported_rates *rates)
10794 {
10795 /* TODO: Mask out rates based on priv->rates_mask */
10796
10797 memset(rates, 0, sizeof(*rates));
10798 /* configure supported rates */
10799 switch (priv->ieee->freq_band) {
10800 case LIBIPW_52GHZ_BAND:
10801 rates->ieee_mode = IPW_A_MODE;
10802 rates->purpose = IPW_RATE_CAPABILITIES;
10803 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10804 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10805 break;
10806
10807 default: /* Mixed or 2.4Ghz */
10808 rates->ieee_mode = IPW_G_MODE;
10809 rates->purpose = IPW_RATE_CAPABILITIES;
10810 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10811 LIBIPW_CCK_DEFAULT_RATES_MASK);
10812 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10813 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10814 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10815 }
10816 break;
10817 }
10818
10819 return 0;
10820 }
10821
10822 static int ipw_config(struct ipw_priv *priv)
10823 {
10824 /* This is only called from ipw_up, which resets/reloads the firmware
10825 so, we don't need to first disable the card before we configure
10826 it */
10827 if (ipw_set_tx_power(priv))
10828 goto error;
10829
10830 /* initialize adapter address */
10831 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10832 goto error;
10833
10834 /* set basic system config settings */
10835 init_sys_config(&priv->sys_config);
10836
10837 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10838 * Does not support BT priority yet (don't abort or defer our Tx) */
10839 if (bt_coexist) {
10840 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10841
10842 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10843 priv->sys_config.bt_coexistence
10844 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10845 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10846 priv->sys_config.bt_coexistence
10847 |= CFG_BT_COEXISTENCE_OOB;
10848 }
10849
10850 #ifdef CONFIG_IPW2200_PROMISCUOUS
10851 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10852 priv->sys_config.accept_all_data_frames = 1;
10853 priv->sys_config.accept_non_directed_frames = 1;
10854 priv->sys_config.accept_all_mgmt_bcpr = 1;
10855 priv->sys_config.accept_all_mgmt_frames = 1;
10856 }
10857 #endif
10858
10859 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10860 priv->sys_config.answer_broadcast_ssid_probe = 1;
10861 else
10862 priv->sys_config.answer_broadcast_ssid_probe = 0;
10863
10864 if (ipw_send_system_config(priv))
10865 goto error;
10866
10867 init_supported_rates(priv, &priv->rates);
10868 if (ipw_send_supported_rates(priv, &priv->rates))
10869 goto error;
10870
10871 /* Set request-to-send threshold */
10872 if (priv->rts_threshold) {
10873 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10874 goto error;
10875 }
10876 #ifdef CONFIG_IPW2200_QOS
10877 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10878 ipw_qos_activate(priv, NULL);
10879 #endif /* CONFIG_IPW2200_QOS */
10880
10881 if (ipw_set_random_seed(priv))
10882 goto error;
10883
10884 /* final state transition to the RUN state */
10885 if (ipw_send_host_complete(priv))
10886 goto error;
10887
10888 priv->status |= STATUS_INIT;
10889
10890 ipw_led_init(priv);
10891 ipw_led_radio_on(priv);
10892 priv->notif_missed_beacons = 0;
10893
10894 /* Set hardware WEP key if it is configured. */
10895 if ((priv->capability & CAP_PRIVACY_ON) &&
10896 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10897 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10898 ipw_set_hwcrypto_keys(priv);
10899
10900 return 0;
10901
10902 error:
10903 return -EIO;
10904 }
10905
10906 /*
10907 * NOTE:
10908 *
10909 * These tables have been tested in conjunction with the
10910 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10911 *
10912 * Altering this values, using it on other hardware, or in geographies
10913 * not intended for resale of the above mentioned Intel adapters has
10914 * not been tested.
10915 *
10916 * Remember to update the table in README.ipw2200 when changing this
10917 * table.
10918 *
10919 */
10920 static const struct libipw_geo ipw_geos[] = {
10921 { /* Restricted */
10922 "---",
10923 .bg_channels = 11,
10924 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10925 {2427, 4}, {2432, 5}, {2437, 6},
10926 {2442, 7}, {2447, 8}, {2452, 9},
10927 {2457, 10}, {2462, 11}},
10928 },
10929
10930 { /* Custom US/Canada */
10931 "ZZF",
10932 .bg_channels = 11,
10933 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10934 {2427, 4}, {2432, 5}, {2437, 6},
10935 {2442, 7}, {2447, 8}, {2452, 9},
10936 {2457, 10}, {2462, 11}},
10937 .a_channels = 8,
10938 .a = {{5180, 36},
10939 {5200, 40},
10940 {5220, 44},
10941 {5240, 48},
10942 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10943 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10944 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10945 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10946 },
10947
10948 { /* Rest of World */
10949 "ZZD",
10950 .bg_channels = 13,
10951 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10952 {2427, 4}, {2432, 5}, {2437, 6},
10953 {2442, 7}, {2447, 8}, {2452, 9},
10954 {2457, 10}, {2462, 11}, {2467, 12},
10955 {2472, 13}},
10956 },
10957
10958 { /* Custom USA & Europe & High */
10959 "ZZA",
10960 .bg_channels = 11,
10961 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10962 {2427, 4}, {2432, 5}, {2437, 6},
10963 {2442, 7}, {2447, 8}, {2452, 9},
10964 {2457, 10}, {2462, 11}},
10965 .a_channels = 13,
10966 .a = {{5180, 36},
10967 {5200, 40},
10968 {5220, 44},
10969 {5240, 48},
10970 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10971 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10972 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10973 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10974 {5745, 149},
10975 {5765, 153},
10976 {5785, 157},
10977 {5805, 161},
10978 {5825, 165}},
10979 },
10980
10981 { /* Custom NA & Europe */
10982 "ZZB",
10983 .bg_channels = 11,
10984 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10985 {2427, 4}, {2432, 5}, {2437, 6},
10986 {2442, 7}, {2447, 8}, {2452, 9},
10987 {2457, 10}, {2462, 11}},
10988 .a_channels = 13,
10989 .a = {{5180, 36},
10990 {5200, 40},
10991 {5220, 44},
10992 {5240, 48},
10993 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10994 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10995 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10996 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10997 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10998 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10999 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11000 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11001 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11002 },
11003
11004 { /* Custom Japan */
11005 "ZZC",
11006 .bg_channels = 11,
11007 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11008 {2427, 4}, {2432, 5}, {2437, 6},
11009 {2442, 7}, {2447, 8}, {2452, 9},
11010 {2457, 10}, {2462, 11}},
11011 .a_channels = 4,
11012 .a = {{5170, 34}, {5190, 38},
11013 {5210, 42}, {5230, 46}},
11014 },
11015
11016 { /* Custom */
11017 "ZZM",
11018 .bg_channels = 11,
11019 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11020 {2427, 4}, {2432, 5}, {2437, 6},
11021 {2442, 7}, {2447, 8}, {2452, 9},
11022 {2457, 10}, {2462, 11}},
11023 },
11024
11025 { /* Europe */
11026 "ZZE",
11027 .bg_channels = 13,
11028 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11029 {2427, 4}, {2432, 5}, {2437, 6},
11030 {2442, 7}, {2447, 8}, {2452, 9},
11031 {2457, 10}, {2462, 11}, {2467, 12},
11032 {2472, 13}},
11033 .a_channels = 19,
11034 .a = {{5180, 36},
11035 {5200, 40},
11036 {5220, 44},
11037 {5240, 48},
11038 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11039 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11040 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11041 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11042 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11043 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11044 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11045 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11046 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11047 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11048 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11049 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11050 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11051 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11052 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11053 },
11054
11055 { /* Custom Japan */
11056 "ZZJ",
11057 .bg_channels = 14,
11058 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11059 {2427, 4}, {2432, 5}, {2437, 6},
11060 {2442, 7}, {2447, 8}, {2452, 9},
11061 {2457, 10}, {2462, 11}, {2467, 12},
11062 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11063 .a_channels = 4,
11064 .a = {{5170, 34}, {5190, 38},
11065 {5210, 42}, {5230, 46}},
11066 },
11067
11068 { /* Rest of World */
11069 "ZZR",
11070 .bg_channels = 14,
11071 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11072 {2427, 4}, {2432, 5}, {2437, 6},
11073 {2442, 7}, {2447, 8}, {2452, 9},
11074 {2457, 10}, {2462, 11}, {2467, 12},
11075 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11076 LIBIPW_CH_PASSIVE_ONLY}},
11077 },
11078
11079 { /* High Band */
11080 "ZZH",
11081 .bg_channels = 13,
11082 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11083 {2427, 4}, {2432, 5}, {2437, 6},
11084 {2442, 7}, {2447, 8}, {2452, 9},
11085 {2457, 10}, {2462, 11},
11086 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11087 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11088 .a_channels = 4,
11089 .a = {{5745, 149}, {5765, 153},
11090 {5785, 157}, {5805, 161}},
11091 },
11092
11093 { /* Custom Europe */
11094 "ZZG",
11095 .bg_channels = 13,
11096 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11097 {2427, 4}, {2432, 5}, {2437, 6},
11098 {2442, 7}, {2447, 8}, {2452, 9},
11099 {2457, 10}, {2462, 11},
11100 {2467, 12}, {2472, 13}},
11101 .a_channels = 4,
11102 .a = {{5180, 36}, {5200, 40},
11103 {5220, 44}, {5240, 48}},
11104 },
11105
11106 { /* Europe */
11107 "ZZK",
11108 .bg_channels = 13,
11109 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11110 {2427, 4}, {2432, 5}, {2437, 6},
11111 {2442, 7}, {2447, 8}, {2452, 9},
11112 {2457, 10}, {2462, 11},
11113 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11114 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11115 .a_channels = 24,
11116 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11117 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11118 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11119 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11120 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11121 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11122 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11123 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11124 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11125 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11126 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11127 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11128 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11129 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11130 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11131 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11132 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11133 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11134 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11135 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11136 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11137 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11138 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11139 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11140 },
11141
11142 { /* Europe */
11143 "ZZL",
11144 .bg_channels = 11,
11145 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11146 {2427, 4}, {2432, 5}, {2437, 6},
11147 {2442, 7}, {2447, 8}, {2452, 9},
11148 {2457, 10}, {2462, 11}},
11149 .a_channels = 13,
11150 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11151 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11152 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11153 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11154 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11155 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11156 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11157 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11158 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11159 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11160 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11161 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11162 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11163 }
11164 };
11165
11166 static void ipw_set_geo(struct ipw_priv *priv)
11167 {
11168 int j;
11169
11170 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11171 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11172 ipw_geos[j].name, 3))
11173 break;
11174 }
11175
11176 if (j == ARRAY_SIZE(ipw_geos)) {
11177 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11178 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11179 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11180 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11181 j = 0;
11182 }
11183
11184 libipw_set_geo(priv->ieee, &ipw_geos[j]);
11185 }
11186
11187 #define MAX_HW_RESTARTS 5
11188 static int ipw_up(struct ipw_priv *priv)
11189 {
11190 int rc, i;
11191
11192 /* Age scan list entries found before suspend */
11193 if (priv->suspend_time) {
11194 libipw_networks_age(priv->ieee, priv->suspend_time);
11195 priv->suspend_time = 0;
11196 }
11197
11198 if (priv->status & STATUS_EXIT_PENDING)
11199 return -EIO;
11200
11201 if (cmdlog && !priv->cmdlog) {
11202 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11203 GFP_KERNEL);
11204 if (priv->cmdlog == NULL) {
11205 IPW_ERROR("Error allocating %d command log entries.\n",
11206 cmdlog);
11207 return -ENOMEM;
11208 } else {
11209 priv->cmdlog_len = cmdlog;
11210 }
11211 }
11212
11213 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11214 /* Load the microcode, firmware, and eeprom.
11215 * Also start the clocks. */
11216 rc = ipw_load(priv);
11217 if (rc) {
11218 IPW_ERROR("Unable to load firmware: %d\n", rc);
11219 return rc;
11220 }
11221
11222 ipw_init_ordinals(priv);
11223 if (!(priv->config & CFG_CUSTOM_MAC))
11224 eeprom_parse_mac(priv, priv->mac_addr);
11225 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11226
11227 ipw_set_geo(priv);
11228
11229 if (priv->status & STATUS_RF_KILL_SW) {
11230 IPW_WARNING("Radio disabled by module parameter.\n");
11231 return 0;
11232 } else if (rf_kill_active(priv)) {
11233 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11234 "Kill switch must be turned off for "
11235 "wireless networking to work.\n");
11236 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11237 return 0;
11238 }
11239
11240 rc = ipw_config(priv);
11241 if (!rc) {
11242 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11243
11244 /* If configure to try and auto-associate, kick
11245 * off a scan. */
11246 schedule_delayed_work(&priv->request_scan, 0);
11247
11248 return 0;
11249 }
11250
11251 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11252 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11253 i, MAX_HW_RESTARTS);
11254
11255 /* We had an error bringing up the hardware, so take it
11256 * all the way back down so we can try again */
11257 ipw_down(priv);
11258 }
11259
11260 /* tried to restart and config the device for as long as our
11261 * patience could withstand */
11262 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11263
11264 return -EIO;
11265 }
11266
11267 static void ipw_bg_up(struct work_struct *work)
11268 {
11269 struct ipw_priv *priv =
11270 container_of(work, struct ipw_priv, up);
11271 mutex_lock(&priv->mutex);
11272 ipw_up(priv);
11273 mutex_unlock(&priv->mutex);
11274 }
11275
11276 static void ipw_deinit(struct ipw_priv *priv)
11277 {
11278 int i;
11279
11280 if (priv->status & STATUS_SCANNING) {
11281 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11282 ipw_abort_scan(priv);
11283 }
11284
11285 if (priv->status & STATUS_ASSOCIATED) {
11286 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11287 ipw_disassociate(priv);
11288 }
11289
11290 ipw_led_shutdown(priv);
11291
11292 /* Wait up to 1s for status to change to not scanning and not
11293 * associated (disassociation can take a while for a ful 802.11
11294 * exchange */
11295 for (i = 1000; i && (priv->status &
11296 (STATUS_DISASSOCIATING |
11297 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11298 udelay(10);
11299
11300 if (priv->status & (STATUS_DISASSOCIATING |
11301 STATUS_ASSOCIATED | STATUS_SCANNING))
11302 IPW_DEBUG_INFO("Still associated or scanning...\n");
11303 else
11304 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11305
11306 /* Attempt to disable the card */
11307 ipw_send_card_disable(priv, 0);
11308
11309 priv->status &= ~STATUS_INIT;
11310 }
11311
11312 static void ipw_down(struct ipw_priv *priv)
11313 {
11314 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11315
11316 priv->status |= STATUS_EXIT_PENDING;
11317
11318 if (ipw_is_init(priv))
11319 ipw_deinit(priv);
11320
11321 /* Wipe out the EXIT_PENDING status bit if we are not actually
11322 * exiting the module */
11323 if (!exit_pending)
11324 priv->status &= ~STATUS_EXIT_PENDING;
11325
11326 /* tell the device to stop sending interrupts */
11327 ipw_disable_interrupts(priv);
11328
11329 /* Clear all bits but the RF Kill */
11330 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11331 netif_carrier_off(priv->net_dev);
11332
11333 ipw_stop_nic(priv);
11334
11335 ipw_led_radio_off(priv);
11336 }
11337
11338 static void ipw_bg_down(struct work_struct *work)
11339 {
11340 struct ipw_priv *priv =
11341 container_of(work, struct ipw_priv, down);
11342 mutex_lock(&priv->mutex);
11343 ipw_down(priv);
11344 mutex_unlock(&priv->mutex);
11345 }
11346
11347 static int ipw_wdev_init(struct net_device *dev)
11348 {
11349 int i, rc = 0;
11350 struct ipw_priv *priv = libipw_priv(dev);
11351 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11352 struct wireless_dev *wdev = &priv->ieee->wdev;
11353
11354 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11355
11356 /* fill-out priv->ieee->bg_band */
11357 if (geo->bg_channels) {
11358 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11359
11360 bg_band->band = NL80211_BAND_2GHZ;
11361 bg_band->n_channels = geo->bg_channels;
11362 bg_band->channels = kcalloc(geo->bg_channels,
11363 sizeof(struct ieee80211_channel),
11364 GFP_KERNEL);
11365 if (!bg_band->channels) {
11366 rc = -ENOMEM;
11367 goto out;
11368 }
11369 /* translate geo->bg to bg_band.channels */
11370 for (i = 0; i < geo->bg_channels; i++) {
11371 bg_band->channels[i].band = NL80211_BAND_2GHZ;
11372 bg_band->channels[i].center_freq = geo->bg[i].freq;
11373 bg_band->channels[i].hw_value = geo->bg[i].channel;
11374 bg_band->channels[i].max_power = geo->bg[i].max_power;
11375 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11376 bg_band->channels[i].flags |=
11377 IEEE80211_CHAN_NO_IR;
11378 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11379 bg_band->channels[i].flags |=
11380 IEEE80211_CHAN_NO_IR;
11381 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11382 bg_band->channels[i].flags |=
11383 IEEE80211_CHAN_RADAR;
11384 /* No equivalent for LIBIPW_CH_80211H_RULES,
11385 LIBIPW_CH_UNIFORM_SPREADING, or
11386 LIBIPW_CH_B_ONLY... */
11387 }
11388 /* point at bitrate info */
11389 bg_band->bitrates = ipw2200_bg_rates;
11390 bg_band->n_bitrates = ipw2200_num_bg_rates;
11391
11392 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11393 }
11394
11395 /* fill-out priv->ieee->a_band */
11396 if (geo->a_channels) {
11397 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11398
11399 a_band->band = NL80211_BAND_5GHZ;
11400 a_band->n_channels = geo->a_channels;
11401 a_band->channels = kcalloc(geo->a_channels,
11402 sizeof(struct ieee80211_channel),
11403 GFP_KERNEL);
11404 if (!a_band->channels) {
11405 rc = -ENOMEM;
11406 goto out;
11407 }
11408 /* translate geo->a to a_band.channels */
11409 for (i = 0; i < geo->a_channels; i++) {
11410 a_band->channels[i].band = NL80211_BAND_5GHZ;
11411 a_band->channels[i].center_freq = geo->a[i].freq;
11412 a_band->channels[i].hw_value = geo->a[i].channel;
11413 a_band->channels[i].max_power = geo->a[i].max_power;
11414 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11415 a_band->channels[i].flags |=
11416 IEEE80211_CHAN_NO_IR;
11417 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11418 a_band->channels[i].flags |=
11419 IEEE80211_CHAN_NO_IR;
11420 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11421 a_band->channels[i].flags |=
11422 IEEE80211_CHAN_RADAR;
11423 /* No equivalent for LIBIPW_CH_80211H_RULES,
11424 LIBIPW_CH_UNIFORM_SPREADING, or
11425 LIBIPW_CH_B_ONLY... */
11426 }
11427 /* point at bitrate info */
11428 a_band->bitrates = ipw2200_a_rates;
11429 a_band->n_bitrates = ipw2200_num_a_rates;
11430
11431 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11432 }
11433
11434 wdev->wiphy->cipher_suites = ipw_cipher_suites;
11435 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11436
11437 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11438
11439 /* With that information in place, we can now register the wiphy... */
11440 if (wiphy_register(wdev->wiphy))
11441 rc = -EIO;
11442 out:
11443 return rc;
11444 }
11445
11446 /* PCI driver stuff */
11447 static const struct pci_device_id card_ids[] = {
11448 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11449 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11450 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11451 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11452 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11453 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11454 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11455 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11456 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11457 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11458 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11459 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11460 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11461 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11462 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11463 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11464 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11465 {PCI_VDEVICE(INTEL, 0x104f), 0},
11466 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11467 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11468 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11469 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11470
11471 /* required last entry */
11472 {0,}
11473 };
11474
11475 MODULE_DEVICE_TABLE(pci, card_ids);
11476
11477 static struct attribute *ipw_sysfs_entries[] = {
11478 &dev_attr_rf_kill.attr,
11479 &dev_attr_direct_dword.attr,
11480 &dev_attr_indirect_byte.attr,
11481 &dev_attr_indirect_dword.attr,
11482 &dev_attr_mem_gpio_reg.attr,
11483 &dev_attr_command_event_reg.attr,
11484 &dev_attr_nic_type.attr,
11485 &dev_attr_status.attr,
11486 &dev_attr_cfg.attr,
11487 &dev_attr_error.attr,
11488 &dev_attr_event_log.attr,
11489 &dev_attr_cmd_log.attr,
11490 &dev_attr_eeprom_delay.attr,
11491 &dev_attr_ucode_version.attr,
11492 &dev_attr_rtc.attr,
11493 &dev_attr_scan_age.attr,
11494 &dev_attr_led.attr,
11495 &dev_attr_speed_scan.attr,
11496 &dev_attr_net_stats.attr,
11497 &dev_attr_channels.attr,
11498 #ifdef CONFIG_IPW2200_PROMISCUOUS
11499 &dev_attr_rtap_iface.attr,
11500 &dev_attr_rtap_filter.attr,
11501 #endif
11502 NULL
11503 };
11504
11505 static struct attribute_group ipw_attribute_group = {
11506 .name = NULL, /* put in device directory */
11507 .attrs = ipw_sysfs_entries,
11508 };
11509
11510 #ifdef CONFIG_IPW2200_PROMISCUOUS
11511 static int ipw_prom_open(struct net_device *dev)
11512 {
11513 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11514 struct ipw_priv *priv = prom_priv->priv;
11515
11516 IPW_DEBUG_INFO("prom dev->open\n");
11517 netif_carrier_off(dev);
11518
11519 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11520 priv->sys_config.accept_all_data_frames = 1;
11521 priv->sys_config.accept_non_directed_frames = 1;
11522 priv->sys_config.accept_all_mgmt_bcpr = 1;
11523 priv->sys_config.accept_all_mgmt_frames = 1;
11524
11525 ipw_send_system_config(priv);
11526 }
11527
11528 return 0;
11529 }
11530
11531 static int ipw_prom_stop(struct net_device *dev)
11532 {
11533 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11534 struct ipw_priv *priv = prom_priv->priv;
11535
11536 IPW_DEBUG_INFO("prom dev->stop\n");
11537
11538 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11539 priv->sys_config.accept_all_data_frames = 0;
11540 priv->sys_config.accept_non_directed_frames = 0;
11541 priv->sys_config.accept_all_mgmt_bcpr = 0;
11542 priv->sys_config.accept_all_mgmt_frames = 0;
11543
11544 ipw_send_system_config(priv);
11545 }
11546
11547 return 0;
11548 }
11549
11550 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11551 struct net_device *dev)
11552 {
11553 IPW_DEBUG_INFO("prom dev->xmit\n");
11554 dev_kfree_skb(skb);
11555 return NETDEV_TX_OK;
11556 }
11557
11558 static const struct net_device_ops ipw_prom_netdev_ops = {
11559 .ndo_open = ipw_prom_open,
11560 .ndo_stop = ipw_prom_stop,
11561 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11562 .ndo_set_mac_address = eth_mac_addr,
11563 .ndo_validate_addr = eth_validate_addr,
11564 };
11565
11566 static int ipw_prom_alloc(struct ipw_priv *priv)
11567 {
11568 int rc = 0;
11569
11570 if (priv->prom_net_dev)
11571 return -EPERM;
11572
11573 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11574 if (priv->prom_net_dev == NULL)
11575 return -ENOMEM;
11576
11577 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11578 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11579 priv->prom_priv->priv = priv;
11580
11581 strcpy(priv->prom_net_dev->name, "rtap%d");
11582 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11583
11584 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11585 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11586
11587 priv->prom_net_dev->min_mtu = 68;
11588 priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11589
11590 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11591 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11592
11593 rc = register_netdev(priv->prom_net_dev);
11594 if (rc) {
11595 free_libipw(priv->prom_net_dev, 1);
11596 priv->prom_net_dev = NULL;
11597 return rc;
11598 }
11599
11600 return 0;
11601 }
11602
11603 static void ipw_prom_free(struct ipw_priv *priv)
11604 {
11605 if (!priv->prom_net_dev)
11606 return;
11607
11608 unregister_netdev(priv->prom_net_dev);
11609 free_libipw(priv->prom_net_dev, 1);
11610
11611 priv->prom_net_dev = NULL;
11612 }
11613
11614 #endif
11615
11616 static const struct net_device_ops ipw_netdev_ops = {
11617 .ndo_open = ipw_net_open,
11618 .ndo_stop = ipw_net_stop,
11619 .ndo_set_rx_mode = ipw_net_set_multicast_list,
11620 .ndo_set_mac_address = ipw_net_set_mac_address,
11621 .ndo_start_xmit = libipw_xmit,
11622 .ndo_validate_addr = eth_validate_addr,
11623 };
11624
11625 static int ipw_pci_probe(struct pci_dev *pdev,
11626 const struct pci_device_id *ent)
11627 {
11628 int err = 0;
11629 struct net_device *net_dev;
11630 void __iomem *base;
11631 u32 length, val;
11632 struct ipw_priv *priv;
11633 int i;
11634
11635 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11636 if (net_dev == NULL) {
11637 err = -ENOMEM;
11638 goto out;
11639 }
11640
11641 priv = libipw_priv(net_dev);
11642 priv->ieee = netdev_priv(net_dev);
11643
11644 priv->net_dev = net_dev;
11645 priv->pci_dev = pdev;
11646 ipw_debug_level = debug;
11647 spin_lock_init(&priv->irq_lock);
11648 spin_lock_init(&priv->lock);
11649 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11650 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11651
11652 mutex_init(&priv->mutex);
11653 if (pci_enable_device(pdev)) {
11654 err = -ENODEV;
11655 goto out_free_libipw;
11656 }
11657
11658 pci_set_master(pdev);
11659
11660 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11661 if (!err)
11662 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11663 if (err) {
11664 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11665 goto out_pci_disable_device;
11666 }
11667
11668 pci_set_drvdata(pdev, priv);
11669
11670 err = pci_request_regions(pdev, DRV_NAME);
11671 if (err)
11672 goto out_pci_disable_device;
11673
11674 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11675 * PCI Tx retries from interfering with C3 CPU state */
11676 pci_read_config_dword(pdev, 0x40, &val);
11677 if ((val & 0x0000ff00) != 0)
11678 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11679
11680 length = pci_resource_len(pdev, 0);
11681 priv->hw_len = length;
11682
11683 base = pci_ioremap_bar(pdev, 0);
11684 if (!base) {
11685 err = -ENODEV;
11686 goto out_pci_release_regions;
11687 }
11688
11689 priv->hw_base = base;
11690 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11691 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11692
11693 err = ipw_setup_deferred_work(priv);
11694 if (err) {
11695 IPW_ERROR("Unable to setup deferred work\n");
11696 goto out_iounmap;
11697 }
11698
11699 ipw_sw_reset(priv, 1);
11700
11701 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11702 if (err) {
11703 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11704 goto out_iounmap;
11705 }
11706
11707 SET_NETDEV_DEV(net_dev, &pdev->dev);
11708
11709 mutex_lock(&priv->mutex);
11710
11711 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11712 priv->ieee->set_security = shim__set_security;
11713 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11714
11715 #ifdef CONFIG_IPW2200_QOS
11716 priv->ieee->is_qos_active = ipw_is_qos_active;
11717 priv->ieee->handle_probe_response = ipw_handle_beacon;
11718 priv->ieee->handle_beacon = ipw_handle_probe_response;
11719 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11720 #endif /* CONFIG_IPW2200_QOS */
11721
11722 priv->ieee->perfect_rssi = -20;
11723 priv->ieee->worst_rssi = -85;
11724
11725 net_dev->netdev_ops = &ipw_netdev_ops;
11726 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11727 net_dev->wireless_data = &priv->wireless_data;
11728 net_dev->wireless_handlers = &ipw_wx_handler_def;
11729 net_dev->ethtool_ops = &ipw_ethtool_ops;
11730
11731 net_dev->min_mtu = 68;
11732 net_dev->max_mtu = LIBIPW_DATA_LEN;
11733
11734 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11735 if (err) {
11736 IPW_ERROR("failed to create sysfs device attributes\n");
11737 mutex_unlock(&priv->mutex);
11738 goto out_release_irq;
11739 }
11740
11741 if (ipw_up(priv)) {
11742 mutex_unlock(&priv->mutex);
11743 err = -EIO;
11744 goto out_remove_sysfs;
11745 }
11746
11747 mutex_unlock(&priv->mutex);
11748
11749 err = ipw_wdev_init(net_dev);
11750 if (err) {
11751 IPW_ERROR("failed to register wireless device\n");
11752 goto out_remove_sysfs;
11753 }
11754
11755 err = register_netdev(net_dev);
11756 if (err) {
11757 IPW_ERROR("failed to register network device\n");
11758 goto out_unregister_wiphy;
11759 }
11760
11761 #ifdef CONFIG_IPW2200_PROMISCUOUS
11762 if (rtap_iface) {
11763 err = ipw_prom_alloc(priv);
11764 if (err) {
11765 IPW_ERROR("Failed to register promiscuous network "
11766 "device (error %d).\n", err);
11767 unregister_netdev(priv->net_dev);
11768 goto out_unregister_wiphy;
11769 }
11770 }
11771 #endif
11772
11773 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11774 "channels, %d 802.11a channels)\n",
11775 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11776 priv->ieee->geo.a_channels);
11777
11778 return 0;
11779
11780 out_unregister_wiphy:
11781 wiphy_unregister(priv->ieee->wdev.wiphy);
11782 kfree(priv->ieee->a_band.channels);
11783 kfree(priv->ieee->bg_band.channels);
11784 out_remove_sysfs:
11785 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11786 out_release_irq:
11787 free_irq(pdev->irq, priv);
11788 out_iounmap:
11789 iounmap(priv->hw_base);
11790 out_pci_release_regions:
11791 pci_release_regions(pdev);
11792 out_pci_disable_device:
11793 pci_disable_device(pdev);
11794 out_free_libipw:
11795 free_libipw(priv->net_dev, 0);
11796 out:
11797 return err;
11798 }
11799
11800 static void ipw_pci_remove(struct pci_dev *pdev)
11801 {
11802 struct ipw_priv *priv = pci_get_drvdata(pdev);
11803 struct list_head *p, *q;
11804 int i;
11805
11806 if (!priv)
11807 return;
11808
11809 mutex_lock(&priv->mutex);
11810
11811 priv->status |= STATUS_EXIT_PENDING;
11812 ipw_down(priv);
11813 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11814
11815 mutex_unlock(&priv->mutex);
11816
11817 unregister_netdev(priv->net_dev);
11818
11819 if (priv->rxq) {
11820 ipw_rx_queue_free(priv, priv->rxq);
11821 priv->rxq = NULL;
11822 }
11823 ipw_tx_queue_free(priv);
11824
11825 if (priv->cmdlog) {
11826 kfree(priv->cmdlog);
11827 priv->cmdlog = NULL;
11828 }
11829
11830 /* make sure all works are inactive */
11831 cancel_delayed_work_sync(&priv->adhoc_check);
11832 cancel_work_sync(&priv->associate);
11833 cancel_work_sync(&priv->disassociate);
11834 cancel_work_sync(&priv->system_config);
11835 cancel_work_sync(&priv->rx_replenish);
11836 cancel_work_sync(&priv->adapter_restart);
11837 cancel_delayed_work_sync(&priv->rf_kill);
11838 cancel_work_sync(&priv->up);
11839 cancel_work_sync(&priv->down);
11840 cancel_delayed_work_sync(&priv->request_scan);
11841 cancel_delayed_work_sync(&priv->request_direct_scan);
11842 cancel_delayed_work_sync(&priv->request_passive_scan);
11843 cancel_delayed_work_sync(&priv->scan_event);
11844 cancel_delayed_work_sync(&priv->gather_stats);
11845 cancel_work_sync(&priv->abort_scan);
11846 cancel_work_sync(&priv->roam);
11847 cancel_delayed_work_sync(&priv->scan_check);
11848 cancel_work_sync(&priv->link_up);
11849 cancel_work_sync(&priv->link_down);
11850 cancel_delayed_work_sync(&priv->led_link_on);
11851 cancel_delayed_work_sync(&priv->led_link_off);
11852 cancel_delayed_work_sync(&priv->led_act_off);
11853 cancel_work_sync(&priv->merge_networks);
11854
11855 /* Free MAC hash list for ADHOC */
11856 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11857 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11858 list_del(p);
11859 kfree(list_entry(p, struct ipw_ibss_seq, list));
11860 }
11861 }
11862
11863 kfree(priv->error);
11864 priv->error = NULL;
11865
11866 #ifdef CONFIG_IPW2200_PROMISCUOUS
11867 ipw_prom_free(priv);
11868 #endif
11869
11870 free_irq(pdev->irq, priv);
11871 iounmap(priv->hw_base);
11872 pci_release_regions(pdev);
11873 pci_disable_device(pdev);
11874 /* wiphy_unregister needs to be here, before free_libipw */
11875 wiphy_unregister(priv->ieee->wdev.wiphy);
11876 kfree(priv->ieee->a_band.channels);
11877 kfree(priv->ieee->bg_band.channels);
11878 free_libipw(priv->net_dev, 0);
11879 free_firmware();
11880 }
11881
11882 #ifdef CONFIG_PM
11883 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11884 {
11885 struct ipw_priv *priv = pci_get_drvdata(pdev);
11886 struct net_device *dev = priv->net_dev;
11887
11888 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11889
11890 /* Take down the device; powers it off, etc. */
11891 ipw_down(priv);
11892
11893 /* Remove the PRESENT state of the device */
11894 netif_device_detach(dev);
11895
11896 pci_save_state(pdev);
11897 pci_disable_device(pdev);
11898 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11899
11900 priv->suspend_at = get_seconds();
11901
11902 return 0;
11903 }
11904
11905 static int ipw_pci_resume(struct pci_dev *pdev)
11906 {
11907 struct ipw_priv *priv = pci_get_drvdata(pdev);
11908 struct net_device *dev = priv->net_dev;
11909 int err;
11910 u32 val;
11911
11912 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11913
11914 pci_set_power_state(pdev, PCI_D0);
11915 err = pci_enable_device(pdev);
11916 if (err) {
11917 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11918 dev->name);
11919 return err;
11920 }
11921 pci_restore_state(pdev);
11922
11923 /*
11924 * Suspend/Resume resets the PCI configuration space, so we have to
11925 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11926 * from interfering with C3 CPU state. pci_restore_state won't help
11927 * here since it only restores the first 64 bytes pci config header.
11928 */
11929 pci_read_config_dword(pdev, 0x40, &val);
11930 if ((val & 0x0000ff00) != 0)
11931 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11932
11933 /* Set the device back into the PRESENT state; this will also wake
11934 * the queue of needed */
11935 netif_device_attach(dev);
11936
11937 priv->suspend_time = get_seconds() - priv->suspend_at;
11938
11939 /* Bring the device back up */
11940 schedule_work(&priv->up);
11941
11942 return 0;
11943 }
11944 #endif
11945
11946 static void ipw_pci_shutdown(struct pci_dev *pdev)
11947 {
11948 struct ipw_priv *priv = pci_get_drvdata(pdev);
11949
11950 /* Take down the device; powers it off, etc. */
11951 ipw_down(priv);
11952
11953 pci_disable_device(pdev);
11954 }
11955
11956 /* driver initialization stuff */
11957 static struct pci_driver ipw_driver = {
11958 .name = DRV_NAME,
11959 .id_table = card_ids,
11960 .probe = ipw_pci_probe,
11961 .remove = ipw_pci_remove,
11962 #ifdef CONFIG_PM
11963 .suspend = ipw_pci_suspend,
11964 .resume = ipw_pci_resume,
11965 #endif
11966 .shutdown = ipw_pci_shutdown,
11967 };
11968
11969 static int __init ipw_init(void)
11970 {
11971 int ret;
11972
11973 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11974 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11975
11976 ret = pci_register_driver(&ipw_driver);
11977 if (ret) {
11978 IPW_ERROR("Unable to initialize PCI module\n");
11979 return ret;
11980 }
11981
11982 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11983 if (ret) {
11984 IPW_ERROR("Unable to create driver sysfs file\n");
11985 pci_unregister_driver(&ipw_driver);
11986 return ret;
11987 }
11988
11989 return ret;
11990 }
11991
11992 static void __exit ipw_exit(void)
11993 {
11994 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11995 pci_unregister_driver(&ipw_driver);
11996 }
11997
11998 module_param(disable, int, 0444);
11999 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12000
12001 module_param(associate, int, 0444);
12002 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12003
12004 module_param(auto_create, int, 0444);
12005 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12006
12007 module_param_named(led, led_support, int, 0444);
12008 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12009
12010 module_param(debug, int, 0444);
12011 MODULE_PARM_DESC(debug, "debug output mask");
12012
12013 module_param_named(channel, default_channel, int, 0444);
12014 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12015
12016 #ifdef CONFIG_IPW2200_PROMISCUOUS
12017 module_param(rtap_iface, int, 0444);
12018 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12019 #endif
12020
12021 #ifdef CONFIG_IPW2200_QOS
12022 module_param(qos_enable, int, 0444);
12023 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12024
12025 module_param(qos_burst_enable, int, 0444);
12026 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12027
12028 module_param(qos_no_ack_mask, int, 0444);
12029 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12030
12031 module_param(burst_duration_CCK, int, 0444);
12032 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12033
12034 module_param(burst_duration_OFDM, int, 0444);
12035 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12036 #endif /* CONFIG_IPW2200_QOS */
12037
12038 #ifdef CONFIG_IPW2200_MONITOR
12039 module_param_named(mode, network_mode, int, 0444);
12040 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12041 #else
12042 module_param_named(mode, network_mode, int, 0444);
12043 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12044 #endif
12045
12046 module_param(bt_coexist, int, 0444);
12047 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12048
12049 module_param(hwcrypto, int, 0444);
12050 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12051
12052 module_param(cmdlog, int, 0444);
12053 MODULE_PARM_DESC(cmdlog,
12054 "allocate a ring buffer for logging firmware commands");
12055
12056 module_param(roaming, int, 0444);
12057 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12058
12059 module_param(antenna, int, 0444);
12060 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12061
12062 module_exit(ipw_exit);
12063 module_init(ipw_init);