]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/wireless/intel/iwlegacy/3945.c
NFC: pn533: handle interrupted commands in pn533_recv_frame
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / wireless / intel / iwlegacy / 3945.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * Intel Linux Wireless <ilw@linux.intel.com>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 *****************************************************************************/
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/pci.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <linux/sched.h>
34 #include <linux/skbuff.h>
35 #include <linux/netdevice.h>
36 #include <linux/firmware.h>
37 #include <linux/etherdevice.h>
38 #include <asm/unaligned.h>
39 #include <net/mac80211.h>
40
41 #include "common.h"
42 #include "3945.h"
43
44 /* Send led command */
45 static int
46 il3945_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
47 {
48 struct il_host_cmd cmd = {
49 .id = C_LEDS,
50 .len = sizeof(struct il_led_cmd),
51 .data = led_cmd,
52 .flags = CMD_ASYNC,
53 .callback = NULL,
54 };
55
56 return il_send_cmd(il, &cmd);
57 }
58
59 #define IL_DECLARE_RATE_INFO(r, ip, in, rp, rn, pp, np) \
60 [RATE_##r##M_IDX] = { RATE_##r##M_PLCP, \
61 RATE_##r##M_IEEE, \
62 RATE_##ip##M_IDX, \
63 RATE_##in##M_IDX, \
64 RATE_##rp##M_IDX, \
65 RATE_##rn##M_IDX, \
66 RATE_##pp##M_IDX, \
67 RATE_##np##M_IDX, \
68 RATE_##r##M_IDX_TBL, \
69 RATE_##ip##M_IDX_TBL }
70
71 /*
72 * Parameter order:
73 * rate, prev rate, next rate, prev tgg rate, next tgg rate
74 *
75 * If there isn't a valid next or previous rate then INV is used which
76 * maps to RATE_INVALID
77 *
78 */
79 const struct il3945_rate_info il3945_rates[RATE_COUNT_3945] = {
80 IL_DECLARE_RATE_INFO(1, INV, 2, INV, 2, INV, 2), /* 1mbps */
81 IL_DECLARE_RATE_INFO(2, 1, 5, 1, 5, 1, 5), /* 2mbps */
82 IL_DECLARE_RATE_INFO(5, 2, 6, 2, 11, 2, 11), /*5.5mbps */
83 IL_DECLARE_RATE_INFO(11, 9, 12, 5, 12, 5, 18), /* 11mbps */
84 IL_DECLARE_RATE_INFO(6, 5, 9, 5, 11, 5, 11), /* 6mbps */
85 IL_DECLARE_RATE_INFO(9, 6, 11, 5, 11, 5, 11), /* 9mbps */
86 IL_DECLARE_RATE_INFO(12, 11, 18, 11, 18, 11, 18), /* 12mbps */
87 IL_DECLARE_RATE_INFO(18, 12, 24, 12, 24, 11, 24), /* 18mbps */
88 IL_DECLARE_RATE_INFO(24, 18, 36, 18, 36, 18, 36), /* 24mbps */
89 IL_DECLARE_RATE_INFO(36, 24, 48, 24, 48, 24, 48), /* 36mbps */
90 IL_DECLARE_RATE_INFO(48, 36, 54, 36, 54, 36, 54), /* 48mbps */
91 IL_DECLARE_RATE_INFO(54, 48, INV, 48, INV, 48, INV), /* 54mbps */
92 };
93
94 static inline u8
95 il3945_get_prev_ieee_rate(u8 rate_idx)
96 {
97 u8 rate = il3945_rates[rate_idx].prev_ieee;
98
99 if (rate == RATE_INVALID)
100 rate = rate_idx;
101 return rate;
102 }
103
104 /* 1 = enable the il3945_disable_events() function */
105 #define IL_EVT_DISABLE (0)
106 #define IL_EVT_DISABLE_SIZE (1532/32)
107
108 /**
109 * il3945_disable_events - Disable selected events in uCode event log
110 *
111 * Disable an event by writing "1"s into "disable"
112 * bitmap in SRAM. Bit position corresponds to Event # (id/type).
113 * Default values of 0 enable uCode events to be logged.
114 * Use for only special debugging. This function is just a placeholder as-is,
115 * you'll need to provide the special bits! ...
116 * ... and set IL_EVT_DISABLE to 1. */
117 void
118 il3945_disable_events(struct il_priv *il)
119 {
120 int i;
121 u32 base; /* SRAM address of event log header */
122 u32 disable_ptr; /* SRAM address of event-disable bitmap array */
123 u32 array_size; /* # of u32 entries in array */
124 static const u32 evt_disable[IL_EVT_DISABLE_SIZE] = {
125 0x00000000, /* 31 - 0 Event id numbers */
126 0x00000000, /* 63 - 32 */
127 0x00000000, /* 95 - 64 */
128 0x00000000, /* 127 - 96 */
129 0x00000000, /* 159 - 128 */
130 0x00000000, /* 191 - 160 */
131 0x00000000, /* 223 - 192 */
132 0x00000000, /* 255 - 224 */
133 0x00000000, /* 287 - 256 */
134 0x00000000, /* 319 - 288 */
135 0x00000000, /* 351 - 320 */
136 0x00000000, /* 383 - 352 */
137 0x00000000, /* 415 - 384 */
138 0x00000000, /* 447 - 416 */
139 0x00000000, /* 479 - 448 */
140 0x00000000, /* 511 - 480 */
141 0x00000000, /* 543 - 512 */
142 0x00000000, /* 575 - 544 */
143 0x00000000, /* 607 - 576 */
144 0x00000000, /* 639 - 608 */
145 0x00000000, /* 671 - 640 */
146 0x00000000, /* 703 - 672 */
147 0x00000000, /* 735 - 704 */
148 0x00000000, /* 767 - 736 */
149 0x00000000, /* 799 - 768 */
150 0x00000000, /* 831 - 800 */
151 0x00000000, /* 863 - 832 */
152 0x00000000, /* 895 - 864 */
153 0x00000000, /* 927 - 896 */
154 0x00000000, /* 959 - 928 */
155 0x00000000, /* 991 - 960 */
156 0x00000000, /* 1023 - 992 */
157 0x00000000, /* 1055 - 1024 */
158 0x00000000, /* 1087 - 1056 */
159 0x00000000, /* 1119 - 1088 */
160 0x00000000, /* 1151 - 1120 */
161 0x00000000, /* 1183 - 1152 */
162 0x00000000, /* 1215 - 1184 */
163 0x00000000, /* 1247 - 1216 */
164 0x00000000, /* 1279 - 1248 */
165 0x00000000, /* 1311 - 1280 */
166 0x00000000, /* 1343 - 1312 */
167 0x00000000, /* 1375 - 1344 */
168 0x00000000, /* 1407 - 1376 */
169 0x00000000, /* 1439 - 1408 */
170 0x00000000, /* 1471 - 1440 */
171 0x00000000, /* 1503 - 1472 */
172 };
173
174 base = le32_to_cpu(il->card_alive.log_event_table_ptr);
175 if (!il3945_hw_valid_rtc_data_addr(base)) {
176 IL_ERR("Invalid event log pointer 0x%08X\n", base);
177 return;
178 }
179
180 disable_ptr = il_read_targ_mem(il, base + (4 * sizeof(u32)));
181 array_size = il_read_targ_mem(il, base + (5 * sizeof(u32)));
182
183 if (IL_EVT_DISABLE && array_size == IL_EVT_DISABLE_SIZE) {
184 D_INFO("Disabling selected uCode log events at 0x%x\n",
185 disable_ptr);
186 for (i = 0; i < IL_EVT_DISABLE_SIZE; i++)
187 il_write_targ_mem(il, disable_ptr + (i * sizeof(u32)),
188 evt_disable[i]);
189
190 } else {
191 D_INFO("Selected uCode log events may be disabled\n");
192 D_INFO(" by writing \"1\"s into disable bitmap\n");
193 D_INFO(" in SRAM at 0x%x, size %d u32s\n", disable_ptr,
194 array_size);
195 }
196
197 }
198
199 static int
200 il3945_hwrate_to_plcp_idx(u8 plcp)
201 {
202 int idx;
203
204 for (idx = 0; idx < RATE_COUNT_3945; idx++)
205 if (il3945_rates[idx].plcp == plcp)
206 return idx;
207 return -1;
208 }
209
210 #ifdef CONFIG_IWLEGACY_DEBUG
211 #define TX_STATUS_ENTRY(x) case TX_3945_STATUS_FAIL_ ## x: return #x
212
213 static const char *
214 il3945_get_tx_fail_reason(u32 status)
215 {
216 switch (status & TX_STATUS_MSK) {
217 case TX_3945_STATUS_SUCCESS:
218 return "SUCCESS";
219 TX_STATUS_ENTRY(SHORT_LIMIT);
220 TX_STATUS_ENTRY(LONG_LIMIT);
221 TX_STATUS_ENTRY(FIFO_UNDERRUN);
222 TX_STATUS_ENTRY(MGMNT_ABORT);
223 TX_STATUS_ENTRY(NEXT_FRAG);
224 TX_STATUS_ENTRY(LIFE_EXPIRE);
225 TX_STATUS_ENTRY(DEST_PS);
226 TX_STATUS_ENTRY(ABORTED);
227 TX_STATUS_ENTRY(BT_RETRY);
228 TX_STATUS_ENTRY(STA_INVALID);
229 TX_STATUS_ENTRY(FRAG_DROPPED);
230 TX_STATUS_ENTRY(TID_DISABLE);
231 TX_STATUS_ENTRY(FRAME_FLUSHED);
232 TX_STATUS_ENTRY(INSUFFICIENT_CF_POLL);
233 TX_STATUS_ENTRY(TX_LOCKED);
234 TX_STATUS_ENTRY(NO_BEACON_ON_RADAR);
235 }
236
237 return "UNKNOWN";
238 }
239 #else
240 static inline const char *
241 il3945_get_tx_fail_reason(u32 status)
242 {
243 return "";
244 }
245 #endif
246
247 /*
248 * get ieee prev rate from rate scale table.
249 * for A and B mode we need to overright prev
250 * value
251 */
252 int
253 il3945_rs_next_rate(struct il_priv *il, int rate)
254 {
255 int next_rate = il3945_get_prev_ieee_rate(rate);
256
257 switch (il->band) {
258 case IEEE80211_BAND_5GHZ:
259 if (rate == RATE_12M_IDX)
260 next_rate = RATE_9M_IDX;
261 else if (rate == RATE_6M_IDX)
262 next_rate = RATE_6M_IDX;
263 break;
264 case IEEE80211_BAND_2GHZ:
265 if (!(il->_3945.sta_supp_rates & IL_OFDM_RATES_MASK) &&
266 il_is_associated(il)) {
267 if (rate == RATE_11M_IDX)
268 next_rate = RATE_5M_IDX;
269 }
270 break;
271
272 default:
273 break;
274 }
275
276 return next_rate;
277 }
278
279 /**
280 * il3945_tx_queue_reclaim - Reclaim Tx queue entries already Tx'd
281 *
282 * When FW advances 'R' idx, all entries between old and new 'R' idx
283 * need to be reclaimed. As result, some free space forms. If there is
284 * enough free space (> low mark), wake the stack that feeds us.
285 */
286 static void
287 il3945_tx_queue_reclaim(struct il_priv *il, int txq_id, int idx)
288 {
289 struct il_tx_queue *txq = &il->txq[txq_id];
290 struct il_queue *q = &txq->q;
291 struct sk_buff *skb;
292
293 BUG_ON(txq_id == IL39_CMD_QUEUE_NUM);
294
295 for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
296 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
297
298 skb = txq->skbs[txq->q.read_ptr];
299 ieee80211_tx_status_irqsafe(il->hw, skb);
300 txq->skbs[txq->q.read_ptr] = NULL;
301 il->ops->txq_free_tfd(il, txq);
302 }
303
304 if (il_queue_space(q) > q->low_mark && txq_id >= 0 &&
305 txq_id != IL39_CMD_QUEUE_NUM && il->mac80211_registered)
306 il_wake_queue(il, txq);
307 }
308
309 /**
310 * il3945_hdl_tx - Handle Tx response
311 */
312 static void
313 il3945_hdl_tx(struct il_priv *il, struct il_rx_buf *rxb)
314 {
315 struct il_rx_pkt *pkt = rxb_addr(rxb);
316 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
317 int txq_id = SEQ_TO_QUEUE(sequence);
318 int idx = SEQ_TO_IDX(sequence);
319 struct il_tx_queue *txq = &il->txq[txq_id];
320 struct ieee80211_tx_info *info;
321 struct il3945_tx_resp *tx_resp = (void *)&pkt->u.raw[0];
322 u32 status = le32_to_cpu(tx_resp->status);
323 int rate_idx;
324 int fail;
325
326 if (idx >= txq->q.n_bd || il_queue_used(&txq->q, idx) == 0) {
327 IL_ERR("Read idx for DMA queue txq_id (%d) idx %d "
328 "is out of range [0-%d] %d %d\n", txq_id, idx,
329 txq->q.n_bd, txq->q.write_ptr, txq->q.read_ptr);
330 return;
331 }
332
333 /*
334 * Firmware will not transmit frame on passive channel, if it not yet
335 * received some valid frame on that channel. When this error happen
336 * we have to wait until firmware will unblock itself i.e. when we
337 * note received beacon or other frame. We unblock queues in
338 * il3945_pass_packet_to_mac80211 or in il_mac_bss_info_changed.
339 */
340 if (unlikely((status & TX_STATUS_MSK) == TX_STATUS_FAIL_PASSIVE_NO_RX) &&
341 il->iw_mode == NL80211_IFTYPE_STATION) {
342 il_stop_queues_by_reason(il, IL_STOP_REASON_PASSIVE);
343 D_INFO("Stopped queues - RX waiting on passive channel\n");
344 }
345
346 txq->time_stamp = jiffies;
347 info = IEEE80211_SKB_CB(txq->skbs[txq->q.read_ptr]);
348 ieee80211_tx_info_clear_status(info);
349
350 /* Fill the MRR chain with some info about on-chip retransmissions */
351 rate_idx = il3945_hwrate_to_plcp_idx(tx_resp->rate);
352 if (info->band == IEEE80211_BAND_5GHZ)
353 rate_idx -= IL_FIRST_OFDM_RATE;
354
355 fail = tx_resp->failure_frame;
356
357 info->status.rates[0].idx = rate_idx;
358 info->status.rates[0].count = fail + 1; /* add final attempt */
359
360 /* tx_status->rts_retry_count = tx_resp->failure_rts; */
361 info->flags |=
362 ((status & TX_STATUS_MSK) ==
363 TX_STATUS_SUCCESS) ? IEEE80211_TX_STAT_ACK : 0;
364
365 D_TX("Tx queue %d Status %s (0x%08x) plcp rate %d retries %d\n", txq_id,
366 il3945_get_tx_fail_reason(status), status, tx_resp->rate,
367 tx_resp->failure_frame);
368
369 D_TX_REPLY("Tx queue reclaim %d\n", idx);
370 il3945_tx_queue_reclaim(il, txq_id, idx);
371
372 if (status & TX_ABORT_REQUIRED_MSK)
373 IL_ERR("TODO: Implement Tx ABORT REQUIRED!!!\n");
374 }
375
376 /*****************************************************************************
377 *
378 * Intel PRO/Wireless 3945ABG/BG Network Connection
379 *
380 * RX handler implementations
381 *
382 *****************************************************************************/
383 #ifdef CONFIG_IWLEGACY_DEBUGFS
384 static void
385 il3945_accumulative_stats(struct il_priv *il, __le32 * stats)
386 {
387 int i;
388 __le32 *prev_stats;
389 u32 *accum_stats;
390 u32 *delta, *max_delta;
391
392 prev_stats = (__le32 *) &il->_3945.stats;
393 accum_stats = (u32 *) &il->_3945.accum_stats;
394 delta = (u32 *) &il->_3945.delta_stats;
395 max_delta = (u32 *) &il->_3945.max_delta;
396
397 for (i = sizeof(__le32); i < sizeof(struct il3945_notif_stats);
398 i +=
399 sizeof(__le32), stats++, prev_stats++, delta++, max_delta++,
400 accum_stats++) {
401 if (le32_to_cpu(*stats) > le32_to_cpu(*prev_stats)) {
402 *delta =
403 (le32_to_cpu(*stats) - le32_to_cpu(*prev_stats));
404 *accum_stats += *delta;
405 if (*delta > *max_delta)
406 *max_delta = *delta;
407 }
408 }
409
410 /* reset accumulative stats for "no-counter" type stats */
411 il->_3945.accum_stats.general.temperature =
412 il->_3945.stats.general.temperature;
413 il->_3945.accum_stats.general.ttl_timestamp =
414 il->_3945.stats.general.ttl_timestamp;
415 }
416 #endif
417
418 void
419 il3945_hdl_stats(struct il_priv *il, struct il_rx_buf *rxb)
420 {
421 struct il_rx_pkt *pkt = rxb_addr(rxb);
422
423 D_RX("Statistics notification received (%d vs %d).\n",
424 (int)sizeof(struct il3945_notif_stats),
425 le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK);
426 #ifdef CONFIG_IWLEGACY_DEBUGFS
427 il3945_accumulative_stats(il, (__le32 *) &pkt->u.raw);
428 #endif
429
430 memcpy(&il->_3945.stats, pkt->u.raw, sizeof(il->_3945.stats));
431 }
432
433 void
434 il3945_hdl_c_stats(struct il_priv *il, struct il_rx_buf *rxb)
435 {
436 struct il_rx_pkt *pkt = rxb_addr(rxb);
437 __le32 *flag = (__le32 *) &pkt->u.raw;
438
439 if (le32_to_cpu(*flag) & UCODE_STATS_CLEAR_MSK) {
440 #ifdef CONFIG_IWLEGACY_DEBUGFS
441 memset(&il->_3945.accum_stats, 0,
442 sizeof(struct il3945_notif_stats));
443 memset(&il->_3945.delta_stats, 0,
444 sizeof(struct il3945_notif_stats));
445 memset(&il->_3945.max_delta, 0,
446 sizeof(struct il3945_notif_stats));
447 #endif
448 D_RX("Statistics have been cleared\n");
449 }
450 il3945_hdl_stats(il, rxb);
451 }
452
453 /******************************************************************************
454 *
455 * Misc. internal state and helper functions
456 *
457 ******************************************************************************/
458
459 /* This is necessary only for a number of stats, see the caller. */
460 static int
461 il3945_is_network_packet(struct il_priv *il, struct ieee80211_hdr *header)
462 {
463 /* Filter incoming packets to determine if they are targeted toward
464 * this network, discarding packets coming from ourselves */
465 switch (il->iw_mode) {
466 case NL80211_IFTYPE_ADHOC: /* Header: Dest. | Source | BSSID */
467 /* packets to our IBSS update information */
468 return ether_addr_equal_64bits(header->addr3, il->bssid);
469 case NL80211_IFTYPE_STATION: /* Header: Dest. | AP{BSSID} | Source */
470 /* packets to our IBSS update information */
471 return ether_addr_equal_64bits(header->addr2, il->bssid);
472 default:
473 return 1;
474 }
475 }
476
477 #define SMALL_PACKET_SIZE 256
478
479 static void
480 il3945_pass_packet_to_mac80211(struct il_priv *il, struct il_rx_buf *rxb,
481 struct ieee80211_rx_status *stats)
482 {
483 struct il_rx_pkt *pkt = rxb_addr(rxb);
484 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)IL_RX_DATA(pkt);
485 struct il3945_rx_frame_hdr *rx_hdr = IL_RX_HDR(pkt);
486 struct il3945_rx_frame_end *rx_end = IL_RX_END(pkt);
487 u32 len = le16_to_cpu(rx_hdr->len);
488 struct sk_buff *skb;
489 __le16 fc = hdr->frame_control;
490 u32 fraglen = PAGE_SIZE << il->hw_params.rx_page_order;
491
492 /* We received data from the HW, so stop the watchdog */
493 if (unlikely(len + IL39_RX_FRAME_SIZE > fraglen)) {
494 D_DROP("Corruption detected!\n");
495 return;
496 }
497
498 /* We only process data packets if the interface is open */
499 if (unlikely(!il->is_open)) {
500 D_DROP("Dropping packet while interface is not open.\n");
501 return;
502 }
503
504 if (unlikely(test_bit(IL_STOP_REASON_PASSIVE, &il->stop_reason))) {
505 il_wake_queues_by_reason(il, IL_STOP_REASON_PASSIVE);
506 D_INFO("Woke queues - frame received on passive channel\n");
507 }
508
509 skb = dev_alloc_skb(SMALL_PACKET_SIZE);
510 if (!skb) {
511 IL_ERR("dev_alloc_skb failed\n");
512 return;
513 }
514
515 if (!il3945_mod_params.sw_crypto)
516 il_set_decrypted_flag(il, (struct ieee80211_hdr *)pkt,
517 le32_to_cpu(rx_end->status), stats);
518
519 /* If frame is small enough to fit into skb->head, copy it
520 * and do not consume a full page
521 */
522 if (len <= SMALL_PACKET_SIZE) {
523 memcpy(skb_put(skb, len), rx_hdr->payload, len);
524 } else {
525 skb_add_rx_frag(skb, 0, rxb->page,
526 (void *)rx_hdr->payload - (void *)pkt, len,
527 fraglen);
528 il->alloc_rxb_page--;
529 rxb->page = NULL;
530 }
531 il_update_stats(il, false, fc, len);
532 memcpy(IEEE80211_SKB_RXCB(skb), stats, sizeof(*stats));
533
534 ieee80211_rx(il->hw, skb);
535 }
536
537 #define IL_DELAY_NEXT_SCAN_AFTER_ASSOC (HZ*6)
538
539 static void
540 il3945_hdl_rx(struct il_priv *il, struct il_rx_buf *rxb)
541 {
542 struct ieee80211_hdr *header;
543 struct ieee80211_rx_status rx_status = {};
544 struct il_rx_pkt *pkt = rxb_addr(rxb);
545 struct il3945_rx_frame_stats *rx_stats = IL_RX_STATS(pkt);
546 struct il3945_rx_frame_hdr *rx_hdr = IL_RX_HDR(pkt);
547 struct il3945_rx_frame_end *rx_end = IL_RX_END(pkt);
548 u16 rx_stats_sig_avg __maybe_unused = le16_to_cpu(rx_stats->sig_avg);
549 u16 rx_stats_noise_diff __maybe_unused =
550 le16_to_cpu(rx_stats->noise_diff);
551 u8 network_packet;
552
553 rx_status.flag = 0;
554 rx_status.mactime = le64_to_cpu(rx_end->timestamp);
555 rx_status.band =
556 (rx_hdr->
557 phy_flags & RX_RES_PHY_FLAGS_BAND_24_MSK) ? IEEE80211_BAND_2GHZ :
558 IEEE80211_BAND_5GHZ;
559 rx_status.freq =
560 ieee80211_channel_to_frequency(le16_to_cpu(rx_hdr->channel),
561 rx_status.band);
562
563 rx_status.rate_idx = il3945_hwrate_to_plcp_idx(rx_hdr->rate);
564 if (rx_status.band == IEEE80211_BAND_5GHZ)
565 rx_status.rate_idx -= IL_FIRST_OFDM_RATE;
566
567 rx_status.antenna =
568 (le16_to_cpu(rx_hdr->phy_flags) & RX_RES_PHY_FLAGS_ANTENNA_MSK) >>
569 4;
570
571 /* set the preamble flag if appropriate */
572 if (rx_hdr->phy_flags & RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK)
573 rx_status.flag |= RX_FLAG_SHORTPRE;
574
575 if ((unlikely(rx_stats->phy_count > 20))) {
576 D_DROP("dsp size out of range [0,20]: %d\n",
577 rx_stats->phy_count);
578 return;
579 }
580
581 if (!(rx_end->status & RX_RES_STATUS_NO_CRC32_ERROR) ||
582 !(rx_end->status & RX_RES_STATUS_NO_RXE_OVERFLOW)) {
583 D_RX("Bad CRC or FIFO: 0x%08X.\n", rx_end->status);
584 return;
585 }
586
587 /* Convert 3945's rssi indicator to dBm */
588 rx_status.signal = rx_stats->rssi - IL39_RSSI_OFFSET;
589
590 D_STATS("Rssi %d sig_avg %d noise_diff %d\n", rx_status.signal,
591 rx_stats_sig_avg, rx_stats_noise_diff);
592
593 header = (struct ieee80211_hdr *)IL_RX_DATA(pkt);
594
595 network_packet = il3945_is_network_packet(il, header);
596
597 D_STATS("[%c] %d RSSI:%d Signal:%u, Rate:%u\n",
598 network_packet ? '*' : ' ', le16_to_cpu(rx_hdr->channel),
599 rx_status.signal, rx_status.signal, rx_status.rate_idx);
600
601 if (network_packet) {
602 il->_3945.last_beacon_time =
603 le32_to_cpu(rx_end->beacon_timestamp);
604 il->_3945.last_tsf = le64_to_cpu(rx_end->timestamp);
605 il->_3945.last_rx_rssi = rx_status.signal;
606 }
607
608 il3945_pass_packet_to_mac80211(il, rxb, &rx_status);
609 }
610
611 int
612 il3945_hw_txq_attach_buf_to_tfd(struct il_priv *il, struct il_tx_queue *txq,
613 dma_addr_t addr, u16 len, u8 reset, u8 pad)
614 {
615 int count;
616 struct il_queue *q;
617 struct il3945_tfd *tfd, *tfd_tmp;
618
619 q = &txq->q;
620 tfd_tmp = (struct il3945_tfd *)txq->tfds;
621 tfd = &tfd_tmp[q->write_ptr];
622
623 if (reset)
624 memset(tfd, 0, sizeof(*tfd));
625
626 count = TFD_CTL_COUNT_GET(le32_to_cpu(tfd->control_flags));
627
628 if (count >= NUM_TFD_CHUNKS || count < 0) {
629 IL_ERR("Error can not send more than %d chunks\n",
630 NUM_TFD_CHUNKS);
631 return -EINVAL;
632 }
633
634 tfd->tbs[count].addr = cpu_to_le32(addr);
635 tfd->tbs[count].len = cpu_to_le32(len);
636
637 count++;
638
639 tfd->control_flags =
640 cpu_to_le32(TFD_CTL_COUNT_SET(count) | TFD_CTL_PAD_SET(pad));
641
642 return 0;
643 }
644
645 /**
646 * il3945_hw_txq_free_tfd - Free one TFD, those at idx [txq->q.read_ptr]
647 *
648 * Does NOT advance any idxes
649 */
650 void
651 il3945_hw_txq_free_tfd(struct il_priv *il, struct il_tx_queue *txq)
652 {
653 struct il3945_tfd *tfd_tmp = (struct il3945_tfd *)txq->tfds;
654 int idx = txq->q.read_ptr;
655 struct il3945_tfd *tfd = &tfd_tmp[idx];
656 struct pci_dev *dev = il->pci_dev;
657 int i;
658 int counter;
659
660 /* sanity check */
661 counter = TFD_CTL_COUNT_GET(le32_to_cpu(tfd->control_flags));
662 if (counter > NUM_TFD_CHUNKS) {
663 IL_ERR("Too many chunks: %i\n", counter);
664 /* @todo issue fatal error, it is quite serious situation */
665 return;
666 }
667
668 /* Unmap tx_cmd */
669 if (counter)
670 pci_unmap_single(dev, dma_unmap_addr(&txq->meta[idx], mapping),
671 dma_unmap_len(&txq->meta[idx], len),
672 PCI_DMA_TODEVICE);
673
674 /* unmap chunks if any */
675
676 for (i = 1; i < counter; i++)
677 pci_unmap_single(dev, le32_to_cpu(tfd->tbs[i].addr),
678 le32_to_cpu(tfd->tbs[i].len),
679 PCI_DMA_TODEVICE);
680
681 /* free SKB */
682 if (txq->skbs) {
683 struct sk_buff *skb = txq->skbs[txq->q.read_ptr];
684
685 /* can be called from irqs-disabled context */
686 if (skb) {
687 dev_kfree_skb_any(skb);
688 txq->skbs[txq->q.read_ptr] = NULL;
689 }
690 }
691 }
692
693 /**
694 * il3945_hw_build_tx_cmd_rate - Add rate portion to TX_CMD:
695 *
696 */
697 void
698 il3945_hw_build_tx_cmd_rate(struct il_priv *il, struct il_device_cmd *cmd,
699 struct ieee80211_tx_info *info,
700 struct ieee80211_hdr *hdr, int sta_id)
701 {
702 u16 hw_value = ieee80211_get_tx_rate(il->hw, info)->hw_value;
703 u16 rate_idx = min(hw_value & 0xffff, RATE_COUNT_3945 - 1);
704 u16 rate_mask;
705 int rate;
706 const u8 rts_retry_limit = 7;
707 u8 data_retry_limit;
708 __le32 tx_flags;
709 __le16 fc = hdr->frame_control;
710 struct il3945_tx_cmd *tx_cmd = (struct il3945_tx_cmd *)cmd->cmd.payload;
711
712 rate = il3945_rates[rate_idx].plcp;
713 tx_flags = tx_cmd->tx_flags;
714
715 /* We need to figure out how to get the sta->supp_rates while
716 * in this running context */
717 rate_mask = RATES_MASK_3945;
718
719 /* Set retry limit on DATA packets and Probe Responses */
720 if (ieee80211_is_probe_resp(fc))
721 data_retry_limit = 3;
722 else
723 data_retry_limit = IL_DEFAULT_TX_RETRY;
724 tx_cmd->data_retry_limit = data_retry_limit;
725 /* Set retry limit on RTS packets */
726 tx_cmd->rts_retry_limit = min(data_retry_limit, rts_retry_limit);
727
728 tx_cmd->rate = rate;
729 tx_cmd->tx_flags = tx_flags;
730
731 /* OFDM */
732 tx_cmd->supp_rates[0] =
733 ((rate_mask & IL_OFDM_RATES_MASK) >> IL_FIRST_OFDM_RATE) & 0xFF;
734
735 /* CCK */
736 tx_cmd->supp_rates[1] = (rate_mask & 0xF);
737
738 D_RATE("Tx sta id: %d, rate: %d (plcp), flags: 0x%4X "
739 "cck/ofdm mask: 0x%x/0x%x\n", sta_id, tx_cmd->rate,
740 le32_to_cpu(tx_cmd->tx_flags), tx_cmd->supp_rates[1],
741 tx_cmd->supp_rates[0]);
742 }
743
744 static u8
745 il3945_sync_sta(struct il_priv *il, int sta_id, u16 tx_rate)
746 {
747 unsigned long flags_spin;
748 struct il_station_entry *station;
749
750 if (sta_id == IL_INVALID_STATION)
751 return IL_INVALID_STATION;
752
753 spin_lock_irqsave(&il->sta_lock, flags_spin);
754 station = &il->stations[sta_id];
755
756 station->sta.sta.modify_mask = STA_MODIFY_TX_RATE_MSK;
757 station->sta.rate_n_flags = cpu_to_le16(tx_rate);
758 station->sta.mode = STA_CONTROL_MODIFY_MSK;
759 il_send_add_sta(il, &station->sta, CMD_ASYNC);
760 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
761
762 D_RATE("SCALE sync station %d to rate %d\n", sta_id, tx_rate);
763 return sta_id;
764 }
765
766 static void
767 il3945_set_pwr_vmain(struct il_priv *il)
768 {
769 /*
770 * (for documentation purposes)
771 * to set power to V_AUX, do
772
773 if (pci_pme_capable(il->pci_dev, PCI_D3cold)) {
774 il_set_bits_mask_prph(il, APMG_PS_CTRL_REG,
775 APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
776 ~APMG_PS_CTRL_MSK_PWR_SRC);
777
778 _il_poll_bit(il, CSR_GPIO_IN,
779 CSR_GPIO_IN_VAL_VAUX_PWR_SRC,
780 CSR_GPIO_IN_BIT_AUX_POWER, 5000);
781 }
782 */
783
784 il_set_bits_mask_prph(il, APMG_PS_CTRL_REG,
785 APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
786 ~APMG_PS_CTRL_MSK_PWR_SRC);
787
788 _il_poll_bit(il, CSR_GPIO_IN, CSR_GPIO_IN_VAL_VMAIN_PWR_SRC,
789 CSR_GPIO_IN_BIT_AUX_POWER, 5000);
790 }
791
792 static int
793 il3945_rx_init(struct il_priv *il, struct il_rx_queue *rxq)
794 {
795 il_wr(il, FH39_RCSR_RBD_BASE(0), rxq->bd_dma);
796 il_wr(il, FH39_RCSR_RPTR_ADDR(0), rxq->rb_stts_dma);
797 il_wr(il, FH39_RCSR_WPTR(0), 0);
798 il_wr(il, FH39_RCSR_CONFIG(0),
799 FH39_RCSR_RX_CONFIG_REG_VAL_DMA_CHNL_EN_ENABLE |
800 FH39_RCSR_RX_CONFIG_REG_VAL_RDRBD_EN_ENABLE |
801 FH39_RCSR_RX_CONFIG_REG_BIT_WR_STTS_EN |
802 FH39_RCSR_RX_CONFIG_REG_VAL_MAX_FRAG_SIZE_128 | (RX_QUEUE_SIZE_LOG
803 <<
804 FH39_RCSR_RX_CONFIG_REG_POS_RBDC_SIZE)
805 | FH39_RCSR_RX_CONFIG_REG_VAL_IRQ_DEST_INT_HOST | (1 <<
806 FH39_RCSR_RX_CONFIG_REG_POS_IRQ_RBTH)
807 | FH39_RCSR_RX_CONFIG_REG_VAL_MSG_MODE_FH);
808
809 /* fake read to flush all prev I/O */
810 il_rd(il, FH39_RSSR_CTRL);
811
812 return 0;
813 }
814
815 static int
816 il3945_tx_reset(struct il_priv *il)
817 {
818 /* bypass mode */
819 il_wr_prph(il, ALM_SCD_MODE_REG, 0x2);
820
821 /* RA 0 is active */
822 il_wr_prph(il, ALM_SCD_ARASTAT_REG, 0x01);
823
824 /* all 6 fifo are active */
825 il_wr_prph(il, ALM_SCD_TXFACT_REG, 0x3f);
826
827 il_wr_prph(il, ALM_SCD_SBYP_MODE_1_REG, 0x010000);
828 il_wr_prph(il, ALM_SCD_SBYP_MODE_2_REG, 0x030002);
829 il_wr_prph(il, ALM_SCD_TXF4MF_REG, 0x000004);
830 il_wr_prph(il, ALM_SCD_TXF5MF_REG, 0x000005);
831
832 il_wr(il, FH39_TSSR_CBB_BASE, il->_3945.shared_phys);
833
834 il_wr(il, FH39_TSSR_MSG_CONFIG,
835 FH39_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TXPD_ON |
836 FH39_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_TXPD_ON |
837 FH39_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_128B |
838 FH39_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TFD_ON |
839 FH39_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_CBB_ON |
840 FH39_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RSP_WAIT_TH |
841 FH39_TSSR_TX_MSG_CONFIG_REG_VAL_RSP_WAIT_TH);
842
843 return 0;
844 }
845
846 /**
847 * il3945_txq_ctx_reset - Reset TX queue context
848 *
849 * Destroys all DMA structures and initialize them again
850 */
851 static int
852 il3945_txq_ctx_reset(struct il_priv *il)
853 {
854 int rc, txq_id;
855
856 il3945_hw_txq_ctx_free(il);
857
858 /* allocate tx queue structure */
859 rc = il_alloc_txq_mem(il);
860 if (rc)
861 return rc;
862
863 /* Tx CMD queue */
864 rc = il3945_tx_reset(il);
865 if (rc)
866 goto error;
867
868 /* Tx queue(s) */
869 for (txq_id = 0; txq_id < il->hw_params.max_txq_num; txq_id++) {
870 rc = il_tx_queue_init(il, txq_id);
871 if (rc) {
872 IL_ERR("Tx %d queue init failed\n", txq_id);
873 goto error;
874 }
875 }
876
877 return rc;
878
879 error:
880 il3945_hw_txq_ctx_free(il);
881 return rc;
882 }
883
884 /*
885 * Start up 3945's basic functionality after it has been reset
886 * (e.g. after platform boot, or shutdown via il_apm_stop())
887 * NOTE: This does not load uCode nor start the embedded processor
888 */
889 static int
890 il3945_apm_init(struct il_priv *il)
891 {
892 int ret = il_apm_init(il);
893
894 /* Clear APMG (NIC's internal power management) interrupts */
895 il_wr_prph(il, APMG_RTC_INT_MSK_REG, 0x0);
896 il_wr_prph(il, APMG_RTC_INT_STT_REG, 0xFFFFFFFF);
897
898 /* Reset radio chip */
899 il_set_bits_prph(il, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ);
900 udelay(5);
901 il_clear_bits_prph(il, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ);
902
903 return ret;
904 }
905
906 static void
907 il3945_nic_config(struct il_priv *il)
908 {
909 struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
910 unsigned long flags;
911 u8 rev_id = il->pci_dev->revision;
912
913 spin_lock_irqsave(&il->lock, flags);
914
915 /* Determine HW type */
916 D_INFO("HW Revision ID = 0x%X\n", rev_id);
917
918 if (rev_id & PCI_CFG_REV_ID_BIT_RTP)
919 D_INFO("RTP type\n");
920 else if (rev_id & PCI_CFG_REV_ID_BIT_BASIC_SKU) {
921 D_INFO("3945 RADIO-MB type\n");
922 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
923 CSR39_HW_IF_CONFIG_REG_BIT_3945_MB);
924 } else {
925 D_INFO("3945 RADIO-MM type\n");
926 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
927 CSR39_HW_IF_CONFIG_REG_BIT_3945_MM);
928 }
929
930 if (EEPROM_SKU_CAP_OP_MODE_MRC == eeprom->sku_cap) {
931 D_INFO("SKU OP mode is mrc\n");
932 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
933 CSR39_HW_IF_CONFIG_REG_BIT_SKU_MRC);
934 } else
935 D_INFO("SKU OP mode is basic\n");
936
937 if ((eeprom->board_revision & 0xF0) == 0xD0) {
938 D_INFO("3945ABG revision is 0x%X\n", eeprom->board_revision);
939 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
940 CSR39_HW_IF_CONFIG_REG_BIT_BOARD_TYPE);
941 } else {
942 D_INFO("3945ABG revision is 0x%X\n", eeprom->board_revision);
943 il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
944 CSR39_HW_IF_CONFIG_REG_BIT_BOARD_TYPE);
945 }
946
947 if (eeprom->almgor_m_version <= 1) {
948 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
949 CSR39_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_A);
950 D_INFO("Card M type A version is 0x%X\n",
951 eeprom->almgor_m_version);
952 } else {
953 D_INFO("Card M type B version is 0x%X\n",
954 eeprom->almgor_m_version);
955 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
956 CSR39_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_B);
957 }
958 spin_unlock_irqrestore(&il->lock, flags);
959
960 if (eeprom->sku_cap & EEPROM_SKU_CAP_SW_RF_KILL_ENABLE)
961 D_RF_KILL("SW RF KILL supported in EEPROM.\n");
962
963 if (eeprom->sku_cap & EEPROM_SKU_CAP_HW_RF_KILL_ENABLE)
964 D_RF_KILL("HW RF KILL supported in EEPROM.\n");
965 }
966
967 int
968 il3945_hw_nic_init(struct il_priv *il)
969 {
970 int rc;
971 unsigned long flags;
972 struct il_rx_queue *rxq = &il->rxq;
973
974 spin_lock_irqsave(&il->lock, flags);
975 il3945_apm_init(il);
976 spin_unlock_irqrestore(&il->lock, flags);
977
978 il3945_set_pwr_vmain(il);
979 il3945_nic_config(il);
980
981 /* Allocate the RX queue, or reset if it is already allocated */
982 if (!rxq->bd) {
983 rc = il_rx_queue_alloc(il);
984 if (rc) {
985 IL_ERR("Unable to initialize Rx queue\n");
986 return -ENOMEM;
987 }
988 } else
989 il3945_rx_queue_reset(il, rxq);
990
991 il3945_rx_replenish(il);
992
993 il3945_rx_init(il, rxq);
994
995 /* Look at using this instead:
996 rxq->need_update = 1;
997 il_rx_queue_update_write_ptr(il, rxq);
998 */
999
1000 il_wr(il, FH39_RCSR_WPTR(0), rxq->write & ~7);
1001
1002 rc = il3945_txq_ctx_reset(il);
1003 if (rc)
1004 return rc;
1005
1006 set_bit(S_INIT, &il->status);
1007
1008 return 0;
1009 }
1010
1011 /**
1012 * il3945_hw_txq_ctx_free - Free TXQ Context
1013 *
1014 * Destroy all TX DMA queues and structures
1015 */
1016 void
1017 il3945_hw_txq_ctx_free(struct il_priv *il)
1018 {
1019 int txq_id;
1020
1021 /* Tx queues */
1022 if (il->txq)
1023 for (txq_id = 0; txq_id < il->hw_params.max_txq_num; txq_id++)
1024 if (txq_id == IL39_CMD_QUEUE_NUM)
1025 il_cmd_queue_free(il);
1026 else
1027 il_tx_queue_free(il, txq_id);
1028
1029 /* free tx queue structure */
1030 il_free_txq_mem(il);
1031 }
1032
1033 void
1034 il3945_hw_txq_ctx_stop(struct il_priv *il)
1035 {
1036 int txq_id;
1037
1038 /* stop SCD */
1039 _il_wr_prph(il, ALM_SCD_MODE_REG, 0);
1040 _il_wr_prph(il, ALM_SCD_TXFACT_REG, 0);
1041
1042 /* reset TFD queues */
1043 for (txq_id = 0; txq_id < il->hw_params.max_txq_num; txq_id++) {
1044 _il_wr(il, FH39_TCSR_CONFIG(txq_id), 0x0);
1045 _il_poll_bit(il, FH39_TSSR_TX_STATUS,
1046 FH39_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(txq_id),
1047 FH39_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(txq_id),
1048 1000);
1049 }
1050 }
1051
1052 /**
1053 * il3945_hw_reg_adjust_power_by_temp
1054 * return idx delta into power gain settings table
1055 */
1056 static int
1057 il3945_hw_reg_adjust_power_by_temp(int new_reading, int old_reading)
1058 {
1059 return (new_reading - old_reading) * (-11) / 100;
1060 }
1061
1062 /**
1063 * il3945_hw_reg_temp_out_of_range - Keep temperature in sane range
1064 */
1065 static inline int
1066 il3945_hw_reg_temp_out_of_range(int temperature)
1067 {
1068 return (temperature < -260 || temperature > 25) ? 1 : 0;
1069 }
1070
1071 int
1072 il3945_hw_get_temperature(struct il_priv *il)
1073 {
1074 return _il_rd(il, CSR_UCODE_DRV_GP2);
1075 }
1076
1077 /**
1078 * il3945_hw_reg_txpower_get_temperature
1079 * get the current temperature by reading from NIC
1080 */
1081 static int
1082 il3945_hw_reg_txpower_get_temperature(struct il_priv *il)
1083 {
1084 struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
1085 int temperature;
1086
1087 temperature = il3945_hw_get_temperature(il);
1088
1089 /* driver's okay range is -260 to +25.
1090 * human readable okay range is 0 to +285 */
1091 D_INFO("Temperature: %d\n", temperature + IL_TEMP_CONVERT);
1092
1093 /* handle insane temp reading */
1094 if (il3945_hw_reg_temp_out_of_range(temperature)) {
1095 IL_ERR("Error bad temperature value %d\n", temperature);
1096
1097 /* if really really hot(?),
1098 * substitute the 3rd band/group's temp measured at factory */
1099 if (il->last_temperature > 100)
1100 temperature = eeprom->groups[2].temperature;
1101 else /* else use most recent "sane" value from driver */
1102 temperature = il->last_temperature;
1103 }
1104
1105 return temperature; /* raw, not "human readable" */
1106 }
1107
1108 /* Adjust Txpower only if temperature variance is greater than threshold.
1109 *
1110 * Both are lower than older versions' 9 degrees */
1111 #define IL_TEMPERATURE_LIMIT_TIMER 6
1112
1113 /**
1114 * il3945_is_temp_calib_needed - determines if new calibration is needed
1115 *
1116 * records new temperature in tx_mgr->temperature.
1117 * replaces tx_mgr->last_temperature *only* if calib needed
1118 * (assumes caller will actually do the calibration!). */
1119 static int
1120 il3945_is_temp_calib_needed(struct il_priv *il)
1121 {
1122 int temp_diff;
1123
1124 il->temperature = il3945_hw_reg_txpower_get_temperature(il);
1125 temp_diff = il->temperature - il->last_temperature;
1126
1127 /* get absolute value */
1128 if (temp_diff < 0) {
1129 D_POWER("Getting cooler, delta %d,\n", temp_diff);
1130 temp_diff = -temp_diff;
1131 } else if (temp_diff == 0)
1132 D_POWER("Same temp,\n");
1133 else
1134 D_POWER("Getting warmer, delta %d,\n", temp_diff);
1135
1136 /* if we don't need calibration, *don't* update last_temperature */
1137 if (temp_diff < IL_TEMPERATURE_LIMIT_TIMER) {
1138 D_POWER("Timed thermal calib not needed\n");
1139 return 0;
1140 }
1141
1142 D_POWER("Timed thermal calib needed\n");
1143
1144 /* assume that caller will actually do calib ...
1145 * update the "last temperature" value */
1146 il->last_temperature = il->temperature;
1147 return 1;
1148 }
1149
1150 #define IL_MAX_GAIN_ENTRIES 78
1151 #define IL_CCK_FROM_OFDM_POWER_DIFF -5
1152 #define IL_CCK_FROM_OFDM_IDX_DIFF (10)
1153
1154 /* radio and DSP power table, each step is 1/2 dB.
1155 * 1st number is for RF analog gain, 2nd number is for DSP pre-DAC gain. */
1156 static struct il3945_tx_power power_gain_table[2][IL_MAX_GAIN_ENTRIES] = {
1157 {
1158 {251, 127}, /* 2.4 GHz, highest power */
1159 {251, 127},
1160 {251, 127},
1161 {251, 127},
1162 {251, 125},
1163 {251, 110},
1164 {251, 105},
1165 {251, 98},
1166 {187, 125},
1167 {187, 115},
1168 {187, 108},
1169 {187, 99},
1170 {243, 119},
1171 {243, 111},
1172 {243, 105},
1173 {243, 97},
1174 {243, 92},
1175 {211, 106},
1176 {211, 100},
1177 {179, 120},
1178 {179, 113},
1179 {179, 107},
1180 {147, 125},
1181 {147, 119},
1182 {147, 112},
1183 {147, 106},
1184 {147, 101},
1185 {147, 97},
1186 {147, 91},
1187 {115, 107},
1188 {235, 121},
1189 {235, 115},
1190 {235, 109},
1191 {203, 127},
1192 {203, 121},
1193 {203, 115},
1194 {203, 108},
1195 {203, 102},
1196 {203, 96},
1197 {203, 92},
1198 {171, 110},
1199 {171, 104},
1200 {171, 98},
1201 {139, 116},
1202 {227, 125},
1203 {227, 119},
1204 {227, 113},
1205 {227, 107},
1206 {227, 101},
1207 {227, 96},
1208 {195, 113},
1209 {195, 106},
1210 {195, 102},
1211 {195, 95},
1212 {163, 113},
1213 {163, 106},
1214 {163, 102},
1215 {163, 95},
1216 {131, 113},
1217 {131, 106},
1218 {131, 102},
1219 {131, 95},
1220 {99, 113},
1221 {99, 106},
1222 {99, 102},
1223 {99, 95},
1224 {67, 113},
1225 {67, 106},
1226 {67, 102},
1227 {67, 95},
1228 {35, 113},
1229 {35, 106},
1230 {35, 102},
1231 {35, 95},
1232 {3, 113},
1233 {3, 106},
1234 {3, 102},
1235 {3, 95} /* 2.4 GHz, lowest power */
1236 },
1237 {
1238 {251, 127}, /* 5.x GHz, highest power */
1239 {251, 120},
1240 {251, 114},
1241 {219, 119},
1242 {219, 101},
1243 {187, 113},
1244 {187, 102},
1245 {155, 114},
1246 {155, 103},
1247 {123, 117},
1248 {123, 107},
1249 {123, 99},
1250 {123, 92},
1251 {91, 108},
1252 {59, 125},
1253 {59, 118},
1254 {59, 109},
1255 {59, 102},
1256 {59, 96},
1257 {59, 90},
1258 {27, 104},
1259 {27, 98},
1260 {27, 92},
1261 {115, 118},
1262 {115, 111},
1263 {115, 104},
1264 {83, 126},
1265 {83, 121},
1266 {83, 113},
1267 {83, 105},
1268 {83, 99},
1269 {51, 118},
1270 {51, 111},
1271 {51, 104},
1272 {51, 98},
1273 {19, 116},
1274 {19, 109},
1275 {19, 102},
1276 {19, 98},
1277 {19, 93},
1278 {171, 113},
1279 {171, 107},
1280 {171, 99},
1281 {139, 120},
1282 {139, 113},
1283 {139, 107},
1284 {139, 99},
1285 {107, 120},
1286 {107, 113},
1287 {107, 107},
1288 {107, 99},
1289 {75, 120},
1290 {75, 113},
1291 {75, 107},
1292 {75, 99},
1293 {43, 120},
1294 {43, 113},
1295 {43, 107},
1296 {43, 99},
1297 {11, 120},
1298 {11, 113},
1299 {11, 107},
1300 {11, 99},
1301 {131, 107},
1302 {131, 99},
1303 {99, 120},
1304 {99, 113},
1305 {99, 107},
1306 {99, 99},
1307 {67, 120},
1308 {67, 113},
1309 {67, 107},
1310 {67, 99},
1311 {35, 120},
1312 {35, 113},
1313 {35, 107},
1314 {35, 99},
1315 {3, 120} /* 5.x GHz, lowest power */
1316 }
1317 };
1318
1319 static inline u8
1320 il3945_hw_reg_fix_power_idx(int idx)
1321 {
1322 if (idx < 0)
1323 return 0;
1324 if (idx >= IL_MAX_GAIN_ENTRIES)
1325 return IL_MAX_GAIN_ENTRIES - 1;
1326 return (u8) idx;
1327 }
1328
1329 /* Kick off thermal recalibration check every 60 seconds */
1330 #define REG_RECALIB_PERIOD (60)
1331
1332 /**
1333 * il3945_hw_reg_set_scan_power - Set Tx power for scan probe requests
1334 *
1335 * Set (in our channel info database) the direct scan Tx power for 1 Mbit (CCK)
1336 * or 6 Mbit (OFDM) rates.
1337 */
1338 static void
1339 il3945_hw_reg_set_scan_power(struct il_priv *il, u32 scan_tbl_idx, s32 rate_idx,
1340 const s8 *clip_pwrs,
1341 struct il_channel_info *ch_info, int band_idx)
1342 {
1343 struct il3945_scan_power_info *scan_power_info;
1344 s8 power;
1345 u8 power_idx;
1346
1347 scan_power_info = &ch_info->scan_pwr_info[scan_tbl_idx];
1348
1349 /* use this channel group's 6Mbit clipping/saturation pwr,
1350 * but cap at regulatory scan power restriction (set during init
1351 * based on eeprom channel data) for this channel. */
1352 power = min(ch_info->scan_power, clip_pwrs[RATE_6M_IDX_TBL]);
1353
1354 power = min(power, il->tx_power_user_lmt);
1355 scan_power_info->requested_power = power;
1356
1357 /* find difference between new scan *power* and current "normal"
1358 * Tx *power* for 6Mb. Use this difference (x2) to adjust the
1359 * current "normal" temperature-compensated Tx power *idx* for
1360 * this rate (1Mb or 6Mb) to yield new temp-compensated scan power
1361 * *idx*. */
1362 power_idx =
1363 ch_info->power_info[rate_idx].power_table_idx - (power -
1364 ch_info->
1365 power_info
1366 [RATE_6M_IDX_TBL].
1367 requested_power) *
1368 2;
1369
1370 /* store reference idx that we use when adjusting *all* scan
1371 * powers. So we can accommodate user (all channel) or spectrum
1372 * management (single channel) power changes "between" temperature
1373 * feedback compensation procedures.
1374 * don't force fit this reference idx into gain table; it may be a
1375 * negative number. This will help avoid errors when we're at
1376 * the lower bounds (highest gains, for warmest temperatures)
1377 * of the table. */
1378
1379 /* don't exceed table bounds for "real" setting */
1380 power_idx = il3945_hw_reg_fix_power_idx(power_idx);
1381
1382 scan_power_info->power_table_idx = power_idx;
1383 scan_power_info->tpc.tx_gain =
1384 power_gain_table[band_idx][power_idx].tx_gain;
1385 scan_power_info->tpc.dsp_atten =
1386 power_gain_table[band_idx][power_idx].dsp_atten;
1387 }
1388
1389 /**
1390 * il3945_send_tx_power - fill in Tx Power command with gain settings
1391 *
1392 * Configures power settings for all rates for the current channel,
1393 * using values from channel info struct, and send to NIC
1394 */
1395 static int
1396 il3945_send_tx_power(struct il_priv *il)
1397 {
1398 int rate_idx, i;
1399 const struct il_channel_info *ch_info = NULL;
1400 struct il3945_txpowertable_cmd txpower = {
1401 .channel = il->active.channel,
1402 };
1403 u16 chan;
1404
1405 if (WARN_ONCE
1406 (test_bit(S_SCAN_HW, &il->status),
1407 "TX Power requested while scanning!\n"))
1408 return -EAGAIN;
1409
1410 chan = le16_to_cpu(il->active.channel);
1411
1412 txpower.band = (il->band == IEEE80211_BAND_5GHZ) ? 0 : 1;
1413 ch_info = il_get_channel_info(il, il->band, chan);
1414 if (!ch_info) {
1415 IL_ERR("Failed to get channel info for channel %d [%d]\n", chan,
1416 il->band);
1417 return -EINVAL;
1418 }
1419
1420 if (!il_is_channel_valid(ch_info)) {
1421 D_POWER("Not calling TX_PWR_TBL_CMD on " "non-Tx channel.\n");
1422 return 0;
1423 }
1424
1425 /* fill cmd with power settings for all rates for current channel */
1426 /* Fill OFDM rate */
1427 for (rate_idx = IL_FIRST_OFDM_RATE, i = 0;
1428 rate_idx <= IL39_LAST_OFDM_RATE; rate_idx++, i++) {
1429
1430 txpower.power[i].tpc = ch_info->power_info[i].tpc;
1431 txpower.power[i].rate = il3945_rates[rate_idx].plcp;
1432
1433 D_POWER("ch %d:%d rf %d dsp %3d rate code 0x%02x\n",
1434 le16_to_cpu(txpower.channel), txpower.band,
1435 txpower.power[i].tpc.tx_gain,
1436 txpower.power[i].tpc.dsp_atten, txpower.power[i].rate);
1437 }
1438 /* Fill CCK rates */
1439 for (rate_idx = IL_FIRST_CCK_RATE; rate_idx <= IL_LAST_CCK_RATE;
1440 rate_idx++, i++) {
1441 txpower.power[i].tpc = ch_info->power_info[i].tpc;
1442 txpower.power[i].rate = il3945_rates[rate_idx].plcp;
1443
1444 D_POWER("ch %d:%d rf %d dsp %3d rate code 0x%02x\n",
1445 le16_to_cpu(txpower.channel), txpower.band,
1446 txpower.power[i].tpc.tx_gain,
1447 txpower.power[i].tpc.dsp_atten, txpower.power[i].rate);
1448 }
1449
1450 return il_send_cmd_pdu(il, C_TX_PWR_TBL,
1451 sizeof(struct il3945_txpowertable_cmd),
1452 &txpower);
1453
1454 }
1455
1456 /**
1457 * il3945_hw_reg_set_new_power - Configures power tables at new levels
1458 * @ch_info: Channel to update. Uses power_info.requested_power.
1459 *
1460 * Replace requested_power and base_power_idx ch_info fields for
1461 * one channel.
1462 *
1463 * Called if user or spectrum management changes power preferences.
1464 * Takes into account h/w and modulation limitations (clip power).
1465 *
1466 * This does *not* send anything to NIC, just sets up ch_info for one channel.
1467 *
1468 * NOTE: reg_compensate_for_temperature_dif() *must* be run after this to
1469 * properly fill out the scan powers, and actual h/w gain settings,
1470 * and send changes to NIC
1471 */
1472 static int
1473 il3945_hw_reg_set_new_power(struct il_priv *il, struct il_channel_info *ch_info)
1474 {
1475 struct il3945_channel_power_info *power_info;
1476 int power_changed = 0;
1477 int i;
1478 const s8 *clip_pwrs;
1479 int power;
1480
1481 /* Get this chnlgrp's rate-to-max/clip-powers table */
1482 clip_pwrs = il->_3945.clip_groups[ch_info->group_idx].clip_powers;
1483
1484 /* Get this channel's rate-to-current-power settings table */
1485 power_info = ch_info->power_info;
1486
1487 /* update OFDM Txpower settings */
1488 for (i = RATE_6M_IDX_TBL; i <= RATE_54M_IDX_TBL; i++, ++power_info) {
1489 int delta_idx;
1490
1491 /* limit new power to be no more than h/w capability */
1492 power = min(ch_info->curr_txpow, clip_pwrs[i]);
1493 if (power == power_info->requested_power)
1494 continue;
1495
1496 /* find difference between old and new requested powers,
1497 * update base (non-temp-compensated) power idx */
1498 delta_idx = (power - power_info->requested_power) * 2;
1499 power_info->base_power_idx -= delta_idx;
1500
1501 /* save new requested power value */
1502 power_info->requested_power = power;
1503
1504 power_changed = 1;
1505 }
1506
1507 /* update CCK Txpower settings, based on OFDM 12M setting ...
1508 * ... all CCK power settings for a given channel are the *same*. */
1509 if (power_changed) {
1510 power =
1511 ch_info->power_info[RATE_12M_IDX_TBL].requested_power +
1512 IL_CCK_FROM_OFDM_POWER_DIFF;
1513
1514 /* do all CCK rates' il3945_channel_power_info structures */
1515 for (i = RATE_1M_IDX_TBL; i <= RATE_11M_IDX_TBL; i++) {
1516 power_info->requested_power = power;
1517 power_info->base_power_idx =
1518 ch_info->power_info[RATE_12M_IDX_TBL].
1519 base_power_idx + IL_CCK_FROM_OFDM_IDX_DIFF;
1520 ++power_info;
1521 }
1522 }
1523
1524 return 0;
1525 }
1526
1527 /**
1528 * il3945_hw_reg_get_ch_txpower_limit - returns new power limit for channel
1529 *
1530 * NOTE: Returned power limit may be less (but not more) than requested,
1531 * based strictly on regulatory (eeprom and spectrum mgt) limitations
1532 * (no consideration for h/w clipping limitations).
1533 */
1534 static int
1535 il3945_hw_reg_get_ch_txpower_limit(struct il_channel_info *ch_info)
1536 {
1537 s8 max_power;
1538
1539 #if 0
1540 /* if we're using TGd limits, use lower of TGd or EEPROM */
1541 if (ch_info->tgd_data.max_power != 0)
1542 max_power =
1543 min(ch_info->tgd_data.max_power,
1544 ch_info->eeprom.max_power_avg);
1545
1546 /* else just use EEPROM limits */
1547 else
1548 #endif
1549 max_power = ch_info->eeprom.max_power_avg;
1550
1551 return min(max_power, ch_info->max_power_avg);
1552 }
1553
1554 /**
1555 * il3945_hw_reg_comp_txpower_temp - Compensate for temperature
1556 *
1557 * Compensate txpower settings of *all* channels for temperature.
1558 * This only accounts for the difference between current temperature
1559 * and the factory calibration temperatures, and bases the new settings
1560 * on the channel's base_power_idx.
1561 *
1562 * If RxOn is "associated", this sends the new Txpower to NIC!
1563 */
1564 static int
1565 il3945_hw_reg_comp_txpower_temp(struct il_priv *il)
1566 {
1567 struct il_channel_info *ch_info = NULL;
1568 struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
1569 int delta_idx;
1570 const s8 *clip_pwrs; /* array of h/w max power levels for each rate */
1571 u8 a_band;
1572 u8 rate_idx;
1573 u8 scan_tbl_idx;
1574 u8 i;
1575 int ref_temp;
1576 int temperature = il->temperature;
1577
1578 if (il->disable_tx_power_cal || test_bit(S_SCANNING, &il->status)) {
1579 /* do not perform tx power calibration */
1580 return 0;
1581 }
1582 /* set up new Tx power info for each and every channel, 2.4 and 5.x */
1583 for (i = 0; i < il->channel_count; i++) {
1584 ch_info = &il->channel_info[i];
1585 a_band = il_is_channel_a_band(ch_info);
1586
1587 /* Get this chnlgrp's factory calibration temperature */
1588 ref_temp = (s16) eeprom->groups[ch_info->group_idx].temperature;
1589
1590 /* get power idx adjustment based on current and factory
1591 * temps */
1592 delta_idx =
1593 il3945_hw_reg_adjust_power_by_temp(temperature, ref_temp);
1594
1595 /* set tx power value for all rates, OFDM and CCK */
1596 for (rate_idx = 0; rate_idx < RATE_COUNT_3945; rate_idx++) {
1597 int power_idx =
1598 ch_info->power_info[rate_idx].base_power_idx;
1599
1600 /* temperature compensate */
1601 power_idx += delta_idx;
1602
1603 /* stay within table range */
1604 power_idx = il3945_hw_reg_fix_power_idx(power_idx);
1605 ch_info->power_info[rate_idx].power_table_idx =
1606 (u8) power_idx;
1607 ch_info->power_info[rate_idx].tpc =
1608 power_gain_table[a_band][power_idx];
1609 }
1610
1611 /* Get this chnlgrp's rate-to-max/clip-powers table */
1612 clip_pwrs =
1613 il->_3945.clip_groups[ch_info->group_idx].clip_powers;
1614
1615 /* set scan tx power, 1Mbit for CCK, 6Mbit for OFDM */
1616 for (scan_tbl_idx = 0; scan_tbl_idx < IL_NUM_SCAN_RATES;
1617 scan_tbl_idx++) {
1618 s32 actual_idx =
1619 (scan_tbl_idx ==
1620 0) ? RATE_1M_IDX_TBL : RATE_6M_IDX_TBL;
1621 il3945_hw_reg_set_scan_power(il, scan_tbl_idx,
1622 actual_idx, clip_pwrs,
1623 ch_info, a_band);
1624 }
1625 }
1626
1627 /* send Txpower command for current channel to ucode */
1628 return il->ops->send_tx_power(il);
1629 }
1630
1631 int
1632 il3945_hw_reg_set_txpower(struct il_priv *il, s8 power)
1633 {
1634 struct il_channel_info *ch_info;
1635 s8 max_power;
1636 u8 a_band;
1637 u8 i;
1638
1639 if (il->tx_power_user_lmt == power) {
1640 D_POWER("Requested Tx power same as current " "limit: %ddBm.\n",
1641 power);
1642 return 0;
1643 }
1644
1645 D_POWER("Setting upper limit clamp to %ddBm.\n", power);
1646 il->tx_power_user_lmt = power;
1647
1648 /* set up new Tx powers for each and every channel, 2.4 and 5.x */
1649
1650 for (i = 0; i < il->channel_count; i++) {
1651 ch_info = &il->channel_info[i];
1652 a_band = il_is_channel_a_band(ch_info);
1653
1654 /* find minimum power of all user and regulatory constraints
1655 * (does not consider h/w clipping limitations) */
1656 max_power = il3945_hw_reg_get_ch_txpower_limit(ch_info);
1657 max_power = min(power, max_power);
1658 if (max_power != ch_info->curr_txpow) {
1659 ch_info->curr_txpow = max_power;
1660
1661 /* this considers the h/w clipping limitations */
1662 il3945_hw_reg_set_new_power(il, ch_info);
1663 }
1664 }
1665
1666 /* update txpower settings for all channels,
1667 * send to NIC if associated. */
1668 il3945_is_temp_calib_needed(il);
1669 il3945_hw_reg_comp_txpower_temp(il);
1670
1671 return 0;
1672 }
1673
1674 static int
1675 il3945_send_rxon_assoc(struct il_priv *il)
1676 {
1677 int rc = 0;
1678 struct il_rx_pkt *pkt;
1679 struct il3945_rxon_assoc_cmd rxon_assoc;
1680 struct il_host_cmd cmd = {
1681 .id = C_RXON_ASSOC,
1682 .len = sizeof(rxon_assoc),
1683 .flags = CMD_WANT_SKB,
1684 .data = &rxon_assoc,
1685 };
1686 const struct il_rxon_cmd *rxon1 = &il->staging;
1687 const struct il_rxon_cmd *rxon2 = &il->active;
1688
1689 if (rxon1->flags == rxon2->flags &&
1690 rxon1->filter_flags == rxon2->filter_flags &&
1691 rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
1692 rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
1693 D_INFO("Using current RXON_ASSOC. Not resending.\n");
1694 return 0;
1695 }
1696
1697 rxon_assoc.flags = il->staging.flags;
1698 rxon_assoc.filter_flags = il->staging.filter_flags;
1699 rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates;
1700 rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates;
1701 rxon_assoc.reserved = 0;
1702
1703 rc = il_send_cmd_sync(il, &cmd);
1704 if (rc)
1705 return rc;
1706
1707 pkt = (struct il_rx_pkt *)cmd.reply_page;
1708 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
1709 IL_ERR("Bad return from C_RXON_ASSOC command\n");
1710 rc = -EIO;
1711 }
1712
1713 il_free_pages(il, cmd.reply_page);
1714
1715 return rc;
1716 }
1717
1718 /**
1719 * il3945_commit_rxon - commit staging_rxon to hardware
1720 *
1721 * The RXON command in staging_rxon is committed to the hardware and
1722 * the active_rxon structure is updated with the new data. This
1723 * function correctly transitions out of the RXON_ASSOC_MSK state if
1724 * a HW tune is required based on the RXON structure changes.
1725 */
1726 int
1727 il3945_commit_rxon(struct il_priv *il)
1728 {
1729 /* cast away the const for active_rxon in this function */
1730 struct il3945_rxon_cmd *active_rxon = (void *)&il->active;
1731 struct il3945_rxon_cmd *staging_rxon = (void *)&il->staging;
1732 int rc = 0;
1733 bool new_assoc = !!(staging_rxon->filter_flags & RXON_FILTER_ASSOC_MSK);
1734
1735 if (test_bit(S_EXIT_PENDING, &il->status))
1736 return -EINVAL;
1737
1738 if (!il_is_alive(il))
1739 return -1;
1740
1741 /* always get timestamp with Rx frame */
1742 staging_rxon->flags |= RXON_FLG_TSF2HOST_MSK;
1743
1744 /* select antenna */
1745 staging_rxon->flags &= ~(RXON_FLG_DIS_DIV_MSK | RXON_FLG_ANT_SEL_MSK);
1746 staging_rxon->flags |= il3945_get_antenna_flags(il);
1747
1748 rc = il_check_rxon_cmd(il);
1749 if (rc) {
1750 IL_ERR("Invalid RXON configuration. Not committing.\n");
1751 return -EINVAL;
1752 }
1753
1754 /* If we don't need to send a full RXON, we can use
1755 * il3945_rxon_assoc_cmd which is used to reconfigure filter
1756 * and other flags for the current radio configuration. */
1757 if (!il_full_rxon_required(il)) {
1758 rc = il_send_rxon_assoc(il);
1759 if (rc) {
1760 IL_ERR("Error setting RXON_ASSOC "
1761 "configuration (%d).\n", rc);
1762 return rc;
1763 }
1764
1765 memcpy(active_rxon, staging_rxon, sizeof(*active_rxon));
1766 /*
1767 * We do not commit tx power settings while channel changing,
1768 * do it now if tx power changed.
1769 */
1770 il_set_tx_power(il, il->tx_power_next, false);
1771 return 0;
1772 }
1773
1774 /* If we are currently associated and the new config requires
1775 * an RXON_ASSOC and the new config wants the associated mask enabled,
1776 * we must clear the associated from the active configuration
1777 * before we apply the new config */
1778 if (il_is_associated(il) && new_assoc) {
1779 D_INFO("Toggling associated bit on current RXON\n");
1780 active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1781
1782 /*
1783 * reserved4 and 5 could have been filled by the iwlcore code.
1784 * Let's clear them before pushing to the 3945.
1785 */
1786 active_rxon->reserved4 = 0;
1787 active_rxon->reserved5 = 0;
1788 rc = il_send_cmd_pdu(il, C_RXON, sizeof(struct il3945_rxon_cmd),
1789 &il->active);
1790
1791 /* If the mask clearing failed then we set
1792 * active_rxon back to what it was previously */
1793 if (rc) {
1794 active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
1795 IL_ERR("Error clearing ASSOC_MSK on current "
1796 "configuration (%d).\n", rc);
1797 return rc;
1798 }
1799 il_clear_ucode_stations(il);
1800 il_restore_stations(il);
1801 }
1802
1803 D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
1804 "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
1805 le16_to_cpu(staging_rxon->channel), staging_rxon->bssid_addr);
1806
1807 /*
1808 * reserved4 and 5 could have been filled by the iwlcore code.
1809 * Let's clear them before pushing to the 3945.
1810 */
1811 staging_rxon->reserved4 = 0;
1812 staging_rxon->reserved5 = 0;
1813
1814 il_set_rxon_hwcrypto(il, !il3945_mod_params.sw_crypto);
1815
1816 /* Apply the new configuration */
1817 rc = il_send_cmd_pdu(il, C_RXON, sizeof(struct il3945_rxon_cmd),
1818 staging_rxon);
1819 if (rc) {
1820 IL_ERR("Error setting new configuration (%d).\n", rc);
1821 return rc;
1822 }
1823
1824 memcpy(active_rxon, staging_rxon, sizeof(*active_rxon));
1825
1826 if (!new_assoc) {
1827 il_clear_ucode_stations(il);
1828 il_restore_stations(il);
1829 }
1830
1831 /* If we issue a new RXON command which required a tune then we must
1832 * send a new TXPOWER command or we won't be able to Tx any frames */
1833 rc = il_set_tx_power(il, il->tx_power_next, true);
1834 if (rc) {
1835 IL_ERR("Error setting Tx power (%d).\n", rc);
1836 return rc;
1837 }
1838
1839 /* Init the hardware's rate fallback order based on the band */
1840 rc = il3945_init_hw_rate_table(il);
1841 if (rc) {
1842 IL_ERR("Error setting HW rate table: %02X\n", rc);
1843 return -EIO;
1844 }
1845
1846 return 0;
1847 }
1848
1849 /**
1850 * il3945_reg_txpower_periodic - called when time to check our temperature.
1851 *
1852 * -- reset periodic timer
1853 * -- see if temp has changed enough to warrant re-calibration ... if so:
1854 * -- correct coeffs for temp (can reset temp timer)
1855 * -- save this temp as "last",
1856 * -- send new set of gain settings to NIC
1857 * NOTE: This should continue working, even when we're not associated,
1858 * so we can keep our internal table of scan powers current. */
1859 void
1860 il3945_reg_txpower_periodic(struct il_priv *il)
1861 {
1862 /* This will kick in the "brute force"
1863 * il3945_hw_reg_comp_txpower_temp() below */
1864 if (!il3945_is_temp_calib_needed(il))
1865 goto reschedule;
1866
1867 /* Set up a new set of temp-adjusted TxPowers, send to NIC.
1868 * This is based *only* on current temperature,
1869 * ignoring any previous power measurements */
1870 il3945_hw_reg_comp_txpower_temp(il);
1871
1872 reschedule:
1873 queue_delayed_work(il->workqueue, &il->_3945.thermal_periodic,
1874 REG_RECALIB_PERIOD * HZ);
1875 }
1876
1877 static void
1878 il3945_bg_reg_txpower_periodic(struct work_struct *work)
1879 {
1880 struct il_priv *il = container_of(work, struct il_priv,
1881 _3945.thermal_periodic.work);
1882
1883 mutex_lock(&il->mutex);
1884 if (test_bit(S_EXIT_PENDING, &il->status) || il->txq == NULL)
1885 goto out;
1886
1887 il3945_reg_txpower_periodic(il);
1888 out:
1889 mutex_unlock(&il->mutex);
1890 }
1891
1892 /**
1893 * il3945_hw_reg_get_ch_grp_idx - find the channel-group idx (0-4) for channel.
1894 *
1895 * This function is used when initializing channel-info structs.
1896 *
1897 * NOTE: These channel groups do *NOT* match the bands above!
1898 * These channel groups are based on factory-tested channels;
1899 * on A-band, EEPROM's "group frequency" entries represent the top
1900 * channel in each group 1-4. Group 5 All B/G channels are in group 0.
1901 */
1902 static u16
1903 il3945_hw_reg_get_ch_grp_idx(struct il_priv *il,
1904 const struct il_channel_info *ch_info)
1905 {
1906 struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
1907 struct il3945_eeprom_txpower_group *ch_grp = &eeprom->groups[0];
1908 u8 group;
1909 u16 group_idx = 0; /* based on factory calib frequencies */
1910 u8 grp_channel;
1911
1912 /* Find the group idx for the channel ... don't use idx 1(?) */
1913 if (il_is_channel_a_band(ch_info)) {
1914 for (group = 1; group < 5; group++) {
1915 grp_channel = ch_grp[group].group_channel;
1916 if (ch_info->channel <= grp_channel) {
1917 group_idx = group;
1918 break;
1919 }
1920 }
1921 /* group 4 has a few channels *above* its factory cal freq */
1922 if (group == 5)
1923 group_idx = 4;
1924 } else
1925 group_idx = 0; /* 2.4 GHz, group 0 */
1926
1927 D_POWER("Chnl %d mapped to grp %d\n", ch_info->channel, group_idx);
1928 return group_idx;
1929 }
1930
1931 /**
1932 * il3945_hw_reg_get_matched_power_idx - Interpolate to get nominal idx
1933 *
1934 * Interpolate to get nominal (i.e. at factory calibration temperature) idx
1935 * into radio/DSP gain settings table for requested power.
1936 */
1937 static int
1938 il3945_hw_reg_get_matched_power_idx(struct il_priv *il, s8 requested_power,
1939 s32 setting_idx, s32 *new_idx)
1940 {
1941 const struct il3945_eeprom_txpower_group *chnl_grp = NULL;
1942 struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
1943 s32 idx0, idx1;
1944 s32 power = 2 * requested_power;
1945 s32 i;
1946 const struct il3945_eeprom_txpower_sample *samples;
1947 s32 gains0, gains1;
1948 s32 res;
1949 s32 denominator;
1950
1951 chnl_grp = &eeprom->groups[setting_idx];
1952 samples = chnl_grp->samples;
1953 for (i = 0; i < 5; i++) {
1954 if (power == samples[i].power) {
1955 *new_idx = samples[i].gain_idx;
1956 return 0;
1957 }
1958 }
1959
1960 if (power > samples[1].power) {
1961 idx0 = 0;
1962 idx1 = 1;
1963 } else if (power > samples[2].power) {
1964 idx0 = 1;
1965 idx1 = 2;
1966 } else if (power > samples[3].power) {
1967 idx0 = 2;
1968 idx1 = 3;
1969 } else {
1970 idx0 = 3;
1971 idx1 = 4;
1972 }
1973
1974 denominator = (s32) samples[idx1].power - (s32) samples[idx0].power;
1975 if (denominator == 0)
1976 return -EINVAL;
1977 gains0 = (s32) samples[idx0].gain_idx * (1 << 19);
1978 gains1 = (s32) samples[idx1].gain_idx * (1 << 19);
1979 res =
1980 gains0 + (gains1 - gains0) * ((s32) power -
1981 (s32) samples[idx0].power) /
1982 denominator + (1 << 18);
1983 *new_idx = res >> 19;
1984 return 0;
1985 }
1986
1987 static void
1988 il3945_hw_reg_init_channel_groups(struct il_priv *il)
1989 {
1990 u32 i;
1991 s32 rate_idx;
1992 struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
1993 const struct il3945_eeprom_txpower_group *group;
1994
1995 D_POWER("Initializing factory calib info from EEPROM\n");
1996
1997 for (i = 0; i < IL_NUM_TX_CALIB_GROUPS; i++) {
1998 s8 *clip_pwrs; /* table of power levels for each rate */
1999 s8 satur_pwr; /* saturation power for each chnl group */
2000 group = &eeprom->groups[i];
2001
2002 /* sanity check on factory saturation power value */
2003 if (group->saturation_power < 40) {
2004 IL_WARN("Error: saturation power is %d, "
2005 "less than minimum expected 40\n",
2006 group->saturation_power);
2007 return;
2008 }
2009
2010 /*
2011 * Derive requested power levels for each rate, based on
2012 * hardware capabilities (saturation power for band).
2013 * Basic value is 3dB down from saturation, with further
2014 * power reductions for highest 3 data rates. These
2015 * backoffs provide headroom for high rate modulation
2016 * power peaks, without too much distortion (clipping).
2017 */
2018 /* we'll fill in this array with h/w max power levels */
2019 clip_pwrs = (s8 *) il->_3945.clip_groups[i].clip_powers;
2020
2021 /* divide factory saturation power by 2 to find -3dB level */
2022 satur_pwr = (s8) (group->saturation_power >> 1);
2023
2024 /* fill in channel group's nominal powers for each rate */
2025 for (rate_idx = 0; rate_idx < RATE_COUNT_3945;
2026 rate_idx++, clip_pwrs++) {
2027 switch (rate_idx) {
2028 case RATE_36M_IDX_TBL:
2029 if (i == 0) /* B/G */
2030 *clip_pwrs = satur_pwr;
2031 else /* A */
2032 *clip_pwrs = satur_pwr - 5;
2033 break;
2034 case RATE_48M_IDX_TBL:
2035 if (i == 0)
2036 *clip_pwrs = satur_pwr - 7;
2037 else
2038 *clip_pwrs = satur_pwr - 10;
2039 break;
2040 case RATE_54M_IDX_TBL:
2041 if (i == 0)
2042 *clip_pwrs = satur_pwr - 9;
2043 else
2044 *clip_pwrs = satur_pwr - 12;
2045 break;
2046 default:
2047 *clip_pwrs = satur_pwr;
2048 break;
2049 }
2050 }
2051 }
2052 }
2053
2054 /**
2055 * il3945_txpower_set_from_eeprom - Set channel power info based on EEPROM
2056 *
2057 * Second pass (during init) to set up il->channel_info
2058 *
2059 * Set up Tx-power settings in our channel info database for each VALID
2060 * (for this geo/SKU) channel, at all Tx data rates, based on eeprom values
2061 * and current temperature.
2062 *
2063 * Since this is based on current temperature (at init time), these values may
2064 * not be valid for very long, but it gives us a starting/default point,
2065 * and allows us to active (i.e. using Tx) scan.
2066 *
2067 * This does *not* write values to NIC, just sets up our internal table.
2068 */
2069 int
2070 il3945_txpower_set_from_eeprom(struct il_priv *il)
2071 {
2072 struct il_channel_info *ch_info = NULL;
2073 struct il3945_channel_power_info *pwr_info;
2074 struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
2075 int delta_idx;
2076 u8 rate_idx;
2077 u8 scan_tbl_idx;
2078 const s8 *clip_pwrs; /* array of power levels for each rate */
2079 u8 gain, dsp_atten;
2080 s8 power;
2081 u8 pwr_idx, base_pwr_idx, a_band;
2082 u8 i;
2083 int temperature;
2084
2085 /* save temperature reference,
2086 * so we can determine next time to calibrate */
2087 temperature = il3945_hw_reg_txpower_get_temperature(il);
2088 il->last_temperature = temperature;
2089
2090 il3945_hw_reg_init_channel_groups(il);
2091
2092 /* initialize Tx power info for each and every channel, 2.4 and 5.x */
2093 for (i = 0, ch_info = il->channel_info; i < il->channel_count;
2094 i++, ch_info++) {
2095 a_band = il_is_channel_a_band(ch_info);
2096 if (!il_is_channel_valid(ch_info))
2097 continue;
2098
2099 /* find this channel's channel group (*not* "band") idx */
2100 ch_info->group_idx = il3945_hw_reg_get_ch_grp_idx(il, ch_info);
2101
2102 /* Get this chnlgrp's rate->max/clip-powers table */
2103 clip_pwrs =
2104 il->_3945.clip_groups[ch_info->group_idx].clip_powers;
2105
2106 /* calculate power idx *adjustment* value according to
2107 * diff between current temperature and factory temperature */
2108 delta_idx =
2109 il3945_hw_reg_adjust_power_by_temp(temperature,
2110 eeprom->groups[ch_info->
2111 group_idx].
2112 temperature);
2113
2114 D_POWER("Delta idx for channel %d: %d [%d]\n", ch_info->channel,
2115 delta_idx, temperature + IL_TEMP_CONVERT);
2116
2117 /* set tx power value for all OFDM rates */
2118 for (rate_idx = 0; rate_idx < IL_OFDM_RATES; rate_idx++) {
2119 s32 uninitialized_var(power_idx);
2120 int rc;
2121
2122 /* use channel group's clip-power table,
2123 * but don't exceed channel's max power */
2124 s8 pwr = min(ch_info->max_power_avg,
2125 clip_pwrs[rate_idx]);
2126
2127 pwr_info = &ch_info->power_info[rate_idx];
2128
2129 /* get base (i.e. at factory-measured temperature)
2130 * power table idx for this rate's power */
2131 rc = il3945_hw_reg_get_matched_power_idx(il, pwr,
2132 ch_info->
2133 group_idx,
2134 &power_idx);
2135 if (rc) {
2136 IL_ERR("Invalid power idx\n");
2137 return rc;
2138 }
2139 pwr_info->base_power_idx = (u8) power_idx;
2140
2141 /* temperature compensate */
2142 power_idx += delta_idx;
2143
2144 /* stay within range of gain table */
2145 power_idx = il3945_hw_reg_fix_power_idx(power_idx);
2146
2147 /* fill 1 OFDM rate's il3945_channel_power_info struct */
2148 pwr_info->requested_power = pwr;
2149 pwr_info->power_table_idx = (u8) power_idx;
2150 pwr_info->tpc.tx_gain =
2151 power_gain_table[a_band][power_idx].tx_gain;
2152 pwr_info->tpc.dsp_atten =
2153 power_gain_table[a_band][power_idx].dsp_atten;
2154 }
2155
2156 /* set tx power for CCK rates, based on OFDM 12 Mbit settings */
2157 pwr_info = &ch_info->power_info[RATE_12M_IDX_TBL];
2158 power = pwr_info->requested_power + IL_CCK_FROM_OFDM_POWER_DIFF;
2159 pwr_idx = pwr_info->power_table_idx + IL_CCK_FROM_OFDM_IDX_DIFF;
2160 base_pwr_idx =
2161 pwr_info->base_power_idx + IL_CCK_FROM_OFDM_IDX_DIFF;
2162
2163 /* stay within table range */
2164 pwr_idx = il3945_hw_reg_fix_power_idx(pwr_idx);
2165 gain = power_gain_table[a_band][pwr_idx].tx_gain;
2166 dsp_atten = power_gain_table[a_band][pwr_idx].dsp_atten;
2167
2168 /* fill each CCK rate's il3945_channel_power_info structure
2169 * NOTE: All CCK-rate Txpwrs are the same for a given chnl!
2170 * NOTE: CCK rates start at end of OFDM rates! */
2171 for (rate_idx = 0; rate_idx < IL_CCK_RATES; rate_idx++) {
2172 pwr_info =
2173 &ch_info->power_info[rate_idx + IL_OFDM_RATES];
2174 pwr_info->requested_power = power;
2175 pwr_info->power_table_idx = pwr_idx;
2176 pwr_info->base_power_idx = base_pwr_idx;
2177 pwr_info->tpc.tx_gain = gain;
2178 pwr_info->tpc.dsp_atten = dsp_atten;
2179 }
2180
2181 /* set scan tx power, 1Mbit for CCK, 6Mbit for OFDM */
2182 for (scan_tbl_idx = 0; scan_tbl_idx < IL_NUM_SCAN_RATES;
2183 scan_tbl_idx++) {
2184 s32 actual_idx =
2185 (scan_tbl_idx ==
2186 0) ? RATE_1M_IDX_TBL : RATE_6M_IDX_TBL;
2187 il3945_hw_reg_set_scan_power(il, scan_tbl_idx,
2188 actual_idx, clip_pwrs,
2189 ch_info, a_band);
2190 }
2191 }
2192
2193 return 0;
2194 }
2195
2196 int
2197 il3945_hw_rxq_stop(struct il_priv *il)
2198 {
2199 int ret;
2200
2201 _il_wr(il, FH39_RCSR_CONFIG(0), 0);
2202 ret = _il_poll_bit(il, FH39_RSSR_STATUS,
2203 FH39_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
2204 FH39_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
2205 1000);
2206 if (ret < 0)
2207 IL_ERR("Can't stop Rx DMA.\n");
2208
2209 return 0;
2210 }
2211
2212 int
2213 il3945_hw_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq)
2214 {
2215 int txq_id = txq->q.id;
2216
2217 struct il3945_shared *shared_data = il->_3945.shared_virt;
2218
2219 shared_data->tx_base_ptr[txq_id] = cpu_to_le32((u32) txq->q.dma_addr);
2220
2221 il_wr(il, FH39_CBCC_CTRL(txq_id), 0);
2222 il_wr(il, FH39_CBCC_BASE(txq_id), 0);
2223
2224 il_wr(il, FH39_TCSR_CONFIG(txq_id),
2225 FH39_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT |
2226 FH39_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF |
2227 FH39_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD |
2228 FH39_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL |
2229 FH39_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE);
2230
2231 /* fake read to flush all prev. writes */
2232 _il_rd(il, FH39_TSSR_CBB_BASE);
2233
2234 return 0;
2235 }
2236
2237 /*
2238 * HCMD utils
2239 */
2240 static u16
2241 il3945_get_hcmd_size(u8 cmd_id, u16 len)
2242 {
2243 switch (cmd_id) {
2244 case C_RXON:
2245 return sizeof(struct il3945_rxon_cmd);
2246 case C_POWER_TBL:
2247 return sizeof(struct il3945_powertable_cmd);
2248 default:
2249 return len;
2250 }
2251 }
2252
2253 static u16
2254 il3945_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
2255 {
2256 struct il3945_addsta_cmd *addsta = (struct il3945_addsta_cmd *)data;
2257 addsta->mode = cmd->mode;
2258 memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
2259 memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
2260 addsta->station_flags = cmd->station_flags;
2261 addsta->station_flags_msk = cmd->station_flags_msk;
2262 addsta->tid_disable_tx = cpu_to_le16(0);
2263 addsta->rate_n_flags = cmd->rate_n_flags;
2264 addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
2265 addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
2266 addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
2267
2268 return (u16) sizeof(struct il3945_addsta_cmd);
2269 }
2270
2271 static int
2272 il3945_add_bssid_station(struct il_priv *il, const u8 * addr, u8 * sta_id_r)
2273 {
2274 int ret;
2275 u8 sta_id;
2276 unsigned long flags;
2277
2278 if (sta_id_r)
2279 *sta_id_r = IL_INVALID_STATION;
2280
2281 ret = il_add_station_common(il, addr, 0, NULL, &sta_id);
2282 if (ret) {
2283 IL_ERR("Unable to add station %pM\n", addr);
2284 return ret;
2285 }
2286
2287 if (sta_id_r)
2288 *sta_id_r = sta_id;
2289
2290 spin_lock_irqsave(&il->sta_lock, flags);
2291 il->stations[sta_id].used |= IL_STA_LOCAL;
2292 spin_unlock_irqrestore(&il->sta_lock, flags);
2293
2294 return 0;
2295 }
2296
2297 static int
2298 il3945_manage_ibss_station(struct il_priv *il, struct ieee80211_vif *vif,
2299 bool add)
2300 {
2301 struct il_vif_priv *vif_priv = (void *)vif->drv_priv;
2302 int ret;
2303
2304 if (add) {
2305 ret =
2306 il3945_add_bssid_station(il, vif->bss_conf.bssid,
2307 &vif_priv->ibss_bssid_sta_id);
2308 if (ret)
2309 return ret;
2310
2311 il3945_sync_sta(il, vif_priv->ibss_bssid_sta_id,
2312 (il->band ==
2313 IEEE80211_BAND_5GHZ) ? RATE_6M_PLCP :
2314 RATE_1M_PLCP);
2315 il3945_rate_scale_init(il->hw, vif_priv->ibss_bssid_sta_id);
2316
2317 return 0;
2318 }
2319
2320 return il_remove_station(il, vif_priv->ibss_bssid_sta_id,
2321 vif->bss_conf.bssid);
2322 }
2323
2324 /**
2325 * il3945_init_hw_rate_table - Initialize the hardware rate fallback table
2326 */
2327 int
2328 il3945_init_hw_rate_table(struct il_priv *il)
2329 {
2330 int rc, i, idx, prev_idx;
2331 struct il3945_rate_scaling_cmd rate_cmd = {
2332 .reserved = {0, 0, 0},
2333 };
2334 struct il3945_rate_scaling_info *table = rate_cmd.table;
2335
2336 for (i = 0; i < ARRAY_SIZE(il3945_rates); i++) {
2337 idx = il3945_rates[i].table_rs_idx;
2338
2339 table[idx].rate_n_flags = cpu_to_le16(il3945_rates[i].plcp);
2340 table[idx].try_cnt = il->retry_rate;
2341 prev_idx = il3945_get_prev_ieee_rate(i);
2342 table[idx].next_rate_idx = il3945_rates[prev_idx].table_rs_idx;
2343 }
2344
2345 switch (il->band) {
2346 case IEEE80211_BAND_5GHZ:
2347 D_RATE("Select A mode rate scale\n");
2348 /* If one of the following CCK rates is used,
2349 * have it fall back to the 6M OFDM rate */
2350 for (i = RATE_1M_IDX_TBL; i <= RATE_11M_IDX_TBL; i++)
2351 table[i].next_rate_idx =
2352 il3945_rates[IL_FIRST_OFDM_RATE].table_rs_idx;
2353
2354 /* Don't fall back to CCK rates */
2355 table[RATE_12M_IDX_TBL].next_rate_idx = RATE_9M_IDX_TBL;
2356
2357 /* Don't drop out of OFDM rates */
2358 table[RATE_6M_IDX_TBL].next_rate_idx =
2359 il3945_rates[IL_FIRST_OFDM_RATE].table_rs_idx;
2360 break;
2361
2362 case IEEE80211_BAND_2GHZ:
2363 D_RATE("Select B/G mode rate scale\n");
2364 /* If an OFDM rate is used, have it fall back to the
2365 * 1M CCK rates */
2366
2367 if (!(il->_3945.sta_supp_rates & IL_OFDM_RATES_MASK) &&
2368 il_is_associated(il)) {
2369
2370 idx = IL_FIRST_CCK_RATE;
2371 for (i = RATE_6M_IDX_TBL; i <= RATE_54M_IDX_TBL; i++)
2372 table[i].next_rate_idx =
2373 il3945_rates[idx].table_rs_idx;
2374
2375 idx = RATE_11M_IDX_TBL;
2376 /* CCK shouldn't fall back to OFDM... */
2377 table[idx].next_rate_idx = RATE_5M_IDX_TBL;
2378 }
2379 break;
2380
2381 default:
2382 WARN_ON(1);
2383 break;
2384 }
2385
2386 /* Update the rate scaling for control frame Tx */
2387 rate_cmd.table_id = 0;
2388 rc = il_send_cmd_pdu(il, C_RATE_SCALE, sizeof(rate_cmd), &rate_cmd);
2389 if (rc)
2390 return rc;
2391
2392 /* Update the rate scaling for data frame Tx */
2393 rate_cmd.table_id = 1;
2394 return il_send_cmd_pdu(il, C_RATE_SCALE, sizeof(rate_cmd), &rate_cmd);
2395 }
2396
2397 /* Called when initializing driver */
2398 int
2399 il3945_hw_set_hw_params(struct il_priv *il)
2400 {
2401 memset((void *)&il->hw_params, 0, sizeof(struct il_hw_params));
2402
2403 il->_3945.shared_virt =
2404 dma_alloc_coherent(&il->pci_dev->dev, sizeof(struct il3945_shared),
2405 &il->_3945.shared_phys, GFP_KERNEL);
2406 if (!il->_3945.shared_virt)
2407 return -ENOMEM;
2408
2409 il->hw_params.bcast_id = IL3945_BROADCAST_ID;
2410
2411 /* Assign number of Usable TX queues */
2412 il->hw_params.max_txq_num = il->cfg->num_of_queues;
2413
2414 il->hw_params.tfd_size = sizeof(struct il3945_tfd);
2415 il->hw_params.rx_page_order = get_order(IL_RX_BUF_SIZE_3K);
2416 il->hw_params.max_rxq_size = RX_QUEUE_SIZE;
2417 il->hw_params.max_rxq_log = RX_QUEUE_SIZE_LOG;
2418 il->hw_params.max_stations = IL3945_STATION_COUNT;
2419
2420 il->sta_key_max_num = STA_KEY_MAX_NUM;
2421
2422 il->hw_params.rx_wrt_ptr_reg = FH39_RSCSR_CHNL0_WPTR;
2423 il->hw_params.max_beacon_itrvl = IL39_MAX_UCODE_BEACON_INTERVAL;
2424 il->hw_params.beacon_time_tsf_bits = IL3945_EXT_BEACON_TIME_POS;
2425
2426 return 0;
2427 }
2428
2429 unsigned int
2430 il3945_hw_get_beacon_cmd(struct il_priv *il, struct il3945_frame *frame,
2431 u8 rate)
2432 {
2433 struct il3945_tx_beacon_cmd *tx_beacon_cmd;
2434 unsigned int frame_size;
2435
2436 tx_beacon_cmd = (struct il3945_tx_beacon_cmd *)&frame->u;
2437 memset(tx_beacon_cmd, 0, sizeof(*tx_beacon_cmd));
2438
2439 tx_beacon_cmd->tx.sta_id = il->hw_params.bcast_id;
2440 tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
2441
2442 frame_size =
2443 il3945_fill_beacon_frame(il, tx_beacon_cmd->frame,
2444 sizeof(frame->u) - sizeof(*tx_beacon_cmd));
2445
2446 BUG_ON(frame_size > MAX_MPDU_SIZE);
2447 tx_beacon_cmd->tx.len = cpu_to_le16((u16) frame_size);
2448
2449 tx_beacon_cmd->tx.rate = rate;
2450 tx_beacon_cmd->tx.tx_flags =
2451 (TX_CMD_FLG_SEQ_CTL_MSK | TX_CMD_FLG_TSF_MSK);
2452
2453 /* supp_rates[0] == OFDM start at IL_FIRST_OFDM_RATE */
2454 tx_beacon_cmd->tx.supp_rates[0] =
2455 (IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
2456
2457 tx_beacon_cmd->tx.supp_rates[1] = (IL_CCK_BASIC_RATES_MASK & 0xF);
2458
2459 return sizeof(struct il3945_tx_beacon_cmd) + frame_size;
2460 }
2461
2462 void
2463 il3945_hw_handler_setup(struct il_priv *il)
2464 {
2465 il->handlers[C_TX] = il3945_hdl_tx;
2466 il->handlers[N_3945_RX] = il3945_hdl_rx;
2467 }
2468
2469 void
2470 il3945_hw_setup_deferred_work(struct il_priv *il)
2471 {
2472 INIT_DELAYED_WORK(&il->_3945.thermal_periodic,
2473 il3945_bg_reg_txpower_periodic);
2474 }
2475
2476 void
2477 il3945_hw_cancel_deferred_work(struct il_priv *il)
2478 {
2479 cancel_delayed_work(&il->_3945.thermal_periodic);
2480 }
2481
2482 /* check contents of special bootstrap uCode SRAM */
2483 static int
2484 il3945_verify_bsm(struct il_priv *il)
2485 {
2486 __le32 *image = il->ucode_boot.v_addr;
2487 u32 len = il->ucode_boot.len;
2488 u32 reg;
2489 u32 val;
2490
2491 D_INFO("Begin verify bsm\n");
2492
2493 /* verify BSM SRAM contents */
2494 val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
2495 for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
2496 reg += sizeof(u32), image++) {
2497 val = il_rd_prph(il, reg);
2498 if (val != le32_to_cpu(*image)) {
2499 IL_ERR("BSM uCode verification failed at "
2500 "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
2501 BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
2502 len, val, le32_to_cpu(*image));
2503 return -EIO;
2504 }
2505 }
2506
2507 D_INFO("BSM bootstrap uCode image OK\n");
2508
2509 return 0;
2510 }
2511
2512 /******************************************************************************
2513 *
2514 * EEPROM related functions
2515 *
2516 ******************************************************************************/
2517
2518 /*
2519 * Clear the OWNER_MSK, to establish driver (instead of uCode running on
2520 * embedded controller) as EEPROM reader; each read is a series of pulses
2521 * to/from the EEPROM chip, not a single event, so even reads could conflict
2522 * if they weren't arbitrated by some ownership mechanism. Here, the driver
2523 * simply claims ownership, which should be safe when this function is called
2524 * (i.e. before loading uCode!).
2525 */
2526 static int
2527 il3945_eeprom_acquire_semaphore(struct il_priv *il)
2528 {
2529 _il_clear_bit(il, CSR_EEPROM_GP, CSR_EEPROM_GP_IF_OWNER_MSK);
2530 return 0;
2531 }
2532
2533 static void
2534 il3945_eeprom_release_semaphore(struct il_priv *il)
2535 {
2536 return;
2537 }
2538
2539 /**
2540 * il3945_load_bsm - Load bootstrap instructions
2541 *
2542 * BSM operation:
2543 *
2544 * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
2545 * in special SRAM that does not power down during RFKILL. When powering back
2546 * up after power-saving sleeps (or during initial uCode load), the BSM loads
2547 * the bootstrap program into the on-board processor, and starts it.
2548 *
2549 * The bootstrap program loads (via DMA) instructions and data for a new
2550 * program from host DRAM locations indicated by the host driver in the
2551 * BSM_DRAM_* registers. Once the new program is loaded, it starts
2552 * automatically.
2553 *
2554 * When initializing the NIC, the host driver points the BSM to the
2555 * "initialize" uCode image. This uCode sets up some internal data, then
2556 * notifies host via "initialize alive" that it is complete.
2557 *
2558 * The host then replaces the BSM_DRAM_* pointer values to point to the
2559 * normal runtime uCode instructions and a backup uCode data cache buffer
2560 * (filled initially with starting data values for the on-board processor),
2561 * then triggers the "initialize" uCode to load and launch the runtime uCode,
2562 * which begins normal operation.
2563 *
2564 * When doing a power-save shutdown, runtime uCode saves data SRAM into
2565 * the backup data cache in DRAM before SRAM is powered down.
2566 *
2567 * When powering back up, the BSM loads the bootstrap program. This reloads
2568 * the runtime uCode instructions and the backup data cache into SRAM,
2569 * and re-launches the runtime uCode from where it left off.
2570 */
2571 static int
2572 il3945_load_bsm(struct il_priv *il)
2573 {
2574 __le32 *image = il->ucode_boot.v_addr;
2575 u32 len = il->ucode_boot.len;
2576 dma_addr_t pinst;
2577 dma_addr_t pdata;
2578 u32 inst_len;
2579 u32 data_len;
2580 int rc;
2581 int i;
2582 u32 done;
2583 u32 reg_offset;
2584
2585 D_INFO("Begin load bsm\n");
2586
2587 /* make sure bootstrap program is no larger than BSM's SRAM size */
2588 if (len > IL39_MAX_BSM_SIZE)
2589 return -EINVAL;
2590
2591 /* Tell bootstrap uCode where to find the "Initialize" uCode
2592 * in host DRAM ... host DRAM physical address bits 31:0 for 3945.
2593 * NOTE: il3945_initialize_alive_start() will replace these values,
2594 * after the "initialize" uCode has run, to point to
2595 * runtime/protocol instructions and backup data cache. */
2596 pinst = il->ucode_init.p_addr;
2597 pdata = il->ucode_init_data.p_addr;
2598 inst_len = il->ucode_init.len;
2599 data_len = il->ucode_init_data.len;
2600
2601 il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
2602 il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
2603 il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
2604 il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
2605
2606 /* Fill BSM memory with bootstrap instructions */
2607 for (reg_offset = BSM_SRAM_LOWER_BOUND;
2608 reg_offset < BSM_SRAM_LOWER_BOUND + len;
2609 reg_offset += sizeof(u32), image++)
2610 _il_wr_prph(il, reg_offset, le32_to_cpu(*image));
2611
2612 rc = il3945_verify_bsm(il);
2613 if (rc)
2614 return rc;
2615
2616 /* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
2617 il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
2618 il_wr_prph(il, BSM_WR_MEM_DST_REG, IL39_RTC_INST_LOWER_BOUND);
2619 il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
2620
2621 /* Load bootstrap code into instruction SRAM now,
2622 * to prepare to load "initialize" uCode */
2623 il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
2624
2625 /* Wait for load of bootstrap uCode to finish */
2626 for (i = 0; i < 100; i++) {
2627 done = il_rd_prph(il, BSM_WR_CTRL_REG);
2628 if (!(done & BSM_WR_CTRL_REG_BIT_START))
2629 break;
2630 udelay(10);
2631 }
2632 if (i < 100)
2633 D_INFO("BSM write complete, poll %d iterations\n", i);
2634 else {
2635 IL_ERR("BSM write did not complete!\n");
2636 return -EIO;
2637 }
2638
2639 /* Enable future boot loads whenever power management unit triggers it
2640 * (e.g. when powering back up after power-save shutdown) */
2641 il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
2642
2643 return 0;
2644 }
2645
2646 const struct il_ops il3945_ops = {
2647 .txq_attach_buf_to_tfd = il3945_hw_txq_attach_buf_to_tfd,
2648 .txq_free_tfd = il3945_hw_txq_free_tfd,
2649 .txq_init = il3945_hw_tx_queue_init,
2650 .load_ucode = il3945_load_bsm,
2651 .dump_nic_error_log = il3945_dump_nic_error_log,
2652 .apm_init = il3945_apm_init,
2653 .send_tx_power = il3945_send_tx_power,
2654 .is_valid_rtc_data_addr = il3945_hw_valid_rtc_data_addr,
2655 .eeprom_acquire_semaphore = il3945_eeprom_acquire_semaphore,
2656 .eeprom_release_semaphore = il3945_eeprom_release_semaphore,
2657
2658 .rxon_assoc = il3945_send_rxon_assoc,
2659 .commit_rxon = il3945_commit_rxon,
2660
2661 .get_hcmd_size = il3945_get_hcmd_size,
2662 .build_addsta_hcmd = il3945_build_addsta_hcmd,
2663 .request_scan = il3945_request_scan,
2664 .post_scan = il3945_post_scan,
2665
2666 .post_associate = il3945_post_associate,
2667 .config_ap = il3945_config_ap,
2668 .manage_ibss_station = il3945_manage_ibss_station,
2669
2670 .send_led_cmd = il3945_send_led_cmd,
2671 };
2672
2673 static struct il_cfg il3945_bg_cfg = {
2674 .name = "3945BG",
2675 .fw_name_pre = IL3945_FW_PRE,
2676 .ucode_api_max = IL3945_UCODE_API_MAX,
2677 .ucode_api_min = IL3945_UCODE_API_MIN,
2678 .sku = IL_SKU_G,
2679 .eeprom_ver = EEPROM_3945_EEPROM_VERSION,
2680 .mod_params = &il3945_mod_params,
2681 .led_mode = IL_LED_BLINK,
2682
2683 .eeprom_size = IL3945_EEPROM_IMG_SIZE,
2684 .num_of_queues = IL39_NUM_QUEUES,
2685 .pll_cfg_val = CSR39_ANA_PLL_CFG_VAL,
2686 .set_l0s = false,
2687 .use_bsm = true,
2688 .led_compensation = 64,
2689 .wd_timeout = IL_DEF_WD_TIMEOUT,
2690
2691 .regulatory_bands = {
2692 EEPROM_REGULATORY_BAND_1_CHANNELS,
2693 EEPROM_REGULATORY_BAND_2_CHANNELS,
2694 EEPROM_REGULATORY_BAND_3_CHANNELS,
2695 EEPROM_REGULATORY_BAND_4_CHANNELS,
2696 EEPROM_REGULATORY_BAND_5_CHANNELS,
2697 EEPROM_REGULATORY_BAND_NO_HT40,
2698 EEPROM_REGULATORY_BAND_NO_HT40,
2699 },
2700 };
2701
2702 static struct il_cfg il3945_abg_cfg = {
2703 .name = "3945ABG",
2704 .fw_name_pre = IL3945_FW_PRE,
2705 .ucode_api_max = IL3945_UCODE_API_MAX,
2706 .ucode_api_min = IL3945_UCODE_API_MIN,
2707 .sku = IL_SKU_A | IL_SKU_G,
2708 .eeprom_ver = EEPROM_3945_EEPROM_VERSION,
2709 .mod_params = &il3945_mod_params,
2710 .led_mode = IL_LED_BLINK,
2711
2712 .eeprom_size = IL3945_EEPROM_IMG_SIZE,
2713 .num_of_queues = IL39_NUM_QUEUES,
2714 .pll_cfg_val = CSR39_ANA_PLL_CFG_VAL,
2715 .set_l0s = false,
2716 .use_bsm = true,
2717 .led_compensation = 64,
2718 .wd_timeout = IL_DEF_WD_TIMEOUT,
2719
2720 .regulatory_bands = {
2721 EEPROM_REGULATORY_BAND_1_CHANNELS,
2722 EEPROM_REGULATORY_BAND_2_CHANNELS,
2723 EEPROM_REGULATORY_BAND_3_CHANNELS,
2724 EEPROM_REGULATORY_BAND_4_CHANNELS,
2725 EEPROM_REGULATORY_BAND_5_CHANNELS,
2726 EEPROM_REGULATORY_BAND_NO_HT40,
2727 EEPROM_REGULATORY_BAND_NO_HT40,
2728 },
2729 };
2730
2731 const struct pci_device_id il3945_hw_card_ids[] = {
2732 {IL_PCI_DEVICE(0x4222, 0x1005, il3945_bg_cfg)},
2733 {IL_PCI_DEVICE(0x4222, 0x1034, il3945_bg_cfg)},
2734 {IL_PCI_DEVICE(0x4222, 0x1044, il3945_bg_cfg)},
2735 {IL_PCI_DEVICE(0x4227, 0x1014, il3945_bg_cfg)},
2736 {IL_PCI_DEVICE(0x4222, PCI_ANY_ID, il3945_abg_cfg)},
2737 {IL_PCI_DEVICE(0x4227, PCI_ANY_ID, il3945_abg_cfg)},
2738 {0}
2739 };
2740
2741 MODULE_DEVICE_TABLE(pci, il3945_hw_card_ids);