]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c
iwlwifi: mvm: fix CSA AP side
[mirror_ubuntu-jammy-kernel.git] / drivers / net / wireless / intel / iwlwifi / mvm / rxmq.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2012-2014, 2018-2020 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12
13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
14 {
15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
16 u8 *data = skb->data;
17
18 /* Alignment concerns */
19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
23
24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
25 data += sizeof(struct ieee80211_radiotap_he);
26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
27 data += sizeof(struct ieee80211_radiotap_he_mu);
28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
29 data += sizeof(struct ieee80211_radiotap_lsig);
30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
31 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
32
33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
34 }
35
36 return data;
37 }
38
39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
40 int queue, struct ieee80211_sta *sta)
41 {
42 struct iwl_mvm_sta *mvmsta;
43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
45 struct iwl_mvm_key_pn *ptk_pn;
46 int res;
47 u8 tid, keyidx;
48 u8 pn[IEEE80211_CCMP_PN_LEN];
49 u8 *extiv;
50
51 /* do PN checking */
52
53 /* multicast and non-data only arrives on default queue */
54 if (!ieee80211_is_data(hdr->frame_control) ||
55 is_multicast_ether_addr(hdr->addr1))
56 return 0;
57
58 /* do not check PN for open AP */
59 if (!(stats->flag & RX_FLAG_DECRYPTED))
60 return 0;
61
62 /*
63 * avoid checking for default queue - we don't want to replicate
64 * all the logic that's necessary for checking the PN on fragmented
65 * frames, leave that to mac80211
66 */
67 if (queue == 0)
68 return 0;
69
70 /* if we are here - this for sure is either CCMP or GCMP */
71 if (IS_ERR_OR_NULL(sta)) {
72 IWL_ERR(mvm,
73 "expected hw-decrypted unicast frame for station\n");
74 return -1;
75 }
76
77 mvmsta = iwl_mvm_sta_from_mac80211(sta);
78
79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
80 keyidx = extiv[3] >> 6;
81
82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
83 if (!ptk_pn)
84 return -1;
85
86 if (ieee80211_is_data_qos(hdr->frame_control))
87 tid = ieee80211_get_tid(hdr);
88 else
89 tid = 0;
90
91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
92 if (tid >= IWL_MAX_TID_COUNT)
93 return -1;
94
95 /* load pn */
96 pn[0] = extiv[7];
97 pn[1] = extiv[6];
98 pn[2] = extiv[5];
99 pn[3] = extiv[4];
100 pn[4] = extiv[1];
101 pn[5] = extiv[0];
102
103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
104 if (res < 0)
105 return -1;
106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
107 return -1;
108
109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
110 stats->flag |= RX_FLAG_PN_VALIDATED;
111
112 return 0;
113 }
114
115 /* iwl_mvm_create_skb Adds the rxb to a new skb */
116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
118 struct iwl_rx_cmd_buffer *rxb)
119 {
120 struct iwl_rx_packet *pkt = rxb_addr(rxb);
121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
122 unsigned int headlen, fraglen, pad_len = 0;
123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
124
125 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
126 len -= 2;
127 pad_len = 2;
128 }
129
130 /* If frame is small enough to fit in skb->head, pull it completely.
131 * If not, only pull ieee80211_hdr (including crypto if present, and
132 * an additional 8 bytes for SNAP/ethertype, see below) so that
133 * splice() or TCP coalesce are more efficient.
134 *
135 * Since, in addition, ieee80211_data_to_8023() always pull in at
136 * least 8 bytes (possibly more for mesh) we can do the same here
137 * to save the cost of doing it later. That still doesn't pull in
138 * the actual IP header since the typical case has a SNAP header.
139 * If the latter changes (there are efforts in the standards group
140 * to do so) we should revisit this and ieee80211_data_to_8023().
141 */
142 headlen = (len <= skb_tailroom(skb)) ? len :
143 hdrlen + crypt_len + 8;
144
145 /* The firmware may align the packet to DWORD.
146 * The padding is inserted after the IV.
147 * After copying the header + IV skip the padding if
148 * present before copying packet data.
149 */
150 hdrlen += crypt_len;
151
152 if (WARN_ONCE(headlen < hdrlen,
153 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
154 hdrlen, len, crypt_len)) {
155 /*
156 * We warn and trace because we want to be able to see
157 * it in trace-cmd as well.
158 */
159 IWL_DEBUG_RX(mvm,
160 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
161 hdrlen, len, crypt_len);
162 return -EINVAL;
163 }
164
165 skb_put_data(skb, hdr, hdrlen);
166 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
167
168 /*
169 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
170 * certain cases and starts the checksum after the SNAP. Check if
171 * this is the case - it's easier to just bail out to CHECKSUM_NONE
172 * in the cases the hardware didn't handle, since it's rare to see
173 * such packets, even though the hardware did calculate the checksum
174 * in this case, just starting after the MAC header instead.
175 */
176 if (skb->ip_summed == CHECKSUM_COMPLETE) {
177 struct {
178 u8 hdr[6];
179 __be16 type;
180 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
181
182 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
183 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
184 (shdr->type != htons(ETH_P_IP) &&
185 shdr->type != htons(ETH_P_ARP) &&
186 shdr->type != htons(ETH_P_IPV6) &&
187 shdr->type != htons(ETH_P_8021Q) &&
188 shdr->type != htons(ETH_P_PAE) &&
189 shdr->type != htons(ETH_P_TDLS))))
190 skb->ip_summed = CHECKSUM_NONE;
191 }
192
193 fraglen = len - headlen;
194
195 if (fraglen) {
196 int offset = (void *)hdr + headlen + pad_len -
197 rxb_addr(rxb) + rxb_offset(rxb);
198
199 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
200 fraglen, rxb->truesize);
201 }
202
203 return 0;
204 }
205
206 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
207 struct sk_buff *skb)
208 {
209 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
210 struct ieee80211_vendor_radiotap *radiotap;
211 const int size = sizeof(*radiotap) + sizeof(__le16);
212
213 if (!mvm->cur_aid)
214 return;
215
216 /* ensure alignment */
217 BUILD_BUG_ON((size + 2) % 4);
218
219 radiotap = skb_put(skb, size + 2);
220 radiotap->align = 1;
221 /* Intel OUI */
222 radiotap->oui[0] = 0xf6;
223 radiotap->oui[1] = 0x54;
224 radiotap->oui[2] = 0x25;
225 /* radiotap sniffer config sub-namespace */
226 radiotap->subns = 1;
227 radiotap->present = 0x1;
228 radiotap->len = size - sizeof(*radiotap);
229 radiotap->pad = 2;
230
231 /* fill the data now */
232 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
233 /* and clear the padding */
234 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
235
236 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
237 }
238
239 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
240 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
241 struct napi_struct *napi,
242 struct sk_buff *skb, int queue,
243 struct ieee80211_sta *sta,
244 bool csi)
245 {
246 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
247 kfree_skb(skb);
248 else
249 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
250 }
251
252 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
253 struct ieee80211_rx_status *rx_status,
254 u32 rate_n_flags, int energy_a,
255 int energy_b)
256 {
257 int max_energy;
258 u32 rate_flags = rate_n_flags;
259
260 energy_a = energy_a ? -energy_a : S8_MIN;
261 energy_b = energy_b ? -energy_b : S8_MIN;
262 max_energy = max(energy_a, energy_b);
263
264 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
265 energy_a, energy_b, max_energy);
266
267 rx_status->signal = max_energy;
268 rx_status->chains =
269 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
270 rx_status->chain_signal[0] = energy_a;
271 rx_status->chain_signal[1] = energy_b;
272 rx_status->chain_signal[2] = S8_MIN;
273 }
274
275 static int iwl_mvm_rx_mgmt_crypto(struct ieee80211_sta *sta,
276 struct ieee80211_hdr *hdr,
277 struct iwl_rx_mpdu_desc *desc,
278 u32 status)
279 {
280 struct iwl_mvm_sta *mvmsta;
281 struct iwl_mvm_vif *mvmvif;
282 u8 fwkeyid = u32_get_bits(status, IWL_RX_MPDU_STATUS_KEY);
283 u8 keyid;
284 struct ieee80211_key_conf *key;
285 u32 len = le16_to_cpu(desc->mpdu_len);
286 const u8 *frame = (void *)hdr;
287
288 /*
289 * For non-beacon, we don't really care. But beacons may
290 * be filtered out, and we thus need the firmware's replay
291 * detection, otherwise beacons the firmware previously
292 * filtered could be replayed, or something like that, and
293 * it can filter a lot - though usually only if nothing has
294 * changed.
295 */
296 if (!ieee80211_is_beacon(hdr->frame_control))
297 return 0;
298
299 /* good cases */
300 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
301 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)))
302 return 0;
303
304 if (!sta)
305 return -1;
306
307 mvmsta = iwl_mvm_sta_from_mac80211(sta);
308
309 /* what? */
310 if (fwkeyid != 6 && fwkeyid != 7)
311 return -1;
312
313 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
314
315 key = rcu_dereference(mvmvif->bcn_prot.keys[fwkeyid - 6]);
316 if (!key)
317 return -1;
318
319 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
320 return -1;
321
322 /*
323 * See if the key ID matches - if not this may be due to a
324 * switch and the firmware may erroneously report !MIC_OK.
325 */
326 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
327 if (keyid != fwkeyid)
328 return -1;
329
330 /* Report status to mac80211 */
331 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
332 ieee80211_key_mic_failure(key);
333 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
334 ieee80211_key_replay(key);
335
336 return -1;
337 }
338
339 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
340 struct ieee80211_hdr *hdr,
341 struct ieee80211_rx_status *stats, u16 phy_info,
342 struct iwl_rx_mpdu_desc *desc,
343 u32 pkt_flags, int queue, u8 *crypt_len)
344 {
345 u32 status = le32_to_cpu(desc->status);
346
347 /*
348 * Drop UNKNOWN frames in aggregation, unless in monitor mode
349 * (where we don't have the keys).
350 * We limit this to aggregation because in TKIP this is a valid
351 * scenario, since we may not have the (correct) TTAK (phase 1
352 * key) in the firmware.
353 */
354 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
355 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
356 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
357 return -1;
358
359 if (!ieee80211_has_protected(hdr->frame_control) ||
360 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
361 IWL_RX_MPDU_STATUS_SEC_NONE)
362 return 0;
363
364 /* TODO: handle packets encrypted with unknown alg */
365
366 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
367 case IWL_RX_MPDU_STATUS_SEC_CCM:
368 case IWL_RX_MPDU_STATUS_SEC_GCM:
369 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
370 /* alg is CCM: check MIC only */
371 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
372 return -1;
373
374 stats->flag |= RX_FLAG_DECRYPTED;
375 if (pkt_flags & FH_RSCSR_RADA_EN)
376 stats->flag |= RX_FLAG_MIC_STRIPPED;
377 *crypt_len = IEEE80211_CCMP_HDR_LEN;
378 return 0;
379 case IWL_RX_MPDU_STATUS_SEC_TKIP:
380 /* Don't drop the frame and decrypt it in SW */
381 if (!fw_has_api(&mvm->fw->ucode_capa,
382 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
383 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
384 return 0;
385
386 if (mvm->trans->trans_cfg->gen2 &&
387 !(status & RX_MPDU_RES_STATUS_MIC_OK))
388 stats->flag |= RX_FLAG_MMIC_ERROR;
389
390 *crypt_len = IEEE80211_TKIP_IV_LEN;
391 fallthrough;
392 case IWL_RX_MPDU_STATUS_SEC_WEP:
393 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
394 return -1;
395
396 stats->flag |= RX_FLAG_DECRYPTED;
397 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
398 IWL_RX_MPDU_STATUS_SEC_WEP)
399 *crypt_len = IEEE80211_WEP_IV_LEN;
400
401 if (pkt_flags & FH_RSCSR_RADA_EN) {
402 stats->flag |= RX_FLAG_ICV_STRIPPED;
403 if (mvm->trans->trans_cfg->gen2)
404 stats->flag |= RX_FLAG_MMIC_STRIPPED;
405 }
406
407 return 0;
408 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
409 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
410 return -1;
411 stats->flag |= RX_FLAG_DECRYPTED;
412 return 0;
413 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
414 return iwl_mvm_rx_mgmt_crypto(sta, hdr, desc, status);
415 default:
416 /*
417 * Sometimes we can get frames that were not decrypted
418 * because the firmware didn't have the keys yet. This can
419 * happen after connection where we can get multicast frames
420 * before the GTK is installed.
421 * Silently drop those frames.
422 * Also drop un-decrypted frames in monitor mode.
423 */
424 if (!is_multicast_ether_addr(hdr->addr1) &&
425 !mvm->monitor_on && net_ratelimit())
426 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
427 }
428
429 return 0;
430 }
431
432 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
433 struct ieee80211_sta *sta,
434 struct sk_buff *skb,
435 struct iwl_rx_packet *pkt)
436 {
437 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
438
439 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
440 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
441 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
442
443 skb->ip_summed = CHECKSUM_COMPLETE;
444 skb->csum = csum_unfold(~(__force __sum16)hwsum);
445 }
446 } else {
447 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
448 struct iwl_mvm_vif *mvmvif;
449 u16 flags = le16_to_cpu(desc->l3l4_flags);
450 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
451 IWL_RX_L3_PROTO_POS);
452
453 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
454
455 if (mvmvif->features & NETIF_F_RXCSUM &&
456 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
457 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
458 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
459 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
460 skb->ip_summed = CHECKSUM_UNNECESSARY;
461 }
462 }
463
464 /*
465 * returns true if a packet is a duplicate and should be dropped.
466 * Updates AMSDU PN tracking info
467 */
468 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
469 struct ieee80211_rx_status *rx_status,
470 struct ieee80211_hdr *hdr,
471 struct iwl_rx_mpdu_desc *desc)
472 {
473 struct iwl_mvm_sta *mvm_sta;
474 struct iwl_mvm_rxq_dup_data *dup_data;
475 u8 tid, sub_frame_idx;
476
477 if (WARN_ON(IS_ERR_OR_NULL(sta)))
478 return false;
479
480 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
481 dup_data = &mvm_sta->dup_data[queue];
482
483 /*
484 * Drop duplicate 802.11 retransmissions
485 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
486 */
487 if (ieee80211_is_ctl(hdr->frame_control) ||
488 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
489 is_multicast_ether_addr(hdr->addr1)) {
490 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
491 return false;
492 }
493
494 if (ieee80211_is_data_qos(hdr->frame_control))
495 /* frame has qos control */
496 tid = ieee80211_get_tid(hdr);
497 else
498 tid = IWL_MAX_TID_COUNT;
499
500 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
501 sub_frame_idx = desc->amsdu_info &
502 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
503
504 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
505 dup_data->last_seq[tid] == hdr->seq_ctrl &&
506 dup_data->last_sub_frame[tid] >= sub_frame_idx))
507 return true;
508
509 /* Allow same PN as the first subframe for following sub frames */
510 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
511 sub_frame_idx > dup_data->last_sub_frame[tid] &&
512 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
513 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
514
515 dup_data->last_seq[tid] = hdr->seq_ctrl;
516 dup_data->last_sub_frame[tid] = sub_frame_idx;
517
518 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
519
520 return false;
521 }
522
523 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
524 const struct iwl_mvm_internal_rxq_notif *notif,
525 u32 notif_size, bool async)
526 {
527 u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
528 sizeof(struct iwl_mvm_rss_sync_notif)];
529 struct iwl_rxq_sync_cmd *cmd = (void *)buf;
530 u32 data_size = sizeof(*cmd) + notif_size;
531 int ret;
532
533 /*
534 * size must be a multiple of DWORD
535 * Ensure we don't overflow buf
536 */
537 if (WARN_ON(notif_size & 3 ||
538 notif_size > sizeof(struct iwl_mvm_rss_sync_notif)))
539 return -EINVAL;
540
541 cmd->rxq_mask = cpu_to_le32(rxq_mask);
542 cmd->count = cpu_to_le32(notif_size);
543 cmd->flags = 0;
544 memcpy(cmd->payload, notif, notif_size);
545
546 ret = iwl_mvm_send_cmd_pdu(mvm,
547 WIDE_ID(DATA_PATH_GROUP,
548 TRIGGER_RX_QUEUES_NOTIF_CMD),
549 async ? CMD_ASYNC : 0, data_size, cmd);
550
551 return ret;
552 }
553
554 /*
555 * Returns true if sn2 - buffer_size < sn1 < sn2.
556 * To be used only in order to compare reorder buffer head with NSSN.
557 * We fully trust NSSN unless it is behind us due to reorder timeout.
558 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
559 */
560 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
561 {
562 return ieee80211_sn_less(sn1, sn2) &&
563 !ieee80211_sn_less(sn1, sn2 - buffer_size);
564 }
565
566 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
567 {
568 if (IWL_MVM_USE_NSSN_SYNC) {
569 struct iwl_mvm_rss_sync_notif notif = {
570 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
571 .metadata.sync = 0,
572 .nssn_sync.baid = baid,
573 .nssn_sync.nssn = nssn,
574 };
575
576 iwl_mvm_sync_rx_queues_internal(mvm, (void *)&notif,
577 sizeof(notif));
578 }
579 }
580
581 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
582
583 enum iwl_mvm_release_flags {
584 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
585 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
586 };
587
588 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
589 struct ieee80211_sta *sta,
590 struct napi_struct *napi,
591 struct iwl_mvm_baid_data *baid_data,
592 struct iwl_mvm_reorder_buffer *reorder_buf,
593 u16 nssn, u32 flags)
594 {
595 struct iwl_mvm_reorder_buf_entry *entries =
596 &baid_data->entries[reorder_buf->queue *
597 baid_data->entries_per_queue];
598 u16 ssn = reorder_buf->head_sn;
599
600 lockdep_assert_held(&reorder_buf->lock);
601
602 /*
603 * We keep the NSSN not too far behind, if we are sync'ing it and it
604 * is more than 2048 ahead of us, it must be behind us. Discard it.
605 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
606 * behind and this queue already processed packets. The next if
607 * would have caught cases where this queue would have processed less
608 * than 64 packets, but it may have processed more than 64 packets.
609 */
610 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
611 ieee80211_sn_less(nssn, ssn))
612 goto set_timer;
613
614 /* ignore nssn smaller than head sn - this can happen due to timeout */
615 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
616 goto set_timer;
617
618 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
619 int index = ssn % reorder_buf->buf_size;
620 struct sk_buff_head *skb_list = &entries[index].e.frames;
621 struct sk_buff *skb;
622
623 ssn = ieee80211_sn_inc(ssn);
624 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
625 (ssn == 2048 || ssn == 0))
626 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
627
628 /*
629 * Empty the list. Will have more than one frame for A-MSDU.
630 * Empty list is valid as well since nssn indicates frames were
631 * received.
632 */
633 while ((skb = __skb_dequeue(skb_list))) {
634 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
635 reorder_buf->queue,
636 sta, false);
637 reorder_buf->num_stored--;
638 }
639 }
640 reorder_buf->head_sn = nssn;
641
642 set_timer:
643 if (reorder_buf->num_stored && !reorder_buf->removed) {
644 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
645
646 while (skb_queue_empty(&entries[index].e.frames))
647 index = (index + 1) % reorder_buf->buf_size;
648 /* modify timer to match next frame's expiration time */
649 mod_timer(&reorder_buf->reorder_timer,
650 entries[index].e.reorder_time + 1 +
651 RX_REORDER_BUF_TIMEOUT_MQ);
652 } else {
653 del_timer(&reorder_buf->reorder_timer);
654 }
655 }
656
657 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
658 {
659 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
660 struct iwl_mvm_baid_data *baid_data =
661 iwl_mvm_baid_data_from_reorder_buf(buf);
662 struct iwl_mvm_reorder_buf_entry *entries =
663 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
664 int i;
665 u16 sn = 0, index = 0;
666 bool expired = false;
667 bool cont = false;
668
669 spin_lock(&buf->lock);
670
671 if (!buf->num_stored || buf->removed) {
672 spin_unlock(&buf->lock);
673 return;
674 }
675
676 for (i = 0; i < buf->buf_size ; i++) {
677 index = (buf->head_sn + i) % buf->buf_size;
678
679 if (skb_queue_empty(&entries[index].e.frames)) {
680 /*
681 * If there is a hole and the next frame didn't expire
682 * we want to break and not advance SN
683 */
684 cont = false;
685 continue;
686 }
687 if (!cont &&
688 !time_after(jiffies, entries[index].e.reorder_time +
689 RX_REORDER_BUF_TIMEOUT_MQ))
690 break;
691
692 expired = true;
693 /* continue until next hole after this expired frames */
694 cont = true;
695 sn = ieee80211_sn_add(buf->head_sn, i + 1);
696 }
697
698 if (expired) {
699 struct ieee80211_sta *sta;
700 struct iwl_mvm_sta *mvmsta;
701 u8 sta_id = baid_data->sta_id;
702
703 rcu_read_lock();
704 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
705 mvmsta = iwl_mvm_sta_from_mac80211(sta);
706
707 /* SN is set to the last expired frame + 1 */
708 IWL_DEBUG_HT(buf->mvm,
709 "Releasing expired frames for sta %u, sn %d\n",
710 sta_id, sn);
711 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
712 sta, baid_data->tid);
713 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
714 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
715 rcu_read_unlock();
716 } else {
717 /*
718 * If no frame expired and there are stored frames, index is now
719 * pointing to the first unexpired frame - modify timer
720 * accordingly to this frame.
721 */
722 mod_timer(&buf->reorder_timer,
723 entries[index].e.reorder_time +
724 1 + RX_REORDER_BUF_TIMEOUT_MQ);
725 }
726 spin_unlock(&buf->lock);
727 }
728
729 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
730 struct iwl_mvm_delba_data *data)
731 {
732 struct iwl_mvm_baid_data *ba_data;
733 struct ieee80211_sta *sta;
734 struct iwl_mvm_reorder_buffer *reorder_buf;
735 u8 baid = data->baid;
736
737 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
738 return;
739
740 rcu_read_lock();
741
742 ba_data = rcu_dereference(mvm->baid_map[baid]);
743 if (WARN_ON_ONCE(!ba_data))
744 goto out;
745
746 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
747 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
748 goto out;
749
750 reorder_buf = &ba_data->reorder_buf[queue];
751
752 /* release all frames that are in the reorder buffer to the stack */
753 spin_lock_bh(&reorder_buf->lock);
754 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
755 ieee80211_sn_add(reorder_buf->head_sn,
756 reorder_buf->buf_size),
757 0);
758 spin_unlock_bh(&reorder_buf->lock);
759 del_timer_sync(&reorder_buf->reorder_timer);
760
761 out:
762 rcu_read_unlock();
763 }
764
765 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
766 struct napi_struct *napi,
767 u8 baid, u16 nssn, int queue,
768 u32 flags)
769 {
770 struct ieee80211_sta *sta;
771 struct iwl_mvm_reorder_buffer *reorder_buf;
772 struct iwl_mvm_baid_data *ba_data;
773
774 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
775 baid, nssn);
776
777 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
778 baid >= ARRAY_SIZE(mvm->baid_map)))
779 return;
780
781 rcu_read_lock();
782
783 ba_data = rcu_dereference(mvm->baid_map[baid]);
784 if (WARN_ON_ONCE(!ba_data))
785 goto out;
786
787 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
788 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
789 goto out;
790
791 reorder_buf = &ba_data->reorder_buf[queue];
792
793 spin_lock_bh(&reorder_buf->lock);
794 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
795 reorder_buf, nssn, flags);
796 spin_unlock_bh(&reorder_buf->lock);
797
798 out:
799 rcu_read_unlock();
800 }
801
802 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
803 struct napi_struct *napi, int queue,
804 const struct iwl_mvm_nssn_sync_data *data)
805 {
806 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
807 data->nssn, queue,
808 IWL_MVM_RELEASE_FROM_RSS_SYNC);
809 }
810
811 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
812 struct iwl_rx_cmd_buffer *rxb, int queue)
813 {
814 struct iwl_rx_packet *pkt = rxb_addr(rxb);
815 struct iwl_rxq_sync_notification *notif;
816 struct iwl_mvm_internal_rxq_notif *internal_notif;
817 u32 len = iwl_rx_packet_payload_len(pkt);
818
819 notif = (void *)pkt->data;
820 internal_notif = (void *)notif->payload;
821
822 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
823 "invalid notification size %d (%d)",
824 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
825 return;
826 /* remove only the firmware header, we want all of our payload below */
827 len -= sizeof(*notif);
828
829 if (internal_notif->sync &&
830 mvm->queue_sync_cookie != internal_notif->cookie) {
831 WARN_ONCE(1, "Received expired RX queue sync message\n");
832 return;
833 }
834
835 switch (internal_notif->type) {
836 case IWL_MVM_RXQ_EMPTY:
837 WARN_ONCE(len != sizeof(*internal_notif),
838 "invalid empty notification size %d (%d)",
839 len, (int)sizeof(*internal_notif));
840 break;
841 case IWL_MVM_RXQ_NOTIF_DEL_BA:
842 if (WARN_ONCE(len != sizeof(struct iwl_mvm_rss_sync_notif),
843 "invalid delba notification size %d (%d)",
844 len, (int)sizeof(struct iwl_mvm_rss_sync_notif)))
845 break;
846 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
847 break;
848 case IWL_MVM_RXQ_NSSN_SYNC:
849 if (WARN_ONCE(len != sizeof(struct iwl_mvm_rss_sync_notif),
850 "invalid nssn sync notification size %d (%d)",
851 len, (int)sizeof(struct iwl_mvm_rss_sync_notif)))
852 break;
853 iwl_mvm_nssn_sync(mvm, napi, queue,
854 (void *)internal_notif->data);
855 break;
856 default:
857 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
858 }
859
860 if (internal_notif->sync) {
861 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
862 "queue sync: queue %d responded a second time!\n",
863 queue);
864 if (READ_ONCE(mvm->queue_sync_state) == 0)
865 wake_up(&mvm->rx_sync_waitq);
866 }
867 }
868
869 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
870 struct ieee80211_sta *sta, int tid,
871 struct iwl_mvm_reorder_buffer *buffer,
872 u32 reorder, u32 gp2, int queue)
873 {
874 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
875
876 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
877 /* we have a new (A-)MPDU ... */
878
879 /*
880 * reset counter to 0 if we didn't have any oldsn in
881 * the last A-MPDU (as detected by GP2 being identical)
882 */
883 if (!buffer->consec_oldsn_prev_drop)
884 buffer->consec_oldsn_drops = 0;
885
886 /* either way, update our tracking state */
887 buffer->consec_oldsn_ampdu_gp2 = gp2;
888 } else if (buffer->consec_oldsn_prev_drop) {
889 /*
890 * tracking state didn't change, and we had an old SN
891 * indication before - do nothing in this case, we
892 * already noted this one down and are waiting for the
893 * next A-MPDU (by GP2)
894 */
895 return;
896 }
897
898 /* return unless this MPDU has old SN */
899 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
900 return;
901
902 /* update state */
903 buffer->consec_oldsn_prev_drop = 1;
904 buffer->consec_oldsn_drops++;
905
906 /* if limit is reached, send del BA and reset state */
907 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
908 IWL_WARN(mvm,
909 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
910 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
911 sta->addr, queue, tid);
912 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
913 buffer->consec_oldsn_prev_drop = 0;
914 buffer->consec_oldsn_drops = 0;
915 }
916 }
917
918 /*
919 * Returns true if the MPDU was buffered\dropped, false if it should be passed
920 * to upper layer.
921 */
922 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
923 struct napi_struct *napi,
924 int queue,
925 struct ieee80211_sta *sta,
926 struct sk_buff *skb,
927 struct iwl_rx_mpdu_desc *desc)
928 {
929 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
930 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
931 struct iwl_mvm_sta *mvm_sta;
932 struct iwl_mvm_baid_data *baid_data;
933 struct iwl_mvm_reorder_buffer *buffer;
934 struct sk_buff *tail;
935 u32 reorder = le32_to_cpu(desc->reorder_data);
936 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
937 bool last_subframe =
938 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
939 u8 tid = ieee80211_get_tid(hdr);
940 u8 sub_frame_idx = desc->amsdu_info &
941 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
942 struct iwl_mvm_reorder_buf_entry *entries;
943 int index;
944 u16 nssn, sn;
945 u8 baid;
946
947 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
948 IWL_RX_MPDU_REORDER_BAID_SHIFT;
949
950 /*
951 * This also covers the case of receiving a Block Ack Request
952 * outside a BA session; we'll pass it to mac80211 and that
953 * then sends a delBA action frame.
954 * This also covers pure monitor mode, in which case we won't
955 * have any BA sessions.
956 */
957 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
958 return false;
959
960 /* no sta yet */
961 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
962 "Got valid BAID without a valid station assigned\n"))
963 return false;
964
965 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
966
967 /* not a data packet or a bar */
968 if (!ieee80211_is_back_req(hdr->frame_control) &&
969 (!ieee80211_is_data_qos(hdr->frame_control) ||
970 is_multicast_ether_addr(hdr->addr1)))
971 return false;
972
973 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
974 return false;
975
976 baid_data = rcu_dereference(mvm->baid_map[baid]);
977 if (!baid_data) {
978 IWL_DEBUG_RX(mvm,
979 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
980 baid, reorder);
981 return false;
982 }
983
984 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
985 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
986 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
987 tid))
988 return false;
989
990 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
991 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
992 IWL_RX_MPDU_REORDER_SN_SHIFT;
993
994 buffer = &baid_data->reorder_buf[queue];
995 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
996
997 spin_lock_bh(&buffer->lock);
998
999 if (!buffer->valid) {
1000 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1001 spin_unlock_bh(&buffer->lock);
1002 return false;
1003 }
1004 buffer->valid = true;
1005 }
1006
1007 if (ieee80211_is_back_req(hdr->frame_control)) {
1008 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1009 buffer, nssn, 0);
1010 goto drop;
1011 }
1012
1013 /*
1014 * If there was a significant jump in the nssn - adjust.
1015 * If the SN is smaller than the NSSN it might need to first go into
1016 * the reorder buffer, in which case we just release up to it and the
1017 * rest of the function will take care of storing it and releasing up to
1018 * the nssn.
1019 * This should not happen. This queue has been lagging and it should
1020 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1021 * and update the other queues.
1022 */
1023 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1024 buffer->buf_size) ||
1025 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1026 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1027
1028 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1029 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1030 }
1031
1032 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1033 rx_status->device_timestamp, queue);
1034
1035 /* drop any oudated packets */
1036 if (ieee80211_sn_less(sn, buffer->head_sn))
1037 goto drop;
1038
1039 /* release immediately if allowed by nssn and no stored frames */
1040 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1041 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1042 buffer->buf_size) &&
1043 (!amsdu || last_subframe)) {
1044 /*
1045 * If we crossed the 2048 or 0 SN, notify all the
1046 * queues. This is done in order to avoid having a
1047 * head_sn that lags behind for too long. When that
1048 * happens, we can get to a situation where the head_sn
1049 * is within the interval [nssn - buf_size : nssn]
1050 * which will make us think that the nssn is a packet
1051 * that we already freed because of the reordering
1052 * buffer and we will ignore it. So maintain the
1053 * head_sn somewhat updated across all the queues:
1054 * when it crosses 0 and 2048.
1055 */
1056 if (sn == 2048 || sn == 0)
1057 iwl_mvm_sync_nssn(mvm, baid, sn);
1058 buffer->head_sn = nssn;
1059 }
1060 /* No need to update AMSDU last SN - we are moving the head */
1061 spin_unlock_bh(&buffer->lock);
1062 return false;
1063 }
1064
1065 /*
1066 * release immediately if there are no stored frames, and the sn is
1067 * equal to the head.
1068 * This can happen due to reorder timer, where NSSN is behind head_sn.
1069 * When we released everything, and we got the next frame in the
1070 * sequence, according to the NSSN we can't release immediately,
1071 * while technically there is no hole and we can move forward.
1072 */
1073 if (!buffer->num_stored && sn == buffer->head_sn) {
1074 if (!amsdu || last_subframe) {
1075 if (sn == 2048 || sn == 0)
1076 iwl_mvm_sync_nssn(mvm, baid, sn);
1077 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1078 }
1079 /* No need to update AMSDU last SN - we are moving the head */
1080 spin_unlock_bh(&buffer->lock);
1081 return false;
1082 }
1083
1084 index = sn % buffer->buf_size;
1085
1086 /*
1087 * Check if we already stored this frame
1088 * As AMSDU is either received or not as whole, logic is simple:
1089 * If we have frames in that position in the buffer and the last frame
1090 * originated from AMSDU had a different SN then it is a retransmission.
1091 * If it is the same SN then if the subframe index is incrementing it
1092 * is the same AMSDU - otherwise it is a retransmission.
1093 */
1094 tail = skb_peek_tail(&entries[index].e.frames);
1095 if (tail && !amsdu)
1096 goto drop;
1097 else if (tail && (sn != buffer->last_amsdu ||
1098 buffer->last_sub_index >= sub_frame_idx))
1099 goto drop;
1100
1101 /* put in reorder buffer */
1102 __skb_queue_tail(&entries[index].e.frames, skb);
1103 buffer->num_stored++;
1104 entries[index].e.reorder_time = jiffies;
1105
1106 if (amsdu) {
1107 buffer->last_amsdu = sn;
1108 buffer->last_sub_index = sub_frame_idx;
1109 }
1110
1111 /*
1112 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1113 * The reason is that NSSN advances on the first sub-frame, and may
1114 * cause the reorder buffer to advance before all the sub-frames arrive.
1115 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1116 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1117 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1118 * already ahead and it will be dropped.
1119 * If the last sub-frame is not on this queue - we will get frame
1120 * release notification with up to date NSSN.
1121 */
1122 if (!amsdu || last_subframe)
1123 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1124 buffer, nssn,
1125 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1126
1127 spin_unlock_bh(&buffer->lock);
1128 return true;
1129
1130 drop:
1131 kfree_skb(skb);
1132 spin_unlock_bh(&buffer->lock);
1133 return true;
1134 }
1135
1136 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1137 u32 reorder_data, u8 baid)
1138 {
1139 unsigned long now = jiffies;
1140 unsigned long timeout;
1141 struct iwl_mvm_baid_data *data;
1142
1143 rcu_read_lock();
1144
1145 data = rcu_dereference(mvm->baid_map[baid]);
1146 if (!data) {
1147 IWL_DEBUG_RX(mvm,
1148 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1149 baid, reorder_data);
1150 goto out;
1151 }
1152
1153 if (!data->timeout)
1154 goto out;
1155
1156 timeout = data->timeout;
1157 /*
1158 * Do not update last rx all the time to avoid cache bouncing
1159 * between the rx queues.
1160 * Update it every timeout. Worst case is the session will
1161 * expire after ~ 2 * timeout, which doesn't matter that much.
1162 */
1163 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1164 /* Update is atomic */
1165 data->last_rx = now;
1166
1167 out:
1168 rcu_read_unlock();
1169 }
1170
1171 static void iwl_mvm_flip_address(u8 *addr)
1172 {
1173 int i;
1174 u8 mac_addr[ETH_ALEN];
1175
1176 for (i = 0; i < ETH_ALEN; i++)
1177 mac_addr[i] = addr[ETH_ALEN - i - 1];
1178 ether_addr_copy(addr, mac_addr);
1179 }
1180
1181 struct iwl_mvm_rx_phy_data {
1182 enum iwl_rx_phy_info_type info_type;
1183 __le32 d0, d1, d2, d3;
1184 __le16 d4;
1185 };
1186
1187 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1188 struct iwl_mvm_rx_phy_data *phy_data,
1189 u32 rate_n_flags,
1190 struct ieee80211_radiotap_he_mu *he_mu)
1191 {
1192 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1193 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1194 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1195
1196 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1197 he_mu->flags1 |=
1198 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1199 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1200
1201 he_mu->flags1 |=
1202 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1203 phy_data4),
1204 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1205
1206 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1207 phy_data2);
1208 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1209 phy_data3);
1210 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1211 phy_data2);
1212 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1213 phy_data3);
1214 }
1215
1216 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1217 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1218 he_mu->flags1 |=
1219 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1220 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1221
1222 he_mu->flags2 |=
1223 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1224 phy_data4),
1225 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1226
1227 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1228 phy_data2);
1229 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1230 phy_data3);
1231 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1232 phy_data2);
1233 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1234 phy_data3);
1235 }
1236 }
1237
1238 static void
1239 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1240 u32 rate_n_flags,
1241 struct ieee80211_radiotap_he *he,
1242 struct ieee80211_radiotap_he_mu *he_mu,
1243 struct ieee80211_rx_status *rx_status)
1244 {
1245 /*
1246 * Unfortunately, we have to leave the mac80211 data
1247 * incorrect for the case that we receive an HE-MU
1248 * transmission and *don't* have the HE phy data (due
1249 * to the bits being used for TSF). This shouldn't
1250 * happen though as management frames where we need
1251 * the TSF/timers are not be transmitted in HE-MU.
1252 */
1253 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1254 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1255 u8 offs = 0;
1256
1257 rx_status->bw = RATE_INFO_BW_HE_RU;
1258
1259 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1260
1261 switch (ru) {
1262 case 0 ... 36:
1263 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1264 offs = ru;
1265 break;
1266 case 37 ... 52:
1267 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1268 offs = ru - 37;
1269 break;
1270 case 53 ... 60:
1271 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1272 offs = ru - 53;
1273 break;
1274 case 61 ... 64:
1275 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1276 offs = ru - 61;
1277 break;
1278 case 65 ... 66:
1279 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1280 offs = ru - 65;
1281 break;
1282 case 67:
1283 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1284 break;
1285 case 68:
1286 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1287 break;
1288 }
1289 he->data2 |= le16_encode_bits(offs,
1290 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1291 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1292 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1293 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1294 he->data2 |=
1295 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1296
1297 #define CHECK_BW(bw) \
1298 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1299 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1300 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1301 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1302 CHECK_BW(20);
1303 CHECK_BW(40);
1304 CHECK_BW(80);
1305 CHECK_BW(160);
1306
1307 if (he_mu)
1308 he_mu->flags2 |=
1309 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1310 rate_n_flags),
1311 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1312 else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1313 he->data6 |=
1314 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1315 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1316 rate_n_flags),
1317 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1318 }
1319
1320 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1321 struct iwl_mvm_rx_phy_data *phy_data,
1322 struct ieee80211_radiotap_he *he,
1323 struct ieee80211_radiotap_he_mu *he_mu,
1324 struct ieee80211_rx_status *rx_status,
1325 u32 rate_n_flags, int queue)
1326 {
1327 switch (phy_data->info_type) {
1328 case IWL_RX_PHY_INFO_TYPE_NONE:
1329 case IWL_RX_PHY_INFO_TYPE_CCK:
1330 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1331 case IWL_RX_PHY_INFO_TYPE_HT:
1332 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1333 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1334 return;
1335 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1336 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1337 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1338 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1339 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1340 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1341 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1342 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1343 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1344 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1345 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1346 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1347 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1348 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1349 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1350 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1351 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1352 fallthrough;
1353 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1354 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1355 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1356 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1357 /* HE common */
1358 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1359 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1360 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1361 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1362 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1363 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1364 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1365 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1366 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1367 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1368 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1369 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1370 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1371 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1372 IWL_RX_PHY_DATA0_HE_UPLINK),
1373 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1374 }
1375 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1376 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1377 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1378 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1379 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1380 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1381 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1382 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1383 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1384 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1385 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1386 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1387 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1388 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1389 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1390 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1391 IWL_RX_PHY_DATA0_HE_DOPPLER),
1392 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1393 break;
1394 }
1395
1396 switch (phy_data->info_type) {
1397 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1398 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1399 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1400 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1401 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1402 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1403 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1404 break;
1405 default:
1406 /* nothing here */
1407 break;
1408 }
1409
1410 switch (phy_data->info_type) {
1411 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1412 he_mu->flags1 |=
1413 le16_encode_bits(le16_get_bits(phy_data->d4,
1414 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1415 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1416 he_mu->flags1 |=
1417 le16_encode_bits(le16_get_bits(phy_data->d4,
1418 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1419 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1420 he_mu->flags2 |=
1421 le16_encode_bits(le16_get_bits(phy_data->d4,
1422 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1423 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1424 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1425 fallthrough;
1426 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1427 he_mu->flags2 |=
1428 le16_encode_bits(le32_get_bits(phy_data->d1,
1429 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1430 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1431 he_mu->flags2 |=
1432 le16_encode_bits(le32_get_bits(phy_data->d1,
1433 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1434 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1435 fallthrough;
1436 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1437 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1438 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1439 he, he_mu, rx_status);
1440 break;
1441 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1442 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1443 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1444 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1445 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1446 break;
1447 default:
1448 /* nothing */
1449 break;
1450 }
1451 }
1452
1453 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1454 struct iwl_mvm_rx_phy_data *phy_data,
1455 u32 rate_n_flags, u16 phy_info, int queue)
1456 {
1457 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1458 struct ieee80211_radiotap_he *he = NULL;
1459 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1460 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1461 u8 stbc, ltf;
1462 static const struct ieee80211_radiotap_he known = {
1463 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1464 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1465 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1466 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1467 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1468 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1469 };
1470 static const struct ieee80211_radiotap_he_mu mu_known = {
1471 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1472 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1473 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1474 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1475 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1476 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1477 };
1478
1479 he = skb_put_data(skb, &known, sizeof(known));
1480 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1481
1482 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1483 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1484 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1485 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1486 }
1487
1488 /* report the AMPDU-EOF bit on single frames */
1489 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1490 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1491 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1492 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1493 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1494 }
1495
1496 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1497 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1498 rate_n_flags, queue);
1499
1500 /* update aggregation data for monitor sake on default queue */
1501 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1502 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1503 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1504
1505 /* toggle is switched whenever new aggregation starts */
1506 if (toggle_bit != mvm->ampdu_toggle) {
1507 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1508 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1509 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1510 }
1511 }
1512
1513 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1514 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1515 rx_status->bw = RATE_INFO_BW_HE_RU;
1516 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1517 }
1518
1519 /* actually data is filled in mac80211 */
1520 if (he_type == RATE_MCS_HE_TYPE_SU ||
1521 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1522 he->data1 |=
1523 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1524
1525 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1526 rx_status->nss =
1527 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1528 RATE_VHT_MCS_NSS_POS) + 1;
1529 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1530 rx_status->encoding = RX_ENC_HE;
1531 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1532 if (rate_n_flags & RATE_MCS_BF_MSK)
1533 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1534
1535 rx_status->he_dcm =
1536 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1537
1538 #define CHECK_TYPE(F) \
1539 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1540 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1541
1542 CHECK_TYPE(SU);
1543 CHECK_TYPE(EXT_SU);
1544 CHECK_TYPE(MU);
1545 CHECK_TYPE(TRIG);
1546
1547 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1548
1549 if (rate_n_flags & RATE_MCS_BF_MSK)
1550 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1551
1552 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1553 RATE_MCS_HE_GI_LTF_POS) {
1554 case 0:
1555 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1556 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1557 else
1558 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1559 if (he_type == RATE_MCS_HE_TYPE_MU)
1560 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1561 else
1562 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1563 break;
1564 case 1:
1565 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1566 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1567 else
1568 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1569 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1570 break;
1571 case 2:
1572 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1573 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1574 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1575 } else {
1576 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1577 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1578 }
1579 break;
1580 case 3:
1581 if ((he_type == RATE_MCS_HE_TYPE_SU ||
1582 he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1583 rate_n_flags & RATE_MCS_SGI_MSK)
1584 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1585 else
1586 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1587 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1588 break;
1589 }
1590
1591 he->data5 |= le16_encode_bits(ltf,
1592 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1593 }
1594
1595 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1596 struct iwl_mvm_rx_phy_data *phy_data)
1597 {
1598 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1599 struct ieee80211_radiotap_lsig *lsig;
1600
1601 switch (phy_data->info_type) {
1602 case IWL_RX_PHY_INFO_TYPE_HT:
1603 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1604 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1605 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1606 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1607 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1608 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1609 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1610 lsig = skb_put(skb, sizeof(*lsig));
1611 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1612 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1613 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1614 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1615 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1616 break;
1617 default:
1618 break;
1619 }
1620 }
1621
1622 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1623 {
1624 switch (phy_band) {
1625 case PHY_BAND_24:
1626 return NL80211_BAND_2GHZ;
1627 case PHY_BAND_5:
1628 return NL80211_BAND_5GHZ;
1629 case PHY_BAND_6:
1630 return NL80211_BAND_6GHZ;
1631 default:
1632 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1633 return NL80211_BAND_5GHZ;
1634 }
1635 }
1636
1637 struct iwl_rx_sta_csa {
1638 bool all_sta_unblocked;
1639 struct ieee80211_vif *vif;
1640 };
1641
1642 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1643 {
1644 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1645 struct iwl_rx_sta_csa *rx_sta_csa = data;
1646
1647 if (mvmsta->vif != rx_sta_csa->vif)
1648 return;
1649
1650 if (mvmsta->disable_tx)
1651 rx_sta_csa->all_sta_unblocked = false;
1652 }
1653
1654 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1655 struct iwl_rx_cmd_buffer *rxb, int queue)
1656 {
1657 struct ieee80211_rx_status *rx_status;
1658 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1659 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1660 struct ieee80211_hdr *hdr;
1661 u32 len;
1662 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1663 u32 rate_n_flags, gp2_on_air_rise;
1664 u16 phy_info;
1665 struct ieee80211_sta *sta = NULL;
1666 struct sk_buff *skb;
1667 u8 crypt_len = 0, channel, energy_a, energy_b;
1668 size_t desc_size;
1669 struct iwl_mvm_rx_phy_data phy_data = {
1670 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1671 };
1672 bool csi = false;
1673
1674 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1675 return;
1676
1677 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1678 desc_size = sizeof(*desc);
1679 else
1680 desc_size = IWL_RX_DESC_SIZE_V1;
1681
1682 if (unlikely(pkt_len < desc_size)) {
1683 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
1684 return;
1685 }
1686
1687 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1688 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1689 channel = desc->v3.channel;
1690 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1691 energy_a = desc->v3.energy_a;
1692 energy_b = desc->v3.energy_b;
1693
1694 phy_data.d0 = desc->v3.phy_data0;
1695 phy_data.d1 = desc->v3.phy_data1;
1696 phy_data.d2 = desc->v3.phy_data2;
1697 phy_data.d3 = desc->v3.phy_data3;
1698 } else {
1699 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1700 channel = desc->v1.channel;
1701 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1702 energy_a = desc->v1.energy_a;
1703 energy_b = desc->v1.energy_b;
1704
1705 phy_data.d0 = desc->v1.phy_data0;
1706 phy_data.d1 = desc->v1.phy_data1;
1707 phy_data.d2 = desc->v1.phy_data2;
1708 phy_data.d3 = desc->v1.phy_data3;
1709 }
1710
1711 len = le16_to_cpu(desc->mpdu_len);
1712
1713 if (unlikely(len + desc_size > pkt_len)) {
1714 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
1715 return;
1716 }
1717
1718 phy_info = le16_to_cpu(desc->phy_info);
1719 phy_data.d4 = desc->phy_data4;
1720
1721 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1722 phy_data.info_type =
1723 le32_get_bits(phy_data.d1,
1724 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1725
1726 hdr = (void *)(pkt->data + desc_size);
1727 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1728 * ieee80211_hdr pulled.
1729 */
1730 skb = alloc_skb(128, GFP_ATOMIC);
1731 if (!skb) {
1732 IWL_ERR(mvm, "alloc_skb failed\n");
1733 return;
1734 }
1735
1736 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1737 /*
1738 * If the device inserted padding it means that (it thought)
1739 * the 802.11 header wasn't a multiple of 4 bytes long. In
1740 * this case, reserve two bytes at the start of the SKB to
1741 * align the payload properly in case we end up copying it.
1742 */
1743 skb_reserve(skb, 2);
1744 }
1745
1746 rx_status = IEEE80211_SKB_RXCB(skb);
1747
1748 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1749 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1750 case RATE_MCS_CHAN_WIDTH_20:
1751 break;
1752 case RATE_MCS_CHAN_WIDTH_40:
1753 rx_status->bw = RATE_INFO_BW_40;
1754 break;
1755 case RATE_MCS_CHAN_WIDTH_80:
1756 rx_status->bw = RATE_INFO_BW_80;
1757 break;
1758 case RATE_MCS_CHAN_WIDTH_160:
1759 rx_status->bw = RATE_INFO_BW_160;
1760 break;
1761 }
1762
1763 if (rate_n_flags & RATE_MCS_HE_MSK)
1764 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1765 phy_info, queue);
1766
1767 iwl_mvm_decode_lsig(skb, &phy_data);
1768
1769 /*
1770 * Keep packets with CRC errors (and with overrun) for monitor mode
1771 * (otherwise the firmware discards them) but mark them as bad.
1772 */
1773 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1774 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1775 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1776 le32_to_cpu(desc->status));
1777 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1778 }
1779 /* set the preamble flag if appropriate */
1780 if (rate_n_flags & RATE_MCS_CCK_MSK &&
1781 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1782 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1783
1784 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1785 u64 tsf_on_air_rise;
1786
1787 if (mvm->trans->trans_cfg->device_family >=
1788 IWL_DEVICE_FAMILY_AX210)
1789 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1790 else
1791 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1792
1793 rx_status->mactime = tsf_on_air_rise;
1794 /* TSF as indicated by the firmware is at INA time */
1795 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1796 }
1797
1798 rx_status->device_timestamp = gp2_on_air_rise;
1799 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1800 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1801
1802 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1803 } else {
1804 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1805 NL80211_BAND_2GHZ;
1806 }
1807 rx_status->freq = ieee80211_channel_to_frequency(channel,
1808 rx_status->band);
1809 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1810 energy_b);
1811
1812 /* update aggregation data for monitor sake on default queue */
1813 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1814 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1815
1816 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1817 /*
1818 * Toggle is switched whenever new aggregation starts. Make
1819 * sure ampdu_reference is never 0 so we can later use it to
1820 * see if the frame was really part of an A-MPDU or not.
1821 */
1822 if (toggle_bit != mvm->ampdu_toggle) {
1823 mvm->ampdu_ref++;
1824 if (mvm->ampdu_ref == 0)
1825 mvm->ampdu_ref++;
1826 mvm->ampdu_toggle = toggle_bit;
1827 }
1828 rx_status->ampdu_reference = mvm->ampdu_ref;
1829 }
1830
1831 if (unlikely(mvm->monitor_on))
1832 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1833
1834 rcu_read_lock();
1835
1836 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1837 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1838
1839 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1840 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1841 if (IS_ERR(sta))
1842 sta = NULL;
1843 }
1844 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1845 /*
1846 * This is fine since we prevent two stations with the same
1847 * address from being added.
1848 */
1849 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1850 }
1851
1852 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc,
1853 le32_to_cpu(pkt->len_n_flags), queue,
1854 &crypt_len)) {
1855 kfree_skb(skb);
1856 goto out;
1857 }
1858
1859 if (sta) {
1860 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1861 struct ieee80211_vif *tx_blocked_vif =
1862 rcu_dereference(mvm->csa_tx_blocked_vif);
1863 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1864 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1865 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1866 struct iwl_fw_dbg_trigger_tlv *trig;
1867 struct ieee80211_vif *vif = mvmsta->vif;
1868
1869 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1870 !is_multicast_ether_addr(hdr->addr1) &&
1871 ieee80211_is_data(hdr->frame_control) &&
1872 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1873 schedule_delayed_work(&mvm->tcm.work, 0);
1874
1875 /*
1876 * We have tx blocked stations (with CS bit). If we heard
1877 * frames from a blocked station on a new channel we can
1878 * TX to it again.
1879 */
1880 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1881 struct iwl_mvm_vif *mvmvif =
1882 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1883 struct iwl_rx_sta_csa rx_sta_csa = {
1884 .all_sta_unblocked = true,
1885 .vif = tx_blocked_vif,
1886 };
1887
1888 if (mvmvif->csa_target_freq == rx_status->freq)
1889 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1890 false);
1891 ieee80211_iterate_stations_atomic(mvm->hw,
1892 iwl_mvm_rx_get_sta_block_tx,
1893 &rx_sta_csa);
1894
1895 if (rx_sta_csa.all_sta_unblocked) {
1896 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
1897 /* Unblock BCAST / MCAST station */
1898 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
1899 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork);
1900 }
1901 }
1902
1903 rs_update_last_rssi(mvm, mvmsta, rx_status);
1904
1905 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1906 ieee80211_vif_to_wdev(vif),
1907 FW_DBG_TRIGGER_RSSI);
1908
1909 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1910 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1911 s32 rssi;
1912
1913 rssi_trig = (void *)trig->data;
1914 rssi = le32_to_cpu(rssi_trig->rssi);
1915
1916 if (rx_status->signal < rssi)
1917 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1918 NULL);
1919 }
1920
1921 if (ieee80211_is_data(hdr->frame_control))
1922 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
1923
1924 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1925 kfree_skb(skb);
1926 goto out;
1927 }
1928
1929 /*
1930 * Our hardware de-aggregates AMSDUs but copies the mac header
1931 * as it to the de-aggregated MPDUs. We need to turn off the
1932 * AMSDU bit in the QoS control ourselves.
1933 * In addition, HW reverses addr3 and addr4 - reverse it back.
1934 */
1935 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1936 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1937 u8 *qc = ieee80211_get_qos_ctl(hdr);
1938
1939 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1940
1941 if (mvm->trans->trans_cfg->device_family ==
1942 IWL_DEVICE_FAMILY_9000) {
1943 iwl_mvm_flip_address(hdr->addr3);
1944
1945 if (ieee80211_has_a4(hdr->frame_control))
1946 iwl_mvm_flip_address(hdr->addr4);
1947 }
1948 }
1949 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1950 u32 reorder_data = le32_to_cpu(desc->reorder_data);
1951
1952 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1953 }
1954 }
1955
1956 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1957 rate_n_flags & RATE_MCS_SGI_MSK)
1958 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1959 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1960 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1961 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1962 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1963 if (rate_n_flags & RATE_MCS_HT_MSK) {
1964 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1965 RATE_MCS_STBC_POS;
1966 rx_status->encoding = RX_ENC_HT;
1967 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1968 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1969 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1970 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1971 RATE_MCS_STBC_POS;
1972 rx_status->nss =
1973 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1974 RATE_VHT_MCS_NSS_POS) + 1;
1975 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1976 rx_status->encoding = RX_ENC_VHT;
1977 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1978 if (rate_n_flags & RATE_MCS_BF_MSK)
1979 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1980 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1981 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1982 rx_status->band);
1983
1984 if (WARN(rate < 0 || rate > 0xFF,
1985 "Invalid rate flags 0x%x, band %d,\n",
1986 rate_n_flags, rx_status->band)) {
1987 kfree_skb(skb);
1988 goto out;
1989 }
1990 rx_status->rate_idx = rate;
1991 }
1992
1993 /* management stuff on default queue */
1994 if (!queue) {
1995 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1996 ieee80211_is_probe_resp(hdr->frame_control)) &&
1997 mvm->sched_scan_pass_all ==
1998 SCHED_SCAN_PASS_ALL_ENABLED))
1999 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2000
2001 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2002 ieee80211_is_probe_resp(hdr->frame_control)))
2003 rx_status->boottime_ns = ktime_get_boottime_ns();
2004 }
2005
2006 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2007 kfree_skb(skb);
2008 goto out;
2009 }
2010
2011 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
2012 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
2013 sta, csi);
2014 out:
2015 rcu_read_unlock();
2016 }
2017
2018 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2019 struct iwl_rx_cmd_buffer *rxb, int queue)
2020 {
2021 struct ieee80211_rx_status *rx_status;
2022 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2023 struct iwl_rx_no_data *desc = (void *)pkt->data;
2024 u32 rate_n_flags = le32_to_cpu(desc->rate);
2025 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2026 u32 rssi = le32_to_cpu(desc->rssi);
2027 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2028 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2029 struct ieee80211_sta *sta = NULL;
2030 struct sk_buff *skb;
2031 u8 channel, energy_a, energy_b;
2032 struct iwl_mvm_rx_phy_data phy_data = {
2033 .d0 = desc->phy_info[0],
2034 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
2035 };
2036
2037 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc)))
2038 return;
2039
2040 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2041 return;
2042
2043 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
2044 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
2045 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
2046
2047 phy_data.info_type =
2048 le32_get_bits(desc->phy_info[1],
2049 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
2050
2051 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2052 * ieee80211_hdr pulled.
2053 */
2054 skb = alloc_skb(128, GFP_ATOMIC);
2055 if (!skb) {
2056 IWL_ERR(mvm, "alloc_skb failed\n");
2057 return;
2058 }
2059
2060 rx_status = IEEE80211_SKB_RXCB(skb);
2061
2062 /* 0-length PSDU */
2063 rx_status->flag |= RX_FLAG_NO_PSDU;
2064
2065 switch (info_type) {
2066 case RX_NO_DATA_INFO_TYPE_NDP:
2067 rx_status->zero_length_psdu_type =
2068 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2069 break;
2070 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2071 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
2072 rx_status->zero_length_psdu_type =
2073 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2074 break;
2075 default:
2076 rx_status->zero_length_psdu_type =
2077 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2078 break;
2079 }
2080
2081 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2082 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2083 case RATE_MCS_CHAN_WIDTH_20:
2084 break;
2085 case RATE_MCS_CHAN_WIDTH_40:
2086 rx_status->bw = RATE_INFO_BW_40;
2087 break;
2088 case RATE_MCS_CHAN_WIDTH_80:
2089 rx_status->bw = RATE_INFO_BW_80;
2090 break;
2091 case RATE_MCS_CHAN_WIDTH_160:
2092 rx_status->bw = RATE_INFO_BW_160;
2093 break;
2094 }
2095
2096 if (rate_n_flags & RATE_MCS_HE_MSK)
2097 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
2098 phy_info, queue);
2099
2100 iwl_mvm_decode_lsig(skb, &phy_data);
2101
2102 rx_status->device_timestamp = gp2_on_air_rise;
2103 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
2104 NL80211_BAND_2GHZ;
2105 rx_status->freq = ieee80211_channel_to_frequency(channel,
2106 rx_status->band);
2107 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
2108 energy_b);
2109
2110 rcu_read_lock();
2111
2112 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
2113 rate_n_flags & RATE_MCS_SGI_MSK)
2114 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2115 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
2116 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
2117 if (rate_n_flags & RATE_MCS_LDPC_MSK)
2118 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2119 if (rate_n_flags & RATE_MCS_HT_MSK) {
2120 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2121 RATE_MCS_STBC_POS;
2122 rx_status->encoding = RX_ENC_HT;
2123 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
2124 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2125 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2126 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2127 RATE_MCS_STBC_POS;
2128 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2129 rx_status->encoding = RX_ENC_VHT;
2130 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2131 if (rate_n_flags & RATE_MCS_BF_MSK)
2132 rx_status->enc_flags |= RX_ENC_FLAG_BF;
2133 /*
2134 * take the nss from the rx_vec since the rate_n_flags has
2135 * only 2 bits for the nss which gives a max of 4 ss but
2136 * there may be up to 8 spatial streams
2137 */
2138 rx_status->nss =
2139 le32_get_bits(desc->rx_vec[0],
2140 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2141 } else if (rate_n_flags & RATE_MCS_HE_MSK) {
2142 rx_status->nss =
2143 le32_get_bits(desc->rx_vec[0],
2144 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2145 } else {
2146 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2147 rx_status->band);
2148
2149 if (WARN(rate < 0 || rate > 0xFF,
2150 "Invalid rate flags 0x%x, band %d,\n",
2151 rate_n_flags, rx_status->band)) {
2152 kfree_skb(skb);
2153 goto out;
2154 }
2155 rx_status->rate_idx = rate;
2156 }
2157
2158 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2159 out:
2160 rcu_read_unlock();
2161 }
2162
2163 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2164 struct iwl_rx_cmd_buffer *rxb, int queue)
2165 {
2166 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2167 struct iwl_frame_release *release = (void *)pkt->data;
2168
2169 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2170 return;
2171
2172 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2173 le16_to_cpu(release->nssn),
2174 queue, 0);
2175 }
2176
2177 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2178 struct iwl_rx_cmd_buffer *rxb, int queue)
2179 {
2180 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2181 struct iwl_bar_frame_release *release = (void *)pkt->data;
2182 unsigned int baid = le32_get_bits(release->ba_info,
2183 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2184 unsigned int nssn = le32_get_bits(release->ba_info,
2185 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2186 unsigned int sta_id = le32_get_bits(release->sta_tid,
2187 IWL_BAR_FRAME_RELEASE_STA_MASK);
2188 unsigned int tid = le32_get_bits(release->sta_tid,
2189 IWL_BAR_FRAME_RELEASE_TID_MASK);
2190 struct iwl_mvm_baid_data *baid_data;
2191
2192 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2193 return;
2194
2195 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2196 baid >= ARRAY_SIZE(mvm->baid_map)))
2197 return;
2198
2199 rcu_read_lock();
2200 baid_data = rcu_dereference(mvm->baid_map[baid]);
2201 if (!baid_data) {
2202 IWL_DEBUG_RX(mvm,
2203 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2204 baid);
2205 goto out;
2206 }
2207
2208 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2209 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2210 baid, baid_data->sta_id, baid_data->tid, sta_id,
2211 tid))
2212 goto out;
2213
2214 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2215 out:
2216 rcu_read_unlock();
2217 }