]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/wireless/intel/iwlwifi/pcie/rx.c
NFC: pn533: handle interrupted commands in pn533_recv_frame
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5 * Copyright(c) 2016 Intel Deutschland GmbH
6 *
7 * Portions of this file are derived from the ipw3945 project, as well
8 * as portions of the ieee80211 subsystem header files.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called LICENSE.
25 *
26 * Contact Information:
27 * Intel Linux Wireless <linuxwifi@intel.com>
28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29 *
30 *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
34
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
39
40 /******************************************************************************
41 *
42 * RX path functions
43 *
44 ******************************************************************************/
45
46 /*
47 * Rx theory of operation
48 *
49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50 * each of which point to Receive Buffers to be filled by the NIC. These get
51 * used not only for Rx frames, but for any command response or notification
52 * from the NIC. The driver and NIC manage the Rx buffers by means
53 * of indexes into the circular buffer.
54 *
55 * Rx Queue Indexes
56 * The host/firmware share two index registers for managing the Rx buffers.
57 *
58 * The READ index maps to the first position that the firmware may be writing
59 * to -- the driver can read up to (but not including) this position and get
60 * good data.
61 * The READ index is managed by the firmware once the card is enabled.
62 *
63 * The WRITE index maps to the last position the driver has read from -- the
64 * position preceding WRITE is the last slot the firmware can place a packet.
65 *
66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67 * WRITE = READ.
68 *
69 * During initialization, the host sets up the READ queue position to the first
70 * INDEX position, and WRITE to the last (READ - 1 wrapped)
71 *
72 * When the firmware places a packet in a buffer, it will advance the READ index
73 * and fire the RX interrupt. The driver can then query the READ index and
74 * process as many packets as possible, moving the WRITE index forward as it
75 * resets the Rx queue buffers with new memory.
76 *
77 * The management in the driver is as follows:
78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79 * When the interrupt handler is called, the request is processed.
80 * The page is either stolen - transferred to the upper layer
81 * or reused - added immediately to the iwl->rxq->rx_free list.
82 * + When the page is stolen - the driver updates the matching queue's used
83 * count, detaches the RBD and transfers it to the queue used list.
84 * When there are two used RBDs - they are transferred to the allocator empty
85 * list. Work is then scheduled for the allocator to start allocating
86 * eight buffers.
87 * When there are another 6 used RBDs - they are transferred to the allocator
88 * empty list and the driver tries to claim the pre-allocated buffers and
89 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90 * until ready.
91 * When there are 8+ buffers in the free list - either from allocation or from
92 * 8 reused unstolen pages - restock is called to update the FW and indexes.
93 * + In order to make sure the allocator always has RBDs to use for allocation
94 * the allocator has initial pool in the size of num_queues*(8-2) - the
95 * maximum missing RBDs per allocation request (request posted with 2
96 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97 * The queues supplies the recycle of the rest of the RBDs.
98 * + A received packet is processed and handed to the kernel network stack,
99 * detached from the iwl->rxq. The driver 'processed' index is updated.
100 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102 * If there were enough free buffers and RX_STALLED is set it is cleared.
103 *
104 *
105 * Driver sequence:
106 *
107 * iwl_rxq_alloc() Allocates rx_free
108 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
109 * iwl_pcie_rxq_restock.
110 * Used only during initialization.
111 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
112 * queue, updates firmware pointers, and updates
113 * the WRITE index.
114 * iwl_pcie_rx_allocator() Background work for allocating pages.
115 *
116 * -- enable interrupts --
117 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
118 * READ INDEX, detaching the SKB from the pool.
119 * Moves the packet buffer from queue to rx_used.
120 * Posts and claims requests to the allocator.
121 * Calls iwl_pcie_rxq_restock to refill any empty
122 * slots.
123 *
124 * RBD life-cycle:
125 *
126 * Init:
127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
128 *
129 * Regular Receive interrupt:
130 * Page Stolen:
131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133 * Page not Stolen:
134 * rxq.queue -> rxq.rx_free -> rxq.queue
135 * ...
136 *
137 */
138
139 /*
140 * iwl_rxq_space - Return number of free slots available in queue.
141 */
142 static int iwl_rxq_space(const struct iwl_rxq *rxq)
143 {
144 /* Make sure rx queue size is a power of 2 */
145 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146
147 /*
148 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149 * between empty and completely full queues.
150 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151 * defined for negative dividends.
152 */
153 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 }
155
156 /*
157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
158 */
159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
160 {
161 return cpu_to_le32((u32)(dma_addr >> 8));
162 }
163
164 static void iwl_pcie_write_prph_64(struct iwl_trans *trans, u64 ofs, u64 val)
165 {
166 iwl_write_prph(trans, ofs, val & 0xffffffff);
167 iwl_write_prph(trans, ofs + 4, val >> 32);
168 }
169
170 /*
171 * iwl_pcie_rx_stop - stops the Rx DMA
172 */
173 int iwl_pcie_rx_stop(struct iwl_trans *trans)
174 {
175 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
176 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
177 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
178 }
179
180 /*
181 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
182 */
183 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
184 struct iwl_rxq *rxq)
185 {
186 u32 reg;
187
188 lockdep_assert_held(&rxq->lock);
189
190 /*
191 * explicitly wake up the NIC if:
192 * 1. shadow registers aren't enabled
193 * 2. there is a chance that the NIC is asleep
194 */
195 if (!trans->cfg->base_params->shadow_reg_enable &&
196 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
197 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
198
199 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
200 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
201 reg);
202 iwl_set_bit(trans, CSR_GP_CNTRL,
203 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
204 rxq->need_update = true;
205 return;
206 }
207 }
208
209 rxq->write_actual = round_down(rxq->write, 8);
210 if (trans->cfg->mq_rx_supported)
211 iwl_write_prph(trans, RFH_Q_FRBDCB_WIDX(rxq->id),
212 rxq->write_actual);
213 else
214 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
215 }
216
217 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
218 {
219 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
220 int i;
221
222 for (i = 0; i < trans->num_rx_queues; i++) {
223 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
224
225 if (!rxq->need_update)
226 continue;
227 spin_lock(&rxq->lock);
228 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
229 rxq->need_update = false;
230 spin_unlock(&rxq->lock);
231 }
232 }
233
234 /*
235 * iwl_pcie_rxq_mq_restock - restock implementation for multi-queue rx
236 */
237 static void iwl_pcie_rxq_mq_restock(struct iwl_trans *trans,
238 struct iwl_rxq *rxq)
239 {
240 struct iwl_rx_mem_buffer *rxb;
241
242 /*
243 * If the device isn't enabled - no need to try to add buffers...
244 * This can happen when we stop the device and still have an interrupt
245 * pending. We stop the APM before we sync the interrupts because we
246 * have to (see comment there). On the other hand, since the APM is
247 * stopped, we cannot access the HW (in particular not prph).
248 * So don't try to restock if the APM has been already stopped.
249 */
250 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
251 return;
252
253 spin_lock(&rxq->lock);
254 while (rxq->free_count) {
255 __le64 *bd = (__le64 *)rxq->bd;
256
257 /* Get next free Rx buffer, remove from free list */
258 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
259 list);
260 list_del(&rxb->list);
261
262 /* 12 first bits are expected to be empty */
263 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
264 /* Point to Rx buffer via next RBD in circular buffer */
265 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
266 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
267 rxq->free_count--;
268 }
269 spin_unlock(&rxq->lock);
270
271 /*
272 * If we've added more space for the firmware to place data, tell it.
273 * Increment device's write pointer in multiples of 8.
274 */
275 if (rxq->write_actual != (rxq->write & ~0x7)) {
276 spin_lock(&rxq->lock);
277 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
278 spin_unlock(&rxq->lock);
279 }
280 }
281
282 /*
283 * iwl_pcie_rxq_sq_restock - restock implementation for single queue rx
284 */
285 static void iwl_pcie_rxq_sq_restock(struct iwl_trans *trans,
286 struct iwl_rxq *rxq)
287 {
288 struct iwl_rx_mem_buffer *rxb;
289
290 /*
291 * If the device isn't enabled - not need to try to add buffers...
292 * This can happen when we stop the device and still have an interrupt
293 * pending. We stop the APM before we sync the interrupts because we
294 * have to (see comment there). On the other hand, since the APM is
295 * stopped, we cannot access the HW (in particular not prph).
296 * So don't try to restock if the APM has been already stopped.
297 */
298 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
299 return;
300
301 spin_lock(&rxq->lock);
302 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
303 __le32 *bd = (__le32 *)rxq->bd;
304 /* The overwritten rxb must be a used one */
305 rxb = rxq->queue[rxq->write];
306 BUG_ON(rxb && rxb->page);
307
308 /* Get next free Rx buffer, remove from free list */
309 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
310 list);
311 list_del(&rxb->list);
312
313 /* Point to Rx buffer via next RBD in circular buffer */
314 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
315 rxq->queue[rxq->write] = rxb;
316 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
317 rxq->free_count--;
318 }
319 spin_unlock(&rxq->lock);
320
321 /* If we've added more space for the firmware to place data, tell it.
322 * Increment device's write pointer in multiples of 8. */
323 if (rxq->write_actual != (rxq->write & ~0x7)) {
324 spin_lock(&rxq->lock);
325 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
326 spin_unlock(&rxq->lock);
327 }
328 }
329
330 /*
331 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
332 *
333 * If there are slots in the RX queue that need to be restocked,
334 * and we have free pre-allocated buffers, fill the ranks as much
335 * as we can, pulling from rx_free.
336 *
337 * This moves the 'write' index forward to catch up with 'processed', and
338 * also updates the memory address in the firmware to reference the new
339 * target buffer.
340 */
341 static
342 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
343 {
344 if (trans->cfg->mq_rx_supported)
345 iwl_pcie_rxq_mq_restock(trans, rxq);
346 else
347 iwl_pcie_rxq_sq_restock(trans, rxq);
348 }
349
350 /*
351 * iwl_pcie_rx_alloc_page - allocates and returns a page.
352 *
353 */
354 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
355 gfp_t priority)
356 {
357 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
358 struct page *page;
359 gfp_t gfp_mask = priority;
360
361 if (trans_pcie->rx_page_order > 0)
362 gfp_mask |= __GFP_COMP;
363
364 /* Alloc a new receive buffer */
365 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
366 if (!page) {
367 if (net_ratelimit())
368 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
369 trans_pcie->rx_page_order);
370 /*
371 * Issue an error if we don't have enough pre-allocated
372 * buffers.
373 ` */
374 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
375 IWL_CRIT(trans,
376 "Failed to alloc_pages\n");
377 return NULL;
378 }
379 return page;
380 }
381
382 /*
383 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
384 *
385 * A used RBD is an Rx buffer that has been given to the stack. To use it again
386 * a page must be allocated and the RBD must point to the page. This function
387 * doesn't change the HW pointer but handles the list of pages that is used by
388 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
389 * allocated buffers.
390 */
391 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
392 struct iwl_rxq *rxq)
393 {
394 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
395 struct iwl_rx_mem_buffer *rxb;
396 struct page *page;
397
398 while (1) {
399 spin_lock(&rxq->lock);
400 if (list_empty(&rxq->rx_used)) {
401 spin_unlock(&rxq->lock);
402 return;
403 }
404 spin_unlock(&rxq->lock);
405
406 /* Alloc a new receive buffer */
407 page = iwl_pcie_rx_alloc_page(trans, priority);
408 if (!page)
409 return;
410
411 spin_lock(&rxq->lock);
412
413 if (list_empty(&rxq->rx_used)) {
414 spin_unlock(&rxq->lock);
415 __free_pages(page, trans_pcie->rx_page_order);
416 return;
417 }
418 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
419 list);
420 list_del(&rxb->list);
421 spin_unlock(&rxq->lock);
422
423 BUG_ON(rxb->page);
424 rxb->page = page;
425 /* Get physical address of the RB */
426 rxb->page_dma =
427 dma_map_page(trans->dev, page, 0,
428 PAGE_SIZE << trans_pcie->rx_page_order,
429 DMA_FROM_DEVICE);
430 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
431 rxb->page = NULL;
432 spin_lock(&rxq->lock);
433 list_add(&rxb->list, &rxq->rx_used);
434 spin_unlock(&rxq->lock);
435 __free_pages(page, trans_pcie->rx_page_order);
436 return;
437 }
438
439 spin_lock(&rxq->lock);
440
441 list_add_tail(&rxb->list, &rxq->rx_free);
442 rxq->free_count++;
443
444 spin_unlock(&rxq->lock);
445 }
446 }
447
448 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
449 {
450 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
451 int i;
452
453 for (i = 0; i < RX_POOL_SIZE; i++) {
454 if (!trans_pcie->rx_pool[i].page)
455 continue;
456 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
457 PAGE_SIZE << trans_pcie->rx_page_order,
458 DMA_FROM_DEVICE);
459 __free_pages(trans_pcie->rx_pool[i].page,
460 trans_pcie->rx_page_order);
461 trans_pcie->rx_pool[i].page = NULL;
462 }
463 }
464
465 /*
466 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
467 *
468 * Allocates for each received request 8 pages
469 * Called as a scheduled work item.
470 */
471 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
472 {
473 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
474 struct iwl_rb_allocator *rba = &trans_pcie->rba;
475 struct list_head local_empty;
476 int pending = atomic_xchg(&rba->req_pending, 0);
477
478 IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
479
480 /* If we were scheduled - there is at least one request */
481 spin_lock(&rba->lock);
482 /* swap out the rba->rbd_empty to a local list */
483 list_replace_init(&rba->rbd_empty, &local_empty);
484 spin_unlock(&rba->lock);
485
486 while (pending) {
487 int i;
488 struct list_head local_allocated;
489 gfp_t gfp_mask = GFP_KERNEL;
490
491 /* Do not post a warning if there are only a few requests */
492 if (pending < RX_PENDING_WATERMARK)
493 gfp_mask |= __GFP_NOWARN;
494
495 INIT_LIST_HEAD(&local_allocated);
496
497 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
498 struct iwl_rx_mem_buffer *rxb;
499 struct page *page;
500
501 /* List should never be empty - each reused RBD is
502 * returned to the list, and initial pool covers any
503 * possible gap between the time the page is allocated
504 * to the time the RBD is added.
505 */
506 BUG_ON(list_empty(&local_empty));
507 /* Get the first rxb from the rbd list */
508 rxb = list_first_entry(&local_empty,
509 struct iwl_rx_mem_buffer, list);
510 BUG_ON(rxb->page);
511
512 /* Alloc a new receive buffer */
513 page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
514 if (!page)
515 continue;
516 rxb->page = page;
517
518 /* Get physical address of the RB */
519 rxb->page_dma = dma_map_page(trans->dev, page, 0,
520 PAGE_SIZE << trans_pcie->rx_page_order,
521 DMA_FROM_DEVICE);
522 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
523 rxb->page = NULL;
524 __free_pages(page, trans_pcie->rx_page_order);
525 continue;
526 }
527
528 /* move the allocated entry to the out list */
529 list_move(&rxb->list, &local_allocated);
530 i++;
531 }
532
533 pending--;
534 if (!pending) {
535 pending = atomic_xchg(&rba->req_pending, 0);
536 IWL_DEBUG_RX(trans,
537 "Pending allocation requests = %d\n",
538 pending);
539 }
540
541 spin_lock(&rba->lock);
542 /* add the allocated rbds to the allocator allocated list */
543 list_splice_tail(&local_allocated, &rba->rbd_allocated);
544 /* get more empty RBDs for current pending requests */
545 list_splice_tail_init(&rba->rbd_empty, &local_empty);
546 spin_unlock(&rba->lock);
547
548 atomic_inc(&rba->req_ready);
549 }
550
551 spin_lock(&rba->lock);
552 /* return unused rbds to the allocator empty list */
553 list_splice_tail(&local_empty, &rba->rbd_empty);
554 spin_unlock(&rba->lock);
555 }
556
557 /*
558 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
559 .*
560 .* Called by queue when the queue posted allocation request and
561 * has freed 8 RBDs in order to restock itself.
562 * This function directly moves the allocated RBs to the queue's ownership
563 * and updates the relevant counters.
564 */
565 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
566 struct iwl_rxq *rxq)
567 {
568 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
569 struct iwl_rb_allocator *rba = &trans_pcie->rba;
570 int i;
571
572 lockdep_assert_held(&rxq->lock);
573
574 /*
575 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
576 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
577 * function will return early, as there are no ready requests.
578 * atomic_dec_if_positive will perofrm the *actual* decrement only if
579 * req_ready > 0, i.e. - there are ready requests and the function
580 * hands one request to the caller.
581 */
582 if (atomic_dec_if_positive(&rba->req_ready) < 0)
583 return;
584
585 spin_lock(&rba->lock);
586 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
587 /* Get next free Rx buffer, remove it from free list */
588 struct iwl_rx_mem_buffer *rxb =
589 list_first_entry(&rba->rbd_allocated,
590 struct iwl_rx_mem_buffer, list);
591
592 list_move(&rxb->list, &rxq->rx_free);
593 }
594 spin_unlock(&rba->lock);
595
596 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
597 rxq->free_count += RX_CLAIM_REQ_ALLOC;
598 }
599
600 static void iwl_pcie_rx_allocator_work(struct work_struct *data)
601 {
602 struct iwl_rb_allocator *rba_p =
603 container_of(data, struct iwl_rb_allocator, rx_alloc);
604 struct iwl_trans_pcie *trans_pcie =
605 container_of(rba_p, struct iwl_trans_pcie, rba);
606
607 iwl_pcie_rx_allocator(trans_pcie->trans);
608 }
609
610 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
611 {
612 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
613 struct iwl_rb_allocator *rba = &trans_pcie->rba;
614 struct device *dev = trans->dev;
615 int i;
616 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
617 sizeof(__le32);
618
619 if (WARN_ON(trans_pcie->rxq))
620 return -EINVAL;
621
622 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
623 GFP_KERNEL);
624 if (!trans_pcie->rxq)
625 return -EINVAL;
626
627 spin_lock_init(&rba->lock);
628
629 for (i = 0; i < trans->num_rx_queues; i++) {
630 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
631
632 spin_lock_init(&rxq->lock);
633 if (trans->cfg->mq_rx_supported)
634 rxq->queue_size = MQ_RX_TABLE_SIZE;
635 else
636 rxq->queue_size = RX_QUEUE_SIZE;
637
638 /*
639 * Allocate the circular buffer of Read Buffer Descriptors
640 * (RBDs)
641 */
642 rxq->bd = dma_zalloc_coherent(dev,
643 free_size * rxq->queue_size,
644 &rxq->bd_dma, GFP_KERNEL);
645 if (!rxq->bd)
646 goto err;
647
648 if (trans->cfg->mq_rx_supported) {
649 rxq->used_bd = dma_zalloc_coherent(dev,
650 sizeof(__le32) *
651 rxq->queue_size,
652 &rxq->used_bd_dma,
653 GFP_KERNEL);
654 if (!rxq->used_bd)
655 goto err;
656 }
657
658 /*Allocate the driver's pointer to receive buffer status */
659 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
660 &rxq->rb_stts_dma,
661 GFP_KERNEL);
662 if (!rxq->rb_stts)
663 goto err;
664 }
665 return 0;
666
667 err:
668 for (i = 0; i < trans->num_rx_queues; i++) {
669 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
670
671 if (rxq->bd)
672 dma_free_coherent(dev, free_size * rxq->queue_size,
673 rxq->bd, rxq->bd_dma);
674 rxq->bd_dma = 0;
675 rxq->bd = NULL;
676
677 if (rxq->rb_stts)
678 dma_free_coherent(trans->dev,
679 sizeof(struct iwl_rb_status),
680 rxq->rb_stts, rxq->rb_stts_dma);
681
682 if (rxq->used_bd)
683 dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
684 rxq->used_bd, rxq->used_bd_dma);
685 rxq->used_bd_dma = 0;
686 rxq->used_bd = NULL;
687 }
688 kfree(trans_pcie->rxq);
689
690 return -ENOMEM;
691 }
692
693 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
694 {
695 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
696 u32 rb_size;
697 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
698
699 switch (trans_pcie->rx_buf_size) {
700 case IWL_AMSDU_4K:
701 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
702 break;
703 case IWL_AMSDU_8K:
704 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
705 break;
706 case IWL_AMSDU_12K:
707 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
708 break;
709 default:
710 WARN_ON(1);
711 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
712 }
713
714 /* Stop Rx DMA */
715 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
716 /* reset and flush pointers */
717 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
718 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
719 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
720
721 /* Reset driver's Rx queue write index */
722 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
723
724 /* Tell device where to find RBD circular buffer in DRAM */
725 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
726 (u32)(rxq->bd_dma >> 8));
727
728 /* Tell device where in DRAM to update its Rx status */
729 iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
730 rxq->rb_stts_dma >> 4);
731
732 /* Enable Rx DMA
733 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
734 * the credit mechanism in 5000 HW RX FIFO
735 * Direct rx interrupts to hosts
736 * Rx buffer size 4 or 8k or 12k
737 * RB timeout 0x10
738 * 256 RBDs
739 */
740 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
741 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
742 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
743 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
744 rb_size|
745 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
746 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
747
748 /* Set interrupt coalescing timer to default (2048 usecs) */
749 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
750
751 /* W/A for interrupt coalescing bug in 7260 and 3160 */
752 if (trans->cfg->host_interrupt_operation_mode)
753 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
754 }
755
756 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
757 {
758 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
759 u32 rb_size, enabled = 0;
760 int i;
761
762 switch (trans_pcie->rx_buf_size) {
763 case IWL_AMSDU_4K:
764 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
765 break;
766 case IWL_AMSDU_8K:
767 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
768 break;
769 case IWL_AMSDU_12K:
770 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
771 break;
772 default:
773 WARN_ON(1);
774 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
775 }
776
777 /* Stop Rx DMA */
778 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
779 /* disable free amd used rx queue operation */
780 iwl_write_prph(trans, RFH_RXF_RXQ_ACTIVE, 0);
781
782 for (i = 0; i < trans->num_rx_queues; i++) {
783 /* Tell device where to find RBD free table in DRAM */
784 iwl_pcie_write_prph_64(trans, RFH_Q_FRBDCB_BA_LSB(i),
785 (u64)(trans_pcie->rxq[i].bd_dma));
786 /* Tell device where to find RBD used table in DRAM */
787 iwl_pcie_write_prph_64(trans, RFH_Q_URBDCB_BA_LSB(i),
788 (u64)(trans_pcie->rxq[i].used_bd_dma));
789 /* Tell device where in DRAM to update its Rx status */
790 iwl_pcie_write_prph_64(trans, RFH_Q_URBD_STTS_WPTR_LSB(i),
791 trans_pcie->rxq[i].rb_stts_dma);
792 /* Reset device indice tables */
793 iwl_write_prph(trans, RFH_Q_FRBDCB_WIDX(i), 0);
794 iwl_write_prph(trans, RFH_Q_FRBDCB_RIDX(i), 0);
795 iwl_write_prph(trans, RFH_Q_URBDCB_WIDX(i), 0);
796
797 enabled |= BIT(i) | BIT(i + 16);
798 }
799
800 /* restock default queue */
801 iwl_pcie_rxq_mq_restock(trans, &trans_pcie->rxq[0]);
802
803 /*
804 * Enable Rx DMA
805 * Single frame mode
806 * Rx buffer size 4 or 8k or 12k
807 * Min RB size 4 or 8
808 * Drop frames that exceed RB size
809 * 512 RBDs
810 */
811 iwl_write_prph(trans, RFH_RXF_DMA_CFG,
812 RFH_DMA_EN_ENABLE_VAL |
813 rb_size | RFH_RXF_DMA_SINGLE_FRAME_MASK |
814 RFH_RXF_DMA_MIN_RB_4_8 |
815 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
816 RFH_RXF_DMA_RBDCB_SIZE_512);
817
818 /*
819 * Activate DMA snooping.
820 * Set RX DMA chunk size to 64B
821 * Default queue is 0
822 */
823 iwl_write_prph(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
824 (DEFAULT_RXQ_NUM << RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
825 RFH_GEN_CFG_SERVICE_DMA_SNOOP);
826 /* Enable the relevant rx queues */
827 iwl_write_prph(trans, RFH_RXF_RXQ_ACTIVE, enabled);
828
829 /* Set interrupt coalescing timer to default (2048 usecs) */
830 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
831 }
832
833 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
834 {
835 lockdep_assert_held(&rxq->lock);
836
837 INIT_LIST_HEAD(&rxq->rx_free);
838 INIT_LIST_HEAD(&rxq->rx_used);
839 rxq->free_count = 0;
840 rxq->used_count = 0;
841 }
842
843 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
844 {
845 WARN_ON(1);
846 return 0;
847 }
848
849 int iwl_pcie_rx_init(struct iwl_trans *trans)
850 {
851 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
852 struct iwl_rxq *def_rxq;
853 struct iwl_rb_allocator *rba = &trans_pcie->rba;
854 int i, err, queue_size, allocator_pool_size, num_alloc;
855
856 if (!trans_pcie->rxq) {
857 err = iwl_pcie_rx_alloc(trans);
858 if (err)
859 return err;
860 }
861 def_rxq = trans_pcie->rxq;
862 if (!rba->alloc_wq)
863 rba->alloc_wq = alloc_workqueue("rb_allocator",
864 WQ_HIGHPRI | WQ_UNBOUND, 1);
865 INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
866
867 spin_lock(&rba->lock);
868 atomic_set(&rba->req_pending, 0);
869 atomic_set(&rba->req_ready, 0);
870 INIT_LIST_HEAD(&rba->rbd_allocated);
871 INIT_LIST_HEAD(&rba->rbd_empty);
872 spin_unlock(&rba->lock);
873
874 /* free all first - we might be reconfigured for a different size */
875 iwl_pcie_free_rbs_pool(trans);
876
877 for (i = 0; i < RX_QUEUE_SIZE; i++)
878 def_rxq->queue[i] = NULL;
879
880 for (i = 0; i < trans->num_rx_queues; i++) {
881 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
882
883 rxq->id = i;
884
885 spin_lock(&rxq->lock);
886 /*
887 * Set read write pointer to reflect that we have processed
888 * and used all buffers, but have not restocked the Rx queue
889 * with fresh buffers
890 */
891 rxq->read = 0;
892 rxq->write = 0;
893 rxq->write_actual = 0;
894 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
895
896 iwl_pcie_rx_init_rxb_lists(rxq);
897
898 if (!rxq->napi.poll)
899 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
900 iwl_pcie_dummy_napi_poll, 64);
901
902 spin_unlock(&rxq->lock);
903 }
904
905 /* move the pool to the default queue and allocator ownerships */
906 queue_size = trans->cfg->mq_rx_supported ?
907 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
908 allocator_pool_size = trans->num_rx_queues *
909 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
910 num_alloc = queue_size + allocator_pool_size;
911 for (i = 0; i < num_alloc; i++) {
912 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
913
914 if (i < allocator_pool_size)
915 list_add(&rxb->list, &rba->rbd_empty);
916 else
917 list_add(&rxb->list, &def_rxq->rx_used);
918 trans_pcie->global_table[i] = rxb;
919 rxb->vid = (u16)i;
920 }
921
922 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
923 if (trans->cfg->mq_rx_supported) {
924 iwl_pcie_rx_mq_hw_init(trans);
925 } else {
926 iwl_pcie_rxq_sq_restock(trans, def_rxq);
927 iwl_pcie_rx_hw_init(trans, def_rxq);
928 }
929
930 spin_lock(&def_rxq->lock);
931 iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
932 spin_unlock(&def_rxq->lock);
933
934 return 0;
935 }
936
937 void iwl_pcie_rx_free(struct iwl_trans *trans)
938 {
939 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
940 struct iwl_rb_allocator *rba = &trans_pcie->rba;
941 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
942 sizeof(__le32);
943 int i;
944
945 /*
946 * if rxq is NULL, it means that nothing has been allocated,
947 * exit now
948 */
949 if (!trans_pcie->rxq) {
950 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
951 return;
952 }
953
954 cancel_work_sync(&rba->rx_alloc);
955 if (rba->alloc_wq) {
956 destroy_workqueue(rba->alloc_wq);
957 rba->alloc_wq = NULL;
958 }
959
960 iwl_pcie_free_rbs_pool(trans);
961
962 for (i = 0; i < trans->num_rx_queues; i++) {
963 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
964
965 if (rxq->bd)
966 dma_free_coherent(trans->dev,
967 free_size * rxq->queue_size,
968 rxq->bd, rxq->bd_dma);
969 rxq->bd_dma = 0;
970 rxq->bd = NULL;
971
972 if (rxq->rb_stts)
973 dma_free_coherent(trans->dev,
974 sizeof(struct iwl_rb_status),
975 rxq->rb_stts, rxq->rb_stts_dma);
976 else
977 IWL_DEBUG_INFO(trans,
978 "Free rxq->rb_stts which is NULL\n");
979
980 if (rxq->used_bd)
981 dma_free_coherent(trans->dev,
982 sizeof(__le32) * rxq->queue_size,
983 rxq->used_bd, rxq->used_bd_dma);
984 rxq->used_bd_dma = 0;
985 rxq->used_bd = NULL;
986
987 if (rxq->napi.poll)
988 netif_napi_del(&rxq->napi);
989 }
990 kfree(trans_pcie->rxq);
991 }
992
993 /*
994 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
995 *
996 * Called when a RBD can be reused. The RBD is transferred to the allocator.
997 * When there are 2 empty RBDs - a request for allocation is posted
998 */
999 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1000 struct iwl_rx_mem_buffer *rxb,
1001 struct iwl_rxq *rxq, bool emergency)
1002 {
1003 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1004 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1005
1006 /* Move the RBD to the used list, will be moved to allocator in batches
1007 * before claiming or posting a request*/
1008 list_add_tail(&rxb->list, &rxq->rx_used);
1009
1010 if (unlikely(emergency))
1011 return;
1012
1013 /* Count the allocator owned RBDs */
1014 rxq->used_count++;
1015
1016 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1017 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1018 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1019 * after but we still need to post another request.
1020 */
1021 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1022 /* Move the 2 RBDs to the allocator ownership.
1023 Allocator has another 6 from pool for the request completion*/
1024 spin_lock(&rba->lock);
1025 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1026 spin_unlock(&rba->lock);
1027
1028 atomic_inc(&rba->req_pending);
1029 queue_work(rba->alloc_wq, &rba->rx_alloc);
1030 }
1031 }
1032
1033 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1034 struct iwl_rxq *rxq,
1035 struct iwl_rx_mem_buffer *rxb,
1036 bool emergency)
1037 {
1038 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1039 struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1040 bool page_stolen = false;
1041 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1042 u32 offset = 0;
1043
1044 if (WARN_ON(!rxb))
1045 return;
1046
1047 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1048
1049 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1050 struct iwl_rx_packet *pkt;
1051 u16 sequence;
1052 bool reclaim;
1053 int index, cmd_index, len;
1054 struct iwl_rx_cmd_buffer rxcb = {
1055 ._offset = offset,
1056 ._rx_page_order = trans_pcie->rx_page_order,
1057 ._page = rxb->page,
1058 ._page_stolen = false,
1059 .truesize = max_len,
1060 };
1061
1062 pkt = rxb_addr(&rxcb);
1063
1064 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
1065 break;
1066
1067 IWL_DEBUG_RX(trans,
1068 "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
1069 rxcb._offset,
1070 iwl_get_cmd_string(trans,
1071 iwl_cmd_id(pkt->hdr.cmd,
1072 pkt->hdr.group_id,
1073 0)),
1074 pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1075
1076 len = iwl_rx_packet_len(pkt);
1077 len += sizeof(u32); /* account for status word */
1078 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1079 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1080
1081 /* Reclaim a command buffer only if this packet is a response
1082 * to a (driver-originated) command.
1083 * If the packet (e.g. Rx frame) originated from uCode,
1084 * there is no command buffer to reclaim.
1085 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1086 * but apparently a few don't get set; catch them here. */
1087 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1088 if (reclaim) {
1089 int i;
1090
1091 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1092 if (trans_pcie->no_reclaim_cmds[i] ==
1093 pkt->hdr.cmd) {
1094 reclaim = false;
1095 break;
1096 }
1097 }
1098 }
1099
1100 sequence = le16_to_cpu(pkt->hdr.sequence);
1101 index = SEQ_TO_INDEX(sequence);
1102 cmd_index = get_cmd_index(&txq->q, index);
1103
1104 if (rxq->id == 0)
1105 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1106 &rxcb);
1107 else
1108 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1109 &rxcb, rxq->id);
1110
1111 if (reclaim) {
1112 kzfree(txq->entries[cmd_index].free_buf);
1113 txq->entries[cmd_index].free_buf = NULL;
1114 }
1115
1116 /*
1117 * After here, we should always check rxcb._page_stolen,
1118 * if it is true then one of the handlers took the page.
1119 */
1120
1121 if (reclaim) {
1122 /* Invoke any callbacks, transfer the buffer to caller,
1123 * and fire off the (possibly) blocking
1124 * iwl_trans_send_cmd()
1125 * as we reclaim the driver command queue */
1126 if (!rxcb._page_stolen)
1127 iwl_pcie_hcmd_complete(trans, &rxcb);
1128 else
1129 IWL_WARN(trans, "Claim null rxb?\n");
1130 }
1131
1132 page_stolen |= rxcb._page_stolen;
1133 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1134 }
1135
1136 /* page was stolen from us -- free our reference */
1137 if (page_stolen) {
1138 __free_pages(rxb->page, trans_pcie->rx_page_order);
1139 rxb->page = NULL;
1140 }
1141
1142 /* Reuse the page if possible. For notification packets and
1143 * SKBs that fail to Rx correctly, add them back into the
1144 * rx_free list for reuse later. */
1145 if (rxb->page != NULL) {
1146 rxb->page_dma =
1147 dma_map_page(trans->dev, rxb->page, 0,
1148 PAGE_SIZE << trans_pcie->rx_page_order,
1149 DMA_FROM_DEVICE);
1150 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1151 /*
1152 * free the page(s) as well to not break
1153 * the invariant that the items on the used
1154 * list have no page(s)
1155 */
1156 __free_pages(rxb->page, trans_pcie->rx_page_order);
1157 rxb->page = NULL;
1158 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1159 } else {
1160 list_add_tail(&rxb->list, &rxq->rx_free);
1161 rxq->free_count++;
1162 }
1163 } else
1164 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1165 }
1166
1167 /*
1168 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1169 */
1170 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1171 {
1172 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1173 struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1174 u32 r, i, count = 0;
1175 bool emergency = false;
1176
1177 restart:
1178 spin_lock(&rxq->lock);
1179 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1180 * buffer that the driver may process (last buffer filled by ucode). */
1181 r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1182 i = rxq->read;
1183
1184 /* W/A 9000 device step A0 wrap-around bug */
1185 r &= (rxq->queue_size - 1);
1186
1187 /* Rx interrupt, but nothing sent from uCode */
1188 if (i == r)
1189 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1190
1191 while (i != r) {
1192 struct iwl_rx_mem_buffer *rxb;
1193
1194 if (unlikely(rxq->used_count == rxq->queue_size / 2))
1195 emergency = true;
1196
1197 if (trans->cfg->mq_rx_supported) {
1198 /*
1199 * used_bd is a 32 bit but only 12 are used to retrieve
1200 * the vid
1201 */
1202 u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1203
1204 if (WARN(vid >= ARRAY_SIZE(trans_pcie->global_table),
1205 "Invalid rxb index from HW %u\n", (u32)vid))
1206 goto out;
1207 rxb = trans_pcie->global_table[vid];
1208 } else {
1209 rxb = rxq->queue[i];
1210 rxq->queue[i] = NULL;
1211 }
1212
1213 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1214 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1215
1216 i = (i + 1) & (rxq->queue_size - 1);
1217
1218 /*
1219 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1220 * try to claim the pre-allocated buffers from the allocator.
1221 * If not ready - will try to reclaim next time.
1222 * There is no need to reschedule work - allocator exits only
1223 * on success
1224 */
1225 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1226 iwl_pcie_rx_allocator_get(trans, rxq);
1227
1228 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1229 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1230
1231 /* Add the remaining empty RBDs for allocator use */
1232 spin_lock(&rba->lock);
1233 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1234 spin_unlock(&rba->lock);
1235 } else if (emergency) {
1236 count++;
1237 if (count == 8) {
1238 count = 0;
1239 if (rxq->used_count < rxq->queue_size / 3)
1240 emergency = false;
1241
1242 rxq->read = i;
1243 spin_unlock(&rxq->lock);
1244 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1245 iwl_pcie_rxq_restock(trans, rxq);
1246 goto restart;
1247 }
1248 }
1249 }
1250 out:
1251 /* Backtrack one entry */
1252 rxq->read = i;
1253 spin_unlock(&rxq->lock);
1254
1255 /*
1256 * handle a case where in emergency there are some unallocated RBDs.
1257 * those RBDs are in the used list, but are not tracked by the queue's
1258 * used_count which counts allocator owned RBDs.
1259 * unallocated emergency RBDs must be allocated on exit, otherwise
1260 * when called again the function may not be in emergency mode and
1261 * they will be handed to the allocator with no tracking in the RBD
1262 * allocator counters, which will lead to them never being claimed back
1263 * by the queue.
1264 * by allocating them here, they are now in the queue free list, and
1265 * will be restocked by the next call of iwl_pcie_rxq_restock.
1266 */
1267 if (unlikely(emergency && count))
1268 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1269
1270 if (rxq->napi.poll)
1271 napi_gro_flush(&rxq->napi, false);
1272
1273 iwl_pcie_rxq_restock(trans, rxq);
1274 }
1275
1276 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1277 {
1278 u8 queue = entry->entry;
1279 struct msix_entry *entries = entry - queue;
1280
1281 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1282 }
1283
1284 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1285 struct msix_entry *entry)
1286 {
1287 /*
1288 * Before sending the interrupt the HW disables it to prevent
1289 * a nested interrupt. This is done by writing 1 to the corresponding
1290 * bit in the mask register. After handling the interrupt, it should be
1291 * re-enabled by clearing this bit. This register is defined as
1292 * write 1 clear (W1C) register, meaning that it's being clear
1293 * by writing 1 to the bit.
1294 */
1295 iwl_write_direct32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1296 }
1297
1298 /*
1299 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1300 * This interrupt handler should be used with RSS queue only.
1301 */
1302 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1303 {
1304 struct msix_entry *entry = dev_id;
1305 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1306 struct iwl_trans *trans = trans_pcie->trans;
1307
1308 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1309 return IRQ_NONE;
1310
1311 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1312
1313 local_bh_disable();
1314 iwl_pcie_rx_handle(trans, entry->entry);
1315 local_bh_enable();
1316
1317 iwl_pcie_clear_irq(trans, entry);
1318
1319 lock_map_release(&trans->sync_cmd_lockdep_map);
1320
1321 return IRQ_HANDLED;
1322 }
1323
1324 /*
1325 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1326 */
1327 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1328 {
1329 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1330 int i;
1331
1332 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1333 if (trans->cfg->internal_wimax_coex &&
1334 !trans->cfg->apmg_not_supported &&
1335 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1336 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1337 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1338 APMG_PS_CTRL_VAL_RESET_REQ))) {
1339 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1340 iwl_op_mode_wimax_active(trans->op_mode);
1341 wake_up(&trans_pcie->wait_command_queue);
1342 return;
1343 }
1344
1345 iwl_pcie_dump_csr(trans);
1346 iwl_dump_fh(trans, NULL);
1347
1348 local_bh_disable();
1349 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1350 * before we wake up the command caller, to ensure a proper cleanup. */
1351 iwl_trans_fw_error(trans);
1352 local_bh_enable();
1353
1354 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1355 del_timer(&trans_pcie->txq[i].stuck_timer);
1356
1357 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1358 wake_up(&trans_pcie->wait_command_queue);
1359 }
1360
1361 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1362 {
1363 u32 inta;
1364
1365 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1366
1367 trace_iwlwifi_dev_irq(trans->dev);
1368
1369 /* Discover which interrupts are active/pending */
1370 inta = iwl_read32(trans, CSR_INT);
1371
1372 /* the thread will service interrupts and re-enable them */
1373 return inta;
1374 }
1375
1376 /* a device (PCI-E) page is 4096 bytes long */
1377 #define ICT_SHIFT 12
1378 #define ICT_SIZE (1 << ICT_SHIFT)
1379 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1380
1381 /* interrupt handler using ict table, with this interrupt driver will
1382 * stop using INTA register to get device's interrupt, reading this register
1383 * is expensive, device will write interrupts in ICT dram table, increment
1384 * index then will fire interrupt to driver, driver will OR all ICT table
1385 * entries from current index up to table entry with 0 value. the result is
1386 * the interrupt we need to service, driver will set the entries back to 0 and
1387 * set index.
1388 */
1389 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1390 {
1391 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1392 u32 inta;
1393 u32 val = 0;
1394 u32 read;
1395
1396 trace_iwlwifi_dev_irq(trans->dev);
1397
1398 /* Ignore interrupt if there's nothing in NIC to service.
1399 * This may be due to IRQ shared with another device,
1400 * or due to sporadic interrupts thrown from our NIC. */
1401 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1402 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1403 if (!read)
1404 return 0;
1405
1406 /*
1407 * Collect all entries up to the first 0, starting from ict_index;
1408 * note we already read at ict_index.
1409 */
1410 do {
1411 val |= read;
1412 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1413 trans_pcie->ict_index, read);
1414 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1415 trans_pcie->ict_index =
1416 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1417
1418 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1419 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1420 read);
1421 } while (read);
1422
1423 /* We should not get this value, just ignore it. */
1424 if (val == 0xffffffff)
1425 val = 0;
1426
1427 /*
1428 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1429 * (bit 15 before shifting it to 31) to clear when using interrupt
1430 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1431 * so we use them to decide on the real state of the Rx bit.
1432 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1433 */
1434 if (val & 0xC0000)
1435 val |= 0x8000;
1436
1437 inta = (0xff & val) | ((0xff00 & val) << 16);
1438 return inta;
1439 }
1440
1441 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1442 {
1443 struct iwl_trans *trans = dev_id;
1444 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1445 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1446 u32 inta = 0;
1447 u32 handled = 0;
1448
1449 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1450
1451 spin_lock(&trans_pcie->irq_lock);
1452
1453 /* dram interrupt table not set yet,
1454 * use legacy interrupt.
1455 */
1456 if (likely(trans_pcie->use_ict))
1457 inta = iwl_pcie_int_cause_ict(trans);
1458 else
1459 inta = iwl_pcie_int_cause_non_ict(trans);
1460
1461 if (iwl_have_debug_level(IWL_DL_ISR)) {
1462 IWL_DEBUG_ISR(trans,
1463 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1464 inta, trans_pcie->inta_mask,
1465 iwl_read32(trans, CSR_INT_MASK),
1466 iwl_read32(trans, CSR_FH_INT_STATUS));
1467 if (inta & (~trans_pcie->inta_mask))
1468 IWL_DEBUG_ISR(trans,
1469 "We got a masked interrupt (0x%08x)\n",
1470 inta & (~trans_pcie->inta_mask));
1471 }
1472
1473 inta &= trans_pcie->inta_mask;
1474
1475 /*
1476 * Ignore interrupt if there's nothing in NIC to service.
1477 * This may be due to IRQ shared with another device,
1478 * or due to sporadic interrupts thrown from our NIC.
1479 */
1480 if (unlikely(!inta)) {
1481 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1482 /*
1483 * Re-enable interrupts here since we don't
1484 * have anything to service
1485 */
1486 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1487 iwl_enable_interrupts(trans);
1488 spin_unlock(&trans_pcie->irq_lock);
1489 lock_map_release(&trans->sync_cmd_lockdep_map);
1490 return IRQ_NONE;
1491 }
1492
1493 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1494 /*
1495 * Hardware disappeared. It might have
1496 * already raised an interrupt.
1497 */
1498 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1499 spin_unlock(&trans_pcie->irq_lock);
1500 goto out;
1501 }
1502
1503 /* Ack/clear/reset pending uCode interrupts.
1504 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1505 */
1506 /* There is a hardware bug in the interrupt mask function that some
1507 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1508 * they are disabled in the CSR_INT_MASK register. Furthermore the
1509 * ICT interrupt handling mechanism has another bug that might cause
1510 * these unmasked interrupts fail to be detected. We workaround the
1511 * hardware bugs here by ACKing all the possible interrupts so that
1512 * interrupt coalescing can still be achieved.
1513 */
1514 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1515
1516 if (iwl_have_debug_level(IWL_DL_ISR))
1517 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1518 inta, iwl_read32(trans, CSR_INT_MASK));
1519
1520 spin_unlock(&trans_pcie->irq_lock);
1521
1522 /* Now service all interrupt bits discovered above. */
1523 if (inta & CSR_INT_BIT_HW_ERR) {
1524 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1525
1526 /* Tell the device to stop sending interrupts */
1527 iwl_disable_interrupts(trans);
1528
1529 isr_stats->hw++;
1530 iwl_pcie_irq_handle_error(trans);
1531
1532 handled |= CSR_INT_BIT_HW_ERR;
1533
1534 goto out;
1535 }
1536
1537 if (iwl_have_debug_level(IWL_DL_ISR)) {
1538 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1539 if (inta & CSR_INT_BIT_SCD) {
1540 IWL_DEBUG_ISR(trans,
1541 "Scheduler finished to transmit the frame/frames.\n");
1542 isr_stats->sch++;
1543 }
1544
1545 /* Alive notification via Rx interrupt will do the real work */
1546 if (inta & CSR_INT_BIT_ALIVE) {
1547 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1548 isr_stats->alive++;
1549 }
1550 }
1551
1552 /* Safely ignore these bits for debug checks below */
1553 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1554
1555 /* HW RF KILL switch toggled */
1556 if (inta & CSR_INT_BIT_RF_KILL) {
1557 bool hw_rfkill;
1558
1559 hw_rfkill = iwl_is_rfkill_set(trans);
1560 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1561 hw_rfkill ? "disable radio" : "enable radio");
1562
1563 isr_stats->rfkill++;
1564
1565 mutex_lock(&trans_pcie->mutex);
1566 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1567 mutex_unlock(&trans_pcie->mutex);
1568 if (hw_rfkill) {
1569 set_bit(STATUS_RFKILL, &trans->status);
1570 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1571 &trans->status))
1572 IWL_DEBUG_RF_KILL(trans,
1573 "Rfkill while SYNC HCMD in flight\n");
1574 wake_up(&trans_pcie->wait_command_queue);
1575 } else {
1576 clear_bit(STATUS_RFKILL, &trans->status);
1577 }
1578
1579 handled |= CSR_INT_BIT_RF_KILL;
1580 }
1581
1582 /* Chip got too hot and stopped itself */
1583 if (inta & CSR_INT_BIT_CT_KILL) {
1584 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1585 isr_stats->ctkill++;
1586 handled |= CSR_INT_BIT_CT_KILL;
1587 }
1588
1589 /* Error detected by uCode */
1590 if (inta & CSR_INT_BIT_SW_ERR) {
1591 IWL_ERR(trans, "Microcode SW error detected. "
1592 " Restarting 0x%X.\n", inta);
1593 isr_stats->sw++;
1594 iwl_pcie_irq_handle_error(trans);
1595 handled |= CSR_INT_BIT_SW_ERR;
1596 }
1597
1598 /* uCode wakes up after power-down sleep */
1599 if (inta & CSR_INT_BIT_WAKEUP) {
1600 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1601 iwl_pcie_rxq_check_wrptr(trans);
1602 iwl_pcie_txq_check_wrptrs(trans);
1603
1604 isr_stats->wakeup++;
1605
1606 handled |= CSR_INT_BIT_WAKEUP;
1607 }
1608
1609 /* All uCode command responses, including Tx command responses,
1610 * Rx "responses" (frame-received notification), and other
1611 * notifications from uCode come through here*/
1612 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1613 CSR_INT_BIT_RX_PERIODIC)) {
1614 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1615 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1616 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1617 iwl_write32(trans, CSR_FH_INT_STATUS,
1618 CSR_FH_INT_RX_MASK);
1619 }
1620 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1621 handled |= CSR_INT_BIT_RX_PERIODIC;
1622 iwl_write32(trans,
1623 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1624 }
1625 /* Sending RX interrupt require many steps to be done in the
1626 * the device:
1627 * 1- write interrupt to current index in ICT table.
1628 * 2- dma RX frame.
1629 * 3- update RX shared data to indicate last write index.
1630 * 4- send interrupt.
1631 * This could lead to RX race, driver could receive RX interrupt
1632 * but the shared data changes does not reflect this;
1633 * periodic interrupt will detect any dangling Rx activity.
1634 */
1635
1636 /* Disable periodic interrupt; we use it as just a one-shot. */
1637 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1638 CSR_INT_PERIODIC_DIS);
1639
1640 /*
1641 * Enable periodic interrupt in 8 msec only if we received
1642 * real RX interrupt (instead of just periodic int), to catch
1643 * any dangling Rx interrupt. If it was just the periodic
1644 * interrupt, there was no dangling Rx activity, and no need
1645 * to extend the periodic interrupt; one-shot is enough.
1646 */
1647 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1648 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1649 CSR_INT_PERIODIC_ENA);
1650
1651 isr_stats->rx++;
1652
1653 local_bh_disable();
1654 iwl_pcie_rx_handle(trans, 0);
1655 local_bh_enable();
1656 }
1657
1658 /* This "Tx" DMA channel is used only for loading uCode */
1659 if (inta & CSR_INT_BIT_FH_TX) {
1660 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1661 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1662 isr_stats->tx++;
1663 handled |= CSR_INT_BIT_FH_TX;
1664 /* Wake up uCode load routine, now that load is complete */
1665 trans_pcie->ucode_write_complete = true;
1666 wake_up(&trans_pcie->ucode_write_waitq);
1667 }
1668
1669 if (inta & ~handled) {
1670 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1671 isr_stats->unhandled++;
1672 }
1673
1674 if (inta & ~(trans_pcie->inta_mask)) {
1675 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1676 inta & ~trans_pcie->inta_mask);
1677 }
1678
1679 /* we are loading the firmware, enable FH_TX interrupt only */
1680 if (handled & CSR_INT_BIT_FH_TX)
1681 iwl_enable_fw_load_int(trans);
1682 /* only Re-enable all interrupt if disabled by irq */
1683 else if (test_bit(STATUS_INT_ENABLED, &trans->status))
1684 iwl_enable_interrupts(trans);
1685 /* Re-enable RF_KILL if it occurred */
1686 else if (handled & CSR_INT_BIT_RF_KILL)
1687 iwl_enable_rfkill_int(trans);
1688
1689 out:
1690 lock_map_release(&trans->sync_cmd_lockdep_map);
1691 return IRQ_HANDLED;
1692 }
1693
1694 /******************************************************************************
1695 *
1696 * ICT functions
1697 *
1698 ******************************************************************************/
1699
1700 /* Free dram table */
1701 void iwl_pcie_free_ict(struct iwl_trans *trans)
1702 {
1703 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1704
1705 if (trans_pcie->ict_tbl) {
1706 dma_free_coherent(trans->dev, ICT_SIZE,
1707 trans_pcie->ict_tbl,
1708 trans_pcie->ict_tbl_dma);
1709 trans_pcie->ict_tbl = NULL;
1710 trans_pcie->ict_tbl_dma = 0;
1711 }
1712 }
1713
1714 /*
1715 * allocate dram shared table, it is an aligned memory
1716 * block of ICT_SIZE.
1717 * also reset all data related to ICT table interrupt.
1718 */
1719 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1720 {
1721 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1722
1723 trans_pcie->ict_tbl =
1724 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1725 &trans_pcie->ict_tbl_dma,
1726 GFP_KERNEL);
1727 if (!trans_pcie->ict_tbl)
1728 return -ENOMEM;
1729
1730 /* just an API sanity check ... it is guaranteed to be aligned */
1731 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1732 iwl_pcie_free_ict(trans);
1733 return -EINVAL;
1734 }
1735
1736 return 0;
1737 }
1738
1739 /* Device is going up inform it about using ICT interrupt table,
1740 * also we need to tell the driver to start using ICT interrupt.
1741 */
1742 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1743 {
1744 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1745 u32 val;
1746
1747 if (!trans_pcie->ict_tbl)
1748 return;
1749
1750 spin_lock(&trans_pcie->irq_lock);
1751 iwl_disable_interrupts(trans);
1752
1753 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1754
1755 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1756
1757 val |= CSR_DRAM_INT_TBL_ENABLE |
1758 CSR_DRAM_INIT_TBL_WRAP_CHECK |
1759 CSR_DRAM_INIT_TBL_WRITE_POINTER;
1760
1761 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1762
1763 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1764 trans_pcie->use_ict = true;
1765 trans_pcie->ict_index = 0;
1766 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1767 iwl_enable_interrupts(trans);
1768 spin_unlock(&trans_pcie->irq_lock);
1769 }
1770
1771 /* Device is going down disable ict interrupt usage */
1772 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1773 {
1774 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1775
1776 spin_lock(&trans_pcie->irq_lock);
1777 trans_pcie->use_ict = false;
1778 spin_unlock(&trans_pcie->irq_lock);
1779 }
1780
1781 irqreturn_t iwl_pcie_isr(int irq, void *data)
1782 {
1783 struct iwl_trans *trans = data;
1784
1785 if (!trans)
1786 return IRQ_NONE;
1787
1788 /* Disable (but don't clear!) interrupts here to avoid
1789 * back-to-back ISRs and sporadic interrupts from our NIC.
1790 * If we have something to service, the tasklet will re-enable ints.
1791 * If we *don't* have something, we'll re-enable before leaving here.
1792 */
1793 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1794
1795 return IRQ_WAKE_THREAD;
1796 }
1797
1798 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1799 {
1800 return IRQ_WAKE_THREAD;
1801 }
1802
1803 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1804 {
1805 struct msix_entry *entry = dev_id;
1806 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1807 struct iwl_trans *trans = trans_pcie->trans;
1808 struct isr_statistics *isr_stats = isr_stats = &trans_pcie->isr_stats;
1809 u32 inta_fh, inta_hw;
1810
1811 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1812
1813 spin_lock(&trans_pcie->irq_lock);
1814 inta_fh = iwl_read_direct32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1815 inta_hw = iwl_read_direct32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1816 /*
1817 * Clear causes registers to avoid being handling the same cause.
1818 */
1819 iwl_write_direct32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1820 iwl_write_direct32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1821 spin_unlock(&trans_pcie->irq_lock);
1822
1823 if (unlikely(!(inta_fh | inta_hw))) {
1824 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1825 lock_map_release(&trans->sync_cmd_lockdep_map);
1826 return IRQ_NONE;
1827 }
1828
1829 if (iwl_have_debug_level(IWL_DL_ISR))
1830 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1831 inta_fh,
1832 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1833
1834 /* This "Tx" DMA channel is used only for loading uCode */
1835 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1836 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1837 isr_stats->tx++;
1838 /*
1839 * Wake up uCode load routine,
1840 * now that load is complete
1841 */
1842 trans_pcie->ucode_write_complete = true;
1843 wake_up(&trans_pcie->ucode_write_waitq);
1844 }
1845
1846 /* Error detected by uCode */
1847 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1848 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1849 IWL_ERR(trans,
1850 "Microcode SW error detected. Restarting 0x%X.\n",
1851 inta_fh);
1852 isr_stats->sw++;
1853 iwl_pcie_irq_handle_error(trans);
1854 }
1855
1856 /* After checking FH register check HW register */
1857 if (iwl_have_debug_level(IWL_DL_ISR))
1858 IWL_DEBUG_ISR(trans,
1859 "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1860 inta_hw,
1861 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1862
1863 /* Alive notification via Rx interrupt will do the real work */
1864 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1865 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1866 isr_stats->alive++;
1867 }
1868
1869 /* uCode wakes up after power-down sleep */
1870 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1871 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1872 iwl_pcie_rxq_check_wrptr(trans);
1873 iwl_pcie_txq_check_wrptrs(trans);
1874
1875 isr_stats->wakeup++;
1876 }
1877
1878 /* Chip got too hot and stopped itself */
1879 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
1880 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1881 isr_stats->ctkill++;
1882 }
1883
1884 /* HW RF KILL switch toggled */
1885 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
1886 bool hw_rfkill;
1887
1888 hw_rfkill = iwl_is_rfkill_set(trans);
1889 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1890 hw_rfkill ? "disable radio" : "enable radio");
1891
1892 isr_stats->rfkill++;
1893
1894 mutex_lock(&trans_pcie->mutex);
1895 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1896 mutex_unlock(&trans_pcie->mutex);
1897 if (hw_rfkill) {
1898 set_bit(STATUS_RFKILL, &trans->status);
1899 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1900 &trans->status))
1901 IWL_DEBUG_RF_KILL(trans,
1902 "Rfkill while SYNC HCMD in flight\n");
1903 wake_up(&trans_pcie->wait_command_queue);
1904 } else {
1905 clear_bit(STATUS_RFKILL, &trans->status);
1906 }
1907 }
1908
1909 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
1910 IWL_ERR(trans,
1911 "Hardware error detected. Restarting.\n");
1912
1913 isr_stats->hw++;
1914 iwl_pcie_irq_handle_error(trans);
1915 }
1916
1917 iwl_pcie_clear_irq(trans, entry);
1918
1919 lock_map_release(&trans->sync_cmd_lockdep_map);
1920
1921 return IRQ_HANDLED;
1922 }