]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/wireless/intel/iwlwifi/pcie/rx.c
iwlwifi: pcie: remove MSIX_HW_INT_CAUSES_REG_IML handling
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2019 Intel Corporation
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
21 *
22 * The full GNU General Public License is included in this distribution in the
23 * file called COPYING.
24 *
25 * Contact Information:
26 * Intel Linux Wireless <linuxwifi@intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *
29 * BSD LICENSE
30 *
31 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2019 Intel Corporation
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *
63 *****************************************************************************/
64 #include <linux/sched.h>
65 #include <linux/wait.h>
66 #include <linux/gfp.h>
67
68 #include "iwl-prph.h"
69 #include "iwl-io.h"
70 #include "internal.h"
71 #include "iwl-op-mode.h"
72 #include "iwl-context-info-gen3.h"
73
74 /******************************************************************************
75 *
76 * RX path functions
77 *
78 ******************************************************************************/
79
80 /*
81 * Rx theory of operation
82 *
83 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
84 * each of which point to Receive Buffers to be filled by the NIC. These get
85 * used not only for Rx frames, but for any command response or notification
86 * from the NIC. The driver and NIC manage the Rx buffers by means
87 * of indexes into the circular buffer.
88 *
89 * Rx Queue Indexes
90 * The host/firmware share two index registers for managing the Rx buffers.
91 *
92 * The READ index maps to the first position that the firmware may be writing
93 * to -- the driver can read up to (but not including) this position and get
94 * good data.
95 * The READ index is managed by the firmware once the card is enabled.
96 *
97 * The WRITE index maps to the last position the driver has read from -- the
98 * position preceding WRITE is the last slot the firmware can place a packet.
99 *
100 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
101 * WRITE = READ.
102 *
103 * During initialization, the host sets up the READ queue position to the first
104 * INDEX position, and WRITE to the last (READ - 1 wrapped)
105 *
106 * When the firmware places a packet in a buffer, it will advance the READ index
107 * and fire the RX interrupt. The driver can then query the READ index and
108 * process as many packets as possible, moving the WRITE index forward as it
109 * resets the Rx queue buffers with new memory.
110 *
111 * The management in the driver is as follows:
112 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
113 * When the interrupt handler is called, the request is processed.
114 * The page is either stolen - transferred to the upper layer
115 * or reused - added immediately to the iwl->rxq->rx_free list.
116 * + When the page is stolen - the driver updates the matching queue's used
117 * count, detaches the RBD and transfers it to the queue used list.
118 * When there are two used RBDs - they are transferred to the allocator empty
119 * list. Work is then scheduled for the allocator to start allocating
120 * eight buffers.
121 * When there are another 6 used RBDs - they are transferred to the allocator
122 * empty list and the driver tries to claim the pre-allocated buffers and
123 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
124 * until ready.
125 * When there are 8+ buffers in the free list - either from allocation or from
126 * 8 reused unstolen pages - restock is called to update the FW and indexes.
127 * + In order to make sure the allocator always has RBDs to use for allocation
128 * the allocator has initial pool in the size of num_queues*(8-2) - the
129 * maximum missing RBDs per allocation request (request posted with 2
130 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
131 * The queues supplies the recycle of the rest of the RBDs.
132 * + A received packet is processed and handed to the kernel network stack,
133 * detached from the iwl->rxq. The driver 'processed' index is updated.
134 * + If there are no allocated buffers in iwl->rxq->rx_free,
135 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
136 * If there were enough free buffers and RX_STALLED is set it is cleared.
137 *
138 *
139 * Driver sequence:
140 *
141 * iwl_rxq_alloc() Allocates rx_free
142 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
143 * iwl_pcie_rxq_restock.
144 * Used only during initialization.
145 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
146 * queue, updates firmware pointers, and updates
147 * the WRITE index.
148 * iwl_pcie_rx_allocator() Background work for allocating pages.
149 *
150 * -- enable interrupts --
151 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
152 * READ INDEX, detaching the SKB from the pool.
153 * Moves the packet buffer from queue to rx_used.
154 * Posts and claims requests to the allocator.
155 * Calls iwl_pcie_rxq_restock to refill any empty
156 * slots.
157 *
158 * RBD life-cycle:
159 *
160 * Init:
161 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
162 *
163 * Regular Receive interrupt:
164 * Page Stolen:
165 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
166 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
167 * Page not Stolen:
168 * rxq.queue -> rxq.rx_free -> rxq.queue
169 * ...
170 *
171 */
172
173 /*
174 * iwl_rxq_space - Return number of free slots available in queue.
175 */
176 static int iwl_rxq_space(const struct iwl_rxq *rxq)
177 {
178 /* Make sure rx queue size is a power of 2 */
179 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
180
181 /*
182 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
183 * between empty and completely full queues.
184 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
185 * defined for negative dividends.
186 */
187 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
188 }
189
190 /*
191 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
192 */
193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
194 {
195 return cpu_to_le32((u32)(dma_addr >> 8));
196 }
197
198 /*
199 * iwl_pcie_rx_stop - stops the Rx DMA
200 */
201 int iwl_pcie_rx_stop(struct iwl_trans *trans)
202 {
203 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
204 /* TODO: remove this once fw does it */
205 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
206 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
207 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
208 } else if (trans->trans_cfg->mq_rx_supported) {
209 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
210 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
211 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
212 } else {
213 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
214 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
215 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
216 1000);
217 }
218 }
219
220 /*
221 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
222 */
223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
224 struct iwl_rxq *rxq)
225 {
226 u32 reg;
227
228 lockdep_assert_held(&rxq->lock);
229
230 /*
231 * explicitly wake up the NIC if:
232 * 1. shadow registers aren't enabled
233 * 2. there is a chance that the NIC is asleep
234 */
235 if (!trans->trans_cfg->base_params->shadow_reg_enable &&
236 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
237 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
238
239 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
240 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
241 reg);
242 iwl_set_bit(trans, CSR_GP_CNTRL,
243 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
244 rxq->need_update = true;
245 return;
246 }
247 }
248
249 rxq->write_actual = round_down(rxq->write, 8);
250 if (trans->trans_cfg->mq_rx_supported)
251 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
252 rxq->write_actual);
253 else
254 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
255 }
256
257 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
258 {
259 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
260 int i;
261
262 for (i = 0; i < trans->num_rx_queues; i++) {
263 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
264
265 if (!rxq->need_update)
266 continue;
267 spin_lock(&rxq->lock);
268 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
269 rxq->need_update = false;
270 spin_unlock(&rxq->lock);
271 }
272 }
273
274 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
275 struct iwl_rxq *rxq,
276 struct iwl_rx_mem_buffer *rxb)
277 {
278 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
279 struct iwl_rx_transfer_desc *bd = rxq->bd;
280
281 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
282
283 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
284 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
285 } else {
286 __le64 *bd = rxq->bd;
287
288 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
289 }
290
291 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
292 (u32)rxb->vid, rxq->id, rxq->write);
293 }
294
295 /*
296 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
297 */
298 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
299 struct iwl_rxq *rxq)
300 {
301 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
302 struct iwl_rx_mem_buffer *rxb;
303
304 /*
305 * If the device isn't enabled - no need to try to add buffers...
306 * This can happen when we stop the device and still have an interrupt
307 * pending. We stop the APM before we sync the interrupts because we
308 * have to (see comment there). On the other hand, since the APM is
309 * stopped, we cannot access the HW (in particular not prph).
310 * So don't try to restock if the APM has been already stopped.
311 */
312 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
313 return;
314
315 spin_lock(&rxq->lock);
316 while (rxq->free_count) {
317 /* Get next free Rx buffer, remove from free list */
318 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
319 list);
320 list_del(&rxb->list);
321 rxb->invalid = false;
322 /* some low bits are expected to be unset (depending on hw) */
323 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
324 /* Point to Rx buffer via next RBD in circular buffer */
325 iwl_pcie_restock_bd(trans, rxq, rxb);
326 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
327 rxq->free_count--;
328 }
329 spin_unlock(&rxq->lock);
330
331 /*
332 * If we've added more space for the firmware to place data, tell it.
333 * Increment device's write pointer in multiples of 8.
334 */
335 if (rxq->write_actual != (rxq->write & ~0x7)) {
336 spin_lock(&rxq->lock);
337 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
338 spin_unlock(&rxq->lock);
339 }
340 }
341
342 /*
343 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
344 */
345 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
346 struct iwl_rxq *rxq)
347 {
348 struct iwl_rx_mem_buffer *rxb;
349
350 /*
351 * If the device isn't enabled - not need to try to add buffers...
352 * This can happen when we stop the device and still have an interrupt
353 * pending. We stop the APM before we sync the interrupts because we
354 * have to (see comment there). On the other hand, since the APM is
355 * stopped, we cannot access the HW (in particular not prph).
356 * So don't try to restock if the APM has been already stopped.
357 */
358 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
359 return;
360
361 spin_lock(&rxq->lock);
362 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
363 __le32 *bd = (__le32 *)rxq->bd;
364 /* The overwritten rxb must be a used one */
365 rxb = rxq->queue[rxq->write];
366 BUG_ON(rxb && rxb->page);
367
368 /* Get next free Rx buffer, remove from free list */
369 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
370 list);
371 list_del(&rxb->list);
372 rxb->invalid = false;
373
374 /* Point to Rx buffer via next RBD in circular buffer */
375 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
376 rxq->queue[rxq->write] = rxb;
377 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
378 rxq->free_count--;
379 }
380 spin_unlock(&rxq->lock);
381
382 /* If we've added more space for the firmware to place data, tell it.
383 * Increment device's write pointer in multiples of 8. */
384 if (rxq->write_actual != (rxq->write & ~0x7)) {
385 spin_lock(&rxq->lock);
386 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
387 spin_unlock(&rxq->lock);
388 }
389 }
390
391 /*
392 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
393 *
394 * If there are slots in the RX queue that need to be restocked,
395 * and we have free pre-allocated buffers, fill the ranks as much
396 * as we can, pulling from rx_free.
397 *
398 * This moves the 'write' index forward to catch up with 'processed', and
399 * also updates the memory address in the firmware to reference the new
400 * target buffer.
401 */
402 static
403 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
404 {
405 if (trans->trans_cfg->mq_rx_supported)
406 iwl_pcie_rxmq_restock(trans, rxq);
407 else
408 iwl_pcie_rxsq_restock(trans, rxq);
409 }
410
411 /*
412 * iwl_pcie_rx_alloc_page - allocates and returns a page.
413 *
414 */
415 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
416 u32 *offset, gfp_t priority)
417 {
418 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
419 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
420 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
421 struct page *page;
422 gfp_t gfp_mask = priority;
423
424 if (trans_pcie->rx_page_order > 0)
425 gfp_mask |= __GFP_COMP;
426
427 if (trans_pcie->alloc_page) {
428 spin_lock_bh(&trans_pcie->alloc_page_lock);
429 /* recheck */
430 if (trans_pcie->alloc_page) {
431 *offset = trans_pcie->alloc_page_used;
432 page = trans_pcie->alloc_page;
433 trans_pcie->alloc_page_used += rbsize;
434 if (trans_pcie->alloc_page_used >= allocsize)
435 trans_pcie->alloc_page = NULL;
436 else
437 get_page(page);
438 spin_unlock_bh(&trans_pcie->alloc_page_lock);
439 return page;
440 }
441 spin_unlock_bh(&trans_pcie->alloc_page_lock);
442 }
443
444 /* Alloc a new receive buffer */
445 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
446 if (!page) {
447 if (net_ratelimit())
448 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
449 trans_pcie->rx_page_order);
450 /*
451 * Issue an error if we don't have enough pre-allocated
452 * buffers.
453 */
454 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
455 IWL_CRIT(trans,
456 "Failed to alloc_pages\n");
457 return NULL;
458 }
459
460 if (2 * rbsize <= allocsize) {
461 spin_lock_bh(&trans_pcie->alloc_page_lock);
462 if (!trans_pcie->alloc_page) {
463 get_page(page);
464 trans_pcie->alloc_page = page;
465 trans_pcie->alloc_page_used = rbsize;
466 }
467 spin_unlock_bh(&trans_pcie->alloc_page_lock);
468 }
469
470 *offset = 0;
471 return page;
472 }
473
474 /*
475 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
476 *
477 * A used RBD is an Rx buffer that has been given to the stack. To use it again
478 * a page must be allocated and the RBD must point to the page. This function
479 * doesn't change the HW pointer but handles the list of pages that is used by
480 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
481 * allocated buffers.
482 */
483 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
484 struct iwl_rxq *rxq)
485 {
486 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
487 struct iwl_rx_mem_buffer *rxb;
488 struct page *page;
489
490 while (1) {
491 unsigned int offset;
492
493 spin_lock(&rxq->lock);
494 if (list_empty(&rxq->rx_used)) {
495 spin_unlock(&rxq->lock);
496 return;
497 }
498 spin_unlock(&rxq->lock);
499
500 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
501 if (!page)
502 return;
503
504 spin_lock(&rxq->lock);
505
506 if (list_empty(&rxq->rx_used)) {
507 spin_unlock(&rxq->lock);
508 __free_pages(page, trans_pcie->rx_page_order);
509 return;
510 }
511 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
512 list);
513 list_del(&rxb->list);
514 spin_unlock(&rxq->lock);
515
516 BUG_ON(rxb->page);
517 rxb->page = page;
518 rxb->offset = offset;
519 /* Get physical address of the RB */
520 rxb->page_dma =
521 dma_map_page(trans->dev, page, rxb->offset,
522 trans_pcie->rx_buf_bytes,
523 DMA_FROM_DEVICE);
524 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
525 rxb->page = NULL;
526 spin_lock(&rxq->lock);
527 list_add(&rxb->list, &rxq->rx_used);
528 spin_unlock(&rxq->lock);
529 __free_pages(page, trans_pcie->rx_page_order);
530 return;
531 }
532
533 spin_lock(&rxq->lock);
534
535 list_add_tail(&rxb->list, &rxq->rx_free);
536 rxq->free_count++;
537
538 spin_unlock(&rxq->lock);
539 }
540 }
541
542 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
543 {
544 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
545 int i;
546
547 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
548 if (!trans_pcie->rx_pool[i].page)
549 continue;
550 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
551 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
552 __free_pages(trans_pcie->rx_pool[i].page,
553 trans_pcie->rx_page_order);
554 trans_pcie->rx_pool[i].page = NULL;
555 }
556 }
557
558 /*
559 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
560 *
561 * Allocates for each received request 8 pages
562 * Called as a scheduled work item.
563 */
564 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
565 {
566 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
567 struct iwl_rb_allocator *rba = &trans_pcie->rba;
568 struct list_head local_empty;
569 int pending = atomic_read(&rba->req_pending);
570
571 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
572
573 /* If we were scheduled - there is at least one request */
574 spin_lock(&rba->lock);
575 /* swap out the rba->rbd_empty to a local list */
576 list_replace_init(&rba->rbd_empty, &local_empty);
577 spin_unlock(&rba->lock);
578
579 while (pending) {
580 int i;
581 LIST_HEAD(local_allocated);
582 gfp_t gfp_mask = GFP_KERNEL;
583
584 /* Do not post a warning if there are only a few requests */
585 if (pending < RX_PENDING_WATERMARK)
586 gfp_mask |= __GFP_NOWARN;
587
588 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
589 struct iwl_rx_mem_buffer *rxb;
590 struct page *page;
591
592 /* List should never be empty - each reused RBD is
593 * returned to the list, and initial pool covers any
594 * possible gap between the time the page is allocated
595 * to the time the RBD is added.
596 */
597 BUG_ON(list_empty(&local_empty));
598 /* Get the first rxb from the rbd list */
599 rxb = list_first_entry(&local_empty,
600 struct iwl_rx_mem_buffer, list);
601 BUG_ON(rxb->page);
602
603 /* Alloc a new receive buffer */
604 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
605 gfp_mask);
606 if (!page)
607 continue;
608 rxb->page = page;
609
610 /* Get physical address of the RB */
611 rxb->page_dma = dma_map_page(trans->dev, page,
612 rxb->offset,
613 trans_pcie->rx_buf_bytes,
614 DMA_FROM_DEVICE);
615 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
616 rxb->page = NULL;
617 __free_pages(page, trans_pcie->rx_page_order);
618 continue;
619 }
620
621 /* move the allocated entry to the out list */
622 list_move(&rxb->list, &local_allocated);
623 i++;
624 }
625
626 atomic_dec(&rba->req_pending);
627 pending--;
628
629 if (!pending) {
630 pending = atomic_read(&rba->req_pending);
631 if (pending)
632 IWL_DEBUG_TPT(trans,
633 "Got more pending allocation requests = %d\n",
634 pending);
635 }
636
637 spin_lock(&rba->lock);
638 /* add the allocated rbds to the allocator allocated list */
639 list_splice_tail(&local_allocated, &rba->rbd_allocated);
640 /* get more empty RBDs for current pending requests */
641 list_splice_tail_init(&rba->rbd_empty, &local_empty);
642 spin_unlock(&rba->lock);
643
644 atomic_inc(&rba->req_ready);
645
646 }
647
648 spin_lock(&rba->lock);
649 /* return unused rbds to the allocator empty list */
650 list_splice_tail(&local_empty, &rba->rbd_empty);
651 spin_unlock(&rba->lock);
652
653 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
654 }
655
656 /*
657 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
658 .*
659 .* Called by queue when the queue posted allocation request and
660 * has freed 8 RBDs in order to restock itself.
661 * This function directly moves the allocated RBs to the queue's ownership
662 * and updates the relevant counters.
663 */
664 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
665 struct iwl_rxq *rxq)
666 {
667 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
668 struct iwl_rb_allocator *rba = &trans_pcie->rba;
669 int i;
670
671 lockdep_assert_held(&rxq->lock);
672
673 /*
674 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
675 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
676 * function will return early, as there are no ready requests.
677 * atomic_dec_if_positive will perofrm the *actual* decrement only if
678 * req_ready > 0, i.e. - there are ready requests and the function
679 * hands one request to the caller.
680 */
681 if (atomic_dec_if_positive(&rba->req_ready) < 0)
682 return;
683
684 spin_lock(&rba->lock);
685 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
686 /* Get next free Rx buffer, remove it from free list */
687 struct iwl_rx_mem_buffer *rxb =
688 list_first_entry(&rba->rbd_allocated,
689 struct iwl_rx_mem_buffer, list);
690
691 list_move(&rxb->list, &rxq->rx_free);
692 }
693 spin_unlock(&rba->lock);
694
695 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
696 rxq->free_count += RX_CLAIM_REQ_ALLOC;
697 }
698
699 void iwl_pcie_rx_allocator_work(struct work_struct *data)
700 {
701 struct iwl_rb_allocator *rba_p =
702 container_of(data, struct iwl_rb_allocator, rx_alloc);
703 struct iwl_trans_pcie *trans_pcie =
704 container_of(rba_p, struct iwl_trans_pcie, rba);
705
706 iwl_pcie_rx_allocator(trans_pcie->trans);
707 }
708
709 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
710 {
711 struct iwl_rx_transfer_desc *rx_td;
712
713 if (use_rx_td)
714 return sizeof(*rx_td);
715 else
716 return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
717 sizeof(__le32);
718 }
719
720 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
721 struct iwl_rxq *rxq)
722 {
723 struct device *dev = trans->dev;
724 bool use_rx_td = (trans->trans_cfg->device_family >=
725 IWL_DEVICE_FAMILY_AX210);
726 int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
727
728 if (rxq->bd)
729 dma_free_coherent(trans->dev,
730 free_size * rxq->queue_size,
731 rxq->bd, rxq->bd_dma);
732 rxq->bd_dma = 0;
733 rxq->bd = NULL;
734
735 rxq->rb_stts_dma = 0;
736 rxq->rb_stts = NULL;
737
738 if (rxq->used_bd)
739 dma_free_coherent(trans->dev,
740 (use_rx_td ? sizeof(*rxq->cd) :
741 sizeof(__le32)) * rxq->queue_size,
742 rxq->used_bd, rxq->used_bd_dma);
743 rxq->used_bd_dma = 0;
744 rxq->used_bd = NULL;
745
746 if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210)
747 return;
748
749 if (rxq->tr_tail)
750 dma_free_coherent(dev, sizeof(__le16),
751 rxq->tr_tail, rxq->tr_tail_dma);
752 rxq->tr_tail_dma = 0;
753 rxq->tr_tail = NULL;
754
755 if (rxq->cr_tail)
756 dma_free_coherent(dev, sizeof(__le16),
757 rxq->cr_tail, rxq->cr_tail_dma);
758 rxq->cr_tail_dma = 0;
759 rxq->cr_tail = NULL;
760 }
761
762 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
763 struct iwl_rxq *rxq)
764 {
765 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
766 struct device *dev = trans->dev;
767 int i;
768 int free_size;
769 bool use_rx_td = (trans->trans_cfg->device_family >=
770 IWL_DEVICE_FAMILY_AX210);
771 size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
772 sizeof(struct iwl_rb_status);
773
774 spin_lock_init(&rxq->lock);
775 if (trans->trans_cfg->mq_rx_supported)
776 rxq->queue_size = trans->cfg->num_rbds;
777 else
778 rxq->queue_size = RX_QUEUE_SIZE;
779
780 free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
781
782 /*
783 * Allocate the circular buffer of Read Buffer Descriptors
784 * (RBDs)
785 */
786 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
787 &rxq->bd_dma, GFP_KERNEL);
788 if (!rxq->bd)
789 goto err;
790
791 if (trans->trans_cfg->mq_rx_supported) {
792 rxq->used_bd = dma_alloc_coherent(dev,
793 (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
794 &rxq->used_bd_dma,
795 GFP_KERNEL);
796 if (!rxq->used_bd)
797 goto err;
798 }
799
800 rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
801 rxq->rb_stts_dma =
802 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
803
804 if (!use_rx_td)
805 return 0;
806
807 /* Allocate the driver's pointer to TR tail */
808 rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
809 &rxq->tr_tail_dma, GFP_KERNEL);
810 if (!rxq->tr_tail)
811 goto err;
812
813 /* Allocate the driver's pointer to CR tail */
814 rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
815 &rxq->cr_tail_dma, GFP_KERNEL);
816 if (!rxq->cr_tail)
817 goto err;
818
819 return 0;
820
821 err:
822 for (i = 0; i < trans->num_rx_queues; i++) {
823 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
824
825 iwl_pcie_free_rxq_dma(trans, rxq);
826 }
827
828 return -ENOMEM;
829 }
830
831 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
832 {
833 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
834 struct iwl_rb_allocator *rba = &trans_pcie->rba;
835 int i, ret;
836 size_t rb_stts_size = trans->trans_cfg->device_family >=
837 IWL_DEVICE_FAMILY_AX210 ?
838 sizeof(__le16) : sizeof(struct iwl_rb_status);
839
840 if (WARN_ON(trans_pcie->rxq))
841 return -EINVAL;
842
843 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
844 GFP_KERNEL);
845 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
846 sizeof(trans_pcie->rx_pool[0]),
847 GFP_KERNEL);
848 trans_pcie->global_table =
849 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
850 sizeof(trans_pcie->global_table[0]),
851 GFP_KERNEL);
852 if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
853 !trans_pcie->global_table) {
854 ret = -ENOMEM;
855 goto err;
856 }
857
858 spin_lock_init(&rba->lock);
859
860 /*
861 * Allocate the driver's pointer to receive buffer status.
862 * Allocate for all queues continuously (HW requirement).
863 */
864 trans_pcie->base_rb_stts =
865 dma_alloc_coherent(trans->dev,
866 rb_stts_size * trans->num_rx_queues,
867 &trans_pcie->base_rb_stts_dma,
868 GFP_KERNEL);
869 if (!trans_pcie->base_rb_stts) {
870 ret = -ENOMEM;
871 goto err;
872 }
873
874 for (i = 0; i < trans->num_rx_queues; i++) {
875 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
876
877 rxq->id = i;
878 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
879 if (ret)
880 goto err;
881 }
882 return 0;
883
884 err:
885 if (trans_pcie->base_rb_stts) {
886 dma_free_coherent(trans->dev,
887 rb_stts_size * trans->num_rx_queues,
888 trans_pcie->base_rb_stts,
889 trans_pcie->base_rb_stts_dma);
890 trans_pcie->base_rb_stts = NULL;
891 trans_pcie->base_rb_stts_dma = 0;
892 }
893 kfree(trans_pcie->rx_pool);
894 kfree(trans_pcie->global_table);
895 kfree(trans_pcie->rxq);
896
897 return ret;
898 }
899
900 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
901 {
902 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
903 u32 rb_size;
904 unsigned long flags;
905 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
906
907 switch (trans_pcie->rx_buf_size) {
908 case IWL_AMSDU_4K:
909 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
910 break;
911 case IWL_AMSDU_8K:
912 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
913 break;
914 case IWL_AMSDU_12K:
915 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
916 break;
917 default:
918 WARN_ON(1);
919 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
920 }
921
922 if (!iwl_trans_grab_nic_access(trans, &flags))
923 return;
924
925 /* Stop Rx DMA */
926 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
927 /* reset and flush pointers */
928 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
929 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
930 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
931
932 /* Reset driver's Rx queue write index */
933 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
934
935 /* Tell device where to find RBD circular buffer in DRAM */
936 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
937 (u32)(rxq->bd_dma >> 8));
938
939 /* Tell device where in DRAM to update its Rx status */
940 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
941 rxq->rb_stts_dma >> 4);
942
943 /* Enable Rx DMA
944 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
945 * the credit mechanism in 5000 HW RX FIFO
946 * Direct rx interrupts to hosts
947 * Rx buffer size 4 or 8k or 12k
948 * RB timeout 0x10
949 * 256 RBDs
950 */
951 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
952 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
953 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
954 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
955 rb_size |
956 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
957 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
958
959 iwl_trans_release_nic_access(trans, &flags);
960
961 /* Set interrupt coalescing timer to default (2048 usecs) */
962 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
963
964 /* W/A for interrupt coalescing bug in 7260 and 3160 */
965 if (trans->cfg->host_interrupt_operation_mode)
966 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
967 }
968
969 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
970 {
971 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
972 u32 rb_size, enabled = 0;
973 unsigned long flags;
974 int i;
975
976 switch (trans_pcie->rx_buf_size) {
977 case IWL_AMSDU_2K:
978 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
979 break;
980 case IWL_AMSDU_4K:
981 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
982 break;
983 case IWL_AMSDU_8K:
984 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
985 break;
986 case IWL_AMSDU_12K:
987 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
988 break;
989 default:
990 WARN_ON(1);
991 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
992 }
993
994 if (!iwl_trans_grab_nic_access(trans, &flags))
995 return;
996
997 /* Stop Rx DMA */
998 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
999 /* disable free amd used rx queue operation */
1000 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
1001
1002 for (i = 0; i < trans->num_rx_queues; i++) {
1003 /* Tell device where to find RBD free table in DRAM */
1004 iwl_write_prph64_no_grab(trans,
1005 RFH_Q_FRBDCB_BA_LSB(i),
1006 trans_pcie->rxq[i].bd_dma);
1007 /* Tell device where to find RBD used table in DRAM */
1008 iwl_write_prph64_no_grab(trans,
1009 RFH_Q_URBDCB_BA_LSB(i),
1010 trans_pcie->rxq[i].used_bd_dma);
1011 /* Tell device where in DRAM to update its Rx status */
1012 iwl_write_prph64_no_grab(trans,
1013 RFH_Q_URBD_STTS_WPTR_LSB(i),
1014 trans_pcie->rxq[i].rb_stts_dma);
1015 /* Reset device indice tables */
1016 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
1017 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
1018 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
1019
1020 enabled |= BIT(i) | BIT(i + 16);
1021 }
1022
1023 /*
1024 * Enable Rx DMA
1025 * Rx buffer size 4 or 8k or 12k
1026 * Min RB size 4 or 8
1027 * Drop frames that exceed RB size
1028 * 512 RBDs
1029 */
1030 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
1031 RFH_DMA_EN_ENABLE_VAL | rb_size |
1032 RFH_RXF_DMA_MIN_RB_4_8 |
1033 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
1034 RFH_RXF_DMA_RBDCB_SIZE_512);
1035
1036 /*
1037 * Activate DMA snooping.
1038 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
1039 * Default queue is 0
1040 */
1041 iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
1042 RFH_GEN_CFG_RFH_DMA_SNOOP |
1043 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
1044 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
1045 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
1046 trans->trans_cfg->integrated ?
1047 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
1048 RFH_GEN_CFG_RB_CHUNK_SIZE_128));
1049 /* Enable the relevant rx queues */
1050 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
1051
1052 iwl_trans_release_nic_access(trans, &flags);
1053
1054 /* Set interrupt coalescing timer to default (2048 usecs) */
1055 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1056 }
1057
1058 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1059 {
1060 lockdep_assert_held(&rxq->lock);
1061
1062 INIT_LIST_HEAD(&rxq->rx_free);
1063 INIT_LIST_HEAD(&rxq->rx_used);
1064 rxq->free_count = 0;
1065 rxq->used_count = 0;
1066 }
1067
1068 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1069 {
1070 WARN_ON(1);
1071 return 0;
1072 }
1073
1074 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1075 {
1076 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1077 struct iwl_rxq *def_rxq;
1078 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1079 int i, err, queue_size, allocator_pool_size, num_alloc;
1080
1081 if (!trans_pcie->rxq) {
1082 err = iwl_pcie_rx_alloc(trans);
1083 if (err)
1084 return err;
1085 }
1086 def_rxq = trans_pcie->rxq;
1087
1088 cancel_work_sync(&rba->rx_alloc);
1089
1090 spin_lock(&rba->lock);
1091 atomic_set(&rba->req_pending, 0);
1092 atomic_set(&rba->req_ready, 0);
1093 INIT_LIST_HEAD(&rba->rbd_allocated);
1094 INIT_LIST_HEAD(&rba->rbd_empty);
1095 spin_unlock(&rba->lock);
1096
1097 /* free all first - we might be reconfigured for a different size */
1098 iwl_pcie_free_rbs_pool(trans);
1099
1100 for (i = 0; i < RX_QUEUE_SIZE; i++)
1101 def_rxq->queue[i] = NULL;
1102
1103 for (i = 0; i < trans->num_rx_queues; i++) {
1104 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1105
1106 spin_lock(&rxq->lock);
1107 /*
1108 * Set read write pointer to reflect that we have processed
1109 * and used all buffers, but have not restocked the Rx queue
1110 * with fresh buffers
1111 */
1112 rxq->read = 0;
1113 rxq->write = 0;
1114 rxq->write_actual = 0;
1115 memset(rxq->rb_stts, 0,
1116 (trans->trans_cfg->device_family >=
1117 IWL_DEVICE_FAMILY_AX210) ?
1118 sizeof(__le16) : sizeof(struct iwl_rb_status));
1119
1120 iwl_pcie_rx_init_rxb_lists(rxq);
1121
1122 if (!rxq->napi.poll)
1123 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1124 iwl_pcie_dummy_napi_poll, 64);
1125
1126 spin_unlock(&rxq->lock);
1127 }
1128
1129 /* move the pool to the default queue and allocator ownerships */
1130 queue_size = trans->trans_cfg->mq_rx_supported ?
1131 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1132 allocator_pool_size = trans->num_rx_queues *
1133 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1134 num_alloc = queue_size + allocator_pool_size;
1135
1136 for (i = 0; i < num_alloc; i++) {
1137 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1138
1139 if (i < allocator_pool_size)
1140 list_add(&rxb->list, &rba->rbd_empty);
1141 else
1142 list_add(&rxb->list, &def_rxq->rx_used);
1143 trans_pcie->global_table[i] = rxb;
1144 rxb->vid = (u16)(i + 1);
1145 rxb->invalid = true;
1146 }
1147
1148 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1149
1150 return 0;
1151 }
1152
1153 int iwl_pcie_rx_init(struct iwl_trans *trans)
1154 {
1155 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1156 int ret = _iwl_pcie_rx_init(trans);
1157
1158 if (ret)
1159 return ret;
1160
1161 if (trans->trans_cfg->mq_rx_supported)
1162 iwl_pcie_rx_mq_hw_init(trans);
1163 else
1164 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1165
1166 iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1167
1168 spin_lock(&trans_pcie->rxq->lock);
1169 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1170 spin_unlock(&trans_pcie->rxq->lock);
1171
1172 return 0;
1173 }
1174
1175 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1176 {
1177 /* Set interrupt coalescing timer to default (2048 usecs) */
1178 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1179
1180 /*
1181 * We don't configure the RFH.
1182 * Restock will be done at alive, after firmware configured the RFH.
1183 */
1184 return _iwl_pcie_rx_init(trans);
1185 }
1186
1187 void iwl_pcie_rx_free(struct iwl_trans *trans)
1188 {
1189 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1190 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1191 int i;
1192 size_t rb_stts_size = trans->trans_cfg->device_family >=
1193 IWL_DEVICE_FAMILY_AX210 ?
1194 sizeof(__le16) : sizeof(struct iwl_rb_status);
1195
1196 /*
1197 * if rxq is NULL, it means that nothing has been allocated,
1198 * exit now
1199 */
1200 if (!trans_pcie->rxq) {
1201 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1202 return;
1203 }
1204
1205 cancel_work_sync(&rba->rx_alloc);
1206
1207 iwl_pcie_free_rbs_pool(trans);
1208
1209 if (trans_pcie->base_rb_stts) {
1210 dma_free_coherent(trans->dev,
1211 rb_stts_size * trans->num_rx_queues,
1212 trans_pcie->base_rb_stts,
1213 trans_pcie->base_rb_stts_dma);
1214 trans_pcie->base_rb_stts = NULL;
1215 trans_pcie->base_rb_stts_dma = 0;
1216 }
1217
1218 for (i = 0; i < trans->num_rx_queues; i++) {
1219 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1220
1221 iwl_pcie_free_rxq_dma(trans, rxq);
1222
1223 if (rxq->napi.poll)
1224 netif_napi_del(&rxq->napi);
1225 }
1226 kfree(trans_pcie->rx_pool);
1227 kfree(trans_pcie->global_table);
1228 kfree(trans_pcie->rxq);
1229
1230 if (trans_pcie->alloc_page)
1231 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1232 }
1233
1234 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1235 struct iwl_rb_allocator *rba)
1236 {
1237 spin_lock(&rba->lock);
1238 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1239 spin_unlock(&rba->lock);
1240 }
1241
1242 /*
1243 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1244 *
1245 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1246 * When there are 2 empty RBDs - a request for allocation is posted
1247 */
1248 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1249 struct iwl_rx_mem_buffer *rxb,
1250 struct iwl_rxq *rxq, bool emergency)
1251 {
1252 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1253 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1254
1255 /* Move the RBD to the used list, will be moved to allocator in batches
1256 * before claiming or posting a request*/
1257 list_add_tail(&rxb->list, &rxq->rx_used);
1258
1259 if (unlikely(emergency))
1260 return;
1261
1262 /* Count the allocator owned RBDs */
1263 rxq->used_count++;
1264
1265 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1266 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1267 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1268 * after but we still need to post another request.
1269 */
1270 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1271 /* Move the 2 RBDs to the allocator ownership.
1272 Allocator has another 6 from pool for the request completion*/
1273 iwl_pcie_rx_move_to_allocator(rxq, rba);
1274
1275 atomic_inc(&rba->req_pending);
1276 queue_work(rba->alloc_wq, &rba->rx_alloc);
1277 }
1278 }
1279
1280 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1281 struct iwl_rxq *rxq,
1282 struct iwl_rx_mem_buffer *rxb,
1283 bool emergency,
1284 int i)
1285 {
1286 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1287 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1288 bool page_stolen = false;
1289 int max_len = trans_pcie->rx_buf_bytes;
1290 u32 offset = 0;
1291
1292 if (WARN_ON(!rxb))
1293 return;
1294
1295 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1296
1297 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1298 struct iwl_rx_packet *pkt;
1299 u16 sequence;
1300 bool reclaim;
1301 int index, cmd_index, len;
1302 struct iwl_rx_cmd_buffer rxcb = {
1303 ._offset = rxb->offset + offset,
1304 ._rx_page_order = trans_pcie->rx_page_order,
1305 ._page = rxb->page,
1306 ._page_stolen = false,
1307 .truesize = max_len,
1308 };
1309
1310 pkt = rxb_addr(&rxcb);
1311
1312 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1313 IWL_DEBUG_RX(trans,
1314 "Q %d: RB end marker at offset %d\n",
1315 rxq->id, offset);
1316 break;
1317 }
1318
1319 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1320 FH_RSCSR_RXQ_POS != rxq->id,
1321 "frame on invalid queue - is on %d and indicates %d\n",
1322 rxq->id,
1323 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1324 FH_RSCSR_RXQ_POS);
1325
1326 IWL_DEBUG_RX(trans,
1327 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1328 rxq->id, offset,
1329 iwl_get_cmd_string(trans,
1330 iwl_cmd_id(pkt->hdr.cmd,
1331 pkt->hdr.group_id,
1332 0)),
1333 pkt->hdr.group_id, pkt->hdr.cmd,
1334 le16_to_cpu(pkt->hdr.sequence));
1335
1336 len = iwl_rx_packet_len(pkt);
1337 len += sizeof(u32); /* account for status word */
1338
1339 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1340
1341 /* check that what the device tells us made sense */
1342 if (offset > max_len)
1343 break;
1344
1345 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1346 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1347
1348 /* Reclaim a command buffer only if this packet is a response
1349 * to a (driver-originated) command.
1350 * If the packet (e.g. Rx frame) originated from uCode,
1351 * there is no command buffer to reclaim.
1352 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1353 * but apparently a few don't get set; catch them here. */
1354 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1355 if (reclaim && !pkt->hdr.group_id) {
1356 int i;
1357
1358 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1359 if (trans_pcie->no_reclaim_cmds[i] ==
1360 pkt->hdr.cmd) {
1361 reclaim = false;
1362 break;
1363 }
1364 }
1365 }
1366
1367 sequence = le16_to_cpu(pkt->hdr.sequence);
1368 index = SEQ_TO_INDEX(sequence);
1369 cmd_index = iwl_txq_get_cmd_index(txq, index);
1370
1371 if (rxq->id == trans_pcie->def_rx_queue)
1372 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1373 &rxcb);
1374 else
1375 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1376 &rxcb, rxq->id);
1377
1378 if (reclaim) {
1379 kfree_sensitive(txq->entries[cmd_index].free_buf);
1380 txq->entries[cmd_index].free_buf = NULL;
1381 }
1382
1383 /*
1384 * After here, we should always check rxcb._page_stolen,
1385 * if it is true then one of the handlers took the page.
1386 */
1387
1388 if (reclaim) {
1389 /* Invoke any callbacks, transfer the buffer to caller,
1390 * and fire off the (possibly) blocking
1391 * iwl_trans_send_cmd()
1392 * as we reclaim the driver command queue */
1393 if (!rxcb._page_stolen)
1394 iwl_pcie_hcmd_complete(trans, &rxcb);
1395 else
1396 IWL_WARN(trans, "Claim null rxb?\n");
1397 }
1398
1399 page_stolen |= rxcb._page_stolen;
1400 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1401 break;
1402 }
1403
1404 /* page was stolen from us -- free our reference */
1405 if (page_stolen) {
1406 __free_pages(rxb->page, trans_pcie->rx_page_order);
1407 rxb->page = NULL;
1408 }
1409
1410 /* Reuse the page if possible. For notification packets and
1411 * SKBs that fail to Rx correctly, add them back into the
1412 * rx_free list for reuse later. */
1413 if (rxb->page != NULL) {
1414 rxb->page_dma =
1415 dma_map_page(trans->dev, rxb->page, rxb->offset,
1416 trans_pcie->rx_buf_bytes,
1417 DMA_FROM_DEVICE);
1418 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1419 /*
1420 * free the page(s) as well to not break
1421 * the invariant that the items on the used
1422 * list have no page(s)
1423 */
1424 __free_pages(rxb->page, trans_pcie->rx_page_order);
1425 rxb->page = NULL;
1426 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1427 } else {
1428 list_add_tail(&rxb->list, &rxq->rx_free);
1429 rxq->free_count++;
1430 }
1431 } else
1432 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1433 }
1434
1435 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1436 struct iwl_rxq *rxq, int i,
1437 bool *join)
1438 {
1439 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1440 struct iwl_rx_mem_buffer *rxb;
1441 u16 vid;
1442
1443 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1444
1445 if (!trans->trans_cfg->mq_rx_supported) {
1446 rxb = rxq->queue[i];
1447 rxq->queue[i] = NULL;
1448 return rxb;
1449 }
1450
1451 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1452 vid = le16_to_cpu(rxq->cd[i].rbid);
1453 *join = rxq->cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1454 } else {
1455 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; /* 12-bit VID */
1456 }
1457
1458 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1459 goto out_err;
1460
1461 rxb = trans_pcie->global_table[vid - 1];
1462 if (rxb->invalid)
1463 goto out_err;
1464
1465 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1466
1467 rxb->invalid = true;
1468
1469 return rxb;
1470
1471 out_err:
1472 WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1473 iwl_force_nmi(trans);
1474 return NULL;
1475 }
1476
1477 /*
1478 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1479 */
1480 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1481 {
1482 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1483 struct napi_struct *napi;
1484 struct iwl_rxq *rxq;
1485 u32 r, i, count = 0;
1486 bool emergency = false;
1487
1488 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1489 return;
1490
1491 rxq = &trans_pcie->rxq[queue];
1492
1493 restart:
1494 spin_lock(&rxq->lock);
1495 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1496 * buffer that the driver may process (last buffer filled by ucode). */
1497 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1498 i = rxq->read;
1499
1500 /* W/A 9000 device step A0 wrap-around bug */
1501 r &= (rxq->queue_size - 1);
1502
1503 /* Rx interrupt, but nothing sent from uCode */
1504 if (i == r)
1505 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1506
1507 while (i != r) {
1508 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1509 struct iwl_rx_mem_buffer *rxb;
1510 /* number of RBDs still waiting for page allocation */
1511 u32 rb_pending_alloc =
1512 atomic_read(&trans_pcie->rba.req_pending) *
1513 RX_CLAIM_REQ_ALLOC;
1514 bool join = false;
1515
1516 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1517 !emergency)) {
1518 iwl_pcie_rx_move_to_allocator(rxq, rba);
1519 emergency = true;
1520 IWL_DEBUG_TPT(trans,
1521 "RX path is in emergency. Pending allocations %d\n",
1522 rb_pending_alloc);
1523 }
1524
1525 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1526
1527 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1528 if (!rxb)
1529 goto out;
1530
1531 if (unlikely(join || rxq->next_rb_is_fragment)) {
1532 rxq->next_rb_is_fragment = join;
1533 /*
1534 * We can only get a multi-RB in the following cases:
1535 * - firmware issue, sending a too big notification
1536 * - sniffer mode with a large A-MSDU
1537 * - large MTU frames (>2k)
1538 * since the multi-RB functionality is limited to newer
1539 * hardware that cannot put multiple entries into a
1540 * single RB.
1541 *
1542 * Right now, the higher layers aren't set up to deal
1543 * with that, so discard all of these.
1544 */
1545 list_add_tail(&rxb->list, &rxq->rx_free);
1546 rxq->free_count++;
1547 } else {
1548 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1549 }
1550
1551 i = (i + 1) & (rxq->queue_size - 1);
1552
1553 /*
1554 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1555 * try to claim the pre-allocated buffers from the allocator.
1556 * If not ready - will try to reclaim next time.
1557 * There is no need to reschedule work - allocator exits only
1558 * on success
1559 */
1560 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1561 iwl_pcie_rx_allocator_get(trans, rxq);
1562
1563 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1564 /* Add the remaining empty RBDs for allocator use */
1565 iwl_pcie_rx_move_to_allocator(rxq, rba);
1566 } else if (emergency) {
1567 count++;
1568 if (count == 8) {
1569 count = 0;
1570 if (rb_pending_alloc < rxq->queue_size / 3) {
1571 IWL_DEBUG_TPT(trans,
1572 "RX path exited emergency. Pending allocations %d\n",
1573 rb_pending_alloc);
1574 emergency = false;
1575 }
1576
1577 rxq->read = i;
1578 spin_unlock(&rxq->lock);
1579 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1580 iwl_pcie_rxq_restock(trans, rxq);
1581 goto restart;
1582 }
1583 }
1584 }
1585 out:
1586 /* Backtrack one entry */
1587 rxq->read = i;
1588 /* update cr tail with the rxq read pointer */
1589 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1590 *rxq->cr_tail = cpu_to_le16(r);
1591 spin_unlock(&rxq->lock);
1592
1593 /*
1594 * handle a case where in emergency there are some unallocated RBDs.
1595 * those RBDs are in the used list, but are not tracked by the queue's
1596 * used_count which counts allocator owned RBDs.
1597 * unallocated emergency RBDs must be allocated on exit, otherwise
1598 * when called again the function may not be in emergency mode and
1599 * they will be handed to the allocator with no tracking in the RBD
1600 * allocator counters, which will lead to them never being claimed back
1601 * by the queue.
1602 * by allocating them here, they are now in the queue free list, and
1603 * will be restocked by the next call of iwl_pcie_rxq_restock.
1604 */
1605 if (unlikely(emergency && count))
1606 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1607
1608 napi = &rxq->napi;
1609 if (napi->poll) {
1610 napi_gro_flush(napi, false);
1611
1612 if (napi->rx_count) {
1613 netif_receive_skb_list(&napi->rx_list);
1614 INIT_LIST_HEAD(&napi->rx_list);
1615 napi->rx_count = 0;
1616 }
1617 }
1618
1619 iwl_pcie_rxq_restock(trans, rxq);
1620 }
1621
1622 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1623 {
1624 u8 queue = entry->entry;
1625 struct msix_entry *entries = entry - queue;
1626
1627 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1628 }
1629
1630 /*
1631 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1632 * This interrupt handler should be used with RSS queue only.
1633 */
1634 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1635 {
1636 struct msix_entry *entry = dev_id;
1637 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1638 struct iwl_trans *trans = trans_pcie->trans;
1639
1640 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1641
1642 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1643 return IRQ_NONE;
1644
1645 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1646
1647 local_bh_disable();
1648 iwl_pcie_rx_handle(trans, entry->entry);
1649 local_bh_enable();
1650
1651 iwl_pcie_clear_irq(trans, entry);
1652
1653 lock_map_release(&trans->sync_cmd_lockdep_map);
1654
1655 return IRQ_HANDLED;
1656 }
1657
1658 /*
1659 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1660 */
1661 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1662 {
1663 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1664 int i;
1665
1666 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1667 if (trans->cfg->internal_wimax_coex &&
1668 !trans->cfg->apmg_not_supported &&
1669 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1670 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1671 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1672 APMG_PS_CTRL_VAL_RESET_REQ))) {
1673 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1674 iwl_op_mode_wimax_active(trans->op_mode);
1675 wake_up(&trans_pcie->wait_command_queue);
1676 return;
1677 }
1678
1679 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1680 if (!trans->txqs.txq[i])
1681 continue;
1682 del_timer(&trans->txqs.txq[i]->stuck_timer);
1683 }
1684
1685 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1686 * before we wake up the command caller, to ensure a proper cleanup. */
1687 iwl_trans_fw_error(trans);
1688
1689 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1690 wake_up(&trans_pcie->wait_command_queue);
1691 }
1692
1693 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1694 {
1695 u32 inta;
1696
1697 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1698
1699 trace_iwlwifi_dev_irq(trans->dev);
1700
1701 /* Discover which interrupts are active/pending */
1702 inta = iwl_read32(trans, CSR_INT);
1703
1704 /* the thread will service interrupts and re-enable them */
1705 return inta;
1706 }
1707
1708 /* a device (PCI-E) page is 4096 bytes long */
1709 #define ICT_SHIFT 12
1710 #define ICT_SIZE (1 << ICT_SHIFT)
1711 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1712
1713 /* interrupt handler using ict table, with this interrupt driver will
1714 * stop using INTA register to get device's interrupt, reading this register
1715 * is expensive, device will write interrupts in ICT dram table, increment
1716 * index then will fire interrupt to driver, driver will OR all ICT table
1717 * entries from current index up to table entry with 0 value. the result is
1718 * the interrupt we need to service, driver will set the entries back to 0 and
1719 * set index.
1720 */
1721 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1722 {
1723 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1724 u32 inta;
1725 u32 val = 0;
1726 u32 read;
1727
1728 trace_iwlwifi_dev_irq(trans->dev);
1729
1730 /* Ignore interrupt if there's nothing in NIC to service.
1731 * This may be due to IRQ shared with another device,
1732 * or due to sporadic interrupts thrown from our NIC. */
1733 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1734 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1735 if (!read)
1736 return 0;
1737
1738 /*
1739 * Collect all entries up to the first 0, starting from ict_index;
1740 * note we already read at ict_index.
1741 */
1742 do {
1743 val |= read;
1744 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1745 trans_pcie->ict_index, read);
1746 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1747 trans_pcie->ict_index =
1748 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1749
1750 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1751 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1752 read);
1753 } while (read);
1754
1755 /* We should not get this value, just ignore it. */
1756 if (val == 0xffffffff)
1757 val = 0;
1758
1759 /*
1760 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1761 * (bit 15 before shifting it to 31) to clear when using interrupt
1762 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1763 * so we use them to decide on the real state of the Rx bit.
1764 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1765 */
1766 if (val & 0xC0000)
1767 val |= 0x8000;
1768
1769 inta = (0xff & val) | ((0xff00 & val) << 16);
1770 return inta;
1771 }
1772
1773 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1774 {
1775 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1776 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1777 bool hw_rfkill, prev, report;
1778
1779 mutex_lock(&trans_pcie->mutex);
1780 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1781 hw_rfkill = iwl_is_rfkill_set(trans);
1782 if (hw_rfkill) {
1783 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1784 set_bit(STATUS_RFKILL_HW, &trans->status);
1785 }
1786 if (trans_pcie->opmode_down)
1787 report = hw_rfkill;
1788 else
1789 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1790
1791 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1792 hw_rfkill ? "disable radio" : "enable radio");
1793
1794 isr_stats->rfkill++;
1795
1796 if (prev != report)
1797 iwl_trans_pcie_rf_kill(trans, report);
1798 mutex_unlock(&trans_pcie->mutex);
1799
1800 if (hw_rfkill) {
1801 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1802 &trans->status))
1803 IWL_DEBUG_RF_KILL(trans,
1804 "Rfkill while SYNC HCMD in flight\n");
1805 wake_up(&trans_pcie->wait_command_queue);
1806 } else {
1807 clear_bit(STATUS_RFKILL_HW, &trans->status);
1808 if (trans_pcie->opmode_down)
1809 clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1810 }
1811 }
1812
1813 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1814 {
1815 struct iwl_trans *trans = dev_id;
1816 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1817 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1818 u32 inta = 0;
1819 u32 handled = 0;
1820
1821 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1822
1823 spin_lock(&trans_pcie->irq_lock);
1824
1825 /* dram interrupt table not set yet,
1826 * use legacy interrupt.
1827 */
1828 if (likely(trans_pcie->use_ict))
1829 inta = iwl_pcie_int_cause_ict(trans);
1830 else
1831 inta = iwl_pcie_int_cause_non_ict(trans);
1832
1833 if (iwl_have_debug_level(IWL_DL_ISR)) {
1834 IWL_DEBUG_ISR(trans,
1835 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1836 inta, trans_pcie->inta_mask,
1837 iwl_read32(trans, CSR_INT_MASK),
1838 iwl_read32(trans, CSR_FH_INT_STATUS));
1839 if (inta & (~trans_pcie->inta_mask))
1840 IWL_DEBUG_ISR(trans,
1841 "We got a masked interrupt (0x%08x)\n",
1842 inta & (~trans_pcie->inta_mask));
1843 }
1844
1845 inta &= trans_pcie->inta_mask;
1846
1847 /*
1848 * Ignore interrupt if there's nothing in NIC to service.
1849 * This may be due to IRQ shared with another device,
1850 * or due to sporadic interrupts thrown from our NIC.
1851 */
1852 if (unlikely(!inta)) {
1853 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1854 /*
1855 * Re-enable interrupts here since we don't
1856 * have anything to service
1857 */
1858 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1859 _iwl_enable_interrupts(trans);
1860 spin_unlock(&trans_pcie->irq_lock);
1861 lock_map_release(&trans->sync_cmd_lockdep_map);
1862 return IRQ_NONE;
1863 }
1864
1865 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1866 /*
1867 * Hardware disappeared. It might have
1868 * already raised an interrupt.
1869 */
1870 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1871 spin_unlock(&trans_pcie->irq_lock);
1872 goto out;
1873 }
1874
1875 /* Ack/clear/reset pending uCode interrupts.
1876 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1877 */
1878 /* There is a hardware bug in the interrupt mask function that some
1879 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1880 * they are disabled in the CSR_INT_MASK register. Furthermore the
1881 * ICT interrupt handling mechanism has another bug that might cause
1882 * these unmasked interrupts fail to be detected. We workaround the
1883 * hardware bugs here by ACKing all the possible interrupts so that
1884 * interrupt coalescing can still be achieved.
1885 */
1886 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1887
1888 if (iwl_have_debug_level(IWL_DL_ISR))
1889 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1890 inta, iwl_read32(trans, CSR_INT_MASK));
1891
1892 spin_unlock(&trans_pcie->irq_lock);
1893
1894 /* Now service all interrupt bits discovered above. */
1895 if (inta & CSR_INT_BIT_HW_ERR) {
1896 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1897
1898 /* Tell the device to stop sending interrupts */
1899 iwl_disable_interrupts(trans);
1900
1901 isr_stats->hw++;
1902 iwl_pcie_irq_handle_error(trans);
1903
1904 handled |= CSR_INT_BIT_HW_ERR;
1905
1906 goto out;
1907 }
1908
1909 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1910 if (inta & CSR_INT_BIT_SCD) {
1911 IWL_DEBUG_ISR(trans,
1912 "Scheduler finished to transmit the frame/frames.\n");
1913 isr_stats->sch++;
1914 }
1915
1916 /* Alive notification via Rx interrupt will do the real work */
1917 if (inta & CSR_INT_BIT_ALIVE) {
1918 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1919 isr_stats->alive++;
1920 if (trans->trans_cfg->gen2) {
1921 /*
1922 * We can restock, since firmware configured
1923 * the RFH
1924 */
1925 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1926 }
1927
1928 handled |= CSR_INT_BIT_ALIVE;
1929 }
1930
1931 /* Safely ignore these bits for debug checks below */
1932 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1933
1934 /* HW RF KILL switch toggled */
1935 if (inta & CSR_INT_BIT_RF_KILL) {
1936 iwl_pcie_handle_rfkill_irq(trans);
1937 handled |= CSR_INT_BIT_RF_KILL;
1938 }
1939
1940 /* Chip got too hot and stopped itself */
1941 if (inta & CSR_INT_BIT_CT_KILL) {
1942 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1943 isr_stats->ctkill++;
1944 handled |= CSR_INT_BIT_CT_KILL;
1945 }
1946
1947 /* Error detected by uCode */
1948 if (inta & CSR_INT_BIT_SW_ERR) {
1949 IWL_ERR(trans, "Microcode SW error detected. "
1950 " Restarting 0x%X.\n", inta);
1951 isr_stats->sw++;
1952 iwl_pcie_irq_handle_error(trans);
1953 handled |= CSR_INT_BIT_SW_ERR;
1954 }
1955
1956 /* uCode wakes up after power-down sleep */
1957 if (inta & CSR_INT_BIT_WAKEUP) {
1958 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1959 iwl_pcie_rxq_check_wrptr(trans);
1960 iwl_pcie_txq_check_wrptrs(trans);
1961
1962 isr_stats->wakeup++;
1963
1964 handled |= CSR_INT_BIT_WAKEUP;
1965 }
1966
1967 /* All uCode command responses, including Tx command responses,
1968 * Rx "responses" (frame-received notification), and other
1969 * notifications from uCode come through here*/
1970 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1971 CSR_INT_BIT_RX_PERIODIC)) {
1972 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1973 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1974 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1975 iwl_write32(trans, CSR_FH_INT_STATUS,
1976 CSR_FH_INT_RX_MASK);
1977 }
1978 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1979 handled |= CSR_INT_BIT_RX_PERIODIC;
1980 iwl_write32(trans,
1981 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1982 }
1983 /* Sending RX interrupt require many steps to be done in the
1984 * the device:
1985 * 1- write interrupt to current index in ICT table.
1986 * 2- dma RX frame.
1987 * 3- update RX shared data to indicate last write index.
1988 * 4- send interrupt.
1989 * This could lead to RX race, driver could receive RX interrupt
1990 * but the shared data changes does not reflect this;
1991 * periodic interrupt will detect any dangling Rx activity.
1992 */
1993
1994 /* Disable periodic interrupt; we use it as just a one-shot. */
1995 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1996 CSR_INT_PERIODIC_DIS);
1997
1998 /*
1999 * Enable periodic interrupt in 8 msec only if we received
2000 * real RX interrupt (instead of just periodic int), to catch
2001 * any dangling Rx interrupt. If it was just the periodic
2002 * interrupt, there was no dangling Rx activity, and no need
2003 * to extend the periodic interrupt; one-shot is enough.
2004 */
2005 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2006 iwl_write8(trans, CSR_INT_PERIODIC_REG,
2007 CSR_INT_PERIODIC_ENA);
2008
2009 isr_stats->rx++;
2010
2011 local_bh_disable();
2012 iwl_pcie_rx_handle(trans, 0);
2013 local_bh_enable();
2014 }
2015
2016 /* This "Tx" DMA channel is used only for loading uCode */
2017 if (inta & CSR_INT_BIT_FH_TX) {
2018 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2019 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2020 isr_stats->tx++;
2021 handled |= CSR_INT_BIT_FH_TX;
2022 /* Wake up uCode load routine, now that load is complete */
2023 trans_pcie->ucode_write_complete = true;
2024 wake_up(&trans_pcie->ucode_write_waitq);
2025 }
2026
2027 if (inta & ~handled) {
2028 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2029 isr_stats->unhandled++;
2030 }
2031
2032 if (inta & ~(trans_pcie->inta_mask)) {
2033 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2034 inta & ~trans_pcie->inta_mask);
2035 }
2036
2037 spin_lock(&trans_pcie->irq_lock);
2038 /* only Re-enable all interrupt if disabled by irq */
2039 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2040 _iwl_enable_interrupts(trans);
2041 /* we are loading the firmware, enable FH_TX interrupt only */
2042 else if (handled & CSR_INT_BIT_FH_TX)
2043 iwl_enable_fw_load_int(trans);
2044 /* Re-enable RF_KILL if it occurred */
2045 else if (handled & CSR_INT_BIT_RF_KILL)
2046 iwl_enable_rfkill_int(trans);
2047 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2048 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2049 iwl_enable_fw_load_int_ctx_info(trans);
2050 spin_unlock(&trans_pcie->irq_lock);
2051
2052 out:
2053 lock_map_release(&trans->sync_cmd_lockdep_map);
2054 return IRQ_HANDLED;
2055 }
2056
2057 /******************************************************************************
2058 *
2059 * ICT functions
2060 *
2061 ******************************************************************************/
2062
2063 /* Free dram table */
2064 void iwl_pcie_free_ict(struct iwl_trans *trans)
2065 {
2066 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2067
2068 if (trans_pcie->ict_tbl) {
2069 dma_free_coherent(trans->dev, ICT_SIZE,
2070 trans_pcie->ict_tbl,
2071 trans_pcie->ict_tbl_dma);
2072 trans_pcie->ict_tbl = NULL;
2073 trans_pcie->ict_tbl_dma = 0;
2074 }
2075 }
2076
2077 /*
2078 * allocate dram shared table, it is an aligned memory
2079 * block of ICT_SIZE.
2080 * also reset all data related to ICT table interrupt.
2081 */
2082 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2083 {
2084 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2085
2086 trans_pcie->ict_tbl =
2087 dma_alloc_coherent(trans->dev, ICT_SIZE,
2088 &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2089 if (!trans_pcie->ict_tbl)
2090 return -ENOMEM;
2091
2092 /* just an API sanity check ... it is guaranteed to be aligned */
2093 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2094 iwl_pcie_free_ict(trans);
2095 return -EINVAL;
2096 }
2097
2098 return 0;
2099 }
2100
2101 /* Device is going up inform it about using ICT interrupt table,
2102 * also we need to tell the driver to start using ICT interrupt.
2103 */
2104 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2105 {
2106 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2107 u32 val;
2108
2109 if (!trans_pcie->ict_tbl)
2110 return;
2111
2112 spin_lock(&trans_pcie->irq_lock);
2113 _iwl_disable_interrupts(trans);
2114
2115 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2116
2117 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2118
2119 val |= CSR_DRAM_INT_TBL_ENABLE |
2120 CSR_DRAM_INIT_TBL_WRAP_CHECK |
2121 CSR_DRAM_INIT_TBL_WRITE_POINTER;
2122
2123 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2124
2125 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2126 trans_pcie->use_ict = true;
2127 trans_pcie->ict_index = 0;
2128 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2129 _iwl_enable_interrupts(trans);
2130 spin_unlock(&trans_pcie->irq_lock);
2131 }
2132
2133 /* Device is going down disable ict interrupt usage */
2134 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2135 {
2136 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2137
2138 spin_lock(&trans_pcie->irq_lock);
2139 trans_pcie->use_ict = false;
2140 spin_unlock(&trans_pcie->irq_lock);
2141 }
2142
2143 irqreturn_t iwl_pcie_isr(int irq, void *data)
2144 {
2145 struct iwl_trans *trans = data;
2146
2147 if (!trans)
2148 return IRQ_NONE;
2149
2150 /* Disable (but don't clear!) interrupts here to avoid
2151 * back-to-back ISRs and sporadic interrupts from our NIC.
2152 * If we have something to service, the tasklet will re-enable ints.
2153 * If we *don't* have something, we'll re-enable before leaving here.
2154 */
2155 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2156
2157 return IRQ_WAKE_THREAD;
2158 }
2159
2160 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2161 {
2162 return IRQ_WAKE_THREAD;
2163 }
2164
2165 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2166 {
2167 struct msix_entry *entry = dev_id;
2168 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2169 struct iwl_trans *trans = trans_pcie->trans;
2170 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2171 u32 inta_fh, inta_hw;
2172
2173 lock_map_acquire(&trans->sync_cmd_lockdep_map);
2174
2175 spin_lock(&trans_pcie->irq_lock);
2176 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2177 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2178 /*
2179 * Clear causes registers to avoid being handling the same cause.
2180 */
2181 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2182 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2183 spin_unlock(&trans_pcie->irq_lock);
2184
2185 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2186
2187 if (unlikely(!(inta_fh | inta_hw))) {
2188 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2189 lock_map_release(&trans->sync_cmd_lockdep_map);
2190 return IRQ_NONE;
2191 }
2192
2193 if (iwl_have_debug_level(IWL_DL_ISR)) {
2194 IWL_DEBUG_ISR(trans,
2195 "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2196 inta_fh, trans_pcie->fh_mask,
2197 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2198 if (inta_fh & ~trans_pcie->fh_mask)
2199 IWL_DEBUG_ISR(trans,
2200 "We got a masked interrupt (0x%08x)\n",
2201 inta_fh & ~trans_pcie->fh_mask);
2202 }
2203
2204 inta_fh &= trans_pcie->fh_mask;
2205
2206 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2207 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2208 local_bh_disable();
2209 iwl_pcie_rx_handle(trans, 0);
2210 local_bh_enable();
2211 }
2212
2213 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2214 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2215 local_bh_disable();
2216 iwl_pcie_rx_handle(trans, 1);
2217 local_bh_enable();
2218 }
2219
2220 /* This "Tx" DMA channel is used only for loading uCode */
2221 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2222 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2223 isr_stats->tx++;
2224 /*
2225 * Wake up uCode load routine,
2226 * now that load is complete
2227 */
2228 trans_pcie->ucode_write_complete = true;
2229 wake_up(&trans_pcie->ucode_write_waitq);
2230 }
2231
2232 /* Error detected by uCode */
2233 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2234 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2235 IWL_ERR(trans,
2236 "Microcode SW error detected. Restarting 0x%X.\n",
2237 inta_fh);
2238 isr_stats->sw++;
2239 iwl_pcie_irq_handle_error(trans);
2240 }
2241
2242 /* After checking FH register check HW register */
2243 if (iwl_have_debug_level(IWL_DL_ISR)) {
2244 IWL_DEBUG_ISR(trans,
2245 "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2246 inta_hw, trans_pcie->hw_mask,
2247 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2248 if (inta_hw & ~trans_pcie->hw_mask)
2249 IWL_DEBUG_ISR(trans,
2250 "We got a masked interrupt 0x%08x\n",
2251 inta_hw & ~trans_pcie->hw_mask);
2252 }
2253
2254 inta_hw &= trans_pcie->hw_mask;
2255
2256 /* Alive notification via Rx interrupt will do the real work */
2257 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2258 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2259 isr_stats->alive++;
2260 if (trans->trans_cfg->gen2) {
2261 /* We can restock, since firmware configured the RFH */
2262 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2263 }
2264 }
2265
2266 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2267 u32 sleep_notif =
2268 le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2269 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2270 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2271 IWL_DEBUG_ISR(trans,
2272 "Sx interrupt: sleep notification = 0x%x\n",
2273 sleep_notif);
2274 trans_pcie->sx_complete = true;
2275 wake_up(&trans_pcie->sx_waitq);
2276 } else {
2277 /* uCode wakes up after power-down sleep */
2278 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2279 iwl_pcie_rxq_check_wrptr(trans);
2280 iwl_pcie_txq_check_wrptrs(trans);
2281
2282 isr_stats->wakeup++;
2283 }
2284 }
2285
2286 /* Chip got too hot and stopped itself */
2287 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2288 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2289 isr_stats->ctkill++;
2290 }
2291
2292 /* HW RF KILL switch toggled */
2293 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2294 iwl_pcie_handle_rfkill_irq(trans);
2295
2296 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2297 IWL_ERR(trans,
2298 "Hardware error detected. Restarting.\n");
2299
2300 isr_stats->hw++;
2301 trans->dbg.hw_error = true;
2302 iwl_pcie_irq_handle_error(trans);
2303 }
2304
2305 iwl_pcie_clear_irq(trans, entry);
2306
2307 lock_map_release(&trans->sync_cmd_lockdep_map);
2308
2309 return IRQ_HANDLED;
2310 }