]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ipw2100.c
[PATCH] Unlinline a bunch of other functions
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "1.1.3"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2005 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214 if (ipw2100_debug_level & (level)) { \
215 printk(KERN_DEBUG "ipw2100: %c %s ", \
216 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
217 printk(message); \
218 } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226 "undefined",
227 "unused", /* HOST_ATTENTION */
228 "HOST_COMPLETE",
229 "unused", /* SLEEP */
230 "unused", /* HOST_POWER_DOWN */
231 "unused",
232 "SYSTEM_CONFIG",
233 "unused", /* SET_IMR */
234 "SSID",
235 "MANDATORY_BSSID",
236 "AUTHENTICATION_TYPE",
237 "ADAPTER_ADDRESS",
238 "PORT_TYPE",
239 "INTERNATIONAL_MODE",
240 "CHANNEL",
241 "RTS_THRESHOLD",
242 "FRAG_THRESHOLD",
243 "POWER_MODE",
244 "TX_RATES",
245 "BASIC_TX_RATES",
246 "WEP_KEY_INFO",
247 "unused",
248 "unused",
249 "unused",
250 "unused",
251 "WEP_KEY_INDEX",
252 "WEP_FLAGS",
253 "ADD_MULTICAST",
254 "CLEAR_ALL_MULTICAST",
255 "BEACON_INTERVAL",
256 "ATIM_WINDOW",
257 "CLEAR_STATISTICS",
258 "undefined",
259 "undefined",
260 "undefined",
261 "undefined",
262 "TX_POWER_INDEX",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "BROADCAST_SCAN",
270 "CARD_DISABLE",
271 "PREFERRED_BSSID",
272 "SET_SCAN_OPTIONS",
273 "SCAN_DWELL_TIME",
274 "SWEEP_TABLE",
275 "AP_OR_STATION_TABLE",
276 "GROUP_ORDINALS",
277 "SHORT_RETRY_LIMIT",
278 "LONG_RETRY_LIMIT",
279 "unused", /* SAVE_CALIBRATION */
280 "unused", /* RESTORE_CALIBRATION */
281 "undefined",
282 "undefined",
283 "undefined",
284 "HOST_PRE_POWER_DOWN",
285 "unused", /* HOST_INTERRUPT_COALESCING */
286 "undefined",
287 "CARD_DISABLE_PHY_OFF",
288 "MSDU_TX_RATES" "undefined",
289 "undefined",
290 "SET_STATION_STAT_BITS",
291 "CLEAR_STATIONS_STAT_BITS",
292 "LEAP_ROGUE_MODE",
293 "SET_SECURITY_INFORMATION",
294 "DISASSOCIATION_BSSID",
295 "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309 struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319 struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326 *val = readl((void __iomem *)(dev->base_addr + reg));
327 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332 writel(val, (void __iomem *)(dev->base_addr + reg));
333 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337 u16 * val)
338 {
339 *val = readw((void __iomem *)(dev->base_addr + reg));
340 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345 *val = readb((void __iomem *)(dev->base_addr + reg));
346 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351 writew(val, (void __iomem *)(dev->base_addr + reg));
352 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357 writeb(val, (void __iomem *)(dev->base_addr + reg));
358 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364 addr & IPW_REG_INDIRECT_ADDR_MASK);
365 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371 addr & IPW_REG_INDIRECT_ADDR_MASK);
372 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378 addr & IPW_REG_INDIRECT_ADDR_MASK);
379 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385 addr & IPW_REG_INDIRECT_ADDR_MASK);
386 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392 addr & IPW_REG_INDIRECT_ADDR_MASK);
393 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399 addr & IPW_REG_INDIRECT_ADDR_MASK);
400 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406 addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415 const u8 * buf)
416 {
417 u32 aligned_addr;
418 u32 aligned_len;
419 u32 dif_len;
420 u32 i;
421
422 /* read first nibble byte by byte */
423 aligned_addr = addr & (~0x3);
424 dif_len = addr - aligned_addr;
425 if (dif_len) {
426 /* Start reading at aligned_addr + dif_len */
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 aligned_addr);
429 for (i = dif_len; i < 4; i++, buf++)
430 write_register_byte(dev,
431 IPW_REG_INDIRECT_ACCESS_DATA + i,
432 *buf);
433
434 len -= dif_len;
435 aligned_addr += 4;
436 }
437
438 /* read DWs through autoincrement registers */
439 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440 aligned_len = len & (~0x3);
441 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444 /* copy the last nibble */
445 dif_len = len - aligned_len;
446 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447 for (i = 0; i < dif_len; i++, buf++)
448 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449 *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453 u8 * buf)
454 {
455 u32 aligned_addr;
456 u32 aligned_len;
457 u32 dif_len;
458 u32 i;
459
460 /* read first nibble byte by byte */
461 aligned_addr = addr & (~0x3);
462 dif_len = addr - aligned_addr;
463 if (dif_len) {
464 /* Start reading at aligned_addr + dif_len */
465 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 aligned_addr);
467 for (i = dif_len; i < 4; i++, buf++)
468 read_register_byte(dev,
469 IPW_REG_INDIRECT_ACCESS_DATA + i,
470 buf);
471
472 len -= dif_len;
473 aligned_addr += 4;
474 }
475
476 /* read DWs through autoincrement registers */
477 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478 aligned_len = len & (~0x3);
479 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482 /* copy the last nibble */
483 dif_len = len - aligned_len;
484 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485 for (i = 0; i < dif_len; i++, buf++)
486 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491 return (dev->base_addr &&
492 (readl
493 ((void __iomem *)(dev->base_addr +
494 IPW_REG_DOA_DEBUG_AREA_START))
495 == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499 void *val, u32 * len)
500 {
501 struct ipw2100_ordinals *ordinals = &priv->ordinals;
502 u32 addr;
503 u32 field_info;
504 u16 field_len;
505 u16 field_count;
506 u32 total_length;
507
508 if (ordinals->table1_addr == 0) {
509 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510 "before they have been loaded.\n");
511 return -EINVAL;
512 }
513
514 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518 printk(KERN_WARNING DRV_NAME
519 ": ordinal buffer length too small, need %zd\n",
520 IPW_ORD_TAB_1_ENTRY_SIZE);
521
522 return -EINVAL;
523 }
524
525 read_nic_dword(priv->net_dev,
526 ordinals->table1_addr + (ord << 2), &addr);
527 read_nic_dword(priv->net_dev, addr, val);
528
529 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531 return 0;
532 }
533
534 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536 ord -= IPW_START_ORD_TAB_2;
537
538 /* get the address of statistic */
539 read_nic_dword(priv->net_dev,
540 ordinals->table2_addr + (ord << 3), &addr);
541
542 /* get the second DW of statistics ;
543 * two 16-bit words - first is length, second is count */
544 read_nic_dword(priv->net_dev,
545 ordinals->table2_addr + (ord << 3) + sizeof(u32),
546 &field_info);
547
548 /* get each entry length */
549 field_len = *((u16 *) & field_info);
550
551 /* get number of entries */
552 field_count = *(((u16 *) & field_info) + 1);
553
554 /* abort if no enought memory */
555 total_length = field_len * field_count;
556 if (total_length > *len) {
557 *len = total_length;
558 return -EINVAL;
559 }
560
561 *len = total_length;
562 if (!total_length)
563 return 0;
564
565 /* read the ordinal data from the SRAM */
566 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568 return 0;
569 }
570
571 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572 "in table 2\n", ord);
573
574 return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578 u32 * len)
579 {
580 struct ipw2100_ordinals *ordinals = &priv->ordinals;
581 u32 addr;
582
583 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586 IPW_DEBUG_INFO("wrong size\n");
587 return -EINVAL;
588 }
589
590 read_nic_dword(priv->net_dev,
591 ordinals->table1_addr + (ord << 2), &addr);
592
593 write_nic_dword(priv->net_dev, addr, *val);
594
595 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597 return 0;
598 }
599
600 IPW_DEBUG_INFO("wrong table\n");
601 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602 return -EINVAL;
603
604 return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608 const u8 * data, u32 len, u32 ofs)
609 {
610 int out, i, j, l;
611 char c;
612
613 out = snprintf(buf, count, "%08X", ofs);
614
615 for (l = 0, i = 0; i < 2; i++) {
616 out += snprintf(buf + out, count - out, " ");
617 for (j = 0; j < 8 && l < len; j++, l++)
618 out += snprintf(buf + out, count - out, "%02X ",
619 data[(i * 8 + j)]);
620 for (; j < 8; j++)
621 out += snprintf(buf + out, count - out, " ");
622 }
623
624 out += snprintf(buf + out, count - out, " ");
625 for (l = 0, i = 0; i < 2; i++) {
626 out += snprintf(buf + out, count - out, " ");
627 for (j = 0; j < 8 && l < len; j++, l++) {
628 c = data[(i * 8 + j)];
629 if (!isascii(c) || !isprint(c))
630 c = '.';
631
632 out += snprintf(buf + out, count - out, "%c", c);
633 }
634
635 for (; j < 8; j++)
636 out += snprintf(buf + out, count - out, " ");
637 }
638
639 return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644 char line[81];
645 u32 ofs = 0;
646 if (!(ipw2100_debug_level & level))
647 return;
648
649 while (len) {
650 printk(KERN_DEBUG "%s\n",
651 snprint_line(line, sizeof(line), &data[ofs],
652 min(len, 16U), ofs));
653 ofs += 16;
654 len -= min(len, 16U);
655 }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662 unsigned long now = get_seconds();
663
664 /* If we haven't received a reset request within the backoff period,
665 * then we can reset the backoff interval so this reset occurs
666 * immediately */
667 if (priv->reset_backoff &&
668 (now - priv->last_reset > priv->reset_backoff))
669 priv->reset_backoff = 0;
670
671 priv->last_reset = get_seconds();
672
673 if (!(priv->status & STATUS_RESET_PENDING)) {
674 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675 priv->net_dev->name, priv->reset_backoff);
676 netif_carrier_off(priv->net_dev);
677 netif_stop_queue(priv->net_dev);
678 priv->status |= STATUS_RESET_PENDING;
679 if (priv->reset_backoff)
680 queue_delayed_work(priv->workqueue, &priv->reset_work,
681 priv->reset_backoff * HZ);
682 else
683 queue_work(priv->workqueue, &priv->reset_work);
684
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
687
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
698 {
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
703
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
709
710 spin_lock_irqsave(&priv->low_lock, flags);
711
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
717 }
718
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
731 }
732
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
736 }
737
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
740
741 element = priv->msg_free_list.next;
742
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
745
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
759
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
762
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
765
766 spin_unlock_irqrestore(&priv->low_lock, flags);
767
768 /*
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
772 */
773
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
779
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
787 }
788
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
793 }
794
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
798 *
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802 return 0;
803
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
806
807 return err;
808 }
809
810 /*
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
813 */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816 u32 data1, data2;
817 u32 address;
818
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
821
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
828 }
829
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
843 }
844
845 return -EIO;
846 }
847
848 /*
849 *
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
852 *
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
855 *
856 */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
864
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
872 }
873
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
884
885 return 0;
886 }
887
888 udelay(50);
889 }
890
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
894 }
895
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903 int i;
904 u32 r;
905
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
918 }
919
920 if (i == 1000)
921 return -EIO; // TODO: better error value
922
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
936 }
937
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
940
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946 return 0;
947 }
948
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962 u32 address;
963 int err;
964
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
975 }
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
984 }
985 }
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
993 }
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
996
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1003 }
1004
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1025 }
1026
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1038 }
1039
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1046 }
1047 #ifndef CONFIG_PM
1048 /*
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1053 */
1054
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1075
1076 return 0;
1077
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103 IPW_DEBUG_INFO("enter\n");
1104
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1107
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1110
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114 ord->table2_size &= 0x0000FFFF;
1115
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123 u32 reg = 0;
1124 /*
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1127 */
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1141
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1145 }
1146
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151 }
1152
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158 return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163 u32 addr, len;
1164 u32 val;
1165
1166 /*
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 */
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1175 }
1176
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179 /*
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186 /*
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 *
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1192 */
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1208 */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211 int i;
1212 u32 inta, inta_mask, gpio;
1213
1214 IPW_DEBUG_INFO("enter\n");
1215
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1218
1219 /*
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1223 */
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1229 }
1230
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1234
1235 ipw2100_hw_set_gpio(priv);
1236
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1239
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1249
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1258 }
1259
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1269 }
1270 } while (i--);
1271
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1283
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1289 }
1290
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1300
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304 IPW_DEBUG_INFO("exit\n");
1305
1306 return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311 if (!priv->fatal_error)
1312 return;
1313
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322 u32 reg;
1323 int i;
1324
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327 ipw2100_hw_set_gpio(priv);
1328
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1343
1344 priv->status &= ~STATUS_RESET_PENDING;
1345
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1350 }
1351
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1357
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 *
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 *
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1372 */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1382 };
1383 int err, i;
1384 u32 val1, val2;
1385
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1392
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1400
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402 }
1403
1404 return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1413 };
1414 int err = 0;
1415
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1420
1421 down(&priv->adapter_sem);
1422
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1426 }
1427
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1432 }
1433
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1439 }
1440
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444 }
1445
1446 fail_up:
1447 up(&priv->adapter_sem);
1448 return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1459 };
1460 int err, i;
1461 u32 reg;
1462
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1465
1466 priv->status |= STATUS_STOPPING;
1467
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1475
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1480
1481 /*
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1485 *
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standy if it is already in that state.
1489 *
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1493 *
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1496 *
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1500 */
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510 }
1511
1512 priv->status &= ~STATUS_ENABLED;
1513
1514 /*
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1517 */
1518 ipw2100_hw_set_gpio(priv);
1519
1520 /*
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1525 */
1526
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1535
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1541 }
1542
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1547
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554 return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1563 };
1564 int err = 0;
1565
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1570
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1577 }
1578
1579 down(&priv->adapter_sem);
1580
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1586 }
1587
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1593 }
1594
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597 fail_up:
1598 up(&priv->adapter_sem);
1599 return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1608 };
1609 int err;
1610
1611 IPW_DEBUG_INFO("enter\n");
1612
1613 IPW_DEBUG_SCAN("setting scan options\n");
1614
1615 cmd.host_command_parameters[0] = 0;
1616
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626 err = ipw2100_hw_send_command(priv, &cmd);
1627
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1630
1631 return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1640 };
1641 int err;
1642
1643 IPW_DEBUG_HC("START_SCAN\n");
1644
1645 cmd.host_command_parameters[0] = 0;
1646
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1650
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1654 }
1655
1656 IPW_DEBUG_INFO("enter\n");
1657
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1659 *
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1662 */
1663 IPW_DEBUG_SCAN("starting scan\n");
1664
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1669
1670 IPW_DEBUG_INFO("exit\n");
1671
1672 return err;
1673 }
1674
1675 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1676 {
1677 unsigned long flags;
1678 int rc = 0;
1679 u32 lock;
1680 u32 ord_len = sizeof(lock);
1681
1682 /* Quite if manually disabled. */
1683 if (priv->status & STATUS_RF_KILL_SW) {
1684 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1685 "switch\n", priv->net_dev->name);
1686 return 0;
1687 }
1688
1689 /* If the interrupt is enabled, turn it off... */
1690 spin_lock_irqsave(&priv->low_lock, flags);
1691 ipw2100_disable_interrupts(priv);
1692
1693 /* Reset any fatal_error conditions */
1694 ipw2100_reset_fatalerror(priv);
1695 spin_unlock_irqrestore(&priv->low_lock, flags);
1696
1697 if (priv->status & STATUS_POWERED ||
1698 (priv->status & STATUS_RESET_PENDING)) {
1699 /* Power cycle the card ... */
1700 if (ipw2100_power_cycle_adapter(priv)) {
1701 printk(KERN_WARNING DRV_NAME
1702 ": %s: Could not cycle adapter.\n",
1703 priv->net_dev->name);
1704 rc = 1;
1705 goto exit;
1706 }
1707 } else
1708 priv->status |= STATUS_POWERED;
1709
1710 /* Load the firmware, start the clocks, etc. */
1711 if (ipw2100_start_adapter(priv)) {
1712 printk(KERN_ERR DRV_NAME
1713 ": %s: Failed to start the firmware.\n",
1714 priv->net_dev->name);
1715 rc = 1;
1716 goto exit;
1717 }
1718
1719 ipw2100_initialize_ordinals(priv);
1720
1721 /* Determine capabilities of this particular HW configuration */
1722 if (ipw2100_get_hw_features(priv)) {
1723 printk(KERN_ERR DRV_NAME
1724 ": %s: Failed to determine HW features.\n",
1725 priv->net_dev->name);
1726 rc = 1;
1727 goto exit;
1728 }
1729
1730 lock = LOCK_NONE;
1731 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1732 printk(KERN_ERR DRV_NAME
1733 ": %s: Failed to clear ordinal lock.\n",
1734 priv->net_dev->name);
1735 rc = 1;
1736 goto exit;
1737 }
1738
1739 priv->status &= ~STATUS_SCANNING;
1740
1741 if (rf_kill_active(priv)) {
1742 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1743 priv->net_dev->name);
1744
1745 if (priv->stop_rf_kill) {
1746 priv->stop_rf_kill = 0;
1747 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1748 }
1749
1750 deferred = 1;
1751 }
1752
1753 /* Turn on the interrupt so that commands can be processed */
1754 ipw2100_enable_interrupts(priv);
1755
1756 /* Send all of the commands that must be sent prior to
1757 * HOST_COMPLETE */
1758 if (ipw2100_adapter_setup(priv)) {
1759 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1760 priv->net_dev->name);
1761 rc = 1;
1762 goto exit;
1763 }
1764
1765 if (!deferred) {
1766 /* Enable the adapter - sends HOST_COMPLETE */
1767 if (ipw2100_enable_adapter(priv)) {
1768 printk(KERN_ERR DRV_NAME ": "
1769 "%s: failed in call to enable adapter.\n",
1770 priv->net_dev->name);
1771 ipw2100_hw_stop_adapter(priv);
1772 rc = 1;
1773 goto exit;
1774 }
1775
1776 /* Start a scan . . . */
1777 ipw2100_set_scan_options(priv);
1778 ipw2100_start_scan(priv);
1779 }
1780
1781 exit:
1782 return rc;
1783 }
1784
1785 /* Called by register_netdev() */
1786 static int ipw2100_net_init(struct net_device *dev)
1787 {
1788 struct ipw2100_priv *priv = ieee80211_priv(dev);
1789 return ipw2100_up(priv, 1);
1790 }
1791
1792 static void ipw2100_down(struct ipw2100_priv *priv)
1793 {
1794 unsigned long flags;
1795 union iwreq_data wrqu = {
1796 .ap_addr = {
1797 .sa_family = ARPHRD_ETHER}
1798 };
1799 int associated = priv->status & STATUS_ASSOCIATED;
1800
1801 /* Kill the RF switch timer */
1802 if (!priv->stop_rf_kill) {
1803 priv->stop_rf_kill = 1;
1804 cancel_delayed_work(&priv->rf_kill);
1805 }
1806
1807 /* Kill the firmare hang check timer */
1808 if (!priv->stop_hang_check) {
1809 priv->stop_hang_check = 1;
1810 cancel_delayed_work(&priv->hang_check);
1811 }
1812
1813 /* Kill any pending resets */
1814 if (priv->status & STATUS_RESET_PENDING)
1815 cancel_delayed_work(&priv->reset_work);
1816
1817 /* Make sure the interrupt is on so that FW commands will be
1818 * processed correctly */
1819 spin_lock_irqsave(&priv->low_lock, flags);
1820 ipw2100_enable_interrupts(priv);
1821 spin_unlock_irqrestore(&priv->low_lock, flags);
1822
1823 if (ipw2100_hw_stop_adapter(priv))
1824 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1825 priv->net_dev->name);
1826
1827 /* Do not disable the interrupt until _after_ we disable
1828 * the adaptor. Otherwise the CARD_DISABLE command will never
1829 * be ack'd by the firmware */
1830 spin_lock_irqsave(&priv->low_lock, flags);
1831 ipw2100_disable_interrupts(priv);
1832 spin_unlock_irqrestore(&priv->low_lock, flags);
1833
1834 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1835 if (priv->config & CFG_C3_DISABLED) {
1836 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1837 acpi_set_cstate_limit(priv->cstate_limit);
1838 priv->config &= ~CFG_C3_DISABLED;
1839 }
1840 #endif
1841
1842 /* We have to signal any supplicant if we are disassociating */
1843 if (associated)
1844 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1845
1846 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1847 netif_carrier_off(priv->net_dev);
1848 netif_stop_queue(priv->net_dev);
1849 }
1850
1851 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1852 {
1853 unsigned long flags;
1854 union iwreq_data wrqu = {
1855 .ap_addr = {
1856 .sa_family = ARPHRD_ETHER}
1857 };
1858 int associated = priv->status & STATUS_ASSOCIATED;
1859
1860 spin_lock_irqsave(&priv->low_lock, flags);
1861 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1862 priv->resets++;
1863 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1864 priv->status |= STATUS_SECURITY_UPDATED;
1865
1866 /* Force a power cycle even if interface hasn't been opened
1867 * yet */
1868 cancel_delayed_work(&priv->reset_work);
1869 priv->status |= STATUS_RESET_PENDING;
1870 spin_unlock_irqrestore(&priv->low_lock, flags);
1871
1872 down(&priv->action_sem);
1873 /* stop timed checks so that they don't interfere with reset */
1874 priv->stop_hang_check = 1;
1875 cancel_delayed_work(&priv->hang_check);
1876
1877 /* We have to signal any supplicant if we are disassociating */
1878 if (associated)
1879 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1880
1881 ipw2100_up(priv, 0);
1882 up(&priv->action_sem);
1883
1884 }
1885
1886 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1887 {
1888
1889 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1890 int ret, len, essid_len;
1891 char essid[IW_ESSID_MAX_SIZE];
1892 u32 txrate;
1893 u32 chan;
1894 char *txratename;
1895 u8 bssid[ETH_ALEN];
1896
1897 /*
1898 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1899 * an actual MAC of the AP. Seems like FW sets this
1900 * address too late. Read it later and expose through
1901 * /proc or schedule a later task to query and update
1902 */
1903
1904 essid_len = IW_ESSID_MAX_SIZE;
1905 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1906 essid, &essid_len);
1907 if (ret) {
1908 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1909 __LINE__);
1910 return;
1911 }
1912
1913 len = sizeof(u32);
1914 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1915 if (ret) {
1916 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1917 __LINE__);
1918 return;
1919 }
1920
1921 len = sizeof(u32);
1922 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1923 if (ret) {
1924 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1925 __LINE__);
1926 return;
1927 }
1928 len = ETH_ALEN;
1929 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1930 if (ret) {
1931 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1932 __LINE__);
1933 return;
1934 }
1935 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1936
1937 switch (txrate) {
1938 case TX_RATE_1_MBIT:
1939 txratename = "1Mbps";
1940 break;
1941 case TX_RATE_2_MBIT:
1942 txratename = "2Mbsp";
1943 break;
1944 case TX_RATE_5_5_MBIT:
1945 txratename = "5.5Mbps";
1946 break;
1947 case TX_RATE_11_MBIT:
1948 txratename = "11Mbps";
1949 break;
1950 default:
1951 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1952 txratename = "unknown rate";
1953 break;
1954 }
1955
1956 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1957 MAC_FMT ")\n",
1958 priv->net_dev->name, escape_essid(essid, essid_len),
1959 txratename, chan, MAC_ARG(bssid));
1960
1961 /* now we copy read ssid into dev */
1962 if (!(priv->config & CFG_STATIC_ESSID)) {
1963 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1964 memcpy(priv->essid, essid, priv->essid_len);
1965 }
1966 priv->channel = chan;
1967 memcpy(priv->bssid, bssid, ETH_ALEN);
1968
1969 priv->status |= STATUS_ASSOCIATING;
1970 priv->connect_start = get_seconds();
1971
1972 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1973 }
1974
1975 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1976 int length, int batch_mode)
1977 {
1978 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1979 struct host_command cmd = {
1980 .host_command = SSID,
1981 .host_command_sequence = 0,
1982 .host_command_length = ssid_len
1983 };
1984 int err;
1985
1986 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
1987
1988 if (ssid_len)
1989 memcpy(cmd.host_command_parameters, essid, ssid_len);
1990
1991 if (!batch_mode) {
1992 err = ipw2100_disable_adapter(priv);
1993 if (err)
1994 return err;
1995 }
1996
1997 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
1998 * disable auto association -- so we cheat by setting a bogus SSID */
1999 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2000 int i;
2001 u8 *bogus = (u8 *) cmd.host_command_parameters;
2002 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2003 bogus[i] = 0x18 + i;
2004 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2005 }
2006
2007 /* NOTE: We always send the SSID command even if the provided ESSID is
2008 * the same as what we currently think is set. */
2009
2010 err = ipw2100_hw_send_command(priv, &cmd);
2011 if (!err) {
2012 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2013 memcpy(priv->essid, essid, ssid_len);
2014 priv->essid_len = ssid_len;
2015 }
2016
2017 if (!batch_mode) {
2018 if (ipw2100_enable_adapter(priv))
2019 err = -EIO;
2020 }
2021
2022 return err;
2023 }
2024
2025 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2026 {
2027 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2028 "disassociated: '%s' " MAC_FMT " \n",
2029 escape_essid(priv->essid, priv->essid_len),
2030 MAC_ARG(priv->bssid));
2031
2032 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2033
2034 if (priv->status & STATUS_STOPPING) {
2035 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2036 return;
2037 }
2038
2039 memset(priv->bssid, 0, ETH_ALEN);
2040 memset(priv->ieee->bssid, 0, ETH_ALEN);
2041
2042 netif_carrier_off(priv->net_dev);
2043 netif_stop_queue(priv->net_dev);
2044
2045 if (!(priv->status & STATUS_RUNNING))
2046 return;
2047
2048 if (priv->status & STATUS_SECURITY_UPDATED)
2049 queue_work(priv->workqueue, &priv->security_work);
2050
2051 queue_work(priv->workqueue, &priv->wx_event_work);
2052 }
2053
2054 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2055 {
2056 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2057 priv->net_dev->name);
2058
2059 /* RF_KILL is now enabled (else we wouldn't be here) */
2060 priv->status |= STATUS_RF_KILL_HW;
2061
2062 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2063 if (priv->config & CFG_C3_DISABLED) {
2064 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2065 acpi_set_cstate_limit(priv->cstate_limit);
2066 priv->config &= ~CFG_C3_DISABLED;
2067 }
2068 #endif
2069
2070 /* Make sure the RF Kill check timer is running */
2071 priv->stop_rf_kill = 0;
2072 cancel_delayed_work(&priv->rf_kill);
2073 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2074 }
2075
2076 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2077 {
2078 IPW_DEBUG_SCAN("scan complete\n");
2079 /* Age the scan results... */
2080 priv->ieee->scans++;
2081 priv->status &= ~STATUS_SCANNING;
2082 }
2083
2084 #ifdef CONFIG_IPW2100_DEBUG
2085 #define IPW2100_HANDLER(v, f) { v, f, # v }
2086 struct ipw2100_status_indicator {
2087 int status;
2088 void (*cb) (struct ipw2100_priv * priv, u32 status);
2089 char *name;
2090 };
2091 #else
2092 #define IPW2100_HANDLER(v, f) { v, f }
2093 struct ipw2100_status_indicator {
2094 int status;
2095 void (*cb) (struct ipw2100_priv * priv, u32 status);
2096 };
2097 #endif /* CONFIG_IPW2100_DEBUG */
2098
2099 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2100 {
2101 IPW_DEBUG_SCAN("Scanning...\n");
2102 priv->status |= STATUS_SCANNING;
2103 }
2104
2105 static const struct ipw2100_status_indicator status_handlers[] = {
2106 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2107 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2108 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2109 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2110 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2111 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2112 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2113 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2114 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2115 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2116 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2117 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2118 IPW2100_HANDLER(-1, NULL)
2119 };
2120
2121 static void isr_status_change(struct ipw2100_priv *priv, int status)
2122 {
2123 int i;
2124
2125 if (status == IPW_STATE_SCANNING &&
2126 priv->status & STATUS_ASSOCIATED &&
2127 !(priv->status & STATUS_SCANNING)) {
2128 IPW_DEBUG_INFO("Scan detected while associated, with "
2129 "no scan request. Restarting firmware.\n");
2130
2131 /* Wake up any sleeping jobs */
2132 schedule_reset(priv);
2133 }
2134
2135 for (i = 0; status_handlers[i].status != -1; i++) {
2136 if (status == status_handlers[i].status) {
2137 IPW_DEBUG_NOTIF("Status change: %s\n",
2138 status_handlers[i].name);
2139 if (status_handlers[i].cb)
2140 status_handlers[i].cb(priv, status);
2141 priv->wstats.status = status;
2142 return;
2143 }
2144 }
2145
2146 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2147 }
2148
2149 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2150 struct ipw2100_cmd_header *cmd)
2151 {
2152 #ifdef CONFIG_IPW2100_DEBUG
2153 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2154 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2155 command_types[cmd->host_command_reg],
2156 cmd->host_command_reg);
2157 }
2158 #endif
2159 if (cmd->host_command_reg == HOST_COMPLETE)
2160 priv->status |= STATUS_ENABLED;
2161
2162 if (cmd->host_command_reg == CARD_DISABLE)
2163 priv->status &= ~STATUS_ENABLED;
2164
2165 priv->status &= ~STATUS_CMD_ACTIVE;
2166
2167 wake_up_interruptible(&priv->wait_command_queue);
2168 }
2169
2170 #ifdef CONFIG_IPW2100_DEBUG
2171 static const char *frame_types[] = {
2172 "COMMAND_STATUS_VAL",
2173 "STATUS_CHANGE_VAL",
2174 "P80211_DATA_VAL",
2175 "P8023_DATA_VAL",
2176 "HOST_NOTIFICATION_VAL"
2177 };
2178 #endif
2179
2180 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2181 struct ipw2100_rx_packet *packet)
2182 {
2183 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2184 if (!packet->skb)
2185 return -ENOMEM;
2186
2187 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2188 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2189 sizeof(struct ipw2100_rx),
2190 PCI_DMA_FROMDEVICE);
2191 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2192 * dma_addr */
2193
2194 return 0;
2195 }
2196
2197 #define SEARCH_ERROR 0xffffffff
2198 #define SEARCH_FAIL 0xfffffffe
2199 #define SEARCH_SUCCESS 0xfffffff0
2200 #define SEARCH_DISCARD 0
2201 #define SEARCH_SNAPSHOT 1
2202
2203 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2204 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2205 {
2206 int i;
2207 if (priv->snapshot[0])
2208 return 1;
2209 for (i = 0; i < 0x30; i++) {
2210 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2211 if (!priv->snapshot[i]) {
2212 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2213 "buffer %d\n", priv->net_dev->name, i);
2214 while (i > 0)
2215 kfree(priv->snapshot[--i]);
2216 priv->snapshot[0] = NULL;
2217 return 0;
2218 }
2219 }
2220
2221 return 1;
2222 }
2223
2224 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2225 {
2226 int i;
2227 if (!priv->snapshot[0])
2228 return;
2229 for (i = 0; i < 0x30; i++)
2230 kfree(priv->snapshot[i]);
2231 priv->snapshot[0] = NULL;
2232 }
2233
2234 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2235 size_t len, int mode)
2236 {
2237 u32 i, j;
2238 u32 tmp;
2239 u8 *s, *d;
2240 u32 ret;
2241
2242 s = in_buf;
2243 if (mode == SEARCH_SNAPSHOT) {
2244 if (!ipw2100_snapshot_alloc(priv))
2245 mode = SEARCH_DISCARD;
2246 }
2247
2248 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2249 read_nic_dword(priv->net_dev, i, &tmp);
2250 if (mode == SEARCH_SNAPSHOT)
2251 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2252 if (ret == SEARCH_FAIL) {
2253 d = (u8 *) & tmp;
2254 for (j = 0; j < 4; j++) {
2255 if (*s != *d) {
2256 s = in_buf;
2257 continue;
2258 }
2259
2260 s++;
2261 d++;
2262
2263 if ((s - in_buf) == len)
2264 ret = (i + j) - len + 1;
2265 }
2266 } else if (mode == SEARCH_DISCARD)
2267 return ret;
2268 }
2269
2270 return ret;
2271 }
2272
2273 /*
2274 *
2275 * 0) Disconnect the SKB from the firmware (just unmap)
2276 * 1) Pack the ETH header into the SKB
2277 * 2) Pass the SKB to the network stack
2278 *
2279 * When packet is provided by the firmware, it contains the following:
2280 *
2281 * . ieee80211_hdr
2282 * . ieee80211_snap_hdr
2283 *
2284 * The size of the constructed ethernet
2285 *
2286 */
2287 #ifdef CONFIG_IPW2100_RX_DEBUG
2288 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2289 #endif
2290
2291 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2292 {
2293 #ifdef CONFIG_IPW2100_DEBUG_C3
2294 struct ipw2100_status *status = &priv->status_queue.drv[i];
2295 u32 match, reg;
2296 int j;
2297 #endif
2298 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2299 int limit;
2300 #endif
2301
2302 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2303 i * sizeof(struct ipw2100_status));
2304
2305 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2306 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2307 limit = acpi_get_cstate_limit();
2308 if (limit > 2) {
2309 priv->cstate_limit = limit;
2310 acpi_set_cstate_limit(2);
2311 priv->config |= CFG_C3_DISABLED;
2312 }
2313 #endif
2314
2315 #ifdef CONFIG_IPW2100_DEBUG_C3
2316 /* Halt the fimrware so we can get a good image */
2317 write_register(priv->net_dev, IPW_REG_RESET_REG,
2318 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2319 j = 5;
2320 do {
2321 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2322 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2323
2324 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2325 break;
2326 } while (j--);
2327
2328 match = ipw2100_match_buf(priv, (u8 *) status,
2329 sizeof(struct ipw2100_status),
2330 SEARCH_SNAPSHOT);
2331 if (match < SEARCH_SUCCESS)
2332 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2333 "offset 0x%06X, length %d:\n",
2334 priv->net_dev->name, match,
2335 sizeof(struct ipw2100_status));
2336 else
2337 IPW_DEBUG_INFO("%s: No DMA status match in "
2338 "Firmware.\n", priv->net_dev->name);
2339
2340 printk_buf((u8 *) priv->status_queue.drv,
2341 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2342 #endif
2343
2344 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2345 priv->ieee->stats.rx_errors++;
2346 schedule_reset(priv);
2347 }
2348
2349 static void isr_rx(struct ipw2100_priv *priv, int i,
2350 struct ieee80211_rx_stats *stats)
2351 {
2352 struct ipw2100_status *status = &priv->status_queue.drv[i];
2353 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2354
2355 IPW_DEBUG_RX("Handler...\n");
2356
2357 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2358 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2359 " Dropping.\n",
2360 priv->net_dev->name,
2361 status->frame_size, skb_tailroom(packet->skb));
2362 priv->ieee->stats.rx_errors++;
2363 return;
2364 }
2365
2366 if (unlikely(!netif_running(priv->net_dev))) {
2367 priv->ieee->stats.rx_errors++;
2368 priv->wstats.discard.misc++;
2369 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2370 return;
2371 }
2372 #ifdef CONFIG_IPW2100_MONITOR
2373 if (unlikely(priv->ieee->iw_mode == IW_MODE_MONITOR &&
2374 priv->config & CFG_CRC_CHECK &&
2375 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2376 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2377 priv->ieee->stats.rx_errors++;
2378 return;
2379 }
2380 #endif
2381
2382 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2383 !(priv->status & STATUS_ASSOCIATED))) {
2384 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2385 priv->wstats.discard.misc++;
2386 return;
2387 }
2388
2389 pci_unmap_single(priv->pci_dev,
2390 packet->dma_addr,
2391 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2392
2393 skb_put(packet->skb, status->frame_size);
2394
2395 #ifdef CONFIG_IPW2100_RX_DEBUG
2396 /* Make a copy of the frame so we can dump it to the logs if
2397 * ieee80211_rx fails */
2398 memcpy(packet_data, packet->skb->data,
2399 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2400 #endif
2401
2402 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2403 #ifdef CONFIG_IPW2100_RX_DEBUG
2404 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2405 priv->net_dev->name);
2406 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2407 #endif
2408 priv->ieee->stats.rx_errors++;
2409
2410 /* ieee80211_rx failed, so it didn't free the SKB */
2411 dev_kfree_skb_any(packet->skb);
2412 packet->skb = NULL;
2413 }
2414
2415 /* We need to allocate a new SKB and attach it to the RDB. */
2416 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2417 printk(KERN_WARNING DRV_NAME ": "
2418 "%s: Unable to allocate SKB onto RBD ring - disabling "
2419 "adapter.\n", priv->net_dev->name);
2420 /* TODO: schedule adapter shutdown */
2421 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2422 }
2423
2424 /* Update the RDB entry */
2425 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2426 }
2427
2428 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2429 {
2430 struct ipw2100_status *status = &priv->status_queue.drv[i];
2431 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2432 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2433
2434 switch (frame_type) {
2435 case COMMAND_STATUS_VAL:
2436 return (status->frame_size != sizeof(u->rx_data.command));
2437 case STATUS_CHANGE_VAL:
2438 return (status->frame_size != sizeof(u->rx_data.status));
2439 case HOST_NOTIFICATION_VAL:
2440 return (status->frame_size < sizeof(u->rx_data.notification));
2441 case P80211_DATA_VAL:
2442 case P8023_DATA_VAL:
2443 #ifdef CONFIG_IPW2100_MONITOR
2444 return 0;
2445 #else
2446 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2447 case IEEE80211_FTYPE_MGMT:
2448 case IEEE80211_FTYPE_CTL:
2449 return 0;
2450 case IEEE80211_FTYPE_DATA:
2451 return (status->frame_size >
2452 IPW_MAX_802_11_PAYLOAD_LENGTH);
2453 }
2454 #endif
2455 }
2456
2457 return 1;
2458 }
2459
2460 /*
2461 * ipw2100 interrupts are disabled at this point, and the ISR
2462 * is the only code that calls this method. So, we do not need
2463 * to play with any locks.
2464 *
2465 * RX Queue works as follows:
2466 *
2467 * Read index - firmware places packet in entry identified by the
2468 * Read index and advances Read index. In this manner,
2469 * Read index will always point to the next packet to
2470 * be filled--but not yet valid.
2471 *
2472 * Write index - driver fills this entry with an unused RBD entry.
2473 * This entry has not filled by the firmware yet.
2474 *
2475 * In between the W and R indexes are the RBDs that have been received
2476 * but not yet processed.
2477 *
2478 * The process of handling packets will start at WRITE + 1 and advance
2479 * until it reaches the READ index.
2480 *
2481 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2482 *
2483 */
2484 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2485 {
2486 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2487 struct ipw2100_status_queue *sq = &priv->status_queue;
2488 struct ipw2100_rx_packet *packet;
2489 u16 frame_type;
2490 u32 r, w, i, s;
2491 struct ipw2100_rx *u;
2492 struct ieee80211_rx_stats stats = {
2493 .mac_time = jiffies,
2494 };
2495
2496 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2497 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2498
2499 if (r >= rxq->entries) {
2500 IPW_DEBUG_RX("exit - bad read index\n");
2501 return;
2502 }
2503
2504 i = (rxq->next + 1) % rxq->entries;
2505 s = i;
2506 while (i != r) {
2507 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2508 r, rxq->next, i); */
2509
2510 packet = &priv->rx_buffers[i];
2511
2512 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2513 * the correct values */
2514 pci_dma_sync_single_for_cpu(priv->pci_dev,
2515 sq->nic +
2516 sizeof(struct ipw2100_status) * i,
2517 sizeof(struct ipw2100_status),
2518 PCI_DMA_FROMDEVICE);
2519
2520 /* Sync the DMA for the RX buffer so CPU is sure to get
2521 * the correct values */
2522 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2523 sizeof(struct ipw2100_rx),
2524 PCI_DMA_FROMDEVICE);
2525
2526 if (unlikely(ipw2100_corruption_check(priv, i))) {
2527 ipw2100_corruption_detected(priv, i);
2528 goto increment;
2529 }
2530
2531 u = packet->rxp;
2532 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2533 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2534 stats.len = sq->drv[i].frame_size;
2535
2536 stats.mask = 0;
2537 if (stats.rssi != 0)
2538 stats.mask |= IEEE80211_STATMASK_RSSI;
2539 stats.freq = IEEE80211_24GHZ_BAND;
2540
2541 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2542 priv->net_dev->name, frame_types[frame_type],
2543 stats.len);
2544
2545 switch (frame_type) {
2546 case COMMAND_STATUS_VAL:
2547 /* Reset Rx watchdog */
2548 isr_rx_complete_command(priv, &u->rx_data.command);
2549 break;
2550
2551 case STATUS_CHANGE_VAL:
2552 isr_status_change(priv, u->rx_data.status);
2553 break;
2554
2555 case P80211_DATA_VAL:
2556 case P8023_DATA_VAL:
2557 #ifdef CONFIG_IPW2100_MONITOR
2558 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2559 isr_rx(priv, i, &stats);
2560 break;
2561 }
2562 #endif
2563 if (stats.len < sizeof(u->rx_data.header))
2564 break;
2565 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2566 case IEEE80211_FTYPE_MGMT:
2567 ieee80211_rx_mgt(priv->ieee,
2568 &u->rx_data.header, &stats);
2569 break;
2570
2571 case IEEE80211_FTYPE_CTL:
2572 break;
2573
2574 case IEEE80211_FTYPE_DATA:
2575 isr_rx(priv, i, &stats);
2576 break;
2577
2578 }
2579 break;
2580 }
2581
2582 increment:
2583 /* clear status field associated with this RBD */
2584 rxq->drv[i].status.info.field = 0;
2585
2586 i = (i + 1) % rxq->entries;
2587 }
2588
2589 if (i != s) {
2590 /* backtrack one entry, wrapping to end if at 0 */
2591 rxq->next = (i ? i : rxq->entries) - 1;
2592
2593 write_register(priv->net_dev,
2594 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2595 }
2596 }
2597
2598 /*
2599 * __ipw2100_tx_process
2600 *
2601 * This routine will determine whether the next packet on
2602 * the fw_pend_list has been processed by the firmware yet.
2603 *
2604 * If not, then it does nothing and returns.
2605 *
2606 * If so, then it removes the item from the fw_pend_list, frees
2607 * any associated storage, and places the item back on the
2608 * free list of its source (either msg_free_list or tx_free_list)
2609 *
2610 * TX Queue works as follows:
2611 *
2612 * Read index - points to the next TBD that the firmware will
2613 * process. The firmware will read the data, and once
2614 * done processing, it will advance the Read index.
2615 *
2616 * Write index - driver fills this entry with an constructed TBD
2617 * entry. The Write index is not advanced until the
2618 * packet has been configured.
2619 *
2620 * In between the W and R indexes are the TBDs that have NOT been
2621 * processed. Lagging behind the R index are packets that have
2622 * been processed but have not been freed by the driver.
2623 *
2624 * In order to free old storage, an internal index will be maintained
2625 * that points to the next packet to be freed. When all used
2626 * packets have been freed, the oldest index will be the same as the
2627 * firmware's read index.
2628 *
2629 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2630 *
2631 * Because the TBD structure can not contain arbitrary data, the
2632 * driver must keep an internal queue of cached allocations such that
2633 * it can put that data back into the tx_free_list and msg_free_list
2634 * for use by future command and data packets.
2635 *
2636 */
2637 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2638 {
2639 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2640 struct ipw2100_bd *tbd;
2641 struct list_head *element;
2642 struct ipw2100_tx_packet *packet;
2643 int descriptors_used;
2644 int e, i;
2645 u32 r, w, frag_num = 0;
2646
2647 if (list_empty(&priv->fw_pend_list))
2648 return 0;
2649
2650 element = priv->fw_pend_list.next;
2651
2652 packet = list_entry(element, struct ipw2100_tx_packet, list);
2653 tbd = &txq->drv[packet->index];
2654
2655 /* Determine how many TBD entries must be finished... */
2656 switch (packet->type) {
2657 case COMMAND:
2658 /* COMMAND uses only one slot; don't advance */
2659 descriptors_used = 1;
2660 e = txq->oldest;
2661 break;
2662
2663 case DATA:
2664 /* DATA uses two slots; advance and loop position. */
2665 descriptors_used = tbd->num_fragments;
2666 frag_num = tbd->num_fragments - 1;
2667 e = txq->oldest + frag_num;
2668 e %= txq->entries;
2669 break;
2670
2671 default:
2672 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2673 priv->net_dev->name);
2674 return 0;
2675 }
2676
2677 /* if the last TBD is not done by NIC yet, then packet is
2678 * not ready to be released.
2679 *
2680 */
2681 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2682 &r);
2683 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2684 &w);
2685 if (w != txq->next)
2686 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2687 priv->net_dev->name);
2688
2689 /*
2690 * txq->next is the index of the last packet written txq->oldest is
2691 * the index of the r is the index of the next packet to be read by
2692 * firmware
2693 */
2694
2695 /*
2696 * Quick graphic to help you visualize the following
2697 * if / else statement
2698 *
2699 * ===>| s---->|===============
2700 * e>|
2701 * | a | b | c | d | e | f | g | h | i | j | k | l
2702 * r---->|
2703 * w
2704 *
2705 * w - updated by driver
2706 * r - updated by firmware
2707 * s - start of oldest BD entry (txq->oldest)
2708 * e - end of oldest BD entry
2709 *
2710 */
2711 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2712 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2713 return 0;
2714 }
2715
2716 list_del(element);
2717 DEC_STAT(&priv->fw_pend_stat);
2718
2719 #ifdef CONFIG_IPW2100_DEBUG
2720 {
2721 int i = txq->oldest;
2722 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2723 &txq->drv[i],
2724 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2725 txq->drv[i].host_addr, txq->drv[i].buf_length);
2726
2727 if (packet->type == DATA) {
2728 i = (i + 1) % txq->entries;
2729
2730 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2731 &txq->drv[i],
2732 (u32) (txq->nic + i *
2733 sizeof(struct ipw2100_bd)),
2734 (u32) txq->drv[i].host_addr,
2735 txq->drv[i].buf_length);
2736 }
2737 }
2738 #endif
2739
2740 switch (packet->type) {
2741 case DATA:
2742 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2743 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2744 "Expecting DATA TBD but pulled "
2745 "something else: ids %d=%d.\n",
2746 priv->net_dev->name, txq->oldest, packet->index);
2747
2748 /* DATA packet; we have to unmap and free the SKB */
2749 for (i = 0; i < frag_num; i++) {
2750 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2751
2752 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2753 (packet->index + 1 + i) % txq->entries,
2754 tbd->host_addr, tbd->buf_length);
2755
2756 pci_unmap_single(priv->pci_dev,
2757 tbd->host_addr,
2758 tbd->buf_length, PCI_DMA_TODEVICE);
2759 }
2760
2761 ieee80211_txb_free(packet->info.d_struct.txb);
2762 packet->info.d_struct.txb = NULL;
2763
2764 list_add_tail(element, &priv->tx_free_list);
2765 INC_STAT(&priv->tx_free_stat);
2766
2767 /* We have a free slot in the Tx queue, so wake up the
2768 * transmit layer if it is stopped. */
2769 if (priv->status & STATUS_ASSOCIATED)
2770 netif_wake_queue(priv->net_dev);
2771
2772 /* A packet was processed by the hardware, so update the
2773 * watchdog */
2774 priv->net_dev->trans_start = jiffies;
2775
2776 break;
2777
2778 case COMMAND:
2779 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2780 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2781 "Expecting COMMAND TBD but pulled "
2782 "something else: ids %d=%d.\n",
2783 priv->net_dev->name, txq->oldest, packet->index);
2784
2785 #ifdef CONFIG_IPW2100_DEBUG
2786 if (packet->info.c_struct.cmd->host_command_reg <
2787 sizeof(command_types) / sizeof(*command_types))
2788 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2789 command_types[packet->info.c_struct.cmd->
2790 host_command_reg],
2791 packet->info.c_struct.cmd->
2792 host_command_reg,
2793 packet->info.c_struct.cmd->cmd_status_reg);
2794 #endif
2795
2796 list_add_tail(element, &priv->msg_free_list);
2797 INC_STAT(&priv->msg_free_stat);
2798 break;
2799 }
2800
2801 /* advance oldest used TBD pointer to start of next entry */
2802 txq->oldest = (e + 1) % txq->entries;
2803 /* increase available TBDs number */
2804 txq->available += descriptors_used;
2805 SET_STAT(&priv->txq_stat, txq->available);
2806
2807 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2808 jiffies - packet->jiffy_start);
2809
2810 return (!list_empty(&priv->fw_pend_list));
2811 }
2812
2813 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2814 {
2815 int i = 0;
2816
2817 while (__ipw2100_tx_process(priv) && i < 200)
2818 i++;
2819
2820 if (i == 200) {
2821 printk(KERN_WARNING DRV_NAME ": "
2822 "%s: Driver is running slow (%d iters).\n",
2823 priv->net_dev->name, i);
2824 }
2825 }
2826
2827 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2828 {
2829 struct list_head *element;
2830 struct ipw2100_tx_packet *packet;
2831 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2832 struct ipw2100_bd *tbd;
2833 int next = txq->next;
2834
2835 while (!list_empty(&priv->msg_pend_list)) {
2836 /* if there isn't enough space in TBD queue, then
2837 * don't stuff a new one in.
2838 * NOTE: 3 are needed as a command will take one,
2839 * and there is a minimum of 2 that must be
2840 * maintained between the r and w indexes
2841 */
2842 if (txq->available <= 3) {
2843 IPW_DEBUG_TX("no room in tx_queue\n");
2844 break;
2845 }
2846
2847 element = priv->msg_pend_list.next;
2848 list_del(element);
2849 DEC_STAT(&priv->msg_pend_stat);
2850
2851 packet = list_entry(element, struct ipw2100_tx_packet, list);
2852
2853 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2854 &txq->drv[txq->next],
2855 (void *)(txq->nic + txq->next *
2856 sizeof(struct ipw2100_bd)));
2857
2858 packet->index = txq->next;
2859
2860 tbd = &txq->drv[txq->next];
2861
2862 /* initialize TBD */
2863 tbd->host_addr = packet->info.c_struct.cmd_phys;
2864 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2865 /* not marking number of fragments causes problems
2866 * with f/w debug version */
2867 tbd->num_fragments = 1;
2868 tbd->status.info.field =
2869 IPW_BD_STATUS_TX_FRAME_COMMAND |
2870 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2871
2872 /* update TBD queue counters */
2873 txq->next++;
2874 txq->next %= txq->entries;
2875 txq->available--;
2876 DEC_STAT(&priv->txq_stat);
2877
2878 list_add_tail(element, &priv->fw_pend_list);
2879 INC_STAT(&priv->fw_pend_stat);
2880 }
2881
2882 if (txq->next != next) {
2883 /* kick off the DMA by notifying firmware the
2884 * write index has moved; make sure TBD stores are sync'd */
2885 wmb();
2886 write_register(priv->net_dev,
2887 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2888 txq->next);
2889 }
2890 }
2891
2892 /*
2893 * ipw2100_tx_send_data
2894 *
2895 */
2896 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2897 {
2898 struct list_head *element;
2899 struct ipw2100_tx_packet *packet;
2900 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2901 struct ipw2100_bd *tbd;
2902 int next = txq->next;
2903 int i = 0;
2904 struct ipw2100_data_header *ipw_hdr;
2905 struct ieee80211_hdr_3addr *hdr;
2906
2907 while (!list_empty(&priv->tx_pend_list)) {
2908 /* if there isn't enough space in TBD queue, then
2909 * don't stuff a new one in.
2910 * NOTE: 4 are needed as a data will take two,
2911 * and there is a minimum of 2 that must be
2912 * maintained between the r and w indexes
2913 */
2914 element = priv->tx_pend_list.next;
2915 packet = list_entry(element, struct ipw2100_tx_packet, list);
2916
2917 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2918 IPW_MAX_BDS)) {
2919 /* TODO: Support merging buffers if more than
2920 * IPW_MAX_BDS are used */
2921 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
2922 "Increase fragmentation level.\n",
2923 priv->net_dev->name);
2924 }
2925
2926 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
2927 IPW_DEBUG_TX("no room in tx_queue\n");
2928 break;
2929 }
2930
2931 list_del(element);
2932 DEC_STAT(&priv->tx_pend_stat);
2933
2934 tbd = &txq->drv[txq->next];
2935
2936 packet->index = txq->next;
2937
2938 ipw_hdr = packet->info.d_struct.data;
2939 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
2940 fragments[0]->data;
2941
2942 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
2943 /* To DS: Addr1 = BSSID, Addr2 = SA,
2944 Addr3 = DA */
2945 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2946 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
2947 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
2948 /* not From/To DS: Addr1 = DA, Addr2 = SA,
2949 Addr3 = BSSID */
2950 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2951 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
2952 }
2953
2954 ipw_hdr->host_command_reg = SEND;
2955 ipw_hdr->host_command_reg1 = 0;
2956
2957 /* For now we only support host based encryption */
2958 ipw_hdr->needs_encryption = 0;
2959 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
2960 if (packet->info.d_struct.txb->nr_frags > 1)
2961 ipw_hdr->fragment_size =
2962 packet->info.d_struct.txb->frag_size -
2963 IEEE80211_3ADDR_LEN;
2964 else
2965 ipw_hdr->fragment_size = 0;
2966
2967 tbd->host_addr = packet->info.d_struct.data_phys;
2968 tbd->buf_length = sizeof(struct ipw2100_data_header);
2969 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
2970 tbd->status.info.field =
2971 IPW_BD_STATUS_TX_FRAME_802_3 |
2972 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2973 txq->next++;
2974 txq->next %= txq->entries;
2975
2976 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
2977 packet->index, tbd->host_addr, tbd->buf_length);
2978 #ifdef CONFIG_IPW2100_DEBUG
2979 if (packet->info.d_struct.txb->nr_frags > 1)
2980 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
2981 packet->info.d_struct.txb->nr_frags);
2982 #endif
2983
2984 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
2985 tbd = &txq->drv[txq->next];
2986 if (i == packet->info.d_struct.txb->nr_frags - 1)
2987 tbd->status.info.field =
2988 IPW_BD_STATUS_TX_FRAME_802_3 |
2989 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2990 else
2991 tbd->status.info.field =
2992 IPW_BD_STATUS_TX_FRAME_802_3 |
2993 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2994
2995 tbd->buf_length = packet->info.d_struct.txb->
2996 fragments[i]->len - IEEE80211_3ADDR_LEN;
2997
2998 tbd->host_addr = pci_map_single(priv->pci_dev,
2999 packet->info.d_struct.
3000 txb->fragments[i]->
3001 data +
3002 IEEE80211_3ADDR_LEN,
3003 tbd->buf_length,
3004 PCI_DMA_TODEVICE);
3005
3006 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3007 txq->next, tbd->host_addr,
3008 tbd->buf_length);
3009
3010 pci_dma_sync_single_for_device(priv->pci_dev,
3011 tbd->host_addr,
3012 tbd->buf_length,
3013 PCI_DMA_TODEVICE);
3014
3015 txq->next++;
3016 txq->next %= txq->entries;
3017 }
3018
3019 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3020 SET_STAT(&priv->txq_stat, txq->available);
3021
3022 list_add_tail(element, &priv->fw_pend_list);
3023 INC_STAT(&priv->fw_pend_stat);
3024 }
3025
3026 if (txq->next != next) {
3027 /* kick off the DMA by notifying firmware the
3028 * write index has moved; make sure TBD stores are sync'd */
3029 write_register(priv->net_dev,
3030 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3031 txq->next);
3032 }
3033 return;
3034 }
3035
3036 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3037 {
3038 struct net_device *dev = priv->net_dev;
3039 unsigned long flags;
3040 u32 inta, tmp;
3041
3042 spin_lock_irqsave(&priv->low_lock, flags);
3043 ipw2100_disable_interrupts(priv);
3044
3045 read_register(dev, IPW_REG_INTA, &inta);
3046
3047 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3048 (unsigned long)inta & IPW_INTERRUPT_MASK);
3049
3050 priv->in_isr++;
3051 priv->interrupts++;
3052
3053 /* We do not loop and keep polling for more interrupts as this
3054 * is frowned upon and doesn't play nicely with other potentially
3055 * chained IRQs */
3056 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3057 (unsigned long)inta & IPW_INTERRUPT_MASK);
3058
3059 if (inta & IPW2100_INTA_FATAL_ERROR) {
3060 printk(KERN_WARNING DRV_NAME
3061 ": Fatal interrupt. Scheduling firmware restart.\n");
3062 priv->inta_other++;
3063 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3064
3065 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3066 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3067 priv->net_dev->name, priv->fatal_error);
3068
3069 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3070 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3071 priv->net_dev->name, tmp);
3072
3073 /* Wake up any sleeping jobs */
3074 schedule_reset(priv);
3075 }
3076
3077 if (inta & IPW2100_INTA_PARITY_ERROR) {
3078 printk(KERN_ERR DRV_NAME
3079 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3080 priv->inta_other++;
3081 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3082 }
3083
3084 if (inta & IPW2100_INTA_RX_TRANSFER) {
3085 IPW_DEBUG_ISR("RX interrupt\n");
3086
3087 priv->rx_interrupts++;
3088
3089 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3090
3091 __ipw2100_rx_process(priv);
3092 __ipw2100_tx_complete(priv);
3093 }
3094
3095 if (inta & IPW2100_INTA_TX_TRANSFER) {
3096 IPW_DEBUG_ISR("TX interrupt\n");
3097
3098 priv->tx_interrupts++;
3099
3100 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3101
3102 __ipw2100_tx_complete(priv);
3103 ipw2100_tx_send_commands(priv);
3104 ipw2100_tx_send_data(priv);
3105 }
3106
3107 if (inta & IPW2100_INTA_TX_COMPLETE) {
3108 IPW_DEBUG_ISR("TX complete\n");
3109 priv->inta_other++;
3110 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3111
3112 __ipw2100_tx_complete(priv);
3113 }
3114
3115 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3116 /* ipw2100_handle_event(dev); */
3117 priv->inta_other++;
3118 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3119 }
3120
3121 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3122 IPW_DEBUG_ISR("FW init done interrupt\n");
3123 priv->inta_other++;
3124
3125 read_register(dev, IPW_REG_INTA, &tmp);
3126 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3127 IPW2100_INTA_PARITY_ERROR)) {
3128 write_register(dev, IPW_REG_INTA,
3129 IPW2100_INTA_FATAL_ERROR |
3130 IPW2100_INTA_PARITY_ERROR);
3131 }
3132
3133 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3134 }
3135
3136 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3137 IPW_DEBUG_ISR("Status change interrupt\n");
3138 priv->inta_other++;
3139 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3140 }
3141
3142 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3143 IPW_DEBUG_ISR("slave host mode interrupt\n");
3144 priv->inta_other++;
3145 write_register(dev, IPW_REG_INTA,
3146 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3147 }
3148
3149 priv->in_isr--;
3150 ipw2100_enable_interrupts(priv);
3151
3152 spin_unlock_irqrestore(&priv->low_lock, flags);
3153
3154 IPW_DEBUG_ISR("exit\n");
3155 }
3156
3157 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3158 {
3159 struct ipw2100_priv *priv = data;
3160 u32 inta, inta_mask;
3161
3162 if (!data)
3163 return IRQ_NONE;
3164
3165 spin_lock(&priv->low_lock);
3166
3167 /* We check to see if we should be ignoring interrupts before
3168 * we touch the hardware. During ucode load if we try and handle
3169 * an interrupt we can cause keyboard problems as well as cause
3170 * the ucode to fail to initialize */
3171 if (!(priv->status & STATUS_INT_ENABLED)) {
3172 /* Shared IRQ */
3173 goto none;
3174 }
3175
3176 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3177 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3178
3179 if (inta == 0xFFFFFFFF) {
3180 /* Hardware disappeared */
3181 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3182 goto none;
3183 }
3184
3185 inta &= IPW_INTERRUPT_MASK;
3186
3187 if (!(inta & inta_mask)) {
3188 /* Shared interrupt */
3189 goto none;
3190 }
3191
3192 /* We disable the hardware interrupt here just to prevent unneeded
3193 * calls to be made. We disable this again within the actual
3194 * work tasklet, so if another part of the code re-enables the
3195 * interrupt, that is fine */
3196 ipw2100_disable_interrupts(priv);
3197
3198 tasklet_schedule(&priv->irq_tasklet);
3199 spin_unlock(&priv->low_lock);
3200
3201 return IRQ_HANDLED;
3202 none:
3203 spin_unlock(&priv->low_lock);
3204 return IRQ_NONE;
3205 }
3206
3207 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3208 int pri)
3209 {
3210 struct ipw2100_priv *priv = ieee80211_priv(dev);
3211 struct list_head *element;
3212 struct ipw2100_tx_packet *packet;
3213 unsigned long flags;
3214
3215 spin_lock_irqsave(&priv->low_lock, flags);
3216
3217 if (!(priv->status & STATUS_ASSOCIATED)) {
3218 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3219 priv->ieee->stats.tx_carrier_errors++;
3220 netif_stop_queue(dev);
3221 goto fail_unlock;
3222 }
3223
3224 if (list_empty(&priv->tx_free_list))
3225 goto fail_unlock;
3226
3227 element = priv->tx_free_list.next;
3228 packet = list_entry(element, struct ipw2100_tx_packet, list);
3229
3230 packet->info.d_struct.txb = txb;
3231
3232 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3233 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3234
3235 packet->jiffy_start = jiffies;
3236
3237 list_del(element);
3238 DEC_STAT(&priv->tx_free_stat);
3239
3240 list_add_tail(element, &priv->tx_pend_list);
3241 INC_STAT(&priv->tx_pend_stat);
3242
3243 ipw2100_tx_send_data(priv);
3244
3245 spin_unlock_irqrestore(&priv->low_lock, flags);
3246 return 0;
3247
3248 fail_unlock:
3249 netif_stop_queue(dev);
3250 spin_unlock_irqrestore(&priv->low_lock, flags);
3251 return 1;
3252 }
3253
3254 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3255 {
3256 int i, j, err = -EINVAL;
3257 void *v;
3258 dma_addr_t p;
3259
3260 priv->msg_buffers =
3261 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3262 sizeof(struct
3263 ipw2100_tx_packet),
3264 GFP_KERNEL);
3265 if (!priv->msg_buffers) {
3266 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3267 "buffers.\n", priv->net_dev->name);
3268 return -ENOMEM;
3269 }
3270
3271 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3272 v = pci_alloc_consistent(priv->pci_dev,
3273 sizeof(struct ipw2100_cmd_header), &p);
3274 if (!v) {
3275 printk(KERN_ERR DRV_NAME ": "
3276 "%s: PCI alloc failed for msg "
3277 "buffers.\n", priv->net_dev->name);
3278 err = -ENOMEM;
3279 break;
3280 }
3281
3282 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3283
3284 priv->msg_buffers[i].type = COMMAND;
3285 priv->msg_buffers[i].info.c_struct.cmd =
3286 (struct ipw2100_cmd_header *)v;
3287 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3288 }
3289
3290 if (i == IPW_COMMAND_POOL_SIZE)
3291 return 0;
3292
3293 for (j = 0; j < i; j++) {
3294 pci_free_consistent(priv->pci_dev,
3295 sizeof(struct ipw2100_cmd_header),
3296 priv->msg_buffers[j].info.c_struct.cmd,
3297 priv->msg_buffers[j].info.c_struct.
3298 cmd_phys);
3299 }
3300
3301 kfree(priv->msg_buffers);
3302 priv->msg_buffers = NULL;
3303
3304 return err;
3305 }
3306
3307 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3308 {
3309 int i;
3310
3311 INIT_LIST_HEAD(&priv->msg_free_list);
3312 INIT_LIST_HEAD(&priv->msg_pend_list);
3313
3314 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3315 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3316 SET_STAT(&priv->msg_free_stat, i);
3317
3318 return 0;
3319 }
3320
3321 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3322 {
3323 int i;
3324
3325 if (!priv->msg_buffers)
3326 return;
3327
3328 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3329 pci_free_consistent(priv->pci_dev,
3330 sizeof(struct ipw2100_cmd_header),
3331 priv->msg_buffers[i].info.c_struct.cmd,
3332 priv->msg_buffers[i].info.c_struct.
3333 cmd_phys);
3334 }
3335
3336 kfree(priv->msg_buffers);
3337 priv->msg_buffers = NULL;
3338 }
3339
3340 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3341 char *buf)
3342 {
3343 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3344 char *out = buf;
3345 int i, j;
3346 u32 val;
3347
3348 for (i = 0; i < 16; i++) {
3349 out += sprintf(out, "[%08X] ", i * 16);
3350 for (j = 0; j < 16; j += 4) {
3351 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3352 out += sprintf(out, "%08X ", val);
3353 }
3354 out += sprintf(out, "\n");
3355 }
3356
3357 return out - buf;
3358 }
3359
3360 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3361
3362 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3363 char *buf)
3364 {
3365 struct ipw2100_priv *p = d->driver_data;
3366 return sprintf(buf, "0x%08x\n", (int)p->config);
3367 }
3368
3369 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3370
3371 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3372 char *buf)
3373 {
3374 struct ipw2100_priv *p = d->driver_data;
3375 return sprintf(buf, "0x%08x\n", (int)p->status);
3376 }
3377
3378 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3379
3380 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3381 char *buf)
3382 {
3383 struct ipw2100_priv *p = d->driver_data;
3384 return sprintf(buf, "0x%08x\n", (int)p->capability);
3385 }
3386
3387 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3388
3389 #define IPW2100_REG(x) { IPW_ ##x, #x }
3390 static const struct {
3391 u32 addr;
3392 const char *name;
3393 } hw_data[] = {
3394 IPW2100_REG(REG_GP_CNTRL),
3395 IPW2100_REG(REG_GPIO),
3396 IPW2100_REG(REG_INTA),
3397 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3398 #define IPW2100_NIC(x, s) { x, #x, s }
3399 static const struct {
3400 u32 addr;
3401 const char *name;
3402 size_t size;
3403 } nic_data[] = {
3404 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3405 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3406 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3407 static const struct {
3408 u8 index;
3409 const char *name;
3410 const char *desc;
3411 } ord_data[] = {
3412 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3413 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3414 "successful Host Tx's (MSDU)"),
3415 IPW2100_ORD(STAT_TX_DIR_DATA,
3416 "successful Directed Tx's (MSDU)"),
3417 IPW2100_ORD(STAT_TX_DIR_DATA1,
3418 "successful Directed Tx's (MSDU) @ 1MB"),
3419 IPW2100_ORD(STAT_TX_DIR_DATA2,
3420 "successful Directed Tx's (MSDU) @ 2MB"),
3421 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3422 "successful Directed Tx's (MSDU) @ 5_5MB"),
3423 IPW2100_ORD(STAT_TX_DIR_DATA11,
3424 "successful Directed Tx's (MSDU) @ 11MB"),
3425 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3426 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3427 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3428 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3429 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3430 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3431 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3432 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3433 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3434 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3435 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3436 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3437 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3438 IPW2100_ORD(STAT_TX_ASSN_RESP,
3439 "successful Association response Tx's"),
3440 IPW2100_ORD(STAT_TX_REASSN,
3441 "successful Reassociation Tx's"),
3442 IPW2100_ORD(STAT_TX_REASSN_RESP,
3443 "successful Reassociation response Tx's"),
3444 IPW2100_ORD(STAT_TX_PROBE,
3445 "probes successfully transmitted"),
3446 IPW2100_ORD(STAT_TX_PROBE_RESP,
3447 "probe responses successfully transmitted"),
3448 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3449 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3450 IPW2100_ORD(STAT_TX_DISASSN,
3451 "successful Disassociation TX"),
3452 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3453 IPW2100_ORD(STAT_TX_DEAUTH,
3454 "successful Deauthentication TX"),
3455 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3456 "Total successful Tx data bytes"),
3457 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3458 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3459 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3460 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3461 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3462 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3463 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3464 "times max tries in a hop failed"),
3465 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3466 "times disassociation failed"),
3467 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3468 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3469 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3470 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3471 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3472 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3473 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3474 "directed packets at 5.5MB"),
3475 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3476 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3477 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3478 "nondirected packets at 1MB"),
3479 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3480 "nondirected packets at 2MB"),
3481 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3482 "nondirected packets at 5.5MB"),
3483 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3484 "nondirected packets at 11MB"),
3485 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3486 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3487 "Rx CTS"),
3488 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3489 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3490 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3491 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3492 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3493 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3494 IPW2100_ORD(STAT_RX_REASSN_RESP,
3495 "Reassociation response Rx's"),
3496 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3497 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3498 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3499 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3500 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3501 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3502 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3503 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3504 "Total rx data bytes received"),
3505 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3506 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3507 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3508 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3509 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3510 IPW2100_ORD(STAT_RX_DUPLICATE1,
3511 "duplicate rx packets at 1MB"),
3512 IPW2100_ORD(STAT_RX_DUPLICATE2,
3513 "duplicate rx packets at 2MB"),
3514 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3515 "duplicate rx packets at 5.5MB"),
3516 IPW2100_ORD(STAT_RX_DUPLICATE11,
3517 "duplicate rx packets at 11MB"),
3518 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3519 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3520 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3521 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3522 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3523 "rx frames with invalid protocol"),
3524 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3525 IPW2100_ORD(STAT_RX_NO_BUFFER,
3526 "rx frames rejected due to no buffer"),
3527 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3528 "rx frames dropped due to missing fragment"),
3529 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3530 "rx frames dropped due to non-sequential fragment"),
3531 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3532 "rx frames dropped due to unmatched 1st frame"),
3533 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3534 "rx frames dropped due to uncompleted frame"),
3535 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3536 "ICV errors during decryption"),
3537 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3538 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3539 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3540 "poll response timeouts"),
3541 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3542 "timeouts waiting for last {broad,multi}cast pkt"),
3543 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3544 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3545 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3546 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3547 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3548 "current calculation of % missed beacons"),
3549 IPW2100_ORD(STAT_PERCENT_RETRIES,
3550 "current calculation of % missed tx retries"),
3551 IPW2100_ORD(ASSOCIATED_AP_PTR,
3552 "0 if not associated, else pointer to AP table entry"),
3553 IPW2100_ORD(AVAILABLE_AP_CNT,
3554 "AP's decsribed in the AP table"),
3555 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3556 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3557 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3558 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3559 "failures due to response fail"),
3560 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3561 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3562 IPW2100_ORD(STAT_ROAM_INHIBIT,
3563 "times roaming was inhibited due to activity"),
3564 IPW2100_ORD(RSSI_AT_ASSN,
3565 "RSSI of associated AP at time of association"),
3566 IPW2100_ORD(STAT_ASSN_CAUSE1,
3567 "reassociation: no probe response or TX on hop"),
3568 IPW2100_ORD(STAT_ASSN_CAUSE2,
3569 "reassociation: poor tx/rx quality"),
3570 IPW2100_ORD(STAT_ASSN_CAUSE3,
3571 "reassociation: tx/rx quality (excessive AP load"),
3572 IPW2100_ORD(STAT_ASSN_CAUSE4,
3573 "reassociation: AP RSSI level"),
3574 IPW2100_ORD(STAT_ASSN_CAUSE5,
3575 "reassociations due to load leveling"),
3576 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3577 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3578 "times authentication response failed"),
3579 IPW2100_ORD(STATION_TABLE_CNT,
3580 "entries in association table"),
3581 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3582 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3583 IPW2100_ORD(COUNTRY_CODE,
3584 "IEEE country code as recv'd from beacon"),
3585 IPW2100_ORD(COUNTRY_CHANNELS,
3586 "channels suported by country"),
3587 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3588 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3589 IPW2100_ORD(ANTENNA_DIVERSITY,
3590 "TRUE if antenna diversity is disabled"),
3591 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3592 IPW2100_ORD(OUR_FREQ,
3593 "current radio freq lower digits - channel ID"),
3594 IPW2100_ORD(RTC_TIME, "current RTC time"),
3595 IPW2100_ORD(PORT_TYPE, "operating mode"),
3596 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3597 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3598 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3599 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3600 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3601 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3602 IPW2100_ORD(CAPABILITIES,
3603 "Management frame capability field"),
3604 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3605 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3606 IPW2100_ORD(RTS_THRESHOLD,
3607 "Min packet length for RTS handshaking"),
3608 IPW2100_ORD(INT_MODE, "International mode"),
3609 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3610 "protocol frag threshold"),
3611 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3612 "EEPROM offset in SRAM"),
3613 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3614 "EEPROM size in SRAM"),
3615 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3616 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3617 "EEPROM IBSS 11b channel set"),
3618 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3619 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3620 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3621 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3622 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3623
3624 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3625 char *buf)
3626 {
3627 int i;
3628 struct ipw2100_priv *priv = dev_get_drvdata(d);
3629 struct net_device *dev = priv->net_dev;
3630 char *out = buf;
3631 u32 val = 0;
3632
3633 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3634
3635 for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3636 read_register(dev, hw_data[i].addr, &val);
3637 out += sprintf(out, "%30s [%08X] : %08X\n",
3638 hw_data[i].name, hw_data[i].addr, val);
3639 }
3640
3641 return out - buf;
3642 }
3643
3644 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3645
3646 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3647 char *buf)
3648 {
3649 struct ipw2100_priv *priv = dev_get_drvdata(d);
3650 struct net_device *dev = priv->net_dev;
3651 char *out = buf;
3652 int i;
3653
3654 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3655
3656 for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3657 u8 tmp8;
3658 u16 tmp16;
3659 u32 tmp32;
3660
3661 switch (nic_data[i].size) {
3662 case 1:
3663 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3664 out += sprintf(out, "%30s [%08X] : %02X\n",
3665 nic_data[i].name, nic_data[i].addr,
3666 tmp8);
3667 break;
3668 case 2:
3669 read_nic_word(dev, nic_data[i].addr, &tmp16);
3670 out += sprintf(out, "%30s [%08X] : %04X\n",
3671 nic_data[i].name, nic_data[i].addr,
3672 tmp16);
3673 break;
3674 case 4:
3675 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3676 out += sprintf(out, "%30s [%08X] : %08X\n",
3677 nic_data[i].name, nic_data[i].addr,
3678 tmp32);
3679 break;
3680 }
3681 }
3682 return out - buf;
3683 }
3684
3685 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3686
3687 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3688 char *buf)
3689 {
3690 struct ipw2100_priv *priv = dev_get_drvdata(d);
3691 struct net_device *dev = priv->net_dev;
3692 static unsigned long loop = 0;
3693 int len = 0;
3694 u32 buffer[4];
3695 int i;
3696 char line[81];
3697
3698 if (loop >= 0x30000)
3699 loop = 0;
3700
3701 /* sysfs provides us PAGE_SIZE buffer */
3702 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3703
3704 if (priv->snapshot[0])
3705 for (i = 0; i < 4; i++)
3706 buffer[i] =
3707 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3708 else
3709 for (i = 0; i < 4; i++)
3710 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3711
3712 if (priv->dump_raw)
3713 len += sprintf(buf + len,
3714 "%c%c%c%c"
3715 "%c%c%c%c"
3716 "%c%c%c%c"
3717 "%c%c%c%c",
3718 ((u8 *) buffer)[0x0],
3719 ((u8 *) buffer)[0x1],
3720 ((u8 *) buffer)[0x2],
3721 ((u8 *) buffer)[0x3],
3722 ((u8 *) buffer)[0x4],
3723 ((u8 *) buffer)[0x5],
3724 ((u8 *) buffer)[0x6],
3725 ((u8 *) buffer)[0x7],
3726 ((u8 *) buffer)[0x8],
3727 ((u8 *) buffer)[0x9],
3728 ((u8 *) buffer)[0xa],
3729 ((u8 *) buffer)[0xb],
3730 ((u8 *) buffer)[0xc],
3731 ((u8 *) buffer)[0xd],
3732 ((u8 *) buffer)[0xe],
3733 ((u8 *) buffer)[0xf]);
3734 else
3735 len += sprintf(buf + len, "%s\n",
3736 snprint_line(line, sizeof(line),
3737 (u8 *) buffer, 16, loop));
3738 loop += 16;
3739 }
3740
3741 return len;
3742 }
3743
3744 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3745 const char *buf, size_t count)
3746 {
3747 struct ipw2100_priv *priv = dev_get_drvdata(d);
3748 struct net_device *dev = priv->net_dev;
3749 const char *p = buf;
3750
3751 (void) dev; /* kill unused-var warning for debug-only code */
3752
3753 if (count < 1)
3754 return count;
3755
3756 if (p[0] == '1' ||
3757 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3758 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3759 dev->name);
3760 priv->dump_raw = 1;
3761
3762 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3763 tolower(p[1]) == 'f')) {
3764 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3765 dev->name);
3766 priv->dump_raw = 0;
3767
3768 } else if (tolower(p[0]) == 'r') {
3769 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3770 ipw2100_snapshot_free(priv);
3771
3772 } else
3773 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3774 "reset = clear memory snapshot\n", dev->name);
3775
3776 return count;
3777 }
3778
3779 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3780
3781 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3782 char *buf)
3783 {
3784 struct ipw2100_priv *priv = dev_get_drvdata(d);
3785 u32 val = 0;
3786 int len = 0;
3787 u32 val_len;
3788 static int loop = 0;
3789
3790 if (priv->status & STATUS_RF_KILL_MASK)
3791 return 0;
3792
3793 if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3794 loop = 0;
3795
3796 /* sysfs provides us PAGE_SIZE buffer */
3797 while (len < PAGE_SIZE - 128 &&
3798 loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3799
3800 val_len = sizeof(u32);
3801
3802 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3803 &val_len))
3804 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3805 ord_data[loop].index,
3806 ord_data[loop].desc);
3807 else
3808 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3809 ord_data[loop].index, val,
3810 ord_data[loop].desc);
3811 loop++;
3812 }
3813
3814 return len;
3815 }
3816
3817 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3818
3819 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3820 char *buf)
3821 {
3822 struct ipw2100_priv *priv = dev_get_drvdata(d);
3823 char *out = buf;
3824
3825 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3826 priv->interrupts, priv->tx_interrupts,
3827 priv->rx_interrupts, priv->inta_other);
3828 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3829 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3830 #ifdef CONFIG_IPW2100_DEBUG
3831 out += sprintf(out, "packet mismatch image: %s\n",
3832 priv->snapshot[0] ? "YES" : "NO");
3833 #endif
3834
3835 return out - buf;
3836 }
3837
3838 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3839
3840 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3841 {
3842 int err;
3843
3844 if (mode == priv->ieee->iw_mode)
3845 return 0;
3846
3847 err = ipw2100_disable_adapter(priv);
3848 if (err) {
3849 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3850 priv->net_dev->name, err);
3851 return err;
3852 }
3853
3854 switch (mode) {
3855 case IW_MODE_INFRA:
3856 priv->net_dev->type = ARPHRD_ETHER;
3857 break;
3858 case IW_MODE_ADHOC:
3859 priv->net_dev->type = ARPHRD_ETHER;
3860 break;
3861 #ifdef CONFIG_IPW2100_MONITOR
3862 case IW_MODE_MONITOR:
3863 priv->last_mode = priv->ieee->iw_mode;
3864 priv->net_dev->type = ARPHRD_IEEE80211;
3865 break;
3866 #endif /* CONFIG_IPW2100_MONITOR */
3867 }
3868
3869 priv->ieee->iw_mode = mode;
3870
3871 #ifdef CONFIG_PM
3872 /* Indicate ipw2100_download_firmware download firmware
3873 * from disk instead of memory. */
3874 ipw2100_firmware.version = 0;
3875 #endif
3876
3877 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3878 priv->reset_backoff = 0;
3879 schedule_reset(priv);
3880
3881 return 0;
3882 }
3883
3884 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3885 char *buf)
3886 {
3887 struct ipw2100_priv *priv = dev_get_drvdata(d);
3888 int len = 0;
3889
3890 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3891
3892 if (priv->status & STATUS_ASSOCIATED)
3893 len += sprintf(buf + len, "connected: %lu\n",
3894 get_seconds() - priv->connect_start);
3895 else
3896 len += sprintf(buf + len, "not connected\n");
3897
3898 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3899 DUMP_VAR(status, "08lx");
3900 DUMP_VAR(config, "08lx");
3901 DUMP_VAR(capability, "08lx");
3902
3903 len +=
3904 sprintf(buf + len, "last_rtc: %lu\n",
3905 (unsigned long)priv->last_rtc);
3906
3907 DUMP_VAR(fatal_error, "d");
3908 DUMP_VAR(stop_hang_check, "d");
3909 DUMP_VAR(stop_rf_kill, "d");
3910 DUMP_VAR(messages_sent, "d");
3911
3912 DUMP_VAR(tx_pend_stat.value, "d");
3913 DUMP_VAR(tx_pend_stat.hi, "d");
3914
3915 DUMP_VAR(tx_free_stat.value, "d");
3916 DUMP_VAR(tx_free_stat.lo, "d");
3917
3918 DUMP_VAR(msg_free_stat.value, "d");
3919 DUMP_VAR(msg_free_stat.lo, "d");
3920
3921 DUMP_VAR(msg_pend_stat.value, "d");
3922 DUMP_VAR(msg_pend_stat.hi, "d");
3923
3924 DUMP_VAR(fw_pend_stat.value, "d");
3925 DUMP_VAR(fw_pend_stat.hi, "d");
3926
3927 DUMP_VAR(txq_stat.value, "d");
3928 DUMP_VAR(txq_stat.lo, "d");
3929
3930 DUMP_VAR(ieee->scans, "d");
3931 DUMP_VAR(reset_backoff, "d");
3932
3933 return len;
3934 }
3935
3936 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
3937
3938 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
3939 char *buf)
3940 {
3941 struct ipw2100_priv *priv = dev_get_drvdata(d);
3942 char essid[IW_ESSID_MAX_SIZE + 1];
3943 u8 bssid[ETH_ALEN];
3944 u32 chan = 0;
3945 char *out = buf;
3946 int length;
3947 int ret;
3948
3949 if (priv->status & STATUS_RF_KILL_MASK)
3950 return 0;
3951
3952 memset(essid, 0, sizeof(essid));
3953 memset(bssid, 0, sizeof(bssid));
3954
3955 length = IW_ESSID_MAX_SIZE;
3956 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
3957 if (ret)
3958 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3959 __LINE__);
3960
3961 length = sizeof(bssid);
3962 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
3963 bssid, &length);
3964 if (ret)
3965 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3966 __LINE__);
3967
3968 length = sizeof(u32);
3969 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
3970 if (ret)
3971 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3972 __LINE__);
3973
3974 out += sprintf(out, "ESSID: %s\n", essid);
3975 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
3976 bssid[0], bssid[1], bssid[2],
3977 bssid[3], bssid[4], bssid[5]);
3978 out += sprintf(out, "Channel: %d\n", chan);
3979
3980 return out - buf;
3981 }
3982
3983 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
3984
3985 #ifdef CONFIG_IPW2100_DEBUG
3986 static ssize_t show_debug_level(struct device_driver *d, char *buf)
3987 {
3988 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
3989 }
3990
3991 static ssize_t store_debug_level(struct device_driver *d,
3992 const char *buf, size_t count)
3993 {
3994 char *p = (char *)buf;
3995 u32 val;
3996
3997 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
3998 p++;
3999 if (p[0] == 'x' || p[0] == 'X')
4000 p++;
4001 val = simple_strtoul(p, &p, 16);
4002 } else
4003 val = simple_strtoul(p, &p, 10);
4004 if (p == buf)
4005 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4006 else
4007 ipw2100_debug_level = val;
4008
4009 return strnlen(buf, count);
4010 }
4011
4012 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4013 store_debug_level);
4014 #endif /* CONFIG_IPW2100_DEBUG */
4015
4016 static ssize_t show_fatal_error(struct device *d,
4017 struct device_attribute *attr, char *buf)
4018 {
4019 struct ipw2100_priv *priv = dev_get_drvdata(d);
4020 char *out = buf;
4021 int i;
4022
4023 if (priv->fatal_error)
4024 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4025 else
4026 out += sprintf(out, "0\n");
4027
4028 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4029 if (!priv->fatal_errors[(priv->fatal_index - i) %
4030 IPW2100_ERROR_QUEUE])
4031 continue;
4032
4033 out += sprintf(out, "%d. 0x%08X\n", i,
4034 priv->fatal_errors[(priv->fatal_index - i) %
4035 IPW2100_ERROR_QUEUE]);
4036 }
4037
4038 return out - buf;
4039 }
4040
4041 static ssize_t store_fatal_error(struct device *d,
4042 struct device_attribute *attr, const char *buf,
4043 size_t count)
4044 {
4045 struct ipw2100_priv *priv = dev_get_drvdata(d);
4046 schedule_reset(priv);
4047 return count;
4048 }
4049
4050 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4051 store_fatal_error);
4052
4053 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4054 char *buf)
4055 {
4056 struct ipw2100_priv *priv = dev_get_drvdata(d);
4057 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4058 }
4059
4060 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4061 const char *buf, size_t count)
4062 {
4063 struct ipw2100_priv *priv = dev_get_drvdata(d);
4064 struct net_device *dev = priv->net_dev;
4065 char buffer[] = "00000000";
4066 unsigned long len =
4067 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4068 unsigned long val;
4069 char *p = buffer;
4070
4071 (void) dev; /* kill unused-var warning for debug-only code */
4072
4073 IPW_DEBUG_INFO("enter\n");
4074
4075 strncpy(buffer, buf, len);
4076 buffer[len] = 0;
4077
4078 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4079 p++;
4080 if (p[0] == 'x' || p[0] == 'X')
4081 p++;
4082 val = simple_strtoul(p, &p, 16);
4083 } else
4084 val = simple_strtoul(p, &p, 10);
4085 if (p == buffer) {
4086 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4087 } else {
4088 priv->ieee->scan_age = val;
4089 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4090 }
4091
4092 IPW_DEBUG_INFO("exit\n");
4093 return len;
4094 }
4095
4096 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4097
4098 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4099 char *buf)
4100 {
4101 /* 0 - RF kill not enabled
4102 1 - SW based RF kill active (sysfs)
4103 2 - HW based RF kill active
4104 3 - Both HW and SW baed RF kill active */
4105 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4106 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4107 (rf_kill_active(priv) ? 0x2 : 0x0);
4108 return sprintf(buf, "%i\n", val);
4109 }
4110
4111 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4112 {
4113 if ((disable_radio ? 1 : 0) ==
4114 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4115 return 0;
4116
4117 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4118 disable_radio ? "OFF" : "ON");
4119
4120 down(&priv->action_sem);
4121
4122 if (disable_radio) {
4123 priv->status |= STATUS_RF_KILL_SW;
4124 ipw2100_down(priv);
4125 } else {
4126 priv->status &= ~STATUS_RF_KILL_SW;
4127 if (rf_kill_active(priv)) {
4128 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4129 "disabled by HW switch\n");
4130 /* Make sure the RF_KILL check timer is running */
4131 priv->stop_rf_kill = 0;
4132 cancel_delayed_work(&priv->rf_kill);
4133 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4134 } else
4135 schedule_reset(priv);
4136 }
4137
4138 up(&priv->action_sem);
4139 return 1;
4140 }
4141
4142 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4143 const char *buf, size_t count)
4144 {
4145 struct ipw2100_priv *priv = dev_get_drvdata(d);
4146 ipw_radio_kill_sw(priv, buf[0] == '1');
4147 return count;
4148 }
4149
4150 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4151
4152 static struct attribute *ipw2100_sysfs_entries[] = {
4153 &dev_attr_hardware.attr,
4154 &dev_attr_registers.attr,
4155 &dev_attr_ordinals.attr,
4156 &dev_attr_pci.attr,
4157 &dev_attr_stats.attr,
4158 &dev_attr_internals.attr,
4159 &dev_attr_bssinfo.attr,
4160 &dev_attr_memory.attr,
4161 &dev_attr_scan_age.attr,
4162 &dev_attr_fatal_error.attr,
4163 &dev_attr_rf_kill.attr,
4164 &dev_attr_cfg.attr,
4165 &dev_attr_status.attr,
4166 &dev_attr_capability.attr,
4167 NULL,
4168 };
4169
4170 static struct attribute_group ipw2100_attribute_group = {
4171 .attrs = ipw2100_sysfs_entries,
4172 };
4173
4174 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4175 {
4176 struct ipw2100_status_queue *q = &priv->status_queue;
4177
4178 IPW_DEBUG_INFO("enter\n");
4179
4180 q->size = entries * sizeof(struct ipw2100_status);
4181 q->drv =
4182 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4183 q->size, &q->nic);
4184 if (!q->drv) {
4185 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4186 return -ENOMEM;
4187 }
4188
4189 memset(q->drv, 0, q->size);
4190
4191 IPW_DEBUG_INFO("exit\n");
4192
4193 return 0;
4194 }
4195
4196 static void status_queue_free(struct ipw2100_priv *priv)
4197 {
4198 IPW_DEBUG_INFO("enter\n");
4199
4200 if (priv->status_queue.drv) {
4201 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4202 priv->status_queue.drv,
4203 priv->status_queue.nic);
4204 priv->status_queue.drv = NULL;
4205 }
4206
4207 IPW_DEBUG_INFO("exit\n");
4208 }
4209
4210 static int bd_queue_allocate(struct ipw2100_priv *priv,
4211 struct ipw2100_bd_queue *q, int entries)
4212 {
4213 IPW_DEBUG_INFO("enter\n");
4214
4215 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4216
4217 q->entries = entries;
4218 q->size = entries * sizeof(struct ipw2100_bd);
4219 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4220 if (!q->drv) {
4221 IPW_DEBUG_INFO
4222 ("can't allocate shared memory for buffer descriptors\n");
4223 return -ENOMEM;
4224 }
4225 memset(q->drv, 0, q->size);
4226
4227 IPW_DEBUG_INFO("exit\n");
4228
4229 return 0;
4230 }
4231
4232 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4233 {
4234 IPW_DEBUG_INFO("enter\n");
4235
4236 if (!q)
4237 return;
4238
4239 if (q->drv) {
4240 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4241 q->drv = NULL;
4242 }
4243
4244 IPW_DEBUG_INFO("exit\n");
4245 }
4246
4247 static void bd_queue_initialize(struct ipw2100_priv *priv,
4248 struct ipw2100_bd_queue *q, u32 base, u32 size,
4249 u32 r, u32 w)
4250 {
4251 IPW_DEBUG_INFO("enter\n");
4252
4253 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4254 (u32) q->nic);
4255
4256 write_register(priv->net_dev, base, q->nic);
4257 write_register(priv->net_dev, size, q->entries);
4258 write_register(priv->net_dev, r, q->oldest);
4259 write_register(priv->net_dev, w, q->next);
4260
4261 IPW_DEBUG_INFO("exit\n");
4262 }
4263
4264 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4265 {
4266 if (priv->workqueue) {
4267 priv->stop_rf_kill = 1;
4268 priv->stop_hang_check = 1;
4269 cancel_delayed_work(&priv->reset_work);
4270 cancel_delayed_work(&priv->security_work);
4271 cancel_delayed_work(&priv->wx_event_work);
4272 cancel_delayed_work(&priv->hang_check);
4273 cancel_delayed_work(&priv->rf_kill);
4274 destroy_workqueue(priv->workqueue);
4275 priv->workqueue = NULL;
4276 }
4277 }
4278
4279 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4280 {
4281 int i, j, err = -EINVAL;
4282 void *v;
4283 dma_addr_t p;
4284
4285 IPW_DEBUG_INFO("enter\n");
4286
4287 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4288 if (err) {
4289 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4290 priv->net_dev->name);
4291 return err;
4292 }
4293
4294 priv->tx_buffers =
4295 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4296 sizeof(struct
4297 ipw2100_tx_packet),
4298 GFP_ATOMIC);
4299 if (!priv->tx_buffers) {
4300 printk(KERN_ERR DRV_NAME
4301 ": %s: alloc failed form tx buffers.\n",
4302 priv->net_dev->name);
4303 bd_queue_free(priv, &priv->tx_queue);
4304 return -ENOMEM;
4305 }
4306
4307 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4308 v = pci_alloc_consistent(priv->pci_dev,
4309 sizeof(struct ipw2100_data_header),
4310 &p);
4311 if (!v) {
4312 printk(KERN_ERR DRV_NAME
4313 ": %s: PCI alloc failed for tx " "buffers.\n",
4314 priv->net_dev->name);
4315 err = -ENOMEM;
4316 break;
4317 }
4318
4319 priv->tx_buffers[i].type = DATA;
4320 priv->tx_buffers[i].info.d_struct.data =
4321 (struct ipw2100_data_header *)v;
4322 priv->tx_buffers[i].info.d_struct.data_phys = p;
4323 priv->tx_buffers[i].info.d_struct.txb = NULL;
4324 }
4325
4326 if (i == TX_PENDED_QUEUE_LENGTH)
4327 return 0;
4328
4329 for (j = 0; j < i; j++) {
4330 pci_free_consistent(priv->pci_dev,
4331 sizeof(struct ipw2100_data_header),
4332 priv->tx_buffers[j].info.d_struct.data,
4333 priv->tx_buffers[j].info.d_struct.
4334 data_phys);
4335 }
4336
4337 kfree(priv->tx_buffers);
4338 priv->tx_buffers = NULL;
4339
4340 return err;
4341 }
4342
4343 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4344 {
4345 int i;
4346
4347 IPW_DEBUG_INFO("enter\n");
4348
4349 /*
4350 * reinitialize packet info lists
4351 */
4352 INIT_LIST_HEAD(&priv->fw_pend_list);
4353 INIT_STAT(&priv->fw_pend_stat);
4354
4355 /*
4356 * reinitialize lists
4357 */
4358 INIT_LIST_HEAD(&priv->tx_pend_list);
4359 INIT_LIST_HEAD(&priv->tx_free_list);
4360 INIT_STAT(&priv->tx_pend_stat);
4361 INIT_STAT(&priv->tx_free_stat);
4362
4363 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4364 /* We simply drop any SKBs that have been queued for
4365 * transmit */
4366 if (priv->tx_buffers[i].info.d_struct.txb) {
4367 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4368 txb);
4369 priv->tx_buffers[i].info.d_struct.txb = NULL;
4370 }
4371
4372 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4373 }
4374
4375 SET_STAT(&priv->tx_free_stat, i);
4376
4377 priv->tx_queue.oldest = 0;
4378 priv->tx_queue.available = priv->tx_queue.entries;
4379 priv->tx_queue.next = 0;
4380 INIT_STAT(&priv->txq_stat);
4381 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4382
4383 bd_queue_initialize(priv, &priv->tx_queue,
4384 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4385 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4386 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4387 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4388
4389 IPW_DEBUG_INFO("exit\n");
4390
4391 }
4392
4393 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4394 {
4395 int i;
4396
4397 IPW_DEBUG_INFO("enter\n");
4398
4399 bd_queue_free(priv, &priv->tx_queue);
4400
4401 if (!priv->tx_buffers)
4402 return;
4403
4404 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4405 if (priv->tx_buffers[i].info.d_struct.txb) {
4406 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4407 txb);
4408 priv->tx_buffers[i].info.d_struct.txb = NULL;
4409 }
4410 if (priv->tx_buffers[i].info.d_struct.data)
4411 pci_free_consistent(priv->pci_dev,
4412 sizeof(struct ipw2100_data_header),
4413 priv->tx_buffers[i].info.d_struct.
4414 data,
4415 priv->tx_buffers[i].info.d_struct.
4416 data_phys);
4417 }
4418
4419 kfree(priv->tx_buffers);
4420 priv->tx_buffers = NULL;
4421
4422 IPW_DEBUG_INFO("exit\n");
4423 }
4424
4425 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4426 {
4427 int i, j, err = -EINVAL;
4428
4429 IPW_DEBUG_INFO("enter\n");
4430
4431 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4432 if (err) {
4433 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4434 return err;
4435 }
4436
4437 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4438 if (err) {
4439 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4440 bd_queue_free(priv, &priv->rx_queue);
4441 return err;
4442 }
4443
4444 /*
4445 * allocate packets
4446 */
4447 priv->rx_buffers = (struct ipw2100_rx_packet *)
4448 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4449 GFP_KERNEL);
4450 if (!priv->rx_buffers) {
4451 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4452
4453 bd_queue_free(priv, &priv->rx_queue);
4454
4455 status_queue_free(priv);
4456
4457 return -ENOMEM;
4458 }
4459
4460 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4461 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4462
4463 err = ipw2100_alloc_skb(priv, packet);
4464 if (unlikely(err)) {
4465 err = -ENOMEM;
4466 break;
4467 }
4468
4469 /* The BD holds the cache aligned address */
4470 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4471 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4472 priv->status_queue.drv[i].status_fields = 0;
4473 }
4474
4475 if (i == RX_QUEUE_LENGTH)
4476 return 0;
4477
4478 for (j = 0; j < i; j++) {
4479 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4480 sizeof(struct ipw2100_rx_packet),
4481 PCI_DMA_FROMDEVICE);
4482 dev_kfree_skb(priv->rx_buffers[j].skb);
4483 }
4484
4485 kfree(priv->rx_buffers);
4486 priv->rx_buffers = NULL;
4487
4488 bd_queue_free(priv, &priv->rx_queue);
4489
4490 status_queue_free(priv);
4491
4492 return err;
4493 }
4494
4495 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4496 {
4497 IPW_DEBUG_INFO("enter\n");
4498
4499 priv->rx_queue.oldest = 0;
4500 priv->rx_queue.available = priv->rx_queue.entries - 1;
4501 priv->rx_queue.next = priv->rx_queue.entries - 1;
4502
4503 INIT_STAT(&priv->rxq_stat);
4504 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4505
4506 bd_queue_initialize(priv, &priv->rx_queue,
4507 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4508 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4509 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4510 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4511
4512 /* set up the status queue */
4513 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4514 priv->status_queue.nic);
4515
4516 IPW_DEBUG_INFO("exit\n");
4517 }
4518
4519 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4520 {
4521 int i;
4522
4523 IPW_DEBUG_INFO("enter\n");
4524
4525 bd_queue_free(priv, &priv->rx_queue);
4526 status_queue_free(priv);
4527
4528 if (!priv->rx_buffers)
4529 return;
4530
4531 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4532 if (priv->rx_buffers[i].rxp) {
4533 pci_unmap_single(priv->pci_dev,
4534 priv->rx_buffers[i].dma_addr,
4535 sizeof(struct ipw2100_rx),
4536 PCI_DMA_FROMDEVICE);
4537 dev_kfree_skb(priv->rx_buffers[i].skb);
4538 }
4539 }
4540
4541 kfree(priv->rx_buffers);
4542 priv->rx_buffers = NULL;
4543
4544 IPW_DEBUG_INFO("exit\n");
4545 }
4546
4547 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4548 {
4549 u32 length = ETH_ALEN;
4550 u8 mac[ETH_ALEN];
4551
4552 int err;
4553
4554 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4555 if (err) {
4556 IPW_DEBUG_INFO("MAC address read failed\n");
4557 return -EIO;
4558 }
4559 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4560 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4561
4562 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4563
4564 return 0;
4565 }
4566
4567 /********************************************************************
4568 *
4569 * Firmware Commands
4570 *
4571 ********************************************************************/
4572
4573 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4574 {
4575 struct host_command cmd = {
4576 .host_command = ADAPTER_ADDRESS,
4577 .host_command_sequence = 0,
4578 .host_command_length = ETH_ALEN
4579 };
4580 int err;
4581
4582 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4583
4584 IPW_DEBUG_INFO("enter\n");
4585
4586 if (priv->config & CFG_CUSTOM_MAC) {
4587 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4588 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4589 } else
4590 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4591 ETH_ALEN);
4592
4593 err = ipw2100_hw_send_command(priv, &cmd);
4594
4595 IPW_DEBUG_INFO("exit\n");
4596 return err;
4597 }
4598
4599 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4600 int batch_mode)
4601 {
4602 struct host_command cmd = {
4603 .host_command = PORT_TYPE,
4604 .host_command_sequence = 0,
4605 .host_command_length = sizeof(u32)
4606 };
4607 int err;
4608
4609 switch (port_type) {
4610 case IW_MODE_INFRA:
4611 cmd.host_command_parameters[0] = IPW_BSS;
4612 break;
4613 case IW_MODE_ADHOC:
4614 cmd.host_command_parameters[0] = IPW_IBSS;
4615 break;
4616 }
4617
4618 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4619 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4620
4621 if (!batch_mode) {
4622 err = ipw2100_disable_adapter(priv);
4623 if (err) {
4624 printk(KERN_ERR DRV_NAME
4625 ": %s: Could not disable adapter %d\n",
4626 priv->net_dev->name, err);
4627 return err;
4628 }
4629 }
4630
4631 /* send cmd to firmware */
4632 err = ipw2100_hw_send_command(priv, &cmd);
4633
4634 if (!batch_mode)
4635 ipw2100_enable_adapter(priv);
4636
4637 return err;
4638 }
4639
4640 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4641 int batch_mode)
4642 {
4643 struct host_command cmd = {
4644 .host_command = CHANNEL,
4645 .host_command_sequence = 0,
4646 .host_command_length = sizeof(u32)
4647 };
4648 int err;
4649
4650 cmd.host_command_parameters[0] = channel;
4651
4652 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4653
4654 /* If BSS then we don't support channel selection */
4655 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4656 return 0;
4657
4658 if ((channel != 0) &&
4659 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4660 return -EINVAL;
4661
4662 if (!batch_mode) {
4663 err = ipw2100_disable_adapter(priv);
4664 if (err)
4665 return err;
4666 }
4667
4668 err = ipw2100_hw_send_command(priv, &cmd);
4669 if (err) {
4670 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4671 return err;
4672 }
4673
4674 if (channel)
4675 priv->config |= CFG_STATIC_CHANNEL;
4676 else
4677 priv->config &= ~CFG_STATIC_CHANNEL;
4678
4679 priv->channel = channel;
4680
4681 if (!batch_mode) {
4682 err = ipw2100_enable_adapter(priv);
4683 if (err)
4684 return err;
4685 }
4686
4687 return 0;
4688 }
4689
4690 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4691 {
4692 struct host_command cmd = {
4693 .host_command = SYSTEM_CONFIG,
4694 .host_command_sequence = 0,
4695 .host_command_length = 12,
4696 };
4697 u32 ibss_mask, len = sizeof(u32);
4698 int err;
4699
4700 /* Set system configuration */
4701
4702 if (!batch_mode) {
4703 err = ipw2100_disable_adapter(priv);
4704 if (err)
4705 return err;
4706 }
4707
4708 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4709 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4710
4711 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4712 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4713
4714 if (!(priv->config & CFG_LONG_PREAMBLE))
4715 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4716
4717 err = ipw2100_get_ordinal(priv,
4718 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4719 &ibss_mask, &len);
4720 if (err)
4721 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4722
4723 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4724 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4725
4726 /* 11b only */
4727 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4728
4729 err = ipw2100_hw_send_command(priv, &cmd);
4730 if (err)
4731 return err;
4732
4733 /* If IPv6 is configured in the kernel then we don't want to filter out all
4734 * of the multicast packets as IPv6 needs some. */
4735 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4736 cmd.host_command = ADD_MULTICAST;
4737 cmd.host_command_sequence = 0;
4738 cmd.host_command_length = 0;
4739
4740 ipw2100_hw_send_command(priv, &cmd);
4741 #endif
4742 if (!batch_mode) {
4743 err = ipw2100_enable_adapter(priv);
4744 if (err)
4745 return err;
4746 }
4747
4748 return 0;
4749 }
4750
4751 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4752 int batch_mode)
4753 {
4754 struct host_command cmd = {
4755 .host_command = BASIC_TX_RATES,
4756 .host_command_sequence = 0,
4757 .host_command_length = 4
4758 };
4759 int err;
4760
4761 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4762
4763 if (!batch_mode) {
4764 err = ipw2100_disable_adapter(priv);
4765 if (err)
4766 return err;
4767 }
4768
4769 /* Set BASIC TX Rate first */
4770 ipw2100_hw_send_command(priv, &cmd);
4771
4772 /* Set TX Rate */
4773 cmd.host_command = TX_RATES;
4774 ipw2100_hw_send_command(priv, &cmd);
4775
4776 /* Set MSDU TX Rate */
4777 cmd.host_command = MSDU_TX_RATES;
4778 ipw2100_hw_send_command(priv, &cmd);
4779
4780 if (!batch_mode) {
4781 err = ipw2100_enable_adapter(priv);
4782 if (err)
4783 return err;
4784 }
4785
4786 priv->tx_rates = rate;
4787
4788 return 0;
4789 }
4790
4791 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4792 {
4793 struct host_command cmd = {
4794 .host_command = POWER_MODE,
4795 .host_command_sequence = 0,
4796 .host_command_length = 4
4797 };
4798 int err;
4799
4800 cmd.host_command_parameters[0] = power_level;
4801
4802 err = ipw2100_hw_send_command(priv, &cmd);
4803 if (err)
4804 return err;
4805
4806 if (power_level == IPW_POWER_MODE_CAM)
4807 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4808 else
4809 priv->power_mode = IPW_POWER_ENABLED | power_level;
4810
4811 #ifdef CONFIG_IPW2100_TX_POWER
4812 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4813 /* Set beacon interval */
4814 cmd.host_command = TX_POWER_INDEX;
4815 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4816
4817 err = ipw2100_hw_send_command(priv, &cmd);
4818 if (err)
4819 return err;
4820 }
4821 #endif
4822
4823 return 0;
4824 }
4825
4826 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4827 {
4828 struct host_command cmd = {
4829 .host_command = RTS_THRESHOLD,
4830 .host_command_sequence = 0,
4831 .host_command_length = 4
4832 };
4833 int err;
4834
4835 if (threshold & RTS_DISABLED)
4836 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4837 else
4838 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4839
4840 err = ipw2100_hw_send_command(priv, &cmd);
4841 if (err)
4842 return err;
4843
4844 priv->rts_threshold = threshold;
4845
4846 return 0;
4847 }
4848
4849 #if 0
4850 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4851 u32 threshold, int batch_mode)
4852 {
4853 struct host_command cmd = {
4854 .host_command = FRAG_THRESHOLD,
4855 .host_command_sequence = 0,
4856 .host_command_length = 4,
4857 .host_command_parameters[0] = 0,
4858 };
4859 int err;
4860
4861 if (!batch_mode) {
4862 err = ipw2100_disable_adapter(priv);
4863 if (err)
4864 return err;
4865 }
4866
4867 if (threshold == 0)
4868 threshold = DEFAULT_FRAG_THRESHOLD;
4869 else {
4870 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4871 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4872 }
4873
4874 cmd.host_command_parameters[0] = threshold;
4875
4876 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4877
4878 err = ipw2100_hw_send_command(priv, &cmd);
4879
4880 if (!batch_mode)
4881 ipw2100_enable_adapter(priv);
4882
4883 if (!err)
4884 priv->frag_threshold = threshold;
4885
4886 return err;
4887 }
4888 #endif
4889
4890 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4891 {
4892 struct host_command cmd = {
4893 .host_command = SHORT_RETRY_LIMIT,
4894 .host_command_sequence = 0,
4895 .host_command_length = 4
4896 };
4897 int err;
4898
4899 cmd.host_command_parameters[0] = retry;
4900
4901 err = ipw2100_hw_send_command(priv, &cmd);
4902 if (err)
4903 return err;
4904
4905 priv->short_retry_limit = retry;
4906
4907 return 0;
4908 }
4909
4910 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
4911 {
4912 struct host_command cmd = {
4913 .host_command = LONG_RETRY_LIMIT,
4914 .host_command_sequence = 0,
4915 .host_command_length = 4
4916 };
4917 int err;
4918
4919 cmd.host_command_parameters[0] = retry;
4920
4921 err = ipw2100_hw_send_command(priv, &cmd);
4922 if (err)
4923 return err;
4924
4925 priv->long_retry_limit = retry;
4926
4927 return 0;
4928 }
4929
4930 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
4931 int batch_mode)
4932 {
4933 struct host_command cmd = {
4934 .host_command = MANDATORY_BSSID,
4935 .host_command_sequence = 0,
4936 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
4937 };
4938 int err;
4939
4940 #ifdef CONFIG_IPW2100_DEBUG
4941 if (bssid != NULL)
4942 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
4943 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
4944 bssid[5]);
4945 else
4946 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
4947 #endif
4948 /* if BSSID is empty then we disable mandatory bssid mode */
4949 if (bssid != NULL)
4950 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
4951
4952 if (!batch_mode) {
4953 err = ipw2100_disable_adapter(priv);
4954 if (err)
4955 return err;
4956 }
4957
4958 err = ipw2100_hw_send_command(priv, &cmd);
4959
4960 if (!batch_mode)
4961 ipw2100_enable_adapter(priv);
4962
4963 return err;
4964 }
4965
4966 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
4967 {
4968 struct host_command cmd = {
4969 .host_command = DISASSOCIATION_BSSID,
4970 .host_command_sequence = 0,
4971 .host_command_length = ETH_ALEN
4972 };
4973 int err;
4974 int len;
4975
4976 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
4977
4978 len = ETH_ALEN;
4979 /* The Firmware currently ignores the BSSID and just disassociates from
4980 * the currently associated AP -- but in the off chance that a future
4981 * firmware does use the BSSID provided here, we go ahead and try and
4982 * set it to the currently associated AP's BSSID */
4983 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
4984
4985 err = ipw2100_hw_send_command(priv, &cmd);
4986
4987 return err;
4988 }
4989
4990 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
4991 struct ipw2100_wpa_assoc_frame *, int)
4992 __attribute__ ((unused));
4993
4994 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
4995 struct ipw2100_wpa_assoc_frame *wpa_frame,
4996 int batch_mode)
4997 {
4998 struct host_command cmd = {
4999 .host_command = SET_WPA_IE,
5000 .host_command_sequence = 0,
5001 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5002 };
5003 int err;
5004
5005 IPW_DEBUG_HC("SET_WPA_IE\n");
5006
5007 if (!batch_mode) {
5008 err = ipw2100_disable_adapter(priv);
5009 if (err)
5010 return err;
5011 }
5012
5013 memcpy(cmd.host_command_parameters, wpa_frame,
5014 sizeof(struct ipw2100_wpa_assoc_frame));
5015
5016 err = ipw2100_hw_send_command(priv, &cmd);
5017
5018 if (!batch_mode) {
5019 if (ipw2100_enable_adapter(priv))
5020 err = -EIO;
5021 }
5022
5023 return err;
5024 }
5025
5026 struct security_info_params {
5027 u32 allowed_ciphers;
5028 u16 version;
5029 u8 auth_mode;
5030 u8 replay_counters_number;
5031 u8 unicast_using_group;
5032 } __attribute__ ((packed));
5033
5034 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5035 int auth_mode,
5036 int security_level,
5037 int unicast_using_group,
5038 int batch_mode)
5039 {
5040 struct host_command cmd = {
5041 .host_command = SET_SECURITY_INFORMATION,
5042 .host_command_sequence = 0,
5043 .host_command_length = sizeof(struct security_info_params)
5044 };
5045 struct security_info_params *security =
5046 (struct security_info_params *)&cmd.host_command_parameters;
5047 int err;
5048 memset(security, 0, sizeof(*security));
5049
5050 /* If shared key AP authentication is turned on, then we need to
5051 * configure the firmware to try and use it.
5052 *
5053 * Actual data encryption/decryption is handled by the host. */
5054 security->auth_mode = auth_mode;
5055 security->unicast_using_group = unicast_using_group;
5056
5057 switch (security_level) {
5058 default:
5059 case SEC_LEVEL_0:
5060 security->allowed_ciphers = IPW_NONE_CIPHER;
5061 break;
5062 case SEC_LEVEL_1:
5063 security->allowed_ciphers = IPW_WEP40_CIPHER |
5064 IPW_WEP104_CIPHER;
5065 break;
5066 case SEC_LEVEL_2:
5067 security->allowed_ciphers = IPW_WEP40_CIPHER |
5068 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5069 break;
5070 case SEC_LEVEL_2_CKIP:
5071 security->allowed_ciphers = IPW_WEP40_CIPHER |
5072 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5073 break;
5074 case SEC_LEVEL_3:
5075 security->allowed_ciphers = IPW_WEP40_CIPHER |
5076 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5077 break;
5078 }
5079
5080 IPW_DEBUG_HC
5081 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5082 security->auth_mode, security->allowed_ciphers, security_level);
5083
5084 security->replay_counters_number = 0;
5085
5086 if (!batch_mode) {
5087 err = ipw2100_disable_adapter(priv);
5088 if (err)
5089 return err;
5090 }
5091
5092 err = ipw2100_hw_send_command(priv, &cmd);
5093
5094 if (!batch_mode)
5095 ipw2100_enable_adapter(priv);
5096
5097 return err;
5098 }
5099
5100 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5101 {
5102 struct host_command cmd = {
5103 .host_command = TX_POWER_INDEX,
5104 .host_command_sequence = 0,
5105 .host_command_length = 4
5106 };
5107 int err = 0;
5108
5109 if (tx_power != IPW_TX_POWER_DEFAULT)
5110 tx_power = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5111 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5112
5113 cmd.host_command_parameters[0] = tx_power;
5114
5115 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5116 err = ipw2100_hw_send_command(priv, &cmd);
5117 if (!err)
5118 priv->tx_power = tx_power;
5119
5120 return 0;
5121 }
5122
5123 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5124 u32 interval, int batch_mode)
5125 {
5126 struct host_command cmd = {
5127 .host_command = BEACON_INTERVAL,
5128 .host_command_sequence = 0,
5129 .host_command_length = 4
5130 };
5131 int err;
5132
5133 cmd.host_command_parameters[0] = interval;
5134
5135 IPW_DEBUG_INFO("enter\n");
5136
5137 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5138 if (!batch_mode) {
5139 err = ipw2100_disable_adapter(priv);
5140 if (err)
5141 return err;
5142 }
5143
5144 ipw2100_hw_send_command(priv, &cmd);
5145
5146 if (!batch_mode) {
5147 err = ipw2100_enable_adapter(priv);
5148 if (err)
5149 return err;
5150 }
5151 }
5152
5153 IPW_DEBUG_INFO("exit\n");
5154
5155 return 0;
5156 }
5157
5158 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5159 {
5160 ipw2100_tx_initialize(priv);
5161 ipw2100_rx_initialize(priv);
5162 ipw2100_msg_initialize(priv);
5163 }
5164
5165 void ipw2100_queues_free(struct ipw2100_priv *priv)
5166 {
5167 ipw2100_tx_free(priv);
5168 ipw2100_rx_free(priv);
5169 ipw2100_msg_free(priv);
5170 }
5171
5172 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5173 {
5174 if (ipw2100_tx_allocate(priv) ||
5175 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5176 goto fail;
5177
5178 return 0;
5179
5180 fail:
5181 ipw2100_tx_free(priv);
5182 ipw2100_rx_free(priv);
5183 ipw2100_msg_free(priv);
5184 return -ENOMEM;
5185 }
5186
5187 #define IPW_PRIVACY_CAPABLE 0x0008
5188
5189 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5190 int batch_mode)
5191 {
5192 struct host_command cmd = {
5193 .host_command = WEP_FLAGS,
5194 .host_command_sequence = 0,
5195 .host_command_length = 4
5196 };
5197 int err;
5198
5199 cmd.host_command_parameters[0] = flags;
5200
5201 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5202
5203 if (!batch_mode) {
5204 err = ipw2100_disable_adapter(priv);
5205 if (err) {
5206 printk(KERN_ERR DRV_NAME
5207 ": %s: Could not disable adapter %d\n",
5208 priv->net_dev->name, err);
5209 return err;
5210 }
5211 }
5212
5213 /* send cmd to firmware */
5214 err = ipw2100_hw_send_command(priv, &cmd);
5215
5216 if (!batch_mode)
5217 ipw2100_enable_adapter(priv);
5218
5219 return err;
5220 }
5221
5222 struct ipw2100_wep_key {
5223 u8 idx;
5224 u8 len;
5225 u8 key[13];
5226 };
5227
5228 /* Macros to ease up priting WEP keys */
5229 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5230 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5231 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5232 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5233
5234 /**
5235 * Set a the wep key
5236 *
5237 * @priv: struct to work on
5238 * @idx: index of the key we want to set
5239 * @key: ptr to the key data to set
5240 * @len: length of the buffer at @key
5241 * @batch_mode: FIXME perform the operation in batch mode, not
5242 * disabling the device.
5243 *
5244 * @returns 0 if OK, < 0 errno code on error.
5245 *
5246 * Fill out a command structure with the new wep key, length an
5247 * index and send it down the wire.
5248 */
5249 static int ipw2100_set_key(struct ipw2100_priv *priv,
5250 int idx, char *key, int len, int batch_mode)
5251 {
5252 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5253 struct host_command cmd = {
5254 .host_command = WEP_KEY_INFO,
5255 .host_command_sequence = 0,
5256 .host_command_length = sizeof(struct ipw2100_wep_key),
5257 };
5258 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5259 int err;
5260
5261 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5262 idx, keylen, len);
5263
5264 /* NOTE: We don't check cached values in case the firmware was reset
5265 * or some other problem is occuring. If the user is setting the key,
5266 * then we push the change */
5267
5268 wep_key->idx = idx;
5269 wep_key->len = keylen;
5270
5271 if (keylen) {
5272 memcpy(wep_key->key, key, len);
5273 memset(wep_key->key + len, 0, keylen - len);
5274 }
5275
5276 /* Will be optimized out on debug not being configured in */
5277 if (keylen == 0)
5278 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5279 priv->net_dev->name, wep_key->idx);
5280 else if (keylen == 5)
5281 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5282 priv->net_dev->name, wep_key->idx, wep_key->len,
5283 WEP_STR_64(wep_key->key));
5284 else
5285 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5286 "\n",
5287 priv->net_dev->name, wep_key->idx, wep_key->len,
5288 WEP_STR_128(wep_key->key));
5289
5290 if (!batch_mode) {
5291 err = ipw2100_disable_adapter(priv);
5292 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5293 if (err) {
5294 printk(KERN_ERR DRV_NAME
5295 ": %s: Could not disable adapter %d\n",
5296 priv->net_dev->name, err);
5297 return err;
5298 }
5299 }
5300
5301 /* send cmd to firmware */
5302 err = ipw2100_hw_send_command(priv, &cmd);
5303
5304 if (!batch_mode) {
5305 int err2 = ipw2100_enable_adapter(priv);
5306 if (err == 0)
5307 err = err2;
5308 }
5309 return err;
5310 }
5311
5312 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5313 int idx, int batch_mode)
5314 {
5315 struct host_command cmd = {
5316 .host_command = WEP_KEY_INDEX,
5317 .host_command_sequence = 0,
5318 .host_command_length = 4,
5319 .host_command_parameters = {idx},
5320 };
5321 int err;
5322
5323 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5324
5325 if (idx < 0 || idx > 3)
5326 return -EINVAL;
5327
5328 if (!batch_mode) {
5329 err = ipw2100_disable_adapter(priv);
5330 if (err) {
5331 printk(KERN_ERR DRV_NAME
5332 ": %s: Could not disable adapter %d\n",
5333 priv->net_dev->name, err);
5334 return err;
5335 }
5336 }
5337
5338 /* send cmd to firmware */
5339 err = ipw2100_hw_send_command(priv, &cmd);
5340
5341 if (!batch_mode)
5342 ipw2100_enable_adapter(priv);
5343
5344 return err;
5345 }
5346
5347 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5348 {
5349 int i, err, auth_mode, sec_level, use_group;
5350
5351 if (!(priv->status & STATUS_RUNNING))
5352 return 0;
5353
5354 if (!batch_mode) {
5355 err = ipw2100_disable_adapter(priv);
5356 if (err)
5357 return err;
5358 }
5359
5360 if (!priv->ieee->sec.enabled) {
5361 err =
5362 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5363 SEC_LEVEL_0, 0, 1);
5364 } else {
5365 auth_mode = IPW_AUTH_OPEN;
5366 if ((priv->ieee->sec.flags & SEC_AUTH_MODE) &&
5367 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY))
5368 auth_mode = IPW_AUTH_SHARED;
5369
5370 sec_level = SEC_LEVEL_0;
5371 if (priv->ieee->sec.flags & SEC_LEVEL)
5372 sec_level = priv->ieee->sec.level;
5373
5374 use_group = 0;
5375 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5376 use_group = priv->ieee->sec.unicast_uses_group;
5377
5378 err =
5379 ipw2100_set_security_information(priv, auth_mode, sec_level,
5380 use_group, 1);
5381 }
5382
5383 if (err)
5384 goto exit;
5385
5386 if (priv->ieee->sec.enabled) {
5387 for (i = 0; i < 4; i++) {
5388 if (!(priv->ieee->sec.flags & (1 << i))) {
5389 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5390 priv->ieee->sec.key_sizes[i] = 0;
5391 } else {
5392 err = ipw2100_set_key(priv, i,
5393 priv->ieee->sec.keys[i],
5394 priv->ieee->sec.
5395 key_sizes[i], 1);
5396 if (err)
5397 goto exit;
5398 }
5399 }
5400
5401 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5402 }
5403
5404 /* Always enable privacy so the Host can filter WEP packets if
5405 * encrypted data is sent up */
5406 err =
5407 ipw2100_set_wep_flags(priv,
5408 priv->ieee->sec.
5409 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5410 if (err)
5411 goto exit;
5412
5413 priv->status &= ~STATUS_SECURITY_UPDATED;
5414
5415 exit:
5416 if (!batch_mode)
5417 ipw2100_enable_adapter(priv);
5418
5419 return err;
5420 }
5421
5422 static void ipw2100_security_work(struct ipw2100_priv *priv)
5423 {
5424 /* If we happen to have reconnected before we get a chance to
5425 * process this, then update the security settings--which causes
5426 * a disassociation to occur */
5427 if (!(priv->status & STATUS_ASSOCIATED) &&
5428 priv->status & STATUS_SECURITY_UPDATED)
5429 ipw2100_configure_security(priv, 0);
5430 }
5431
5432 static void shim__set_security(struct net_device *dev,
5433 struct ieee80211_security *sec)
5434 {
5435 struct ipw2100_priv *priv = ieee80211_priv(dev);
5436 int i, force_update = 0;
5437
5438 down(&priv->action_sem);
5439 if (!(priv->status & STATUS_INITIALIZED))
5440 goto done;
5441
5442 for (i = 0; i < 4; i++) {
5443 if (sec->flags & (1 << i)) {
5444 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5445 if (sec->key_sizes[i] == 0)
5446 priv->ieee->sec.flags &= ~(1 << i);
5447 else
5448 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5449 sec->key_sizes[i]);
5450 if (sec->level == SEC_LEVEL_1) {
5451 priv->ieee->sec.flags |= (1 << i);
5452 priv->status |= STATUS_SECURITY_UPDATED;
5453 } else
5454 priv->ieee->sec.flags &= ~(1 << i);
5455 }
5456 }
5457
5458 if ((sec->flags & SEC_ACTIVE_KEY) &&
5459 priv->ieee->sec.active_key != sec->active_key) {
5460 if (sec->active_key <= 3) {
5461 priv->ieee->sec.active_key = sec->active_key;
5462 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5463 } else
5464 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5465
5466 priv->status |= STATUS_SECURITY_UPDATED;
5467 }
5468
5469 if ((sec->flags & SEC_AUTH_MODE) &&
5470 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5471 priv->ieee->sec.auth_mode = sec->auth_mode;
5472 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5473 priv->status |= STATUS_SECURITY_UPDATED;
5474 }
5475
5476 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5477 priv->ieee->sec.flags |= SEC_ENABLED;
5478 priv->ieee->sec.enabled = sec->enabled;
5479 priv->status |= STATUS_SECURITY_UPDATED;
5480 force_update = 1;
5481 }
5482
5483 if (sec->flags & SEC_ENCRYPT)
5484 priv->ieee->sec.encrypt = sec->encrypt;
5485
5486 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5487 priv->ieee->sec.level = sec->level;
5488 priv->ieee->sec.flags |= SEC_LEVEL;
5489 priv->status |= STATUS_SECURITY_UPDATED;
5490 }
5491
5492 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5493 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5494 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5495 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5496 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5497 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5498 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5499 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5500 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5501 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5502
5503 /* As a temporary work around to enable WPA until we figure out why
5504 * wpa_supplicant toggles the security capability of the driver, which
5505 * forces a disassocation with force_update...
5506 *
5507 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5508 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5509 ipw2100_configure_security(priv, 0);
5510 done:
5511 up(&priv->action_sem);
5512 }
5513
5514 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5515 {
5516 int err;
5517 int batch_mode = 1;
5518 u8 *bssid;
5519
5520 IPW_DEBUG_INFO("enter\n");
5521
5522 err = ipw2100_disable_adapter(priv);
5523 if (err)
5524 return err;
5525 #ifdef CONFIG_IPW2100_MONITOR
5526 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5527 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5528 if (err)
5529 return err;
5530
5531 IPW_DEBUG_INFO("exit\n");
5532
5533 return 0;
5534 }
5535 #endif /* CONFIG_IPW2100_MONITOR */
5536
5537 err = ipw2100_read_mac_address(priv);
5538 if (err)
5539 return -EIO;
5540
5541 err = ipw2100_set_mac_address(priv, batch_mode);
5542 if (err)
5543 return err;
5544
5545 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5546 if (err)
5547 return err;
5548
5549 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5550 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5551 if (err)
5552 return err;
5553 }
5554
5555 err = ipw2100_system_config(priv, batch_mode);
5556 if (err)
5557 return err;
5558
5559 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5560 if (err)
5561 return err;
5562
5563 /* Default to power mode OFF */
5564 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5565 if (err)
5566 return err;
5567
5568 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5569 if (err)
5570 return err;
5571
5572 if (priv->config & CFG_STATIC_BSSID)
5573 bssid = priv->bssid;
5574 else
5575 bssid = NULL;
5576 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5577 if (err)
5578 return err;
5579
5580 if (priv->config & CFG_STATIC_ESSID)
5581 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5582 batch_mode);
5583 else
5584 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5585 if (err)
5586 return err;
5587
5588 err = ipw2100_configure_security(priv, batch_mode);
5589 if (err)
5590 return err;
5591
5592 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5593 err =
5594 ipw2100_set_ibss_beacon_interval(priv,
5595 priv->beacon_interval,
5596 batch_mode);
5597 if (err)
5598 return err;
5599
5600 err = ipw2100_set_tx_power(priv, priv->tx_power);
5601 if (err)
5602 return err;
5603 }
5604
5605 /*
5606 err = ipw2100_set_fragmentation_threshold(
5607 priv, priv->frag_threshold, batch_mode);
5608 if (err)
5609 return err;
5610 */
5611
5612 IPW_DEBUG_INFO("exit\n");
5613
5614 return 0;
5615 }
5616
5617 /*************************************************************************
5618 *
5619 * EXTERNALLY CALLED METHODS
5620 *
5621 *************************************************************************/
5622
5623 /* This method is called by the network layer -- not to be confused with
5624 * ipw2100_set_mac_address() declared above called by this driver (and this
5625 * method as well) to talk to the firmware */
5626 static int ipw2100_set_address(struct net_device *dev, void *p)
5627 {
5628 struct ipw2100_priv *priv = ieee80211_priv(dev);
5629 struct sockaddr *addr = p;
5630 int err = 0;
5631
5632 if (!is_valid_ether_addr(addr->sa_data))
5633 return -EADDRNOTAVAIL;
5634
5635 down(&priv->action_sem);
5636
5637 priv->config |= CFG_CUSTOM_MAC;
5638 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5639
5640 err = ipw2100_set_mac_address(priv, 0);
5641 if (err)
5642 goto done;
5643
5644 priv->reset_backoff = 0;
5645 up(&priv->action_sem);
5646 ipw2100_reset_adapter(priv);
5647 return 0;
5648
5649 done:
5650 up(&priv->action_sem);
5651 return err;
5652 }
5653
5654 static int ipw2100_open(struct net_device *dev)
5655 {
5656 struct ipw2100_priv *priv = ieee80211_priv(dev);
5657 unsigned long flags;
5658 IPW_DEBUG_INFO("dev->open\n");
5659
5660 spin_lock_irqsave(&priv->low_lock, flags);
5661 if (priv->status & STATUS_ASSOCIATED) {
5662 netif_carrier_on(dev);
5663 netif_start_queue(dev);
5664 }
5665 spin_unlock_irqrestore(&priv->low_lock, flags);
5666
5667 return 0;
5668 }
5669
5670 static int ipw2100_close(struct net_device *dev)
5671 {
5672 struct ipw2100_priv *priv = ieee80211_priv(dev);
5673 unsigned long flags;
5674 struct list_head *element;
5675 struct ipw2100_tx_packet *packet;
5676
5677 IPW_DEBUG_INFO("enter\n");
5678
5679 spin_lock_irqsave(&priv->low_lock, flags);
5680
5681 if (priv->status & STATUS_ASSOCIATED)
5682 netif_carrier_off(dev);
5683 netif_stop_queue(dev);
5684
5685 /* Flush the TX queue ... */
5686 while (!list_empty(&priv->tx_pend_list)) {
5687 element = priv->tx_pend_list.next;
5688 packet = list_entry(element, struct ipw2100_tx_packet, list);
5689
5690 list_del(element);
5691 DEC_STAT(&priv->tx_pend_stat);
5692
5693 ieee80211_txb_free(packet->info.d_struct.txb);
5694 packet->info.d_struct.txb = NULL;
5695
5696 list_add_tail(element, &priv->tx_free_list);
5697 INC_STAT(&priv->tx_free_stat);
5698 }
5699 spin_unlock_irqrestore(&priv->low_lock, flags);
5700
5701 IPW_DEBUG_INFO("exit\n");
5702
5703 return 0;
5704 }
5705
5706 /*
5707 * TODO: Fix this function... its just wrong
5708 */
5709 static void ipw2100_tx_timeout(struct net_device *dev)
5710 {
5711 struct ipw2100_priv *priv = ieee80211_priv(dev);
5712
5713 priv->ieee->stats.tx_errors++;
5714
5715 #ifdef CONFIG_IPW2100_MONITOR
5716 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5717 return;
5718 #endif
5719
5720 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5721 dev->name);
5722 schedule_reset(priv);
5723 }
5724
5725 /*
5726 * TODO: reimplement it so that it reads statistics
5727 * from the adapter using ordinal tables
5728 * instead of/in addition to collecting them
5729 * in the driver
5730 */
5731 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5732 {
5733 struct ipw2100_priv *priv = ieee80211_priv(dev);
5734
5735 return &priv->ieee->stats;
5736 }
5737
5738 #if WIRELESS_EXT < 18
5739 /* Support for wpa_supplicant before WE-18, deprecated. */
5740
5741 /* following definitions must match definitions in driver_ipw.c */
5742
5743 #define IPW2100_IOCTL_WPA_SUPPLICANT SIOCIWFIRSTPRIV+30
5744
5745 #define IPW2100_CMD_SET_WPA_PARAM 1
5746 #define IPW2100_CMD_SET_WPA_IE 2
5747 #define IPW2100_CMD_SET_ENCRYPTION 3
5748 #define IPW2100_CMD_MLME 4
5749
5750 #define IPW2100_PARAM_WPA_ENABLED 1
5751 #define IPW2100_PARAM_TKIP_COUNTERMEASURES 2
5752 #define IPW2100_PARAM_DROP_UNENCRYPTED 3
5753 #define IPW2100_PARAM_PRIVACY_INVOKED 4
5754 #define IPW2100_PARAM_AUTH_ALGS 5
5755 #define IPW2100_PARAM_IEEE_802_1X 6
5756
5757 #define IPW2100_MLME_STA_DEAUTH 1
5758 #define IPW2100_MLME_STA_DISASSOC 2
5759
5760 #define IPW2100_CRYPT_ERR_UNKNOWN_ALG 2
5761 #define IPW2100_CRYPT_ERR_UNKNOWN_ADDR 3
5762 #define IPW2100_CRYPT_ERR_CRYPT_INIT_FAILED 4
5763 #define IPW2100_CRYPT_ERR_KEY_SET_FAILED 5
5764 #define IPW2100_CRYPT_ERR_TX_KEY_SET_FAILED 6
5765 #define IPW2100_CRYPT_ERR_CARD_CONF_FAILED 7
5766
5767 #define IPW2100_CRYPT_ALG_NAME_LEN 16
5768
5769 struct ipw2100_param {
5770 u32 cmd;
5771 u8 sta_addr[ETH_ALEN];
5772 union {
5773 struct {
5774 u8 name;
5775 u32 value;
5776 } wpa_param;
5777 struct {
5778 u32 len;
5779 u8 reserved[32];
5780 u8 data[0];
5781 } wpa_ie;
5782 struct {
5783 u32 command;
5784 u32 reason_code;
5785 } mlme;
5786 struct {
5787 u8 alg[IPW2100_CRYPT_ALG_NAME_LEN];
5788 u8 set_tx;
5789 u32 err;
5790 u8 idx;
5791 u8 seq[8]; /* sequence counter (set: RX, get: TX) */
5792 u16 key_len;
5793 u8 key[0];
5794 } crypt;
5795
5796 } u;
5797 };
5798
5799 /* end of driver_ipw.c code */
5800 #endif /* WIRELESS_EXT < 18 */
5801
5802 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5803 {
5804 /* This is called when wpa_supplicant loads and closes the driver
5805 * interface. */
5806 priv->ieee->wpa_enabled = value;
5807 return 0;
5808 }
5809
5810 #if WIRELESS_EXT < 18
5811 #define IW_AUTH_ALG_OPEN_SYSTEM 0x1
5812 #define IW_AUTH_ALG_SHARED_KEY 0x2
5813 #endif
5814
5815 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5816 {
5817
5818 struct ieee80211_device *ieee = priv->ieee;
5819 struct ieee80211_security sec = {
5820 .flags = SEC_AUTH_MODE,
5821 };
5822 int ret = 0;
5823
5824 if (value & IW_AUTH_ALG_SHARED_KEY) {
5825 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5826 ieee->open_wep = 0;
5827 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5828 sec.auth_mode = WLAN_AUTH_OPEN;
5829 ieee->open_wep = 1;
5830 } else
5831 return -EINVAL;
5832
5833 if (ieee->set_security)
5834 ieee->set_security(ieee->dev, &sec);
5835 else
5836 ret = -EOPNOTSUPP;
5837
5838 return ret;
5839 }
5840
5841 void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5842 char *wpa_ie, int wpa_ie_len)
5843 {
5844
5845 struct ipw2100_wpa_assoc_frame frame;
5846
5847 frame.fixed_ie_mask = 0;
5848
5849 /* copy WPA IE */
5850 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5851 frame.var_ie_len = wpa_ie_len;
5852
5853 /* make sure WPA is enabled */
5854 ipw2100_wpa_enable(priv, 1);
5855 ipw2100_set_wpa_ie(priv, &frame, 0);
5856 }
5857
5858 #if WIRELESS_EXT < 18
5859 static int ipw2100_wpa_set_param(struct net_device *dev, u8 name, u32 value)
5860 {
5861 struct ipw2100_priv *priv = ieee80211_priv(dev);
5862 struct ieee80211_crypt_data *crypt;
5863 unsigned long flags;
5864 int ret = 0;
5865
5866 switch (name) {
5867 case IPW2100_PARAM_WPA_ENABLED:
5868 ret = ipw2100_wpa_enable(priv, value);
5869 break;
5870
5871 case IPW2100_PARAM_TKIP_COUNTERMEASURES:
5872 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
5873 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
5874 break;
5875
5876 flags = crypt->ops->get_flags(crypt->priv);
5877
5878 if (value)
5879 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
5880 else
5881 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
5882
5883 crypt->ops->set_flags(flags, crypt->priv);
5884
5885 break;
5886
5887 case IPW2100_PARAM_DROP_UNENCRYPTED:{
5888 /* See IW_AUTH_DROP_UNENCRYPTED handling for details */
5889 struct ieee80211_security sec = {
5890 .flags = SEC_ENABLED,
5891 .enabled = value,
5892 };
5893 priv->ieee->drop_unencrypted = value;
5894 /* We only change SEC_LEVEL for open mode. Others
5895 * are set by ipw_wpa_set_encryption.
5896 */
5897 if (!value) {
5898 sec.flags |= SEC_LEVEL;
5899 sec.level = SEC_LEVEL_0;
5900 } else {
5901 sec.flags |= SEC_LEVEL;
5902 sec.level = SEC_LEVEL_1;
5903 }
5904 if (priv->ieee->set_security)
5905 priv->ieee->set_security(priv->ieee->dev, &sec);
5906 break;
5907 }
5908
5909 case IPW2100_PARAM_PRIVACY_INVOKED:
5910 priv->ieee->privacy_invoked = value;
5911 break;
5912
5913 case IPW2100_PARAM_AUTH_ALGS:
5914 ret = ipw2100_wpa_set_auth_algs(priv, value);
5915 break;
5916
5917 case IPW2100_PARAM_IEEE_802_1X:
5918 priv->ieee->ieee802_1x = value;
5919 break;
5920
5921 default:
5922 printk(KERN_ERR DRV_NAME ": %s: Unknown WPA param: %d\n",
5923 dev->name, name);
5924 ret = -EOPNOTSUPP;
5925 }
5926
5927 return ret;
5928 }
5929
5930 static int ipw2100_wpa_mlme(struct net_device *dev, int command, int reason)
5931 {
5932
5933 struct ipw2100_priv *priv = ieee80211_priv(dev);
5934 int ret = 0;
5935
5936 switch (command) {
5937 case IPW2100_MLME_STA_DEAUTH:
5938 // silently ignore
5939 break;
5940
5941 case IPW2100_MLME_STA_DISASSOC:
5942 ipw2100_disassociate_bssid(priv);
5943 break;
5944
5945 default:
5946 printk(KERN_ERR DRV_NAME ": %s: Unknown MLME request: %d\n",
5947 dev->name, command);
5948 ret = -EOPNOTSUPP;
5949 }
5950
5951 return ret;
5952 }
5953
5954 static int ipw2100_wpa_set_wpa_ie(struct net_device *dev,
5955 struct ipw2100_param *param, int plen)
5956 {
5957
5958 struct ipw2100_priv *priv = ieee80211_priv(dev);
5959 struct ieee80211_device *ieee = priv->ieee;
5960 u8 *buf;
5961
5962 if (!ieee->wpa_enabled)
5963 return -EOPNOTSUPP;
5964
5965 if (param->u.wpa_ie.len > MAX_WPA_IE_LEN ||
5966 (param->u.wpa_ie.len && param->u.wpa_ie.data == NULL))
5967 return -EINVAL;
5968
5969 if (param->u.wpa_ie.len) {
5970 buf = kmalloc(param->u.wpa_ie.len, GFP_KERNEL);
5971 if (buf == NULL)
5972 return -ENOMEM;
5973
5974 memcpy(buf, param->u.wpa_ie.data, param->u.wpa_ie.len);
5975
5976 kfree(ieee->wpa_ie);
5977 ieee->wpa_ie = buf;
5978 ieee->wpa_ie_len = param->u.wpa_ie.len;
5979
5980 } else {
5981 kfree(ieee->wpa_ie);
5982 ieee->wpa_ie = NULL;
5983 ieee->wpa_ie_len = 0;
5984 }
5985
5986 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
5987
5988 return 0;
5989 }
5990
5991 /* implementation borrowed from hostap driver */
5992
5993 static int ipw2100_wpa_set_encryption(struct net_device *dev,
5994 struct ipw2100_param *param,
5995 int param_len)
5996 {
5997 int ret = 0;
5998 struct ipw2100_priv *priv = ieee80211_priv(dev);
5999 struct ieee80211_device *ieee = priv->ieee;
6000 struct ieee80211_crypto_ops *ops;
6001 struct ieee80211_crypt_data **crypt;
6002
6003 struct ieee80211_security sec = {
6004 .flags = 0,
6005 };
6006
6007 param->u.crypt.err = 0;
6008 param->u.crypt.alg[IPW2100_CRYPT_ALG_NAME_LEN - 1] = '\0';
6009
6010 if (param_len !=
6011 (int)((char *)param->u.crypt.key - (char *)param) +
6012 param->u.crypt.key_len) {
6013 IPW_DEBUG_INFO("Len mismatch %d, %d\n", param_len,
6014 param->u.crypt.key_len);
6015 return -EINVAL;
6016 }
6017 if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
6018 param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
6019 param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff) {
6020 if (param->u.crypt.idx >= WEP_KEYS)
6021 return -EINVAL;
6022 crypt = &ieee->crypt[param->u.crypt.idx];
6023 } else {
6024 return -EINVAL;
6025 }
6026
6027 sec.flags |= SEC_ENABLED | SEC_ENCRYPT;
6028 if (strcmp(param->u.crypt.alg, "none") == 0) {
6029 if (crypt) {
6030 sec.enabled = 0;
6031 sec.encrypt = 0;
6032 sec.level = SEC_LEVEL_0;
6033 sec.flags |= SEC_LEVEL;
6034 ieee80211_crypt_delayed_deinit(ieee, crypt);
6035 }
6036 goto done;
6037 }
6038 sec.enabled = 1;
6039 sec.encrypt = 1;
6040
6041 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6042 if (ops == NULL && strcmp(param->u.crypt.alg, "WEP") == 0) {
6043 request_module("ieee80211_crypt_wep");
6044 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6045 } else if (ops == NULL && strcmp(param->u.crypt.alg, "TKIP") == 0) {
6046 request_module("ieee80211_crypt_tkip");
6047 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6048 } else if (ops == NULL && strcmp(param->u.crypt.alg, "CCMP") == 0) {
6049 request_module("ieee80211_crypt_ccmp");
6050 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6051 }
6052 if (ops == NULL) {
6053 IPW_DEBUG_INFO("%s: unknown crypto alg '%s'\n",
6054 dev->name, param->u.crypt.alg);
6055 param->u.crypt.err = IPW2100_CRYPT_ERR_UNKNOWN_ALG;
6056 ret = -EINVAL;
6057 goto done;
6058 }
6059
6060 if (*crypt == NULL || (*crypt)->ops != ops) {
6061 struct ieee80211_crypt_data *new_crypt;
6062
6063 ieee80211_crypt_delayed_deinit(ieee, crypt);
6064
6065 new_crypt = kzalloc(sizeof(struct ieee80211_crypt_data), GFP_KERNEL);
6066 if (new_crypt == NULL) {
6067 ret = -ENOMEM;
6068 goto done;
6069 }
6070 new_crypt->ops = ops;
6071 if (new_crypt->ops && try_module_get(new_crypt->ops->owner))
6072 new_crypt->priv =
6073 new_crypt->ops->init(param->u.crypt.idx);
6074
6075 if (new_crypt->priv == NULL) {
6076 kfree(new_crypt);
6077 param->u.crypt.err =
6078 IPW2100_CRYPT_ERR_CRYPT_INIT_FAILED;
6079 ret = -EINVAL;
6080 goto done;
6081 }
6082
6083 *crypt = new_crypt;
6084 }
6085
6086 if (param->u.crypt.key_len > 0 && (*crypt)->ops->set_key &&
6087 (*crypt)->ops->set_key(param->u.crypt.key,
6088 param->u.crypt.key_len, param->u.crypt.seq,
6089 (*crypt)->priv) < 0) {
6090 IPW_DEBUG_INFO("%s: key setting failed\n", dev->name);
6091 param->u.crypt.err = IPW2100_CRYPT_ERR_KEY_SET_FAILED;
6092 ret = -EINVAL;
6093 goto done;
6094 }
6095
6096 if (param->u.crypt.set_tx) {
6097 ieee->tx_keyidx = param->u.crypt.idx;
6098 sec.active_key = param->u.crypt.idx;
6099 sec.flags |= SEC_ACTIVE_KEY;
6100 }
6101
6102 if (ops->name != NULL) {
6103
6104 if (strcmp(ops->name, "WEP") == 0) {
6105 memcpy(sec.keys[param->u.crypt.idx],
6106 param->u.crypt.key, param->u.crypt.key_len);
6107 sec.key_sizes[param->u.crypt.idx] =
6108 param->u.crypt.key_len;
6109 sec.flags |= (1 << param->u.crypt.idx);
6110 sec.flags |= SEC_LEVEL;
6111 sec.level = SEC_LEVEL_1;
6112 } else if (strcmp(ops->name, "TKIP") == 0) {
6113 sec.flags |= SEC_LEVEL;
6114 sec.level = SEC_LEVEL_2;
6115 } else if (strcmp(ops->name, "CCMP") == 0) {
6116 sec.flags |= SEC_LEVEL;
6117 sec.level = SEC_LEVEL_3;
6118 }
6119 }
6120 done:
6121 if (ieee->set_security)
6122 ieee->set_security(ieee->dev, &sec);
6123
6124 /* Do not reset port if card is in Managed mode since resetting will
6125 * generate new IEEE 802.11 authentication which may end up in looping
6126 * with IEEE 802.1X. If your hardware requires a reset after WEP
6127 * configuration (for example... Prism2), implement the reset_port in
6128 * the callbacks structures used to initialize the 802.11 stack. */
6129 if (ieee->reset_on_keychange &&
6130 ieee->iw_mode != IW_MODE_INFRA &&
6131 ieee->reset_port && ieee->reset_port(dev)) {
6132 IPW_DEBUG_INFO("%s: reset_port failed\n", dev->name);
6133 param->u.crypt.err = IPW2100_CRYPT_ERR_CARD_CONF_FAILED;
6134 return -EINVAL;
6135 }
6136
6137 return ret;
6138 }
6139
6140 static int ipw2100_wpa_supplicant(struct net_device *dev, struct iw_point *p)
6141 {
6142
6143 struct ipw2100_param *param;
6144 int ret = 0;
6145
6146 IPW_DEBUG_IOCTL("wpa_supplicant: len=%d\n", p->length);
6147
6148 if (p->length < sizeof(struct ipw2100_param) || !p->pointer)
6149 return -EINVAL;
6150
6151 param = (struct ipw2100_param *)kmalloc(p->length, GFP_KERNEL);
6152 if (param == NULL)
6153 return -ENOMEM;
6154
6155 if (copy_from_user(param, p->pointer, p->length)) {
6156 kfree(param);
6157 return -EFAULT;
6158 }
6159
6160 switch (param->cmd) {
6161
6162 case IPW2100_CMD_SET_WPA_PARAM:
6163 ret = ipw2100_wpa_set_param(dev, param->u.wpa_param.name,
6164 param->u.wpa_param.value);
6165 break;
6166
6167 case IPW2100_CMD_SET_WPA_IE:
6168 ret = ipw2100_wpa_set_wpa_ie(dev, param, p->length);
6169 break;
6170
6171 case IPW2100_CMD_SET_ENCRYPTION:
6172 ret = ipw2100_wpa_set_encryption(dev, param, p->length);
6173 break;
6174
6175 case IPW2100_CMD_MLME:
6176 ret = ipw2100_wpa_mlme(dev, param->u.mlme.command,
6177 param->u.mlme.reason_code);
6178 break;
6179
6180 default:
6181 printk(KERN_ERR DRV_NAME
6182 ": %s: Unknown WPA supplicant request: %d\n", dev->name,
6183 param->cmd);
6184 ret = -EOPNOTSUPP;
6185
6186 }
6187
6188 if (ret == 0 && copy_to_user(p->pointer, param, p->length))
6189 ret = -EFAULT;
6190
6191 kfree(param);
6192 return ret;
6193 }
6194
6195 static int ipw2100_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6196 {
6197 struct iwreq *wrq = (struct iwreq *)rq;
6198 int ret = -1;
6199 switch (cmd) {
6200 case IPW2100_IOCTL_WPA_SUPPLICANT:
6201 ret = ipw2100_wpa_supplicant(dev, &wrq->u.data);
6202 return ret;
6203
6204 default:
6205 return -EOPNOTSUPP;
6206 }
6207
6208 return -EOPNOTSUPP;
6209 }
6210 #endif /* WIRELESS_EXT < 18 */
6211
6212 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
6213 struct ethtool_drvinfo *info)
6214 {
6215 struct ipw2100_priv *priv = ieee80211_priv(dev);
6216 char fw_ver[64], ucode_ver[64];
6217
6218 strcpy(info->driver, DRV_NAME);
6219 strcpy(info->version, DRV_VERSION);
6220
6221 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
6222 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
6223
6224 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
6225 fw_ver, priv->eeprom_version, ucode_ver);
6226
6227 strcpy(info->bus_info, pci_name(priv->pci_dev));
6228 }
6229
6230 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6231 {
6232 struct ipw2100_priv *priv = ieee80211_priv(dev);
6233 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6234 }
6235
6236 static struct ethtool_ops ipw2100_ethtool_ops = {
6237 .get_link = ipw2100_ethtool_get_link,
6238 .get_drvinfo = ipw_ethtool_get_drvinfo,
6239 };
6240
6241 static void ipw2100_hang_check(void *adapter)
6242 {
6243 struct ipw2100_priv *priv = adapter;
6244 unsigned long flags;
6245 u32 rtc = 0xa5a5a5a5;
6246 u32 len = sizeof(rtc);
6247 int restart = 0;
6248
6249 spin_lock_irqsave(&priv->low_lock, flags);
6250
6251 if (priv->fatal_error != 0) {
6252 /* If fatal_error is set then we need to restart */
6253 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6254 priv->net_dev->name);
6255
6256 restart = 1;
6257 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6258 (rtc == priv->last_rtc)) {
6259 /* Check if firmware is hung */
6260 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6261 priv->net_dev->name);
6262
6263 restart = 1;
6264 }
6265
6266 if (restart) {
6267 /* Kill timer */
6268 priv->stop_hang_check = 1;
6269 priv->hangs++;
6270
6271 /* Restart the NIC */
6272 schedule_reset(priv);
6273 }
6274
6275 priv->last_rtc = rtc;
6276
6277 if (!priv->stop_hang_check)
6278 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6279
6280 spin_unlock_irqrestore(&priv->low_lock, flags);
6281 }
6282
6283 static void ipw2100_rf_kill(void *adapter)
6284 {
6285 struct ipw2100_priv *priv = adapter;
6286 unsigned long flags;
6287
6288 spin_lock_irqsave(&priv->low_lock, flags);
6289
6290 if (rf_kill_active(priv)) {
6291 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6292 if (!priv->stop_rf_kill)
6293 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
6294 goto exit_unlock;
6295 }
6296
6297 /* RF Kill is now disabled, so bring the device back up */
6298
6299 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6300 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6301 "device\n");
6302 schedule_reset(priv);
6303 } else
6304 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6305 "enabled\n");
6306
6307 exit_unlock:
6308 spin_unlock_irqrestore(&priv->low_lock, flags);
6309 }
6310
6311 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6312
6313 /* Look into using netdev destructor to shutdown ieee80211? */
6314
6315 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6316 void __iomem * base_addr,
6317 unsigned long mem_start,
6318 unsigned long mem_len)
6319 {
6320 struct ipw2100_priv *priv;
6321 struct net_device *dev;
6322
6323 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6324 if (!dev)
6325 return NULL;
6326 priv = ieee80211_priv(dev);
6327 priv->ieee = netdev_priv(dev);
6328 priv->pci_dev = pci_dev;
6329 priv->net_dev = dev;
6330
6331 priv->ieee->hard_start_xmit = ipw2100_tx;
6332 priv->ieee->set_security = shim__set_security;
6333
6334 priv->ieee->perfect_rssi = -20;
6335 priv->ieee->worst_rssi = -85;
6336
6337 dev->open = ipw2100_open;
6338 dev->stop = ipw2100_close;
6339 dev->init = ipw2100_net_init;
6340 #if WIRELESS_EXT < 18
6341 dev->do_ioctl = ipw2100_ioctl;
6342 #endif
6343 dev->get_stats = ipw2100_stats;
6344 dev->ethtool_ops = &ipw2100_ethtool_ops;
6345 dev->tx_timeout = ipw2100_tx_timeout;
6346 dev->wireless_handlers = &ipw2100_wx_handler_def;
6347 priv->wireless_data.ieee80211 = priv->ieee;
6348 dev->wireless_data = &priv->wireless_data;
6349 dev->set_mac_address = ipw2100_set_address;
6350 dev->watchdog_timeo = 3 * HZ;
6351 dev->irq = 0;
6352
6353 dev->base_addr = (unsigned long)base_addr;
6354 dev->mem_start = mem_start;
6355 dev->mem_end = dev->mem_start + mem_len - 1;
6356
6357 /* NOTE: We don't use the wireless_handlers hook
6358 * in dev as the system will start throwing WX requests
6359 * to us before we're actually initialized and it just
6360 * ends up causing problems. So, we just handle
6361 * the WX extensions through the ipw2100_ioctl interface */
6362
6363 /* memset() puts everything to 0, so we only have explicitely set
6364 * those values that need to be something else */
6365
6366 /* If power management is turned on, default to AUTO mode */
6367 priv->power_mode = IPW_POWER_AUTO;
6368
6369 #ifdef CONFIG_IPW2100_MONITOR
6370 priv->config |= CFG_CRC_CHECK;
6371 #endif
6372 priv->ieee->wpa_enabled = 0;
6373 priv->ieee->drop_unencrypted = 0;
6374 priv->ieee->privacy_invoked = 0;
6375 priv->ieee->ieee802_1x = 1;
6376
6377 /* Set module parameters */
6378 switch (mode) {
6379 case 1:
6380 priv->ieee->iw_mode = IW_MODE_ADHOC;
6381 break;
6382 #ifdef CONFIG_IPW2100_MONITOR
6383 case 2:
6384 priv->ieee->iw_mode = IW_MODE_MONITOR;
6385 break;
6386 #endif
6387 default:
6388 case 0:
6389 priv->ieee->iw_mode = IW_MODE_INFRA;
6390 break;
6391 }
6392
6393 if (disable == 1)
6394 priv->status |= STATUS_RF_KILL_SW;
6395
6396 if (channel != 0 &&
6397 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6398 priv->config |= CFG_STATIC_CHANNEL;
6399 priv->channel = channel;
6400 }
6401
6402 if (associate)
6403 priv->config |= CFG_ASSOCIATE;
6404
6405 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6406 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6407 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6408 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6409 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6410 priv->tx_power = IPW_TX_POWER_DEFAULT;
6411 priv->tx_rates = DEFAULT_TX_RATES;
6412
6413 strcpy(priv->nick, "ipw2100");
6414
6415 spin_lock_init(&priv->low_lock);
6416 sema_init(&priv->action_sem, 1);
6417 sema_init(&priv->adapter_sem, 1);
6418
6419 init_waitqueue_head(&priv->wait_command_queue);
6420
6421 netif_carrier_off(dev);
6422
6423 INIT_LIST_HEAD(&priv->msg_free_list);
6424 INIT_LIST_HEAD(&priv->msg_pend_list);
6425 INIT_STAT(&priv->msg_free_stat);
6426 INIT_STAT(&priv->msg_pend_stat);
6427
6428 INIT_LIST_HEAD(&priv->tx_free_list);
6429 INIT_LIST_HEAD(&priv->tx_pend_list);
6430 INIT_STAT(&priv->tx_free_stat);
6431 INIT_STAT(&priv->tx_pend_stat);
6432
6433 INIT_LIST_HEAD(&priv->fw_pend_list);
6434 INIT_STAT(&priv->fw_pend_stat);
6435
6436 priv->workqueue = create_workqueue(DRV_NAME);
6437
6438 INIT_WORK(&priv->reset_work,
6439 (void (*)(void *))ipw2100_reset_adapter, priv);
6440 INIT_WORK(&priv->security_work,
6441 (void (*)(void *))ipw2100_security_work, priv);
6442 INIT_WORK(&priv->wx_event_work,
6443 (void (*)(void *))ipw2100_wx_event_work, priv);
6444 INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6445 INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6446
6447 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6448 ipw2100_irq_tasklet, (unsigned long)priv);
6449
6450 /* NOTE: We do not start the deferred work for status checks yet */
6451 priv->stop_rf_kill = 1;
6452 priv->stop_hang_check = 1;
6453
6454 return dev;
6455 }
6456
6457 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6458 const struct pci_device_id *ent)
6459 {
6460 unsigned long mem_start, mem_len, mem_flags;
6461 void __iomem *base_addr = NULL;
6462 struct net_device *dev = NULL;
6463 struct ipw2100_priv *priv = NULL;
6464 int err = 0;
6465 int registered = 0;
6466 u32 val;
6467
6468 IPW_DEBUG_INFO("enter\n");
6469
6470 mem_start = pci_resource_start(pci_dev, 0);
6471 mem_len = pci_resource_len(pci_dev, 0);
6472 mem_flags = pci_resource_flags(pci_dev, 0);
6473
6474 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6475 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6476 err = -ENODEV;
6477 goto fail;
6478 }
6479
6480 base_addr = ioremap_nocache(mem_start, mem_len);
6481 if (!base_addr) {
6482 printk(KERN_WARNING DRV_NAME
6483 "Error calling ioremap_nocache.\n");
6484 err = -EIO;
6485 goto fail;
6486 }
6487
6488 /* allocate and initialize our net_device */
6489 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6490 if (!dev) {
6491 printk(KERN_WARNING DRV_NAME
6492 "Error calling ipw2100_alloc_device.\n");
6493 err = -ENOMEM;
6494 goto fail;
6495 }
6496
6497 /* set up PCI mappings for device */
6498 err = pci_enable_device(pci_dev);
6499 if (err) {
6500 printk(KERN_WARNING DRV_NAME
6501 "Error calling pci_enable_device.\n");
6502 return err;
6503 }
6504
6505 priv = ieee80211_priv(dev);
6506
6507 pci_set_master(pci_dev);
6508 pci_set_drvdata(pci_dev, priv);
6509
6510 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6511 if (err) {
6512 printk(KERN_WARNING DRV_NAME
6513 "Error calling pci_set_dma_mask.\n");
6514 pci_disable_device(pci_dev);
6515 return err;
6516 }
6517
6518 err = pci_request_regions(pci_dev, DRV_NAME);
6519 if (err) {
6520 printk(KERN_WARNING DRV_NAME
6521 "Error calling pci_request_regions.\n");
6522 pci_disable_device(pci_dev);
6523 return err;
6524 }
6525
6526 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6527 * PCI Tx retries from interfering with C3 CPU state */
6528 pci_read_config_dword(pci_dev, 0x40, &val);
6529 if ((val & 0x0000ff00) != 0)
6530 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6531
6532 pci_set_power_state(pci_dev, PCI_D0);
6533
6534 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6535 printk(KERN_WARNING DRV_NAME
6536 "Device not found via register read.\n");
6537 err = -ENODEV;
6538 goto fail;
6539 }
6540
6541 SET_NETDEV_DEV(dev, &pci_dev->dev);
6542
6543 /* Force interrupts to be shut off on the device */
6544 priv->status |= STATUS_INT_ENABLED;
6545 ipw2100_disable_interrupts(priv);
6546
6547 /* Allocate and initialize the Tx/Rx queues and lists */
6548 if (ipw2100_queues_allocate(priv)) {
6549 printk(KERN_WARNING DRV_NAME
6550 "Error calilng ipw2100_queues_allocate.\n");
6551 err = -ENOMEM;
6552 goto fail;
6553 }
6554 ipw2100_queues_initialize(priv);
6555
6556 err = request_irq(pci_dev->irq,
6557 ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6558 if (err) {
6559 printk(KERN_WARNING DRV_NAME
6560 "Error calling request_irq: %d.\n", pci_dev->irq);
6561 goto fail;
6562 }
6563 dev->irq = pci_dev->irq;
6564
6565 IPW_DEBUG_INFO("Attempting to register device...\n");
6566
6567 SET_MODULE_OWNER(dev);
6568
6569 printk(KERN_INFO DRV_NAME
6570 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6571
6572 /* Bring up the interface. Pre 0.46, after we registered the
6573 * network device we would call ipw2100_up. This introduced a race
6574 * condition with newer hotplug configurations (network was coming
6575 * up and making calls before the device was initialized).
6576 *
6577 * If we called ipw2100_up before we registered the device, then the
6578 * device name wasn't registered. So, we instead use the net_dev->init
6579 * member to call a function that then just turns and calls ipw2100_up.
6580 * net_dev->init is called after name allocation but before the
6581 * notifier chain is called */
6582 down(&priv->action_sem);
6583 err = register_netdev(dev);
6584 if (err) {
6585 printk(KERN_WARNING DRV_NAME
6586 "Error calling register_netdev.\n");
6587 goto fail_unlock;
6588 }
6589 registered = 1;
6590
6591 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6592
6593 /* perform this after register_netdev so that dev->name is set */
6594 sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6595
6596 /* If the RF Kill switch is disabled, go ahead and complete the
6597 * startup sequence */
6598 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6599 /* Enable the adapter - sends HOST_COMPLETE */
6600 if (ipw2100_enable_adapter(priv)) {
6601 printk(KERN_WARNING DRV_NAME
6602 ": %s: failed in call to enable adapter.\n",
6603 priv->net_dev->name);
6604 ipw2100_hw_stop_adapter(priv);
6605 err = -EIO;
6606 goto fail_unlock;
6607 }
6608
6609 /* Start a scan . . . */
6610 ipw2100_set_scan_options(priv);
6611 ipw2100_start_scan(priv);
6612 }
6613
6614 IPW_DEBUG_INFO("exit\n");
6615
6616 priv->status |= STATUS_INITIALIZED;
6617
6618 up(&priv->action_sem);
6619
6620 return 0;
6621
6622 fail_unlock:
6623 up(&priv->action_sem);
6624
6625 fail:
6626 if (dev) {
6627 if (registered)
6628 unregister_netdev(dev);
6629
6630 ipw2100_hw_stop_adapter(priv);
6631
6632 ipw2100_disable_interrupts(priv);
6633
6634 if (dev->irq)
6635 free_irq(dev->irq, priv);
6636
6637 ipw2100_kill_workqueue(priv);
6638
6639 /* These are safe to call even if they weren't allocated */
6640 ipw2100_queues_free(priv);
6641 sysfs_remove_group(&pci_dev->dev.kobj,
6642 &ipw2100_attribute_group);
6643
6644 free_ieee80211(dev);
6645 pci_set_drvdata(pci_dev, NULL);
6646 }
6647
6648 if (base_addr)
6649 iounmap(base_addr);
6650
6651 pci_release_regions(pci_dev);
6652 pci_disable_device(pci_dev);
6653
6654 return err;
6655 }
6656
6657 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6658 {
6659 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6660 struct net_device *dev;
6661
6662 if (priv) {
6663 down(&priv->action_sem);
6664
6665 priv->status &= ~STATUS_INITIALIZED;
6666
6667 dev = priv->net_dev;
6668 sysfs_remove_group(&pci_dev->dev.kobj,
6669 &ipw2100_attribute_group);
6670
6671 #ifdef CONFIG_PM
6672 if (ipw2100_firmware.version)
6673 ipw2100_release_firmware(priv, &ipw2100_firmware);
6674 #endif
6675 /* Take down the hardware */
6676 ipw2100_down(priv);
6677
6678 /* Release the semaphore so that the network subsystem can
6679 * complete any needed calls into the driver... */
6680 up(&priv->action_sem);
6681
6682 /* Unregister the device first - this results in close()
6683 * being called if the device is open. If we free storage
6684 * first, then close() will crash. */
6685 unregister_netdev(dev);
6686
6687 /* ipw2100_down will ensure that there is no more pending work
6688 * in the workqueue's, so we can safely remove them now. */
6689 ipw2100_kill_workqueue(priv);
6690
6691 ipw2100_queues_free(priv);
6692
6693 /* Free potential debugging firmware snapshot */
6694 ipw2100_snapshot_free(priv);
6695
6696 if (dev->irq)
6697 free_irq(dev->irq, priv);
6698
6699 if (dev->base_addr)
6700 iounmap((void __iomem *)dev->base_addr);
6701
6702 free_ieee80211(dev);
6703 }
6704
6705 pci_release_regions(pci_dev);
6706 pci_disable_device(pci_dev);
6707
6708 IPW_DEBUG_INFO("exit\n");
6709 }
6710
6711 #ifdef CONFIG_PM
6712 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6713 {
6714 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6715 struct net_device *dev = priv->net_dev;
6716
6717 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6718
6719 down(&priv->action_sem);
6720 if (priv->status & STATUS_INITIALIZED) {
6721 /* Take down the device; powers it off, etc. */
6722 ipw2100_down(priv);
6723 }
6724
6725 /* Remove the PRESENT state of the device */
6726 netif_device_detach(dev);
6727
6728 pci_save_state(pci_dev);
6729 pci_disable_device(pci_dev);
6730 pci_set_power_state(pci_dev, PCI_D3hot);
6731
6732 up(&priv->action_sem);
6733
6734 return 0;
6735 }
6736
6737 static int ipw2100_resume(struct pci_dev *pci_dev)
6738 {
6739 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6740 struct net_device *dev = priv->net_dev;
6741 u32 val;
6742
6743 if (IPW2100_PM_DISABLED)
6744 return 0;
6745
6746 down(&priv->action_sem);
6747
6748 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6749
6750 pci_set_power_state(pci_dev, PCI_D0);
6751 pci_enable_device(pci_dev);
6752 pci_restore_state(pci_dev);
6753
6754 /*
6755 * Suspend/Resume resets the PCI configuration space, so we have to
6756 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6757 * from interfering with C3 CPU state. pci_restore_state won't help
6758 * here since it only restores the first 64 bytes pci config header.
6759 */
6760 pci_read_config_dword(pci_dev, 0x40, &val);
6761 if ((val & 0x0000ff00) != 0)
6762 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6763
6764 /* Set the device back into the PRESENT state; this will also wake
6765 * the queue of needed */
6766 netif_device_attach(dev);
6767
6768 /* Bring the device back up */
6769 if (!(priv->status & STATUS_RF_KILL_SW))
6770 ipw2100_up(priv, 0);
6771
6772 up(&priv->action_sem);
6773
6774 return 0;
6775 }
6776 #endif
6777
6778 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6779
6780 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6781 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6782 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6783 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6784 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6785 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6786 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6787 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6788 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6789 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6790 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6791 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6792 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6793 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6794
6795 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6796 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6797 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6798 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6799 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6800
6801 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6802 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6803 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6804 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6805 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6806 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6807 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6808
6809 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6810
6811 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6812 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6813 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6814 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6815 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6816 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6817 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6818
6819 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6820 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6821 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6822 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6823 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6824 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6825
6826 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6827 {0,},
6828 };
6829
6830 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6831
6832 static struct pci_driver ipw2100_pci_driver = {
6833 .name = DRV_NAME,
6834 .id_table = ipw2100_pci_id_table,
6835 .probe = ipw2100_pci_init_one,
6836 .remove = __devexit_p(ipw2100_pci_remove_one),
6837 #ifdef CONFIG_PM
6838 .suspend = ipw2100_suspend,
6839 .resume = ipw2100_resume,
6840 #endif
6841 };
6842
6843 /**
6844 * Initialize the ipw2100 driver/module
6845 *
6846 * @returns 0 if ok, < 0 errno node con error.
6847 *
6848 * Note: we cannot init the /proc stuff until the PCI driver is there,
6849 * or we risk an unlikely race condition on someone accessing
6850 * uninitialized data in the PCI dev struct through /proc.
6851 */
6852 static int __init ipw2100_init(void)
6853 {
6854 int ret;
6855
6856 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6857 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6858
6859 ret = pci_module_init(&ipw2100_pci_driver);
6860
6861 #ifdef CONFIG_IPW2100_DEBUG
6862 ipw2100_debug_level = debug;
6863 driver_create_file(&ipw2100_pci_driver.driver,
6864 &driver_attr_debug_level);
6865 #endif
6866
6867 return ret;
6868 }
6869
6870 /**
6871 * Cleanup ipw2100 driver registration
6872 */
6873 static void __exit ipw2100_exit(void)
6874 {
6875 /* FIXME: IPG: check that we have no instances of the devices open */
6876 #ifdef CONFIG_IPW2100_DEBUG
6877 driver_remove_file(&ipw2100_pci_driver.driver,
6878 &driver_attr_debug_level);
6879 #endif
6880 pci_unregister_driver(&ipw2100_pci_driver);
6881 }
6882
6883 module_init(ipw2100_init);
6884 module_exit(ipw2100_exit);
6885
6886 #define WEXT_USECHANNELS 1
6887
6888 static const long ipw2100_frequencies[] = {
6889 2412, 2417, 2422, 2427,
6890 2432, 2437, 2442, 2447,
6891 2452, 2457, 2462, 2467,
6892 2472, 2484
6893 };
6894
6895 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6896 sizeof(ipw2100_frequencies[0]))
6897
6898 static const long ipw2100_rates_11b[] = {
6899 1000000,
6900 2000000,
6901 5500000,
6902 11000000
6903 };
6904
6905 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6906
6907 static int ipw2100_wx_get_name(struct net_device *dev,
6908 struct iw_request_info *info,
6909 union iwreq_data *wrqu, char *extra)
6910 {
6911 /*
6912 * This can be called at any time. No action lock required
6913 */
6914
6915 struct ipw2100_priv *priv = ieee80211_priv(dev);
6916 if (!(priv->status & STATUS_ASSOCIATED))
6917 strcpy(wrqu->name, "unassociated");
6918 else
6919 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6920
6921 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6922 return 0;
6923 }
6924
6925 static int ipw2100_wx_set_freq(struct net_device *dev,
6926 struct iw_request_info *info,
6927 union iwreq_data *wrqu, char *extra)
6928 {
6929 struct ipw2100_priv *priv = ieee80211_priv(dev);
6930 struct iw_freq *fwrq = &wrqu->freq;
6931 int err = 0;
6932
6933 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6934 return -EOPNOTSUPP;
6935
6936 down(&priv->action_sem);
6937 if (!(priv->status & STATUS_INITIALIZED)) {
6938 err = -EIO;
6939 goto done;
6940 }
6941
6942 /* if setting by freq convert to channel */
6943 if (fwrq->e == 1) {
6944 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6945 int f = fwrq->m / 100000;
6946 int c = 0;
6947
6948 while ((c < REG_MAX_CHANNEL) &&
6949 (f != ipw2100_frequencies[c]))
6950 c++;
6951
6952 /* hack to fall through */
6953 fwrq->e = 0;
6954 fwrq->m = c + 1;
6955 }
6956 }
6957
6958 if (fwrq->e > 0 || fwrq->m > 1000) {
6959 err = -EOPNOTSUPP;
6960 goto done;
6961 } else { /* Set the channel */
6962 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6963 err = ipw2100_set_channel(priv, fwrq->m, 0);
6964 }
6965
6966 done:
6967 up(&priv->action_sem);
6968 return err;
6969 }
6970
6971 static int ipw2100_wx_get_freq(struct net_device *dev,
6972 struct iw_request_info *info,
6973 union iwreq_data *wrqu, char *extra)
6974 {
6975 /*
6976 * This can be called at any time. No action lock required
6977 */
6978
6979 struct ipw2100_priv *priv = ieee80211_priv(dev);
6980
6981 wrqu->freq.e = 0;
6982
6983 /* If we are associated, trying to associate, or have a statically
6984 * configured CHANNEL then return that; otherwise return ANY */
6985 if (priv->config & CFG_STATIC_CHANNEL ||
6986 priv->status & STATUS_ASSOCIATED)
6987 wrqu->freq.m = priv->channel;
6988 else
6989 wrqu->freq.m = 0;
6990
6991 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6992 return 0;
6993
6994 }
6995
6996 static int ipw2100_wx_set_mode(struct net_device *dev,
6997 struct iw_request_info *info,
6998 union iwreq_data *wrqu, char *extra)
6999 {
7000 struct ipw2100_priv *priv = ieee80211_priv(dev);
7001 int err = 0;
7002
7003 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
7004
7005 if (wrqu->mode == priv->ieee->iw_mode)
7006 return 0;
7007
7008 down(&priv->action_sem);
7009 if (!(priv->status & STATUS_INITIALIZED)) {
7010 err = -EIO;
7011 goto done;
7012 }
7013
7014 switch (wrqu->mode) {
7015 #ifdef CONFIG_IPW2100_MONITOR
7016 case IW_MODE_MONITOR:
7017 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7018 break;
7019 #endif /* CONFIG_IPW2100_MONITOR */
7020 case IW_MODE_ADHOC:
7021 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
7022 break;
7023 case IW_MODE_INFRA:
7024 case IW_MODE_AUTO:
7025 default:
7026 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
7027 break;
7028 }
7029
7030 done:
7031 up(&priv->action_sem);
7032 return err;
7033 }
7034
7035 static int ipw2100_wx_get_mode(struct net_device *dev,
7036 struct iw_request_info *info,
7037 union iwreq_data *wrqu, char *extra)
7038 {
7039 /*
7040 * This can be called at any time. No action lock required
7041 */
7042
7043 struct ipw2100_priv *priv = ieee80211_priv(dev);
7044
7045 wrqu->mode = priv->ieee->iw_mode;
7046 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
7047
7048 return 0;
7049 }
7050
7051 #define POWER_MODES 5
7052
7053 /* Values are in microsecond */
7054 static const s32 timeout_duration[POWER_MODES] = {
7055 350000,
7056 250000,
7057 75000,
7058 37000,
7059 25000,
7060 };
7061
7062 static const s32 period_duration[POWER_MODES] = {
7063 400000,
7064 700000,
7065 1000000,
7066 1000000,
7067 1000000
7068 };
7069
7070 static int ipw2100_wx_get_range(struct net_device *dev,
7071 struct iw_request_info *info,
7072 union iwreq_data *wrqu, char *extra)
7073 {
7074 /*
7075 * This can be called at any time. No action lock required
7076 */
7077
7078 struct ipw2100_priv *priv = ieee80211_priv(dev);
7079 struct iw_range *range = (struct iw_range *)extra;
7080 u16 val;
7081 int i, level;
7082
7083 wrqu->data.length = sizeof(*range);
7084 memset(range, 0, sizeof(*range));
7085
7086 /* Let's try to keep this struct in the same order as in
7087 * linux/include/wireless.h
7088 */
7089
7090 /* TODO: See what values we can set, and remove the ones we can't
7091 * set, or fill them with some default data.
7092 */
7093
7094 /* ~5 Mb/s real (802.11b) */
7095 range->throughput = 5 * 1000 * 1000;
7096
7097 // range->sensitivity; /* signal level threshold range */
7098
7099 range->max_qual.qual = 100;
7100 /* TODO: Find real max RSSI and stick here */
7101 range->max_qual.level = 0;
7102 range->max_qual.noise = 0;
7103 range->max_qual.updated = 7; /* Updated all three */
7104
7105 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
7106 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
7107 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
7108 range->avg_qual.noise = 0;
7109 range->avg_qual.updated = 7; /* Updated all three */
7110
7111 range->num_bitrates = RATE_COUNT;
7112
7113 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
7114 range->bitrate[i] = ipw2100_rates_11b[i];
7115 }
7116
7117 range->min_rts = MIN_RTS_THRESHOLD;
7118 range->max_rts = MAX_RTS_THRESHOLD;
7119 range->min_frag = MIN_FRAG_THRESHOLD;
7120 range->max_frag = MAX_FRAG_THRESHOLD;
7121
7122 range->min_pmp = period_duration[0]; /* Minimal PM period */
7123 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
7124 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
7125 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
7126
7127 /* How to decode max/min PM period */
7128 range->pmp_flags = IW_POWER_PERIOD;
7129 /* How to decode max/min PM period */
7130 range->pmt_flags = IW_POWER_TIMEOUT;
7131 /* What PM options are supported */
7132 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
7133
7134 range->encoding_size[0] = 5;
7135 range->encoding_size[1] = 13; /* Different token sizes */
7136 range->num_encoding_sizes = 2; /* Number of entry in the list */
7137 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
7138 // range->encoding_login_index; /* token index for login token */
7139
7140 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7141 range->txpower_capa = IW_TXPOW_DBM;
7142 range->num_txpower = IW_MAX_TXPOWER;
7143 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
7144 i < IW_MAX_TXPOWER;
7145 i++, level -=
7146 ((IPW_TX_POWER_MAX_DBM -
7147 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
7148 range->txpower[i] = level / 16;
7149 } else {
7150 range->txpower_capa = 0;
7151 range->num_txpower = 0;
7152 }
7153
7154 /* Set the Wireless Extension versions */
7155 range->we_version_compiled = WIRELESS_EXT;
7156 range->we_version_source = 18;
7157
7158 // range->retry_capa; /* What retry options are supported */
7159 // range->retry_flags; /* How to decode max/min retry limit */
7160 // range->r_time_flags; /* How to decode max/min retry life */
7161 // range->min_retry; /* Minimal number of retries */
7162 // range->max_retry; /* Maximal number of retries */
7163 // range->min_r_time; /* Minimal retry lifetime */
7164 // range->max_r_time; /* Maximal retry lifetime */
7165
7166 range->num_channels = FREQ_COUNT;
7167
7168 val = 0;
7169 for (i = 0; i < FREQ_COUNT; i++) {
7170 // TODO: Include only legal frequencies for some countries
7171 // if (local->channel_mask & (1 << i)) {
7172 range->freq[val].i = i + 1;
7173 range->freq[val].m = ipw2100_frequencies[i] * 100000;
7174 range->freq[val].e = 1;
7175 val++;
7176 // }
7177 if (val == IW_MAX_FREQUENCIES)
7178 break;
7179 }
7180 range->num_frequency = val;
7181
7182 /* Event capability (kernel + driver) */
7183 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
7184 IW_EVENT_CAPA_MASK(SIOCGIWAP));
7185 range->event_capa[1] = IW_EVENT_CAPA_K_1;
7186
7187 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
7188 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
7189
7190 IPW_DEBUG_WX("GET Range\n");
7191
7192 return 0;
7193 }
7194
7195 static int ipw2100_wx_set_wap(struct net_device *dev,
7196 struct iw_request_info *info,
7197 union iwreq_data *wrqu, char *extra)
7198 {
7199 struct ipw2100_priv *priv = ieee80211_priv(dev);
7200 int err = 0;
7201
7202 static const unsigned char any[] = {
7203 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
7204 };
7205 static const unsigned char off[] = {
7206 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
7207 };
7208
7209 // sanity checks
7210 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
7211 return -EINVAL;
7212
7213 down(&priv->action_sem);
7214 if (!(priv->status & STATUS_INITIALIZED)) {
7215 err = -EIO;
7216 goto done;
7217 }
7218
7219 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7220 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7221 /* we disable mandatory BSSID association */
7222 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7223 priv->config &= ~CFG_STATIC_BSSID;
7224 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7225 goto done;
7226 }
7227
7228 priv->config |= CFG_STATIC_BSSID;
7229 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7230
7231 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7232
7233 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
7234 wrqu->ap_addr.sa_data[0] & 0xff,
7235 wrqu->ap_addr.sa_data[1] & 0xff,
7236 wrqu->ap_addr.sa_data[2] & 0xff,
7237 wrqu->ap_addr.sa_data[3] & 0xff,
7238 wrqu->ap_addr.sa_data[4] & 0xff,
7239 wrqu->ap_addr.sa_data[5] & 0xff);
7240
7241 done:
7242 up(&priv->action_sem);
7243 return err;
7244 }
7245
7246 static int ipw2100_wx_get_wap(struct net_device *dev,
7247 struct iw_request_info *info,
7248 union iwreq_data *wrqu, char *extra)
7249 {
7250 /*
7251 * This can be called at any time. No action lock required
7252 */
7253
7254 struct ipw2100_priv *priv = ieee80211_priv(dev);
7255
7256 /* If we are associated, trying to associate, or have a statically
7257 * configured BSSID then return that; otherwise return ANY */
7258 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7259 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7260 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7261 } else
7262 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7263
7264 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
7265 MAC_ARG(wrqu->ap_addr.sa_data));
7266 return 0;
7267 }
7268
7269 static int ipw2100_wx_set_essid(struct net_device *dev,
7270 struct iw_request_info *info,
7271 union iwreq_data *wrqu, char *extra)
7272 {
7273 struct ipw2100_priv *priv = ieee80211_priv(dev);
7274 char *essid = ""; /* ANY */
7275 int length = 0;
7276 int err = 0;
7277
7278 down(&priv->action_sem);
7279 if (!(priv->status & STATUS_INITIALIZED)) {
7280 err = -EIO;
7281 goto done;
7282 }
7283
7284 if (wrqu->essid.flags && wrqu->essid.length) {
7285 length = wrqu->essid.length - 1;
7286 essid = extra;
7287 }
7288
7289 if (length == 0) {
7290 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7291 priv->config &= ~CFG_STATIC_ESSID;
7292 err = ipw2100_set_essid(priv, NULL, 0, 0);
7293 goto done;
7294 }
7295
7296 length = min(length, IW_ESSID_MAX_SIZE);
7297
7298 priv->config |= CFG_STATIC_ESSID;
7299
7300 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7301 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7302 err = 0;
7303 goto done;
7304 }
7305
7306 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7307 length);
7308
7309 priv->essid_len = length;
7310 memcpy(priv->essid, essid, priv->essid_len);
7311
7312 err = ipw2100_set_essid(priv, essid, length, 0);
7313
7314 done:
7315 up(&priv->action_sem);
7316 return err;
7317 }
7318
7319 static int ipw2100_wx_get_essid(struct net_device *dev,
7320 struct iw_request_info *info,
7321 union iwreq_data *wrqu, char *extra)
7322 {
7323 /*
7324 * This can be called at any time. No action lock required
7325 */
7326
7327 struct ipw2100_priv *priv = ieee80211_priv(dev);
7328
7329 /* If we are associated, trying to associate, or have a statically
7330 * configured ESSID then return that; otherwise return ANY */
7331 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7332 IPW_DEBUG_WX("Getting essid: '%s'\n",
7333 escape_essid(priv->essid, priv->essid_len));
7334 memcpy(extra, priv->essid, priv->essid_len);
7335 wrqu->essid.length = priv->essid_len;
7336 wrqu->essid.flags = 1; /* active */
7337 } else {
7338 IPW_DEBUG_WX("Getting essid: ANY\n");
7339 wrqu->essid.length = 0;
7340 wrqu->essid.flags = 0; /* active */
7341 }
7342
7343 return 0;
7344 }
7345
7346 static int ipw2100_wx_set_nick(struct net_device *dev,
7347 struct iw_request_info *info,
7348 union iwreq_data *wrqu, char *extra)
7349 {
7350 /*
7351 * This can be called at any time. No action lock required
7352 */
7353
7354 struct ipw2100_priv *priv = ieee80211_priv(dev);
7355
7356 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7357 return -E2BIG;
7358
7359 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7360 memset(priv->nick, 0, sizeof(priv->nick));
7361 memcpy(priv->nick, extra, wrqu->data.length);
7362
7363 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7364
7365 return 0;
7366 }
7367
7368 static int ipw2100_wx_get_nick(struct net_device *dev,
7369 struct iw_request_info *info,
7370 union iwreq_data *wrqu, char *extra)
7371 {
7372 /*
7373 * This can be called at any time. No action lock required
7374 */
7375
7376 struct ipw2100_priv *priv = ieee80211_priv(dev);
7377
7378 wrqu->data.length = strlen(priv->nick) + 1;
7379 memcpy(extra, priv->nick, wrqu->data.length);
7380 wrqu->data.flags = 1; /* active */
7381
7382 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7383
7384 return 0;
7385 }
7386
7387 static int ipw2100_wx_set_rate(struct net_device *dev,
7388 struct iw_request_info *info,
7389 union iwreq_data *wrqu, char *extra)
7390 {
7391 struct ipw2100_priv *priv = ieee80211_priv(dev);
7392 u32 target_rate = wrqu->bitrate.value;
7393 u32 rate;
7394 int err = 0;
7395
7396 down(&priv->action_sem);
7397 if (!(priv->status & STATUS_INITIALIZED)) {
7398 err = -EIO;
7399 goto done;
7400 }
7401
7402 rate = 0;
7403
7404 if (target_rate == 1000000 ||
7405 (!wrqu->bitrate.fixed && target_rate > 1000000))
7406 rate |= TX_RATE_1_MBIT;
7407 if (target_rate == 2000000 ||
7408 (!wrqu->bitrate.fixed && target_rate > 2000000))
7409 rate |= TX_RATE_2_MBIT;
7410 if (target_rate == 5500000 ||
7411 (!wrqu->bitrate.fixed && target_rate > 5500000))
7412 rate |= TX_RATE_5_5_MBIT;
7413 if (target_rate == 11000000 ||
7414 (!wrqu->bitrate.fixed && target_rate > 11000000))
7415 rate |= TX_RATE_11_MBIT;
7416 if (rate == 0)
7417 rate = DEFAULT_TX_RATES;
7418
7419 err = ipw2100_set_tx_rates(priv, rate, 0);
7420
7421 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7422 done:
7423 up(&priv->action_sem);
7424 return err;
7425 }
7426
7427 static int ipw2100_wx_get_rate(struct net_device *dev,
7428 struct iw_request_info *info,
7429 union iwreq_data *wrqu, char *extra)
7430 {
7431 struct ipw2100_priv *priv = ieee80211_priv(dev);
7432 int val;
7433 int len = sizeof(val);
7434 int err = 0;
7435
7436 if (!(priv->status & STATUS_ENABLED) ||
7437 priv->status & STATUS_RF_KILL_MASK ||
7438 !(priv->status & STATUS_ASSOCIATED)) {
7439 wrqu->bitrate.value = 0;
7440 return 0;
7441 }
7442
7443 down(&priv->action_sem);
7444 if (!(priv->status & STATUS_INITIALIZED)) {
7445 err = -EIO;
7446 goto done;
7447 }
7448
7449 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7450 if (err) {
7451 IPW_DEBUG_WX("failed querying ordinals.\n");
7452 return err;
7453 }
7454
7455 switch (val & TX_RATE_MASK) {
7456 case TX_RATE_1_MBIT:
7457 wrqu->bitrate.value = 1000000;
7458 break;
7459 case TX_RATE_2_MBIT:
7460 wrqu->bitrate.value = 2000000;
7461 break;
7462 case TX_RATE_5_5_MBIT:
7463 wrqu->bitrate.value = 5500000;
7464 break;
7465 case TX_RATE_11_MBIT:
7466 wrqu->bitrate.value = 11000000;
7467 break;
7468 default:
7469 wrqu->bitrate.value = 0;
7470 }
7471
7472 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7473
7474 done:
7475 up(&priv->action_sem);
7476 return err;
7477 }
7478
7479 static int ipw2100_wx_set_rts(struct net_device *dev,
7480 struct iw_request_info *info,
7481 union iwreq_data *wrqu, char *extra)
7482 {
7483 struct ipw2100_priv *priv = ieee80211_priv(dev);
7484 int value, err;
7485
7486 /* Auto RTS not yet supported */
7487 if (wrqu->rts.fixed == 0)
7488 return -EINVAL;
7489
7490 down(&priv->action_sem);
7491 if (!(priv->status & STATUS_INITIALIZED)) {
7492 err = -EIO;
7493 goto done;
7494 }
7495
7496 if (wrqu->rts.disabled)
7497 value = priv->rts_threshold | RTS_DISABLED;
7498 else {
7499 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7500 err = -EINVAL;
7501 goto done;
7502 }
7503 value = wrqu->rts.value;
7504 }
7505
7506 err = ipw2100_set_rts_threshold(priv, value);
7507
7508 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7509 done:
7510 up(&priv->action_sem);
7511 return err;
7512 }
7513
7514 static int ipw2100_wx_get_rts(struct net_device *dev,
7515 struct iw_request_info *info,
7516 union iwreq_data *wrqu, char *extra)
7517 {
7518 /*
7519 * This can be called at any time. No action lock required
7520 */
7521
7522 struct ipw2100_priv *priv = ieee80211_priv(dev);
7523
7524 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7525 wrqu->rts.fixed = 1; /* no auto select */
7526
7527 /* If RTS is set to the default value, then it is disabled */
7528 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7529
7530 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7531
7532 return 0;
7533 }
7534
7535 static int ipw2100_wx_set_txpow(struct net_device *dev,
7536 struct iw_request_info *info,
7537 union iwreq_data *wrqu, char *extra)
7538 {
7539 struct ipw2100_priv *priv = ieee80211_priv(dev);
7540 int err = 0, value;
7541
7542 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7543 return -EINVAL;
7544
7545 if (wrqu->txpower.disabled == 1 || wrqu->txpower.fixed == 0)
7546 value = IPW_TX_POWER_DEFAULT;
7547 else {
7548 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7549 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7550 return -EINVAL;
7551
7552 value = wrqu->txpower.value;
7553 }
7554
7555 down(&priv->action_sem);
7556 if (!(priv->status & STATUS_INITIALIZED)) {
7557 err = -EIO;
7558 goto done;
7559 }
7560
7561 err = ipw2100_set_tx_power(priv, value);
7562
7563 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7564
7565 done:
7566 up(&priv->action_sem);
7567 return err;
7568 }
7569
7570 static int ipw2100_wx_get_txpow(struct net_device *dev,
7571 struct iw_request_info *info,
7572 union iwreq_data *wrqu, char *extra)
7573 {
7574 /*
7575 * This can be called at any time. No action lock required
7576 */
7577
7578 struct ipw2100_priv *priv = ieee80211_priv(dev);
7579
7580 if (priv->ieee->iw_mode != IW_MODE_ADHOC) {
7581 wrqu->power.disabled = 1;
7582 return 0;
7583 }
7584
7585 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7586 wrqu->power.fixed = 0;
7587 wrqu->power.value = IPW_TX_POWER_MAX_DBM;
7588 wrqu->power.disabled = 1;
7589 } else {
7590 wrqu->power.disabled = 0;
7591 wrqu->power.fixed = 1;
7592 wrqu->power.value = priv->tx_power;
7593 }
7594
7595 wrqu->power.flags = IW_TXPOW_DBM;
7596
7597 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->power.value);
7598
7599 return 0;
7600 }
7601
7602 static int ipw2100_wx_set_frag(struct net_device *dev,
7603 struct iw_request_info *info,
7604 union iwreq_data *wrqu, char *extra)
7605 {
7606 /*
7607 * This can be called at any time. No action lock required
7608 */
7609
7610 struct ipw2100_priv *priv = ieee80211_priv(dev);
7611
7612 if (!wrqu->frag.fixed)
7613 return -EINVAL;
7614
7615 if (wrqu->frag.disabled) {
7616 priv->frag_threshold |= FRAG_DISABLED;
7617 priv->ieee->fts = DEFAULT_FTS;
7618 } else {
7619 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7620 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7621 return -EINVAL;
7622
7623 priv->ieee->fts = wrqu->frag.value & ~0x1;
7624 priv->frag_threshold = priv->ieee->fts;
7625 }
7626
7627 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7628
7629 return 0;
7630 }
7631
7632 static int ipw2100_wx_get_frag(struct net_device *dev,
7633 struct iw_request_info *info,
7634 union iwreq_data *wrqu, char *extra)
7635 {
7636 /*
7637 * This can be called at any time. No action lock required
7638 */
7639
7640 struct ipw2100_priv *priv = ieee80211_priv(dev);
7641 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7642 wrqu->frag.fixed = 0; /* no auto select */
7643 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7644
7645 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7646
7647 return 0;
7648 }
7649
7650 static int ipw2100_wx_set_retry(struct net_device *dev,
7651 struct iw_request_info *info,
7652 union iwreq_data *wrqu, char *extra)
7653 {
7654 struct ipw2100_priv *priv = ieee80211_priv(dev);
7655 int err = 0;
7656
7657 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7658 return -EINVAL;
7659
7660 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7661 return 0;
7662
7663 down(&priv->action_sem);
7664 if (!(priv->status & STATUS_INITIALIZED)) {
7665 err = -EIO;
7666 goto done;
7667 }
7668
7669 if (wrqu->retry.flags & IW_RETRY_MIN) {
7670 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7671 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7672 wrqu->retry.value);
7673 goto done;
7674 }
7675
7676 if (wrqu->retry.flags & IW_RETRY_MAX) {
7677 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7678 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7679 wrqu->retry.value);
7680 goto done;
7681 }
7682
7683 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7684 if (!err)
7685 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7686
7687 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7688
7689 done:
7690 up(&priv->action_sem);
7691 return err;
7692 }
7693
7694 static int ipw2100_wx_get_retry(struct net_device *dev,
7695 struct iw_request_info *info,
7696 union iwreq_data *wrqu, char *extra)
7697 {
7698 /*
7699 * This can be called at any time. No action lock required
7700 */
7701
7702 struct ipw2100_priv *priv = ieee80211_priv(dev);
7703
7704 wrqu->retry.disabled = 0; /* can't be disabled */
7705
7706 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7707 return -EINVAL;
7708
7709 if (wrqu->retry.flags & IW_RETRY_MAX) {
7710 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7711 wrqu->retry.value = priv->long_retry_limit;
7712 } else {
7713 wrqu->retry.flags =
7714 (priv->short_retry_limit !=
7715 priv->long_retry_limit) ?
7716 IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7717
7718 wrqu->retry.value = priv->short_retry_limit;
7719 }
7720
7721 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7722
7723 return 0;
7724 }
7725
7726 static int ipw2100_wx_set_scan(struct net_device *dev,
7727 struct iw_request_info *info,
7728 union iwreq_data *wrqu, char *extra)
7729 {
7730 struct ipw2100_priv *priv = ieee80211_priv(dev);
7731 int err = 0;
7732
7733 down(&priv->action_sem);
7734 if (!(priv->status & STATUS_INITIALIZED)) {
7735 err = -EIO;
7736 goto done;
7737 }
7738
7739 IPW_DEBUG_WX("Initiating scan...\n");
7740 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7741 IPW_DEBUG_WX("Start scan failed.\n");
7742
7743 /* TODO: Mark a scan as pending so when hardware initialized
7744 * a scan starts */
7745 }
7746
7747 done:
7748 up(&priv->action_sem);
7749 return err;
7750 }
7751
7752 static int ipw2100_wx_get_scan(struct net_device *dev,
7753 struct iw_request_info *info,
7754 union iwreq_data *wrqu, char *extra)
7755 {
7756 /*
7757 * This can be called at any time. No action lock required
7758 */
7759
7760 struct ipw2100_priv *priv = ieee80211_priv(dev);
7761 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7762 }
7763
7764 /*
7765 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7766 */
7767 static int ipw2100_wx_set_encode(struct net_device *dev,
7768 struct iw_request_info *info,
7769 union iwreq_data *wrqu, char *key)
7770 {
7771 /*
7772 * No check of STATUS_INITIALIZED required
7773 */
7774
7775 struct ipw2100_priv *priv = ieee80211_priv(dev);
7776 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7777 }
7778
7779 static int ipw2100_wx_get_encode(struct net_device *dev,
7780 struct iw_request_info *info,
7781 union iwreq_data *wrqu, char *key)
7782 {
7783 /*
7784 * This can be called at any time. No action lock required
7785 */
7786
7787 struct ipw2100_priv *priv = ieee80211_priv(dev);
7788 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7789 }
7790
7791 static int ipw2100_wx_set_power(struct net_device *dev,
7792 struct iw_request_info *info,
7793 union iwreq_data *wrqu, char *extra)
7794 {
7795 struct ipw2100_priv *priv = ieee80211_priv(dev);
7796 int err = 0;
7797
7798 down(&priv->action_sem);
7799 if (!(priv->status & STATUS_INITIALIZED)) {
7800 err = -EIO;
7801 goto done;
7802 }
7803
7804 if (wrqu->power.disabled) {
7805 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7806 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7807 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7808 goto done;
7809 }
7810
7811 switch (wrqu->power.flags & IW_POWER_MODE) {
7812 case IW_POWER_ON: /* If not specified */
7813 case IW_POWER_MODE: /* If set all mask */
7814 case IW_POWER_ALL_R: /* If explicitely state all */
7815 break;
7816 default: /* Otherwise we don't support it */
7817 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7818 wrqu->power.flags);
7819 err = -EOPNOTSUPP;
7820 goto done;
7821 }
7822
7823 /* If the user hasn't specified a power management mode yet, default
7824 * to BATTERY */
7825 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7826 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7827
7828 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7829
7830 done:
7831 up(&priv->action_sem);
7832 return err;
7833
7834 }
7835
7836 static int ipw2100_wx_get_power(struct net_device *dev,
7837 struct iw_request_info *info,
7838 union iwreq_data *wrqu, char *extra)
7839 {
7840 /*
7841 * This can be called at any time. No action lock required
7842 */
7843
7844 struct ipw2100_priv *priv = ieee80211_priv(dev);
7845
7846 if (!(priv->power_mode & IPW_POWER_ENABLED))
7847 wrqu->power.disabled = 1;
7848 else {
7849 wrqu->power.disabled = 0;
7850 wrqu->power.flags = 0;
7851 }
7852
7853 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7854
7855 return 0;
7856 }
7857
7858 #if WIRELESS_EXT > 17
7859 /*
7860 * WE-18 WPA support
7861 */
7862
7863 /* SIOCSIWGENIE */
7864 static int ipw2100_wx_set_genie(struct net_device *dev,
7865 struct iw_request_info *info,
7866 union iwreq_data *wrqu, char *extra)
7867 {
7868
7869 struct ipw2100_priv *priv = ieee80211_priv(dev);
7870 struct ieee80211_device *ieee = priv->ieee;
7871 u8 *buf;
7872
7873 if (!ieee->wpa_enabled)
7874 return -EOPNOTSUPP;
7875
7876 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7877 (wrqu->data.length && extra == NULL))
7878 return -EINVAL;
7879
7880 if (wrqu->data.length) {
7881 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7882 if (buf == NULL)
7883 return -ENOMEM;
7884
7885 memcpy(buf, extra, wrqu->data.length);
7886 kfree(ieee->wpa_ie);
7887 ieee->wpa_ie = buf;
7888 ieee->wpa_ie_len = wrqu->data.length;
7889 } else {
7890 kfree(ieee->wpa_ie);
7891 ieee->wpa_ie = NULL;
7892 ieee->wpa_ie_len = 0;
7893 }
7894
7895 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7896
7897 return 0;
7898 }
7899
7900 /* SIOCGIWGENIE */
7901 static int ipw2100_wx_get_genie(struct net_device *dev,
7902 struct iw_request_info *info,
7903 union iwreq_data *wrqu, char *extra)
7904 {
7905 struct ipw2100_priv *priv = ieee80211_priv(dev);
7906 struct ieee80211_device *ieee = priv->ieee;
7907
7908 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7909 wrqu->data.length = 0;
7910 return 0;
7911 }
7912
7913 if (wrqu->data.length < ieee->wpa_ie_len)
7914 return -E2BIG;
7915
7916 wrqu->data.length = ieee->wpa_ie_len;
7917 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7918
7919 return 0;
7920 }
7921
7922 /* SIOCSIWAUTH */
7923 static int ipw2100_wx_set_auth(struct net_device *dev,
7924 struct iw_request_info *info,
7925 union iwreq_data *wrqu, char *extra)
7926 {
7927 struct ipw2100_priv *priv = ieee80211_priv(dev);
7928 struct ieee80211_device *ieee = priv->ieee;
7929 struct iw_param *param = &wrqu->param;
7930 struct ieee80211_crypt_data *crypt;
7931 unsigned long flags;
7932 int ret = 0;
7933
7934 switch (param->flags & IW_AUTH_INDEX) {
7935 case IW_AUTH_WPA_VERSION:
7936 case IW_AUTH_CIPHER_PAIRWISE:
7937 case IW_AUTH_CIPHER_GROUP:
7938 case IW_AUTH_KEY_MGMT:
7939 /*
7940 * ipw2200 does not use these parameters
7941 */
7942 break;
7943
7944 case IW_AUTH_TKIP_COUNTERMEASURES:
7945 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7946 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7947 break;
7948
7949 flags = crypt->ops->get_flags(crypt->priv);
7950
7951 if (param->value)
7952 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7953 else
7954 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7955
7956 crypt->ops->set_flags(flags, crypt->priv);
7957
7958 break;
7959
7960 case IW_AUTH_DROP_UNENCRYPTED:{
7961 /* HACK:
7962 *
7963 * wpa_supplicant calls set_wpa_enabled when the driver
7964 * is loaded and unloaded, regardless of if WPA is being
7965 * used. No other calls are made which can be used to
7966 * determine if encryption will be used or not prior to
7967 * association being expected. If encryption is not being
7968 * used, drop_unencrypted is set to false, else true -- we
7969 * can use this to determine if the CAP_PRIVACY_ON bit should
7970 * be set.
7971 */
7972 struct ieee80211_security sec = {
7973 .flags = SEC_ENABLED,
7974 .enabled = param->value,
7975 };
7976 priv->ieee->drop_unencrypted = param->value;
7977 /* We only change SEC_LEVEL for open mode. Others
7978 * are set by ipw_wpa_set_encryption.
7979 */
7980 if (!param->value) {
7981 sec.flags |= SEC_LEVEL;
7982 sec.level = SEC_LEVEL_0;
7983 } else {
7984 sec.flags |= SEC_LEVEL;
7985 sec.level = SEC_LEVEL_1;
7986 }
7987 if (priv->ieee->set_security)
7988 priv->ieee->set_security(priv->ieee->dev, &sec);
7989 break;
7990 }
7991
7992 case IW_AUTH_80211_AUTH_ALG:
7993 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7994 break;
7995
7996 case IW_AUTH_WPA_ENABLED:
7997 ret = ipw2100_wpa_enable(priv, param->value);
7998 break;
7999
8000 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
8001 ieee->ieee802_1x = param->value;
8002 break;
8003
8004 //case IW_AUTH_ROAMING_CONTROL:
8005 case IW_AUTH_PRIVACY_INVOKED:
8006 ieee->privacy_invoked = param->value;
8007 break;
8008
8009 default:
8010 return -EOPNOTSUPP;
8011 }
8012 return ret;
8013 }
8014
8015 /* SIOCGIWAUTH */
8016 static int ipw2100_wx_get_auth(struct net_device *dev,
8017 struct iw_request_info *info,
8018 union iwreq_data *wrqu, char *extra)
8019 {
8020 struct ipw2100_priv *priv = ieee80211_priv(dev);
8021 struct ieee80211_device *ieee = priv->ieee;
8022 struct ieee80211_crypt_data *crypt;
8023 struct iw_param *param = &wrqu->param;
8024 int ret = 0;
8025
8026 switch (param->flags & IW_AUTH_INDEX) {
8027 case IW_AUTH_WPA_VERSION:
8028 case IW_AUTH_CIPHER_PAIRWISE:
8029 case IW_AUTH_CIPHER_GROUP:
8030 case IW_AUTH_KEY_MGMT:
8031 /*
8032 * wpa_supplicant will control these internally
8033 */
8034 ret = -EOPNOTSUPP;
8035 break;
8036
8037 case IW_AUTH_TKIP_COUNTERMEASURES:
8038 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
8039 if (!crypt || !crypt->ops->get_flags) {
8040 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
8041 "crypt not set!\n");
8042 break;
8043 }
8044
8045 param->value = (crypt->ops->get_flags(crypt->priv) &
8046 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
8047
8048 break;
8049
8050 case IW_AUTH_DROP_UNENCRYPTED:
8051 param->value = ieee->drop_unencrypted;
8052 break;
8053
8054 case IW_AUTH_80211_AUTH_ALG:
8055 param->value = priv->ieee->sec.auth_mode;
8056 break;
8057
8058 case IW_AUTH_WPA_ENABLED:
8059 param->value = ieee->wpa_enabled;
8060 break;
8061
8062 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
8063 param->value = ieee->ieee802_1x;
8064 break;
8065
8066 case IW_AUTH_ROAMING_CONTROL:
8067 case IW_AUTH_PRIVACY_INVOKED:
8068 param->value = ieee->privacy_invoked;
8069 break;
8070
8071 default:
8072 return -EOPNOTSUPP;
8073 }
8074 return 0;
8075 }
8076
8077 /* SIOCSIWENCODEEXT */
8078 static int ipw2100_wx_set_encodeext(struct net_device *dev,
8079 struct iw_request_info *info,
8080 union iwreq_data *wrqu, char *extra)
8081 {
8082 struct ipw2100_priv *priv = ieee80211_priv(dev);
8083 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
8084 }
8085
8086 /* SIOCGIWENCODEEXT */
8087 static int ipw2100_wx_get_encodeext(struct net_device *dev,
8088 struct iw_request_info *info,
8089 union iwreq_data *wrqu, char *extra)
8090 {
8091 struct ipw2100_priv *priv = ieee80211_priv(dev);
8092 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
8093 }
8094
8095 /* SIOCSIWMLME */
8096 static int ipw2100_wx_set_mlme(struct net_device *dev,
8097 struct iw_request_info *info,
8098 union iwreq_data *wrqu, char *extra)
8099 {
8100 struct ipw2100_priv *priv = ieee80211_priv(dev);
8101 struct iw_mlme *mlme = (struct iw_mlme *)extra;
8102 u16 reason;
8103
8104 reason = cpu_to_le16(mlme->reason_code);
8105
8106 switch (mlme->cmd) {
8107 case IW_MLME_DEAUTH:
8108 // silently ignore
8109 break;
8110
8111 case IW_MLME_DISASSOC:
8112 ipw2100_disassociate_bssid(priv);
8113 break;
8114
8115 default:
8116 return -EOPNOTSUPP;
8117 }
8118 return 0;
8119 }
8120 #endif /* WIRELESS_EXT > 17 */
8121
8122 /*
8123 *
8124 * IWPRIV handlers
8125 *
8126 */
8127 #ifdef CONFIG_IPW2100_MONITOR
8128 static int ipw2100_wx_set_promisc(struct net_device *dev,
8129 struct iw_request_info *info,
8130 union iwreq_data *wrqu, char *extra)
8131 {
8132 struct ipw2100_priv *priv = ieee80211_priv(dev);
8133 int *parms = (int *)extra;
8134 int enable = (parms[0] > 0);
8135 int err = 0;
8136
8137 down(&priv->action_sem);
8138 if (!(priv->status & STATUS_INITIALIZED)) {
8139 err = -EIO;
8140 goto done;
8141 }
8142
8143 if (enable) {
8144 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8145 err = ipw2100_set_channel(priv, parms[1], 0);
8146 goto done;
8147 }
8148 priv->channel = parms[1];
8149 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
8150 } else {
8151 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8152 err = ipw2100_switch_mode(priv, priv->last_mode);
8153 }
8154 done:
8155 up(&priv->action_sem);
8156 return err;
8157 }
8158
8159 static int ipw2100_wx_reset(struct net_device *dev,
8160 struct iw_request_info *info,
8161 union iwreq_data *wrqu, char *extra)
8162 {
8163 struct ipw2100_priv *priv = ieee80211_priv(dev);
8164 if (priv->status & STATUS_INITIALIZED)
8165 schedule_reset(priv);
8166 return 0;
8167 }
8168
8169 #endif
8170
8171 static int ipw2100_wx_set_powermode(struct net_device *dev,
8172 struct iw_request_info *info,
8173 union iwreq_data *wrqu, char *extra)
8174 {
8175 struct ipw2100_priv *priv = ieee80211_priv(dev);
8176 int err = 0, mode = *(int *)extra;
8177
8178 down(&priv->action_sem);
8179 if (!(priv->status & STATUS_INITIALIZED)) {
8180 err = -EIO;
8181 goto done;
8182 }
8183
8184 if ((mode < 1) || (mode > POWER_MODES))
8185 mode = IPW_POWER_AUTO;
8186
8187 if (priv->power_mode != mode)
8188 err = ipw2100_set_power_mode(priv, mode);
8189 done:
8190 up(&priv->action_sem);
8191 return err;
8192 }
8193
8194 #define MAX_POWER_STRING 80
8195 static int ipw2100_wx_get_powermode(struct net_device *dev,
8196 struct iw_request_info *info,
8197 union iwreq_data *wrqu, char *extra)
8198 {
8199 /*
8200 * This can be called at any time. No action lock required
8201 */
8202
8203 struct ipw2100_priv *priv = ieee80211_priv(dev);
8204 int level = IPW_POWER_LEVEL(priv->power_mode);
8205 s32 timeout, period;
8206
8207 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
8208 snprintf(extra, MAX_POWER_STRING,
8209 "Power save level: %d (Off)", level);
8210 } else {
8211 switch (level) {
8212 case IPW_POWER_MODE_CAM:
8213 snprintf(extra, MAX_POWER_STRING,
8214 "Power save level: %d (None)", level);
8215 break;
8216 case IPW_POWER_AUTO:
8217 snprintf(extra, MAX_POWER_STRING,
8218 "Power save level: %d (Auto)", 0);
8219 break;
8220 default:
8221 timeout = timeout_duration[level - 1] / 1000;
8222 period = period_duration[level - 1] / 1000;
8223 snprintf(extra, MAX_POWER_STRING,
8224 "Power save level: %d "
8225 "(Timeout %dms, Period %dms)",
8226 level, timeout, period);
8227 }
8228 }
8229
8230 wrqu->data.length = strlen(extra) + 1;
8231
8232 return 0;
8233 }
8234
8235 static int ipw2100_wx_set_preamble(struct net_device *dev,
8236 struct iw_request_info *info,
8237 union iwreq_data *wrqu, char *extra)
8238 {
8239 struct ipw2100_priv *priv = ieee80211_priv(dev);
8240 int err, mode = *(int *)extra;
8241
8242 down(&priv->action_sem);
8243 if (!(priv->status & STATUS_INITIALIZED)) {
8244 err = -EIO;
8245 goto done;
8246 }
8247
8248 if (mode == 1)
8249 priv->config |= CFG_LONG_PREAMBLE;
8250 else if (mode == 0)
8251 priv->config &= ~CFG_LONG_PREAMBLE;
8252 else {
8253 err = -EINVAL;
8254 goto done;
8255 }
8256
8257 err = ipw2100_system_config(priv, 0);
8258
8259 done:
8260 up(&priv->action_sem);
8261 return err;
8262 }
8263
8264 static int ipw2100_wx_get_preamble(struct net_device *dev,
8265 struct iw_request_info *info,
8266 union iwreq_data *wrqu, char *extra)
8267 {
8268 /*
8269 * This can be called at any time. No action lock required
8270 */
8271
8272 struct ipw2100_priv *priv = ieee80211_priv(dev);
8273
8274 if (priv->config & CFG_LONG_PREAMBLE)
8275 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8276 else
8277 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8278
8279 return 0;
8280 }
8281
8282 #ifdef CONFIG_IPW2100_MONITOR
8283 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8284 struct iw_request_info *info,
8285 union iwreq_data *wrqu, char *extra)
8286 {
8287 struct ipw2100_priv *priv = ieee80211_priv(dev);
8288 int err, mode = *(int *)extra;
8289
8290 down(&priv->action_sem);
8291 if (!(priv->status & STATUS_INITIALIZED)) {
8292 err = -EIO;
8293 goto done;
8294 }
8295
8296 if (mode == 1)
8297 priv->config |= CFG_CRC_CHECK;
8298 else if (mode == 0)
8299 priv->config &= ~CFG_CRC_CHECK;
8300 else {
8301 err = -EINVAL;
8302 goto done;
8303 }
8304 err = 0;
8305
8306 done:
8307 up(&priv->action_sem);
8308 return err;
8309 }
8310
8311 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8312 struct iw_request_info *info,
8313 union iwreq_data *wrqu, char *extra)
8314 {
8315 /*
8316 * This can be called at any time. No action lock required
8317 */
8318
8319 struct ipw2100_priv *priv = ieee80211_priv(dev);
8320
8321 if (priv->config & CFG_CRC_CHECK)
8322 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8323 else
8324 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8325
8326 return 0;
8327 }
8328 #endif /* CONFIG_IPW2100_MONITOR */
8329
8330 static iw_handler ipw2100_wx_handlers[] = {
8331 NULL, /* SIOCSIWCOMMIT */
8332 ipw2100_wx_get_name, /* SIOCGIWNAME */
8333 NULL, /* SIOCSIWNWID */
8334 NULL, /* SIOCGIWNWID */
8335 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8336 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8337 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8338 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8339 NULL, /* SIOCSIWSENS */
8340 NULL, /* SIOCGIWSENS */
8341 NULL, /* SIOCSIWRANGE */
8342 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8343 NULL, /* SIOCSIWPRIV */
8344 NULL, /* SIOCGIWPRIV */
8345 NULL, /* SIOCSIWSTATS */
8346 NULL, /* SIOCGIWSTATS */
8347 NULL, /* SIOCSIWSPY */
8348 NULL, /* SIOCGIWSPY */
8349 NULL, /* SIOCGIWTHRSPY */
8350 NULL, /* SIOCWIWTHRSPY */
8351 ipw2100_wx_set_wap, /* SIOCSIWAP */
8352 ipw2100_wx_get_wap, /* SIOCGIWAP */
8353 #if WIRELESS_EXT > 17
8354 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8355 #else
8356 NULL, /* -- hole -- */
8357 #endif
8358 NULL, /* SIOCGIWAPLIST -- deprecated */
8359 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8360 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8361 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8362 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8363 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8364 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8365 NULL, /* -- hole -- */
8366 NULL, /* -- hole -- */
8367 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8368 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8369 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8370 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8371 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8372 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8373 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8374 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8375 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8376 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8377 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8378 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8379 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8380 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8381 #if WIRELESS_EXT > 17
8382 NULL, /* -- hole -- */
8383 NULL, /* -- hole -- */
8384 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8385 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8386 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8387 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8388 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8389 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8390 NULL, /* SIOCSIWPMKSA */
8391 #endif
8392 };
8393
8394 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8395 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8396 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8397 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8398 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8399 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8400 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8401 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8402
8403 static const struct iw_priv_args ipw2100_private_args[] = {
8404
8405 #ifdef CONFIG_IPW2100_MONITOR
8406 {
8407 IPW2100_PRIV_SET_MONITOR,
8408 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8409 {
8410 IPW2100_PRIV_RESET,
8411 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8412 #endif /* CONFIG_IPW2100_MONITOR */
8413
8414 {
8415 IPW2100_PRIV_SET_POWER,
8416 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8417 {
8418 IPW2100_PRIV_GET_POWER,
8419 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8420 "get_power"},
8421 {
8422 IPW2100_PRIV_SET_LONGPREAMBLE,
8423 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8424 {
8425 IPW2100_PRIV_GET_LONGPREAMBLE,
8426 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8427 #ifdef CONFIG_IPW2100_MONITOR
8428 {
8429 IPW2100_PRIV_SET_CRC_CHECK,
8430 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8431 {
8432 IPW2100_PRIV_GET_CRC_CHECK,
8433 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8434 #endif /* CONFIG_IPW2100_MONITOR */
8435 };
8436
8437 static iw_handler ipw2100_private_handler[] = {
8438 #ifdef CONFIG_IPW2100_MONITOR
8439 ipw2100_wx_set_promisc,
8440 ipw2100_wx_reset,
8441 #else /* CONFIG_IPW2100_MONITOR */
8442 NULL,
8443 NULL,
8444 #endif /* CONFIG_IPW2100_MONITOR */
8445 ipw2100_wx_set_powermode,
8446 ipw2100_wx_get_powermode,
8447 ipw2100_wx_set_preamble,
8448 ipw2100_wx_get_preamble,
8449 #ifdef CONFIG_IPW2100_MONITOR
8450 ipw2100_wx_set_crc_check,
8451 ipw2100_wx_get_crc_check,
8452 #else /* CONFIG_IPW2100_MONITOR */
8453 NULL,
8454 NULL,
8455 #endif /* CONFIG_IPW2100_MONITOR */
8456 };
8457
8458 /*
8459 * Get wireless statistics.
8460 * Called by /proc/net/wireless
8461 * Also called by SIOCGIWSTATS
8462 */
8463 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8464 {
8465 enum {
8466 POOR = 30,
8467 FAIR = 60,
8468 GOOD = 80,
8469 VERY_GOOD = 90,
8470 EXCELLENT = 95,
8471 PERFECT = 100
8472 };
8473 int rssi_qual;
8474 int tx_qual;
8475 int beacon_qual;
8476
8477 struct ipw2100_priv *priv = ieee80211_priv(dev);
8478 struct iw_statistics *wstats;
8479 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8480 u32 ord_len = sizeof(u32);
8481
8482 if (!priv)
8483 return (struct iw_statistics *)NULL;
8484
8485 wstats = &priv->wstats;
8486
8487 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8488 * ipw2100_wx_wireless_stats seems to be called before fw is
8489 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8490 * and associated; if not associcated, the values are all meaningless
8491 * anyway, so set them all to NULL and INVALID */
8492 if (!(priv->status & STATUS_ASSOCIATED)) {
8493 wstats->miss.beacon = 0;
8494 wstats->discard.retries = 0;
8495 wstats->qual.qual = 0;
8496 wstats->qual.level = 0;
8497 wstats->qual.noise = 0;
8498 wstats->qual.updated = 7;
8499 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8500 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8501 return wstats;
8502 }
8503
8504 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8505 &missed_beacons, &ord_len))
8506 goto fail_get_ordinal;
8507
8508 /* If we don't have a connection the quality and level is 0 */
8509 if (!(priv->status & STATUS_ASSOCIATED)) {
8510 wstats->qual.qual = 0;
8511 wstats->qual.level = 0;
8512 } else {
8513 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8514 &rssi, &ord_len))
8515 goto fail_get_ordinal;
8516 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8517 if (rssi < 10)
8518 rssi_qual = rssi * POOR / 10;
8519 else if (rssi < 15)
8520 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8521 else if (rssi < 20)
8522 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8523 else if (rssi < 30)
8524 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8525 10 + GOOD;
8526 else
8527 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8528 10 + VERY_GOOD;
8529
8530 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8531 &tx_retries, &ord_len))
8532 goto fail_get_ordinal;
8533
8534 if (tx_retries > 75)
8535 tx_qual = (90 - tx_retries) * POOR / 15;
8536 else if (tx_retries > 70)
8537 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8538 else if (tx_retries > 65)
8539 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8540 else if (tx_retries > 50)
8541 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8542 15 + GOOD;
8543 else
8544 tx_qual = (50 - tx_retries) *
8545 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8546
8547 if (missed_beacons > 50)
8548 beacon_qual = (60 - missed_beacons) * POOR / 10;
8549 else if (missed_beacons > 40)
8550 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8551 10 + POOR;
8552 else if (missed_beacons > 32)
8553 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8554 18 + FAIR;
8555 else if (missed_beacons > 20)
8556 beacon_qual = (32 - missed_beacons) *
8557 (VERY_GOOD - GOOD) / 20 + GOOD;
8558 else
8559 beacon_qual = (20 - missed_beacons) *
8560 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8561
8562 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8563
8564 #ifdef CONFIG_IPW2100_DEBUG
8565 if (beacon_qual == quality)
8566 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8567 else if (tx_qual == quality)
8568 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8569 else if (quality != 100)
8570 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8571 else
8572 IPW_DEBUG_WX("Quality not clamped.\n");
8573 #endif
8574
8575 wstats->qual.qual = quality;
8576 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8577 }
8578
8579 wstats->qual.noise = 0;
8580 wstats->qual.updated = 7;
8581 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8582
8583 /* FIXME: this is percent and not a # */
8584 wstats->miss.beacon = missed_beacons;
8585
8586 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8587 &tx_failures, &ord_len))
8588 goto fail_get_ordinal;
8589 wstats->discard.retries = tx_failures;
8590
8591 return wstats;
8592
8593 fail_get_ordinal:
8594 IPW_DEBUG_WX("failed querying ordinals.\n");
8595
8596 return (struct iw_statistics *)NULL;
8597 }
8598
8599 static struct iw_handler_def ipw2100_wx_handler_def = {
8600 .standard = ipw2100_wx_handlers,
8601 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8602 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8603 .num_private_args = sizeof(ipw2100_private_args) /
8604 sizeof(struct iw_priv_args),
8605 .private = (iw_handler *) ipw2100_private_handler,
8606 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8607 .get_wireless_stats = ipw2100_wx_wireless_stats,
8608 };
8609
8610 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8611 {
8612 union iwreq_data wrqu;
8613 int len = ETH_ALEN;
8614
8615 if (priv->status & STATUS_STOPPING)
8616 return;
8617
8618 down(&priv->action_sem);
8619
8620 IPW_DEBUG_WX("enter\n");
8621
8622 up(&priv->action_sem);
8623
8624 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8625
8626 /* Fetch BSSID from the hardware */
8627 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8628 priv->status & STATUS_RF_KILL_MASK ||
8629 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8630 &priv->bssid, &len)) {
8631 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8632 } else {
8633 /* We now have the BSSID, so can finish setting to the full
8634 * associated state */
8635 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8636 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8637 priv->status &= ~STATUS_ASSOCIATING;
8638 priv->status |= STATUS_ASSOCIATED;
8639 netif_carrier_on(priv->net_dev);
8640 netif_wake_queue(priv->net_dev);
8641 }
8642
8643 if (!(priv->status & STATUS_ASSOCIATED)) {
8644 IPW_DEBUG_WX("Configuring ESSID\n");
8645 down(&priv->action_sem);
8646 /* This is a disassociation event, so kick the firmware to
8647 * look for another AP */
8648 if (priv->config & CFG_STATIC_ESSID)
8649 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8650 0);
8651 else
8652 ipw2100_set_essid(priv, NULL, 0, 0);
8653 up(&priv->action_sem);
8654 }
8655
8656 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8657 }
8658
8659 #define IPW2100_FW_MAJOR_VERSION 1
8660 #define IPW2100_FW_MINOR_VERSION 3
8661
8662 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8663 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8664
8665 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8666 IPW2100_FW_MAJOR_VERSION)
8667
8668 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8669 "." __stringify(IPW2100_FW_MINOR_VERSION)
8670
8671 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8672
8673 /*
8674
8675 BINARY FIRMWARE HEADER FORMAT
8676
8677 offset length desc
8678 0 2 version
8679 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8680 4 4 fw_len
8681 8 4 uc_len
8682 C fw_len firmware data
8683 12 + fw_len uc_len microcode data
8684
8685 */
8686
8687 struct ipw2100_fw_header {
8688 short version;
8689 short mode;
8690 unsigned int fw_size;
8691 unsigned int uc_size;
8692 } __attribute__ ((packed));
8693
8694 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8695 {
8696 struct ipw2100_fw_header *h =
8697 (struct ipw2100_fw_header *)fw->fw_entry->data;
8698
8699 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8700 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8701 "(detected version id of %u). "
8702 "See Documentation/networking/README.ipw2100\n",
8703 h->version);
8704 return 1;
8705 }
8706
8707 fw->version = h->version;
8708 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8709 fw->fw.size = h->fw_size;
8710 fw->uc.data = fw->fw.data + h->fw_size;
8711 fw->uc.size = h->uc_size;
8712
8713 return 0;
8714 }
8715
8716 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8717 struct ipw2100_fw *fw)
8718 {
8719 char *fw_name;
8720 int rc;
8721
8722 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8723 priv->net_dev->name);
8724
8725 switch (priv->ieee->iw_mode) {
8726 case IW_MODE_ADHOC:
8727 fw_name = IPW2100_FW_NAME("-i");
8728 break;
8729 #ifdef CONFIG_IPW2100_MONITOR
8730 case IW_MODE_MONITOR:
8731 fw_name = IPW2100_FW_NAME("-p");
8732 break;
8733 #endif
8734 case IW_MODE_INFRA:
8735 default:
8736 fw_name = IPW2100_FW_NAME("");
8737 break;
8738 }
8739
8740 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8741
8742 if (rc < 0) {
8743 printk(KERN_ERR DRV_NAME ": "
8744 "%s: Firmware '%s' not available or load failed.\n",
8745 priv->net_dev->name, fw_name);
8746 return rc;
8747 }
8748 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8749 fw->fw_entry->size);
8750
8751 ipw2100_mod_firmware_load(fw);
8752
8753 return 0;
8754 }
8755
8756 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8757 struct ipw2100_fw *fw)
8758 {
8759 fw->version = 0;
8760 if (fw->fw_entry)
8761 release_firmware(fw->fw_entry);
8762 fw->fw_entry = NULL;
8763 }
8764
8765 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8766 size_t max)
8767 {
8768 char ver[MAX_FW_VERSION_LEN];
8769 u32 len = MAX_FW_VERSION_LEN;
8770 u32 tmp;
8771 int i;
8772 /* firmware version is an ascii string (max len of 14) */
8773 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8774 return -EIO;
8775 tmp = max;
8776 if (len >= max)
8777 len = max - 1;
8778 for (i = 0; i < len; i++)
8779 buf[i] = ver[i];
8780 buf[i] = '\0';
8781 return tmp;
8782 }
8783
8784 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8785 size_t max)
8786 {
8787 u32 ver;
8788 u32 len = sizeof(ver);
8789 /* microcode version is a 32 bit integer */
8790 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8791 return -EIO;
8792 return snprintf(buf, max, "%08X", ver);
8793 }
8794
8795 /*
8796 * On exit, the firmware will have been freed from the fw list
8797 */
8798 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8799 {
8800 /* firmware is constructed of N contiguous entries, each entry is
8801 * structured as:
8802 *
8803 * offset sie desc
8804 * 0 4 address to write to
8805 * 4 2 length of data run
8806 * 6 length data
8807 */
8808 unsigned int addr;
8809 unsigned short len;
8810
8811 const unsigned char *firmware_data = fw->fw.data;
8812 unsigned int firmware_data_left = fw->fw.size;
8813
8814 while (firmware_data_left > 0) {
8815 addr = *(u32 *) (firmware_data);
8816 firmware_data += 4;
8817 firmware_data_left -= 4;
8818
8819 len = *(u16 *) (firmware_data);
8820 firmware_data += 2;
8821 firmware_data_left -= 2;
8822
8823 if (len > 32) {
8824 printk(KERN_ERR DRV_NAME ": "
8825 "Invalid firmware run-length of %d bytes\n",
8826 len);
8827 return -EINVAL;
8828 }
8829
8830 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8831 firmware_data += len;
8832 firmware_data_left -= len;
8833 }
8834
8835 return 0;
8836 }
8837
8838 struct symbol_alive_response {
8839 u8 cmd_id;
8840 u8 seq_num;
8841 u8 ucode_rev;
8842 u8 eeprom_valid;
8843 u16 valid_flags;
8844 u8 IEEE_addr[6];
8845 u16 flags;
8846 u16 pcb_rev;
8847 u16 clock_settle_time; // 1us LSB
8848 u16 powerup_settle_time; // 1us LSB
8849 u16 hop_settle_time; // 1us LSB
8850 u8 date[3]; // month, day, year
8851 u8 time[2]; // hours, minutes
8852 u8 ucode_valid;
8853 };
8854
8855 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8856 struct ipw2100_fw *fw)
8857 {
8858 struct net_device *dev = priv->net_dev;
8859 const unsigned char *microcode_data = fw->uc.data;
8860 unsigned int microcode_data_left = fw->uc.size;
8861 void __iomem *reg = (void __iomem *)dev->base_addr;
8862
8863 struct symbol_alive_response response;
8864 int i, j;
8865 u8 data;
8866
8867 /* Symbol control */
8868 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8869 readl(reg);
8870 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8871 readl(reg);
8872
8873 /* HW config */
8874 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8875 readl(reg);
8876 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8877 readl(reg);
8878
8879 /* EN_CS_ACCESS bit to reset control store pointer */
8880 write_nic_byte(dev, 0x210000, 0x40);
8881 readl(reg);
8882 write_nic_byte(dev, 0x210000, 0x0);
8883 readl(reg);
8884 write_nic_byte(dev, 0x210000, 0x40);
8885 readl(reg);
8886
8887 /* copy microcode from buffer into Symbol */
8888
8889 while (microcode_data_left > 0) {
8890 write_nic_byte(dev, 0x210010, *microcode_data++);
8891 write_nic_byte(dev, 0x210010, *microcode_data++);
8892 microcode_data_left -= 2;
8893 }
8894
8895 /* EN_CS_ACCESS bit to reset the control store pointer */
8896 write_nic_byte(dev, 0x210000, 0x0);
8897 readl(reg);
8898
8899 /* Enable System (Reg 0)
8900 * first enable causes garbage in RX FIFO */
8901 write_nic_byte(dev, 0x210000, 0x0);
8902 readl(reg);
8903 write_nic_byte(dev, 0x210000, 0x80);
8904 readl(reg);
8905
8906 /* Reset External Baseband Reg */
8907 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8908 readl(reg);
8909 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8910 readl(reg);
8911
8912 /* HW Config (Reg 5) */
8913 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8914 readl(reg);
8915 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8916 readl(reg);
8917
8918 /* Enable System (Reg 0)
8919 * second enable should be OK */
8920 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8921 readl(reg);
8922 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8923
8924 /* check Symbol is enabled - upped this from 5 as it wasn't always
8925 * catching the update */
8926 for (i = 0; i < 10; i++) {
8927 udelay(10);
8928
8929 /* check Dino is enabled bit */
8930 read_nic_byte(dev, 0x210000, &data);
8931 if (data & 0x1)
8932 break;
8933 }
8934
8935 if (i == 10) {
8936 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8937 dev->name);
8938 return -EIO;
8939 }
8940
8941 /* Get Symbol alive response */
8942 for (i = 0; i < 30; i++) {
8943 /* Read alive response structure */
8944 for (j = 0;
8945 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8946 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8947
8948 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8949 break;
8950 udelay(10);
8951 }
8952
8953 if (i == 30) {
8954 printk(KERN_ERR DRV_NAME
8955 ": %s: No response from Symbol - hw not alive\n",
8956 dev->name);
8957 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8958 return -EIO;
8959 }
8960
8961 return 0;
8962 }