]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ipw2100.c
drivers/net: const-ify ethtool_ops declarations
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #define __KERNEL_SYSCALLS__
154 #include <linux/fs.h>
155 #include <linux/mm.h>
156 #include <linux/slab.h>
157 #include <linux/unistd.h>
158 #include <linux/stringify.h>
159 #include <linux/tcp.h>
160 #include <linux/types.h>
161 #include <linux/version.h>
162 #include <linux/time.h>
163 #include <linux/firmware.h>
164 #include <linux/acpi.h>
165 #include <linux/ctype.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
217 } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
337 {
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
415 {
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
420
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
432
433 len -= dif_len;
434 aligned_addr += 4;
435 }
436
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
453 {
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
458
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
470
471 len -= dif_len;
472 aligned_addr += 4;
473 }
474
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
499 {
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
506
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
511 }
512
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
520
521 return -EINVAL;
522 }
523
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
527
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530 return 0;
531 }
532
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535 ord -= IPW_START_ORD_TAB_2;
536
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
540
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
546
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
549
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
552
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
558 }
559
560 *len = total_length;
561 if (!total_length)
562 return 0;
563
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567 return 0;
568 }
569
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
572
573 return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
578 {
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
581
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
587 }
588
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
591
592 write_nic_dword(priv->net_dev, addr, *val);
593
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596 return 0;
597 }
598
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
602
603 return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
608 {
609 int out, i, j, l;
610 char c;
611
612 out = snprintf(buf, count, "%08X", ofs);
613
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
621 }
622
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
630
631 out += snprintf(buf + out, count - out, "%c", c);
632 }
633
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
636 }
637
638 return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
647
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
654 }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661 unsigned long now = get_seconds();
662
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
669
670 priv->last_reset = get_seconds();
671
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_work(priv->workqueue, &priv->reset_work);
683
684 if (priv->reset_backoff < MAX_RESET_BACKOFF)
685 priv->reset_backoff++;
686
687 wake_up_interruptible(&priv->wait_command_queue);
688 } else
689 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
690 priv->net_dev->name);
691
692 }
693
694 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
695 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
696 struct host_command *cmd)
697 {
698 struct list_head *element;
699 struct ipw2100_tx_packet *packet;
700 unsigned long flags;
701 int err = 0;
702
703 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
704 command_types[cmd->host_command], cmd->host_command,
705 cmd->host_command_length);
706 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
707 cmd->host_command_length);
708
709 spin_lock_irqsave(&priv->low_lock, flags);
710
711 if (priv->fatal_error) {
712 IPW_DEBUG_INFO
713 ("Attempt to send command while hardware in fatal error condition.\n");
714 err = -EIO;
715 goto fail_unlock;
716 }
717
718 if (!(priv->status & STATUS_RUNNING)) {
719 IPW_DEBUG_INFO
720 ("Attempt to send command while hardware is not running.\n");
721 err = -EIO;
722 goto fail_unlock;
723 }
724
725 if (priv->status & STATUS_CMD_ACTIVE) {
726 IPW_DEBUG_INFO
727 ("Attempt to send command while another command is pending.\n");
728 err = -EBUSY;
729 goto fail_unlock;
730 }
731
732 if (list_empty(&priv->msg_free_list)) {
733 IPW_DEBUG_INFO("no available msg buffers\n");
734 goto fail_unlock;
735 }
736
737 priv->status |= STATUS_CMD_ACTIVE;
738 priv->messages_sent++;
739
740 element = priv->msg_free_list.next;
741
742 packet = list_entry(element, struct ipw2100_tx_packet, list);
743 packet->jiffy_start = jiffies;
744
745 /* initialize the firmware command packet */
746 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
747 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
748 packet->info.c_struct.cmd->host_command_len_reg =
749 cmd->host_command_length;
750 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
751
752 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
753 cmd->host_command_parameters,
754 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
755
756 list_del(element);
757 DEC_STAT(&priv->msg_free_stat);
758
759 list_add_tail(element, &priv->msg_pend_list);
760 INC_STAT(&priv->msg_pend_stat);
761
762 ipw2100_tx_send_commands(priv);
763 ipw2100_tx_send_data(priv);
764
765 spin_unlock_irqrestore(&priv->low_lock, flags);
766
767 /*
768 * We must wait for this command to complete before another
769 * command can be sent... but if we wait more than 3 seconds
770 * then there is a problem.
771 */
772
773 err =
774 wait_event_interruptible_timeout(priv->wait_command_queue,
775 !(priv->
776 status & STATUS_CMD_ACTIVE),
777 HOST_COMPLETE_TIMEOUT);
778
779 if (err == 0) {
780 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
781 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
782 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
783 priv->status &= ~STATUS_CMD_ACTIVE;
784 schedule_reset(priv);
785 return -EIO;
786 }
787
788 if (priv->fatal_error) {
789 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
790 priv->net_dev->name);
791 return -EIO;
792 }
793
794 /* !!!!! HACK TEST !!!!!
795 * When lots of debug trace statements are enabled, the driver
796 * doesn't seem to have as many firmware restart cycles...
797 *
798 * As a test, we're sticking in a 1/100s delay here */
799 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
800
801 return 0;
802
803 fail_unlock:
804 spin_unlock_irqrestore(&priv->low_lock, flags);
805
806 return err;
807 }
808
809 /*
810 * Verify the values and data access of the hardware
811 * No locks needed or used. No functions called.
812 */
813 static int ipw2100_verify(struct ipw2100_priv *priv)
814 {
815 u32 data1, data2;
816 u32 address;
817
818 u32 val1 = 0x76543210;
819 u32 val2 = 0xFEDCBA98;
820
821 /* Domain 0 check - all values should be DOA_DEBUG */
822 for (address = IPW_REG_DOA_DEBUG_AREA_START;
823 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
824 read_register(priv->net_dev, address, &data1);
825 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
826 return -EIO;
827 }
828
829 /* Domain 1 check - use arbitrary read/write compare */
830 for (address = 0; address < 5; address++) {
831 /* The memory area is not used now */
832 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
833 val1);
834 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
835 val2);
836 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
837 &data1);
838 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
839 &data2);
840 if (val1 == data1 && val2 == data2)
841 return 0;
842 }
843
844 return -EIO;
845 }
846
847 /*
848 *
849 * Loop until the CARD_DISABLED bit is the same value as the
850 * supplied parameter
851 *
852 * TODO: See if it would be more efficient to do a wait/wake
853 * cycle and have the completion event trigger the wakeup
854 *
855 */
856 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
857 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
858 {
859 int i;
860 u32 card_state;
861 u32 len = sizeof(card_state);
862 int err;
863
864 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
865 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
866 &card_state, &len);
867 if (err) {
868 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
869 "failed.\n");
870 return 0;
871 }
872
873 /* We'll break out if either the HW state says it is
874 * in the state we want, or if HOST_COMPLETE command
875 * finishes */
876 if ((card_state == state) ||
877 ((priv->status & STATUS_ENABLED) ?
878 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
879 if (state == IPW_HW_STATE_ENABLED)
880 priv->status |= STATUS_ENABLED;
881 else
882 priv->status &= ~STATUS_ENABLED;
883
884 return 0;
885 }
886
887 udelay(50);
888 }
889
890 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
891 state ? "DISABLED" : "ENABLED");
892 return -EIO;
893 }
894
895 /*********************************************************************
896 Procedure : sw_reset_and_clock
897 Purpose : Asserts s/w reset, asserts clock initialization
898 and waits for clock stabilization
899 ********************************************************************/
900 static int sw_reset_and_clock(struct ipw2100_priv *priv)
901 {
902 int i;
903 u32 r;
904
905 // assert s/w reset
906 write_register(priv->net_dev, IPW_REG_RESET_REG,
907 IPW_AUX_HOST_RESET_REG_SW_RESET);
908
909 // wait for clock stabilization
910 for (i = 0; i < 1000; i++) {
911 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
912
913 // check clock ready bit
914 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
915 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
916 break;
917 }
918
919 if (i == 1000)
920 return -EIO; // TODO: better error value
921
922 /* set "initialization complete" bit to move adapter to
923 * D0 state */
924 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
925 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
926
927 /* wait for clock stabilization */
928 for (i = 0; i < 10000; i++) {
929 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
930
931 /* check clock ready bit */
932 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
933 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
934 break;
935 }
936
937 if (i == 10000)
938 return -EIO; /* TODO: better error value */
939
940 /* set D0 standby bit */
941 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
942 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
943 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
944
945 return 0;
946 }
947
948 /*********************************************************************
949 Procedure : ipw2100_download_firmware
950 Purpose : Initiaze adapter after power on.
951 The sequence is:
952 1. assert s/w reset first!
953 2. awake clocks & wait for clock stabilization
954 3. hold ARC (don't ask me why...)
955 4. load Dino ucode and reset/clock init again
956 5. zero-out shared mem
957 6. download f/w
958 *******************************************************************/
959 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
960 {
961 u32 address;
962 int err;
963
964 #ifndef CONFIG_PM
965 /* Fetch the firmware and microcode */
966 struct ipw2100_fw ipw2100_firmware;
967 #endif
968
969 if (priv->fatal_error) {
970 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
971 "fatal error %d. Interface must be brought down.\n",
972 priv->net_dev->name, priv->fatal_error);
973 return -EINVAL;
974 }
975 #ifdef CONFIG_PM
976 if (!ipw2100_firmware.version) {
977 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
978 if (err) {
979 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
980 priv->net_dev->name, err);
981 priv->fatal_error = IPW2100_ERR_FW_LOAD;
982 goto fail;
983 }
984 }
985 #else
986 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
987 if (err) {
988 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
989 priv->net_dev->name, err);
990 priv->fatal_error = IPW2100_ERR_FW_LOAD;
991 goto fail;
992 }
993 #endif
994 priv->firmware_version = ipw2100_firmware.version;
995
996 /* s/w reset and clock stabilization */
997 err = sw_reset_and_clock(priv);
998 if (err) {
999 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1000 priv->net_dev->name, err);
1001 goto fail;
1002 }
1003
1004 err = ipw2100_verify(priv);
1005 if (err) {
1006 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1007 priv->net_dev->name, err);
1008 goto fail;
1009 }
1010
1011 /* Hold ARC */
1012 write_nic_dword(priv->net_dev,
1013 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1014
1015 /* allow ARC to run */
1016 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1017
1018 /* load microcode */
1019 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1020 if (err) {
1021 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1022 priv->net_dev->name, err);
1023 goto fail;
1024 }
1025
1026 /* release ARC */
1027 write_nic_dword(priv->net_dev,
1028 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1029
1030 /* s/w reset and clock stabilization (again!!!) */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 printk(KERN_ERR DRV_NAME
1034 ": %s: sw_reset_and_clock failed: %d\n",
1035 priv->net_dev->name, err);
1036 goto fail;
1037 }
1038
1039 /* load f/w */
1040 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1041 if (err) {
1042 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1043 priv->net_dev->name, err);
1044 goto fail;
1045 }
1046 #ifndef CONFIG_PM
1047 /*
1048 * When the .resume method of the driver is called, the other
1049 * part of the system, i.e. the ide driver could still stay in
1050 * the suspend stage. This prevents us from loading the firmware
1051 * from the disk. --YZ
1052 */
1053
1054 /* free any storage allocated for firmware image */
1055 ipw2100_release_firmware(priv, &ipw2100_firmware);
1056 #endif
1057
1058 /* zero out Domain 1 area indirectly (Si requirement) */
1059 for (address = IPW_HOST_FW_SHARED_AREA0;
1060 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1061 write_nic_dword(priv->net_dev, address, 0);
1062 for (address = IPW_HOST_FW_SHARED_AREA1;
1063 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1064 write_nic_dword(priv->net_dev, address, 0);
1065 for (address = IPW_HOST_FW_SHARED_AREA2;
1066 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1067 write_nic_dword(priv->net_dev, address, 0);
1068 for (address = IPW_HOST_FW_SHARED_AREA3;
1069 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1070 write_nic_dword(priv->net_dev, address, 0);
1071 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1072 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1073 write_nic_dword(priv->net_dev, address, 0);
1074
1075 return 0;
1076
1077 fail:
1078 ipw2100_release_firmware(priv, &ipw2100_firmware);
1079 return err;
1080 }
1081
1082 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1083 {
1084 if (priv->status & STATUS_INT_ENABLED)
1085 return;
1086 priv->status |= STATUS_INT_ENABLED;
1087 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1088 }
1089
1090 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1091 {
1092 if (!(priv->status & STATUS_INT_ENABLED))
1093 return;
1094 priv->status &= ~STATUS_INT_ENABLED;
1095 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1096 }
1097
1098 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1099 {
1100 struct ipw2100_ordinals *ord = &priv->ordinals;
1101
1102 IPW_DEBUG_INFO("enter\n");
1103
1104 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1105 &ord->table1_addr);
1106
1107 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1108 &ord->table2_addr);
1109
1110 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1111 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1112
1113 ord->table2_size &= 0x0000FFFF;
1114
1115 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1116 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1117 IPW_DEBUG_INFO("exit\n");
1118 }
1119
1120 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1121 {
1122 u32 reg = 0;
1123 /*
1124 * Set GPIO 3 writable by FW; GPIO 1 writable
1125 * by driver and enable clock
1126 */
1127 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1128 IPW_BIT_GPIO_LED_OFF);
1129 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1130 }
1131
1132 static int rf_kill_active(struct ipw2100_priv *priv)
1133 {
1134 #define MAX_RF_KILL_CHECKS 5
1135 #define RF_KILL_CHECK_DELAY 40
1136
1137 unsigned short value = 0;
1138 u32 reg = 0;
1139 int i;
1140
1141 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1142 priv->status &= ~STATUS_RF_KILL_HW;
1143 return 0;
1144 }
1145
1146 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1147 udelay(RF_KILL_CHECK_DELAY);
1148 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1149 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1150 }
1151
1152 if (value == 0)
1153 priv->status |= STATUS_RF_KILL_HW;
1154 else
1155 priv->status &= ~STATUS_RF_KILL_HW;
1156
1157 return (value == 0);
1158 }
1159
1160 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1161 {
1162 u32 addr, len;
1163 u32 val;
1164
1165 /*
1166 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1167 */
1168 len = sizeof(addr);
1169 if (ipw2100_get_ordinal
1170 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1171 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1172 __LINE__);
1173 return -EIO;
1174 }
1175
1176 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1177
1178 /*
1179 * EEPROM version is the byte at offset 0xfd in firmware
1180 * We read 4 bytes, then shift out the byte we actually want */
1181 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1182 priv->eeprom_version = (val >> 24) & 0xFF;
1183 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1184
1185 /*
1186 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1187 *
1188 * notice that the EEPROM bit is reverse polarity, i.e.
1189 * bit = 0 signifies HW RF kill switch is supported
1190 * bit = 1 signifies HW RF kill switch is NOT supported
1191 */
1192 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1193 if (!((val >> 24) & 0x01))
1194 priv->hw_features |= HW_FEATURE_RFKILL;
1195
1196 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1197 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * Start firmware execution after power on and intialization
1204 * The sequence is:
1205 * 1. Release ARC
1206 * 2. Wait for f/w initialization completes;
1207 */
1208 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1209 {
1210 int i;
1211 u32 inta, inta_mask, gpio;
1212
1213 IPW_DEBUG_INFO("enter\n");
1214
1215 if (priv->status & STATUS_RUNNING)
1216 return 0;
1217
1218 /*
1219 * Initialize the hw - drive adapter to DO state by setting
1220 * init_done bit. Wait for clk_ready bit and Download
1221 * fw & dino ucode
1222 */
1223 if (ipw2100_download_firmware(priv)) {
1224 printk(KERN_ERR DRV_NAME
1225 ": %s: Failed to power on the adapter.\n",
1226 priv->net_dev->name);
1227 return -EIO;
1228 }
1229
1230 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1231 * in the firmware RBD and TBD ring queue */
1232 ipw2100_queues_initialize(priv);
1233
1234 ipw2100_hw_set_gpio(priv);
1235
1236 /* TODO -- Look at disabling interrupts here to make sure none
1237 * get fired during FW initialization */
1238
1239 /* Release ARC - clear reset bit */
1240 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1241
1242 /* wait for f/w intialization complete */
1243 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1244 i = 5000;
1245 do {
1246 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1247 /* Todo... wait for sync command ... */
1248
1249 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1250
1251 /* check "init done" bit */
1252 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1253 /* reset "init done" bit */
1254 write_register(priv->net_dev, IPW_REG_INTA,
1255 IPW2100_INTA_FW_INIT_DONE);
1256 break;
1257 }
1258
1259 /* check error conditions : we check these after the firmware
1260 * check so that if there is an error, the interrupt handler
1261 * will see it and the adapter will be reset */
1262 if (inta &
1263 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1264 /* clear error conditions */
1265 write_register(priv->net_dev, IPW_REG_INTA,
1266 IPW2100_INTA_FATAL_ERROR |
1267 IPW2100_INTA_PARITY_ERROR);
1268 }
1269 } while (i--);
1270
1271 /* Clear out any pending INTAs since we aren't supposed to have
1272 * interrupts enabled at this point... */
1273 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1275 inta &= IPW_INTERRUPT_MASK;
1276 /* Clear out any pending interrupts */
1277 if (inta & inta_mask)
1278 write_register(priv->net_dev, IPW_REG_INTA, inta);
1279
1280 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1281 i ? "SUCCESS" : "FAILED");
1282
1283 if (!i) {
1284 printk(KERN_WARNING DRV_NAME
1285 ": %s: Firmware did not initialize.\n",
1286 priv->net_dev->name);
1287 return -EIO;
1288 }
1289
1290 /* allow firmware to write to GPIO1 & GPIO3 */
1291 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1292
1293 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1294
1295 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1296
1297 /* Ready to receive commands */
1298 priv->status |= STATUS_RUNNING;
1299
1300 /* The adapter has been reset; we are not associated */
1301 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1302
1303 IPW_DEBUG_INFO("exit\n");
1304
1305 return 0;
1306 }
1307
1308 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1309 {
1310 if (!priv->fatal_error)
1311 return;
1312
1313 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1314 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1315 priv->fatal_error = 0;
1316 }
1317
1318 /* NOTE: Our interrupt is disabled when this method is called */
1319 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1320 {
1321 u32 reg;
1322 int i;
1323
1324 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1325
1326 ipw2100_hw_set_gpio(priv);
1327
1328 /* Step 1. Stop Master Assert */
1329 write_register(priv->net_dev, IPW_REG_RESET_REG,
1330 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1331
1332 /* Step 2. Wait for stop Master Assert
1333 * (not more then 50us, otherwise ret error */
1334 i = 5;
1335 do {
1336 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1337 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1338
1339 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1340 break;
1341 } while (i--);
1342
1343 priv->status &= ~STATUS_RESET_PENDING;
1344
1345 if (!i) {
1346 IPW_DEBUG_INFO
1347 ("exit - waited too long for master assert stop\n");
1348 return -EIO;
1349 }
1350
1351 write_register(priv->net_dev, IPW_REG_RESET_REG,
1352 IPW_AUX_HOST_RESET_REG_SW_RESET);
1353
1354 /* Reset any fatal_error conditions */
1355 ipw2100_reset_fatalerror(priv);
1356
1357 /* At this point, the adapter is now stopped and disabled */
1358 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1359 STATUS_ASSOCIATED | STATUS_ENABLED);
1360
1361 return 0;
1362 }
1363
1364 /*
1365 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1366 *
1367 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1368 *
1369 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1370 * if STATUS_ASSN_LOST is sent.
1371 */
1372 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1373 {
1374
1375 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1376
1377 struct host_command cmd = {
1378 .host_command = CARD_DISABLE_PHY_OFF,
1379 .host_command_sequence = 0,
1380 .host_command_length = 0,
1381 };
1382 int err, i;
1383 u32 val1, val2;
1384
1385 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1386
1387 /* Turn off the radio */
1388 err = ipw2100_hw_send_command(priv, &cmd);
1389 if (err)
1390 return err;
1391
1392 for (i = 0; i < 2500; i++) {
1393 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1394 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1395
1396 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1397 (val2 & IPW2100_COMMAND_PHY_OFF))
1398 return 0;
1399
1400 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1401 }
1402
1403 return -EIO;
1404 }
1405
1406 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1407 {
1408 struct host_command cmd = {
1409 .host_command = HOST_COMPLETE,
1410 .host_command_sequence = 0,
1411 .host_command_length = 0
1412 };
1413 int err = 0;
1414
1415 IPW_DEBUG_HC("HOST_COMPLETE\n");
1416
1417 if (priv->status & STATUS_ENABLED)
1418 return 0;
1419
1420 mutex_lock(&priv->adapter_mutex);
1421
1422 if (rf_kill_active(priv)) {
1423 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1424 goto fail_up;
1425 }
1426
1427 err = ipw2100_hw_send_command(priv, &cmd);
1428 if (err) {
1429 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1430 goto fail_up;
1431 }
1432
1433 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1434 if (err) {
1435 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1436 priv->net_dev->name);
1437 goto fail_up;
1438 }
1439
1440 if (priv->stop_hang_check) {
1441 priv->stop_hang_check = 0;
1442 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1443 }
1444
1445 fail_up:
1446 mutex_unlock(&priv->adapter_mutex);
1447 return err;
1448 }
1449
1450 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1451 {
1452 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1453
1454 struct host_command cmd = {
1455 .host_command = HOST_PRE_POWER_DOWN,
1456 .host_command_sequence = 0,
1457 .host_command_length = 0,
1458 };
1459 int err, i;
1460 u32 reg;
1461
1462 if (!(priv->status & STATUS_RUNNING))
1463 return 0;
1464
1465 priv->status |= STATUS_STOPPING;
1466
1467 /* We can only shut down the card if the firmware is operational. So,
1468 * if we haven't reset since a fatal_error, then we can not send the
1469 * shutdown commands. */
1470 if (!priv->fatal_error) {
1471 /* First, make sure the adapter is enabled so that the PHY_OFF
1472 * command can shut it down */
1473 ipw2100_enable_adapter(priv);
1474
1475 err = ipw2100_hw_phy_off(priv);
1476 if (err)
1477 printk(KERN_WARNING DRV_NAME
1478 ": Error disabling radio %d\n", err);
1479
1480 /*
1481 * If in D0-standby mode going directly to D3 may cause a
1482 * PCI bus violation. Therefore we must change out of the D0
1483 * state.
1484 *
1485 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1486 * hardware from going into standby mode and will transition
1487 * out of D0-standby if it is already in that state.
1488 *
1489 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1490 * driver upon completion. Once received, the driver can
1491 * proceed to the D3 state.
1492 *
1493 * Prepare for power down command to fw. This command would
1494 * take HW out of D0-standby and prepare it for D3 state.
1495 *
1496 * Currently FW does not support event notification for this
1497 * event. Therefore, skip waiting for it. Just wait a fixed
1498 * 100ms
1499 */
1500 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1501
1502 err = ipw2100_hw_send_command(priv, &cmd);
1503 if (err)
1504 printk(KERN_WARNING DRV_NAME ": "
1505 "%s: Power down command failed: Error %d\n",
1506 priv->net_dev->name, err);
1507 else
1508 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1509 }
1510
1511 priv->status &= ~STATUS_ENABLED;
1512
1513 /*
1514 * Set GPIO 3 writable by FW; GPIO 1 writable
1515 * by driver and enable clock
1516 */
1517 ipw2100_hw_set_gpio(priv);
1518
1519 /*
1520 * Power down adapter. Sequence:
1521 * 1. Stop master assert (RESET_REG[9]=1)
1522 * 2. Wait for stop master (RESET_REG[8]==1)
1523 * 3. S/w reset assert (RESET_REG[7] = 1)
1524 */
1525
1526 /* Stop master assert */
1527 write_register(priv->net_dev, IPW_REG_RESET_REG,
1528 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1529
1530 /* wait stop master not more than 50 usec.
1531 * Otherwise return error. */
1532 for (i = 5; i > 0; i--) {
1533 udelay(10);
1534
1535 /* Check master stop bit */
1536 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1537
1538 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1539 break;
1540 }
1541
1542 if (i == 0)
1543 printk(KERN_WARNING DRV_NAME
1544 ": %s: Could now power down adapter.\n",
1545 priv->net_dev->name);
1546
1547 /* assert s/w reset */
1548 write_register(priv->net_dev, IPW_REG_RESET_REG,
1549 IPW_AUX_HOST_RESET_REG_SW_RESET);
1550
1551 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1552
1553 return 0;
1554 }
1555
1556 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1557 {
1558 struct host_command cmd = {
1559 .host_command = CARD_DISABLE,
1560 .host_command_sequence = 0,
1561 .host_command_length = 0
1562 };
1563 int err = 0;
1564
1565 IPW_DEBUG_HC("CARD_DISABLE\n");
1566
1567 if (!(priv->status & STATUS_ENABLED))
1568 return 0;
1569
1570 /* Make sure we clear the associated state */
1571 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1572
1573 if (!priv->stop_hang_check) {
1574 priv->stop_hang_check = 1;
1575 cancel_delayed_work(&priv->hang_check);
1576 }
1577
1578 mutex_lock(&priv->adapter_mutex);
1579
1580 err = ipw2100_hw_send_command(priv, &cmd);
1581 if (err) {
1582 printk(KERN_WARNING DRV_NAME
1583 ": exit - failed to send CARD_DISABLE command\n");
1584 goto fail_up;
1585 }
1586
1587 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1588 if (err) {
1589 printk(KERN_WARNING DRV_NAME
1590 ": exit - card failed to change to DISABLED\n");
1591 goto fail_up;
1592 }
1593
1594 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1595
1596 fail_up:
1597 mutex_unlock(&priv->adapter_mutex);
1598 return err;
1599 }
1600
1601 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1602 {
1603 struct host_command cmd = {
1604 .host_command = SET_SCAN_OPTIONS,
1605 .host_command_sequence = 0,
1606 .host_command_length = 8
1607 };
1608 int err;
1609
1610 IPW_DEBUG_INFO("enter\n");
1611
1612 IPW_DEBUG_SCAN("setting scan options\n");
1613
1614 cmd.host_command_parameters[0] = 0;
1615
1616 if (!(priv->config & CFG_ASSOCIATE))
1617 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1618 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1619 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1620 if (priv->config & CFG_PASSIVE_SCAN)
1621 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1622
1623 cmd.host_command_parameters[1] = priv->channel_mask;
1624
1625 err = ipw2100_hw_send_command(priv, &cmd);
1626
1627 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1628 cmd.host_command_parameters[0]);
1629
1630 return err;
1631 }
1632
1633 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1634 {
1635 struct host_command cmd = {
1636 .host_command = BROADCAST_SCAN,
1637 .host_command_sequence = 0,
1638 .host_command_length = 4
1639 };
1640 int err;
1641
1642 IPW_DEBUG_HC("START_SCAN\n");
1643
1644 cmd.host_command_parameters[0] = 0;
1645
1646 /* No scanning if in monitor mode */
1647 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1648 return 1;
1649
1650 if (priv->status & STATUS_SCANNING) {
1651 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1652 return 0;
1653 }
1654
1655 IPW_DEBUG_INFO("enter\n");
1656
1657 /* Not clearing here; doing so makes iwlist always return nothing...
1658 *
1659 * We should modify the table logic to use aging tables vs. clearing
1660 * the table on each scan start.
1661 */
1662 IPW_DEBUG_SCAN("starting scan\n");
1663
1664 priv->status |= STATUS_SCANNING;
1665 err = ipw2100_hw_send_command(priv, &cmd);
1666 if (err)
1667 priv->status &= ~STATUS_SCANNING;
1668
1669 IPW_DEBUG_INFO("exit\n");
1670
1671 return err;
1672 }
1673
1674 static const struct ieee80211_geo ipw_geos[] = {
1675 { /* Restricted */
1676 "---",
1677 .bg_channels = 14,
1678 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1679 {2427, 4}, {2432, 5}, {2437, 6},
1680 {2442, 7}, {2447, 8}, {2452, 9},
1681 {2457, 10}, {2462, 11}, {2467, 12},
1682 {2472, 13}, {2484, 14}},
1683 },
1684 };
1685
1686 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1687 {
1688 unsigned long flags;
1689 int rc = 0;
1690 u32 lock;
1691 u32 ord_len = sizeof(lock);
1692
1693 /* Quite if manually disabled. */
1694 if (priv->status & STATUS_RF_KILL_SW) {
1695 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1696 "switch\n", priv->net_dev->name);
1697 return 0;
1698 }
1699
1700 /* If the interrupt is enabled, turn it off... */
1701 spin_lock_irqsave(&priv->low_lock, flags);
1702 ipw2100_disable_interrupts(priv);
1703
1704 /* Reset any fatal_error conditions */
1705 ipw2100_reset_fatalerror(priv);
1706 spin_unlock_irqrestore(&priv->low_lock, flags);
1707
1708 if (priv->status & STATUS_POWERED ||
1709 (priv->status & STATUS_RESET_PENDING)) {
1710 /* Power cycle the card ... */
1711 if (ipw2100_power_cycle_adapter(priv)) {
1712 printk(KERN_WARNING DRV_NAME
1713 ": %s: Could not cycle adapter.\n",
1714 priv->net_dev->name);
1715 rc = 1;
1716 goto exit;
1717 }
1718 } else
1719 priv->status |= STATUS_POWERED;
1720
1721 /* Load the firmware, start the clocks, etc. */
1722 if (ipw2100_start_adapter(priv)) {
1723 printk(KERN_ERR DRV_NAME
1724 ": %s: Failed to start the firmware.\n",
1725 priv->net_dev->name);
1726 rc = 1;
1727 goto exit;
1728 }
1729
1730 ipw2100_initialize_ordinals(priv);
1731
1732 /* Determine capabilities of this particular HW configuration */
1733 if (ipw2100_get_hw_features(priv)) {
1734 printk(KERN_ERR DRV_NAME
1735 ": %s: Failed to determine HW features.\n",
1736 priv->net_dev->name);
1737 rc = 1;
1738 goto exit;
1739 }
1740
1741 /* Initialize the geo */
1742 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1743 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1744 return 0;
1745 }
1746 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1747
1748 lock = LOCK_NONE;
1749 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1750 printk(KERN_ERR DRV_NAME
1751 ": %s: Failed to clear ordinal lock.\n",
1752 priv->net_dev->name);
1753 rc = 1;
1754 goto exit;
1755 }
1756
1757 priv->status &= ~STATUS_SCANNING;
1758
1759 if (rf_kill_active(priv)) {
1760 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1761 priv->net_dev->name);
1762
1763 if (priv->stop_rf_kill) {
1764 priv->stop_rf_kill = 0;
1765 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1766 }
1767
1768 deferred = 1;
1769 }
1770
1771 /* Turn on the interrupt so that commands can be processed */
1772 ipw2100_enable_interrupts(priv);
1773
1774 /* Send all of the commands that must be sent prior to
1775 * HOST_COMPLETE */
1776 if (ipw2100_adapter_setup(priv)) {
1777 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1778 priv->net_dev->name);
1779 rc = 1;
1780 goto exit;
1781 }
1782
1783 if (!deferred) {
1784 /* Enable the adapter - sends HOST_COMPLETE */
1785 if (ipw2100_enable_adapter(priv)) {
1786 printk(KERN_ERR DRV_NAME ": "
1787 "%s: failed in call to enable adapter.\n",
1788 priv->net_dev->name);
1789 ipw2100_hw_stop_adapter(priv);
1790 rc = 1;
1791 goto exit;
1792 }
1793
1794 /* Start a scan . . . */
1795 ipw2100_set_scan_options(priv);
1796 ipw2100_start_scan(priv);
1797 }
1798
1799 exit:
1800 return rc;
1801 }
1802
1803 /* Called by register_netdev() */
1804 static int ipw2100_net_init(struct net_device *dev)
1805 {
1806 struct ipw2100_priv *priv = ieee80211_priv(dev);
1807 return ipw2100_up(priv, 1);
1808 }
1809
1810 static void ipw2100_down(struct ipw2100_priv *priv)
1811 {
1812 unsigned long flags;
1813 union iwreq_data wrqu = {
1814 .ap_addr = {
1815 .sa_family = ARPHRD_ETHER}
1816 };
1817 int associated = priv->status & STATUS_ASSOCIATED;
1818
1819 /* Kill the RF switch timer */
1820 if (!priv->stop_rf_kill) {
1821 priv->stop_rf_kill = 1;
1822 cancel_delayed_work(&priv->rf_kill);
1823 }
1824
1825 /* Kill the firmare hang check timer */
1826 if (!priv->stop_hang_check) {
1827 priv->stop_hang_check = 1;
1828 cancel_delayed_work(&priv->hang_check);
1829 }
1830
1831 /* Kill any pending resets */
1832 if (priv->status & STATUS_RESET_PENDING)
1833 cancel_delayed_work(&priv->reset_work);
1834
1835 /* Make sure the interrupt is on so that FW commands will be
1836 * processed correctly */
1837 spin_lock_irqsave(&priv->low_lock, flags);
1838 ipw2100_enable_interrupts(priv);
1839 spin_unlock_irqrestore(&priv->low_lock, flags);
1840
1841 if (ipw2100_hw_stop_adapter(priv))
1842 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1843 priv->net_dev->name);
1844
1845 /* Do not disable the interrupt until _after_ we disable
1846 * the adaptor. Otherwise the CARD_DISABLE command will never
1847 * be ack'd by the firmware */
1848 spin_lock_irqsave(&priv->low_lock, flags);
1849 ipw2100_disable_interrupts(priv);
1850 spin_unlock_irqrestore(&priv->low_lock, flags);
1851
1852 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1853 if (priv->config & CFG_C3_DISABLED) {
1854 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1855 acpi_set_cstate_limit(priv->cstate_limit);
1856 priv->config &= ~CFG_C3_DISABLED;
1857 }
1858 #endif
1859
1860 /* We have to signal any supplicant if we are disassociating */
1861 if (associated)
1862 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1863
1864 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1865 netif_carrier_off(priv->net_dev);
1866 netif_stop_queue(priv->net_dev);
1867 }
1868
1869 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1870 {
1871 unsigned long flags;
1872 union iwreq_data wrqu = {
1873 .ap_addr = {
1874 .sa_family = ARPHRD_ETHER}
1875 };
1876 int associated = priv->status & STATUS_ASSOCIATED;
1877
1878 spin_lock_irqsave(&priv->low_lock, flags);
1879 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1880 priv->resets++;
1881 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1882 priv->status |= STATUS_SECURITY_UPDATED;
1883
1884 /* Force a power cycle even if interface hasn't been opened
1885 * yet */
1886 cancel_delayed_work(&priv->reset_work);
1887 priv->status |= STATUS_RESET_PENDING;
1888 spin_unlock_irqrestore(&priv->low_lock, flags);
1889
1890 mutex_lock(&priv->action_mutex);
1891 /* stop timed checks so that they don't interfere with reset */
1892 priv->stop_hang_check = 1;
1893 cancel_delayed_work(&priv->hang_check);
1894
1895 /* We have to signal any supplicant if we are disassociating */
1896 if (associated)
1897 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1898
1899 ipw2100_up(priv, 0);
1900 mutex_unlock(&priv->action_mutex);
1901
1902 }
1903
1904 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1905 {
1906
1907 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1908 int ret, len, essid_len;
1909 char essid[IW_ESSID_MAX_SIZE];
1910 u32 txrate;
1911 u32 chan;
1912 char *txratename;
1913 u8 bssid[ETH_ALEN];
1914
1915 /*
1916 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1917 * an actual MAC of the AP. Seems like FW sets this
1918 * address too late. Read it later and expose through
1919 * /proc or schedule a later task to query and update
1920 */
1921
1922 essid_len = IW_ESSID_MAX_SIZE;
1923 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1924 essid, &essid_len);
1925 if (ret) {
1926 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1927 __LINE__);
1928 return;
1929 }
1930
1931 len = sizeof(u32);
1932 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1933 if (ret) {
1934 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1935 __LINE__);
1936 return;
1937 }
1938
1939 len = sizeof(u32);
1940 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1941 if (ret) {
1942 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1943 __LINE__);
1944 return;
1945 }
1946 len = ETH_ALEN;
1947 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1948 if (ret) {
1949 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1950 __LINE__);
1951 return;
1952 }
1953 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1954
1955 switch (txrate) {
1956 case TX_RATE_1_MBIT:
1957 txratename = "1Mbps";
1958 break;
1959 case TX_RATE_2_MBIT:
1960 txratename = "2Mbsp";
1961 break;
1962 case TX_RATE_5_5_MBIT:
1963 txratename = "5.5Mbps";
1964 break;
1965 case TX_RATE_11_MBIT:
1966 txratename = "11Mbps";
1967 break;
1968 default:
1969 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1970 txratename = "unknown rate";
1971 break;
1972 }
1973
1974 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1975 MAC_FMT ")\n",
1976 priv->net_dev->name, escape_essid(essid, essid_len),
1977 txratename, chan, MAC_ARG(bssid));
1978
1979 /* now we copy read ssid into dev */
1980 if (!(priv->config & CFG_STATIC_ESSID)) {
1981 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1982 memcpy(priv->essid, essid, priv->essid_len);
1983 }
1984 priv->channel = chan;
1985 memcpy(priv->bssid, bssid, ETH_ALEN);
1986
1987 priv->status |= STATUS_ASSOCIATING;
1988 priv->connect_start = get_seconds();
1989
1990 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1991 }
1992
1993 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1994 int length, int batch_mode)
1995 {
1996 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1997 struct host_command cmd = {
1998 .host_command = SSID,
1999 .host_command_sequence = 0,
2000 .host_command_length = ssid_len
2001 };
2002 int err;
2003
2004 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2005
2006 if (ssid_len)
2007 memcpy(cmd.host_command_parameters, essid, ssid_len);
2008
2009 if (!batch_mode) {
2010 err = ipw2100_disable_adapter(priv);
2011 if (err)
2012 return err;
2013 }
2014
2015 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2016 * disable auto association -- so we cheat by setting a bogus SSID */
2017 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2018 int i;
2019 u8 *bogus = (u8 *) cmd.host_command_parameters;
2020 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2021 bogus[i] = 0x18 + i;
2022 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2023 }
2024
2025 /* NOTE: We always send the SSID command even if the provided ESSID is
2026 * the same as what we currently think is set. */
2027
2028 err = ipw2100_hw_send_command(priv, &cmd);
2029 if (!err) {
2030 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2031 memcpy(priv->essid, essid, ssid_len);
2032 priv->essid_len = ssid_len;
2033 }
2034
2035 if (!batch_mode) {
2036 if (ipw2100_enable_adapter(priv))
2037 err = -EIO;
2038 }
2039
2040 return err;
2041 }
2042
2043 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2044 {
2045 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2046 "disassociated: '%s' " MAC_FMT " \n",
2047 escape_essid(priv->essid, priv->essid_len),
2048 MAC_ARG(priv->bssid));
2049
2050 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2051
2052 if (priv->status & STATUS_STOPPING) {
2053 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2054 return;
2055 }
2056
2057 memset(priv->bssid, 0, ETH_ALEN);
2058 memset(priv->ieee->bssid, 0, ETH_ALEN);
2059
2060 netif_carrier_off(priv->net_dev);
2061 netif_stop_queue(priv->net_dev);
2062
2063 if (!(priv->status & STATUS_RUNNING))
2064 return;
2065
2066 if (priv->status & STATUS_SECURITY_UPDATED)
2067 queue_work(priv->workqueue, &priv->security_work);
2068
2069 queue_work(priv->workqueue, &priv->wx_event_work);
2070 }
2071
2072 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2073 {
2074 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2075 priv->net_dev->name);
2076
2077 /* RF_KILL is now enabled (else we wouldn't be here) */
2078 priv->status |= STATUS_RF_KILL_HW;
2079
2080 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2081 if (priv->config & CFG_C3_DISABLED) {
2082 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2083 acpi_set_cstate_limit(priv->cstate_limit);
2084 priv->config &= ~CFG_C3_DISABLED;
2085 }
2086 #endif
2087
2088 /* Make sure the RF Kill check timer is running */
2089 priv->stop_rf_kill = 0;
2090 cancel_delayed_work(&priv->rf_kill);
2091 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2092 }
2093
2094 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2095 {
2096 IPW_DEBUG_SCAN("scan complete\n");
2097 /* Age the scan results... */
2098 priv->ieee->scans++;
2099 priv->status &= ~STATUS_SCANNING;
2100 }
2101
2102 #ifdef CONFIG_IPW2100_DEBUG
2103 #define IPW2100_HANDLER(v, f) { v, f, # v }
2104 struct ipw2100_status_indicator {
2105 int status;
2106 void (*cb) (struct ipw2100_priv * priv, u32 status);
2107 char *name;
2108 };
2109 #else
2110 #define IPW2100_HANDLER(v, f) { v, f }
2111 struct ipw2100_status_indicator {
2112 int status;
2113 void (*cb) (struct ipw2100_priv * priv, u32 status);
2114 };
2115 #endif /* CONFIG_IPW2100_DEBUG */
2116
2117 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2118 {
2119 IPW_DEBUG_SCAN("Scanning...\n");
2120 priv->status |= STATUS_SCANNING;
2121 }
2122
2123 static const struct ipw2100_status_indicator status_handlers[] = {
2124 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2125 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2126 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2127 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2128 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2129 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2130 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2131 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2132 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2133 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2134 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2135 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2136 IPW2100_HANDLER(-1, NULL)
2137 };
2138
2139 static void isr_status_change(struct ipw2100_priv *priv, int status)
2140 {
2141 int i;
2142
2143 if (status == IPW_STATE_SCANNING &&
2144 priv->status & STATUS_ASSOCIATED &&
2145 !(priv->status & STATUS_SCANNING)) {
2146 IPW_DEBUG_INFO("Scan detected while associated, with "
2147 "no scan request. Restarting firmware.\n");
2148
2149 /* Wake up any sleeping jobs */
2150 schedule_reset(priv);
2151 }
2152
2153 for (i = 0; status_handlers[i].status != -1; i++) {
2154 if (status == status_handlers[i].status) {
2155 IPW_DEBUG_NOTIF("Status change: %s\n",
2156 status_handlers[i].name);
2157 if (status_handlers[i].cb)
2158 status_handlers[i].cb(priv, status);
2159 priv->wstats.status = status;
2160 return;
2161 }
2162 }
2163
2164 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2165 }
2166
2167 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2168 struct ipw2100_cmd_header *cmd)
2169 {
2170 #ifdef CONFIG_IPW2100_DEBUG
2171 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2172 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2173 command_types[cmd->host_command_reg],
2174 cmd->host_command_reg);
2175 }
2176 #endif
2177 if (cmd->host_command_reg == HOST_COMPLETE)
2178 priv->status |= STATUS_ENABLED;
2179
2180 if (cmd->host_command_reg == CARD_DISABLE)
2181 priv->status &= ~STATUS_ENABLED;
2182
2183 priv->status &= ~STATUS_CMD_ACTIVE;
2184
2185 wake_up_interruptible(&priv->wait_command_queue);
2186 }
2187
2188 #ifdef CONFIG_IPW2100_DEBUG
2189 static const char *frame_types[] = {
2190 "COMMAND_STATUS_VAL",
2191 "STATUS_CHANGE_VAL",
2192 "P80211_DATA_VAL",
2193 "P8023_DATA_VAL",
2194 "HOST_NOTIFICATION_VAL"
2195 };
2196 #endif
2197
2198 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2199 struct ipw2100_rx_packet *packet)
2200 {
2201 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2202 if (!packet->skb)
2203 return -ENOMEM;
2204
2205 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2206 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2207 sizeof(struct ipw2100_rx),
2208 PCI_DMA_FROMDEVICE);
2209 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2210 * dma_addr */
2211
2212 return 0;
2213 }
2214
2215 #define SEARCH_ERROR 0xffffffff
2216 #define SEARCH_FAIL 0xfffffffe
2217 #define SEARCH_SUCCESS 0xfffffff0
2218 #define SEARCH_DISCARD 0
2219 #define SEARCH_SNAPSHOT 1
2220
2221 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2222 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2223 {
2224 int i;
2225 if (!priv->snapshot[0])
2226 return;
2227 for (i = 0; i < 0x30; i++)
2228 kfree(priv->snapshot[i]);
2229 priv->snapshot[0] = NULL;
2230 }
2231
2232 #ifdef CONFIG_IPW2100_DEBUG_C3
2233 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2234 {
2235 int i;
2236 if (priv->snapshot[0])
2237 return 1;
2238 for (i = 0; i < 0x30; i++) {
2239 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2240 if (!priv->snapshot[i]) {
2241 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2242 "buffer %d\n", priv->net_dev->name, i);
2243 while (i > 0)
2244 kfree(priv->snapshot[--i]);
2245 priv->snapshot[0] = NULL;
2246 return 0;
2247 }
2248 }
2249
2250 return 1;
2251 }
2252
2253 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2254 size_t len, int mode)
2255 {
2256 u32 i, j;
2257 u32 tmp;
2258 u8 *s, *d;
2259 u32 ret;
2260
2261 s = in_buf;
2262 if (mode == SEARCH_SNAPSHOT) {
2263 if (!ipw2100_snapshot_alloc(priv))
2264 mode = SEARCH_DISCARD;
2265 }
2266
2267 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2268 read_nic_dword(priv->net_dev, i, &tmp);
2269 if (mode == SEARCH_SNAPSHOT)
2270 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2271 if (ret == SEARCH_FAIL) {
2272 d = (u8 *) & tmp;
2273 for (j = 0; j < 4; j++) {
2274 if (*s != *d) {
2275 s = in_buf;
2276 continue;
2277 }
2278
2279 s++;
2280 d++;
2281
2282 if ((s - in_buf) == len)
2283 ret = (i + j) - len + 1;
2284 }
2285 } else if (mode == SEARCH_DISCARD)
2286 return ret;
2287 }
2288
2289 return ret;
2290 }
2291 #endif
2292
2293 /*
2294 *
2295 * 0) Disconnect the SKB from the firmware (just unmap)
2296 * 1) Pack the ETH header into the SKB
2297 * 2) Pass the SKB to the network stack
2298 *
2299 * When packet is provided by the firmware, it contains the following:
2300 *
2301 * . ieee80211_hdr
2302 * . ieee80211_snap_hdr
2303 *
2304 * The size of the constructed ethernet
2305 *
2306 */
2307 #ifdef CONFIG_IPW2100_RX_DEBUG
2308 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2309 #endif
2310
2311 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2312 {
2313 #ifdef CONFIG_IPW2100_DEBUG_C3
2314 struct ipw2100_status *status = &priv->status_queue.drv[i];
2315 u32 match, reg;
2316 int j;
2317 #endif
2318 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2319 int limit;
2320 #endif
2321
2322 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2323 i * sizeof(struct ipw2100_status));
2324
2325 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2326 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2327 limit = acpi_get_cstate_limit();
2328 if (limit > 2) {
2329 priv->cstate_limit = limit;
2330 acpi_set_cstate_limit(2);
2331 priv->config |= CFG_C3_DISABLED;
2332 }
2333 #endif
2334
2335 #ifdef CONFIG_IPW2100_DEBUG_C3
2336 /* Halt the fimrware so we can get a good image */
2337 write_register(priv->net_dev, IPW_REG_RESET_REG,
2338 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2339 j = 5;
2340 do {
2341 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2342 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2343
2344 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2345 break;
2346 } while (j--);
2347
2348 match = ipw2100_match_buf(priv, (u8 *) status,
2349 sizeof(struct ipw2100_status),
2350 SEARCH_SNAPSHOT);
2351 if (match < SEARCH_SUCCESS)
2352 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2353 "offset 0x%06X, length %d:\n",
2354 priv->net_dev->name, match,
2355 sizeof(struct ipw2100_status));
2356 else
2357 IPW_DEBUG_INFO("%s: No DMA status match in "
2358 "Firmware.\n", priv->net_dev->name);
2359
2360 printk_buf((u8 *) priv->status_queue.drv,
2361 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2362 #endif
2363
2364 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2365 priv->ieee->stats.rx_errors++;
2366 schedule_reset(priv);
2367 }
2368
2369 static void isr_rx(struct ipw2100_priv *priv, int i,
2370 struct ieee80211_rx_stats *stats)
2371 {
2372 struct ipw2100_status *status = &priv->status_queue.drv[i];
2373 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2374
2375 IPW_DEBUG_RX("Handler...\n");
2376
2377 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2378 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2379 " Dropping.\n",
2380 priv->net_dev->name,
2381 status->frame_size, skb_tailroom(packet->skb));
2382 priv->ieee->stats.rx_errors++;
2383 return;
2384 }
2385
2386 if (unlikely(!netif_running(priv->net_dev))) {
2387 priv->ieee->stats.rx_errors++;
2388 priv->wstats.discard.misc++;
2389 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2390 return;
2391 }
2392
2393 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2394 !(priv->status & STATUS_ASSOCIATED))) {
2395 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2396 priv->wstats.discard.misc++;
2397 return;
2398 }
2399
2400 pci_unmap_single(priv->pci_dev,
2401 packet->dma_addr,
2402 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2403
2404 skb_put(packet->skb, status->frame_size);
2405
2406 #ifdef CONFIG_IPW2100_RX_DEBUG
2407 /* Make a copy of the frame so we can dump it to the logs if
2408 * ieee80211_rx fails */
2409 memcpy(packet_data, packet->skb->data,
2410 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2411 #endif
2412
2413 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2414 #ifdef CONFIG_IPW2100_RX_DEBUG
2415 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2416 priv->net_dev->name);
2417 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2418 #endif
2419 priv->ieee->stats.rx_errors++;
2420
2421 /* ieee80211_rx failed, so it didn't free the SKB */
2422 dev_kfree_skb_any(packet->skb);
2423 packet->skb = NULL;
2424 }
2425
2426 /* We need to allocate a new SKB and attach it to the RDB. */
2427 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2428 printk(KERN_WARNING DRV_NAME ": "
2429 "%s: Unable to allocate SKB onto RBD ring - disabling "
2430 "adapter.\n", priv->net_dev->name);
2431 /* TODO: schedule adapter shutdown */
2432 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2433 }
2434
2435 /* Update the RDB entry */
2436 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2437 }
2438
2439 #ifdef CONFIG_IPW2100_MONITOR
2440
2441 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2442 struct ieee80211_rx_stats *stats)
2443 {
2444 struct ipw2100_status *status = &priv->status_queue.drv[i];
2445 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2446
2447 /* Magic struct that slots into the radiotap header -- no reason
2448 * to build this manually element by element, we can write it much
2449 * more efficiently than we can parse it. ORDER MATTERS HERE */
2450 struct ipw_rt_hdr {
2451 struct ieee80211_radiotap_header rt_hdr;
2452 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2453 } *ipw_rt;
2454
2455 IPW_DEBUG_RX("Handler...\n");
2456
2457 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2458 sizeof(struct ipw_rt_hdr))) {
2459 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2460 " Dropping.\n",
2461 priv->net_dev->name,
2462 status->frame_size,
2463 skb_tailroom(packet->skb));
2464 priv->ieee->stats.rx_errors++;
2465 return;
2466 }
2467
2468 if (unlikely(!netif_running(priv->net_dev))) {
2469 priv->ieee->stats.rx_errors++;
2470 priv->wstats.discard.misc++;
2471 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2472 return;
2473 }
2474
2475 if (unlikely(priv->config & CFG_CRC_CHECK &&
2476 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2477 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2478 priv->ieee->stats.rx_errors++;
2479 return;
2480 }
2481
2482 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2483 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2484 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2485 packet->skb->data, status->frame_size);
2486
2487 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2488
2489 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2490 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2491 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2492
2493 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2494
2495 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2496
2497 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2498
2499 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2500 priv->ieee->stats.rx_errors++;
2501
2502 /* ieee80211_rx failed, so it didn't free the SKB */
2503 dev_kfree_skb_any(packet->skb);
2504 packet->skb = NULL;
2505 }
2506
2507 /* We need to allocate a new SKB and attach it to the RDB. */
2508 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2509 IPW_DEBUG_WARNING(
2510 "%s: Unable to allocate SKB onto RBD ring - disabling "
2511 "adapter.\n", priv->net_dev->name);
2512 /* TODO: schedule adapter shutdown */
2513 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2514 }
2515
2516 /* Update the RDB entry */
2517 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2518 }
2519
2520 #endif
2521
2522 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2523 {
2524 struct ipw2100_status *status = &priv->status_queue.drv[i];
2525 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2526 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2527
2528 switch (frame_type) {
2529 case COMMAND_STATUS_VAL:
2530 return (status->frame_size != sizeof(u->rx_data.command));
2531 case STATUS_CHANGE_VAL:
2532 return (status->frame_size != sizeof(u->rx_data.status));
2533 case HOST_NOTIFICATION_VAL:
2534 return (status->frame_size < sizeof(u->rx_data.notification));
2535 case P80211_DATA_VAL:
2536 case P8023_DATA_VAL:
2537 #ifdef CONFIG_IPW2100_MONITOR
2538 return 0;
2539 #else
2540 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2541 case IEEE80211_FTYPE_MGMT:
2542 case IEEE80211_FTYPE_CTL:
2543 return 0;
2544 case IEEE80211_FTYPE_DATA:
2545 return (status->frame_size >
2546 IPW_MAX_802_11_PAYLOAD_LENGTH);
2547 }
2548 #endif
2549 }
2550
2551 return 1;
2552 }
2553
2554 /*
2555 * ipw2100 interrupts are disabled at this point, and the ISR
2556 * is the only code that calls this method. So, we do not need
2557 * to play with any locks.
2558 *
2559 * RX Queue works as follows:
2560 *
2561 * Read index - firmware places packet in entry identified by the
2562 * Read index and advances Read index. In this manner,
2563 * Read index will always point to the next packet to
2564 * be filled--but not yet valid.
2565 *
2566 * Write index - driver fills this entry with an unused RBD entry.
2567 * This entry has not filled by the firmware yet.
2568 *
2569 * In between the W and R indexes are the RBDs that have been received
2570 * but not yet processed.
2571 *
2572 * The process of handling packets will start at WRITE + 1 and advance
2573 * until it reaches the READ index.
2574 *
2575 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2576 *
2577 */
2578 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2579 {
2580 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2581 struct ipw2100_status_queue *sq = &priv->status_queue;
2582 struct ipw2100_rx_packet *packet;
2583 u16 frame_type;
2584 u32 r, w, i, s;
2585 struct ipw2100_rx *u;
2586 struct ieee80211_rx_stats stats = {
2587 .mac_time = jiffies,
2588 };
2589
2590 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2591 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2592
2593 if (r >= rxq->entries) {
2594 IPW_DEBUG_RX("exit - bad read index\n");
2595 return;
2596 }
2597
2598 i = (rxq->next + 1) % rxq->entries;
2599 s = i;
2600 while (i != r) {
2601 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2602 r, rxq->next, i); */
2603
2604 packet = &priv->rx_buffers[i];
2605
2606 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2607 * the correct values */
2608 pci_dma_sync_single_for_cpu(priv->pci_dev,
2609 sq->nic +
2610 sizeof(struct ipw2100_status) * i,
2611 sizeof(struct ipw2100_status),
2612 PCI_DMA_FROMDEVICE);
2613
2614 /* Sync the DMA for the RX buffer so CPU is sure to get
2615 * the correct values */
2616 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2617 sizeof(struct ipw2100_rx),
2618 PCI_DMA_FROMDEVICE);
2619
2620 if (unlikely(ipw2100_corruption_check(priv, i))) {
2621 ipw2100_corruption_detected(priv, i);
2622 goto increment;
2623 }
2624
2625 u = packet->rxp;
2626 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2627 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2628 stats.len = sq->drv[i].frame_size;
2629
2630 stats.mask = 0;
2631 if (stats.rssi != 0)
2632 stats.mask |= IEEE80211_STATMASK_RSSI;
2633 stats.freq = IEEE80211_24GHZ_BAND;
2634
2635 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2636 priv->net_dev->name, frame_types[frame_type],
2637 stats.len);
2638
2639 switch (frame_type) {
2640 case COMMAND_STATUS_VAL:
2641 /* Reset Rx watchdog */
2642 isr_rx_complete_command(priv, &u->rx_data.command);
2643 break;
2644
2645 case STATUS_CHANGE_VAL:
2646 isr_status_change(priv, u->rx_data.status);
2647 break;
2648
2649 case P80211_DATA_VAL:
2650 case P8023_DATA_VAL:
2651 #ifdef CONFIG_IPW2100_MONITOR
2652 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2653 isr_rx_monitor(priv, i, &stats);
2654 break;
2655 }
2656 #endif
2657 if (stats.len < sizeof(u->rx_data.header))
2658 break;
2659 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2660 case IEEE80211_FTYPE_MGMT:
2661 ieee80211_rx_mgt(priv->ieee,
2662 &u->rx_data.header, &stats);
2663 break;
2664
2665 case IEEE80211_FTYPE_CTL:
2666 break;
2667
2668 case IEEE80211_FTYPE_DATA:
2669 isr_rx(priv, i, &stats);
2670 break;
2671
2672 }
2673 break;
2674 }
2675
2676 increment:
2677 /* clear status field associated with this RBD */
2678 rxq->drv[i].status.info.field = 0;
2679
2680 i = (i + 1) % rxq->entries;
2681 }
2682
2683 if (i != s) {
2684 /* backtrack one entry, wrapping to end if at 0 */
2685 rxq->next = (i ? i : rxq->entries) - 1;
2686
2687 write_register(priv->net_dev,
2688 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2689 }
2690 }
2691
2692 /*
2693 * __ipw2100_tx_process
2694 *
2695 * This routine will determine whether the next packet on
2696 * the fw_pend_list has been processed by the firmware yet.
2697 *
2698 * If not, then it does nothing and returns.
2699 *
2700 * If so, then it removes the item from the fw_pend_list, frees
2701 * any associated storage, and places the item back on the
2702 * free list of its source (either msg_free_list or tx_free_list)
2703 *
2704 * TX Queue works as follows:
2705 *
2706 * Read index - points to the next TBD that the firmware will
2707 * process. The firmware will read the data, and once
2708 * done processing, it will advance the Read index.
2709 *
2710 * Write index - driver fills this entry with an constructed TBD
2711 * entry. The Write index is not advanced until the
2712 * packet has been configured.
2713 *
2714 * In between the W and R indexes are the TBDs that have NOT been
2715 * processed. Lagging behind the R index are packets that have
2716 * been processed but have not been freed by the driver.
2717 *
2718 * In order to free old storage, an internal index will be maintained
2719 * that points to the next packet to be freed. When all used
2720 * packets have been freed, the oldest index will be the same as the
2721 * firmware's read index.
2722 *
2723 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2724 *
2725 * Because the TBD structure can not contain arbitrary data, the
2726 * driver must keep an internal queue of cached allocations such that
2727 * it can put that data back into the tx_free_list and msg_free_list
2728 * for use by future command and data packets.
2729 *
2730 */
2731 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2732 {
2733 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2734 struct ipw2100_bd *tbd;
2735 struct list_head *element;
2736 struct ipw2100_tx_packet *packet;
2737 int descriptors_used;
2738 int e, i;
2739 u32 r, w, frag_num = 0;
2740
2741 if (list_empty(&priv->fw_pend_list))
2742 return 0;
2743
2744 element = priv->fw_pend_list.next;
2745
2746 packet = list_entry(element, struct ipw2100_tx_packet, list);
2747 tbd = &txq->drv[packet->index];
2748
2749 /* Determine how many TBD entries must be finished... */
2750 switch (packet->type) {
2751 case COMMAND:
2752 /* COMMAND uses only one slot; don't advance */
2753 descriptors_used = 1;
2754 e = txq->oldest;
2755 break;
2756
2757 case DATA:
2758 /* DATA uses two slots; advance and loop position. */
2759 descriptors_used = tbd->num_fragments;
2760 frag_num = tbd->num_fragments - 1;
2761 e = txq->oldest + frag_num;
2762 e %= txq->entries;
2763 break;
2764
2765 default:
2766 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2767 priv->net_dev->name);
2768 return 0;
2769 }
2770
2771 /* if the last TBD is not done by NIC yet, then packet is
2772 * not ready to be released.
2773 *
2774 */
2775 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2776 &r);
2777 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2778 &w);
2779 if (w != txq->next)
2780 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2781 priv->net_dev->name);
2782
2783 /*
2784 * txq->next is the index of the last packet written txq->oldest is
2785 * the index of the r is the index of the next packet to be read by
2786 * firmware
2787 */
2788
2789 /*
2790 * Quick graphic to help you visualize the following
2791 * if / else statement
2792 *
2793 * ===>| s---->|===============
2794 * e>|
2795 * | a | b | c | d | e | f | g | h | i | j | k | l
2796 * r---->|
2797 * w
2798 *
2799 * w - updated by driver
2800 * r - updated by firmware
2801 * s - start of oldest BD entry (txq->oldest)
2802 * e - end of oldest BD entry
2803 *
2804 */
2805 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2806 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2807 return 0;
2808 }
2809
2810 list_del(element);
2811 DEC_STAT(&priv->fw_pend_stat);
2812
2813 #ifdef CONFIG_IPW2100_DEBUG
2814 {
2815 int i = txq->oldest;
2816 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2817 &txq->drv[i],
2818 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2819 txq->drv[i].host_addr, txq->drv[i].buf_length);
2820
2821 if (packet->type == DATA) {
2822 i = (i + 1) % txq->entries;
2823
2824 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2825 &txq->drv[i],
2826 (u32) (txq->nic + i *
2827 sizeof(struct ipw2100_bd)),
2828 (u32) txq->drv[i].host_addr,
2829 txq->drv[i].buf_length);
2830 }
2831 }
2832 #endif
2833
2834 switch (packet->type) {
2835 case DATA:
2836 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2837 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2838 "Expecting DATA TBD but pulled "
2839 "something else: ids %d=%d.\n",
2840 priv->net_dev->name, txq->oldest, packet->index);
2841
2842 /* DATA packet; we have to unmap and free the SKB */
2843 for (i = 0; i < frag_num; i++) {
2844 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2845
2846 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2847 (packet->index + 1 + i) % txq->entries,
2848 tbd->host_addr, tbd->buf_length);
2849
2850 pci_unmap_single(priv->pci_dev,
2851 tbd->host_addr,
2852 tbd->buf_length, PCI_DMA_TODEVICE);
2853 }
2854
2855 ieee80211_txb_free(packet->info.d_struct.txb);
2856 packet->info.d_struct.txb = NULL;
2857
2858 list_add_tail(element, &priv->tx_free_list);
2859 INC_STAT(&priv->tx_free_stat);
2860
2861 /* We have a free slot in the Tx queue, so wake up the
2862 * transmit layer if it is stopped. */
2863 if (priv->status & STATUS_ASSOCIATED)
2864 netif_wake_queue(priv->net_dev);
2865
2866 /* A packet was processed by the hardware, so update the
2867 * watchdog */
2868 priv->net_dev->trans_start = jiffies;
2869
2870 break;
2871
2872 case COMMAND:
2873 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2874 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2875 "Expecting COMMAND TBD but pulled "
2876 "something else: ids %d=%d.\n",
2877 priv->net_dev->name, txq->oldest, packet->index);
2878
2879 #ifdef CONFIG_IPW2100_DEBUG
2880 if (packet->info.c_struct.cmd->host_command_reg <
2881 sizeof(command_types) / sizeof(*command_types))
2882 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2883 command_types[packet->info.c_struct.cmd->
2884 host_command_reg],
2885 packet->info.c_struct.cmd->
2886 host_command_reg,
2887 packet->info.c_struct.cmd->cmd_status_reg);
2888 #endif
2889
2890 list_add_tail(element, &priv->msg_free_list);
2891 INC_STAT(&priv->msg_free_stat);
2892 break;
2893 }
2894
2895 /* advance oldest used TBD pointer to start of next entry */
2896 txq->oldest = (e + 1) % txq->entries;
2897 /* increase available TBDs number */
2898 txq->available += descriptors_used;
2899 SET_STAT(&priv->txq_stat, txq->available);
2900
2901 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2902 jiffies - packet->jiffy_start);
2903
2904 return (!list_empty(&priv->fw_pend_list));
2905 }
2906
2907 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2908 {
2909 int i = 0;
2910
2911 while (__ipw2100_tx_process(priv) && i < 200)
2912 i++;
2913
2914 if (i == 200) {
2915 printk(KERN_WARNING DRV_NAME ": "
2916 "%s: Driver is running slow (%d iters).\n",
2917 priv->net_dev->name, i);
2918 }
2919 }
2920
2921 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2922 {
2923 struct list_head *element;
2924 struct ipw2100_tx_packet *packet;
2925 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2926 struct ipw2100_bd *tbd;
2927 int next = txq->next;
2928
2929 while (!list_empty(&priv->msg_pend_list)) {
2930 /* if there isn't enough space in TBD queue, then
2931 * don't stuff a new one in.
2932 * NOTE: 3 are needed as a command will take one,
2933 * and there is a minimum of 2 that must be
2934 * maintained between the r and w indexes
2935 */
2936 if (txq->available <= 3) {
2937 IPW_DEBUG_TX("no room in tx_queue\n");
2938 break;
2939 }
2940
2941 element = priv->msg_pend_list.next;
2942 list_del(element);
2943 DEC_STAT(&priv->msg_pend_stat);
2944
2945 packet = list_entry(element, struct ipw2100_tx_packet, list);
2946
2947 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2948 &txq->drv[txq->next],
2949 (void *)(txq->nic + txq->next *
2950 sizeof(struct ipw2100_bd)));
2951
2952 packet->index = txq->next;
2953
2954 tbd = &txq->drv[txq->next];
2955
2956 /* initialize TBD */
2957 tbd->host_addr = packet->info.c_struct.cmd_phys;
2958 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2959 /* not marking number of fragments causes problems
2960 * with f/w debug version */
2961 tbd->num_fragments = 1;
2962 tbd->status.info.field =
2963 IPW_BD_STATUS_TX_FRAME_COMMAND |
2964 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2965
2966 /* update TBD queue counters */
2967 txq->next++;
2968 txq->next %= txq->entries;
2969 txq->available--;
2970 DEC_STAT(&priv->txq_stat);
2971
2972 list_add_tail(element, &priv->fw_pend_list);
2973 INC_STAT(&priv->fw_pend_stat);
2974 }
2975
2976 if (txq->next != next) {
2977 /* kick off the DMA by notifying firmware the
2978 * write index has moved; make sure TBD stores are sync'd */
2979 wmb();
2980 write_register(priv->net_dev,
2981 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2982 txq->next);
2983 }
2984 }
2985
2986 /*
2987 * ipw2100_tx_send_data
2988 *
2989 */
2990 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2991 {
2992 struct list_head *element;
2993 struct ipw2100_tx_packet *packet;
2994 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2995 struct ipw2100_bd *tbd;
2996 int next = txq->next;
2997 int i = 0;
2998 struct ipw2100_data_header *ipw_hdr;
2999 struct ieee80211_hdr_3addr *hdr;
3000
3001 while (!list_empty(&priv->tx_pend_list)) {
3002 /* if there isn't enough space in TBD queue, then
3003 * don't stuff a new one in.
3004 * NOTE: 4 are needed as a data will take two,
3005 * and there is a minimum of 2 that must be
3006 * maintained between the r and w indexes
3007 */
3008 element = priv->tx_pend_list.next;
3009 packet = list_entry(element, struct ipw2100_tx_packet, list);
3010
3011 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3012 IPW_MAX_BDS)) {
3013 /* TODO: Support merging buffers if more than
3014 * IPW_MAX_BDS are used */
3015 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3016 "Increase fragmentation level.\n",
3017 priv->net_dev->name);
3018 }
3019
3020 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3021 IPW_DEBUG_TX("no room in tx_queue\n");
3022 break;
3023 }
3024
3025 list_del(element);
3026 DEC_STAT(&priv->tx_pend_stat);
3027
3028 tbd = &txq->drv[txq->next];
3029
3030 packet->index = txq->next;
3031
3032 ipw_hdr = packet->info.d_struct.data;
3033 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3034 fragments[0]->data;
3035
3036 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3037 /* To DS: Addr1 = BSSID, Addr2 = SA,
3038 Addr3 = DA */
3039 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3040 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3041 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3042 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3043 Addr3 = BSSID */
3044 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3045 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3046 }
3047
3048 ipw_hdr->host_command_reg = SEND;
3049 ipw_hdr->host_command_reg1 = 0;
3050
3051 /* For now we only support host based encryption */
3052 ipw_hdr->needs_encryption = 0;
3053 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3054 if (packet->info.d_struct.txb->nr_frags > 1)
3055 ipw_hdr->fragment_size =
3056 packet->info.d_struct.txb->frag_size -
3057 IEEE80211_3ADDR_LEN;
3058 else
3059 ipw_hdr->fragment_size = 0;
3060
3061 tbd->host_addr = packet->info.d_struct.data_phys;
3062 tbd->buf_length = sizeof(struct ipw2100_data_header);
3063 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3064 tbd->status.info.field =
3065 IPW_BD_STATUS_TX_FRAME_802_3 |
3066 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3067 txq->next++;
3068 txq->next %= txq->entries;
3069
3070 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3071 packet->index, tbd->host_addr, tbd->buf_length);
3072 #ifdef CONFIG_IPW2100_DEBUG
3073 if (packet->info.d_struct.txb->nr_frags > 1)
3074 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3075 packet->info.d_struct.txb->nr_frags);
3076 #endif
3077
3078 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3079 tbd = &txq->drv[txq->next];
3080 if (i == packet->info.d_struct.txb->nr_frags - 1)
3081 tbd->status.info.field =
3082 IPW_BD_STATUS_TX_FRAME_802_3 |
3083 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3084 else
3085 tbd->status.info.field =
3086 IPW_BD_STATUS_TX_FRAME_802_3 |
3087 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3088
3089 tbd->buf_length = packet->info.d_struct.txb->
3090 fragments[i]->len - IEEE80211_3ADDR_LEN;
3091
3092 tbd->host_addr = pci_map_single(priv->pci_dev,
3093 packet->info.d_struct.
3094 txb->fragments[i]->
3095 data +
3096 IEEE80211_3ADDR_LEN,
3097 tbd->buf_length,
3098 PCI_DMA_TODEVICE);
3099
3100 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3101 txq->next, tbd->host_addr,
3102 tbd->buf_length);
3103
3104 pci_dma_sync_single_for_device(priv->pci_dev,
3105 tbd->host_addr,
3106 tbd->buf_length,
3107 PCI_DMA_TODEVICE);
3108
3109 txq->next++;
3110 txq->next %= txq->entries;
3111 }
3112
3113 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3114 SET_STAT(&priv->txq_stat, txq->available);
3115
3116 list_add_tail(element, &priv->fw_pend_list);
3117 INC_STAT(&priv->fw_pend_stat);
3118 }
3119
3120 if (txq->next != next) {
3121 /* kick off the DMA by notifying firmware the
3122 * write index has moved; make sure TBD stores are sync'd */
3123 write_register(priv->net_dev,
3124 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3125 txq->next);
3126 }
3127 return;
3128 }
3129
3130 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3131 {
3132 struct net_device *dev = priv->net_dev;
3133 unsigned long flags;
3134 u32 inta, tmp;
3135
3136 spin_lock_irqsave(&priv->low_lock, flags);
3137 ipw2100_disable_interrupts(priv);
3138
3139 read_register(dev, IPW_REG_INTA, &inta);
3140
3141 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3142 (unsigned long)inta & IPW_INTERRUPT_MASK);
3143
3144 priv->in_isr++;
3145 priv->interrupts++;
3146
3147 /* We do not loop and keep polling for more interrupts as this
3148 * is frowned upon and doesn't play nicely with other potentially
3149 * chained IRQs */
3150 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3151 (unsigned long)inta & IPW_INTERRUPT_MASK);
3152
3153 if (inta & IPW2100_INTA_FATAL_ERROR) {
3154 printk(KERN_WARNING DRV_NAME
3155 ": Fatal interrupt. Scheduling firmware restart.\n");
3156 priv->inta_other++;
3157 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3158
3159 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3160 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3161 priv->net_dev->name, priv->fatal_error);
3162
3163 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3164 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3165 priv->net_dev->name, tmp);
3166
3167 /* Wake up any sleeping jobs */
3168 schedule_reset(priv);
3169 }
3170
3171 if (inta & IPW2100_INTA_PARITY_ERROR) {
3172 printk(KERN_ERR DRV_NAME
3173 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3174 priv->inta_other++;
3175 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3176 }
3177
3178 if (inta & IPW2100_INTA_RX_TRANSFER) {
3179 IPW_DEBUG_ISR("RX interrupt\n");
3180
3181 priv->rx_interrupts++;
3182
3183 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3184
3185 __ipw2100_rx_process(priv);
3186 __ipw2100_tx_complete(priv);
3187 }
3188
3189 if (inta & IPW2100_INTA_TX_TRANSFER) {
3190 IPW_DEBUG_ISR("TX interrupt\n");
3191
3192 priv->tx_interrupts++;
3193
3194 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3195
3196 __ipw2100_tx_complete(priv);
3197 ipw2100_tx_send_commands(priv);
3198 ipw2100_tx_send_data(priv);
3199 }
3200
3201 if (inta & IPW2100_INTA_TX_COMPLETE) {
3202 IPW_DEBUG_ISR("TX complete\n");
3203 priv->inta_other++;
3204 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3205
3206 __ipw2100_tx_complete(priv);
3207 }
3208
3209 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3210 /* ipw2100_handle_event(dev); */
3211 priv->inta_other++;
3212 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3213 }
3214
3215 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3216 IPW_DEBUG_ISR("FW init done interrupt\n");
3217 priv->inta_other++;
3218
3219 read_register(dev, IPW_REG_INTA, &tmp);
3220 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3221 IPW2100_INTA_PARITY_ERROR)) {
3222 write_register(dev, IPW_REG_INTA,
3223 IPW2100_INTA_FATAL_ERROR |
3224 IPW2100_INTA_PARITY_ERROR);
3225 }
3226
3227 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3228 }
3229
3230 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3231 IPW_DEBUG_ISR("Status change interrupt\n");
3232 priv->inta_other++;
3233 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3234 }
3235
3236 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3237 IPW_DEBUG_ISR("slave host mode interrupt\n");
3238 priv->inta_other++;
3239 write_register(dev, IPW_REG_INTA,
3240 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3241 }
3242
3243 priv->in_isr--;
3244 ipw2100_enable_interrupts(priv);
3245
3246 spin_unlock_irqrestore(&priv->low_lock, flags);
3247
3248 IPW_DEBUG_ISR("exit\n");
3249 }
3250
3251 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3252 {
3253 struct ipw2100_priv *priv = data;
3254 u32 inta, inta_mask;
3255
3256 if (!data)
3257 return IRQ_NONE;
3258
3259 spin_lock(&priv->low_lock);
3260
3261 /* We check to see if we should be ignoring interrupts before
3262 * we touch the hardware. During ucode load if we try and handle
3263 * an interrupt we can cause keyboard problems as well as cause
3264 * the ucode to fail to initialize */
3265 if (!(priv->status & STATUS_INT_ENABLED)) {
3266 /* Shared IRQ */
3267 goto none;
3268 }
3269
3270 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3271 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3272
3273 if (inta == 0xFFFFFFFF) {
3274 /* Hardware disappeared */
3275 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3276 goto none;
3277 }
3278
3279 inta &= IPW_INTERRUPT_MASK;
3280
3281 if (!(inta & inta_mask)) {
3282 /* Shared interrupt */
3283 goto none;
3284 }
3285
3286 /* We disable the hardware interrupt here just to prevent unneeded
3287 * calls to be made. We disable this again within the actual
3288 * work tasklet, so if another part of the code re-enables the
3289 * interrupt, that is fine */
3290 ipw2100_disable_interrupts(priv);
3291
3292 tasklet_schedule(&priv->irq_tasklet);
3293 spin_unlock(&priv->low_lock);
3294
3295 return IRQ_HANDLED;
3296 none:
3297 spin_unlock(&priv->low_lock);
3298 return IRQ_NONE;
3299 }
3300
3301 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3302 int pri)
3303 {
3304 struct ipw2100_priv *priv = ieee80211_priv(dev);
3305 struct list_head *element;
3306 struct ipw2100_tx_packet *packet;
3307 unsigned long flags;
3308
3309 spin_lock_irqsave(&priv->low_lock, flags);
3310
3311 if (!(priv->status & STATUS_ASSOCIATED)) {
3312 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3313 priv->ieee->stats.tx_carrier_errors++;
3314 netif_stop_queue(dev);
3315 goto fail_unlock;
3316 }
3317
3318 if (list_empty(&priv->tx_free_list))
3319 goto fail_unlock;
3320
3321 element = priv->tx_free_list.next;
3322 packet = list_entry(element, struct ipw2100_tx_packet, list);
3323
3324 packet->info.d_struct.txb = txb;
3325
3326 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3327 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3328
3329 packet->jiffy_start = jiffies;
3330
3331 list_del(element);
3332 DEC_STAT(&priv->tx_free_stat);
3333
3334 list_add_tail(element, &priv->tx_pend_list);
3335 INC_STAT(&priv->tx_pend_stat);
3336
3337 ipw2100_tx_send_data(priv);
3338
3339 spin_unlock_irqrestore(&priv->low_lock, flags);
3340 return 0;
3341
3342 fail_unlock:
3343 netif_stop_queue(dev);
3344 spin_unlock_irqrestore(&priv->low_lock, flags);
3345 return 1;
3346 }
3347
3348 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3349 {
3350 int i, j, err = -EINVAL;
3351 void *v;
3352 dma_addr_t p;
3353
3354 priv->msg_buffers =
3355 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3356 sizeof(struct
3357 ipw2100_tx_packet),
3358 GFP_KERNEL);
3359 if (!priv->msg_buffers) {
3360 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3361 "buffers.\n", priv->net_dev->name);
3362 return -ENOMEM;
3363 }
3364
3365 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3366 v = pci_alloc_consistent(priv->pci_dev,
3367 sizeof(struct ipw2100_cmd_header), &p);
3368 if (!v) {
3369 printk(KERN_ERR DRV_NAME ": "
3370 "%s: PCI alloc failed for msg "
3371 "buffers.\n", priv->net_dev->name);
3372 err = -ENOMEM;
3373 break;
3374 }
3375
3376 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3377
3378 priv->msg_buffers[i].type = COMMAND;
3379 priv->msg_buffers[i].info.c_struct.cmd =
3380 (struct ipw2100_cmd_header *)v;
3381 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3382 }
3383
3384 if (i == IPW_COMMAND_POOL_SIZE)
3385 return 0;
3386
3387 for (j = 0; j < i; j++) {
3388 pci_free_consistent(priv->pci_dev,
3389 sizeof(struct ipw2100_cmd_header),
3390 priv->msg_buffers[j].info.c_struct.cmd,
3391 priv->msg_buffers[j].info.c_struct.
3392 cmd_phys);
3393 }
3394
3395 kfree(priv->msg_buffers);
3396 priv->msg_buffers = NULL;
3397
3398 return err;
3399 }
3400
3401 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3402 {
3403 int i;
3404
3405 INIT_LIST_HEAD(&priv->msg_free_list);
3406 INIT_LIST_HEAD(&priv->msg_pend_list);
3407
3408 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3409 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3410 SET_STAT(&priv->msg_free_stat, i);
3411
3412 return 0;
3413 }
3414
3415 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3416 {
3417 int i;
3418
3419 if (!priv->msg_buffers)
3420 return;
3421
3422 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3423 pci_free_consistent(priv->pci_dev,
3424 sizeof(struct ipw2100_cmd_header),
3425 priv->msg_buffers[i].info.c_struct.cmd,
3426 priv->msg_buffers[i].info.c_struct.
3427 cmd_phys);
3428 }
3429
3430 kfree(priv->msg_buffers);
3431 priv->msg_buffers = NULL;
3432 }
3433
3434 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3435 char *buf)
3436 {
3437 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3438 char *out = buf;
3439 int i, j;
3440 u32 val;
3441
3442 for (i = 0; i < 16; i++) {
3443 out += sprintf(out, "[%08X] ", i * 16);
3444 for (j = 0; j < 16; j += 4) {
3445 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3446 out += sprintf(out, "%08X ", val);
3447 }
3448 out += sprintf(out, "\n");
3449 }
3450
3451 return out - buf;
3452 }
3453
3454 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3455
3456 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3457 char *buf)
3458 {
3459 struct ipw2100_priv *p = d->driver_data;
3460 return sprintf(buf, "0x%08x\n", (int)p->config);
3461 }
3462
3463 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3464
3465 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3466 char *buf)
3467 {
3468 struct ipw2100_priv *p = d->driver_data;
3469 return sprintf(buf, "0x%08x\n", (int)p->status);
3470 }
3471
3472 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3473
3474 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3475 char *buf)
3476 {
3477 struct ipw2100_priv *p = d->driver_data;
3478 return sprintf(buf, "0x%08x\n", (int)p->capability);
3479 }
3480
3481 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3482
3483 #define IPW2100_REG(x) { IPW_ ##x, #x }
3484 static const struct {
3485 u32 addr;
3486 const char *name;
3487 } hw_data[] = {
3488 IPW2100_REG(REG_GP_CNTRL),
3489 IPW2100_REG(REG_GPIO),
3490 IPW2100_REG(REG_INTA),
3491 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3492 #define IPW2100_NIC(x, s) { x, #x, s }
3493 static const struct {
3494 u32 addr;
3495 const char *name;
3496 size_t size;
3497 } nic_data[] = {
3498 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3499 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3500 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3501 static const struct {
3502 u8 index;
3503 const char *name;
3504 const char *desc;
3505 } ord_data[] = {
3506 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3507 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3508 "successful Host Tx's (MSDU)"),
3509 IPW2100_ORD(STAT_TX_DIR_DATA,
3510 "successful Directed Tx's (MSDU)"),
3511 IPW2100_ORD(STAT_TX_DIR_DATA1,
3512 "successful Directed Tx's (MSDU) @ 1MB"),
3513 IPW2100_ORD(STAT_TX_DIR_DATA2,
3514 "successful Directed Tx's (MSDU) @ 2MB"),
3515 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3516 "successful Directed Tx's (MSDU) @ 5_5MB"),
3517 IPW2100_ORD(STAT_TX_DIR_DATA11,
3518 "successful Directed Tx's (MSDU) @ 11MB"),
3519 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3520 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3521 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3522 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3523 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3524 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3525 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3526 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3527 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3528 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3529 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3530 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3531 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3532 IPW2100_ORD(STAT_TX_ASSN_RESP,
3533 "successful Association response Tx's"),
3534 IPW2100_ORD(STAT_TX_REASSN,
3535 "successful Reassociation Tx's"),
3536 IPW2100_ORD(STAT_TX_REASSN_RESP,
3537 "successful Reassociation response Tx's"),
3538 IPW2100_ORD(STAT_TX_PROBE,
3539 "probes successfully transmitted"),
3540 IPW2100_ORD(STAT_TX_PROBE_RESP,
3541 "probe responses successfully transmitted"),
3542 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3543 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3544 IPW2100_ORD(STAT_TX_DISASSN,
3545 "successful Disassociation TX"),
3546 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3547 IPW2100_ORD(STAT_TX_DEAUTH,
3548 "successful Deauthentication TX"),
3549 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3550 "Total successful Tx data bytes"),
3551 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3552 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3553 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3554 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3555 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3556 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3557 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3558 "times max tries in a hop failed"),
3559 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3560 "times disassociation failed"),
3561 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3562 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3563 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3564 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3565 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3566 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3567 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3568 "directed packets at 5.5MB"),
3569 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3570 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3571 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3572 "nondirected packets at 1MB"),
3573 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3574 "nondirected packets at 2MB"),
3575 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3576 "nondirected packets at 5.5MB"),
3577 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3578 "nondirected packets at 11MB"),
3579 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3580 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3581 "Rx CTS"),
3582 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3583 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3584 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3585 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3586 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3587 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3588 IPW2100_ORD(STAT_RX_REASSN_RESP,
3589 "Reassociation response Rx's"),
3590 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3591 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3592 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3593 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3594 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3595 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3596 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3597 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3598 "Total rx data bytes received"),
3599 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3600 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3601 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3602 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3603 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3604 IPW2100_ORD(STAT_RX_DUPLICATE1,
3605 "duplicate rx packets at 1MB"),
3606 IPW2100_ORD(STAT_RX_DUPLICATE2,
3607 "duplicate rx packets at 2MB"),
3608 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3609 "duplicate rx packets at 5.5MB"),
3610 IPW2100_ORD(STAT_RX_DUPLICATE11,
3611 "duplicate rx packets at 11MB"),
3612 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3613 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3614 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3615 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3616 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3617 "rx frames with invalid protocol"),
3618 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3619 IPW2100_ORD(STAT_RX_NO_BUFFER,
3620 "rx frames rejected due to no buffer"),
3621 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3622 "rx frames dropped due to missing fragment"),
3623 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3624 "rx frames dropped due to non-sequential fragment"),
3625 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3626 "rx frames dropped due to unmatched 1st frame"),
3627 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3628 "rx frames dropped due to uncompleted frame"),
3629 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3630 "ICV errors during decryption"),
3631 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3632 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3633 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3634 "poll response timeouts"),
3635 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3636 "timeouts waiting for last {broad,multi}cast pkt"),
3637 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3638 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3639 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3640 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3641 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3642 "current calculation of % missed beacons"),
3643 IPW2100_ORD(STAT_PERCENT_RETRIES,
3644 "current calculation of % missed tx retries"),
3645 IPW2100_ORD(ASSOCIATED_AP_PTR,
3646 "0 if not associated, else pointer to AP table entry"),
3647 IPW2100_ORD(AVAILABLE_AP_CNT,
3648 "AP's decsribed in the AP table"),
3649 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3650 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3651 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3652 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3653 "failures due to response fail"),
3654 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3655 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3656 IPW2100_ORD(STAT_ROAM_INHIBIT,
3657 "times roaming was inhibited due to activity"),
3658 IPW2100_ORD(RSSI_AT_ASSN,
3659 "RSSI of associated AP at time of association"),
3660 IPW2100_ORD(STAT_ASSN_CAUSE1,
3661 "reassociation: no probe response or TX on hop"),
3662 IPW2100_ORD(STAT_ASSN_CAUSE2,
3663 "reassociation: poor tx/rx quality"),
3664 IPW2100_ORD(STAT_ASSN_CAUSE3,
3665 "reassociation: tx/rx quality (excessive AP load"),
3666 IPW2100_ORD(STAT_ASSN_CAUSE4,
3667 "reassociation: AP RSSI level"),
3668 IPW2100_ORD(STAT_ASSN_CAUSE5,
3669 "reassociations due to load leveling"),
3670 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3671 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3672 "times authentication response failed"),
3673 IPW2100_ORD(STATION_TABLE_CNT,
3674 "entries in association table"),
3675 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3676 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3677 IPW2100_ORD(COUNTRY_CODE,
3678 "IEEE country code as recv'd from beacon"),
3679 IPW2100_ORD(COUNTRY_CHANNELS,
3680 "channels suported by country"),
3681 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3682 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3683 IPW2100_ORD(ANTENNA_DIVERSITY,
3684 "TRUE if antenna diversity is disabled"),
3685 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3686 IPW2100_ORD(OUR_FREQ,
3687 "current radio freq lower digits - channel ID"),
3688 IPW2100_ORD(RTC_TIME, "current RTC time"),
3689 IPW2100_ORD(PORT_TYPE, "operating mode"),
3690 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3691 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3692 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3693 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3694 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3695 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3696 IPW2100_ORD(CAPABILITIES,
3697 "Management frame capability field"),
3698 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3699 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3700 IPW2100_ORD(RTS_THRESHOLD,
3701 "Min packet length for RTS handshaking"),
3702 IPW2100_ORD(INT_MODE, "International mode"),
3703 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3704 "protocol frag threshold"),
3705 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3706 "EEPROM offset in SRAM"),
3707 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3708 "EEPROM size in SRAM"),
3709 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3710 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3711 "EEPROM IBSS 11b channel set"),
3712 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3713 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3714 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3715 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3716 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3717
3718 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3719 char *buf)
3720 {
3721 int i;
3722 struct ipw2100_priv *priv = dev_get_drvdata(d);
3723 struct net_device *dev = priv->net_dev;
3724 char *out = buf;
3725 u32 val = 0;
3726
3727 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3728
3729 for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3730 read_register(dev, hw_data[i].addr, &val);
3731 out += sprintf(out, "%30s [%08X] : %08X\n",
3732 hw_data[i].name, hw_data[i].addr, val);
3733 }
3734
3735 return out - buf;
3736 }
3737
3738 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3739
3740 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3741 char *buf)
3742 {
3743 struct ipw2100_priv *priv = dev_get_drvdata(d);
3744 struct net_device *dev = priv->net_dev;
3745 char *out = buf;
3746 int i;
3747
3748 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3749
3750 for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3751 u8 tmp8;
3752 u16 tmp16;
3753 u32 tmp32;
3754
3755 switch (nic_data[i].size) {
3756 case 1:
3757 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3758 out += sprintf(out, "%30s [%08X] : %02X\n",
3759 nic_data[i].name, nic_data[i].addr,
3760 tmp8);
3761 break;
3762 case 2:
3763 read_nic_word(dev, nic_data[i].addr, &tmp16);
3764 out += sprintf(out, "%30s [%08X] : %04X\n",
3765 nic_data[i].name, nic_data[i].addr,
3766 tmp16);
3767 break;
3768 case 4:
3769 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3770 out += sprintf(out, "%30s [%08X] : %08X\n",
3771 nic_data[i].name, nic_data[i].addr,
3772 tmp32);
3773 break;
3774 }
3775 }
3776 return out - buf;
3777 }
3778
3779 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3780
3781 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3782 char *buf)
3783 {
3784 struct ipw2100_priv *priv = dev_get_drvdata(d);
3785 struct net_device *dev = priv->net_dev;
3786 static unsigned long loop = 0;
3787 int len = 0;
3788 u32 buffer[4];
3789 int i;
3790 char line[81];
3791
3792 if (loop >= 0x30000)
3793 loop = 0;
3794
3795 /* sysfs provides us PAGE_SIZE buffer */
3796 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3797
3798 if (priv->snapshot[0])
3799 for (i = 0; i < 4; i++)
3800 buffer[i] =
3801 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3802 else
3803 for (i = 0; i < 4; i++)
3804 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3805
3806 if (priv->dump_raw)
3807 len += sprintf(buf + len,
3808 "%c%c%c%c"
3809 "%c%c%c%c"
3810 "%c%c%c%c"
3811 "%c%c%c%c",
3812 ((u8 *) buffer)[0x0],
3813 ((u8 *) buffer)[0x1],
3814 ((u8 *) buffer)[0x2],
3815 ((u8 *) buffer)[0x3],
3816 ((u8 *) buffer)[0x4],
3817 ((u8 *) buffer)[0x5],
3818 ((u8 *) buffer)[0x6],
3819 ((u8 *) buffer)[0x7],
3820 ((u8 *) buffer)[0x8],
3821 ((u8 *) buffer)[0x9],
3822 ((u8 *) buffer)[0xa],
3823 ((u8 *) buffer)[0xb],
3824 ((u8 *) buffer)[0xc],
3825 ((u8 *) buffer)[0xd],
3826 ((u8 *) buffer)[0xe],
3827 ((u8 *) buffer)[0xf]);
3828 else
3829 len += sprintf(buf + len, "%s\n",
3830 snprint_line(line, sizeof(line),
3831 (u8 *) buffer, 16, loop));
3832 loop += 16;
3833 }
3834
3835 return len;
3836 }
3837
3838 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3839 const char *buf, size_t count)
3840 {
3841 struct ipw2100_priv *priv = dev_get_drvdata(d);
3842 struct net_device *dev = priv->net_dev;
3843 const char *p = buf;
3844
3845 (void)dev; /* kill unused-var warning for debug-only code */
3846
3847 if (count < 1)
3848 return count;
3849
3850 if (p[0] == '1' ||
3851 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3852 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3853 dev->name);
3854 priv->dump_raw = 1;
3855
3856 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3857 tolower(p[1]) == 'f')) {
3858 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3859 dev->name);
3860 priv->dump_raw = 0;
3861
3862 } else if (tolower(p[0]) == 'r') {
3863 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3864 ipw2100_snapshot_free(priv);
3865
3866 } else
3867 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3868 "reset = clear memory snapshot\n", dev->name);
3869
3870 return count;
3871 }
3872
3873 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3874
3875 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3876 char *buf)
3877 {
3878 struct ipw2100_priv *priv = dev_get_drvdata(d);
3879 u32 val = 0;
3880 int len = 0;
3881 u32 val_len;
3882 static int loop = 0;
3883
3884 if (priv->status & STATUS_RF_KILL_MASK)
3885 return 0;
3886
3887 if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3888 loop = 0;
3889
3890 /* sysfs provides us PAGE_SIZE buffer */
3891 while (len < PAGE_SIZE - 128 &&
3892 loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3893
3894 val_len = sizeof(u32);
3895
3896 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3897 &val_len))
3898 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3899 ord_data[loop].index,
3900 ord_data[loop].desc);
3901 else
3902 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3903 ord_data[loop].index, val,
3904 ord_data[loop].desc);
3905 loop++;
3906 }
3907
3908 return len;
3909 }
3910
3911 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3912
3913 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3914 char *buf)
3915 {
3916 struct ipw2100_priv *priv = dev_get_drvdata(d);
3917 char *out = buf;
3918
3919 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3920 priv->interrupts, priv->tx_interrupts,
3921 priv->rx_interrupts, priv->inta_other);
3922 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3923 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3924 #ifdef CONFIG_IPW2100_DEBUG
3925 out += sprintf(out, "packet mismatch image: %s\n",
3926 priv->snapshot[0] ? "YES" : "NO");
3927 #endif
3928
3929 return out - buf;
3930 }
3931
3932 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3933
3934 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3935 {
3936 int err;
3937
3938 if (mode == priv->ieee->iw_mode)
3939 return 0;
3940
3941 err = ipw2100_disable_adapter(priv);
3942 if (err) {
3943 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3944 priv->net_dev->name, err);
3945 return err;
3946 }
3947
3948 switch (mode) {
3949 case IW_MODE_INFRA:
3950 priv->net_dev->type = ARPHRD_ETHER;
3951 break;
3952 case IW_MODE_ADHOC:
3953 priv->net_dev->type = ARPHRD_ETHER;
3954 break;
3955 #ifdef CONFIG_IPW2100_MONITOR
3956 case IW_MODE_MONITOR:
3957 priv->last_mode = priv->ieee->iw_mode;
3958 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3959 break;
3960 #endif /* CONFIG_IPW2100_MONITOR */
3961 }
3962
3963 priv->ieee->iw_mode = mode;
3964
3965 #ifdef CONFIG_PM
3966 /* Indicate ipw2100_download_firmware download firmware
3967 * from disk instead of memory. */
3968 ipw2100_firmware.version = 0;
3969 #endif
3970
3971 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3972 priv->reset_backoff = 0;
3973 schedule_reset(priv);
3974
3975 return 0;
3976 }
3977
3978 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3979 char *buf)
3980 {
3981 struct ipw2100_priv *priv = dev_get_drvdata(d);
3982 int len = 0;
3983
3984 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3985
3986 if (priv->status & STATUS_ASSOCIATED)
3987 len += sprintf(buf + len, "connected: %lu\n",
3988 get_seconds() - priv->connect_start);
3989 else
3990 len += sprintf(buf + len, "not connected\n");
3991
3992 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3993 DUMP_VAR(status, "08lx");
3994 DUMP_VAR(config, "08lx");
3995 DUMP_VAR(capability, "08lx");
3996
3997 len +=
3998 sprintf(buf + len, "last_rtc: %lu\n",
3999 (unsigned long)priv->last_rtc);
4000
4001 DUMP_VAR(fatal_error, "d");
4002 DUMP_VAR(stop_hang_check, "d");
4003 DUMP_VAR(stop_rf_kill, "d");
4004 DUMP_VAR(messages_sent, "d");
4005
4006 DUMP_VAR(tx_pend_stat.value, "d");
4007 DUMP_VAR(tx_pend_stat.hi, "d");
4008
4009 DUMP_VAR(tx_free_stat.value, "d");
4010 DUMP_VAR(tx_free_stat.lo, "d");
4011
4012 DUMP_VAR(msg_free_stat.value, "d");
4013 DUMP_VAR(msg_free_stat.lo, "d");
4014
4015 DUMP_VAR(msg_pend_stat.value, "d");
4016 DUMP_VAR(msg_pend_stat.hi, "d");
4017
4018 DUMP_VAR(fw_pend_stat.value, "d");
4019 DUMP_VAR(fw_pend_stat.hi, "d");
4020
4021 DUMP_VAR(txq_stat.value, "d");
4022 DUMP_VAR(txq_stat.lo, "d");
4023
4024 DUMP_VAR(ieee->scans, "d");
4025 DUMP_VAR(reset_backoff, "d");
4026
4027 return len;
4028 }
4029
4030 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4031
4032 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4033 char *buf)
4034 {
4035 struct ipw2100_priv *priv = dev_get_drvdata(d);
4036 char essid[IW_ESSID_MAX_SIZE + 1];
4037 u8 bssid[ETH_ALEN];
4038 u32 chan = 0;
4039 char *out = buf;
4040 int length;
4041 int ret;
4042
4043 if (priv->status & STATUS_RF_KILL_MASK)
4044 return 0;
4045
4046 memset(essid, 0, sizeof(essid));
4047 memset(bssid, 0, sizeof(bssid));
4048
4049 length = IW_ESSID_MAX_SIZE;
4050 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4051 if (ret)
4052 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4053 __LINE__);
4054
4055 length = sizeof(bssid);
4056 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4057 bssid, &length);
4058 if (ret)
4059 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4060 __LINE__);
4061
4062 length = sizeof(u32);
4063 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4064 if (ret)
4065 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4066 __LINE__);
4067
4068 out += sprintf(out, "ESSID: %s\n", essid);
4069 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4070 bssid[0], bssid[1], bssid[2],
4071 bssid[3], bssid[4], bssid[5]);
4072 out += sprintf(out, "Channel: %d\n", chan);
4073
4074 return out - buf;
4075 }
4076
4077 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4078
4079 #ifdef CONFIG_IPW2100_DEBUG
4080 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4081 {
4082 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4083 }
4084
4085 static ssize_t store_debug_level(struct device_driver *d,
4086 const char *buf, size_t count)
4087 {
4088 char *p = (char *)buf;
4089 u32 val;
4090
4091 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4092 p++;
4093 if (p[0] == 'x' || p[0] == 'X')
4094 p++;
4095 val = simple_strtoul(p, &p, 16);
4096 } else
4097 val = simple_strtoul(p, &p, 10);
4098 if (p == buf)
4099 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4100 else
4101 ipw2100_debug_level = val;
4102
4103 return strnlen(buf, count);
4104 }
4105
4106 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4107 store_debug_level);
4108 #endif /* CONFIG_IPW2100_DEBUG */
4109
4110 static ssize_t show_fatal_error(struct device *d,
4111 struct device_attribute *attr, char *buf)
4112 {
4113 struct ipw2100_priv *priv = dev_get_drvdata(d);
4114 char *out = buf;
4115 int i;
4116
4117 if (priv->fatal_error)
4118 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4119 else
4120 out += sprintf(out, "0\n");
4121
4122 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4123 if (!priv->fatal_errors[(priv->fatal_index - i) %
4124 IPW2100_ERROR_QUEUE])
4125 continue;
4126
4127 out += sprintf(out, "%d. 0x%08X\n", i,
4128 priv->fatal_errors[(priv->fatal_index - i) %
4129 IPW2100_ERROR_QUEUE]);
4130 }
4131
4132 return out - buf;
4133 }
4134
4135 static ssize_t store_fatal_error(struct device *d,
4136 struct device_attribute *attr, const char *buf,
4137 size_t count)
4138 {
4139 struct ipw2100_priv *priv = dev_get_drvdata(d);
4140 schedule_reset(priv);
4141 return count;
4142 }
4143
4144 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4145 store_fatal_error);
4146
4147 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4148 char *buf)
4149 {
4150 struct ipw2100_priv *priv = dev_get_drvdata(d);
4151 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4152 }
4153
4154 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4155 const char *buf, size_t count)
4156 {
4157 struct ipw2100_priv *priv = dev_get_drvdata(d);
4158 struct net_device *dev = priv->net_dev;
4159 char buffer[] = "00000000";
4160 unsigned long len =
4161 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4162 unsigned long val;
4163 char *p = buffer;
4164
4165 (void)dev; /* kill unused-var warning for debug-only code */
4166
4167 IPW_DEBUG_INFO("enter\n");
4168
4169 strncpy(buffer, buf, len);
4170 buffer[len] = 0;
4171
4172 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4173 p++;
4174 if (p[0] == 'x' || p[0] == 'X')
4175 p++;
4176 val = simple_strtoul(p, &p, 16);
4177 } else
4178 val = simple_strtoul(p, &p, 10);
4179 if (p == buffer) {
4180 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4181 } else {
4182 priv->ieee->scan_age = val;
4183 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4184 }
4185
4186 IPW_DEBUG_INFO("exit\n");
4187 return len;
4188 }
4189
4190 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4191
4192 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4193 char *buf)
4194 {
4195 /* 0 - RF kill not enabled
4196 1 - SW based RF kill active (sysfs)
4197 2 - HW based RF kill active
4198 3 - Both HW and SW baed RF kill active */
4199 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4200 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4201 (rf_kill_active(priv) ? 0x2 : 0x0);
4202 return sprintf(buf, "%i\n", val);
4203 }
4204
4205 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4206 {
4207 if ((disable_radio ? 1 : 0) ==
4208 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4209 return 0;
4210
4211 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4212 disable_radio ? "OFF" : "ON");
4213
4214 mutex_lock(&priv->action_mutex);
4215
4216 if (disable_radio) {
4217 priv->status |= STATUS_RF_KILL_SW;
4218 ipw2100_down(priv);
4219 } else {
4220 priv->status &= ~STATUS_RF_KILL_SW;
4221 if (rf_kill_active(priv)) {
4222 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4223 "disabled by HW switch\n");
4224 /* Make sure the RF_KILL check timer is running */
4225 priv->stop_rf_kill = 0;
4226 cancel_delayed_work(&priv->rf_kill);
4227 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4228 } else
4229 schedule_reset(priv);
4230 }
4231
4232 mutex_unlock(&priv->action_mutex);
4233 return 1;
4234 }
4235
4236 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4237 const char *buf, size_t count)
4238 {
4239 struct ipw2100_priv *priv = dev_get_drvdata(d);
4240 ipw_radio_kill_sw(priv, buf[0] == '1');
4241 return count;
4242 }
4243
4244 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4245
4246 static struct attribute *ipw2100_sysfs_entries[] = {
4247 &dev_attr_hardware.attr,
4248 &dev_attr_registers.attr,
4249 &dev_attr_ordinals.attr,
4250 &dev_attr_pci.attr,
4251 &dev_attr_stats.attr,
4252 &dev_attr_internals.attr,
4253 &dev_attr_bssinfo.attr,
4254 &dev_attr_memory.attr,
4255 &dev_attr_scan_age.attr,
4256 &dev_attr_fatal_error.attr,
4257 &dev_attr_rf_kill.attr,
4258 &dev_attr_cfg.attr,
4259 &dev_attr_status.attr,
4260 &dev_attr_capability.attr,
4261 NULL,
4262 };
4263
4264 static struct attribute_group ipw2100_attribute_group = {
4265 .attrs = ipw2100_sysfs_entries,
4266 };
4267
4268 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4269 {
4270 struct ipw2100_status_queue *q = &priv->status_queue;
4271
4272 IPW_DEBUG_INFO("enter\n");
4273
4274 q->size = entries * sizeof(struct ipw2100_status);
4275 q->drv =
4276 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4277 q->size, &q->nic);
4278 if (!q->drv) {
4279 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4280 return -ENOMEM;
4281 }
4282
4283 memset(q->drv, 0, q->size);
4284
4285 IPW_DEBUG_INFO("exit\n");
4286
4287 return 0;
4288 }
4289
4290 static void status_queue_free(struct ipw2100_priv *priv)
4291 {
4292 IPW_DEBUG_INFO("enter\n");
4293
4294 if (priv->status_queue.drv) {
4295 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4296 priv->status_queue.drv,
4297 priv->status_queue.nic);
4298 priv->status_queue.drv = NULL;
4299 }
4300
4301 IPW_DEBUG_INFO("exit\n");
4302 }
4303
4304 static int bd_queue_allocate(struct ipw2100_priv *priv,
4305 struct ipw2100_bd_queue *q, int entries)
4306 {
4307 IPW_DEBUG_INFO("enter\n");
4308
4309 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4310
4311 q->entries = entries;
4312 q->size = entries * sizeof(struct ipw2100_bd);
4313 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4314 if (!q->drv) {
4315 IPW_DEBUG_INFO
4316 ("can't allocate shared memory for buffer descriptors\n");
4317 return -ENOMEM;
4318 }
4319 memset(q->drv, 0, q->size);
4320
4321 IPW_DEBUG_INFO("exit\n");
4322
4323 return 0;
4324 }
4325
4326 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4327 {
4328 IPW_DEBUG_INFO("enter\n");
4329
4330 if (!q)
4331 return;
4332
4333 if (q->drv) {
4334 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4335 q->drv = NULL;
4336 }
4337
4338 IPW_DEBUG_INFO("exit\n");
4339 }
4340
4341 static void bd_queue_initialize(struct ipw2100_priv *priv,
4342 struct ipw2100_bd_queue *q, u32 base, u32 size,
4343 u32 r, u32 w)
4344 {
4345 IPW_DEBUG_INFO("enter\n");
4346
4347 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4348 (u32) q->nic);
4349
4350 write_register(priv->net_dev, base, q->nic);
4351 write_register(priv->net_dev, size, q->entries);
4352 write_register(priv->net_dev, r, q->oldest);
4353 write_register(priv->net_dev, w, q->next);
4354
4355 IPW_DEBUG_INFO("exit\n");
4356 }
4357
4358 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4359 {
4360 if (priv->workqueue) {
4361 priv->stop_rf_kill = 1;
4362 priv->stop_hang_check = 1;
4363 cancel_delayed_work(&priv->reset_work);
4364 cancel_delayed_work(&priv->security_work);
4365 cancel_delayed_work(&priv->wx_event_work);
4366 cancel_delayed_work(&priv->hang_check);
4367 cancel_delayed_work(&priv->rf_kill);
4368 destroy_workqueue(priv->workqueue);
4369 priv->workqueue = NULL;
4370 }
4371 }
4372
4373 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4374 {
4375 int i, j, err = -EINVAL;
4376 void *v;
4377 dma_addr_t p;
4378
4379 IPW_DEBUG_INFO("enter\n");
4380
4381 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4382 if (err) {
4383 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4384 priv->net_dev->name);
4385 return err;
4386 }
4387
4388 priv->tx_buffers =
4389 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4390 sizeof(struct
4391 ipw2100_tx_packet),
4392 GFP_ATOMIC);
4393 if (!priv->tx_buffers) {
4394 printk(KERN_ERR DRV_NAME
4395 ": %s: alloc failed form tx buffers.\n",
4396 priv->net_dev->name);
4397 bd_queue_free(priv, &priv->tx_queue);
4398 return -ENOMEM;
4399 }
4400
4401 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4402 v = pci_alloc_consistent(priv->pci_dev,
4403 sizeof(struct ipw2100_data_header),
4404 &p);
4405 if (!v) {
4406 printk(KERN_ERR DRV_NAME
4407 ": %s: PCI alloc failed for tx " "buffers.\n",
4408 priv->net_dev->name);
4409 err = -ENOMEM;
4410 break;
4411 }
4412
4413 priv->tx_buffers[i].type = DATA;
4414 priv->tx_buffers[i].info.d_struct.data =
4415 (struct ipw2100_data_header *)v;
4416 priv->tx_buffers[i].info.d_struct.data_phys = p;
4417 priv->tx_buffers[i].info.d_struct.txb = NULL;
4418 }
4419
4420 if (i == TX_PENDED_QUEUE_LENGTH)
4421 return 0;
4422
4423 for (j = 0; j < i; j++) {
4424 pci_free_consistent(priv->pci_dev,
4425 sizeof(struct ipw2100_data_header),
4426 priv->tx_buffers[j].info.d_struct.data,
4427 priv->tx_buffers[j].info.d_struct.
4428 data_phys);
4429 }
4430
4431 kfree(priv->tx_buffers);
4432 priv->tx_buffers = NULL;
4433
4434 return err;
4435 }
4436
4437 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4438 {
4439 int i;
4440
4441 IPW_DEBUG_INFO("enter\n");
4442
4443 /*
4444 * reinitialize packet info lists
4445 */
4446 INIT_LIST_HEAD(&priv->fw_pend_list);
4447 INIT_STAT(&priv->fw_pend_stat);
4448
4449 /*
4450 * reinitialize lists
4451 */
4452 INIT_LIST_HEAD(&priv->tx_pend_list);
4453 INIT_LIST_HEAD(&priv->tx_free_list);
4454 INIT_STAT(&priv->tx_pend_stat);
4455 INIT_STAT(&priv->tx_free_stat);
4456
4457 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4458 /* We simply drop any SKBs that have been queued for
4459 * transmit */
4460 if (priv->tx_buffers[i].info.d_struct.txb) {
4461 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4462 txb);
4463 priv->tx_buffers[i].info.d_struct.txb = NULL;
4464 }
4465
4466 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4467 }
4468
4469 SET_STAT(&priv->tx_free_stat, i);
4470
4471 priv->tx_queue.oldest = 0;
4472 priv->tx_queue.available = priv->tx_queue.entries;
4473 priv->tx_queue.next = 0;
4474 INIT_STAT(&priv->txq_stat);
4475 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4476
4477 bd_queue_initialize(priv, &priv->tx_queue,
4478 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4479 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4480 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4481 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4482
4483 IPW_DEBUG_INFO("exit\n");
4484
4485 }
4486
4487 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4488 {
4489 int i;
4490
4491 IPW_DEBUG_INFO("enter\n");
4492
4493 bd_queue_free(priv, &priv->tx_queue);
4494
4495 if (!priv->tx_buffers)
4496 return;
4497
4498 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4499 if (priv->tx_buffers[i].info.d_struct.txb) {
4500 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4501 txb);
4502 priv->tx_buffers[i].info.d_struct.txb = NULL;
4503 }
4504 if (priv->tx_buffers[i].info.d_struct.data)
4505 pci_free_consistent(priv->pci_dev,
4506 sizeof(struct ipw2100_data_header),
4507 priv->tx_buffers[i].info.d_struct.
4508 data,
4509 priv->tx_buffers[i].info.d_struct.
4510 data_phys);
4511 }
4512
4513 kfree(priv->tx_buffers);
4514 priv->tx_buffers = NULL;
4515
4516 IPW_DEBUG_INFO("exit\n");
4517 }
4518
4519 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4520 {
4521 int i, j, err = -EINVAL;
4522
4523 IPW_DEBUG_INFO("enter\n");
4524
4525 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4526 if (err) {
4527 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4528 return err;
4529 }
4530
4531 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4532 if (err) {
4533 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4534 bd_queue_free(priv, &priv->rx_queue);
4535 return err;
4536 }
4537
4538 /*
4539 * allocate packets
4540 */
4541 priv->rx_buffers = (struct ipw2100_rx_packet *)
4542 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4543 GFP_KERNEL);
4544 if (!priv->rx_buffers) {
4545 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4546
4547 bd_queue_free(priv, &priv->rx_queue);
4548
4549 status_queue_free(priv);
4550
4551 return -ENOMEM;
4552 }
4553
4554 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4555 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4556
4557 err = ipw2100_alloc_skb(priv, packet);
4558 if (unlikely(err)) {
4559 err = -ENOMEM;
4560 break;
4561 }
4562
4563 /* The BD holds the cache aligned address */
4564 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4565 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4566 priv->status_queue.drv[i].status_fields = 0;
4567 }
4568
4569 if (i == RX_QUEUE_LENGTH)
4570 return 0;
4571
4572 for (j = 0; j < i; j++) {
4573 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4574 sizeof(struct ipw2100_rx_packet),
4575 PCI_DMA_FROMDEVICE);
4576 dev_kfree_skb(priv->rx_buffers[j].skb);
4577 }
4578
4579 kfree(priv->rx_buffers);
4580 priv->rx_buffers = NULL;
4581
4582 bd_queue_free(priv, &priv->rx_queue);
4583
4584 status_queue_free(priv);
4585
4586 return err;
4587 }
4588
4589 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4590 {
4591 IPW_DEBUG_INFO("enter\n");
4592
4593 priv->rx_queue.oldest = 0;
4594 priv->rx_queue.available = priv->rx_queue.entries - 1;
4595 priv->rx_queue.next = priv->rx_queue.entries - 1;
4596
4597 INIT_STAT(&priv->rxq_stat);
4598 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4599
4600 bd_queue_initialize(priv, &priv->rx_queue,
4601 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4602 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4603 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4604 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4605
4606 /* set up the status queue */
4607 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4608 priv->status_queue.nic);
4609
4610 IPW_DEBUG_INFO("exit\n");
4611 }
4612
4613 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4614 {
4615 int i;
4616
4617 IPW_DEBUG_INFO("enter\n");
4618
4619 bd_queue_free(priv, &priv->rx_queue);
4620 status_queue_free(priv);
4621
4622 if (!priv->rx_buffers)
4623 return;
4624
4625 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4626 if (priv->rx_buffers[i].rxp) {
4627 pci_unmap_single(priv->pci_dev,
4628 priv->rx_buffers[i].dma_addr,
4629 sizeof(struct ipw2100_rx),
4630 PCI_DMA_FROMDEVICE);
4631 dev_kfree_skb(priv->rx_buffers[i].skb);
4632 }
4633 }
4634
4635 kfree(priv->rx_buffers);
4636 priv->rx_buffers = NULL;
4637
4638 IPW_DEBUG_INFO("exit\n");
4639 }
4640
4641 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4642 {
4643 u32 length = ETH_ALEN;
4644 u8 mac[ETH_ALEN];
4645
4646 int err;
4647
4648 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4649 if (err) {
4650 IPW_DEBUG_INFO("MAC address read failed\n");
4651 return -EIO;
4652 }
4653 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4654 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4655
4656 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4657
4658 return 0;
4659 }
4660
4661 /********************************************************************
4662 *
4663 * Firmware Commands
4664 *
4665 ********************************************************************/
4666
4667 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4668 {
4669 struct host_command cmd = {
4670 .host_command = ADAPTER_ADDRESS,
4671 .host_command_sequence = 0,
4672 .host_command_length = ETH_ALEN
4673 };
4674 int err;
4675
4676 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4677
4678 IPW_DEBUG_INFO("enter\n");
4679
4680 if (priv->config & CFG_CUSTOM_MAC) {
4681 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4682 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4683 } else
4684 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4685 ETH_ALEN);
4686
4687 err = ipw2100_hw_send_command(priv, &cmd);
4688
4689 IPW_DEBUG_INFO("exit\n");
4690 return err;
4691 }
4692
4693 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4694 int batch_mode)
4695 {
4696 struct host_command cmd = {
4697 .host_command = PORT_TYPE,
4698 .host_command_sequence = 0,
4699 .host_command_length = sizeof(u32)
4700 };
4701 int err;
4702
4703 switch (port_type) {
4704 case IW_MODE_INFRA:
4705 cmd.host_command_parameters[0] = IPW_BSS;
4706 break;
4707 case IW_MODE_ADHOC:
4708 cmd.host_command_parameters[0] = IPW_IBSS;
4709 break;
4710 }
4711
4712 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4713 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4714
4715 if (!batch_mode) {
4716 err = ipw2100_disable_adapter(priv);
4717 if (err) {
4718 printk(KERN_ERR DRV_NAME
4719 ": %s: Could not disable adapter %d\n",
4720 priv->net_dev->name, err);
4721 return err;
4722 }
4723 }
4724
4725 /* send cmd to firmware */
4726 err = ipw2100_hw_send_command(priv, &cmd);
4727
4728 if (!batch_mode)
4729 ipw2100_enable_adapter(priv);
4730
4731 return err;
4732 }
4733
4734 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4735 int batch_mode)
4736 {
4737 struct host_command cmd = {
4738 .host_command = CHANNEL,
4739 .host_command_sequence = 0,
4740 .host_command_length = sizeof(u32)
4741 };
4742 int err;
4743
4744 cmd.host_command_parameters[0] = channel;
4745
4746 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4747
4748 /* If BSS then we don't support channel selection */
4749 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4750 return 0;
4751
4752 if ((channel != 0) &&
4753 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4754 return -EINVAL;
4755
4756 if (!batch_mode) {
4757 err = ipw2100_disable_adapter(priv);
4758 if (err)
4759 return err;
4760 }
4761
4762 err = ipw2100_hw_send_command(priv, &cmd);
4763 if (err) {
4764 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4765 return err;
4766 }
4767
4768 if (channel)
4769 priv->config |= CFG_STATIC_CHANNEL;
4770 else
4771 priv->config &= ~CFG_STATIC_CHANNEL;
4772
4773 priv->channel = channel;
4774
4775 if (!batch_mode) {
4776 err = ipw2100_enable_adapter(priv);
4777 if (err)
4778 return err;
4779 }
4780
4781 return 0;
4782 }
4783
4784 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4785 {
4786 struct host_command cmd = {
4787 .host_command = SYSTEM_CONFIG,
4788 .host_command_sequence = 0,
4789 .host_command_length = 12,
4790 };
4791 u32 ibss_mask, len = sizeof(u32);
4792 int err;
4793
4794 /* Set system configuration */
4795
4796 if (!batch_mode) {
4797 err = ipw2100_disable_adapter(priv);
4798 if (err)
4799 return err;
4800 }
4801
4802 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4803 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4804
4805 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4806 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4807
4808 if (!(priv->config & CFG_LONG_PREAMBLE))
4809 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4810
4811 err = ipw2100_get_ordinal(priv,
4812 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4813 &ibss_mask, &len);
4814 if (err)
4815 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4816
4817 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4818 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4819
4820 /* 11b only */
4821 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4822
4823 err = ipw2100_hw_send_command(priv, &cmd);
4824 if (err)
4825 return err;
4826
4827 /* If IPv6 is configured in the kernel then we don't want to filter out all
4828 * of the multicast packets as IPv6 needs some. */
4829 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4830 cmd.host_command = ADD_MULTICAST;
4831 cmd.host_command_sequence = 0;
4832 cmd.host_command_length = 0;
4833
4834 ipw2100_hw_send_command(priv, &cmd);
4835 #endif
4836 if (!batch_mode) {
4837 err = ipw2100_enable_adapter(priv);
4838 if (err)
4839 return err;
4840 }
4841
4842 return 0;
4843 }
4844
4845 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4846 int batch_mode)
4847 {
4848 struct host_command cmd = {
4849 .host_command = BASIC_TX_RATES,
4850 .host_command_sequence = 0,
4851 .host_command_length = 4
4852 };
4853 int err;
4854
4855 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4856
4857 if (!batch_mode) {
4858 err = ipw2100_disable_adapter(priv);
4859 if (err)
4860 return err;
4861 }
4862
4863 /* Set BASIC TX Rate first */
4864 ipw2100_hw_send_command(priv, &cmd);
4865
4866 /* Set TX Rate */
4867 cmd.host_command = TX_RATES;
4868 ipw2100_hw_send_command(priv, &cmd);
4869
4870 /* Set MSDU TX Rate */
4871 cmd.host_command = MSDU_TX_RATES;
4872 ipw2100_hw_send_command(priv, &cmd);
4873
4874 if (!batch_mode) {
4875 err = ipw2100_enable_adapter(priv);
4876 if (err)
4877 return err;
4878 }
4879
4880 priv->tx_rates = rate;
4881
4882 return 0;
4883 }
4884
4885 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4886 {
4887 struct host_command cmd = {
4888 .host_command = POWER_MODE,
4889 .host_command_sequence = 0,
4890 .host_command_length = 4
4891 };
4892 int err;
4893
4894 cmd.host_command_parameters[0] = power_level;
4895
4896 err = ipw2100_hw_send_command(priv, &cmd);
4897 if (err)
4898 return err;
4899
4900 if (power_level == IPW_POWER_MODE_CAM)
4901 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4902 else
4903 priv->power_mode = IPW_POWER_ENABLED | power_level;
4904
4905 #ifdef CONFIG_IPW2100_TX_POWER
4906 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4907 /* Set beacon interval */
4908 cmd.host_command = TX_POWER_INDEX;
4909 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4910
4911 err = ipw2100_hw_send_command(priv, &cmd);
4912 if (err)
4913 return err;
4914 }
4915 #endif
4916
4917 return 0;
4918 }
4919
4920 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4921 {
4922 struct host_command cmd = {
4923 .host_command = RTS_THRESHOLD,
4924 .host_command_sequence = 0,
4925 .host_command_length = 4
4926 };
4927 int err;
4928
4929 if (threshold & RTS_DISABLED)
4930 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4931 else
4932 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4933
4934 err = ipw2100_hw_send_command(priv, &cmd);
4935 if (err)
4936 return err;
4937
4938 priv->rts_threshold = threshold;
4939
4940 return 0;
4941 }
4942
4943 #if 0
4944 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4945 u32 threshold, int batch_mode)
4946 {
4947 struct host_command cmd = {
4948 .host_command = FRAG_THRESHOLD,
4949 .host_command_sequence = 0,
4950 .host_command_length = 4,
4951 .host_command_parameters[0] = 0,
4952 };
4953 int err;
4954
4955 if (!batch_mode) {
4956 err = ipw2100_disable_adapter(priv);
4957 if (err)
4958 return err;
4959 }
4960
4961 if (threshold == 0)
4962 threshold = DEFAULT_FRAG_THRESHOLD;
4963 else {
4964 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4965 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4966 }
4967
4968 cmd.host_command_parameters[0] = threshold;
4969
4970 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4971
4972 err = ipw2100_hw_send_command(priv, &cmd);
4973
4974 if (!batch_mode)
4975 ipw2100_enable_adapter(priv);
4976
4977 if (!err)
4978 priv->frag_threshold = threshold;
4979
4980 return err;
4981 }
4982 #endif
4983
4984 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4985 {
4986 struct host_command cmd = {
4987 .host_command = SHORT_RETRY_LIMIT,
4988 .host_command_sequence = 0,
4989 .host_command_length = 4
4990 };
4991 int err;
4992
4993 cmd.host_command_parameters[0] = retry;
4994
4995 err = ipw2100_hw_send_command(priv, &cmd);
4996 if (err)
4997 return err;
4998
4999 priv->short_retry_limit = retry;
5000
5001 return 0;
5002 }
5003
5004 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5005 {
5006 struct host_command cmd = {
5007 .host_command = LONG_RETRY_LIMIT,
5008 .host_command_sequence = 0,
5009 .host_command_length = 4
5010 };
5011 int err;
5012
5013 cmd.host_command_parameters[0] = retry;
5014
5015 err = ipw2100_hw_send_command(priv, &cmd);
5016 if (err)
5017 return err;
5018
5019 priv->long_retry_limit = retry;
5020
5021 return 0;
5022 }
5023
5024 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5025 int batch_mode)
5026 {
5027 struct host_command cmd = {
5028 .host_command = MANDATORY_BSSID,
5029 .host_command_sequence = 0,
5030 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5031 };
5032 int err;
5033
5034 #ifdef CONFIG_IPW2100_DEBUG
5035 if (bssid != NULL)
5036 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5037 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5038 bssid[5]);
5039 else
5040 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5041 #endif
5042 /* if BSSID is empty then we disable mandatory bssid mode */
5043 if (bssid != NULL)
5044 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5045
5046 if (!batch_mode) {
5047 err = ipw2100_disable_adapter(priv);
5048 if (err)
5049 return err;
5050 }
5051
5052 err = ipw2100_hw_send_command(priv, &cmd);
5053
5054 if (!batch_mode)
5055 ipw2100_enable_adapter(priv);
5056
5057 return err;
5058 }
5059
5060 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5061 {
5062 struct host_command cmd = {
5063 .host_command = DISASSOCIATION_BSSID,
5064 .host_command_sequence = 0,
5065 .host_command_length = ETH_ALEN
5066 };
5067 int err;
5068 int len;
5069
5070 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5071
5072 len = ETH_ALEN;
5073 /* The Firmware currently ignores the BSSID and just disassociates from
5074 * the currently associated AP -- but in the off chance that a future
5075 * firmware does use the BSSID provided here, we go ahead and try and
5076 * set it to the currently associated AP's BSSID */
5077 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5078
5079 err = ipw2100_hw_send_command(priv, &cmd);
5080
5081 return err;
5082 }
5083
5084 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5085 struct ipw2100_wpa_assoc_frame *, int)
5086 __attribute__ ((unused));
5087
5088 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5089 struct ipw2100_wpa_assoc_frame *wpa_frame,
5090 int batch_mode)
5091 {
5092 struct host_command cmd = {
5093 .host_command = SET_WPA_IE,
5094 .host_command_sequence = 0,
5095 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5096 };
5097 int err;
5098
5099 IPW_DEBUG_HC("SET_WPA_IE\n");
5100
5101 if (!batch_mode) {
5102 err = ipw2100_disable_adapter(priv);
5103 if (err)
5104 return err;
5105 }
5106
5107 memcpy(cmd.host_command_parameters, wpa_frame,
5108 sizeof(struct ipw2100_wpa_assoc_frame));
5109
5110 err = ipw2100_hw_send_command(priv, &cmd);
5111
5112 if (!batch_mode) {
5113 if (ipw2100_enable_adapter(priv))
5114 err = -EIO;
5115 }
5116
5117 return err;
5118 }
5119
5120 struct security_info_params {
5121 u32 allowed_ciphers;
5122 u16 version;
5123 u8 auth_mode;
5124 u8 replay_counters_number;
5125 u8 unicast_using_group;
5126 } __attribute__ ((packed));
5127
5128 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5129 int auth_mode,
5130 int security_level,
5131 int unicast_using_group,
5132 int batch_mode)
5133 {
5134 struct host_command cmd = {
5135 .host_command = SET_SECURITY_INFORMATION,
5136 .host_command_sequence = 0,
5137 .host_command_length = sizeof(struct security_info_params)
5138 };
5139 struct security_info_params *security =
5140 (struct security_info_params *)&cmd.host_command_parameters;
5141 int err;
5142 memset(security, 0, sizeof(*security));
5143
5144 /* If shared key AP authentication is turned on, then we need to
5145 * configure the firmware to try and use it.
5146 *
5147 * Actual data encryption/decryption is handled by the host. */
5148 security->auth_mode = auth_mode;
5149 security->unicast_using_group = unicast_using_group;
5150
5151 switch (security_level) {
5152 default:
5153 case SEC_LEVEL_0:
5154 security->allowed_ciphers = IPW_NONE_CIPHER;
5155 break;
5156 case SEC_LEVEL_1:
5157 security->allowed_ciphers = IPW_WEP40_CIPHER |
5158 IPW_WEP104_CIPHER;
5159 break;
5160 case SEC_LEVEL_2:
5161 security->allowed_ciphers = IPW_WEP40_CIPHER |
5162 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5163 break;
5164 case SEC_LEVEL_2_CKIP:
5165 security->allowed_ciphers = IPW_WEP40_CIPHER |
5166 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5167 break;
5168 case SEC_LEVEL_3:
5169 security->allowed_ciphers = IPW_WEP40_CIPHER |
5170 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5171 break;
5172 }
5173
5174 IPW_DEBUG_HC
5175 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5176 security->auth_mode, security->allowed_ciphers, security_level);
5177
5178 security->replay_counters_number = 0;
5179
5180 if (!batch_mode) {
5181 err = ipw2100_disable_adapter(priv);
5182 if (err)
5183 return err;
5184 }
5185
5186 err = ipw2100_hw_send_command(priv, &cmd);
5187
5188 if (!batch_mode)
5189 ipw2100_enable_adapter(priv);
5190
5191 return err;
5192 }
5193
5194 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5195 {
5196 struct host_command cmd = {
5197 .host_command = TX_POWER_INDEX,
5198 .host_command_sequence = 0,
5199 .host_command_length = 4
5200 };
5201 int err = 0;
5202 u32 tmp = tx_power;
5203
5204 if (tx_power != IPW_TX_POWER_DEFAULT)
5205 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5206 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5207
5208 cmd.host_command_parameters[0] = tmp;
5209
5210 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5211 err = ipw2100_hw_send_command(priv, &cmd);
5212 if (!err)
5213 priv->tx_power = tx_power;
5214
5215 return 0;
5216 }
5217
5218 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5219 u32 interval, int batch_mode)
5220 {
5221 struct host_command cmd = {
5222 .host_command = BEACON_INTERVAL,
5223 .host_command_sequence = 0,
5224 .host_command_length = 4
5225 };
5226 int err;
5227
5228 cmd.host_command_parameters[0] = interval;
5229
5230 IPW_DEBUG_INFO("enter\n");
5231
5232 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5233 if (!batch_mode) {
5234 err = ipw2100_disable_adapter(priv);
5235 if (err)
5236 return err;
5237 }
5238
5239 ipw2100_hw_send_command(priv, &cmd);
5240
5241 if (!batch_mode) {
5242 err = ipw2100_enable_adapter(priv);
5243 if (err)
5244 return err;
5245 }
5246 }
5247
5248 IPW_DEBUG_INFO("exit\n");
5249
5250 return 0;
5251 }
5252
5253 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5254 {
5255 ipw2100_tx_initialize(priv);
5256 ipw2100_rx_initialize(priv);
5257 ipw2100_msg_initialize(priv);
5258 }
5259
5260 void ipw2100_queues_free(struct ipw2100_priv *priv)
5261 {
5262 ipw2100_tx_free(priv);
5263 ipw2100_rx_free(priv);
5264 ipw2100_msg_free(priv);
5265 }
5266
5267 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5268 {
5269 if (ipw2100_tx_allocate(priv) ||
5270 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5271 goto fail;
5272
5273 return 0;
5274
5275 fail:
5276 ipw2100_tx_free(priv);
5277 ipw2100_rx_free(priv);
5278 ipw2100_msg_free(priv);
5279 return -ENOMEM;
5280 }
5281
5282 #define IPW_PRIVACY_CAPABLE 0x0008
5283
5284 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5285 int batch_mode)
5286 {
5287 struct host_command cmd = {
5288 .host_command = WEP_FLAGS,
5289 .host_command_sequence = 0,
5290 .host_command_length = 4
5291 };
5292 int err;
5293
5294 cmd.host_command_parameters[0] = flags;
5295
5296 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5297
5298 if (!batch_mode) {
5299 err = ipw2100_disable_adapter(priv);
5300 if (err) {
5301 printk(KERN_ERR DRV_NAME
5302 ": %s: Could not disable adapter %d\n",
5303 priv->net_dev->name, err);
5304 return err;
5305 }
5306 }
5307
5308 /* send cmd to firmware */
5309 err = ipw2100_hw_send_command(priv, &cmd);
5310
5311 if (!batch_mode)
5312 ipw2100_enable_adapter(priv);
5313
5314 return err;
5315 }
5316
5317 struct ipw2100_wep_key {
5318 u8 idx;
5319 u8 len;
5320 u8 key[13];
5321 };
5322
5323 /* Macros to ease up priting WEP keys */
5324 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5325 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5326 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5327 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5328
5329 /**
5330 * Set a the wep key
5331 *
5332 * @priv: struct to work on
5333 * @idx: index of the key we want to set
5334 * @key: ptr to the key data to set
5335 * @len: length of the buffer at @key
5336 * @batch_mode: FIXME perform the operation in batch mode, not
5337 * disabling the device.
5338 *
5339 * @returns 0 if OK, < 0 errno code on error.
5340 *
5341 * Fill out a command structure with the new wep key, length an
5342 * index and send it down the wire.
5343 */
5344 static int ipw2100_set_key(struct ipw2100_priv *priv,
5345 int idx, char *key, int len, int batch_mode)
5346 {
5347 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5348 struct host_command cmd = {
5349 .host_command = WEP_KEY_INFO,
5350 .host_command_sequence = 0,
5351 .host_command_length = sizeof(struct ipw2100_wep_key),
5352 };
5353 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5354 int err;
5355
5356 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5357 idx, keylen, len);
5358
5359 /* NOTE: We don't check cached values in case the firmware was reset
5360 * or some other problem is occurring. If the user is setting the key,
5361 * then we push the change */
5362
5363 wep_key->idx = idx;
5364 wep_key->len = keylen;
5365
5366 if (keylen) {
5367 memcpy(wep_key->key, key, len);
5368 memset(wep_key->key + len, 0, keylen - len);
5369 }
5370
5371 /* Will be optimized out on debug not being configured in */
5372 if (keylen == 0)
5373 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5374 priv->net_dev->name, wep_key->idx);
5375 else if (keylen == 5)
5376 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5377 priv->net_dev->name, wep_key->idx, wep_key->len,
5378 WEP_STR_64(wep_key->key));
5379 else
5380 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5381 "\n",
5382 priv->net_dev->name, wep_key->idx, wep_key->len,
5383 WEP_STR_128(wep_key->key));
5384
5385 if (!batch_mode) {
5386 err = ipw2100_disable_adapter(priv);
5387 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5388 if (err) {
5389 printk(KERN_ERR DRV_NAME
5390 ": %s: Could not disable adapter %d\n",
5391 priv->net_dev->name, err);
5392 return err;
5393 }
5394 }
5395
5396 /* send cmd to firmware */
5397 err = ipw2100_hw_send_command(priv, &cmd);
5398
5399 if (!batch_mode) {
5400 int err2 = ipw2100_enable_adapter(priv);
5401 if (err == 0)
5402 err = err2;
5403 }
5404 return err;
5405 }
5406
5407 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5408 int idx, int batch_mode)
5409 {
5410 struct host_command cmd = {
5411 .host_command = WEP_KEY_INDEX,
5412 .host_command_sequence = 0,
5413 .host_command_length = 4,
5414 .host_command_parameters = {idx},
5415 };
5416 int err;
5417
5418 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5419
5420 if (idx < 0 || idx > 3)
5421 return -EINVAL;
5422
5423 if (!batch_mode) {
5424 err = ipw2100_disable_adapter(priv);
5425 if (err) {
5426 printk(KERN_ERR DRV_NAME
5427 ": %s: Could not disable adapter %d\n",
5428 priv->net_dev->name, err);
5429 return err;
5430 }
5431 }
5432
5433 /* send cmd to firmware */
5434 err = ipw2100_hw_send_command(priv, &cmd);
5435
5436 if (!batch_mode)
5437 ipw2100_enable_adapter(priv);
5438
5439 return err;
5440 }
5441
5442 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5443 {
5444 int i, err, auth_mode, sec_level, use_group;
5445
5446 if (!(priv->status & STATUS_RUNNING))
5447 return 0;
5448
5449 if (!batch_mode) {
5450 err = ipw2100_disable_adapter(priv);
5451 if (err)
5452 return err;
5453 }
5454
5455 if (!priv->ieee->sec.enabled) {
5456 err =
5457 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5458 SEC_LEVEL_0, 0, 1);
5459 } else {
5460 auth_mode = IPW_AUTH_OPEN;
5461 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5462 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5463 auth_mode = IPW_AUTH_SHARED;
5464 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5465 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5466 }
5467
5468 sec_level = SEC_LEVEL_0;
5469 if (priv->ieee->sec.flags & SEC_LEVEL)
5470 sec_level = priv->ieee->sec.level;
5471
5472 use_group = 0;
5473 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5474 use_group = priv->ieee->sec.unicast_uses_group;
5475
5476 err =
5477 ipw2100_set_security_information(priv, auth_mode, sec_level,
5478 use_group, 1);
5479 }
5480
5481 if (err)
5482 goto exit;
5483
5484 if (priv->ieee->sec.enabled) {
5485 for (i = 0; i < 4; i++) {
5486 if (!(priv->ieee->sec.flags & (1 << i))) {
5487 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5488 priv->ieee->sec.key_sizes[i] = 0;
5489 } else {
5490 err = ipw2100_set_key(priv, i,
5491 priv->ieee->sec.keys[i],
5492 priv->ieee->sec.
5493 key_sizes[i], 1);
5494 if (err)
5495 goto exit;
5496 }
5497 }
5498
5499 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5500 }
5501
5502 /* Always enable privacy so the Host can filter WEP packets if
5503 * encrypted data is sent up */
5504 err =
5505 ipw2100_set_wep_flags(priv,
5506 priv->ieee->sec.
5507 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5508 if (err)
5509 goto exit;
5510
5511 priv->status &= ~STATUS_SECURITY_UPDATED;
5512
5513 exit:
5514 if (!batch_mode)
5515 ipw2100_enable_adapter(priv);
5516
5517 return err;
5518 }
5519
5520 static void ipw2100_security_work(struct ipw2100_priv *priv)
5521 {
5522 /* If we happen to have reconnected before we get a chance to
5523 * process this, then update the security settings--which causes
5524 * a disassociation to occur */
5525 if (!(priv->status & STATUS_ASSOCIATED) &&
5526 priv->status & STATUS_SECURITY_UPDATED)
5527 ipw2100_configure_security(priv, 0);
5528 }
5529
5530 static void shim__set_security(struct net_device *dev,
5531 struct ieee80211_security *sec)
5532 {
5533 struct ipw2100_priv *priv = ieee80211_priv(dev);
5534 int i, force_update = 0;
5535
5536 mutex_lock(&priv->action_mutex);
5537 if (!(priv->status & STATUS_INITIALIZED))
5538 goto done;
5539
5540 for (i = 0; i < 4; i++) {
5541 if (sec->flags & (1 << i)) {
5542 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5543 if (sec->key_sizes[i] == 0)
5544 priv->ieee->sec.flags &= ~(1 << i);
5545 else
5546 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5547 sec->key_sizes[i]);
5548 if (sec->level == SEC_LEVEL_1) {
5549 priv->ieee->sec.flags |= (1 << i);
5550 priv->status |= STATUS_SECURITY_UPDATED;
5551 } else
5552 priv->ieee->sec.flags &= ~(1 << i);
5553 }
5554 }
5555
5556 if ((sec->flags & SEC_ACTIVE_KEY) &&
5557 priv->ieee->sec.active_key != sec->active_key) {
5558 if (sec->active_key <= 3) {
5559 priv->ieee->sec.active_key = sec->active_key;
5560 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5561 } else
5562 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5563
5564 priv->status |= STATUS_SECURITY_UPDATED;
5565 }
5566
5567 if ((sec->flags & SEC_AUTH_MODE) &&
5568 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5569 priv->ieee->sec.auth_mode = sec->auth_mode;
5570 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5571 priv->status |= STATUS_SECURITY_UPDATED;
5572 }
5573
5574 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5575 priv->ieee->sec.flags |= SEC_ENABLED;
5576 priv->ieee->sec.enabled = sec->enabled;
5577 priv->status |= STATUS_SECURITY_UPDATED;
5578 force_update = 1;
5579 }
5580
5581 if (sec->flags & SEC_ENCRYPT)
5582 priv->ieee->sec.encrypt = sec->encrypt;
5583
5584 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5585 priv->ieee->sec.level = sec->level;
5586 priv->ieee->sec.flags |= SEC_LEVEL;
5587 priv->status |= STATUS_SECURITY_UPDATED;
5588 }
5589
5590 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5591 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5592 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5593 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5594 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5595 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5596 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5597 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5598 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5599 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5600
5601 /* As a temporary work around to enable WPA until we figure out why
5602 * wpa_supplicant toggles the security capability of the driver, which
5603 * forces a disassocation with force_update...
5604 *
5605 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5606 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5607 ipw2100_configure_security(priv, 0);
5608 done:
5609 mutex_unlock(&priv->action_mutex);
5610 }
5611
5612 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5613 {
5614 int err;
5615 int batch_mode = 1;
5616 u8 *bssid;
5617
5618 IPW_DEBUG_INFO("enter\n");
5619
5620 err = ipw2100_disable_adapter(priv);
5621 if (err)
5622 return err;
5623 #ifdef CONFIG_IPW2100_MONITOR
5624 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5625 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5626 if (err)
5627 return err;
5628
5629 IPW_DEBUG_INFO("exit\n");
5630
5631 return 0;
5632 }
5633 #endif /* CONFIG_IPW2100_MONITOR */
5634
5635 err = ipw2100_read_mac_address(priv);
5636 if (err)
5637 return -EIO;
5638
5639 err = ipw2100_set_mac_address(priv, batch_mode);
5640 if (err)
5641 return err;
5642
5643 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5644 if (err)
5645 return err;
5646
5647 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5648 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5649 if (err)
5650 return err;
5651 }
5652
5653 err = ipw2100_system_config(priv, batch_mode);
5654 if (err)
5655 return err;
5656
5657 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5658 if (err)
5659 return err;
5660
5661 /* Default to power mode OFF */
5662 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5663 if (err)
5664 return err;
5665
5666 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5667 if (err)
5668 return err;
5669
5670 if (priv->config & CFG_STATIC_BSSID)
5671 bssid = priv->bssid;
5672 else
5673 bssid = NULL;
5674 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5675 if (err)
5676 return err;
5677
5678 if (priv->config & CFG_STATIC_ESSID)
5679 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5680 batch_mode);
5681 else
5682 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5683 if (err)
5684 return err;
5685
5686 err = ipw2100_configure_security(priv, batch_mode);
5687 if (err)
5688 return err;
5689
5690 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5691 err =
5692 ipw2100_set_ibss_beacon_interval(priv,
5693 priv->beacon_interval,
5694 batch_mode);
5695 if (err)
5696 return err;
5697
5698 err = ipw2100_set_tx_power(priv, priv->tx_power);
5699 if (err)
5700 return err;
5701 }
5702
5703 /*
5704 err = ipw2100_set_fragmentation_threshold(
5705 priv, priv->frag_threshold, batch_mode);
5706 if (err)
5707 return err;
5708 */
5709
5710 IPW_DEBUG_INFO("exit\n");
5711
5712 return 0;
5713 }
5714
5715 /*************************************************************************
5716 *
5717 * EXTERNALLY CALLED METHODS
5718 *
5719 *************************************************************************/
5720
5721 /* This method is called by the network layer -- not to be confused with
5722 * ipw2100_set_mac_address() declared above called by this driver (and this
5723 * method as well) to talk to the firmware */
5724 static int ipw2100_set_address(struct net_device *dev, void *p)
5725 {
5726 struct ipw2100_priv *priv = ieee80211_priv(dev);
5727 struct sockaddr *addr = p;
5728 int err = 0;
5729
5730 if (!is_valid_ether_addr(addr->sa_data))
5731 return -EADDRNOTAVAIL;
5732
5733 mutex_lock(&priv->action_mutex);
5734
5735 priv->config |= CFG_CUSTOM_MAC;
5736 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5737
5738 err = ipw2100_set_mac_address(priv, 0);
5739 if (err)
5740 goto done;
5741
5742 priv->reset_backoff = 0;
5743 mutex_unlock(&priv->action_mutex);
5744 ipw2100_reset_adapter(priv);
5745 return 0;
5746
5747 done:
5748 mutex_unlock(&priv->action_mutex);
5749 return err;
5750 }
5751
5752 static int ipw2100_open(struct net_device *dev)
5753 {
5754 struct ipw2100_priv *priv = ieee80211_priv(dev);
5755 unsigned long flags;
5756 IPW_DEBUG_INFO("dev->open\n");
5757
5758 spin_lock_irqsave(&priv->low_lock, flags);
5759 if (priv->status & STATUS_ASSOCIATED) {
5760 netif_carrier_on(dev);
5761 netif_start_queue(dev);
5762 }
5763 spin_unlock_irqrestore(&priv->low_lock, flags);
5764
5765 return 0;
5766 }
5767
5768 static int ipw2100_close(struct net_device *dev)
5769 {
5770 struct ipw2100_priv *priv = ieee80211_priv(dev);
5771 unsigned long flags;
5772 struct list_head *element;
5773 struct ipw2100_tx_packet *packet;
5774
5775 IPW_DEBUG_INFO("enter\n");
5776
5777 spin_lock_irqsave(&priv->low_lock, flags);
5778
5779 if (priv->status & STATUS_ASSOCIATED)
5780 netif_carrier_off(dev);
5781 netif_stop_queue(dev);
5782
5783 /* Flush the TX queue ... */
5784 while (!list_empty(&priv->tx_pend_list)) {
5785 element = priv->tx_pend_list.next;
5786 packet = list_entry(element, struct ipw2100_tx_packet, list);
5787
5788 list_del(element);
5789 DEC_STAT(&priv->tx_pend_stat);
5790
5791 ieee80211_txb_free(packet->info.d_struct.txb);
5792 packet->info.d_struct.txb = NULL;
5793
5794 list_add_tail(element, &priv->tx_free_list);
5795 INC_STAT(&priv->tx_free_stat);
5796 }
5797 spin_unlock_irqrestore(&priv->low_lock, flags);
5798
5799 IPW_DEBUG_INFO("exit\n");
5800
5801 return 0;
5802 }
5803
5804 /*
5805 * TODO: Fix this function... its just wrong
5806 */
5807 static void ipw2100_tx_timeout(struct net_device *dev)
5808 {
5809 struct ipw2100_priv *priv = ieee80211_priv(dev);
5810
5811 priv->ieee->stats.tx_errors++;
5812
5813 #ifdef CONFIG_IPW2100_MONITOR
5814 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5815 return;
5816 #endif
5817
5818 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5819 dev->name);
5820 schedule_reset(priv);
5821 }
5822
5823 /*
5824 * TODO: reimplement it so that it reads statistics
5825 * from the adapter using ordinal tables
5826 * instead of/in addition to collecting them
5827 * in the driver
5828 */
5829 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5830 {
5831 struct ipw2100_priv *priv = ieee80211_priv(dev);
5832
5833 return &priv->ieee->stats;
5834 }
5835
5836 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5837 {
5838 /* This is called when wpa_supplicant loads and closes the driver
5839 * interface. */
5840 priv->ieee->wpa_enabled = value;
5841 return 0;
5842 }
5843
5844 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5845 {
5846
5847 struct ieee80211_device *ieee = priv->ieee;
5848 struct ieee80211_security sec = {
5849 .flags = SEC_AUTH_MODE,
5850 };
5851 int ret = 0;
5852
5853 if (value & IW_AUTH_ALG_SHARED_KEY) {
5854 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5855 ieee->open_wep = 0;
5856 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5857 sec.auth_mode = WLAN_AUTH_OPEN;
5858 ieee->open_wep = 1;
5859 } else if (value & IW_AUTH_ALG_LEAP) {
5860 sec.auth_mode = WLAN_AUTH_LEAP;
5861 ieee->open_wep = 1;
5862 } else
5863 return -EINVAL;
5864
5865 if (ieee->set_security)
5866 ieee->set_security(ieee->dev, &sec);
5867 else
5868 ret = -EOPNOTSUPP;
5869
5870 return ret;
5871 }
5872
5873 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5874 char *wpa_ie, int wpa_ie_len)
5875 {
5876
5877 struct ipw2100_wpa_assoc_frame frame;
5878
5879 frame.fixed_ie_mask = 0;
5880
5881 /* copy WPA IE */
5882 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5883 frame.var_ie_len = wpa_ie_len;
5884
5885 /* make sure WPA is enabled */
5886 ipw2100_wpa_enable(priv, 1);
5887 ipw2100_set_wpa_ie(priv, &frame, 0);
5888 }
5889
5890 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5891 struct ethtool_drvinfo *info)
5892 {
5893 struct ipw2100_priv *priv = ieee80211_priv(dev);
5894 char fw_ver[64], ucode_ver[64];
5895
5896 strcpy(info->driver, DRV_NAME);
5897 strcpy(info->version, DRV_VERSION);
5898
5899 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5900 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5901
5902 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5903 fw_ver, priv->eeprom_version, ucode_ver);
5904
5905 strcpy(info->bus_info, pci_name(priv->pci_dev));
5906 }
5907
5908 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5909 {
5910 struct ipw2100_priv *priv = ieee80211_priv(dev);
5911 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5912 }
5913
5914 static const struct ethtool_ops ipw2100_ethtool_ops = {
5915 .get_link = ipw2100_ethtool_get_link,
5916 .get_drvinfo = ipw_ethtool_get_drvinfo,
5917 };
5918
5919 static void ipw2100_hang_check(void *adapter)
5920 {
5921 struct ipw2100_priv *priv = adapter;
5922 unsigned long flags;
5923 u32 rtc = 0xa5a5a5a5;
5924 u32 len = sizeof(rtc);
5925 int restart = 0;
5926
5927 spin_lock_irqsave(&priv->low_lock, flags);
5928
5929 if (priv->fatal_error != 0) {
5930 /* If fatal_error is set then we need to restart */
5931 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5932 priv->net_dev->name);
5933
5934 restart = 1;
5935 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5936 (rtc == priv->last_rtc)) {
5937 /* Check if firmware is hung */
5938 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5939 priv->net_dev->name);
5940
5941 restart = 1;
5942 }
5943
5944 if (restart) {
5945 /* Kill timer */
5946 priv->stop_hang_check = 1;
5947 priv->hangs++;
5948
5949 /* Restart the NIC */
5950 schedule_reset(priv);
5951 }
5952
5953 priv->last_rtc = rtc;
5954
5955 if (!priv->stop_hang_check)
5956 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5957
5958 spin_unlock_irqrestore(&priv->low_lock, flags);
5959 }
5960
5961 static void ipw2100_rf_kill(void *adapter)
5962 {
5963 struct ipw2100_priv *priv = adapter;
5964 unsigned long flags;
5965
5966 spin_lock_irqsave(&priv->low_lock, flags);
5967
5968 if (rf_kill_active(priv)) {
5969 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5970 if (!priv->stop_rf_kill)
5971 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5972 goto exit_unlock;
5973 }
5974
5975 /* RF Kill is now disabled, so bring the device back up */
5976
5977 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5978 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5979 "device\n");
5980 schedule_reset(priv);
5981 } else
5982 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5983 "enabled\n");
5984
5985 exit_unlock:
5986 spin_unlock_irqrestore(&priv->low_lock, flags);
5987 }
5988
5989 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5990
5991 /* Look into using netdev destructor to shutdown ieee80211? */
5992
5993 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5994 void __iomem * base_addr,
5995 unsigned long mem_start,
5996 unsigned long mem_len)
5997 {
5998 struct ipw2100_priv *priv;
5999 struct net_device *dev;
6000
6001 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6002 if (!dev)
6003 return NULL;
6004 priv = ieee80211_priv(dev);
6005 priv->ieee = netdev_priv(dev);
6006 priv->pci_dev = pci_dev;
6007 priv->net_dev = dev;
6008
6009 priv->ieee->hard_start_xmit = ipw2100_tx;
6010 priv->ieee->set_security = shim__set_security;
6011
6012 priv->ieee->perfect_rssi = -20;
6013 priv->ieee->worst_rssi = -85;
6014
6015 dev->open = ipw2100_open;
6016 dev->stop = ipw2100_close;
6017 dev->init = ipw2100_net_init;
6018 dev->get_stats = ipw2100_stats;
6019 dev->ethtool_ops = &ipw2100_ethtool_ops;
6020 dev->tx_timeout = ipw2100_tx_timeout;
6021 dev->wireless_handlers = &ipw2100_wx_handler_def;
6022 priv->wireless_data.ieee80211 = priv->ieee;
6023 dev->wireless_data = &priv->wireless_data;
6024 dev->set_mac_address = ipw2100_set_address;
6025 dev->watchdog_timeo = 3 * HZ;
6026 dev->irq = 0;
6027
6028 dev->base_addr = (unsigned long)base_addr;
6029 dev->mem_start = mem_start;
6030 dev->mem_end = dev->mem_start + mem_len - 1;
6031
6032 /* NOTE: We don't use the wireless_handlers hook
6033 * in dev as the system will start throwing WX requests
6034 * to us before we're actually initialized and it just
6035 * ends up causing problems. So, we just handle
6036 * the WX extensions through the ipw2100_ioctl interface */
6037
6038 /* memset() puts everything to 0, so we only have explicitely set
6039 * those values that need to be something else */
6040
6041 /* If power management is turned on, default to AUTO mode */
6042 priv->power_mode = IPW_POWER_AUTO;
6043
6044 #ifdef CONFIG_IPW2100_MONITOR
6045 priv->config |= CFG_CRC_CHECK;
6046 #endif
6047 priv->ieee->wpa_enabled = 0;
6048 priv->ieee->drop_unencrypted = 0;
6049 priv->ieee->privacy_invoked = 0;
6050 priv->ieee->ieee802_1x = 1;
6051
6052 /* Set module parameters */
6053 switch (mode) {
6054 case 1:
6055 priv->ieee->iw_mode = IW_MODE_ADHOC;
6056 break;
6057 #ifdef CONFIG_IPW2100_MONITOR
6058 case 2:
6059 priv->ieee->iw_mode = IW_MODE_MONITOR;
6060 break;
6061 #endif
6062 default:
6063 case 0:
6064 priv->ieee->iw_mode = IW_MODE_INFRA;
6065 break;
6066 }
6067
6068 if (disable == 1)
6069 priv->status |= STATUS_RF_KILL_SW;
6070
6071 if (channel != 0 &&
6072 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6073 priv->config |= CFG_STATIC_CHANNEL;
6074 priv->channel = channel;
6075 }
6076
6077 if (associate)
6078 priv->config |= CFG_ASSOCIATE;
6079
6080 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6081 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6082 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6083 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6084 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6085 priv->tx_power = IPW_TX_POWER_DEFAULT;
6086 priv->tx_rates = DEFAULT_TX_RATES;
6087
6088 strcpy(priv->nick, "ipw2100");
6089
6090 spin_lock_init(&priv->low_lock);
6091 mutex_init(&priv->action_mutex);
6092 mutex_init(&priv->adapter_mutex);
6093
6094 init_waitqueue_head(&priv->wait_command_queue);
6095
6096 netif_carrier_off(dev);
6097
6098 INIT_LIST_HEAD(&priv->msg_free_list);
6099 INIT_LIST_HEAD(&priv->msg_pend_list);
6100 INIT_STAT(&priv->msg_free_stat);
6101 INIT_STAT(&priv->msg_pend_stat);
6102
6103 INIT_LIST_HEAD(&priv->tx_free_list);
6104 INIT_LIST_HEAD(&priv->tx_pend_list);
6105 INIT_STAT(&priv->tx_free_stat);
6106 INIT_STAT(&priv->tx_pend_stat);
6107
6108 INIT_LIST_HEAD(&priv->fw_pend_list);
6109 INIT_STAT(&priv->fw_pend_stat);
6110
6111 priv->workqueue = create_workqueue(DRV_NAME);
6112
6113 INIT_WORK(&priv->reset_work,
6114 (void (*)(void *))ipw2100_reset_adapter, priv);
6115 INIT_WORK(&priv->security_work,
6116 (void (*)(void *))ipw2100_security_work, priv);
6117 INIT_WORK(&priv->wx_event_work,
6118 (void (*)(void *))ipw2100_wx_event_work, priv);
6119 INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6120 INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6121
6122 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6123 ipw2100_irq_tasklet, (unsigned long)priv);
6124
6125 /* NOTE: We do not start the deferred work for status checks yet */
6126 priv->stop_rf_kill = 1;
6127 priv->stop_hang_check = 1;
6128
6129 return dev;
6130 }
6131
6132 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6133 const struct pci_device_id *ent)
6134 {
6135 unsigned long mem_start, mem_len, mem_flags;
6136 void __iomem *base_addr = NULL;
6137 struct net_device *dev = NULL;
6138 struct ipw2100_priv *priv = NULL;
6139 int err = 0;
6140 int registered = 0;
6141 u32 val;
6142
6143 IPW_DEBUG_INFO("enter\n");
6144
6145 mem_start = pci_resource_start(pci_dev, 0);
6146 mem_len = pci_resource_len(pci_dev, 0);
6147 mem_flags = pci_resource_flags(pci_dev, 0);
6148
6149 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6150 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6151 err = -ENODEV;
6152 goto fail;
6153 }
6154
6155 base_addr = ioremap_nocache(mem_start, mem_len);
6156 if (!base_addr) {
6157 printk(KERN_WARNING DRV_NAME
6158 "Error calling ioremap_nocache.\n");
6159 err = -EIO;
6160 goto fail;
6161 }
6162
6163 /* allocate and initialize our net_device */
6164 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6165 if (!dev) {
6166 printk(KERN_WARNING DRV_NAME
6167 "Error calling ipw2100_alloc_device.\n");
6168 err = -ENOMEM;
6169 goto fail;
6170 }
6171
6172 /* set up PCI mappings for device */
6173 err = pci_enable_device(pci_dev);
6174 if (err) {
6175 printk(KERN_WARNING DRV_NAME
6176 "Error calling pci_enable_device.\n");
6177 return err;
6178 }
6179
6180 priv = ieee80211_priv(dev);
6181
6182 pci_set_master(pci_dev);
6183 pci_set_drvdata(pci_dev, priv);
6184
6185 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6186 if (err) {
6187 printk(KERN_WARNING DRV_NAME
6188 "Error calling pci_set_dma_mask.\n");
6189 pci_disable_device(pci_dev);
6190 return err;
6191 }
6192
6193 err = pci_request_regions(pci_dev, DRV_NAME);
6194 if (err) {
6195 printk(KERN_WARNING DRV_NAME
6196 "Error calling pci_request_regions.\n");
6197 pci_disable_device(pci_dev);
6198 return err;
6199 }
6200
6201 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6202 * PCI Tx retries from interfering with C3 CPU state */
6203 pci_read_config_dword(pci_dev, 0x40, &val);
6204 if ((val & 0x0000ff00) != 0)
6205 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6206
6207 pci_set_power_state(pci_dev, PCI_D0);
6208
6209 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6210 printk(KERN_WARNING DRV_NAME
6211 "Device not found via register read.\n");
6212 err = -ENODEV;
6213 goto fail;
6214 }
6215
6216 SET_NETDEV_DEV(dev, &pci_dev->dev);
6217
6218 /* Force interrupts to be shut off on the device */
6219 priv->status |= STATUS_INT_ENABLED;
6220 ipw2100_disable_interrupts(priv);
6221
6222 /* Allocate and initialize the Tx/Rx queues and lists */
6223 if (ipw2100_queues_allocate(priv)) {
6224 printk(KERN_WARNING DRV_NAME
6225 "Error calilng ipw2100_queues_allocate.\n");
6226 err = -ENOMEM;
6227 goto fail;
6228 }
6229 ipw2100_queues_initialize(priv);
6230
6231 err = request_irq(pci_dev->irq,
6232 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6233 if (err) {
6234 printk(KERN_WARNING DRV_NAME
6235 "Error calling request_irq: %d.\n", pci_dev->irq);
6236 goto fail;
6237 }
6238 dev->irq = pci_dev->irq;
6239
6240 IPW_DEBUG_INFO("Attempting to register device...\n");
6241
6242 SET_MODULE_OWNER(dev);
6243
6244 printk(KERN_INFO DRV_NAME
6245 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6246
6247 /* Bring up the interface. Pre 0.46, after we registered the
6248 * network device we would call ipw2100_up. This introduced a race
6249 * condition with newer hotplug configurations (network was coming
6250 * up and making calls before the device was initialized).
6251 *
6252 * If we called ipw2100_up before we registered the device, then the
6253 * device name wasn't registered. So, we instead use the net_dev->init
6254 * member to call a function that then just turns and calls ipw2100_up.
6255 * net_dev->init is called after name allocation but before the
6256 * notifier chain is called */
6257 err = register_netdev(dev);
6258 if (err) {
6259 printk(KERN_WARNING DRV_NAME
6260 "Error calling register_netdev.\n");
6261 goto fail;
6262 }
6263
6264 mutex_lock(&priv->action_mutex);
6265 registered = 1;
6266
6267 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6268
6269 /* perform this after register_netdev so that dev->name is set */
6270 sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6271
6272 /* If the RF Kill switch is disabled, go ahead and complete the
6273 * startup sequence */
6274 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6275 /* Enable the adapter - sends HOST_COMPLETE */
6276 if (ipw2100_enable_adapter(priv)) {
6277 printk(KERN_WARNING DRV_NAME
6278 ": %s: failed in call to enable adapter.\n",
6279 priv->net_dev->name);
6280 ipw2100_hw_stop_adapter(priv);
6281 err = -EIO;
6282 goto fail_unlock;
6283 }
6284
6285 /* Start a scan . . . */
6286 ipw2100_set_scan_options(priv);
6287 ipw2100_start_scan(priv);
6288 }
6289
6290 IPW_DEBUG_INFO("exit\n");
6291
6292 priv->status |= STATUS_INITIALIZED;
6293
6294 mutex_unlock(&priv->action_mutex);
6295
6296 return 0;
6297
6298 fail_unlock:
6299 mutex_unlock(&priv->action_mutex);
6300
6301 fail:
6302 if (dev) {
6303 if (registered)
6304 unregister_netdev(dev);
6305
6306 ipw2100_hw_stop_adapter(priv);
6307
6308 ipw2100_disable_interrupts(priv);
6309
6310 if (dev->irq)
6311 free_irq(dev->irq, priv);
6312
6313 ipw2100_kill_workqueue(priv);
6314
6315 /* These are safe to call even if they weren't allocated */
6316 ipw2100_queues_free(priv);
6317 sysfs_remove_group(&pci_dev->dev.kobj,
6318 &ipw2100_attribute_group);
6319
6320 free_ieee80211(dev);
6321 pci_set_drvdata(pci_dev, NULL);
6322 }
6323
6324 if (base_addr)
6325 iounmap(base_addr);
6326
6327 pci_release_regions(pci_dev);
6328 pci_disable_device(pci_dev);
6329
6330 return err;
6331 }
6332
6333 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6334 {
6335 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6336 struct net_device *dev;
6337
6338 if (priv) {
6339 mutex_lock(&priv->action_mutex);
6340
6341 priv->status &= ~STATUS_INITIALIZED;
6342
6343 dev = priv->net_dev;
6344 sysfs_remove_group(&pci_dev->dev.kobj,
6345 &ipw2100_attribute_group);
6346
6347 #ifdef CONFIG_PM
6348 if (ipw2100_firmware.version)
6349 ipw2100_release_firmware(priv, &ipw2100_firmware);
6350 #endif
6351 /* Take down the hardware */
6352 ipw2100_down(priv);
6353
6354 /* Release the mutex so that the network subsystem can
6355 * complete any needed calls into the driver... */
6356 mutex_unlock(&priv->action_mutex);
6357
6358 /* Unregister the device first - this results in close()
6359 * being called if the device is open. If we free storage
6360 * first, then close() will crash. */
6361 unregister_netdev(dev);
6362
6363 /* ipw2100_down will ensure that there is no more pending work
6364 * in the workqueue's, so we can safely remove them now. */
6365 ipw2100_kill_workqueue(priv);
6366
6367 ipw2100_queues_free(priv);
6368
6369 /* Free potential debugging firmware snapshot */
6370 ipw2100_snapshot_free(priv);
6371
6372 if (dev->irq)
6373 free_irq(dev->irq, priv);
6374
6375 if (dev->base_addr)
6376 iounmap((void __iomem *)dev->base_addr);
6377
6378 free_ieee80211(dev);
6379 }
6380
6381 pci_release_regions(pci_dev);
6382 pci_disable_device(pci_dev);
6383
6384 IPW_DEBUG_INFO("exit\n");
6385 }
6386
6387 #ifdef CONFIG_PM
6388 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6389 {
6390 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6391 struct net_device *dev = priv->net_dev;
6392
6393 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6394
6395 mutex_lock(&priv->action_mutex);
6396 if (priv->status & STATUS_INITIALIZED) {
6397 /* Take down the device; powers it off, etc. */
6398 ipw2100_down(priv);
6399 }
6400
6401 /* Remove the PRESENT state of the device */
6402 netif_device_detach(dev);
6403
6404 pci_save_state(pci_dev);
6405 pci_disable_device(pci_dev);
6406 pci_set_power_state(pci_dev, PCI_D3hot);
6407
6408 mutex_unlock(&priv->action_mutex);
6409
6410 return 0;
6411 }
6412
6413 static int ipw2100_resume(struct pci_dev *pci_dev)
6414 {
6415 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6416 struct net_device *dev = priv->net_dev;
6417 u32 val;
6418
6419 if (IPW2100_PM_DISABLED)
6420 return 0;
6421
6422 mutex_lock(&priv->action_mutex);
6423
6424 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6425
6426 pci_set_power_state(pci_dev, PCI_D0);
6427 pci_enable_device(pci_dev);
6428 pci_restore_state(pci_dev);
6429
6430 /*
6431 * Suspend/Resume resets the PCI configuration space, so we have to
6432 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6433 * from interfering with C3 CPU state. pci_restore_state won't help
6434 * here since it only restores the first 64 bytes pci config header.
6435 */
6436 pci_read_config_dword(pci_dev, 0x40, &val);
6437 if ((val & 0x0000ff00) != 0)
6438 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6439
6440 /* Set the device back into the PRESENT state; this will also wake
6441 * the queue of needed */
6442 netif_device_attach(dev);
6443
6444 /* Bring the device back up */
6445 if (!(priv->status & STATUS_RF_KILL_SW))
6446 ipw2100_up(priv, 0);
6447
6448 mutex_unlock(&priv->action_mutex);
6449
6450 return 0;
6451 }
6452 #endif
6453
6454 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6455
6456 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6457 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6458 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6459 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6460 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6461 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6462 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6463 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6464 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6465 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6466 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6467 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6468 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6469 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6470
6471 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6472 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6473 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6474 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6476
6477 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6478 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6479 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6480 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6481 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6482 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6483 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6484
6485 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6486
6487 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6488 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6489 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6490 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6491 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6492 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6493 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6494
6495 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6496 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6497 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6498 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6499 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6501
6502 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6503 {0,},
6504 };
6505
6506 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6507
6508 static struct pci_driver ipw2100_pci_driver = {
6509 .name = DRV_NAME,
6510 .id_table = ipw2100_pci_id_table,
6511 .probe = ipw2100_pci_init_one,
6512 .remove = __devexit_p(ipw2100_pci_remove_one),
6513 #ifdef CONFIG_PM
6514 .suspend = ipw2100_suspend,
6515 .resume = ipw2100_resume,
6516 #endif
6517 };
6518
6519 /**
6520 * Initialize the ipw2100 driver/module
6521 *
6522 * @returns 0 if ok, < 0 errno node con error.
6523 *
6524 * Note: we cannot init the /proc stuff until the PCI driver is there,
6525 * or we risk an unlikely race condition on someone accessing
6526 * uninitialized data in the PCI dev struct through /proc.
6527 */
6528 static int __init ipw2100_init(void)
6529 {
6530 int ret;
6531
6532 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6533 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6534
6535 ret = pci_register_driver(&ipw2100_pci_driver);
6536
6537 #ifdef CONFIG_IPW2100_DEBUG
6538 ipw2100_debug_level = debug;
6539 driver_create_file(&ipw2100_pci_driver.driver,
6540 &driver_attr_debug_level);
6541 #endif
6542
6543 return ret;
6544 }
6545
6546 /**
6547 * Cleanup ipw2100 driver registration
6548 */
6549 static void __exit ipw2100_exit(void)
6550 {
6551 /* FIXME: IPG: check that we have no instances of the devices open */
6552 #ifdef CONFIG_IPW2100_DEBUG
6553 driver_remove_file(&ipw2100_pci_driver.driver,
6554 &driver_attr_debug_level);
6555 #endif
6556 pci_unregister_driver(&ipw2100_pci_driver);
6557 }
6558
6559 module_init(ipw2100_init);
6560 module_exit(ipw2100_exit);
6561
6562 #define WEXT_USECHANNELS 1
6563
6564 static const long ipw2100_frequencies[] = {
6565 2412, 2417, 2422, 2427,
6566 2432, 2437, 2442, 2447,
6567 2452, 2457, 2462, 2467,
6568 2472, 2484
6569 };
6570
6571 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6572 sizeof(ipw2100_frequencies[0]))
6573
6574 static const long ipw2100_rates_11b[] = {
6575 1000000,
6576 2000000,
6577 5500000,
6578 11000000
6579 };
6580
6581 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6582
6583 static int ipw2100_wx_get_name(struct net_device *dev,
6584 struct iw_request_info *info,
6585 union iwreq_data *wrqu, char *extra)
6586 {
6587 /*
6588 * This can be called at any time. No action lock required
6589 */
6590
6591 struct ipw2100_priv *priv = ieee80211_priv(dev);
6592 if (!(priv->status & STATUS_ASSOCIATED))
6593 strcpy(wrqu->name, "unassociated");
6594 else
6595 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6596
6597 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6598 return 0;
6599 }
6600
6601 static int ipw2100_wx_set_freq(struct net_device *dev,
6602 struct iw_request_info *info,
6603 union iwreq_data *wrqu, char *extra)
6604 {
6605 struct ipw2100_priv *priv = ieee80211_priv(dev);
6606 struct iw_freq *fwrq = &wrqu->freq;
6607 int err = 0;
6608
6609 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6610 return -EOPNOTSUPP;
6611
6612 mutex_lock(&priv->action_mutex);
6613 if (!(priv->status & STATUS_INITIALIZED)) {
6614 err = -EIO;
6615 goto done;
6616 }
6617
6618 /* if setting by freq convert to channel */
6619 if (fwrq->e == 1) {
6620 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6621 int f = fwrq->m / 100000;
6622 int c = 0;
6623
6624 while ((c < REG_MAX_CHANNEL) &&
6625 (f != ipw2100_frequencies[c]))
6626 c++;
6627
6628 /* hack to fall through */
6629 fwrq->e = 0;
6630 fwrq->m = c + 1;
6631 }
6632 }
6633
6634 if (fwrq->e > 0 || fwrq->m > 1000) {
6635 err = -EOPNOTSUPP;
6636 goto done;
6637 } else { /* Set the channel */
6638 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6639 err = ipw2100_set_channel(priv, fwrq->m, 0);
6640 }
6641
6642 done:
6643 mutex_unlock(&priv->action_mutex);
6644 return err;
6645 }
6646
6647 static int ipw2100_wx_get_freq(struct net_device *dev,
6648 struct iw_request_info *info,
6649 union iwreq_data *wrqu, char *extra)
6650 {
6651 /*
6652 * This can be called at any time. No action lock required
6653 */
6654
6655 struct ipw2100_priv *priv = ieee80211_priv(dev);
6656
6657 wrqu->freq.e = 0;
6658
6659 /* If we are associated, trying to associate, or have a statically
6660 * configured CHANNEL then return that; otherwise return ANY */
6661 if (priv->config & CFG_STATIC_CHANNEL ||
6662 priv->status & STATUS_ASSOCIATED)
6663 wrqu->freq.m = priv->channel;
6664 else
6665 wrqu->freq.m = 0;
6666
6667 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6668 return 0;
6669
6670 }
6671
6672 static int ipw2100_wx_set_mode(struct net_device *dev,
6673 struct iw_request_info *info,
6674 union iwreq_data *wrqu, char *extra)
6675 {
6676 struct ipw2100_priv *priv = ieee80211_priv(dev);
6677 int err = 0;
6678
6679 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6680
6681 if (wrqu->mode == priv->ieee->iw_mode)
6682 return 0;
6683
6684 mutex_lock(&priv->action_mutex);
6685 if (!(priv->status & STATUS_INITIALIZED)) {
6686 err = -EIO;
6687 goto done;
6688 }
6689
6690 switch (wrqu->mode) {
6691 #ifdef CONFIG_IPW2100_MONITOR
6692 case IW_MODE_MONITOR:
6693 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6694 break;
6695 #endif /* CONFIG_IPW2100_MONITOR */
6696 case IW_MODE_ADHOC:
6697 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6698 break;
6699 case IW_MODE_INFRA:
6700 case IW_MODE_AUTO:
6701 default:
6702 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6703 break;
6704 }
6705
6706 done:
6707 mutex_unlock(&priv->action_mutex);
6708 return err;
6709 }
6710
6711 static int ipw2100_wx_get_mode(struct net_device *dev,
6712 struct iw_request_info *info,
6713 union iwreq_data *wrqu, char *extra)
6714 {
6715 /*
6716 * This can be called at any time. No action lock required
6717 */
6718
6719 struct ipw2100_priv *priv = ieee80211_priv(dev);
6720
6721 wrqu->mode = priv->ieee->iw_mode;
6722 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6723
6724 return 0;
6725 }
6726
6727 #define POWER_MODES 5
6728
6729 /* Values are in microsecond */
6730 static const s32 timeout_duration[POWER_MODES] = {
6731 350000,
6732 250000,
6733 75000,
6734 37000,
6735 25000,
6736 };
6737
6738 static const s32 period_duration[POWER_MODES] = {
6739 400000,
6740 700000,
6741 1000000,
6742 1000000,
6743 1000000
6744 };
6745
6746 static int ipw2100_wx_get_range(struct net_device *dev,
6747 struct iw_request_info *info,
6748 union iwreq_data *wrqu, char *extra)
6749 {
6750 /*
6751 * This can be called at any time. No action lock required
6752 */
6753
6754 struct ipw2100_priv *priv = ieee80211_priv(dev);
6755 struct iw_range *range = (struct iw_range *)extra;
6756 u16 val;
6757 int i, level;
6758
6759 wrqu->data.length = sizeof(*range);
6760 memset(range, 0, sizeof(*range));
6761
6762 /* Let's try to keep this struct in the same order as in
6763 * linux/include/wireless.h
6764 */
6765
6766 /* TODO: See what values we can set, and remove the ones we can't
6767 * set, or fill them with some default data.
6768 */
6769
6770 /* ~5 Mb/s real (802.11b) */
6771 range->throughput = 5 * 1000 * 1000;
6772
6773 // range->sensitivity; /* signal level threshold range */
6774
6775 range->max_qual.qual = 100;
6776 /* TODO: Find real max RSSI and stick here */
6777 range->max_qual.level = 0;
6778 range->max_qual.noise = 0;
6779 range->max_qual.updated = 7; /* Updated all three */
6780
6781 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6782 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6783 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6784 range->avg_qual.noise = 0;
6785 range->avg_qual.updated = 7; /* Updated all three */
6786
6787 range->num_bitrates = RATE_COUNT;
6788
6789 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6790 range->bitrate[i] = ipw2100_rates_11b[i];
6791 }
6792
6793 range->min_rts = MIN_RTS_THRESHOLD;
6794 range->max_rts = MAX_RTS_THRESHOLD;
6795 range->min_frag = MIN_FRAG_THRESHOLD;
6796 range->max_frag = MAX_FRAG_THRESHOLD;
6797
6798 range->min_pmp = period_duration[0]; /* Minimal PM period */
6799 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6800 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6801 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6802
6803 /* How to decode max/min PM period */
6804 range->pmp_flags = IW_POWER_PERIOD;
6805 /* How to decode max/min PM period */
6806 range->pmt_flags = IW_POWER_TIMEOUT;
6807 /* What PM options are supported */
6808 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6809
6810 range->encoding_size[0] = 5;
6811 range->encoding_size[1] = 13; /* Different token sizes */
6812 range->num_encoding_sizes = 2; /* Number of entry in the list */
6813 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6814 // range->encoding_login_index; /* token index for login token */
6815
6816 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6817 range->txpower_capa = IW_TXPOW_DBM;
6818 range->num_txpower = IW_MAX_TXPOWER;
6819 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6820 i < IW_MAX_TXPOWER;
6821 i++, level -=
6822 ((IPW_TX_POWER_MAX_DBM -
6823 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6824 range->txpower[i] = level / 16;
6825 } else {
6826 range->txpower_capa = 0;
6827 range->num_txpower = 0;
6828 }
6829
6830 /* Set the Wireless Extension versions */
6831 range->we_version_compiled = WIRELESS_EXT;
6832 range->we_version_source = 18;
6833
6834 // range->retry_capa; /* What retry options are supported */
6835 // range->retry_flags; /* How to decode max/min retry limit */
6836 // range->r_time_flags; /* How to decode max/min retry life */
6837 // range->min_retry; /* Minimal number of retries */
6838 // range->max_retry; /* Maximal number of retries */
6839 // range->min_r_time; /* Minimal retry lifetime */
6840 // range->max_r_time; /* Maximal retry lifetime */
6841
6842 range->num_channels = FREQ_COUNT;
6843
6844 val = 0;
6845 for (i = 0; i < FREQ_COUNT; i++) {
6846 // TODO: Include only legal frequencies for some countries
6847 // if (local->channel_mask & (1 << i)) {
6848 range->freq[val].i = i + 1;
6849 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6850 range->freq[val].e = 1;
6851 val++;
6852 // }
6853 if (val == IW_MAX_FREQUENCIES)
6854 break;
6855 }
6856 range->num_frequency = val;
6857
6858 /* Event capability (kernel + driver) */
6859 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6860 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6861 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6862
6863 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6864 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6865
6866 IPW_DEBUG_WX("GET Range\n");
6867
6868 return 0;
6869 }
6870
6871 static int ipw2100_wx_set_wap(struct net_device *dev,
6872 struct iw_request_info *info,
6873 union iwreq_data *wrqu, char *extra)
6874 {
6875 struct ipw2100_priv *priv = ieee80211_priv(dev);
6876 int err = 0;
6877
6878 static const unsigned char any[] = {
6879 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6880 };
6881 static const unsigned char off[] = {
6882 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6883 };
6884
6885 // sanity checks
6886 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6887 return -EINVAL;
6888
6889 mutex_lock(&priv->action_mutex);
6890 if (!(priv->status & STATUS_INITIALIZED)) {
6891 err = -EIO;
6892 goto done;
6893 }
6894
6895 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6896 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6897 /* we disable mandatory BSSID association */
6898 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6899 priv->config &= ~CFG_STATIC_BSSID;
6900 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6901 goto done;
6902 }
6903
6904 priv->config |= CFG_STATIC_BSSID;
6905 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6906
6907 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6908
6909 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6910 wrqu->ap_addr.sa_data[0] & 0xff,
6911 wrqu->ap_addr.sa_data[1] & 0xff,
6912 wrqu->ap_addr.sa_data[2] & 0xff,
6913 wrqu->ap_addr.sa_data[3] & 0xff,
6914 wrqu->ap_addr.sa_data[4] & 0xff,
6915 wrqu->ap_addr.sa_data[5] & 0xff);
6916
6917 done:
6918 mutex_unlock(&priv->action_mutex);
6919 return err;
6920 }
6921
6922 static int ipw2100_wx_get_wap(struct net_device *dev,
6923 struct iw_request_info *info,
6924 union iwreq_data *wrqu, char *extra)
6925 {
6926 /*
6927 * This can be called at any time. No action lock required
6928 */
6929
6930 struct ipw2100_priv *priv = ieee80211_priv(dev);
6931
6932 /* If we are associated, trying to associate, or have a statically
6933 * configured BSSID then return that; otherwise return ANY */
6934 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6935 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6936 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6937 } else
6938 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6939
6940 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6941 MAC_ARG(wrqu->ap_addr.sa_data));
6942 return 0;
6943 }
6944
6945 static int ipw2100_wx_set_essid(struct net_device *dev,
6946 struct iw_request_info *info,
6947 union iwreq_data *wrqu, char *extra)
6948 {
6949 struct ipw2100_priv *priv = ieee80211_priv(dev);
6950 char *essid = ""; /* ANY */
6951 int length = 0;
6952 int err = 0;
6953
6954 mutex_lock(&priv->action_mutex);
6955 if (!(priv->status & STATUS_INITIALIZED)) {
6956 err = -EIO;
6957 goto done;
6958 }
6959
6960 if (wrqu->essid.flags && wrqu->essid.length) {
6961 length = wrqu->essid.length - 1;
6962 essid = extra;
6963 }
6964
6965 if (length == 0) {
6966 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6967 priv->config &= ~CFG_STATIC_ESSID;
6968 err = ipw2100_set_essid(priv, NULL, 0, 0);
6969 goto done;
6970 }
6971
6972 length = min(length, IW_ESSID_MAX_SIZE);
6973
6974 priv->config |= CFG_STATIC_ESSID;
6975
6976 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6977 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6978 err = 0;
6979 goto done;
6980 }
6981
6982 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6983 length);
6984
6985 priv->essid_len = length;
6986 memcpy(priv->essid, essid, priv->essid_len);
6987
6988 err = ipw2100_set_essid(priv, essid, length, 0);
6989
6990 done:
6991 mutex_unlock(&priv->action_mutex);
6992 return err;
6993 }
6994
6995 static int ipw2100_wx_get_essid(struct net_device *dev,
6996 struct iw_request_info *info,
6997 union iwreq_data *wrqu, char *extra)
6998 {
6999 /*
7000 * This can be called at any time. No action lock required
7001 */
7002
7003 struct ipw2100_priv *priv = ieee80211_priv(dev);
7004
7005 /* If we are associated, trying to associate, or have a statically
7006 * configured ESSID then return that; otherwise return ANY */
7007 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7008 IPW_DEBUG_WX("Getting essid: '%s'\n",
7009 escape_essid(priv->essid, priv->essid_len));
7010 memcpy(extra, priv->essid, priv->essid_len);
7011 wrqu->essid.length = priv->essid_len;
7012 wrqu->essid.flags = 1; /* active */
7013 } else {
7014 IPW_DEBUG_WX("Getting essid: ANY\n");
7015 wrqu->essid.length = 0;
7016 wrqu->essid.flags = 0; /* active */
7017 }
7018
7019 return 0;
7020 }
7021
7022 static int ipw2100_wx_set_nick(struct net_device *dev,
7023 struct iw_request_info *info,
7024 union iwreq_data *wrqu, char *extra)
7025 {
7026 /*
7027 * This can be called at any time. No action lock required
7028 */
7029
7030 struct ipw2100_priv *priv = ieee80211_priv(dev);
7031
7032 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7033 return -E2BIG;
7034
7035 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7036 memset(priv->nick, 0, sizeof(priv->nick));
7037 memcpy(priv->nick, extra, wrqu->data.length);
7038
7039 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7040
7041 return 0;
7042 }
7043
7044 static int ipw2100_wx_get_nick(struct net_device *dev,
7045 struct iw_request_info *info,
7046 union iwreq_data *wrqu, char *extra)
7047 {
7048 /*
7049 * This can be called at any time. No action lock required
7050 */
7051
7052 struct ipw2100_priv *priv = ieee80211_priv(dev);
7053
7054 wrqu->data.length = strlen(priv->nick) + 1;
7055 memcpy(extra, priv->nick, wrqu->data.length);
7056 wrqu->data.flags = 1; /* active */
7057
7058 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7059
7060 return 0;
7061 }
7062
7063 static int ipw2100_wx_set_rate(struct net_device *dev,
7064 struct iw_request_info *info,
7065 union iwreq_data *wrqu, char *extra)
7066 {
7067 struct ipw2100_priv *priv = ieee80211_priv(dev);
7068 u32 target_rate = wrqu->bitrate.value;
7069 u32 rate;
7070 int err = 0;
7071
7072 mutex_lock(&priv->action_mutex);
7073 if (!(priv->status & STATUS_INITIALIZED)) {
7074 err = -EIO;
7075 goto done;
7076 }
7077
7078 rate = 0;
7079
7080 if (target_rate == 1000000 ||
7081 (!wrqu->bitrate.fixed && target_rate > 1000000))
7082 rate |= TX_RATE_1_MBIT;
7083 if (target_rate == 2000000 ||
7084 (!wrqu->bitrate.fixed && target_rate > 2000000))
7085 rate |= TX_RATE_2_MBIT;
7086 if (target_rate == 5500000 ||
7087 (!wrqu->bitrate.fixed && target_rate > 5500000))
7088 rate |= TX_RATE_5_5_MBIT;
7089 if (target_rate == 11000000 ||
7090 (!wrqu->bitrate.fixed && target_rate > 11000000))
7091 rate |= TX_RATE_11_MBIT;
7092 if (rate == 0)
7093 rate = DEFAULT_TX_RATES;
7094
7095 err = ipw2100_set_tx_rates(priv, rate, 0);
7096
7097 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7098 done:
7099 mutex_unlock(&priv->action_mutex);
7100 return err;
7101 }
7102
7103 static int ipw2100_wx_get_rate(struct net_device *dev,
7104 struct iw_request_info *info,
7105 union iwreq_data *wrqu, char *extra)
7106 {
7107 struct ipw2100_priv *priv = ieee80211_priv(dev);
7108 int val;
7109 int len = sizeof(val);
7110 int err = 0;
7111
7112 if (!(priv->status & STATUS_ENABLED) ||
7113 priv->status & STATUS_RF_KILL_MASK ||
7114 !(priv->status & STATUS_ASSOCIATED)) {
7115 wrqu->bitrate.value = 0;
7116 return 0;
7117 }
7118
7119 mutex_lock(&priv->action_mutex);
7120 if (!(priv->status & STATUS_INITIALIZED)) {
7121 err = -EIO;
7122 goto done;
7123 }
7124
7125 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7126 if (err) {
7127 IPW_DEBUG_WX("failed querying ordinals.\n");
7128 return err;
7129 }
7130
7131 switch (val & TX_RATE_MASK) {
7132 case TX_RATE_1_MBIT:
7133 wrqu->bitrate.value = 1000000;
7134 break;
7135 case TX_RATE_2_MBIT:
7136 wrqu->bitrate.value = 2000000;
7137 break;
7138 case TX_RATE_5_5_MBIT:
7139 wrqu->bitrate.value = 5500000;
7140 break;
7141 case TX_RATE_11_MBIT:
7142 wrqu->bitrate.value = 11000000;
7143 break;
7144 default:
7145 wrqu->bitrate.value = 0;
7146 }
7147
7148 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7149
7150 done:
7151 mutex_unlock(&priv->action_mutex);
7152 return err;
7153 }
7154
7155 static int ipw2100_wx_set_rts(struct net_device *dev,
7156 struct iw_request_info *info,
7157 union iwreq_data *wrqu, char *extra)
7158 {
7159 struct ipw2100_priv *priv = ieee80211_priv(dev);
7160 int value, err;
7161
7162 /* Auto RTS not yet supported */
7163 if (wrqu->rts.fixed == 0)
7164 return -EINVAL;
7165
7166 mutex_lock(&priv->action_mutex);
7167 if (!(priv->status & STATUS_INITIALIZED)) {
7168 err = -EIO;
7169 goto done;
7170 }
7171
7172 if (wrqu->rts.disabled)
7173 value = priv->rts_threshold | RTS_DISABLED;
7174 else {
7175 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7176 err = -EINVAL;
7177 goto done;
7178 }
7179 value = wrqu->rts.value;
7180 }
7181
7182 err = ipw2100_set_rts_threshold(priv, value);
7183
7184 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7185 done:
7186 mutex_unlock(&priv->action_mutex);
7187 return err;
7188 }
7189
7190 static int ipw2100_wx_get_rts(struct net_device *dev,
7191 struct iw_request_info *info,
7192 union iwreq_data *wrqu, char *extra)
7193 {
7194 /*
7195 * This can be called at any time. No action lock required
7196 */
7197
7198 struct ipw2100_priv *priv = ieee80211_priv(dev);
7199
7200 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7201 wrqu->rts.fixed = 1; /* no auto select */
7202
7203 /* If RTS is set to the default value, then it is disabled */
7204 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7205
7206 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7207
7208 return 0;
7209 }
7210
7211 static int ipw2100_wx_set_txpow(struct net_device *dev,
7212 struct iw_request_info *info,
7213 union iwreq_data *wrqu, char *extra)
7214 {
7215 struct ipw2100_priv *priv = ieee80211_priv(dev);
7216 int err = 0, value;
7217
7218 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7219 return -EINPROGRESS;
7220
7221 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7222 return 0;
7223
7224 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7225 return -EINVAL;
7226
7227 if (wrqu->txpower.fixed == 0)
7228 value = IPW_TX_POWER_DEFAULT;
7229 else {
7230 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7231 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7232 return -EINVAL;
7233
7234 value = wrqu->txpower.value;
7235 }
7236
7237 mutex_lock(&priv->action_mutex);
7238 if (!(priv->status & STATUS_INITIALIZED)) {
7239 err = -EIO;
7240 goto done;
7241 }
7242
7243 err = ipw2100_set_tx_power(priv, value);
7244
7245 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7246
7247 done:
7248 mutex_unlock(&priv->action_mutex);
7249 return err;
7250 }
7251
7252 static int ipw2100_wx_get_txpow(struct net_device *dev,
7253 struct iw_request_info *info,
7254 union iwreq_data *wrqu, char *extra)
7255 {
7256 /*
7257 * This can be called at any time. No action lock required
7258 */
7259
7260 struct ipw2100_priv *priv = ieee80211_priv(dev);
7261
7262 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7263
7264 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7265 wrqu->txpower.fixed = 0;
7266 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7267 } else {
7268 wrqu->txpower.fixed = 1;
7269 wrqu->txpower.value = priv->tx_power;
7270 }
7271
7272 wrqu->txpower.flags = IW_TXPOW_DBM;
7273
7274 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7275
7276 return 0;
7277 }
7278
7279 static int ipw2100_wx_set_frag(struct net_device *dev,
7280 struct iw_request_info *info,
7281 union iwreq_data *wrqu, char *extra)
7282 {
7283 /*
7284 * This can be called at any time. No action lock required
7285 */
7286
7287 struct ipw2100_priv *priv = ieee80211_priv(dev);
7288
7289 if (!wrqu->frag.fixed)
7290 return -EINVAL;
7291
7292 if (wrqu->frag.disabled) {
7293 priv->frag_threshold |= FRAG_DISABLED;
7294 priv->ieee->fts = DEFAULT_FTS;
7295 } else {
7296 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7297 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7298 return -EINVAL;
7299
7300 priv->ieee->fts = wrqu->frag.value & ~0x1;
7301 priv->frag_threshold = priv->ieee->fts;
7302 }
7303
7304 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7305
7306 return 0;
7307 }
7308
7309 static int ipw2100_wx_get_frag(struct net_device *dev,
7310 struct iw_request_info *info,
7311 union iwreq_data *wrqu, char *extra)
7312 {
7313 /*
7314 * This can be called at any time. No action lock required
7315 */
7316
7317 struct ipw2100_priv *priv = ieee80211_priv(dev);
7318 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7319 wrqu->frag.fixed = 0; /* no auto select */
7320 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7321
7322 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7323
7324 return 0;
7325 }
7326
7327 static int ipw2100_wx_set_retry(struct net_device *dev,
7328 struct iw_request_info *info,
7329 union iwreq_data *wrqu, char *extra)
7330 {
7331 struct ipw2100_priv *priv = ieee80211_priv(dev);
7332 int err = 0;
7333
7334 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7335 return -EINVAL;
7336
7337 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7338 return 0;
7339
7340 mutex_lock(&priv->action_mutex);
7341 if (!(priv->status & STATUS_INITIALIZED)) {
7342 err = -EIO;
7343 goto done;
7344 }
7345
7346 if (wrqu->retry.flags & IW_RETRY_MIN) {
7347 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7348 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7349 wrqu->retry.value);
7350 goto done;
7351 }
7352
7353 if (wrqu->retry.flags & IW_RETRY_MAX) {
7354 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7355 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7356 wrqu->retry.value);
7357 goto done;
7358 }
7359
7360 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7361 if (!err)
7362 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7363
7364 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7365
7366 done:
7367 mutex_unlock(&priv->action_mutex);
7368 return err;
7369 }
7370
7371 static int ipw2100_wx_get_retry(struct net_device *dev,
7372 struct iw_request_info *info,
7373 union iwreq_data *wrqu, char *extra)
7374 {
7375 /*
7376 * This can be called at any time. No action lock required
7377 */
7378
7379 struct ipw2100_priv *priv = ieee80211_priv(dev);
7380
7381 wrqu->retry.disabled = 0; /* can't be disabled */
7382
7383 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7384 return -EINVAL;
7385
7386 if (wrqu->retry.flags & IW_RETRY_MAX) {
7387 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7388 wrqu->retry.value = priv->long_retry_limit;
7389 } else {
7390 wrqu->retry.flags =
7391 (priv->short_retry_limit !=
7392 priv->long_retry_limit) ?
7393 IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7394
7395 wrqu->retry.value = priv->short_retry_limit;
7396 }
7397
7398 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7399
7400 return 0;
7401 }
7402
7403 static int ipw2100_wx_set_scan(struct net_device *dev,
7404 struct iw_request_info *info,
7405 union iwreq_data *wrqu, char *extra)
7406 {
7407 struct ipw2100_priv *priv = ieee80211_priv(dev);
7408 int err = 0;
7409
7410 mutex_lock(&priv->action_mutex);
7411 if (!(priv->status & STATUS_INITIALIZED)) {
7412 err = -EIO;
7413 goto done;
7414 }
7415
7416 IPW_DEBUG_WX("Initiating scan...\n");
7417 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7418 IPW_DEBUG_WX("Start scan failed.\n");
7419
7420 /* TODO: Mark a scan as pending so when hardware initialized
7421 * a scan starts */
7422 }
7423
7424 done:
7425 mutex_unlock(&priv->action_mutex);
7426 return err;
7427 }
7428
7429 static int ipw2100_wx_get_scan(struct net_device *dev,
7430 struct iw_request_info *info,
7431 union iwreq_data *wrqu, char *extra)
7432 {
7433 /*
7434 * This can be called at any time. No action lock required
7435 */
7436
7437 struct ipw2100_priv *priv = ieee80211_priv(dev);
7438 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7439 }
7440
7441 /*
7442 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7443 */
7444 static int ipw2100_wx_set_encode(struct net_device *dev,
7445 struct iw_request_info *info,
7446 union iwreq_data *wrqu, char *key)
7447 {
7448 /*
7449 * No check of STATUS_INITIALIZED required
7450 */
7451
7452 struct ipw2100_priv *priv = ieee80211_priv(dev);
7453 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7454 }
7455
7456 static int ipw2100_wx_get_encode(struct net_device *dev,
7457 struct iw_request_info *info,
7458 union iwreq_data *wrqu, char *key)
7459 {
7460 /*
7461 * This can be called at any time. No action lock required
7462 */
7463
7464 struct ipw2100_priv *priv = ieee80211_priv(dev);
7465 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7466 }
7467
7468 static int ipw2100_wx_set_power(struct net_device *dev,
7469 struct iw_request_info *info,
7470 union iwreq_data *wrqu, char *extra)
7471 {
7472 struct ipw2100_priv *priv = ieee80211_priv(dev);
7473 int err = 0;
7474
7475 mutex_lock(&priv->action_mutex);
7476 if (!(priv->status & STATUS_INITIALIZED)) {
7477 err = -EIO;
7478 goto done;
7479 }
7480
7481 if (wrqu->power.disabled) {
7482 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7483 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7484 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7485 goto done;
7486 }
7487
7488 switch (wrqu->power.flags & IW_POWER_MODE) {
7489 case IW_POWER_ON: /* If not specified */
7490 case IW_POWER_MODE: /* If set all mask */
7491 case IW_POWER_ALL_R: /* If explicitely state all */
7492 break;
7493 default: /* Otherwise we don't support it */
7494 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7495 wrqu->power.flags);
7496 err = -EOPNOTSUPP;
7497 goto done;
7498 }
7499
7500 /* If the user hasn't specified a power management mode yet, default
7501 * to BATTERY */
7502 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7503 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7504
7505 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7506
7507 done:
7508 mutex_unlock(&priv->action_mutex);
7509 return err;
7510
7511 }
7512
7513 static int ipw2100_wx_get_power(struct net_device *dev,
7514 struct iw_request_info *info,
7515 union iwreq_data *wrqu, char *extra)
7516 {
7517 /*
7518 * This can be called at any time. No action lock required
7519 */
7520
7521 struct ipw2100_priv *priv = ieee80211_priv(dev);
7522
7523 if (!(priv->power_mode & IPW_POWER_ENABLED))
7524 wrqu->power.disabled = 1;
7525 else {
7526 wrqu->power.disabled = 0;
7527 wrqu->power.flags = 0;
7528 }
7529
7530 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7531
7532 return 0;
7533 }
7534
7535 /*
7536 * WE-18 WPA support
7537 */
7538
7539 /* SIOCSIWGENIE */
7540 static int ipw2100_wx_set_genie(struct net_device *dev,
7541 struct iw_request_info *info,
7542 union iwreq_data *wrqu, char *extra)
7543 {
7544
7545 struct ipw2100_priv *priv = ieee80211_priv(dev);
7546 struct ieee80211_device *ieee = priv->ieee;
7547 u8 *buf;
7548
7549 if (!ieee->wpa_enabled)
7550 return -EOPNOTSUPP;
7551
7552 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7553 (wrqu->data.length && extra == NULL))
7554 return -EINVAL;
7555
7556 if (wrqu->data.length) {
7557 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7558 if (buf == NULL)
7559 return -ENOMEM;
7560
7561 memcpy(buf, extra, wrqu->data.length);
7562 kfree(ieee->wpa_ie);
7563 ieee->wpa_ie = buf;
7564 ieee->wpa_ie_len = wrqu->data.length;
7565 } else {
7566 kfree(ieee->wpa_ie);
7567 ieee->wpa_ie = NULL;
7568 ieee->wpa_ie_len = 0;
7569 }
7570
7571 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7572
7573 return 0;
7574 }
7575
7576 /* SIOCGIWGENIE */
7577 static int ipw2100_wx_get_genie(struct net_device *dev,
7578 struct iw_request_info *info,
7579 union iwreq_data *wrqu, char *extra)
7580 {
7581 struct ipw2100_priv *priv = ieee80211_priv(dev);
7582 struct ieee80211_device *ieee = priv->ieee;
7583
7584 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7585 wrqu->data.length = 0;
7586 return 0;
7587 }
7588
7589 if (wrqu->data.length < ieee->wpa_ie_len)
7590 return -E2BIG;
7591
7592 wrqu->data.length = ieee->wpa_ie_len;
7593 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7594
7595 return 0;
7596 }
7597
7598 /* SIOCSIWAUTH */
7599 static int ipw2100_wx_set_auth(struct net_device *dev,
7600 struct iw_request_info *info,
7601 union iwreq_data *wrqu, char *extra)
7602 {
7603 struct ipw2100_priv *priv = ieee80211_priv(dev);
7604 struct ieee80211_device *ieee = priv->ieee;
7605 struct iw_param *param = &wrqu->param;
7606 struct ieee80211_crypt_data *crypt;
7607 unsigned long flags;
7608 int ret = 0;
7609
7610 switch (param->flags & IW_AUTH_INDEX) {
7611 case IW_AUTH_WPA_VERSION:
7612 case IW_AUTH_CIPHER_PAIRWISE:
7613 case IW_AUTH_CIPHER_GROUP:
7614 case IW_AUTH_KEY_MGMT:
7615 /*
7616 * ipw2200 does not use these parameters
7617 */
7618 break;
7619
7620 case IW_AUTH_TKIP_COUNTERMEASURES:
7621 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7622 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7623 break;
7624
7625 flags = crypt->ops->get_flags(crypt->priv);
7626
7627 if (param->value)
7628 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7629 else
7630 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7631
7632 crypt->ops->set_flags(flags, crypt->priv);
7633
7634 break;
7635
7636 case IW_AUTH_DROP_UNENCRYPTED:{
7637 /* HACK:
7638 *
7639 * wpa_supplicant calls set_wpa_enabled when the driver
7640 * is loaded and unloaded, regardless of if WPA is being
7641 * used. No other calls are made which can be used to
7642 * determine if encryption will be used or not prior to
7643 * association being expected. If encryption is not being
7644 * used, drop_unencrypted is set to false, else true -- we
7645 * can use this to determine if the CAP_PRIVACY_ON bit should
7646 * be set.
7647 */
7648 struct ieee80211_security sec = {
7649 .flags = SEC_ENABLED,
7650 .enabled = param->value,
7651 };
7652 priv->ieee->drop_unencrypted = param->value;
7653 /* We only change SEC_LEVEL for open mode. Others
7654 * are set by ipw_wpa_set_encryption.
7655 */
7656 if (!param->value) {
7657 sec.flags |= SEC_LEVEL;
7658 sec.level = SEC_LEVEL_0;
7659 } else {
7660 sec.flags |= SEC_LEVEL;
7661 sec.level = SEC_LEVEL_1;
7662 }
7663 if (priv->ieee->set_security)
7664 priv->ieee->set_security(priv->ieee->dev, &sec);
7665 break;
7666 }
7667
7668 case IW_AUTH_80211_AUTH_ALG:
7669 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7670 break;
7671
7672 case IW_AUTH_WPA_ENABLED:
7673 ret = ipw2100_wpa_enable(priv, param->value);
7674 break;
7675
7676 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7677 ieee->ieee802_1x = param->value;
7678 break;
7679
7680 //case IW_AUTH_ROAMING_CONTROL:
7681 case IW_AUTH_PRIVACY_INVOKED:
7682 ieee->privacy_invoked = param->value;
7683 break;
7684
7685 default:
7686 return -EOPNOTSUPP;
7687 }
7688 return ret;
7689 }
7690
7691 /* SIOCGIWAUTH */
7692 static int ipw2100_wx_get_auth(struct net_device *dev,
7693 struct iw_request_info *info,
7694 union iwreq_data *wrqu, char *extra)
7695 {
7696 struct ipw2100_priv *priv = ieee80211_priv(dev);
7697 struct ieee80211_device *ieee = priv->ieee;
7698 struct ieee80211_crypt_data *crypt;
7699 struct iw_param *param = &wrqu->param;
7700 int ret = 0;
7701
7702 switch (param->flags & IW_AUTH_INDEX) {
7703 case IW_AUTH_WPA_VERSION:
7704 case IW_AUTH_CIPHER_PAIRWISE:
7705 case IW_AUTH_CIPHER_GROUP:
7706 case IW_AUTH_KEY_MGMT:
7707 /*
7708 * wpa_supplicant will control these internally
7709 */
7710 ret = -EOPNOTSUPP;
7711 break;
7712
7713 case IW_AUTH_TKIP_COUNTERMEASURES:
7714 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7715 if (!crypt || !crypt->ops->get_flags) {
7716 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7717 "crypt not set!\n");
7718 break;
7719 }
7720
7721 param->value = (crypt->ops->get_flags(crypt->priv) &
7722 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7723
7724 break;
7725
7726 case IW_AUTH_DROP_UNENCRYPTED:
7727 param->value = ieee->drop_unencrypted;
7728 break;
7729
7730 case IW_AUTH_80211_AUTH_ALG:
7731 param->value = priv->ieee->sec.auth_mode;
7732 break;
7733
7734 case IW_AUTH_WPA_ENABLED:
7735 param->value = ieee->wpa_enabled;
7736 break;
7737
7738 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7739 param->value = ieee->ieee802_1x;
7740 break;
7741
7742 case IW_AUTH_ROAMING_CONTROL:
7743 case IW_AUTH_PRIVACY_INVOKED:
7744 param->value = ieee->privacy_invoked;
7745 break;
7746
7747 default:
7748 return -EOPNOTSUPP;
7749 }
7750 return 0;
7751 }
7752
7753 /* SIOCSIWENCODEEXT */
7754 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7755 struct iw_request_info *info,
7756 union iwreq_data *wrqu, char *extra)
7757 {
7758 struct ipw2100_priv *priv = ieee80211_priv(dev);
7759 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7760 }
7761
7762 /* SIOCGIWENCODEEXT */
7763 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7764 struct iw_request_info *info,
7765 union iwreq_data *wrqu, char *extra)
7766 {
7767 struct ipw2100_priv *priv = ieee80211_priv(dev);
7768 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7769 }
7770
7771 /* SIOCSIWMLME */
7772 static int ipw2100_wx_set_mlme(struct net_device *dev,
7773 struct iw_request_info *info,
7774 union iwreq_data *wrqu, char *extra)
7775 {
7776 struct ipw2100_priv *priv = ieee80211_priv(dev);
7777 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7778 u16 reason;
7779
7780 reason = cpu_to_le16(mlme->reason_code);
7781
7782 switch (mlme->cmd) {
7783 case IW_MLME_DEAUTH:
7784 // silently ignore
7785 break;
7786
7787 case IW_MLME_DISASSOC:
7788 ipw2100_disassociate_bssid(priv);
7789 break;
7790
7791 default:
7792 return -EOPNOTSUPP;
7793 }
7794 return 0;
7795 }
7796
7797 /*
7798 *
7799 * IWPRIV handlers
7800 *
7801 */
7802 #ifdef CONFIG_IPW2100_MONITOR
7803 static int ipw2100_wx_set_promisc(struct net_device *dev,
7804 struct iw_request_info *info,
7805 union iwreq_data *wrqu, char *extra)
7806 {
7807 struct ipw2100_priv *priv = ieee80211_priv(dev);
7808 int *parms = (int *)extra;
7809 int enable = (parms[0] > 0);
7810 int err = 0;
7811
7812 mutex_lock(&priv->action_mutex);
7813 if (!(priv->status & STATUS_INITIALIZED)) {
7814 err = -EIO;
7815 goto done;
7816 }
7817
7818 if (enable) {
7819 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7820 err = ipw2100_set_channel(priv, parms[1], 0);
7821 goto done;
7822 }
7823 priv->channel = parms[1];
7824 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7825 } else {
7826 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7827 err = ipw2100_switch_mode(priv, priv->last_mode);
7828 }
7829 done:
7830 mutex_unlock(&priv->action_mutex);
7831 return err;
7832 }
7833
7834 static int ipw2100_wx_reset(struct net_device *dev,
7835 struct iw_request_info *info,
7836 union iwreq_data *wrqu, char *extra)
7837 {
7838 struct ipw2100_priv *priv = ieee80211_priv(dev);
7839 if (priv->status & STATUS_INITIALIZED)
7840 schedule_reset(priv);
7841 return 0;
7842 }
7843
7844 #endif
7845
7846 static int ipw2100_wx_set_powermode(struct net_device *dev,
7847 struct iw_request_info *info,
7848 union iwreq_data *wrqu, char *extra)
7849 {
7850 struct ipw2100_priv *priv = ieee80211_priv(dev);
7851 int err = 0, mode = *(int *)extra;
7852
7853 mutex_lock(&priv->action_mutex);
7854 if (!(priv->status & STATUS_INITIALIZED)) {
7855 err = -EIO;
7856 goto done;
7857 }
7858
7859 if ((mode < 1) || (mode > POWER_MODES))
7860 mode = IPW_POWER_AUTO;
7861
7862 if (priv->power_mode != mode)
7863 err = ipw2100_set_power_mode(priv, mode);
7864 done:
7865 mutex_unlock(&priv->action_mutex);
7866 return err;
7867 }
7868
7869 #define MAX_POWER_STRING 80
7870 static int ipw2100_wx_get_powermode(struct net_device *dev,
7871 struct iw_request_info *info,
7872 union iwreq_data *wrqu, char *extra)
7873 {
7874 /*
7875 * This can be called at any time. No action lock required
7876 */
7877
7878 struct ipw2100_priv *priv = ieee80211_priv(dev);
7879 int level = IPW_POWER_LEVEL(priv->power_mode);
7880 s32 timeout, period;
7881
7882 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7883 snprintf(extra, MAX_POWER_STRING,
7884 "Power save level: %d (Off)", level);
7885 } else {
7886 switch (level) {
7887 case IPW_POWER_MODE_CAM:
7888 snprintf(extra, MAX_POWER_STRING,
7889 "Power save level: %d (None)", level);
7890 break;
7891 case IPW_POWER_AUTO:
7892 snprintf(extra, MAX_POWER_STRING,
7893 "Power save level: %d (Auto)", 0);
7894 break;
7895 default:
7896 timeout = timeout_duration[level - 1] / 1000;
7897 period = period_duration[level - 1] / 1000;
7898 snprintf(extra, MAX_POWER_STRING,
7899 "Power save level: %d "
7900 "(Timeout %dms, Period %dms)",
7901 level, timeout, period);
7902 }
7903 }
7904
7905 wrqu->data.length = strlen(extra) + 1;
7906
7907 return 0;
7908 }
7909
7910 static int ipw2100_wx_set_preamble(struct net_device *dev,
7911 struct iw_request_info *info,
7912 union iwreq_data *wrqu, char *extra)
7913 {
7914 struct ipw2100_priv *priv = ieee80211_priv(dev);
7915 int err, mode = *(int *)extra;
7916
7917 mutex_lock(&priv->action_mutex);
7918 if (!(priv->status & STATUS_INITIALIZED)) {
7919 err = -EIO;
7920 goto done;
7921 }
7922
7923 if (mode == 1)
7924 priv->config |= CFG_LONG_PREAMBLE;
7925 else if (mode == 0)
7926 priv->config &= ~CFG_LONG_PREAMBLE;
7927 else {
7928 err = -EINVAL;
7929 goto done;
7930 }
7931
7932 err = ipw2100_system_config(priv, 0);
7933
7934 done:
7935 mutex_unlock(&priv->action_mutex);
7936 return err;
7937 }
7938
7939 static int ipw2100_wx_get_preamble(struct net_device *dev,
7940 struct iw_request_info *info,
7941 union iwreq_data *wrqu, char *extra)
7942 {
7943 /*
7944 * This can be called at any time. No action lock required
7945 */
7946
7947 struct ipw2100_priv *priv = ieee80211_priv(dev);
7948
7949 if (priv->config & CFG_LONG_PREAMBLE)
7950 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7951 else
7952 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7953
7954 return 0;
7955 }
7956
7957 #ifdef CONFIG_IPW2100_MONITOR
7958 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7959 struct iw_request_info *info,
7960 union iwreq_data *wrqu, char *extra)
7961 {
7962 struct ipw2100_priv *priv = ieee80211_priv(dev);
7963 int err, mode = *(int *)extra;
7964
7965 mutex_lock(&priv->action_mutex);
7966 if (!(priv->status & STATUS_INITIALIZED)) {
7967 err = -EIO;
7968 goto done;
7969 }
7970
7971 if (mode == 1)
7972 priv->config |= CFG_CRC_CHECK;
7973 else if (mode == 0)
7974 priv->config &= ~CFG_CRC_CHECK;
7975 else {
7976 err = -EINVAL;
7977 goto done;
7978 }
7979 err = 0;
7980
7981 done:
7982 mutex_unlock(&priv->action_mutex);
7983 return err;
7984 }
7985
7986 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7987 struct iw_request_info *info,
7988 union iwreq_data *wrqu, char *extra)
7989 {
7990 /*
7991 * This can be called at any time. No action lock required
7992 */
7993
7994 struct ipw2100_priv *priv = ieee80211_priv(dev);
7995
7996 if (priv->config & CFG_CRC_CHECK)
7997 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7998 else
7999 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8000
8001 return 0;
8002 }
8003 #endif /* CONFIG_IPW2100_MONITOR */
8004
8005 static iw_handler ipw2100_wx_handlers[] = {
8006 NULL, /* SIOCSIWCOMMIT */
8007 ipw2100_wx_get_name, /* SIOCGIWNAME */
8008 NULL, /* SIOCSIWNWID */
8009 NULL, /* SIOCGIWNWID */
8010 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8011 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8012 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8013 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8014 NULL, /* SIOCSIWSENS */
8015 NULL, /* SIOCGIWSENS */
8016 NULL, /* SIOCSIWRANGE */
8017 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8018 NULL, /* SIOCSIWPRIV */
8019 NULL, /* SIOCGIWPRIV */
8020 NULL, /* SIOCSIWSTATS */
8021 NULL, /* SIOCGIWSTATS */
8022 NULL, /* SIOCSIWSPY */
8023 NULL, /* SIOCGIWSPY */
8024 NULL, /* SIOCGIWTHRSPY */
8025 NULL, /* SIOCWIWTHRSPY */
8026 ipw2100_wx_set_wap, /* SIOCSIWAP */
8027 ipw2100_wx_get_wap, /* SIOCGIWAP */
8028 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8029 NULL, /* SIOCGIWAPLIST -- deprecated */
8030 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8031 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8032 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8033 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8034 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8035 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8036 NULL, /* -- hole -- */
8037 NULL, /* -- hole -- */
8038 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8039 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8040 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8041 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8042 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8043 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8044 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8045 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8046 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8047 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8048 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8049 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8050 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8051 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8052 NULL, /* -- hole -- */
8053 NULL, /* -- hole -- */
8054 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8055 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8056 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8057 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8058 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8059 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8060 NULL, /* SIOCSIWPMKSA */
8061 };
8062
8063 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8064 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8065 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8066 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8067 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8068 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8069 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8070 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8071
8072 static const struct iw_priv_args ipw2100_private_args[] = {
8073
8074 #ifdef CONFIG_IPW2100_MONITOR
8075 {
8076 IPW2100_PRIV_SET_MONITOR,
8077 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8078 {
8079 IPW2100_PRIV_RESET,
8080 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8081 #endif /* CONFIG_IPW2100_MONITOR */
8082
8083 {
8084 IPW2100_PRIV_SET_POWER,
8085 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8086 {
8087 IPW2100_PRIV_GET_POWER,
8088 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8089 "get_power"},
8090 {
8091 IPW2100_PRIV_SET_LONGPREAMBLE,
8092 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8093 {
8094 IPW2100_PRIV_GET_LONGPREAMBLE,
8095 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8096 #ifdef CONFIG_IPW2100_MONITOR
8097 {
8098 IPW2100_PRIV_SET_CRC_CHECK,
8099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8100 {
8101 IPW2100_PRIV_GET_CRC_CHECK,
8102 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8103 #endif /* CONFIG_IPW2100_MONITOR */
8104 };
8105
8106 static iw_handler ipw2100_private_handler[] = {
8107 #ifdef CONFIG_IPW2100_MONITOR
8108 ipw2100_wx_set_promisc,
8109 ipw2100_wx_reset,
8110 #else /* CONFIG_IPW2100_MONITOR */
8111 NULL,
8112 NULL,
8113 #endif /* CONFIG_IPW2100_MONITOR */
8114 ipw2100_wx_set_powermode,
8115 ipw2100_wx_get_powermode,
8116 ipw2100_wx_set_preamble,
8117 ipw2100_wx_get_preamble,
8118 #ifdef CONFIG_IPW2100_MONITOR
8119 ipw2100_wx_set_crc_check,
8120 ipw2100_wx_get_crc_check,
8121 #else /* CONFIG_IPW2100_MONITOR */
8122 NULL,
8123 NULL,
8124 #endif /* CONFIG_IPW2100_MONITOR */
8125 };
8126
8127 /*
8128 * Get wireless statistics.
8129 * Called by /proc/net/wireless
8130 * Also called by SIOCGIWSTATS
8131 */
8132 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8133 {
8134 enum {
8135 POOR = 30,
8136 FAIR = 60,
8137 GOOD = 80,
8138 VERY_GOOD = 90,
8139 EXCELLENT = 95,
8140 PERFECT = 100
8141 };
8142 int rssi_qual;
8143 int tx_qual;
8144 int beacon_qual;
8145
8146 struct ipw2100_priv *priv = ieee80211_priv(dev);
8147 struct iw_statistics *wstats;
8148 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8149 u32 ord_len = sizeof(u32);
8150
8151 if (!priv)
8152 return (struct iw_statistics *)NULL;
8153
8154 wstats = &priv->wstats;
8155
8156 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8157 * ipw2100_wx_wireless_stats seems to be called before fw is
8158 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8159 * and associated; if not associcated, the values are all meaningless
8160 * anyway, so set them all to NULL and INVALID */
8161 if (!(priv->status & STATUS_ASSOCIATED)) {
8162 wstats->miss.beacon = 0;
8163 wstats->discard.retries = 0;
8164 wstats->qual.qual = 0;
8165 wstats->qual.level = 0;
8166 wstats->qual.noise = 0;
8167 wstats->qual.updated = 7;
8168 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8169 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8170 return wstats;
8171 }
8172
8173 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8174 &missed_beacons, &ord_len))
8175 goto fail_get_ordinal;
8176
8177 /* If we don't have a connection the quality and level is 0 */
8178 if (!(priv->status & STATUS_ASSOCIATED)) {
8179 wstats->qual.qual = 0;
8180 wstats->qual.level = 0;
8181 } else {
8182 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8183 &rssi, &ord_len))
8184 goto fail_get_ordinal;
8185 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8186 if (rssi < 10)
8187 rssi_qual = rssi * POOR / 10;
8188 else if (rssi < 15)
8189 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8190 else if (rssi < 20)
8191 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8192 else if (rssi < 30)
8193 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8194 10 + GOOD;
8195 else
8196 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8197 10 + VERY_GOOD;
8198
8199 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8200 &tx_retries, &ord_len))
8201 goto fail_get_ordinal;
8202
8203 if (tx_retries > 75)
8204 tx_qual = (90 - tx_retries) * POOR / 15;
8205 else if (tx_retries > 70)
8206 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8207 else if (tx_retries > 65)
8208 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8209 else if (tx_retries > 50)
8210 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8211 15 + GOOD;
8212 else
8213 tx_qual = (50 - tx_retries) *
8214 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8215
8216 if (missed_beacons > 50)
8217 beacon_qual = (60 - missed_beacons) * POOR / 10;
8218 else if (missed_beacons > 40)
8219 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8220 10 + POOR;
8221 else if (missed_beacons > 32)
8222 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8223 18 + FAIR;
8224 else if (missed_beacons > 20)
8225 beacon_qual = (32 - missed_beacons) *
8226 (VERY_GOOD - GOOD) / 20 + GOOD;
8227 else
8228 beacon_qual = (20 - missed_beacons) *
8229 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8230
8231 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8232
8233 #ifdef CONFIG_IPW2100_DEBUG
8234 if (beacon_qual == quality)
8235 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8236 else if (tx_qual == quality)
8237 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8238 else if (quality != 100)
8239 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8240 else
8241 IPW_DEBUG_WX("Quality not clamped.\n");
8242 #endif
8243
8244 wstats->qual.qual = quality;
8245 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8246 }
8247
8248 wstats->qual.noise = 0;
8249 wstats->qual.updated = 7;
8250 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8251
8252 /* FIXME: this is percent and not a # */
8253 wstats->miss.beacon = missed_beacons;
8254
8255 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8256 &tx_failures, &ord_len))
8257 goto fail_get_ordinal;
8258 wstats->discard.retries = tx_failures;
8259
8260 return wstats;
8261
8262 fail_get_ordinal:
8263 IPW_DEBUG_WX("failed querying ordinals.\n");
8264
8265 return (struct iw_statistics *)NULL;
8266 }
8267
8268 static struct iw_handler_def ipw2100_wx_handler_def = {
8269 .standard = ipw2100_wx_handlers,
8270 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8271 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8272 .num_private_args = sizeof(ipw2100_private_args) /
8273 sizeof(struct iw_priv_args),
8274 .private = (iw_handler *) ipw2100_private_handler,
8275 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8276 .get_wireless_stats = ipw2100_wx_wireless_stats,
8277 };
8278
8279 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8280 {
8281 union iwreq_data wrqu;
8282 int len = ETH_ALEN;
8283
8284 if (priv->status & STATUS_STOPPING)
8285 return;
8286
8287 mutex_lock(&priv->action_mutex);
8288
8289 IPW_DEBUG_WX("enter\n");
8290
8291 mutex_unlock(&priv->action_mutex);
8292
8293 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8294
8295 /* Fetch BSSID from the hardware */
8296 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8297 priv->status & STATUS_RF_KILL_MASK ||
8298 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8299 &priv->bssid, &len)) {
8300 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8301 } else {
8302 /* We now have the BSSID, so can finish setting to the full
8303 * associated state */
8304 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8305 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8306 priv->status &= ~STATUS_ASSOCIATING;
8307 priv->status |= STATUS_ASSOCIATED;
8308 netif_carrier_on(priv->net_dev);
8309 netif_wake_queue(priv->net_dev);
8310 }
8311
8312 if (!(priv->status & STATUS_ASSOCIATED)) {
8313 IPW_DEBUG_WX("Configuring ESSID\n");
8314 mutex_lock(&priv->action_mutex);
8315 /* This is a disassociation event, so kick the firmware to
8316 * look for another AP */
8317 if (priv->config & CFG_STATIC_ESSID)
8318 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8319 0);
8320 else
8321 ipw2100_set_essid(priv, NULL, 0, 0);
8322 mutex_unlock(&priv->action_mutex);
8323 }
8324
8325 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8326 }
8327
8328 #define IPW2100_FW_MAJOR_VERSION 1
8329 #define IPW2100_FW_MINOR_VERSION 3
8330
8331 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8332 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8333
8334 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8335 IPW2100_FW_MAJOR_VERSION)
8336
8337 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8338 "." __stringify(IPW2100_FW_MINOR_VERSION)
8339
8340 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8341
8342 /*
8343
8344 BINARY FIRMWARE HEADER FORMAT
8345
8346 offset length desc
8347 0 2 version
8348 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8349 4 4 fw_len
8350 8 4 uc_len
8351 C fw_len firmware data
8352 12 + fw_len uc_len microcode data
8353
8354 */
8355
8356 struct ipw2100_fw_header {
8357 short version;
8358 short mode;
8359 unsigned int fw_size;
8360 unsigned int uc_size;
8361 } __attribute__ ((packed));
8362
8363 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8364 {
8365 struct ipw2100_fw_header *h =
8366 (struct ipw2100_fw_header *)fw->fw_entry->data;
8367
8368 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8369 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8370 "(detected version id of %u). "
8371 "See Documentation/networking/README.ipw2100\n",
8372 h->version);
8373 return 1;
8374 }
8375
8376 fw->version = h->version;
8377 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8378 fw->fw.size = h->fw_size;
8379 fw->uc.data = fw->fw.data + h->fw_size;
8380 fw->uc.size = h->uc_size;
8381
8382 return 0;
8383 }
8384
8385 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8386 struct ipw2100_fw *fw)
8387 {
8388 char *fw_name;
8389 int rc;
8390
8391 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8392 priv->net_dev->name);
8393
8394 switch (priv->ieee->iw_mode) {
8395 case IW_MODE_ADHOC:
8396 fw_name = IPW2100_FW_NAME("-i");
8397 break;
8398 #ifdef CONFIG_IPW2100_MONITOR
8399 case IW_MODE_MONITOR:
8400 fw_name = IPW2100_FW_NAME("-p");
8401 break;
8402 #endif
8403 case IW_MODE_INFRA:
8404 default:
8405 fw_name = IPW2100_FW_NAME("");
8406 break;
8407 }
8408
8409 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8410
8411 if (rc < 0) {
8412 printk(KERN_ERR DRV_NAME ": "
8413 "%s: Firmware '%s' not available or load failed.\n",
8414 priv->net_dev->name, fw_name);
8415 return rc;
8416 }
8417 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8418 fw->fw_entry->size);
8419
8420 ipw2100_mod_firmware_load(fw);
8421
8422 return 0;
8423 }
8424
8425 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8426 struct ipw2100_fw *fw)
8427 {
8428 fw->version = 0;
8429 if (fw->fw_entry)
8430 release_firmware(fw->fw_entry);
8431 fw->fw_entry = NULL;
8432 }
8433
8434 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8435 size_t max)
8436 {
8437 char ver[MAX_FW_VERSION_LEN];
8438 u32 len = MAX_FW_VERSION_LEN;
8439 u32 tmp;
8440 int i;
8441 /* firmware version is an ascii string (max len of 14) */
8442 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8443 return -EIO;
8444 tmp = max;
8445 if (len >= max)
8446 len = max - 1;
8447 for (i = 0; i < len; i++)
8448 buf[i] = ver[i];
8449 buf[i] = '\0';
8450 return tmp;
8451 }
8452
8453 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8454 size_t max)
8455 {
8456 u32 ver;
8457 u32 len = sizeof(ver);
8458 /* microcode version is a 32 bit integer */
8459 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8460 return -EIO;
8461 return snprintf(buf, max, "%08X", ver);
8462 }
8463
8464 /*
8465 * On exit, the firmware will have been freed from the fw list
8466 */
8467 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8468 {
8469 /* firmware is constructed of N contiguous entries, each entry is
8470 * structured as:
8471 *
8472 * offset sie desc
8473 * 0 4 address to write to
8474 * 4 2 length of data run
8475 * 6 length data
8476 */
8477 unsigned int addr;
8478 unsigned short len;
8479
8480 const unsigned char *firmware_data = fw->fw.data;
8481 unsigned int firmware_data_left = fw->fw.size;
8482
8483 while (firmware_data_left > 0) {
8484 addr = *(u32 *) (firmware_data);
8485 firmware_data += 4;
8486 firmware_data_left -= 4;
8487
8488 len = *(u16 *) (firmware_data);
8489 firmware_data += 2;
8490 firmware_data_left -= 2;
8491
8492 if (len > 32) {
8493 printk(KERN_ERR DRV_NAME ": "
8494 "Invalid firmware run-length of %d bytes\n",
8495 len);
8496 return -EINVAL;
8497 }
8498
8499 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8500 firmware_data += len;
8501 firmware_data_left -= len;
8502 }
8503
8504 return 0;
8505 }
8506
8507 struct symbol_alive_response {
8508 u8 cmd_id;
8509 u8 seq_num;
8510 u8 ucode_rev;
8511 u8 eeprom_valid;
8512 u16 valid_flags;
8513 u8 IEEE_addr[6];
8514 u16 flags;
8515 u16 pcb_rev;
8516 u16 clock_settle_time; // 1us LSB
8517 u16 powerup_settle_time; // 1us LSB
8518 u16 hop_settle_time; // 1us LSB
8519 u8 date[3]; // month, day, year
8520 u8 time[2]; // hours, minutes
8521 u8 ucode_valid;
8522 };
8523
8524 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8525 struct ipw2100_fw *fw)
8526 {
8527 struct net_device *dev = priv->net_dev;
8528 const unsigned char *microcode_data = fw->uc.data;
8529 unsigned int microcode_data_left = fw->uc.size;
8530 void __iomem *reg = (void __iomem *)dev->base_addr;
8531
8532 struct symbol_alive_response response;
8533 int i, j;
8534 u8 data;
8535
8536 /* Symbol control */
8537 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8538 readl(reg);
8539 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8540 readl(reg);
8541
8542 /* HW config */
8543 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8544 readl(reg);
8545 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8546 readl(reg);
8547
8548 /* EN_CS_ACCESS bit to reset control store pointer */
8549 write_nic_byte(dev, 0x210000, 0x40);
8550 readl(reg);
8551 write_nic_byte(dev, 0x210000, 0x0);
8552 readl(reg);
8553 write_nic_byte(dev, 0x210000, 0x40);
8554 readl(reg);
8555
8556 /* copy microcode from buffer into Symbol */
8557
8558 while (microcode_data_left > 0) {
8559 write_nic_byte(dev, 0x210010, *microcode_data++);
8560 write_nic_byte(dev, 0x210010, *microcode_data++);
8561 microcode_data_left -= 2;
8562 }
8563
8564 /* EN_CS_ACCESS bit to reset the control store pointer */
8565 write_nic_byte(dev, 0x210000, 0x0);
8566 readl(reg);
8567
8568 /* Enable System (Reg 0)
8569 * first enable causes garbage in RX FIFO */
8570 write_nic_byte(dev, 0x210000, 0x0);
8571 readl(reg);
8572 write_nic_byte(dev, 0x210000, 0x80);
8573 readl(reg);
8574
8575 /* Reset External Baseband Reg */
8576 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8577 readl(reg);
8578 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8579 readl(reg);
8580
8581 /* HW Config (Reg 5) */
8582 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8583 readl(reg);
8584 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8585 readl(reg);
8586
8587 /* Enable System (Reg 0)
8588 * second enable should be OK */
8589 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8590 readl(reg);
8591 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8592
8593 /* check Symbol is enabled - upped this from 5 as it wasn't always
8594 * catching the update */
8595 for (i = 0; i < 10; i++) {
8596 udelay(10);
8597
8598 /* check Dino is enabled bit */
8599 read_nic_byte(dev, 0x210000, &data);
8600 if (data & 0x1)
8601 break;
8602 }
8603
8604 if (i == 10) {
8605 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8606 dev->name);
8607 return -EIO;
8608 }
8609
8610 /* Get Symbol alive response */
8611 for (i = 0; i < 30; i++) {
8612 /* Read alive response structure */
8613 for (j = 0;
8614 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8615 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8616
8617 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8618 break;
8619 udelay(10);
8620 }
8621
8622 if (i == 30) {
8623 printk(KERN_ERR DRV_NAME
8624 ": %s: No response from Symbol - hw not alive\n",
8625 dev->name);
8626 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8627 return -EIO;
8628 }
8629
8630 return 0;
8631 }