]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ipw2100.c
[PATCH] Update my email address from jkmaline@cc.hut.fi to j@w1.fi
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
217 } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
337 {
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
415 {
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
420
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
432
433 len -= dif_len;
434 aligned_addr += 4;
435 }
436
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
453 {
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
458
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
470
471 len -= dif_len;
472 aligned_addr += 4;
473 }
474
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
499 {
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
506
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
511 }
512
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
520
521 return -EINVAL;
522 }
523
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
527
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530 return 0;
531 }
532
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535 ord -= IPW_START_ORD_TAB_2;
536
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
540
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
546
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
549
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
552
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
558 }
559
560 *len = total_length;
561 if (!total_length)
562 return 0;
563
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567 return 0;
568 }
569
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
572
573 return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
578 {
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
581
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
587 }
588
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
591
592 write_nic_dword(priv->net_dev, addr, *val);
593
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596 return 0;
597 }
598
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
602
603 return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
608 {
609 int out, i, j, l;
610 char c;
611
612 out = snprintf(buf, count, "%08X", ofs);
613
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
621 }
622
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
630
631 out += snprintf(buf + out, count - out, "%c", c);
632 }
633
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
636 }
637
638 return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
647
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
654 }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661 unsigned long now = get_seconds();
662
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
669
670 priv->last_reset = get_seconds();
671
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
683 0);
684
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
687
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
698 {
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
703
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
709
710 spin_lock_irqsave(&priv->low_lock, flags);
711
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
717 }
718
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
731 }
732
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
736 }
737
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
740
741 element = priv->msg_free_list.next;
742
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
745
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
759
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
762
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
765
766 spin_unlock_irqrestore(&priv->low_lock, flags);
767
768 /*
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
772 */
773
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
779
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
787 }
788
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
793 }
794
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
798 *
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802 return 0;
803
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
806
807 return err;
808 }
809
810 /*
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
813 */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816 u32 data1, data2;
817 u32 address;
818
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
821
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
828 }
829
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
843 }
844
845 return -EIO;
846 }
847
848 /*
849 *
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
852 *
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
855 *
856 */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
864
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
872 }
873
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
884
885 return 0;
886 }
887
888 udelay(50);
889 }
890
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
894 }
895
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903 int i;
904 u32 r;
905
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
918 }
919
920 if (i == 1000)
921 return -EIO; // TODO: better error value
922
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
936 }
937
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
940
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946 return 0;
947 }
948
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962 u32 address;
963 int err;
964
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
975 }
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
984 }
985 }
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
993 }
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
996
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1003 }
1004
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1025 }
1026
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1038 }
1039
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1046 }
1047 #ifndef CONFIG_PM
1048 /*
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1053 */
1054
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1075
1076 return 0;
1077
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103 IPW_DEBUG_INFO("enter\n");
1104
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1107
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1110
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114 ord->table2_size &= 0x0000FFFF;
1115
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123 u32 reg = 0;
1124 /*
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1127 */
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1141
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1145 }
1146
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151 }
1152
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158 return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163 u32 addr, len;
1164 u32 val;
1165
1166 /*
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 */
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1175 }
1176
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179 /*
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186 /*
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 *
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1192 */
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1208 */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211 int i;
1212 u32 inta, inta_mask, gpio;
1213
1214 IPW_DEBUG_INFO("enter\n");
1215
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1218
1219 /*
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1223 */
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1229 }
1230
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1234
1235 ipw2100_hw_set_gpio(priv);
1236
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1239
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1249
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1258 }
1259
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1269 }
1270 } while (i--);
1271
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1283
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1289 }
1290
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1300
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304 IPW_DEBUG_INFO("exit\n");
1305
1306 return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311 if (!priv->fatal_error)
1312 return;
1313
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322 u32 reg;
1323 int i;
1324
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327 ipw2100_hw_set_gpio(priv);
1328
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1343
1344 priv->status &= ~STATUS_RESET_PENDING;
1345
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1350 }
1351
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1357
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 *
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 *
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1372 */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1382 };
1383 int err, i;
1384 u32 val1, val2;
1385
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1392
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1400
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402 }
1403
1404 return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1413 };
1414 int err = 0;
1415
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1420
1421 mutex_lock(&priv->adapter_mutex);
1422
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1426 }
1427
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1432 }
1433
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1439 }
1440
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444 }
1445
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1459 };
1460 int err, i;
1461 u32 reg;
1462
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1465
1466 priv->status |= STATUS_STOPPING;
1467
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1475
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1480
1481 /*
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1485 *
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1489 *
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1493 *
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1496 *
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1500 */
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510 }
1511
1512 priv->status &= ~STATUS_ENABLED;
1513
1514 /*
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1517 */
1518 ipw2100_hw_set_gpio(priv);
1519
1520 /*
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1525 */
1526
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1535
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1541 }
1542
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1547
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554 return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1563 };
1564 int err = 0;
1565
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1570
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1577 }
1578
1579 mutex_lock(&priv->adapter_mutex);
1580
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1586 }
1587
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1593 }
1594
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1608 };
1609 int err;
1610
1611 IPW_DEBUG_INFO("enter\n");
1612
1613 IPW_DEBUG_SCAN("setting scan options\n");
1614
1615 cmd.host_command_parameters[0] = 0;
1616
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626 err = ipw2100_hw_send_command(priv, &cmd);
1627
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1630
1631 return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1640 };
1641 int err;
1642
1643 IPW_DEBUG_HC("START_SCAN\n");
1644
1645 cmd.host_command_parameters[0] = 0;
1646
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1650
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1654 }
1655
1656 IPW_DEBUG_INFO("enter\n");
1657
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1659 *
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1662 */
1663 IPW_DEBUG_SCAN("starting scan\n");
1664
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1669
1670 IPW_DEBUG_INFO("exit\n");
1671
1672 return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1684 },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1693
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1699 }
1700
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1703 */
1704 modify_acceptable_latency("ipw2100", 175);
1705
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1709
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1721 rc = 1;
1722 goto exit;
1723 }
1724 } else
1725 priv->status |= STATUS_POWERED;
1726
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1732 rc = 1;
1733 goto exit;
1734 }
1735
1736 ipw2100_initialize_ordinals(priv);
1737
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1743 rc = 1;
1744 goto exit;
1745 }
1746
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750 return 0;
1751 }
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754 lock = LOCK_NONE;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1759 rc = 1;
1760 goto exit;
1761 }
1762
1763 priv->status &= ~STATUS_SCANNING;
1764
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1768
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1772 }
1773
1774 deferred = 1;
1775 }
1776
1777 /* Turn on the interrupt so that commands can be processed */
1778 ipw2100_enable_interrupts(priv);
1779
1780 /* Send all of the commands that must be sent prior to
1781 * HOST_COMPLETE */
1782 if (ipw2100_adapter_setup(priv)) {
1783 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784 priv->net_dev->name);
1785 rc = 1;
1786 goto exit;
1787 }
1788
1789 if (!deferred) {
1790 /* Enable the adapter - sends HOST_COMPLETE */
1791 if (ipw2100_enable_adapter(priv)) {
1792 printk(KERN_ERR DRV_NAME ": "
1793 "%s: failed in call to enable adapter.\n",
1794 priv->net_dev->name);
1795 ipw2100_hw_stop_adapter(priv);
1796 rc = 1;
1797 goto exit;
1798 }
1799
1800 /* Start a scan . . . */
1801 ipw2100_set_scan_options(priv);
1802 ipw2100_start_scan(priv);
1803 }
1804
1805 exit:
1806 return rc;
1807 }
1808
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1811 {
1812 struct ipw2100_priv *priv = ieee80211_priv(dev);
1813 return ipw2100_up(priv, 1);
1814 }
1815
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1817 {
1818 unsigned long flags;
1819 union iwreq_data wrqu = {
1820 .ap_addr = {
1821 .sa_family = ARPHRD_ETHER}
1822 };
1823 int associated = priv->status & STATUS_ASSOCIATED;
1824
1825 /* Kill the RF switch timer */
1826 if (!priv->stop_rf_kill) {
1827 priv->stop_rf_kill = 1;
1828 cancel_delayed_work(&priv->rf_kill);
1829 }
1830
1831 /* Kill the firmare hang check timer */
1832 if (!priv->stop_hang_check) {
1833 priv->stop_hang_check = 1;
1834 cancel_delayed_work(&priv->hang_check);
1835 }
1836
1837 /* Kill any pending resets */
1838 if (priv->status & STATUS_RESET_PENDING)
1839 cancel_delayed_work(&priv->reset_work);
1840
1841 /* Make sure the interrupt is on so that FW commands will be
1842 * processed correctly */
1843 spin_lock_irqsave(&priv->low_lock, flags);
1844 ipw2100_enable_interrupts(priv);
1845 spin_unlock_irqrestore(&priv->low_lock, flags);
1846
1847 if (ipw2100_hw_stop_adapter(priv))
1848 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849 priv->net_dev->name);
1850
1851 /* Do not disable the interrupt until _after_ we disable
1852 * the adaptor. Otherwise the CARD_DISABLE command will never
1853 * be ack'd by the firmware */
1854 spin_lock_irqsave(&priv->low_lock, flags);
1855 ipw2100_disable_interrupts(priv);
1856 spin_unlock_irqrestore(&priv->low_lock, flags);
1857
1858 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1859
1860 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1861 if (priv->config & CFG_C3_DISABLED) {
1862 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1863 acpi_set_cstate_limit(priv->cstate_limit);
1864 priv->config &= ~CFG_C3_DISABLED;
1865 }
1866 #endif
1867
1868 /* We have to signal any supplicant if we are disassociating */
1869 if (associated)
1870 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1871
1872 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1873 netif_carrier_off(priv->net_dev);
1874 netif_stop_queue(priv->net_dev);
1875 }
1876
1877 static void ipw2100_reset_adapter(struct work_struct *work)
1878 {
1879 struct ipw2100_priv *priv =
1880 container_of(work, struct ipw2100_priv, reset_work.work);
1881 unsigned long flags;
1882 union iwreq_data wrqu = {
1883 .ap_addr = {
1884 .sa_family = ARPHRD_ETHER}
1885 };
1886 int associated = priv->status & STATUS_ASSOCIATED;
1887
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1890 priv->resets++;
1891 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1892 priv->status |= STATUS_SECURITY_UPDATED;
1893
1894 /* Force a power cycle even if interface hasn't been opened
1895 * yet */
1896 cancel_delayed_work(&priv->reset_work);
1897 priv->status |= STATUS_RESET_PENDING;
1898 spin_unlock_irqrestore(&priv->low_lock, flags);
1899
1900 mutex_lock(&priv->action_mutex);
1901 /* stop timed checks so that they don't interfere with reset */
1902 priv->stop_hang_check = 1;
1903 cancel_delayed_work(&priv->hang_check);
1904
1905 /* We have to signal any supplicant if we are disassociating */
1906 if (associated)
1907 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1908
1909 ipw2100_up(priv, 0);
1910 mutex_unlock(&priv->action_mutex);
1911
1912 }
1913
1914 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1915 {
1916
1917 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1918 int ret, len, essid_len;
1919 char essid[IW_ESSID_MAX_SIZE];
1920 u32 txrate;
1921 u32 chan;
1922 char *txratename;
1923 u8 bssid[ETH_ALEN];
1924
1925 /*
1926 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1927 * an actual MAC of the AP. Seems like FW sets this
1928 * address too late. Read it later and expose through
1929 * /proc or schedule a later task to query and update
1930 */
1931
1932 essid_len = IW_ESSID_MAX_SIZE;
1933 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1934 essid, &essid_len);
1935 if (ret) {
1936 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1937 __LINE__);
1938 return;
1939 }
1940
1941 len = sizeof(u32);
1942 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1943 if (ret) {
1944 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1945 __LINE__);
1946 return;
1947 }
1948
1949 len = sizeof(u32);
1950 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1951 if (ret) {
1952 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1953 __LINE__);
1954 return;
1955 }
1956 len = ETH_ALEN;
1957 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1958 if (ret) {
1959 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1960 __LINE__);
1961 return;
1962 }
1963 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1964
1965 switch (txrate) {
1966 case TX_RATE_1_MBIT:
1967 txratename = "1Mbps";
1968 break;
1969 case TX_RATE_2_MBIT:
1970 txratename = "2Mbsp";
1971 break;
1972 case TX_RATE_5_5_MBIT:
1973 txratename = "5.5Mbps";
1974 break;
1975 case TX_RATE_11_MBIT:
1976 txratename = "11Mbps";
1977 break;
1978 default:
1979 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1980 txratename = "unknown rate";
1981 break;
1982 }
1983
1984 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1985 MAC_FMT ")\n",
1986 priv->net_dev->name, escape_essid(essid, essid_len),
1987 txratename, chan, MAC_ARG(bssid));
1988
1989 /* now we copy read ssid into dev */
1990 if (!(priv->config & CFG_STATIC_ESSID)) {
1991 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1992 memcpy(priv->essid, essid, priv->essid_len);
1993 }
1994 priv->channel = chan;
1995 memcpy(priv->bssid, bssid, ETH_ALEN);
1996
1997 priv->status |= STATUS_ASSOCIATING;
1998 priv->connect_start = get_seconds();
1999
2000 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2001 }
2002
2003 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2004 int length, int batch_mode)
2005 {
2006 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2007 struct host_command cmd = {
2008 .host_command = SSID,
2009 .host_command_sequence = 0,
2010 .host_command_length = ssid_len
2011 };
2012 int err;
2013
2014 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2015
2016 if (ssid_len)
2017 memcpy(cmd.host_command_parameters, essid, ssid_len);
2018
2019 if (!batch_mode) {
2020 err = ipw2100_disable_adapter(priv);
2021 if (err)
2022 return err;
2023 }
2024
2025 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2026 * disable auto association -- so we cheat by setting a bogus SSID */
2027 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2028 int i;
2029 u8 *bogus = (u8 *) cmd.host_command_parameters;
2030 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2031 bogus[i] = 0x18 + i;
2032 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2033 }
2034
2035 /* NOTE: We always send the SSID command even if the provided ESSID is
2036 * the same as what we currently think is set. */
2037
2038 err = ipw2100_hw_send_command(priv, &cmd);
2039 if (!err) {
2040 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2041 memcpy(priv->essid, essid, ssid_len);
2042 priv->essid_len = ssid_len;
2043 }
2044
2045 if (!batch_mode) {
2046 if (ipw2100_enable_adapter(priv))
2047 err = -EIO;
2048 }
2049
2050 return err;
2051 }
2052
2053 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2054 {
2055 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2056 "disassociated: '%s' " MAC_FMT " \n",
2057 escape_essid(priv->essid, priv->essid_len),
2058 MAC_ARG(priv->bssid));
2059
2060 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2061
2062 if (priv->status & STATUS_STOPPING) {
2063 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2064 return;
2065 }
2066
2067 memset(priv->bssid, 0, ETH_ALEN);
2068 memset(priv->ieee->bssid, 0, ETH_ALEN);
2069
2070 netif_carrier_off(priv->net_dev);
2071 netif_stop_queue(priv->net_dev);
2072
2073 if (!(priv->status & STATUS_RUNNING))
2074 return;
2075
2076 if (priv->status & STATUS_SECURITY_UPDATED)
2077 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2078
2079 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2080 }
2081
2082 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2083 {
2084 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2085 priv->net_dev->name);
2086
2087 /* RF_KILL is now enabled (else we wouldn't be here) */
2088 priv->status |= STATUS_RF_KILL_HW;
2089
2090 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2091 if (priv->config & CFG_C3_DISABLED) {
2092 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2093 acpi_set_cstate_limit(priv->cstate_limit);
2094 priv->config &= ~CFG_C3_DISABLED;
2095 }
2096 #endif
2097
2098 /* Make sure the RF Kill check timer is running */
2099 priv->stop_rf_kill = 0;
2100 cancel_delayed_work(&priv->rf_kill);
2101 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2102 }
2103
2104 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2105 {
2106 IPW_DEBUG_SCAN("scan complete\n");
2107 /* Age the scan results... */
2108 priv->ieee->scans++;
2109 priv->status &= ~STATUS_SCANNING;
2110 }
2111
2112 #ifdef CONFIG_IPW2100_DEBUG
2113 #define IPW2100_HANDLER(v, f) { v, f, # v }
2114 struct ipw2100_status_indicator {
2115 int status;
2116 void (*cb) (struct ipw2100_priv * priv, u32 status);
2117 char *name;
2118 };
2119 #else
2120 #define IPW2100_HANDLER(v, f) { v, f }
2121 struct ipw2100_status_indicator {
2122 int status;
2123 void (*cb) (struct ipw2100_priv * priv, u32 status);
2124 };
2125 #endif /* CONFIG_IPW2100_DEBUG */
2126
2127 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2128 {
2129 IPW_DEBUG_SCAN("Scanning...\n");
2130 priv->status |= STATUS_SCANNING;
2131 }
2132
2133 static const struct ipw2100_status_indicator status_handlers[] = {
2134 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2135 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2136 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2137 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2138 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2139 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2140 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2141 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2142 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2143 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2144 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2145 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2146 IPW2100_HANDLER(-1, NULL)
2147 };
2148
2149 static void isr_status_change(struct ipw2100_priv *priv, int status)
2150 {
2151 int i;
2152
2153 if (status == IPW_STATE_SCANNING &&
2154 priv->status & STATUS_ASSOCIATED &&
2155 !(priv->status & STATUS_SCANNING)) {
2156 IPW_DEBUG_INFO("Scan detected while associated, with "
2157 "no scan request. Restarting firmware.\n");
2158
2159 /* Wake up any sleeping jobs */
2160 schedule_reset(priv);
2161 }
2162
2163 for (i = 0; status_handlers[i].status != -1; i++) {
2164 if (status == status_handlers[i].status) {
2165 IPW_DEBUG_NOTIF("Status change: %s\n",
2166 status_handlers[i].name);
2167 if (status_handlers[i].cb)
2168 status_handlers[i].cb(priv, status);
2169 priv->wstats.status = status;
2170 return;
2171 }
2172 }
2173
2174 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2175 }
2176
2177 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2178 struct ipw2100_cmd_header *cmd)
2179 {
2180 #ifdef CONFIG_IPW2100_DEBUG
2181 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2182 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2183 command_types[cmd->host_command_reg],
2184 cmd->host_command_reg);
2185 }
2186 #endif
2187 if (cmd->host_command_reg == HOST_COMPLETE)
2188 priv->status |= STATUS_ENABLED;
2189
2190 if (cmd->host_command_reg == CARD_DISABLE)
2191 priv->status &= ~STATUS_ENABLED;
2192
2193 priv->status &= ~STATUS_CMD_ACTIVE;
2194
2195 wake_up_interruptible(&priv->wait_command_queue);
2196 }
2197
2198 #ifdef CONFIG_IPW2100_DEBUG
2199 static const char *frame_types[] = {
2200 "COMMAND_STATUS_VAL",
2201 "STATUS_CHANGE_VAL",
2202 "P80211_DATA_VAL",
2203 "P8023_DATA_VAL",
2204 "HOST_NOTIFICATION_VAL"
2205 };
2206 #endif
2207
2208 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2209 struct ipw2100_rx_packet *packet)
2210 {
2211 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2212 if (!packet->skb)
2213 return -ENOMEM;
2214
2215 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2216 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2217 sizeof(struct ipw2100_rx),
2218 PCI_DMA_FROMDEVICE);
2219 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2220 * dma_addr */
2221
2222 return 0;
2223 }
2224
2225 #define SEARCH_ERROR 0xffffffff
2226 #define SEARCH_FAIL 0xfffffffe
2227 #define SEARCH_SUCCESS 0xfffffff0
2228 #define SEARCH_DISCARD 0
2229 #define SEARCH_SNAPSHOT 1
2230
2231 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2232 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2233 {
2234 int i;
2235 if (!priv->snapshot[0])
2236 return;
2237 for (i = 0; i < 0x30; i++)
2238 kfree(priv->snapshot[i]);
2239 priv->snapshot[0] = NULL;
2240 }
2241
2242 #ifdef IPW2100_DEBUG_C3
2243 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2244 {
2245 int i;
2246 if (priv->snapshot[0])
2247 return 1;
2248 for (i = 0; i < 0x30; i++) {
2249 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2250 if (!priv->snapshot[i]) {
2251 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2252 "buffer %d\n", priv->net_dev->name, i);
2253 while (i > 0)
2254 kfree(priv->snapshot[--i]);
2255 priv->snapshot[0] = NULL;
2256 return 0;
2257 }
2258 }
2259
2260 return 1;
2261 }
2262
2263 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2264 size_t len, int mode)
2265 {
2266 u32 i, j;
2267 u32 tmp;
2268 u8 *s, *d;
2269 u32 ret;
2270
2271 s = in_buf;
2272 if (mode == SEARCH_SNAPSHOT) {
2273 if (!ipw2100_snapshot_alloc(priv))
2274 mode = SEARCH_DISCARD;
2275 }
2276
2277 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2278 read_nic_dword(priv->net_dev, i, &tmp);
2279 if (mode == SEARCH_SNAPSHOT)
2280 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2281 if (ret == SEARCH_FAIL) {
2282 d = (u8 *) & tmp;
2283 for (j = 0; j < 4; j++) {
2284 if (*s != *d) {
2285 s = in_buf;
2286 continue;
2287 }
2288
2289 s++;
2290 d++;
2291
2292 if ((s - in_buf) == len)
2293 ret = (i + j) - len + 1;
2294 }
2295 } else if (mode == SEARCH_DISCARD)
2296 return ret;
2297 }
2298
2299 return ret;
2300 }
2301 #endif
2302
2303 /*
2304 *
2305 * 0) Disconnect the SKB from the firmware (just unmap)
2306 * 1) Pack the ETH header into the SKB
2307 * 2) Pass the SKB to the network stack
2308 *
2309 * When packet is provided by the firmware, it contains the following:
2310 *
2311 * . ieee80211_hdr
2312 * . ieee80211_snap_hdr
2313 *
2314 * The size of the constructed ethernet
2315 *
2316 */
2317 #ifdef IPW2100_RX_DEBUG
2318 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2319 #endif
2320
2321 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2322 {
2323 #ifdef IPW2100_DEBUG_C3
2324 struct ipw2100_status *status = &priv->status_queue.drv[i];
2325 u32 match, reg;
2326 int j;
2327 #endif
2328 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2329 int limit;
2330 #endif
2331
2332 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2333 i * sizeof(struct ipw2100_status));
2334
2335 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2337 limit = acpi_get_cstate_limit();
2338 if (limit > 2) {
2339 priv->cstate_limit = limit;
2340 acpi_set_cstate_limit(2);
2341 priv->config |= CFG_C3_DISABLED;
2342 }
2343 #endif
2344
2345 #ifdef IPW2100_DEBUG_C3
2346 /* Halt the fimrware so we can get a good image */
2347 write_register(priv->net_dev, IPW_REG_RESET_REG,
2348 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2349 j = 5;
2350 do {
2351 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2352 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2353
2354 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2355 break;
2356 } while (j--);
2357
2358 match = ipw2100_match_buf(priv, (u8 *) status,
2359 sizeof(struct ipw2100_status),
2360 SEARCH_SNAPSHOT);
2361 if (match < SEARCH_SUCCESS)
2362 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2363 "offset 0x%06X, length %d:\n",
2364 priv->net_dev->name, match,
2365 sizeof(struct ipw2100_status));
2366 else
2367 IPW_DEBUG_INFO("%s: No DMA status match in "
2368 "Firmware.\n", priv->net_dev->name);
2369
2370 printk_buf((u8 *) priv->status_queue.drv,
2371 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2372 #endif
2373
2374 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2375 priv->ieee->stats.rx_errors++;
2376 schedule_reset(priv);
2377 }
2378
2379 static void isr_rx(struct ipw2100_priv *priv, int i,
2380 struct ieee80211_rx_stats *stats)
2381 {
2382 struct ipw2100_status *status = &priv->status_queue.drv[i];
2383 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2384
2385 IPW_DEBUG_RX("Handler...\n");
2386
2387 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2388 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2389 " Dropping.\n",
2390 priv->net_dev->name,
2391 status->frame_size, skb_tailroom(packet->skb));
2392 priv->ieee->stats.rx_errors++;
2393 return;
2394 }
2395
2396 if (unlikely(!netif_running(priv->net_dev))) {
2397 priv->ieee->stats.rx_errors++;
2398 priv->wstats.discard.misc++;
2399 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2400 return;
2401 }
2402
2403 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404 !(priv->status & STATUS_ASSOCIATED))) {
2405 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406 priv->wstats.discard.misc++;
2407 return;
2408 }
2409
2410 pci_unmap_single(priv->pci_dev,
2411 packet->dma_addr,
2412 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2413
2414 skb_put(packet->skb, status->frame_size);
2415
2416 #ifdef IPW2100_RX_DEBUG
2417 /* Make a copy of the frame so we can dump it to the logs if
2418 * ieee80211_rx fails */
2419 skb_copy_from_linear_data(packet->skb, packet_data,
2420 min_t(u32, status->frame_size,
2421 IPW_RX_NIC_BUFFER_LENGTH));
2422 #endif
2423
2424 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2425 #ifdef IPW2100_RX_DEBUG
2426 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2427 priv->net_dev->name);
2428 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2429 #endif
2430 priv->ieee->stats.rx_errors++;
2431
2432 /* ieee80211_rx failed, so it didn't free the SKB */
2433 dev_kfree_skb_any(packet->skb);
2434 packet->skb = NULL;
2435 }
2436
2437 /* We need to allocate a new SKB and attach it to the RDB. */
2438 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2439 printk(KERN_WARNING DRV_NAME ": "
2440 "%s: Unable to allocate SKB onto RBD ring - disabling "
2441 "adapter.\n", priv->net_dev->name);
2442 /* TODO: schedule adapter shutdown */
2443 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2444 }
2445
2446 /* Update the RDB entry */
2447 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2448 }
2449
2450 #ifdef CONFIG_IPW2100_MONITOR
2451
2452 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2453 struct ieee80211_rx_stats *stats)
2454 {
2455 struct ipw2100_status *status = &priv->status_queue.drv[i];
2456 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2457
2458 /* Magic struct that slots into the radiotap header -- no reason
2459 * to build this manually element by element, we can write it much
2460 * more efficiently than we can parse it. ORDER MATTERS HERE */
2461 struct ipw_rt_hdr {
2462 struct ieee80211_radiotap_header rt_hdr;
2463 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2464 } *ipw_rt;
2465
2466 IPW_DEBUG_RX("Handler...\n");
2467
2468 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2469 sizeof(struct ipw_rt_hdr))) {
2470 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2471 " Dropping.\n",
2472 priv->net_dev->name,
2473 status->frame_size,
2474 skb_tailroom(packet->skb));
2475 priv->ieee->stats.rx_errors++;
2476 return;
2477 }
2478
2479 if (unlikely(!netif_running(priv->net_dev))) {
2480 priv->ieee->stats.rx_errors++;
2481 priv->wstats.discard.misc++;
2482 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2483 return;
2484 }
2485
2486 if (unlikely(priv->config & CFG_CRC_CHECK &&
2487 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2488 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2489 priv->ieee->stats.rx_errors++;
2490 return;
2491 }
2492
2493 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2494 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2495 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2496 packet->skb->data, status->frame_size);
2497
2498 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2499
2500 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2501 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2502 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2503
2504 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2505
2506 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2507
2508 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2509
2510 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2511 priv->ieee->stats.rx_errors++;
2512
2513 /* ieee80211_rx failed, so it didn't free the SKB */
2514 dev_kfree_skb_any(packet->skb);
2515 packet->skb = NULL;
2516 }
2517
2518 /* We need to allocate a new SKB and attach it to the RDB. */
2519 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2520 IPW_DEBUG_WARNING(
2521 "%s: Unable to allocate SKB onto RBD ring - disabling "
2522 "adapter.\n", priv->net_dev->name);
2523 /* TODO: schedule adapter shutdown */
2524 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2525 }
2526
2527 /* Update the RDB entry */
2528 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2529 }
2530
2531 #endif
2532
2533 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2534 {
2535 struct ipw2100_status *status = &priv->status_queue.drv[i];
2536 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2537 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2538
2539 switch (frame_type) {
2540 case COMMAND_STATUS_VAL:
2541 return (status->frame_size != sizeof(u->rx_data.command));
2542 case STATUS_CHANGE_VAL:
2543 return (status->frame_size != sizeof(u->rx_data.status));
2544 case HOST_NOTIFICATION_VAL:
2545 return (status->frame_size < sizeof(u->rx_data.notification));
2546 case P80211_DATA_VAL:
2547 case P8023_DATA_VAL:
2548 #ifdef CONFIG_IPW2100_MONITOR
2549 return 0;
2550 #else
2551 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2552 case IEEE80211_FTYPE_MGMT:
2553 case IEEE80211_FTYPE_CTL:
2554 return 0;
2555 case IEEE80211_FTYPE_DATA:
2556 return (status->frame_size >
2557 IPW_MAX_802_11_PAYLOAD_LENGTH);
2558 }
2559 #endif
2560 }
2561
2562 return 1;
2563 }
2564
2565 /*
2566 * ipw2100 interrupts are disabled at this point, and the ISR
2567 * is the only code that calls this method. So, we do not need
2568 * to play with any locks.
2569 *
2570 * RX Queue works as follows:
2571 *
2572 * Read index - firmware places packet in entry identified by the
2573 * Read index and advances Read index. In this manner,
2574 * Read index will always point to the next packet to
2575 * be filled--but not yet valid.
2576 *
2577 * Write index - driver fills this entry with an unused RBD entry.
2578 * This entry has not filled by the firmware yet.
2579 *
2580 * In between the W and R indexes are the RBDs that have been received
2581 * but not yet processed.
2582 *
2583 * The process of handling packets will start at WRITE + 1 and advance
2584 * until it reaches the READ index.
2585 *
2586 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2587 *
2588 */
2589 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2590 {
2591 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2592 struct ipw2100_status_queue *sq = &priv->status_queue;
2593 struct ipw2100_rx_packet *packet;
2594 u16 frame_type;
2595 u32 r, w, i, s;
2596 struct ipw2100_rx *u;
2597 struct ieee80211_rx_stats stats = {
2598 .mac_time = jiffies,
2599 };
2600
2601 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2602 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2603
2604 if (r >= rxq->entries) {
2605 IPW_DEBUG_RX("exit - bad read index\n");
2606 return;
2607 }
2608
2609 i = (rxq->next + 1) % rxq->entries;
2610 s = i;
2611 while (i != r) {
2612 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2613 r, rxq->next, i); */
2614
2615 packet = &priv->rx_buffers[i];
2616
2617 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2618 * the correct values */
2619 pci_dma_sync_single_for_cpu(priv->pci_dev,
2620 sq->nic +
2621 sizeof(struct ipw2100_status) * i,
2622 sizeof(struct ipw2100_status),
2623 PCI_DMA_FROMDEVICE);
2624
2625 /* Sync the DMA for the RX buffer so CPU is sure to get
2626 * the correct values */
2627 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2628 sizeof(struct ipw2100_rx),
2629 PCI_DMA_FROMDEVICE);
2630
2631 if (unlikely(ipw2100_corruption_check(priv, i))) {
2632 ipw2100_corruption_detected(priv, i);
2633 goto increment;
2634 }
2635
2636 u = packet->rxp;
2637 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2638 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2639 stats.len = sq->drv[i].frame_size;
2640
2641 stats.mask = 0;
2642 if (stats.rssi != 0)
2643 stats.mask |= IEEE80211_STATMASK_RSSI;
2644 stats.freq = IEEE80211_24GHZ_BAND;
2645
2646 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2647 priv->net_dev->name, frame_types[frame_type],
2648 stats.len);
2649
2650 switch (frame_type) {
2651 case COMMAND_STATUS_VAL:
2652 /* Reset Rx watchdog */
2653 isr_rx_complete_command(priv, &u->rx_data.command);
2654 break;
2655
2656 case STATUS_CHANGE_VAL:
2657 isr_status_change(priv, u->rx_data.status);
2658 break;
2659
2660 case P80211_DATA_VAL:
2661 case P8023_DATA_VAL:
2662 #ifdef CONFIG_IPW2100_MONITOR
2663 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2664 isr_rx_monitor(priv, i, &stats);
2665 break;
2666 }
2667 #endif
2668 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2669 break;
2670 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2671 case IEEE80211_FTYPE_MGMT:
2672 ieee80211_rx_mgt(priv->ieee,
2673 &u->rx_data.header, &stats);
2674 break;
2675
2676 case IEEE80211_FTYPE_CTL:
2677 break;
2678
2679 case IEEE80211_FTYPE_DATA:
2680 isr_rx(priv, i, &stats);
2681 break;
2682
2683 }
2684 break;
2685 }
2686
2687 increment:
2688 /* clear status field associated with this RBD */
2689 rxq->drv[i].status.info.field = 0;
2690
2691 i = (i + 1) % rxq->entries;
2692 }
2693
2694 if (i != s) {
2695 /* backtrack one entry, wrapping to end if at 0 */
2696 rxq->next = (i ? i : rxq->entries) - 1;
2697
2698 write_register(priv->net_dev,
2699 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2700 }
2701 }
2702
2703 /*
2704 * __ipw2100_tx_process
2705 *
2706 * This routine will determine whether the next packet on
2707 * the fw_pend_list has been processed by the firmware yet.
2708 *
2709 * If not, then it does nothing and returns.
2710 *
2711 * If so, then it removes the item from the fw_pend_list, frees
2712 * any associated storage, and places the item back on the
2713 * free list of its source (either msg_free_list or tx_free_list)
2714 *
2715 * TX Queue works as follows:
2716 *
2717 * Read index - points to the next TBD that the firmware will
2718 * process. The firmware will read the data, and once
2719 * done processing, it will advance the Read index.
2720 *
2721 * Write index - driver fills this entry with an constructed TBD
2722 * entry. The Write index is not advanced until the
2723 * packet has been configured.
2724 *
2725 * In between the W and R indexes are the TBDs that have NOT been
2726 * processed. Lagging behind the R index are packets that have
2727 * been processed but have not been freed by the driver.
2728 *
2729 * In order to free old storage, an internal index will be maintained
2730 * that points to the next packet to be freed. When all used
2731 * packets have been freed, the oldest index will be the same as the
2732 * firmware's read index.
2733 *
2734 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2735 *
2736 * Because the TBD structure can not contain arbitrary data, the
2737 * driver must keep an internal queue of cached allocations such that
2738 * it can put that data back into the tx_free_list and msg_free_list
2739 * for use by future command and data packets.
2740 *
2741 */
2742 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2743 {
2744 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2745 struct ipw2100_bd *tbd;
2746 struct list_head *element;
2747 struct ipw2100_tx_packet *packet;
2748 int descriptors_used;
2749 int e, i;
2750 u32 r, w, frag_num = 0;
2751
2752 if (list_empty(&priv->fw_pend_list))
2753 return 0;
2754
2755 element = priv->fw_pend_list.next;
2756
2757 packet = list_entry(element, struct ipw2100_tx_packet, list);
2758 tbd = &txq->drv[packet->index];
2759
2760 /* Determine how many TBD entries must be finished... */
2761 switch (packet->type) {
2762 case COMMAND:
2763 /* COMMAND uses only one slot; don't advance */
2764 descriptors_used = 1;
2765 e = txq->oldest;
2766 break;
2767
2768 case DATA:
2769 /* DATA uses two slots; advance and loop position. */
2770 descriptors_used = tbd->num_fragments;
2771 frag_num = tbd->num_fragments - 1;
2772 e = txq->oldest + frag_num;
2773 e %= txq->entries;
2774 break;
2775
2776 default:
2777 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2778 priv->net_dev->name);
2779 return 0;
2780 }
2781
2782 /* if the last TBD is not done by NIC yet, then packet is
2783 * not ready to be released.
2784 *
2785 */
2786 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2787 &r);
2788 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2789 &w);
2790 if (w != txq->next)
2791 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2792 priv->net_dev->name);
2793
2794 /*
2795 * txq->next is the index of the last packet written txq->oldest is
2796 * the index of the r is the index of the next packet to be read by
2797 * firmware
2798 */
2799
2800 /*
2801 * Quick graphic to help you visualize the following
2802 * if / else statement
2803 *
2804 * ===>| s---->|===============
2805 * e>|
2806 * | a | b | c | d | e | f | g | h | i | j | k | l
2807 * r---->|
2808 * w
2809 *
2810 * w - updated by driver
2811 * r - updated by firmware
2812 * s - start of oldest BD entry (txq->oldest)
2813 * e - end of oldest BD entry
2814 *
2815 */
2816 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2817 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2818 return 0;
2819 }
2820
2821 list_del(element);
2822 DEC_STAT(&priv->fw_pend_stat);
2823
2824 #ifdef CONFIG_IPW2100_DEBUG
2825 {
2826 int i = txq->oldest;
2827 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2828 &txq->drv[i],
2829 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2830 txq->drv[i].host_addr, txq->drv[i].buf_length);
2831
2832 if (packet->type == DATA) {
2833 i = (i + 1) % txq->entries;
2834
2835 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2836 &txq->drv[i],
2837 (u32) (txq->nic + i *
2838 sizeof(struct ipw2100_bd)),
2839 (u32) txq->drv[i].host_addr,
2840 txq->drv[i].buf_length);
2841 }
2842 }
2843 #endif
2844
2845 switch (packet->type) {
2846 case DATA:
2847 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2848 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2849 "Expecting DATA TBD but pulled "
2850 "something else: ids %d=%d.\n",
2851 priv->net_dev->name, txq->oldest, packet->index);
2852
2853 /* DATA packet; we have to unmap and free the SKB */
2854 for (i = 0; i < frag_num; i++) {
2855 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2856
2857 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2858 (packet->index + 1 + i) % txq->entries,
2859 tbd->host_addr, tbd->buf_length);
2860
2861 pci_unmap_single(priv->pci_dev,
2862 tbd->host_addr,
2863 tbd->buf_length, PCI_DMA_TODEVICE);
2864 }
2865
2866 ieee80211_txb_free(packet->info.d_struct.txb);
2867 packet->info.d_struct.txb = NULL;
2868
2869 list_add_tail(element, &priv->tx_free_list);
2870 INC_STAT(&priv->tx_free_stat);
2871
2872 /* We have a free slot in the Tx queue, so wake up the
2873 * transmit layer if it is stopped. */
2874 if (priv->status & STATUS_ASSOCIATED)
2875 netif_wake_queue(priv->net_dev);
2876
2877 /* A packet was processed by the hardware, so update the
2878 * watchdog */
2879 priv->net_dev->trans_start = jiffies;
2880
2881 break;
2882
2883 case COMMAND:
2884 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2885 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2886 "Expecting COMMAND TBD but pulled "
2887 "something else: ids %d=%d.\n",
2888 priv->net_dev->name, txq->oldest, packet->index);
2889
2890 #ifdef CONFIG_IPW2100_DEBUG
2891 if (packet->info.c_struct.cmd->host_command_reg <
2892 ARRAY_SIZE(command_types))
2893 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2894 command_types[packet->info.c_struct.cmd->
2895 host_command_reg],
2896 packet->info.c_struct.cmd->
2897 host_command_reg,
2898 packet->info.c_struct.cmd->cmd_status_reg);
2899 #endif
2900
2901 list_add_tail(element, &priv->msg_free_list);
2902 INC_STAT(&priv->msg_free_stat);
2903 break;
2904 }
2905
2906 /* advance oldest used TBD pointer to start of next entry */
2907 txq->oldest = (e + 1) % txq->entries;
2908 /* increase available TBDs number */
2909 txq->available += descriptors_used;
2910 SET_STAT(&priv->txq_stat, txq->available);
2911
2912 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2913 jiffies - packet->jiffy_start);
2914
2915 return (!list_empty(&priv->fw_pend_list));
2916 }
2917
2918 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2919 {
2920 int i = 0;
2921
2922 while (__ipw2100_tx_process(priv) && i < 200)
2923 i++;
2924
2925 if (i == 200) {
2926 printk(KERN_WARNING DRV_NAME ": "
2927 "%s: Driver is running slow (%d iters).\n",
2928 priv->net_dev->name, i);
2929 }
2930 }
2931
2932 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2933 {
2934 struct list_head *element;
2935 struct ipw2100_tx_packet *packet;
2936 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2937 struct ipw2100_bd *tbd;
2938 int next = txq->next;
2939
2940 while (!list_empty(&priv->msg_pend_list)) {
2941 /* if there isn't enough space in TBD queue, then
2942 * don't stuff a new one in.
2943 * NOTE: 3 are needed as a command will take one,
2944 * and there is a minimum of 2 that must be
2945 * maintained between the r and w indexes
2946 */
2947 if (txq->available <= 3) {
2948 IPW_DEBUG_TX("no room in tx_queue\n");
2949 break;
2950 }
2951
2952 element = priv->msg_pend_list.next;
2953 list_del(element);
2954 DEC_STAT(&priv->msg_pend_stat);
2955
2956 packet = list_entry(element, struct ipw2100_tx_packet, list);
2957
2958 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2959 &txq->drv[txq->next],
2960 (void *)(txq->nic + txq->next *
2961 sizeof(struct ipw2100_bd)));
2962
2963 packet->index = txq->next;
2964
2965 tbd = &txq->drv[txq->next];
2966
2967 /* initialize TBD */
2968 tbd->host_addr = packet->info.c_struct.cmd_phys;
2969 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2970 /* not marking number of fragments causes problems
2971 * with f/w debug version */
2972 tbd->num_fragments = 1;
2973 tbd->status.info.field =
2974 IPW_BD_STATUS_TX_FRAME_COMMAND |
2975 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2976
2977 /* update TBD queue counters */
2978 txq->next++;
2979 txq->next %= txq->entries;
2980 txq->available--;
2981 DEC_STAT(&priv->txq_stat);
2982
2983 list_add_tail(element, &priv->fw_pend_list);
2984 INC_STAT(&priv->fw_pend_stat);
2985 }
2986
2987 if (txq->next != next) {
2988 /* kick off the DMA by notifying firmware the
2989 * write index has moved; make sure TBD stores are sync'd */
2990 wmb();
2991 write_register(priv->net_dev,
2992 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2993 txq->next);
2994 }
2995 }
2996
2997 /*
2998 * ipw2100_tx_send_data
2999 *
3000 */
3001 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3002 {
3003 struct list_head *element;
3004 struct ipw2100_tx_packet *packet;
3005 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3006 struct ipw2100_bd *tbd;
3007 int next = txq->next;
3008 int i = 0;
3009 struct ipw2100_data_header *ipw_hdr;
3010 struct ieee80211_hdr_3addr *hdr;
3011
3012 while (!list_empty(&priv->tx_pend_list)) {
3013 /* if there isn't enough space in TBD queue, then
3014 * don't stuff a new one in.
3015 * NOTE: 4 are needed as a data will take two,
3016 * and there is a minimum of 2 that must be
3017 * maintained between the r and w indexes
3018 */
3019 element = priv->tx_pend_list.next;
3020 packet = list_entry(element, struct ipw2100_tx_packet, list);
3021
3022 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3023 IPW_MAX_BDS)) {
3024 /* TODO: Support merging buffers if more than
3025 * IPW_MAX_BDS are used */
3026 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3027 "Increase fragmentation level.\n",
3028 priv->net_dev->name);
3029 }
3030
3031 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3032 IPW_DEBUG_TX("no room in tx_queue\n");
3033 break;
3034 }
3035
3036 list_del(element);
3037 DEC_STAT(&priv->tx_pend_stat);
3038
3039 tbd = &txq->drv[txq->next];
3040
3041 packet->index = txq->next;
3042
3043 ipw_hdr = packet->info.d_struct.data;
3044 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3045 fragments[0]->data;
3046
3047 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3048 /* To DS: Addr1 = BSSID, Addr2 = SA,
3049 Addr3 = DA */
3050 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3051 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3052 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3053 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3054 Addr3 = BSSID */
3055 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3056 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3057 }
3058
3059 ipw_hdr->host_command_reg = SEND;
3060 ipw_hdr->host_command_reg1 = 0;
3061
3062 /* For now we only support host based encryption */
3063 ipw_hdr->needs_encryption = 0;
3064 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3065 if (packet->info.d_struct.txb->nr_frags > 1)
3066 ipw_hdr->fragment_size =
3067 packet->info.d_struct.txb->frag_size -
3068 IEEE80211_3ADDR_LEN;
3069 else
3070 ipw_hdr->fragment_size = 0;
3071
3072 tbd->host_addr = packet->info.d_struct.data_phys;
3073 tbd->buf_length = sizeof(struct ipw2100_data_header);
3074 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3075 tbd->status.info.field =
3076 IPW_BD_STATUS_TX_FRAME_802_3 |
3077 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3078 txq->next++;
3079 txq->next %= txq->entries;
3080
3081 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3082 packet->index, tbd->host_addr, tbd->buf_length);
3083 #ifdef CONFIG_IPW2100_DEBUG
3084 if (packet->info.d_struct.txb->nr_frags > 1)
3085 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3086 packet->info.d_struct.txb->nr_frags);
3087 #endif
3088
3089 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3090 tbd = &txq->drv[txq->next];
3091 if (i == packet->info.d_struct.txb->nr_frags - 1)
3092 tbd->status.info.field =
3093 IPW_BD_STATUS_TX_FRAME_802_3 |
3094 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3095 else
3096 tbd->status.info.field =
3097 IPW_BD_STATUS_TX_FRAME_802_3 |
3098 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3099
3100 tbd->buf_length = packet->info.d_struct.txb->
3101 fragments[i]->len - IEEE80211_3ADDR_LEN;
3102
3103 tbd->host_addr = pci_map_single(priv->pci_dev,
3104 packet->info.d_struct.
3105 txb->fragments[i]->
3106 data +
3107 IEEE80211_3ADDR_LEN,
3108 tbd->buf_length,
3109 PCI_DMA_TODEVICE);
3110
3111 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3112 txq->next, tbd->host_addr,
3113 tbd->buf_length);
3114
3115 pci_dma_sync_single_for_device(priv->pci_dev,
3116 tbd->host_addr,
3117 tbd->buf_length,
3118 PCI_DMA_TODEVICE);
3119
3120 txq->next++;
3121 txq->next %= txq->entries;
3122 }
3123
3124 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3125 SET_STAT(&priv->txq_stat, txq->available);
3126
3127 list_add_tail(element, &priv->fw_pend_list);
3128 INC_STAT(&priv->fw_pend_stat);
3129 }
3130
3131 if (txq->next != next) {
3132 /* kick off the DMA by notifying firmware the
3133 * write index has moved; make sure TBD stores are sync'd */
3134 write_register(priv->net_dev,
3135 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3136 txq->next);
3137 }
3138 return;
3139 }
3140
3141 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3142 {
3143 struct net_device *dev = priv->net_dev;
3144 unsigned long flags;
3145 u32 inta, tmp;
3146
3147 spin_lock_irqsave(&priv->low_lock, flags);
3148 ipw2100_disable_interrupts(priv);
3149
3150 read_register(dev, IPW_REG_INTA, &inta);
3151
3152 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3153 (unsigned long)inta & IPW_INTERRUPT_MASK);
3154
3155 priv->in_isr++;
3156 priv->interrupts++;
3157
3158 /* We do not loop and keep polling for more interrupts as this
3159 * is frowned upon and doesn't play nicely with other potentially
3160 * chained IRQs */
3161 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3162 (unsigned long)inta & IPW_INTERRUPT_MASK);
3163
3164 if (inta & IPW2100_INTA_FATAL_ERROR) {
3165 printk(KERN_WARNING DRV_NAME
3166 ": Fatal interrupt. Scheduling firmware restart.\n");
3167 priv->inta_other++;
3168 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3169
3170 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3171 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3172 priv->net_dev->name, priv->fatal_error);
3173
3174 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3175 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3176 priv->net_dev->name, tmp);
3177
3178 /* Wake up any sleeping jobs */
3179 schedule_reset(priv);
3180 }
3181
3182 if (inta & IPW2100_INTA_PARITY_ERROR) {
3183 printk(KERN_ERR DRV_NAME
3184 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3185 priv->inta_other++;
3186 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3187 }
3188
3189 if (inta & IPW2100_INTA_RX_TRANSFER) {
3190 IPW_DEBUG_ISR("RX interrupt\n");
3191
3192 priv->rx_interrupts++;
3193
3194 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3195
3196 __ipw2100_rx_process(priv);
3197 __ipw2100_tx_complete(priv);
3198 }
3199
3200 if (inta & IPW2100_INTA_TX_TRANSFER) {
3201 IPW_DEBUG_ISR("TX interrupt\n");
3202
3203 priv->tx_interrupts++;
3204
3205 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3206
3207 __ipw2100_tx_complete(priv);
3208 ipw2100_tx_send_commands(priv);
3209 ipw2100_tx_send_data(priv);
3210 }
3211
3212 if (inta & IPW2100_INTA_TX_COMPLETE) {
3213 IPW_DEBUG_ISR("TX complete\n");
3214 priv->inta_other++;
3215 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3216
3217 __ipw2100_tx_complete(priv);
3218 }
3219
3220 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3221 /* ipw2100_handle_event(dev); */
3222 priv->inta_other++;
3223 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3224 }
3225
3226 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3227 IPW_DEBUG_ISR("FW init done interrupt\n");
3228 priv->inta_other++;
3229
3230 read_register(dev, IPW_REG_INTA, &tmp);
3231 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3232 IPW2100_INTA_PARITY_ERROR)) {
3233 write_register(dev, IPW_REG_INTA,
3234 IPW2100_INTA_FATAL_ERROR |
3235 IPW2100_INTA_PARITY_ERROR);
3236 }
3237
3238 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3239 }
3240
3241 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3242 IPW_DEBUG_ISR("Status change interrupt\n");
3243 priv->inta_other++;
3244 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3245 }
3246
3247 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3248 IPW_DEBUG_ISR("slave host mode interrupt\n");
3249 priv->inta_other++;
3250 write_register(dev, IPW_REG_INTA,
3251 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3252 }
3253
3254 priv->in_isr--;
3255 ipw2100_enable_interrupts(priv);
3256
3257 spin_unlock_irqrestore(&priv->low_lock, flags);
3258
3259 IPW_DEBUG_ISR("exit\n");
3260 }
3261
3262 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3263 {
3264 struct ipw2100_priv *priv = data;
3265 u32 inta, inta_mask;
3266
3267 if (!data)
3268 return IRQ_NONE;
3269
3270 spin_lock(&priv->low_lock);
3271
3272 /* We check to see if we should be ignoring interrupts before
3273 * we touch the hardware. During ucode load if we try and handle
3274 * an interrupt we can cause keyboard problems as well as cause
3275 * the ucode to fail to initialize */
3276 if (!(priv->status & STATUS_INT_ENABLED)) {
3277 /* Shared IRQ */
3278 goto none;
3279 }
3280
3281 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3282 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3283
3284 if (inta == 0xFFFFFFFF) {
3285 /* Hardware disappeared */
3286 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3287 goto none;
3288 }
3289
3290 inta &= IPW_INTERRUPT_MASK;
3291
3292 if (!(inta & inta_mask)) {
3293 /* Shared interrupt */
3294 goto none;
3295 }
3296
3297 /* We disable the hardware interrupt here just to prevent unneeded
3298 * calls to be made. We disable this again within the actual
3299 * work tasklet, so if another part of the code re-enables the
3300 * interrupt, that is fine */
3301 ipw2100_disable_interrupts(priv);
3302
3303 tasklet_schedule(&priv->irq_tasklet);
3304 spin_unlock(&priv->low_lock);
3305
3306 return IRQ_HANDLED;
3307 none:
3308 spin_unlock(&priv->low_lock);
3309 return IRQ_NONE;
3310 }
3311
3312 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3313 int pri)
3314 {
3315 struct ipw2100_priv *priv = ieee80211_priv(dev);
3316 struct list_head *element;
3317 struct ipw2100_tx_packet *packet;
3318 unsigned long flags;
3319
3320 spin_lock_irqsave(&priv->low_lock, flags);
3321
3322 if (!(priv->status & STATUS_ASSOCIATED)) {
3323 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3324 priv->ieee->stats.tx_carrier_errors++;
3325 netif_stop_queue(dev);
3326 goto fail_unlock;
3327 }
3328
3329 if (list_empty(&priv->tx_free_list))
3330 goto fail_unlock;
3331
3332 element = priv->tx_free_list.next;
3333 packet = list_entry(element, struct ipw2100_tx_packet, list);
3334
3335 packet->info.d_struct.txb = txb;
3336
3337 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3338 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3339
3340 packet->jiffy_start = jiffies;
3341
3342 list_del(element);
3343 DEC_STAT(&priv->tx_free_stat);
3344
3345 list_add_tail(element, &priv->tx_pend_list);
3346 INC_STAT(&priv->tx_pend_stat);
3347
3348 ipw2100_tx_send_data(priv);
3349
3350 spin_unlock_irqrestore(&priv->low_lock, flags);
3351 return 0;
3352
3353 fail_unlock:
3354 netif_stop_queue(dev);
3355 spin_unlock_irqrestore(&priv->low_lock, flags);
3356 return 1;
3357 }
3358
3359 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3360 {
3361 int i, j, err = -EINVAL;
3362 void *v;
3363 dma_addr_t p;
3364
3365 priv->msg_buffers =
3366 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3367 sizeof(struct
3368 ipw2100_tx_packet),
3369 GFP_KERNEL);
3370 if (!priv->msg_buffers) {
3371 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3372 "buffers.\n", priv->net_dev->name);
3373 return -ENOMEM;
3374 }
3375
3376 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3377 v = pci_alloc_consistent(priv->pci_dev,
3378 sizeof(struct ipw2100_cmd_header), &p);
3379 if (!v) {
3380 printk(KERN_ERR DRV_NAME ": "
3381 "%s: PCI alloc failed for msg "
3382 "buffers.\n", priv->net_dev->name);
3383 err = -ENOMEM;
3384 break;
3385 }
3386
3387 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3388
3389 priv->msg_buffers[i].type = COMMAND;
3390 priv->msg_buffers[i].info.c_struct.cmd =
3391 (struct ipw2100_cmd_header *)v;
3392 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3393 }
3394
3395 if (i == IPW_COMMAND_POOL_SIZE)
3396 return 0;
3397
3398 for (j = 0; j < i; j++) {
3399 pci_free_consistent(priv->pci_dev,
3400 sizeof(struct ipw2100_cmd_header),
3401 priv->msg_buffers[j].info.c_struct.cmd,
3402 priv->msg_buffers[j].info.c_struct.
3403 cmd_phys);
3404 }
3405
3406 kfree(priv->msg_buffers);
3407 priv->msg_buffers = NULL;
3408
3409 return err;
3410 }
3411
3412 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3413 {
3414 int i;
3415
3416 INIT_LIST_HEAD(&priv->msg_free_list);
3417 INIT_LIST_HEAD(&priv->msg_pend_list);
3418
3419 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3420 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3421 SET_STAT(&priv->msg_free_stat, i);
3422
3423 return 0;
3424 }
3425
3426 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3427 {
3428 int i;
3429
3430 if (!priv->msg_buffers)
3431 return;
3432
3433 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3434 pci_free_consistent(priv->pci_dev,
3435 sizeof(struct ipw2100_cmd_header),
3436 priv->msg_buffers[i].info.c_struct.cmd,
3437 priv->msg_buffers[i].info.c_struct.
3438 cmd_phys);
3439 }
3440
3441 kfree(priv->msg_buffers);
3442 priv->msg_buffers = NULL;
3443 }
3444
3445 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3446 char *buf)
3447 {
3448 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3449 char *out = buf;
3450 int i, j;
3451 u32 val;
3452
3453 for (i = 0; i < 16; i++) {
3454 out += sprintf(out, "[%08X] ", i * 16);
3455 for (j = 0; j < 16; j += 4) {
3456 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3457 out += sprintf(out, "%08X ", val);
3458 }
3459 out += sprintf(out, "\n");
3460 }
3461
3462 return out - buf;
3463 }
3464
3465 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3466
3467 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3468 char *buf)
3469 {
3470 struct ipw2100_priv *p = d->driver_data;
3471 return sprintf(buf, "0x%08x\n", (int)p->config);
3472 }
3473
3474 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3475
3476 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3477 char *buf)
3478 {
3479 struct ipw2100_priv *p = d->driver_data;
3480 return sprintf(buf, "0x%08x\n", (int)p->status);
3481 }
3482
3483 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3484
3485 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3486 char *buf)
3487 {
3488 struct ipw2100_priv *p = d->driver_data;
3489 return sprintf(buf, "0x%08x\n", (int)p->capability);
3490 }
3491
3492 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3493
3494 #define IPW2100_REG(x) { IPW_ ##x, #x }
3495 static const struct {
3496 u32 addr;
3497 const char *name;
3498 } hw_data[] = {
3499 IPW2100_REG(REG_GP_CNTRL),
3500 IPW2100_REG(REG_GPIO),
3501 IPW2100_REG(REG_INTA),
3502 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3503 #define IPW2100_NIC(x, s) { x, #x, s }
3504 static const struct {
3505 u32 addr;
3506 const char *name;
3507 size_t size;
3508 } nic_data[] = {
3509 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3510 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3511 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3512 static const struct {
3513 u8 index;
3514 const char *name;
3515 const char *desc;
3516 } ord_data[] = {
3517 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3518 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3519 "successful Host Tx's (MSDU)"),
3520 IPW2100_ORD(STAT_TX_DIR_DATA,
3521 "successful Directed Tx's (MSDU)"),
3522 IPW2100_ORD(STAT_TX_DIR_DATA1,
3523 "successful Directed Tx's (MSDU) @ 1MB"),
3524 IPW2100_ORD(STAT_TX_DIR_DATA2,
3525 "successful Directed Tx's (MSDU) @ 2MB"),
3526 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3527 "successful Directed Tx's (MSDU) @ 5_5MB"),
3528 IPW2100_ORD(STAT_TX_DIR_DATA11,
3529 "successful Directed Tx's (MSDU) @ 11MB"),
3530 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3531 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3532 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3533 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3534 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3535 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3536 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3537 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3538 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3539 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3540 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3541 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3542 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3543 IPW2100_ORD(STAT_TX_ASSN_RESP,
3544 "successful Association response Tx's"),
3545 IPW2100_ORD(STAT_TX_REASSN,
3546 "successful Reassociation Tx's"),
3547 IPW2100_ORD(STAT_TX_REASSN_RESP,
3548 "successful Reassociation response Tx's"),
3549 IPW2100_ORD(STAT_TX_PROBE,
3550 "probes successfully transmitted"),
3551 IPW2100_ORD(STAT_TX_PROBE_RESP,
3552 "probe responses successfully transmitted"),
3553 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3554 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3555 IPW2100_ORD(STAT_TX_DISASSN,
3556 "successful Disassociation TX"),
3557 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3558 IPW2100_ORD(STAT_TX_DEAUTH,
3559 "successful Deauthentication TX"),
3560 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3561 "Total successful Tx data bytes"),
3562 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3563 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3564 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3565 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3566 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3567 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3568 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3569 "times max tries in a hop failed"),
3570 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3571 "times disassociation failed"),
3572 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3573 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3574 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3575 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3576 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3577 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3578 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3579 "directed packets at 5.5MB"),
3580 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3581 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3582 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3583 "nondirected packets at 1MB"),
3584 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3585 "nondirected packets at 2MB"),
3586 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3587 "nondirected packets at 5.5MB"),
3588 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3589 "nondirected packets at 11MB"),
3590 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3591 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3592 "Rx CTS"),
3593 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3594 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3595 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3596 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3597 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3598 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3599 IPW2100_ORD(STAT_RX_REASSN_RESP,
3600 "Reassociation response Rx's"),
3601 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3602 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3603 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3604 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3605 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3606 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3607 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3608 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3609 "Total rx data bytes received"),
3610 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3611 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3612 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3613 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3614 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3615 IPW2100_ORD(STAT_RX_DUPLICATE1,
3616 "duplicate rx packets at 1MB"),
3617 IPW2100_ORD(STAT_RX_DUPLICATE2,
3618 "duplicate rx packets at 2MB"),
3619 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3620 "duplicate rx packets at 5.5MB"),
3621 IPW2100_ORD(STAT_RX_DUPLICATE11,
3622 "duplicate rx packets at 11MB"),
3623 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3624 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3625 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3626 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3627 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3628 "rx frames with invalid protocol"),
3629 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3630 IPW2100_ORD(STAT_RX_NO_BUFFER,
3631 "rx frames rejected due to no buffer"),
3632 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3633 "rx frames dropped due to missing fragment"),
3634 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3635 "rx frames dropped due to non-sequential fragment"),
3636 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3637 "rx frames dropped due to unmatched 1st frame"),
3638 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3639 "rx frames dropped due to uncompleted frame"),
3640 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3641 "ICV errors during decryption"),
3642 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3643 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3644 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3645 "poll response timeouts"),
3646 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3647 "timeouts waiting for last {broad,multi}cast pkt"),
3648 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3649 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3650 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3651 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3652 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3653 "current calculation of % missed beacons"),
3654 IPW2100_ORD(STAT_PERCENT_RETRIES,
3655 "current calculation of % missed tx retries"),
3656 IPW2100_ORD(ASSOCIATED_AP_PTR,
3657 "0 if not associated, else pointer to AP table entry"),
3658 IPW2100_ORD(AVAILABLE_AP_CNT,
3659 "AP's decsribed in the AP table"),
3660 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3661 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3662 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3663 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3664 "failures due to response fail"),
3665 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3666 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3667 IPW2100_ORD(STAT_ROAM_INHIBIT,
3668 "times roaming was inhibited due to activity"),
3669 IPW2100_ORD(RSSI_AT_ASSN,
3670 "RSSI of associated AP at time of association"),
3671 IPW2100_ORD(STAT_ASSN_CAUSE1,
3672 "reassociation: no probe response or TX on hop"),
3673 IPW2100_ORD(STAT_ASSN_CAUSE2,
3674 "reassociation: poor tx/rx quality"),
3675 IPW2100_ORD(STAT_ASSN_CAUSE3,
3676 "reassociation: tx/rx quality (excessive AP load"),
3677 IPW2100_ORD(STAT_ASSN_CAUSE4,
3678 "reassociation: AP RSSI level"),
3679 IPW2100_ORD(STAT_ASSN_CAUSE5,
3680 "reassociations due to load leveling"),
3681 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3682 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3683 "times authentication response failed"),
3684 IPW2100_ORD(STATION_TABLE_CNT,
3685 "entries in association table"),
3686 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3687 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3688 IPW2100_ORD(COUNTRY_CODE,
3689 "IEEE country code as recv'd from beacon"),
3690 IPW2100_ORD(COUNTRY_CHANNELS,
3691 "channels suported by country"),
3692 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3693 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3694 IPW2100_ORD(ANTENNA_DIVERSITY,
3695 "TRUE if antenna diversity is disabled"),
3696 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3697 IPW2100_ORD(OUR_FREQ,
3698 "current radio freq lower digits - channel ID"),
3699 IPW2100_ORD(RTC_TIME, "current RTC time"),
3700 IPW2100_ORD(PORT_TYPE, "operating mode"),
3701 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3702 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3703 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3704 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3705 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3706 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3707 IPW2100_ORD(CAPABILITIES,
3708 "Management frame capability field"),
3709 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3710 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3711 IPW2100_ORD(RTS_THRESHOLD,
3712 "Min packet length for RTS handshaking"),
3713 IPW2100_ORD(INT_MODE, "International mode"),
3714 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3715 "protocol frag threshold"),
3716 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3717 "EEPROM offset in SRAM"),
3718 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3719 "EEPROM size in SRAM"),
3720 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3721 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3722 "EEPROM IBSS 11b channel set"),
3723 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3724 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3725 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3726 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3727 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3728
3729 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3730 char *buf)
3731 {
3732 int i;
3733 struct ipw2100_priv *priv = dev_get_drvdata(d);
3734 struct net_device *dev = priv->net_dev;
3735 char *out = buf;
3736 u32 val = 0;
3737
3738 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3739
3740 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3741 read_register(dev, hw_data[i].addr, &val);
3742 out += sprintf(out, "%30s [%08X] : %08X\n",
3743 hw_data[i].name, hw_data[i].addr, val);
3744 }
3745
3746 return out - buf;
3747 }
3748
3749 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3750
3751 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3752 char *buf)
3753 {
3754 struct ipw2100_priv *priv = dev_get_drvdata(d);
3755 struct net_device *dev = priv->net_dev;
3756 char *out = buf;
3757 int i;
3758
3759 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3760
3761 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3762 u8 tmp8;
3763 u16 tmp16;
3764 u32 tmp32;
3765
3766 switch (nic_data[i].size) {
3767 case 1:
3768 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3769 out += sprintf(out, "%30s [%08X] : %02X\n",
3770 nic_data[i].name, nic_data[i].addr,
3771 tmp8);
3772 break;
3773 case 2:
3774 read_nic_word(dev, nic_data[i].addr, &tmp16);
3775 out += sprintf(out, "%30s [%08X] : %04X\n",
3776 nic_data[i].name, nic_data[i].addr,
3777 tmp16);
3778 break;
3779 case 4:
3780 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3781 out += sprintf(out, "%30s [%08X] : %08X\n",
3782 nic_data[i].name, nic_data[i].addr,
3783 tmp32);
3784 break;
3785 }
3786 }
3787 return out - buf;
3788 }
3789
3790 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3791
3792 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3793 char *buf)
3794 {
3795 struct ipw2100_priv *priv = dev_get_drvdata(d);
3796 struct net_device *dev = priv->net_dev;
3797 static unsigned long loop = 0;
3798 int len = 0;
3799 u32 buffer[4];
3800 int i;
3801 char line[81];
3802
3803 if (loop >= 0x30000)
3804 loop = 0;
3805
3806 /* sysfs provides us PAGE_SIZE buffer */
3807 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3808
3809 if (priv->snapshot[0])
3810 for (i = 0; i < 4; i++)
3811 buffer[i] =
3812 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3813 else
3814 for (i = 0; i < 4; i++)
3815 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3816
3817 if (priv->dump_raw)
3818 len += sprintf(buf + len,
3819 "%c%c%c%c"
3820 "%c%c%c%c"
3821 "%c%c%c%c"
3822 "%c%c%c%c",
3823 ((u8 *) buffer)[0x0],
3824 ((u8 *) buffer)[0x1],
3825 ((u8 *) buffer)[0x2],
3826 ((u8 *) buffer)[0x3],
3827 ((u8 *) buffer)[0x4],
3828 ((u8 *) buffer)[0x5],
3829 ((u8 *) buffer)[0x6],
3830 ((u8 *) buffer)[0x7],
3831 ((u8 *) buffer)[0x8],
3832 ((u8 *) buffer)[0x9],
3833 ((u8 *) buffer)[0xa],
3834 ((u8 *) buffer)[0xb],
3835 ((u8 *) buffer)[0xc],
3836 ((u8 *) buffer)[0xd],
3837 ((u8 *) buffer)[0xe],
3838 ((u8 *) buffer)[0xf]);
3839 else
3840 len += sprintf(buf + len, "%s\n",
3841 snprint_line(line, sizeof(line),
3842 (u8 *) buffer, 16, loop));
3843 loop += 16;
3844 }
3845
3846 return len;
3847 }
3848
3849 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3850 const char *buf, size_t count)
3851 {
3852 struct ipw2100_priv *priv = dev_get_drvdata(d);
3853 struct net_device *dev = priv->net_dev;
3854 const char *p = buf;
3855
3856 (void)dev; /* kill unused-var warning for debug-only code */
3857
3858 if (count < 1)
3859 return count;
3860
3861 if (p[0] == '1' ||
3862 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3863 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3864 dev->name);
3865 priv->dump_raw = 1;
3866
3867 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3868 tolower(p[1]) == 'f')) {
3869 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3870 dev->name);
3871 priv->dump_raw = 0;
3872
3873 } else if (tolower(p[0]) == 'r') {
3874 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3875 ipw2100_snapshot_free(priv);
3876
3877 } else
3878 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3879 "reset = clear memory snapshot\n", dev->name);
3880
3881 return count;
3882 }
3883
3884 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3885
3886 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3887 char *buf)
3888 {
3889 struct ipw2100_priv *priv = dev_get_drvdata(d);
3890 u32 val = 0;
3891 int len = 0;
3892 u32 val_len;
3893 static int loop = 0;
3894
3895 if (priv->status & STATUS_RF_KILL_MASK)
3896 return 0;
3897
3898 if (loop >= ARRAY_SIZE(ord_data))
3899 loop = 0;
3900
3901 /* sysfs provides us PAGE_SIZE buffer */
3902 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3903 val_len = sizeof(u32);
3904
3905 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3906 &val_len))
3907 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3908 ord_data[loop].index,
3909 ord_data[loop].desc);
3910 else
3911 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3912 ord_data[loop].index, val,
3913 ord_data[loop].desc);
3914 loop++;
3915 }
3916
3917 return len;
3918 }
3919
3920 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3921
3922 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3923 char *buf)
3924 {
3925 struct ipw2100_priv *priv = dev_get_drvdata(d);
3926 char *out = buf;
3927
3928 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3929 priv->interrupts, priv->tx_interrupts,
3930 priv->rx_interrupts, priv->inta_other);
3931 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3932 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3933 #ifdef CONFIG_IPW2100_DEBUG
3934 out += sprintf(out, "packet mismatch image: %s\n",
3935 priv->snapshot[0] ? "YES" : "NO");
3936 #endif
3937
3938 return out - buf;
3939 }
3940
3941 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3942
3943 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3944 {
3945 int err;
3946
3947 if (mode == priv->ieee->iw_mode)
3948 return 0;
3949
3950 err = ipw2100_disable_adapter(priv);
3951 if (err) {
3952 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3953 priv->net_dev->name, err);
3954 return err;
3955 }
3956
3957 switch (mode) {
3958 case IW_MODE_INFRA:
3959 priv->net_dev->type = ARPHRD_ETHER;
3960 break;
3961 case IW_MODE_ADHOC:
3962 priv->net_dev->type = ARPHRD_ETHER;
3963 break;
3964 #ifdef CONFIG_IPW2100_MONITOR
3965 case IW_MODE_MONITOR:
3966 priv->last_mode = priv->ieee->iw_mode;
3967 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3968 break;
3969 #endif /* CONFIG_IPW2100_MONITOR */
3970 }
3971
3972 priv->ieee->iw_mode = mode;
3973
3974 #ifdef CONFIG_PM
3975 /* Indicate ipw2100_download_firmware download firmware
3976 * from disk instead of memory. */
3977 ipw2100_firmware.version = 0;
3978 #endif
3979
3980 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3981 priv->reset_backoff = 0;
3982 schedule_reset(priv);
3983
3984 return 0;
3985 }
3986
3987 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3988 char *buf)
3989 {
3990 struct ipw2100_priv *priv = dev_get_drvdata(d);
3991 int len = 0;
3992
3993 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3994
3995 if (priv->status & STATUS_ASSOCIATED)
3996 len += sprintf(buf + len, "connected: %lu\n",
3997 get_seconds() - priv->connect_start);
3998 else
3999 len += sprintf(buf + len, "not connected\n");
4000
4001 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4002 DUMP_VAR(status, "08lx");
4003 DUMP_VAR(config, "08lx");
4004 DUMP_VAR(capability, "08lx");
4005
4006 len +=
4007 sprintf(buf + len, "last_rtc: %lu\n",
4008 (unsigned long)priv->last_rtc);
4009
4010 DUMP_VAR(fatal_error, "d");
4011 DUMP_VAR(stop_hang_check, "d");
4012 DUMP_VAR(stop_rf_kill, "d");
4013 DUMP_VAR(messages_sent, "d");
4014
4015 DUMP_VAR(tx_pend_stat.value, "d");
4016 DUMP_VAR(tx_pend_stat.hi, "d");
4017
4018 DUMP_VAR(tx_free_stat.value, "d");
4019 DUMP_VAR(tx_free_stat.lo, "d");
4020
4021 DUMP_VAR(msg_free_stat.value, "d");
4022 DUMP_VAR(msg_free_stat.lo, "d");
4023
4024 DUMP_VAR(msg_pend_stat.value, "d");
4025 DUMP_VAR(msg_pend_stat.hi, "d");
4026
4027 DUMP_VAR(fw_pend_stat.value, "d");
4028 DUMP_VAR(fw_pend_stat.hi, "d");
4029
4030 DUMP_VAR(txq_stat.value, "d");
4031 DUMP_VAR(txq_stat.lo, "d");
4032
4033 DUMP_VAR(ieee->scans, "d");
4034 DUMP_VAR(reset_backoff, "d");
4035
4036 return len;
4037 }
4038
4039 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4040
4041 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4042 char *buf)
4043 {
4044 struct ipw2100_priv *priv = dev_get_drvdata(d);
4045 char essid[IW_ESSID_MAX_SIZE + 1];
4046 u8 bssid[ETH_ALEN];
4047 u32 chan = 0;
4048 char *out = buf;
4049 int length;
4050 int ret;
4051
4052 if (priv->status & STATUS_RF_KILL_MASK)
4053 return 0;
4054
4055 memset(essid, 0, sizeof(essid));
4056 memset(bssid, 0, sizeof(bssid));
4057
4058 length = IW_ESSID_MAX_SIZE;
4059 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4060 if (ret)
4061 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4062 __LINE__);
4063
4064 length = sizeof(bssid);
4065 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4066 bssid, &length);
4067 if (ret)
4068 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4069 __LINE__);
4070
4071 length = sizeof(u32);
4072 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4073 if (ret)
4074 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4075 __LINE__);
4076
4077 out += sprintf(out, "ESSID: %s\n", essid);
4078 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4079 bssid[0], bssid[1], bssid[2],
4080 bssid[3], bssid[4], bssid[5]);
4081 out += sprintf(out, "Channel: %d\n", chan);
4082
4083 return out - buf;
4084 }
4085
4086 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4087
4088 #ifdef CONFIG_IPW2100_DEBUG
4089 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4090 {
4091 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4092 }
4093
4094 static ssize_t store_debug_level(struct device_driver *d,
4095 const char *buf, size_t count)
4096 {
4097 char *p = (char *)buf;
4098 u32 val;
4099
4100 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4101 p++;
4102 if (p[0] == 'x' || p[0] == 'X')
4103 p++;
4104 val = simple_strtoul(p, &p, 16);
4105 } else
4106 val = simple_strtoul(p, &p, 10);
4107 if (p == buf)
4108 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4109 else
4110 ipw2100_debug_level = val;
4111
4112 return strnlen(buf, count);
4113 }
4114
4115 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4116 store_debug_level);
4117 #endif /* CONFIG_IPW2100_DEBUG */
4118
4119 static ssize_t show_fatal_error(struct device *d,
4120 struct device_attribute *attr, char *buf)
4121 {
4122 struct ipw2100_priv *priv = dev_get_drvdata(d);
4123 char *out = buf;
4124 int i;
4125
4126 if (priv->fatal_error)
4127 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4128 else
4129 out += sprintf(out, "0\n");
4130
4131 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4132 if (!priv->fatal_errors[(priv->fatal_index - i) %
4133 IPW2100_ERROR_QUEUE])
4134 continue;
4135
4136 out += sprintf(out, "%d. 0x%08X\n", i,
4137 priv->fatal_errors[(priv->fatal_index - i) %
4138 IPW2100_ERROR_QUEUE]);
4139 }
4140
4141 return out - buf;
4142 }
4143
4144 static ssize_t store_fatal_error(struct device *d,
4145 struct device_attribute *attr, const char *buf,
4146 size_t count)
4147 {
4148 struct ipw2100_priv *priv = dev_get_drvdata(d);
4149 schedule_reset(priv);
4150 return count;
4151 }
4152
4153 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4154 store_fatal_error);
4155
4156 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4157 char *buf)
4158 {
4159 struct ipw2100_priv *priv = dev_get_drvdata(d);
4160 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4161 }
4162
4163 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4164 const char *buf, size_t count)
4165 {
4166 struct ipw2100_priv *priv = dev_get_drvdata(d);
4167 struct net_device *dev = priv->net_dev;
4168 char buffer[] = "00000000";
4169 unsigned long len =
4170 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4171 unsigned long val;
4172 char *p = buffer;
4173
4174 (void)dev; /* kill unused-var warning for debug-only code */
4175
4176 IPW_DEBUG_INFO("enter\n");
4177
4178 strncpy(buffer, buf, len);
4179 buffer[len] = 0;
4180
4181 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4182 p++;
4183 if (p[0] == 'x' || p[0] == 'X')
4184 p++;
4185 val = simple_strtoul(p, &p, 16);
4186 } else
4187 val = simple_strtoul(p, &p, 10);
4188 if (p == buffer) {
4189 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4190 } else {
4191 priv->ieee->scan_age = val;
4192 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4193 }
4194
4195 IPW_DEBUG_INFO("exit\n");
4196 return len;
4197 }
4198
4199 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4200
4201 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4202 char *buf)
4203 {
4204 /* 0 - RF kill not enabled
4205 1 - SW based RF kill active (sysfs)
4206 2 - HW based RF kill active
4207 3 - Both HW and SW baed RF kill active */
4208 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4209 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4210 (rf_kill_active(priv) ? 0x2 : 0x0);
4211 return sprintf(buf, "%i\n", val);
4212 }
4213
4214 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4215 {
4216 if ((disable_radio ? 1 : 0) ==
4217 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4218 return 0;
4219
4220 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4221 disable_radio ? "OFF" : "ON");
4222
4223 mutex_lock(&priv->action_mutex);
4224
4225 if (disable_radio) {
4226 priv->status |= STATUS_RF_KILL_SW;
4227 ipw2100_down(priv);
4228 } else {
4229 priv->status &= ~STATUS_RF_KILL_SW;
4230 if (rf_kill_active(priv)) {
4231 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4232 "disabled by HW switch\n");
4233 /* Make sure the RF_KILL check timer is running */
4234 priv->stop_rf_kill = 0;
4235 cancel_delayed_work(&priv->rf_kill);
4236 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4237 } else
4238 schedule_reset(priv);
4239 }
4240
4241 mutex_unlock(&priv->action_mutex);
4242 return 1;
4243 }
4244
4245 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4246 const char *buf, size_t count)
4247 {
4248 struct ipw2100_priv *priv = dev_get_drvdata(d);
4249 ipw_radio_kill_sw(priv, buf[0] == '1');
4250 return count;
4251 }
4252
4253 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4254
4255 static struct attribute *ipw2100_sysfs_entries[] = {
4256 &dev_attr_hardware.attr,
4257 &dev_attr_registers.attr,
4258 &dev_attr_ordinals.attr,
4259 &dev_attr_pci.attr,
4260 &dev_attr_stats.attr,
4261 &dev_attr_internals.attr,
4262 &dev_attr_bssinfo.attr,
4263 &dev_attr_memory.attr,
4264 &dev_attr_scan_age.attr,
4265 &dev_attr_fatal_error.attr,
4266 &dev_attr_rf_kill.attr,
4267 &dev_attr_cfg.attr,
4268 &dev_attr_status.attr,
4269 &dev_attr_capability.attr,
4270 NULL,
4271 };
4272
4273 static struct attribute_group ipw2100_attribute_group = {
4274 .attrs = ipw2100_sysfs_entries,
4275 };
4276
4277 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4278 {
4279 struct ipw2100_status_queue *q = &priv->status_queue;
4280
4281 IPW_DEBUG_INFO("enter\n");
4282
4283 q->size = entries * sizeof(struct ipw2100_status);
4284 q->drv =
4285 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4286 q->size, &q->nic);
4287 if (!q->drv) {
4288 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4289 return -ENOMEM;
4290 }
4291
4292 memset(q->drv, 0, q->size);
4293
4294 IPW_DEBUG_INFO("exit\n");
4295
4296 return 0;
4297 }
4298
4299 static void status_queue_free(struct ipw2100_priv *priv)
4300 {
4301 IPW_DEBUG_INFO("enter\n");
4302
4303 if (priv->status_queue.drv) {
4304 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4305 priv->status_queue.drv,
4306 priv->status_queue.nic);
4307 priv->status_queue.drv = NULL;
4308 }
4309
4310 IPW_DEBUG_INFO("exit\n");
4311 }
4312
4313 static int bd_queue_allocate(struct ipw2100_priv *priv,
4314 struct ipw2100_bd_queue *q, int entries)
4315 {
4316 IPW_DEBUG_INFO("enter\n");
4317
4318 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4319
4320 q->entries = entries;
4321 q->size = entries * sizeof(struct ipw2100_bd);
4322 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4323 if (!q->drv) {
4324 IPW_DEBUG_INFO
4325 ("can't allocate shared memory for buffer descriptors\n");
4326 return -ENOMEM;
4327 }
4328 memset(q->drv, 0, q->size);
4329
4330 IPW_DEBUG_INFO("exit\n");
4331
4332 return 0;
4333 }
4334
4335 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4336 {
4337 IPW_DEBUG_INFO("enter\n");
4338
4339 if (!q)
4340 return;
4341
4342 if (q->drv) {
4343 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4344 q->drv = NULL;
4345 }
4346
4347 IPW_DEBUG_INFO("exit\n");
4348 }
4349
4350 static void bd_queue_initialize(struct ipw2100_priv *priv,
4351 struct ipw2100_bd_queue *q, u32 base, u32 size,
4352 u32 r, u32 w)
4353 {
4354 IPW_DEBUG_INFO("enter\n");
4355
4356 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4357 (u32) q->nic);
4358
4359 write_register(priv->net_dev, base, q->nic);
4360 write_register(priv->net_dev, size, q->entries);
4361 write_register(priv->net_dev, r, q->oldest);
4362 write_register(priv->net_dev, w, q->next);
4363
4364 IPW_DEBUG_INFO("exit\n");
4365 }
4366
4367 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4368 {
4369 if (priv->workqueue) {
4370 priv->stop_rf_kill = 1;
4371 priv->stop_hang_check = 1;
4372 cancel_delayed_work(&priv->reset_work);
4373 cancel_delayed_work(&priv->security_work);
4374 cancel_delayed_work(&priv->wx_event_work);
4375 cancel_delayed_work(&priv->hang_check);
4376 cancel_delayed_work(&priv->rf_kill);
4377 destroy_workqueue(priv->workqueue);
4378 priv->workqueue = NULL;
4379 }
4380 }
4381
4382 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4383 {
4384 int i, j, err = -EINVAL;
4385 void *v;
4386 dma_addr_t p;
4387
4388 IPW_DEBUG_INFO("enter\n");
4389
4390 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4391 if (err) {
4392 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4393 priv->net_dev->name);
4394 return err;
4395 }
4396
4397 priv->tx_buffers =
4398 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4399 sizeof(struct
4400 ipw2100_tx_packet),
4401 GFP_ATOMIC);
4402 if (!priv->tx_buffers) {
4403 printk(KERN_ERR DRV_NAME
4404 ": %s: alloc failed form tx buffers.\n",
4405 priv->net_dev->name);
4406 bd_queue_free(priv, &priv->tx_queue);
4407 return -ENOMEM;
4408 }
4409
4410 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4411 v = pci_alloc_consistent(priv->pci_dev,
4412 sizeof(struct ipw2100_data_header),
4413 &p);
4414 if (!v) {
4415 printk(KERN_ERR DRV_NAME
4416 ": %s: PCI alloc failed for tx " "buffers.\n",
4417 priv->net_dev->name);
4418 err = -ENOMEM;
4419 break;
4420 }
4421
4422 priv->tx_buffers[i].type = DATA;
4423 priv->tx_buffers[i].info.d_struct.data =
4424 (struct ipw2100_data_header *)v;
4425 priv->tx_buffers[i].info.d_struct.data_phys = p;
4426 priv->tx_buffers[i].info.d_struct.txb = NULL;
4427 }
4428
4429 if (i == TX_PENDED_QUEUE_LENGTH)
4430 return 0;
4431
4432 for (j = 0; j < i; j++) {
4433 pci_free_consistent(priv->pci_dev,
4434 sizeof(struct ipw2100_data_header),
4435 priv->tx_buffers[j].info.d_struct.data,
4436 priv->tx_buffers[j].info.d_struct.
4437 data_phys);
4438 }
4439
4440 kfree(priv->tx_buffers);
4441 priv->tx_buffers = NULL;
4442
4443 return err;
4444 }
4445
4446 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4447 {
4448 int i;
4449
4450 IPW_DEBUG_INFO("enter\n");
4451
4452 /*
4453 * reinitialize packet info lists
4454 */
4455 INIT_LIST_HEAD(&priv->fw_pend_list);
4456 INIT_STAT(&priv->fw_pend_stat);
4457
4458 /*
4459 * reinitialize lists
4460 */
4461 INIT_LIST_HEAD(&priv->tx_pend_list);
4462 INIT_LIST_HEAD(&priv->tx_free_list);
4463 INIT_STAT(&priv->tx_pend_stat);
4464 INIT_STAT(&priv->tx_free_stat);
4465
4466 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4467 /* We simply drop any SKBs that have been queued for
4468 * transmit */
4469 if (priv->tx_buffers[i].info.d_struct.txb) {
4470 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4471 txb);
4472 priv->tx_buffers[i].info.d_struct.txb = NULL;
4473 }
4474
4475 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4476 }
4477
4478 SET_STAT(&priv->tx_free_stat, i);
4479
4480 priv->tx_queue.oldest = 0;
4481 priv->tx_queue.available = priv->tx_queue.entries;
4482 priv->tx_queue.next = 0;
4483 INIT_STAT(&priv->txq_stat);
4484 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4485
4486 bd_queue_initialize(priv, &priv->tx_queue,
4487 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4488 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4489 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4490 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4491
4492 IPW_DEBUG_INFO("exit\n");
4493
4494 }
4495
4496 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4497 {
4498 int i;
4499
4500 IPW_DEBUG_INFO("enter\n");
4501
4502 bd_queue_free(priv, &priv->tx_queue);
4503
4504 if (!priv->tx_buffers)
4505 return;
4506
4507 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4508 if (priv->tx_buffers[i].info.d_struct.txb) {
4509 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4510 txb);
4511 priv->tx_buffers[i].info.d_struct.txb = NULL;
4512 }
4513 if (priv->tx_buffers[i].info.d_struct.data)
4514 pci_free_consistent(priv->pci_dev,
4515 sizeof(struct ipw2100_data_header),
4516 priv->tx_buffers[i].info.d_struct.
4517 data,
4518 priv->tx_buffers[i].info.d_struct.
4519 data_phys);
4520 }
4521
4522 kfree(priv->tx_buffers);
4523 priv->tx_buffers = NULL;
4524
4525 IPW_DEBUG_INFO("exit\n");
4526 }
4527
4528 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4529 {
4530 int i, j, err = -EINVAL;
4531
4532 IPW_DEBUG_INFO("enter\n");
4533
4534 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4535 if (err) {
4536 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4537 return err;
4538 }
4539
4540 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4541 if (err) {
4542 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4543 bd_queue_free(priv, &priv->rx_queue);
4544 return err;
4545 }
4546
4547 /*
4548 * allocate packets
4549 */
4550 priv->rx_buffers = (struct ipw2100_rx_packet *)
4551 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4552 GFP_KERNEL);
4553 if (!priv->rx_buffers) {
4554 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4555
4556 bd_queue_free(priv, &priv->rx_queue);
4557
4558 status_queue_free(priv);
4559
4560 return -ENOMEM;
4561 }
4562
4563 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4564 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4565
4566 err = ipw2100_alloc_skb(priv, packet);
4567 if (unlikely(err)) {
4568 err = -ENOMEM;
4569 break;
4570 }
4571
4572 /* The BD holds the cache aligned address */
4573 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4574 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4575 priv->status_queue.drv[i].status_fields = 0;
4576 }
4577
4578 if (i == RX_QUEUE_LENGTH)
4579 return 0;
4580
4581 for (j = 0; j < i; j++) {
4582 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4583 sizeof(struct ipw2100_rx_packet),
4584 PCI_DMA_FROMDEVICE);
4585 dev_kfree_skb(priv->rx_buffers[j].skb);
4586 }
4587
4588 kfree(priv->rx_buffers);
4589 priv->rx_buffers = NULL;
4590
4591 bd_queue_free(priv, &priv->rx_queue);
4592
4593 status_queue_free(priv);
4594
4595 return err;
4596 }
4597
4598 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4599 {
4600 IPW_DEBUG_INFO("enter\n");
4601
4602 priv->rx_queue.oldest = 0;
4603 priv->rx_queue.available = priv->rx_queue.entries - 1;
4604 priv->rx_queue.next = priv->rx_queue.entries - 1;
4605
4606 INIT_STAT(&priv->rxq_stat);
4607 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4608
4609 bd_queue_initialize(priv, &priv->rx_queue,
4610 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4611 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4612 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4613 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4614
4615 /* set up the status queue */
4616 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4617 priv->status_queue.nic);
4618
4619 IPW_DEBUG_INFO("exit\n");
4620 }
4621
4622 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4623 {
4624 int i;
4625
4626 IPW_DEBUG_INFO("enter\n");
4627
4628 bd_queue_free(priv, &priv->rx_queue);
4629 status_queue_free(priv);
4630
4631 if (!priv->rx_buffers)
4632 return;
4633
4634 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4635 if (priv->rx_buffers[i].rxp) {
4636 pci_unmap_single(priv->pci_dev,
4637 priv->rx_buffers[i].dma_addr,
4638 sizeof(struct ipw2100_rx),
4639 PCI_DMA_FROMDEVICE);
4640 dev_kfree_skb(priv->rx_buffers[i].skb);
4641 }
4642 }
4643
4644 kfree(priv->rx_buffers);
4645 priv->rx_buffers = NULL;
4646
4647 IPW_DEBUG_INFO("exit\n");
4648 }
4649
4650 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4651 {
4652 u32 length = ETH_ALEN;
4653 u8 mac[ETH_ALEN];
4654
4655 int err;
4656
4657 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4658 if (err) {
4659 IPW_DEBUG_INFO("MAC address read failed\n");
4660 return -EIO;
4661 }
4662 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4663 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4664
4665 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4666
4667 return 0;
4668 }
4669
4670 /********************************************************************
4671 *
4672 * Firmware Commands
4673 *
4674 ********************************************************************/
4675
4676 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4677 {
4678 struct host_command cmd = {
4679 .host_command = ADAPTER_ADDRESS,
4680 .host_command_sequence = 0,
4681 .host_command_length = ETH_ALEN
4682 };
4683 int err;
4684
4685 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4686
4687 IPW_DEBUG_INFO("enter\n");
4688
4689 if (priv->config & CFG_CUSTOM_MAC) {
4690 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4691 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4692 } else
4693 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4694 ETH_ALEN);
4695
4696 err = ipw2100_hw_send_command(priv, &cmd);
4697
4698 IPW_DEBUG_INFO("exit\n");
4699 return err;
4700 }
4701
4702 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4703 int batch_mode)
4704 {
4705 struct host_command cmd = {
4706 .host_command = PORT_TYPE,
4707 .host_command_sequence = 0,
4708 .host_command_length = sizeof(u32)
4709 };
4710 int err;
4711
4712 switch (port_type) {
4713 case IW_MODE_INFRA:
4714 cmd.host_command_parameters[0] = IPW_BSS;
4715 break;
4716 case IW_MODE_ADHOC:
4717 cmd.host_command_parameters[0] = IPW_IBSS;
4718 break;
4719 }
4720
4721 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4722 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4723
4724 if (!batch_mode) {
4725 err = ipw2100_disable_adapter(priv);
4726 if (err) {
4727 printk(KERN_ERR DRV_NAME
4728 ": %s: Could not disable adapter %d\n",
4729 priv->net_dev->name, err);
4730 return err;
4731 }
4732 }
4733
4734 /* send cmd to firmware */
4735 err = ipw2100_hw_send_command(priv, &cmd);
4736
4737 if (!batch_mode)
4738 ipw2100_enable_adapter(priv);
4739
4740 return err;
4741 }
4742
4743 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4744 int batch_mode)
4745 {
4746 struct host_command cmd = {
4747 .host_command = CHANNEL,
4748 .host_command_sequence = 0,
4749 .host_command_length = sizeof(u32)
4750 };
4751 int err;
4752
4753 cmd.host_command_parameters[0] = channel;
4754
4755 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4756
4757 /* If BSS then we don't support channel selection */
4758 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4759 return 0;
4760
4761 if ((channel != 0) &&
4762 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4763 return -EINVAL;
4764
4765 if (!batch_mode) {
4766 err = ipw2100_disable_adapter(priv);
4767 if (err)
4768 return err;
4769 }
4770
4771 err = ipw2100_hw_send_command(priv, &cmd);
4772 if (err) {
4773 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4774 return err;
4775 }
4776
4777 if (channel)
4778 priv->config |= CFG_STATIC_CHANNEL;
4779 else
4780 priv->config &= ~CFG_STATIC_CHANNEL;
4781
4782 priv->channel = channel;
4783
4784 if (!batch_mode) {
4785 err = ipw2100_enable_adapter(priv);
4786 if (err)
4787 return err;
4788 }
4789
4790 return 0;
4791 }
4792
4793 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4794 {
4795 struct host_command cmd = {
4796 .host_command = SYSTEM_CONFIG,
4797 .host_command_sequence = 0,
4798 .host_command_length = 12,
4799 };
4800 u32 ibss_mask, len = sizeof(u32);
4801 int err;
4802
4803 /* Set system configuration */
4804
4805 if (!batch_mode) {
4806 err = ipw2100_disable_adapter(priv);
4807 if (err)
4808 return err;
4809 }
4810
4811 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4812 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4813
4814 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4815 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4816
4817 if (!(priv->config & CFG_LONG_PREAMBLE))
4818 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4819
4820 err = ipw2100_get_ordinal(priv,
4821 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4822 &ibss_mask, &len);
4823 if (err)
4824 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4825
4826 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4827 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4828
4829 /* 11b only */
4830 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4831
4832 err = ipw2100_hw_send_command(priv, &cmd);
4833 if (err)
4834 return err;
4835
4836 /* If IPv6 is configured in the kernel then we don't want to filter out all
4837 * of the multicast packets as IPv6 needs some. */
4838 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4839 cmd.host_command = ADD_MULTICAST;
4840 cmd.host_command_sequence = 0;
4841 cmd.host_command_length = 0;
4842
4843 ipw2100_hw_send_command(priv, &cmd);
4844 #endif
4845 if (!batch_mode) {
4846 err = ipw2100_enable_adapter(priv);
4847 if (err)
4848 return err;
4849 }
4850
4851 return 0;
4852 }
4853
4854 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4855 int batch_mode)
4856 {
4857 struct host_command cmd = {
4858 .host_command = BASIC_TX_RATES,
4859 .host_command_sequence = 0,
4860 .host_command_length = 4
4861 };
4862 int err;
4863
4864 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4865
4866 if (!batch_mode) {
4867 err = ipw2100_disable_adapter(priv);
4868 if (err)
4869 return err;
4870 }
4871
4872 /* Set BASIC TX Rate first */
4873 ipw2100_hw_send_command(priv, &cmd);
4874
4875 /* Set TX Rate */
4876 cmd.host_command = TX_RATES;
4877 ipw2100_hw_send_command(priv, &cmd);
4878
4879 /* Set MSDU TX Rate */
4880 cmd.host_command = MSDU_TX_RATES;
4881 ipw2100_hw_send_command(priv, &cmd);
4882
4883 if (!batch_mode) {
4884 err = ipw2100_enable_adapter(priv);
4885 if (err)
4886 return err;
4887 }
4888
4889 priv->tx_rates = rate;
4890
4891 return 0;
4892 }
4893
4894 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4895 {
4896 struct host_command cmd = {
4897 .host_command = POWER_MODE,
4898 .host_command_sequence = 0,
4899 .host_command_length = 4
4900 };
4901 int err;
4902
4903 cmd.host_command_parameters[0] = power_level;
4904
4905 err = ipw2100_hw_send_command(priv, &cmd);
4906 if (err)
4907 return err;
4908
4909 if (power_level == IPW_POWER_MODE_CAM)
4910 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4911 else
4912 priv->power_mode = IPW_POWER_ENABLED | power_level;
4913
4914 #ifdef IPW2100_TX_POWER
4915 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4916 /* Set beacon interval */
4917 cmd.host_command = TX_POWER_INDEX;
4918 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4919
4920 err = ipw2100_hw_send_command(priv, &cmd);
4921 if (err)
4922 return err;
4923 }
4924 #endif
4925
4926 return 0;
4927 }
4928
4929 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4930 {
4931 struct host_command cmd = {
4932 .host_command = RTS_THRESHOLD,
4933 .host_command_sequence = 0,
4934 .host_command_length = 4
4935 };
4936 int err;
4937
4938 if (threshold & RTS_DISABLED)
4939 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4940 else
4941 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4942
4943 err = ipw2100_hw_send_command(priv, &cmd);
4944 if (err)
4945 return err;
4946
4947 priv->rts_threshold = threshold;
4948
4949 return 0;
4950 }
4951
4952 #if 0
4953 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4954 u32 threshold, int batch_mode)
4955 {
4956 struct host_command cmd = {
4957 .host_command = FRAG_THRESHOLD,
4958 .host_command_sequence = 0,
4959 .host_command_length = 4,
4960 .host_command_parameters[0] = 0,
4961 };
4962 int err;
4963
4964 if (!batch_mode) {
4965 err = ipw2100_disable_adapter(priv);
4966 if (err)
4967 return err;
4968 }
4969
4970 if (threshold == 0)
4971 threshold = DEFAULT_FRAG_THRESHOLD;
4972 else {
4973 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4974 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4975 }
4976
4977 cmd.host_command_parameters[0] = threshold;
4978
4979 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4980
4981 err = ipw2100_hw_send_command(priv, &cmd);
4982
4983 if (!batch_mode)
4984 ipw2100_enable_adapter(priv);
4985
4986 if (!err)
4987 priv->frag_threshold = threshold;
4988
4989 return err;
4990 }
4991 #endif
4992
4993 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4994 {
4995 struct host_command cmd = {
4996 .host_command = SHORT_RETRY_LIMIT,
4997 .host_command_sequence = 0,
4998 .host_command_length = 4
4999 };
5000 int err;
5001
5002 cmd.host_command_parameters[0] = retry;
5003
5004 err = ipw2100_hw_send_command(priv, &cmd);
5005 if (err)
5006 return err;
5007
5008 priv->short_retry_limit = retry;
5009
5010 return 0;
5011 }
5012
5013 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5014 {
5015 struct host_command cmd = {
5016 .host_command = LONG_RETRY_LIMIT,
5017 .host_command_sequence = 0,
5018 .host_command_length = 4
5019 };
5020 int err;
5021
5022 cmd.host_command_parameters[0] = retry;
5023
5024 err = ipw2100_hw_send_command(priv, &cmd);
5025 if (err)
5026 return err;
5027
5028 priv->long_retry_limit = retry;
5029
5030 return 0;
5031 }
5032
5033 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5034 int batch_mode)
5035 {
5036 struct host_command cmd = {
5037 .host_command = MANDATORY_BSSID,
5038 .host_command_sequence = 0,
5039 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5040 };
5041 int err;
5042
5043 #ifdef CONFIG_IPW2100_DEBUG
5044 if (bssid != NULL)
5045 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5046 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5047 bssid[5]);
5048 else
5049 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5050 #endif
5051 /* if BSSID is empty then we disable mandatory bssid mode */
5052 if (bssid != NULL)
5053 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5054
5055 if (!batch_mode) {
5056 err = ipw2100_disable_adapter(priv);
5057 if (err)
5058 return err;
5059 }
5060
5061 err = ipw2100_hw_send_command(priv, &cmd);
5062
5063 if (!batch_mode)
5064 ipw2100_enable_adapter(priv);
5065
5066 return err;
5067 }
5068
5069 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5070 {
5071 struct host_command cmd = {
5072 .host_command = DISASSOCIATION_BSSID,
5073 .host_command_sequence = 0,
5074 .host_command_length = ETH_ALEN
5075 };
5076 int err;
5077 int len;
5078
5079 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5080
5081 len = ETH_ALEN;
5082 /* The Firmware currently ignores the BSSID and just disassociates from
5083 * the currently associated AP -- but in the off chance that a future
5084 * firmware does use the BSSID provided here, we go ahead and try and
5085 * set it to the currently associated AP's BSSID */
5086 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5087
5088 err = ipw2100_hw_send_command(priv, &cmd);
5089
5090 return err;
5091 }
5092
5093 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5094 struct ipw2100_wpa_assoc_frame *, int)
5095 __attribute__ ((unused));
5096
5097 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5098 struct ipw2100_wpa_assoc_frame *wpa_frame,
5099 int batch_mode)
5100 {
5101 struct host_command cmd = {
5102 .host_command = SET_WPA_IE,
5103 .host_command_sequence = 0,
5104 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5105 };
5106 int err;
5107
5108 IPW_DEBUG_HC("SET_WPA_IE\n");
5109
5110 if (!batch_mode) {
5111 err = ipw2100_disable_adapter(priv);
5112 if (err)
5113 return err;
5114 }
5115
5116 memcpy(cmd.host_command_parameters, wpa_frame,
5117 sizeof(struct ipw2100_wpa_assoc_frame));
5118
5119 err = ipw2100_hw_send_command(priv, &cmd);
5120
5121 if (!batch_mode) {
5122 if (ipw2100_enable_adapter(priv))
5123 err = -EIO;
5124 }
5125
5126 return err;
5127 }
5128
5129 struct security_info_params {
5130 u32 allowed_ciphers;
5131 u16 version;
5132 u8 auth_mode;
5133 u8 replay_counters_number;
5134 u8 unicast_using_group;
5135 } __attribute__ ((packed));
5136
5137 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5138 int auth_mode,
5139 int security_level,
5140 int unicast_using_group,
5141 int batch_mode)
5142 {
5143 struct host_command cmd = {
5144 .host_command = SET_SECURITY_INFORMATION,
5145 .host_command_sequence = 0,
5146 .host_command_length = sizeof(struct security_info_params)
5147 };
5148 struct security_info_params *security =
5149 (struct security_info_params *)&cmd.host_command_parameters;
5150 int err;
5151 memset(security, 0, sizeof(*security));
5152
5153 /* If shared key AP authentication is turned on, then we need to
5154 * configure the firmware to try and use it.
5155 *
5156 * Actual data encryption/decryption is handled by the host. */
5157 security->auth_mode = auth_mode;
5158 security->unicast_using_group = unicast_using_group;
5159
5160 switch (security_level) {
5161 default:
5162 case SEC_LEVEL_0:
5163 security->allowed_ciphers = IPW_NONE_CIPHER;
5164 break;
5165 case SEC_LEVEL_1:
5166 security->allowed_ciphers = IPW_WEP40_CIPHER |
5167 IPW_WEP104_CIPHER;
5168 break;
5169 case SEC_LEVEL_2:
5170 security->allowed_ciphers = IPW_WEP40_CIPHER |
5171 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5172 break;
5173 case SEC_LEVEL_2_CKIP:
5174 security->allowed_ciphers = IPW_WEP40_CIPHER |
5175 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5176 break;
5177 case SEC_LEVEL_3:
5178 security->allowed_ciphers = IPW_WEP40_CIPHER |
5179 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5180 break;
5181 }
5182
5183 IPW_DEBUG_HC
5184 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5185 security->auth_mode, security->allowed_ciphers, security_level);
5186
5187 security->replay_counters_number = 0;
5188
5189 if (!batch_mode) {
5190 err = ipw2100_disable_adapter(priv);
5191 if (err)
5192 return err;
5193 }
5194
5195 err = ipw2100_hw_send_command(priv, &cmd);
5196
5197 if (!batch_mode)
5198 ipw2100_enable_adapter(priv);
5199
5200 return err;
5201 }
5202
5203 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5204 {
5205 struct host_command cmd = {
5206 .host_command = TX_POWER_INDEX,
5207 .host_command_sequence = 0,
5208 .host_command_length = 4
5209 };
5210 int err = 0;
5211 u32 tmp = tx_power;
5212
5213 if (tx_power != IPW_TX_POWER_DEFAULT)
5214 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5215 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5216
5217 cmd.host_command_parameters[0] = tmp;
5218
5219 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5220 err = ipw2100_hw_send_command(priv, &cmd);
5221 if (!err)
5222 priv->tx_power = tx_power;
5223
5224 return 0;
5225 }
5226
5227 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5228 u32 interval, int batch_mode)
5229 {
5230 struct host_command cmd = {
5231 .host_command = BEACON_INTERVAL,
5232 .host_command_sequence = 0,
5233 .host_command_length = 4
5234 };
5235 int err;
5236
5237 cmd.host_command_parameters[0] = interval;
5238
5239 IPW_DEBUG_INFO("enter\n");
5240
5241 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5242 if (!batch_mode) {
5243 err = ipw2100_disable_adapter(priv);
5244 if (err)
5245 return err;
5246 }
5247
5248 ipw2100_hw_send_command(priv, &cmd);
5249
5250 if (!batch_mode) {
5251 err = ipw2100_enable_adapter(priv);
5252 if (err)
5253 return err;
5254 }
5255 }
5256
5257 IPW_DEBUG_INFO("exit\n");
5258
5259 return 0;
5260 }
5261
5262 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5263 {
5264 ipw2100_tx_initialize(priv);
5265 ipw2100_rx_initialize(priv);
5266 ipw2100_msg_initialize(priv);
5267 }
5268
5269 void ipw2100_queues_free(struct ipw2100_priv *priv)
5270 {
5271 ipw2100_tx_free(priv);
5272 ipw2100_rx_free(priv);
5273 ipw2100_msg_free(priv);
5274 }
5275
5276 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5277 {
5278 if (ipw2100_tx_allocate(priv) ||
5279 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5280 goto fail;
5281
5282 return 0;
5283
5284 fail:
5285 ipw2100_tx_free(priv);
5286 ipw2100_rx_free(priv);
5287 ipw2100_msg_free(priv);
5288 return -ENOMEM;
5289 }
5290
5291 #define IPW_PRIVACY_CAPABLE 0x0008
5292
5293 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5294 int batch_mode)
5295 {
5296 struct host_command cmd = {
5297 .host_command = WEP_FLAGS,
5298 .host_command_sequence = 0,
5299 .host_command_length = 4
5300 };
5301 int err;
5302
5303 cmd.host_command_parameters[0] = flags;
5304
5305 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5306
5307 if (!batch_mode) {
5308 err = ipw2100_disable_adapter(priv);
5309 if (err) {
5310 printk(KERN_ERR DRV_NAME
5311 ": %s: Could not disable adapter %d\n",
5312 priv->net_dev->name, err);
5313 return err;
5314 }
5315 }
5316
5317 /* send cmd to firmware */
5318 err = ipw2100_hw_send_command(priv, &cmd);
5319
5320 if (!batch_mode)
5321 ipw2100_enable_adapter(priv);
5322
5323 return err;
5324 }
5325
5326 struct ipw2100_wep_key {
5327 u8 idx;
5328 u8 len;
5329 u8 key[13];
5330 };
5331
5332 /* Macros to ease up priting WEP keys */
5333 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5334 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5335 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5336 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5337
5338 /**
5339 * Set a the wep key
5340 *
5341 * @priv: struct to work on
5342 * @idx: index of the key we want to set
5343 * @key: ptr to the key data to set
5344 * @len: length of the buffer at @key
5345 * @batch_mode: FIXME perform the operation in batch mode, not
5346 * disabling the device.
5347 *
5348 * @returns 0 if OK, < 0 errno code on error.
5349 *
5350 * Fill out a command structure with the new wep key, length an
5351 * index and send it down the wire.
5352 */
5353 static int ipw2100_set_key(struct ipw2100_priv *priv,
5354 int idx, char *key, int len, int batch_mode)
5355 {
5356 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5357 struct host_command cmd = {
5358 .host_command = WEP_KEY_INFO,
5359 .host_command_sequence = 0,
5360 .host_command_length = sizeof(struct ipw2100_wep_key),
5361 };
5362 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5363 int err;
5364
5365 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5366 idx, keylen, len);
5367
5368 /* NOTE: We don't check cached values in case the firmware was reset
5369 * or some other problem is occurring. If the user is setting the key,
5370 * then we push the change */
5371
5372 wep_key->idx = idx;
5373 wep_key->len = keylen;
5374
5375 if (keylen) {
5376 memcpy(wep_key->key, key, len);
5377 memset(wep_key->key + len, 0, keylen - len);
5378 }
5379
5380 /* Will be optimized out on debug not being configured in */
5381 if (keylen == 0)
5382 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5383 priv->net_dev->name, wep_key->idx);
5384 else if (keylen == 5)
5385 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5386 priv->net_dev->name, wep_key->idx, wep_key->len,
5387 WEP_STR_64(wep_key->key));
5388 else
5389 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5390 "\n",
5391 priv->net_dev->name, wep_key->idx, wep_key->len,
5392 WEP_STR_128(wep_key->key));
5393
5394 if (!batch_mode) {
5395 err = ipw2100_disable_adapter(priv);
5396 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5397 if (err) {
5398 printk(KERN_ERR DRV_NAME
5399 ": %s: Could not disable adapter %d\n",
5400 priv->net_dev->name, err);
5401 return err;
5402 }
5403 }
5404
5405 /* send cmd to firmware */
5406 err = ipw2100_hw_send_command(priv, &cmd);
5407
5408 if (!batch_mode) {
5409 int err2 = ipw2100_enable_adapter(priv);
5410 if (err == 0)
5411 err = err2;
5412 }
5413 return err;
5414 }
5415
5416 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5417 int idx, int batch_mode)
5418 {
5419 struct host_command cmd = {
5420 .host_command = WEP_KEY_INDEX,
5421 .host_command_sequence = 0,
5422 .host_command_length = 4,
5423 .host_command_parameters = {idx},
5424 };
5425 int err;
5426
5427 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5428
5429 if (idx < 0 || idx > 3)
5430 return -EINVAL;
5431
5432 if (!batch_mode) {
5433 err = ipw2100_disable_adapter(priv);
5434 if (err) {
5435 printk(KERN_ERR DRV_NAME
5436 ": %s: Could not disable adapter %d\n",
5437 priv->net_dev->name, err);
5438 return err;
5439 }
5440 }
5441
5442 /* send cmd to firmware */
5443 err = ipw2100_hw_send_command(priv, &cmd);
5444
5445 if (!batch_mode)
5446 ipw2100_enable_adapter(priv);
5447
5448 return err;
5449 }
5450
5451 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5452 {
5453 int i, err, auth_mode, sec_level, use_group;
5454
5455 if (!(priv->status & STATUS_RUNNING))
5456 return 0;
5457
5458 if (!batch_mode) {
5459 err = ipw2100_disable_adapter(priv);
5460 if (err)
5461 return err;
5462 }
5463
5464 if (!priv->ieee->sec.enabled) {
5465 err =
5466 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5467 SEC_LEVEL_0, 0, 1);
5468 } else {
5469 auth_mode = IPW_AUTH_OPEN;
5470 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5471 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5472 auth_mode = IPW_AUTH_SHARED;
5473 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5474 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5475 }
5476
5477 sec_level = SEC_LEVEL_0;
5478 if (priv->ieee->sec.flags & SEC_LEVEL)
5479 sec_level = priv->ieee->sec.level;
5480
5481 use_group = 0;
5482 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5483 use_group = priv->ieee->sec.unicast_uses_group;
5484
5485 err =
5486 ipw2100_set_security_information(priv, auth_mode, sec_level,
5487 use_group, 1);
5488 }
5489
5490 if (err)
5491 goto exit;
5492
5493 if (priv->ieee->sec.enabled) {
5494 for (i = 0; i < 4; i++) {
5495 if (!(priv->ieee->sec.flags & (1 << i))) {
5496 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5497 priv->ieee->sec.key_sizes[i] = 0;
5498 } else {
5499 err = ipw2100_set_key(priv, i,
5500 priv->ieee->sec.keys[i],
5501 priv->ieee->sec.
5502 key_sizes[i], 1);
5503 if (err)
5504 goto exit;
5505 }
5506 }
5507
5508 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5509 }
5510
5511 /* Always enable privacy so the Host can filter WEP packets if
5512 * encrypted data is sent up */
5513 err =
5514 ipw2100_set_wep_flags(priv,
5515 priv->ieee->sec.
5516 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5517 if (err)
5518 goto exit;
5519
5520 priv->status &= ~STATUS_SECURITY_UPDATED;
5521
5522 exit:
5523 if (!batch_mode)
5524 ipw2100_enable_adapter(priv);
5525
5526 return err;
5527 }
5528
5529 static void ipw2100_security_work(struct work_struct *work)
5530 {
5531 struct ipw2100_priv *priv =
5532 container_of(work, struct ipw2100_priv, security_work.work);
5533
5534 /* If we happen to have reconnected before we get a chance to
5535 * process this, then update the security settings--which causes
5536 * a disassociation to occur */
5537 if (!(priv->status & STATUS_ASSOCIATED) &&
5538 priv->status & STATUS_SECURITY_UPDATED)
5539 ipw2100_configure_security(priv, 0);
5540 }
5541
5542 static void shim__set_security(struct net_device *dev,
5543 struct ieee80211_security *sec)
5544 {
5545 struct ipw2100_priv *priv = ieee80211_priv(dev);
5546 int i, force_update = 0;
5547
5548 mutex_lock(&priv->action_mutex);
5549 if (!(priv->status & STATUS_INITIALIZED))
5550 goto done;
5551
5552 for (i = 0; i < 4; i++) {
5553 if (sec->flags & (1 << i)) {
5554 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5555 if (sec->key_sizes[i] == 0)
5556 priv->ieee->sec.flags &= ~(1 << i);
5557 else
5558 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5559 sec->key_sizes[i]);
5560 if (sec->level == SEC_LEVEL_1) {
5561 priv->ieee->sec.flags |= (1 << i);
5562 priv->status |= STATUS_SECURITY_UPDATED;
5563 } else
5564 priv->ieee->sec.flags &= ~(1 << i);
5565 }
5566 }
5567
5568 if ((sec->flags & SEC_ACTIVE_KEY) &&
5569 priv->ieee->sec.active_key != sec->active_key) {
5570 if (sec->active_key <= 3) {
5571 priv->ieee->sec.active_key = sec->active_key;
5572 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5573 } else
5574 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5575
5576 priv->status |= STATUS_SECURITY_UPDATED;
5577 }
5578
5579 if ((sec->flags & SEC_AUTH_MODE) &&
5580 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5581 priv->ieee->sec.auth_mode = sec->auth_mode;
5582 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5583 priv->status |= STATUS_SECURITY_UPDATED;
5584 }
5585
5586 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5587 priv->ieee->sec.flags |= SEC_ENABLED;
5588 priv->ieee->sec.enabled = sec->enabled;
5589 priv->status |= STATUS_SECURITY_UPDATED;
5590 force_update = 1;
5591 }
5592
5593 if (sec->flags & SEC_ENCRYPT)
5594 priv->ieee->sec.encrypt = sec->encrypt;
5595
5596 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5597 priv->ieee->sec.level = sec->level;
5598 priv->ieee->sec.flags |= SEC_LEVEL;
5599 priv->status |= STATUS_SECURITY_UPDATED;
5600 }
5601
5602 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5603 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5604 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5605 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5612
5613 /* As a temporary work around to enable WPA until we figure out why
5614 * wpa_supplicant toggles the security capability of the driver, which
5615 * forces a disassocation with force_update...
5616 *
5617 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5618 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5619 ipw2100_configure_security(priv, 0);
5620 done:
5621 mutex_unlock(&priv->action_mutex);
5622 }
5623
5624 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5625 {
5626 int err;
5627 int batch_mode = 1;
5628 u8 *bssid;
5629
5630 IPW_DEBUG_INFO("enter\n");
5631
5632 err = ipw2100_disable_adapter(priv);
5633 if (err)
5634 return err;
5635 #ifdef CONFIG_IPW2100_MONITOR
5636 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5637 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5638 if (err)
5639 return err;
5640
5641 IPW_DEBUG_INFO("exit\n");
5642
5643 return 0;
5644 }
5645 #endif /* CONFIG_IPW2100_MONITOR */
5646
5647 err = ipw2100_read_mac_address(priv);
5648 if (err)
5649 return -EIO;
5650
5651 err = ipw2100_set_mac_address(priv, batch_mode);
5652 if (err)
5653 return err;
5654
5655 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5656 if (err)
5657 return err;
5658
5659 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5660 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5661 if (err)
5662 return err;
5663 }
5664
5665 err = ipw2100_system_config(priv, batch_mode);
5666 if (err)
5667 return err;
5668
5669 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5670 if (err)
5671 return err;
5672
5673 /* Default to power mode OFF */
5674 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5675 if (err)
5676 return err;
5677
5678 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5679 if (err)
5680 return err;
5681
5682 if (priv->config & CFG_STATIC_BSSID)
5683 bssid = priv->bssid;
5684 else
5685 bssid = NULL;
5686 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5687 if (err)
5688 return err;
5689
5690 if (priv->config & CFG_STATIC_ESSID)
5691 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5692 batch_mode);
5693 else
5694 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5695 if (err)
5696 return err;
5697
5698 err = ipw2100_configure_security(priv, batch_mode);
5699 if (err)
5700 return err;
5701
5702 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5703 err =
5704 ipw2100_set_ibss_beacon_interval(priv,
5705 priv->beacon_interval,
5706 batch_mode);
5707 if (err)
5708 return err;
5709
5710 err = ipw2100_set_tx_power(priv, priv->tx_power);
5711 if (err)
5712 return err;
5713 }
5714
5715 /*
5716 err = ipw2100_set_fragmentation_threshold(
5717 priv, priv->frag_threshold, batch_mode);
5718 if (err)
5719 return err;
5720 */
5721
5722 IPW_DEBUG_INFO("exit\n");
5723
5724 return 0;
5725 }
5726
5727 /*************************************************************************
5728 *
5729 * EXTERNALLY CALLED METHODS
5730 *
5731 *************************************************************************/
5732
5733 /* This method is called by the network layer -- not to be confused with
5734 * ipw2100_set_mac_address() declared above called by this driver (and this
5735 * method as well) to talk to the firmware */
5736 static int ipw2100_set_address(struct net_device *dev, void *p)
5737 {
5738 struct ipw2100_priv *priv = ieee80211_priv(dev);
5739 struct sockaddr *addr = p;
5740 int err = 0;
5741
5742 if (!is_valid_ether_addr(addr->sa_data))
5743 return -EADDRNOTAVAIL;
5744
5745 mutex_lock(&priv->action_mutex);
5746
5747 priv->config |= CFG_CUSTOM_MAC;
5748 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5749
5750 err = ipw2100_set_mac_address(priv, 0);
5751 if (err)
5752 goto done;
5753
5754 priv->reset_backoff = 0;
5755 mutex_unlock(&priv->action_mutex);
5756 ipw2100_reset_adapter(&priv->reset_work.work);
5757 return 0;
5758
5759 done:
5760 mutex_unlock(&priv->action_mutex);
5761 return err;
5762 }
5763
5764 static int ipw2100_open(struct net_device *dev)
5765 {
5766 struct ipw2100_priv *priv = ieee80211_priv(dev);
5767 unsigned long flags;
5768 IPW_DEBUG_INFO("dev->open\n");
5769
5770 spin_lock_irqsave(&priv->low_lock, flags);
5771 if (priv->status & STATUS_ASSOCIATED) {
5772 netif_carrier_on(dev);
5773 netif_start_queue(dev);
5774 }
5775 spin_unlock_irqrestore(&priv->low_lock, flags);
5776
5777 return 0;
5778 }
5779
5780 static int ipw2100_close(struct net_device *dev)
5781 {
5782 struct ipw2100_priv *priv = ieee80211_priv(dev);
5783 unsigned long flags;
5784 struct list_head *element;
5785 struct ipw2100_tx_packet *packet;
5786
5787 IPW_DEBUG_INFO("enter\n");
5788
5789 spin_lock_irqsave(&priv->low_lock, flags);
5790
5791 if (priv->status & STATUS_ASSOCIATED)
5792 netif_carrier_off(dev);
5793 netif_stop_queue(dev);
5794
5795 /* Flush the TX queue ... */
5796 while (!list_empty(&priv->tx_pend_list)) {
5797 element = priv->tx_pend_list.next;
5798 packet = list_entry(element, struct ipw2100_tx_packet, list);
5799
5800 list_del(element);
5801 DEC_STAT(&priv->tx_pend_stat);
5802
5803 ieee80211_txb_free(packet->info.d_struct.txb);
5804 packet->info.d_struct.txb = NULL;
5805
5806 list_add_tail(element, &priv->tx_free_list);
5807 INC_STAT(&priv->tx_free_stat);
5808 }
5809 spin_unlock_irqrestore(&priv->low_lock, flags);
5810
5811 IPW_DEBUG_INFO("exit\n");
5812
5813 return 0;
5814 }
5815
5816 /*
5817 * TODO: Fix this function... its just wrong
5818 */
5819 static void ipw2100_tx_timeout(struct net_device *dev)
5820 {
5821 struct ipw2100_priv *priv = ieee80211_priv(dev);
5822
5823 priv->ieee->stats.tx_errors++;
5824
5825 #ifdef CONFIG_IPW2100_MONITOR
5826 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5827 return;
5828 #endif
5829
5830 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5831 dev->name);
5832 schedule_reset(priv);
5833 }
5834
5835 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5836 {
5837 /* This is called when wpa_supplicant loads and closes the driver
5838 * interface. */
5839 priv->ieee->wpa_enabled = value;
5840 return 0;
5841 }
5842
5843 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5844 {
5845
5846 struct ieee80211_device *ieee = priv->ieee;
5847 struct ieee80211_security sec = {
5848 .flags = SEC_AUTH_MODE,
5849 };
5850 int ret = 0;
5851
5852 if (value & IW_AUTH_ALG_SHARED_KEY) {
5853 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5854 ieee->open_wep = 0;
5855 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5856 sec.auth_mode = WLAN_AUTH_OPEN;
5857 ieee->open_wep = 1;
5858 } else if (value & IW_AUTH_ALG_LEAP) {
5859 sec.auth_mode = WLAN_AUTH_LEAP;
5860 ieee->open_wep = 1;
5861 } else
5862 return -EINVAL;
5863
5864 if (ieee->set_security)
5865 ieee->set_security(ieee->dev, &sec);
5866 else
5867 ret = -EOPNOTSUPP;
5868
5869 return ret;
5870 }
5871
5872 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5873 char *wpa_ie, int wpa_ie_len)
5874 {
5875
5876 struct ipw2100_wpa_assoc_frame frame;
5877
5878 frame.fixed_ie_mask = 0;
5879
5880 /* copy WPA IE */
5881 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5882 frame.var_ie_len = wpa_ie_len;
5883
5884 /* make sure WPA is enabled */
5885 ipw2100_wpa_enable(priv, 1);
5886 ipw2100_set_wpa_ie(priv, &frame, 0);
5887 }
5888
5889 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5890 struct ethtool_drvinfo *info)
5891 {
5892 struct ipw2100_priv *priv = ieee80211_priv(dev);
5893 char fw_ver[64], ucode_ver[64];
5894
5895 strcpy(info->driver, DRV_NAME);
5896 strcpy(info->version, DRV_VERSION);
5897
5898 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5899 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5900
5901 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5902 fw_ver, priv->eeprom_version, ucode_ver);
5903
5904 strcpy(info->bus_info, pci_name(priv->pci_dev));
5905 }
5906
5907 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5908 {
5909 struct ipw2100_priv *priv = ieee80211_priv(dev);
5910 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5911 }
5912
5913 static const struct ethtool_ops ipw2100_ethtool_ops = {
5914 .get_link = ipw2100_ethtool_get_link,
5915 .get_drvinfo = ipw_ethtool_get_drvinfo,
5916 };
5917
5918 static void ipw2100_hang_check(struct work_struct *work)
5919 {
5920 struct ipw2100_priv *priv =
5921 container_of(work, struct ipw2100_priv, hang_check.work);
5922 unsigned long flags;
5923 u32 rtc = 0xa5a5a5a5;
5924 u32 len = sizeof(rtc);
5925 int restart = 0;
5926
5927 spin_lock_irqsave(&priv->low_lock, flags);
5928
5929 if (priv->fatal_error != 0) {
5930 /* If fatal_error is set then we need to restart */
5931 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5932 priv->net_dev->name);
5933
5934 restart = 1;
5935 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5936 (rtc == priv->last_rtc)) {
5937 /* Check if firmware is hung */
5938 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5939 priv->net_dev->name);
5940
5941 restart = 1;
5942 }
5943
5944 if (restart) {
5945 /* Kill timer */
5946 priv->stop_hang_check = 1;
5947 priv->hangs++;
5948
5949 /* Restart the NIC */
5950 schedule_reset(priv);
5951 }
5952
5953 priv->last_rtc = rtc;
5954
5955 if (!priv->stop_hang_check)
5956 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5957
5958 spin_unlock_irqrestore(&priv->low_lock, flags);
5959 }
5960
5961 static void ipw2100_rf_kill(struct work_struct *work)
5962 {
5963 struct ipw2100_priv *priv =
5964 container_of(work, struct ipw2100_priv, rf_kill.work);
5965 unsigned long flags;
5966
5967 spin_lock_irqsave(&priv->low_lock, flags);
5968
5969 if (rf_kill_active(priv)) {
5970 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5971 if (!priv->stop_rf_kill)
5972 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5973 goto exit_unlock;
5974 }
5975
5976 /* RF Kill is now disabled, so bring the device back up */
5977
5978 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5979 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5980 "device\n");
5981 schedule_reset(priv);
5982 } else
5983 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5984 "enabled\n");
5985
5986 exit_unlock:
5987 spin_unlock_irqrestore(&priv->low_lock, flags);
5988 }
5989
5990 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5991
5992 /* Look into using netdev destructor to shutdown ieee80211? */
5993
5994 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5995 void __iomem * base_addr,
5996 unsigned long mem_start,
5997 unsigned long mem_len)
5998 {
5999 struct ipw2100_priv *priv;
6000 struct net_device *dev;
6001
6002 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6003 if (!dev)
6004 return NULL;
6005 priv = ieee80211_priv(dev);
6006 priv->ieee = netdev_priv(dev);
6007 priv->pci_dev = pci_dev;
6008 priv->net_dev = dev;
6009
6010 priv->ieee->hard_start_xmit = ipw2100_tx;
6011 priv->ieee->set_security = shim__set_security;
6012
6013 priv->ieee->perfect_rssi = -20;
6014 priv->ieee->worst_rssi = -85;
6015
6016 dev->open = ipw2100_open;
6017 dev->stop = ipw2100_close;
6018 dev->init = ipw2100_net_init;
6019 dev->ethtool_ops = &ipw2100_ethtool_ops;
6020 dev->tx_timeout = ipw2100_tx_timeout;
6021 dev->wireless_handlers = &ipw2100_wx_handler_def;
6022 priv->wireless_data.ieee80211 = priv->ieee;
6023 dev->wireless_data = &priv->wireless_data;
6024 dev->set_mac_address = ipw2100_set_address;
6025 dev->watchdog_timeo = 3 * HZ;
6026 dev->irq = 0;
6027
6028 dev->base_addr = (unsigned long)base_addr;
6029 dev->mem_start = mem_start;
6030 dev->mem_end = dev->mem_start + mem_len - 1;
6031
6032 /* NOTE: We don't use the wireless_handlers hook
6033 * in dev as the system will start throwing WX requests
6034 * to us before we're actually initialized and it just
6035 * ends up causing problems. So, we just handle
6036 * the WX extensions through the ipw2100_ioctl interface */
6037
6038 /* memset() puts everything to 0, so we only have explicitely set
6039 * those values that need to be something else */
6040
6041 /* If power management is turned on, default to AUTO mode */
6042 priv->power_mode = IPW_POWER_AUTO;
6043
6044 #ifdef CONFIG_IPW2100_MONITOR
6045 priv->config |= CFG_CRC_CHECK;
6046 #endif
6047 priv->ieee->wpa_enabled = 0;
6048 priv->ieee->drop_unencrypted = 0;
6049 priv->ieee->privacy_invoked = 0;
6050 priv->ieee->ieee802_1x = 1;
6051
6052 /* Set module parameters */
6053 switch (mode) {
6054 case 1:
6055 priv->ieee->iw_mode = IW_MODE_ADHOC;
6056 break;
6057 #ifdef CONFIG_IPW2100_MONITOR
6058 case 2:
6059 priv->ieee->iw_mode = IW_MODE_MONITOR;
6060 break;
6061 #endif
6062 default:
6063 case 0:
6064 priv->ieee->iw_mode = IW_MODE_INFRA;
6065 break;
6066 }
6067
6068 if (disable == 1)
6069 priv->status |= STATUS_RF_KILL_SW;
6070
6071 if (channel != 0 &&
6072 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6073 priv->config |= CFG_STATIC_CHANNEL;
6074 priv->channel = channel;
6075 }
6076
6077 if (associate)
6078 priv->config |= CFG_ASSOCIATE;
6079
6080 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6081 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6082 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6083 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6084 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6085 priv->tx_power = IPW_TX_POWER_DEFAULT;
6086 priv->tx_rates = DEFAULT_TX_RATES;
6087
6088 strcpy(priv->nick, "ipw2100");
6089
6090 spin_lock_init(&priv->low_lock);
6091 mutex_init(&priv->action_mutex);
6092 mutex_init(&priv->adapter_mutex);
6093
6094 init_waitqueue_head(&priv->wait_command_queue);
6095
6096 netif_carrier_off(dev);
6097
6098 INIT_LIST_HEAD(&priv->msg_free_list);
6099 INIT_LIST_HEAD(&priv->msg_pend_list);
6100 INIT_STAT(&priv->msg_free_stat);
6101 INIT_STAT(&priv->msg_pend_stat);
6102
6103 INIT_LIST_HEAD(&priv->tx_free_list);
6104 INIT_LIST_HEAD(&priv->tx_pend_list);
6105 INIT_STAT(&priv->tx_free_stat);
6106 INIT_STAT(&priv->tx_pend_stat);
6107
6108 INIT_LIST_HEAD(&priv->fw_pend_list);
6109 INIT_STAT(&priv->fw_pend_stat);
6110
6111 priv->workqueue = create_workqueue(DRV_NAME);
6112
6113 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6114 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6115 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6116 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6117 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6118
6119 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6120 ipw2100_irq_tasklet, (unsigned long)priv);
6121
6122 /* NOTE: We do not start the deferred work for status checks yet */
6123 priv->stop_rf_kill = 1;
6124 priv->stop_hang_check = 1;
6125
6126 return dev;
6127 }
6128
6129 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6130 const struct pci_device_id *ent)
6131 {
6132 unsigned long mem_start, mem_len, mem_flags;
6133 void __iomem *base_addr = NULL;
6134 struct net_device *dev = NULL;
6135 struct ipw2100_priv *priv = NULL;
6136 int err = 0;
6137 int registered = 0;
6138 u32 val;
6139
6140 IPW_DEBUG_INFO("enter\n");
6141
6142 mem_start = pci_resource_start(pci_dev, 0);
6143 mem_len = pci_resource_len(pci_dev, 0);
6144 mem_flags = pci_resource_flags(pci_dev, 0);
6145
6146 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6147 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6148 err = -ENODEV;
6149 goto fail;
6150 }
6151
6152 base_addr = ioremap_nocache(mem_start, mem_len);
6153 if (!base_addr) {
6154 printk(KERN_WARNING DRV_NAME
6155 "Error calling ioremap_nocache.\n");
6156 err = -EIO;
6157 goto fail;
6158 }
6159
6160 /* allocate and initialize our net_device */
6161 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6162 if (!dev) {
6163 printk(KERN_WARNING DRV_NAME
6164 "Error calling ipw2100_alloc_device.\n");
6165 err = -ENOMEM;
6166 goto fail;
6167 }
6168
6169 /* set up PCI mappings for device */
6170 err = pci_enable_device(pci_dev);
6171 if (err) {
6172 printk(KERN_WARNING DRV_NAME
6173 "Error calling pci_enable_device.\n");
6174 return err;
6175 }
6176
6177 priv = ieee80211_priv(dev);
6178
6179 pci_set_master(pci_dev);
6180 pci_set_drvdata(pci_dev, priv);
6181
6182 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6183 if (err) {
6184 printk(KERN_WARNING DRV_NAME
6185 "Error calling pci_set_dma_mask.\n");
6186 pci_disable_device(pci_dev);
6187 return err;
6188 }
6189
6190 err = pci_request_regions(pci_dev, DRV_NAME);
6191 if (err) {
6192 printk(KERN_WARNING DRV_NAME
6193 "Error calling pci_request_regions.\n");
6194 pci_disable_device(pci_dev);
6195 return err;
6196 }
6197
6198 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6199 * PCI Tx retries from interfering with C3 CPU state */
6200 pci_read_config_dword(pci_dev, 0x40, &val);
6201 if ((val & 0x0000ff00) != 0)
6202 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6203
6204 pci_set_power_state(pci_dev, PCI_D0);
6205
6206 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6207 printk(KERN_WARNING DRV_NAME
6208 "Device not found via register read.\n");
6209 err = -ENODEV;
6210 goto fail;
6211 }
6212
6213 SET_NETDEV_DEV(dev, &pci_dev->dev);
6214
6215 /* Force interrupts to be shut off on the device */
6216 priv->status |= STATUS_INT_ENABLED;
6217 ipw2100_disable_interrupts(priv);
6218
6219 /* Allocate and initialize the Tx/Rx queues and lists */
6220 if (ipw2100_queues_allocate(priv)) {
6221 printk(KERN_WARNING DRV_NAME
6222 "Error calling ipw2100_queues_allocate.\n");
6223 err = -ENOMEM;
6224 goto fail;
6225 }
6226 ipw2100_queues_initialize(priv);
6227
6228 err = request_irq(pci_dev->irq,
6229 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6230 if (err) {
6231 printk(KERN_WARNING DRV_NAME
6232 "Error calling request_irq: %d.\n", pci_dev->irq);
6233 goto fail;
6234 }
6235 dev->irq = pci_dev->irq;
6236
6237 IPW_DEBUG_INFO("Attempting to register device...\n");
6238
6239 SET_MODULE_OWNER(dev);
6240
6241 printk(KERN_INFO DRV_NAME
6242 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6243
6244 /* Bring up the interface. Pre 0.46, after we registered the
6245 * network device we would call ipw2100_up. This introduced a race
6246 * condition with newer hotplug configurations (network was coming
6247 * up and making calls before the device was initialized).
6248 *
6249 * If we called ipw2100_up before we registered the device, then the
6250 * device name wasn't registered. So, we instead use the net_dev->init
6251 * member to call a function that then just turns and calls ipw2100_up.
6252 * net_dev->init is called after name allocation but before the
6253 * notifier chain is called */
6254 err = register_netdev(dev);
6255 if (err) {
6256 printk(KERN_WARNING DRV_NAME
6257 "Error calling register_netdev.\n");
6258 goto fail;
6259 }
6260
6261 mutex_lock(&priv->action_mutex);
6262 registered = 1;
6263
6264 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6265
6266 /* perform this after register_netdev so that dev->name is set */
6267 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6268 if (err)
6269 goto fail_unlock;
6270
6271 /* If the RF Kill switch is disabled, go ahead and complete the
6272 * startup sequence */
6273 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6274 /* Enable the adapter - sends HOST_COMPLETE */
6275 if (ipw2100_enable_adapter(priv)) {
6276 printk(KERN_WARNING DRV_NAME
6277 ": %s: failed in call to enable adapter.\n",
6278 priv->net_dev->name);
6279 ipw2100_hw_stop_adapter(priv);
6280 err = -EIO;
6281 goto fail_unlock;
6282 }
6283
6284 /* Start a scan . . . */
6285 ipw2100_set_scan_options(priv);
6286 ipw2100_start_scan(priv);
6287 }
6288
6289 IPW_DEBUG_INFO("exit\n");
6290
6291 priv->status |= STATUS_INITIALIZED;
6292
6293 mutex_unlock(&priv->action_mutex);
6294
6295 return 0;
6296
6297 fail_unlock:
6298 mutex_unlock(&priv->action_mutex);
6299
6300 fail:
6301 if (dev) {
6302 if (registered)
6303 unregister_netdev(dev);
6304
6305 ipw2100_hw_stop_adapter(priv);
6306
6307 ipw2100_disable_interrupts(priv);
6308
6309 if (dev->irq)
6310 free_irq(dev->irq, priv);
6311
6312 ipw2100_kill_workqueue(priv);
6313
6314 /* These are safe to call even if they weren't allocated */
6315 ipw2100_queues_free(priv);
6316 sysfs_remove_group(&pci_dev->dev.kobj,
6317 &ipw2100_attribute_group);
6318
6319 free_ieee80211(dev);
6320 pci_set_drvdata(pci_dev, NULL);
6321 }
6322
6323 if (base_addr)
6324 iounmap(base_addr);
6325
6326 pci_release_regions(pci_dev);
6327 pci_disable_device(pci_dev);
6328
6329 return err;
6330 }
6331
6332 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6333 {
6334 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6335 struct net_device *dev;
6336
6337 if (priv) {
6338 mutex_lock(&priv->action_mutex);
6339
6340 priv->status &= ~STATUS_INITIALIZED;
6341
6342 dev = priv->net_dev;
6343 sysfs_remove_group(&pci_dev->dev.kobj,
6344 &ipw2100_attribute_group);
6345
6346 #ifdef CONFIG_PM
6347 if (ipw2100_firmware.version)
6348 ipw2100_release_firmware(priv, &ipw2100_firmware);
6349 #endif
6350 /* Take down the hardware */
6351 ipw2100_down(priv);
6352
6353 /* Release the mutex so that the network subsystem can
6354 * complete any needed calls into the driver... */
6355 mutex_unlock(&priv->action_mutex);
6356
6357 /* Unregister the device first - this results in close()
6358 * being called if the device is open. If we free storage
6359 * first, then close() will crash. */
6360 unregister_netdev(dev);
6361
6362 /* ipw2100_down will ensure that there is no more pending work
6363 * in the workqueue's, so we can safely remove them now. */
6364 ipw2100_kill_workqueue(priv);
6365
6366 ipw2100_queues_free(priv);
6367
6368 /* Free potential debugging firmware snapshot */
6369 ipw2100_snapshot_free(priv);
6370
6371 if (dev->irq)
6372 free_irq(dev->irq, priv);
6373
6374 if (dev->base_addr)
6375 iounmap((void __iomem *)dev->base_addr);
6376
6377 free_ieee80211(dev);
6378 }
6379
6380 pci_release_regions(pci_dev);
6381 pci_disable_device(pci_dev);
6382
6383 IPW_DEBUG_INFO("exit\n");
6384 }
6385
6386 #ifdef CONFIG_PM
6387 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6388 {
6389 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6390 struct net_device *dev = priv->net_dev;
6391
6392 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6393
6394 mutex_lock(&priv->action_mutex);
6395 if (priv->status & STATUS_INITIALIZED) {
6396 /* Take down the device; powers it off, etc. */
6397 ipw2100_down(priv);
6398 }
6399
6400 /* Remove the PRESENT state of the device */
6401 netif_device_detach(dev);
6402
6403 pci_save_state(pci_dev);
6404 pci_disable_device(pci_dev);
6405 pci_set_power_state(pci_dev, PCI_D3hot);
6406
6407 mutex_unlock(&priv->action_mutex);
6408
6409 return 0;
6410 }
6411
6412 static int ipw2100_resume(struct pci_dev *pci_dev)
6413 {
6414 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6415 struct net_device *dev = priv->net_dev;
6416 int err;
6417 u32 val;
6418
6419 if (IPW2100_PM_DISABLED)
6420 return 0;
6421
6422 mutex_lock(&priv->action_mutex);
6423
6424 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6425
6426 pci_set_power_state(pci_dev, PCI_D0);
6427 err = pci_enable_device(pci_dev);
6428 if (err) {
6429 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6430 dev->name);
6431 return err;
6432 }
6433 pci_restore_state(pci_dev);
6434
6435 /*
6436 * Suspend/Resume resets the PCI configuration space, so we have to
6437 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6438 * from interfering with C3 CPU state. pci_restore_state won't help
6439 * here since it only restores the first 64 bytes pci config header.
6440 */
6441 pci_read_config_dword(pci_dev, 0x40, &val);
6442 if ((val & 0x0000ff00) != 0)
6443 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6444
6445 /* Set the device back into the PRESENT state; this will also wake
6446 * the queue of needed */
6447 netif_device_attach(dev);
6448
6449 /* Bring the device back up */
6450 if (!(priv->status & STATUS_RF_KILL_SW))
6451 ipw2100_up(priv, 0);
6452
6453 mutex_unlock(&priv->action_mutex);
6454
6455 return 0;
6456 }
6457 #endif
6458
6459 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6460
6461 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6462 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6463 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6464 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6465 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6466 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6467 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6468 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6469 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6470 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6471 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6472 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6473 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6474 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6475
6476 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6477 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6478 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6479 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6480 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6481
6482 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6483 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6484 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6485 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6486 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6487 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6488 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6489
6490 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6491
6492 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6493 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6494 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6495 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6496 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6497 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6498 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6499
6500 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6501 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6502 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6503 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6504 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6505 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6506
6507 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6508 {0,},
6509 };
6510
6511 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6512
6513 static struct pci_driver ipw2100_pci_driver = {
6514 .name = DRV_NAME,
6515 .id_table = ipw2100_pci_id_table,
6516 .probe = ipw2100_pci_init_one,
6517 .remove = __devexit_p(ipw2100_pci_remove_one),
6518 #ifdef CONFIG_PM
6519 .suspend = ipw2100_suspend,
6520 .resume = ipw2100_resume,
6521 #endif
6522 };
6523
6524 /**
6525 * Initialize the ipw2100 driver/module
6526 *
6527 * @returns 0 if ok, < 0 errno node con error.
6528 *
6529 * Note: we cannot init the /proc stuff until the PCI driver is there,
6530 * or we risk an unlikely race condition on someone accessing
6531 * uninitialized data in the PCI dev struct through /proc.
6532 */
6533 static int __init ipw2100_init(void)
6534 {
6535 int ret;
6536
6537 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6538 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6539
6540 ret = pci_register_driver(&ipw2100_pci_driver);
6541 if (ret)
6542 goto out;
6543
6544 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6545 #ifdef CONFIG_IPW2100_DEBUG
6546 ipw2100_debug_level = debug;
6547 ret = driver_create_file(&ipw2100_pci_driver.driver,
6548 &driver_attr_debug_level);
6549 #endif
6550
6551 out:
6552 return ret;
6553 }
6554
6555 /**
6556 * Cleanup ipw2100 driver registration
6557 */
6558 static void __exit ipw2100_exit(void)
6559 {
6560 /* FIXME: IPG: check that we have no instances of the devices open */
6561 #ifdef CONFIG_IPW2100_DEBUG
6562 driver_remove_file(&ipw2100_pci_driver.driver,
6563 &driver_attr_debug_level);
6564 #endif
6565 pci_unregister_driver(&ipw2100_pci_driver);
6566 remove_acceptable_latency("ipw2100");
6567 }
6568
6569 module_init(ipw2100_init);
6570 module_exit(ipw2100_exit);
6571
6572 #define WEXT_USECHANNELS 1
6573
6574 static const long ipw2100_frequencies[] = {
6575 2412, 2417, 2422, 2427,
6576 2432, 2437, 2442, 2447,
6577 2452, 2457, 2462, 2467,
6578 2472, 2484
6579 };
6580
6581 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6582 sizeof(ipw2100_frequencies[0]))
6583
6584 static const long ipw2100_rates_11b[] = {
6585 1000000,
6586 2000000,
6587 5500000,
6588 11000000
6589 };
6590
6591 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6592
6593 static int ipw2100_wx_get_name(struct net_device *dev,
6594 struct iw_request_info *info,
6595 union iwreq_data *wrqu, char *extra)
6596 {
6597 /*
6598 * This can be called at any time. No action lock required
6599 */
6600
6601 struct ipw2100_priv *priv = ieee80211_priv(dev);
6602 if (!(priv->status & STATUS_ASSOCIATED))
6603 strcpy(wrqu->name, "unassociated");
6604 else
6605 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6606
6607 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6608 return 0;
6609 }
6610
6611 static int ipw2100_wx_set_freq(struct net_device *dev,
6612 struct iw_request_info *info,
6613 union iwreq_data *wrqu, char *extra)
6614 {
6615 struct ipw2100_priv *priv = ieee80211_priv(dev);
6616 struct iw_freq *fwrq = &wrqu->freq;
6617 int err = 0;
6618
6619 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6620 return -EOPNOTSUPP;
6621
6622 mutex_lock(&priv->action_mutex);
6623 if (!(priv->status & STATUS_INITIALIZED)) {
6624 err = -EIO;
6625 goto done;
6626 }
6627
6628 /* if setting by freq convert to channel */
6629 if (fwrq->e == 1) {
6630 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6631 int f = fwrq->m / 100000;
6632 int c = 0;
6633
6634 while ((c < REG_MAX_CHANNEL) &&
6635 (f != ipw2100_frequencies[c]))
6636 c++;
6637
6638 /* hack to fall through */
6639 fwrq->e = 0;
6640 fwrq->m = c + 1;
6641 }
6642 }
6643
6644 if (fwrq->e > 0 || fwrq->m > 1000) {
6645 err = -EOPNOTSUPP;
6646 goto done;
6647 } else { /* Set the channel */
6648 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6649 err = ipw2100_set_channel(priv, fwrq->m, 0);
6650 }
6651
6652 done:
6653 mutex_unlock(&priv->action_mutex);
6654 return err;
6655 }
6656
6657 static int ipw2100_wx_get_freq(struct net_device *dev,
6658 struct iw_request_info *info,
6659 union iwreq_data *wrqu, char *extra)
6660 {
6661 /*
6662 * This can be called at any time. No action lock required
6663 */
6664
6665 struct ipw2100_priv *priv = ieee80211_priv(dev);
6666
6667 wrqu->freq.e = 0;
6668
6669 /* If we are associated, trying to associate, or have a statically
6670 * configured CHANNEL then return that; otherwise return ANY */
6671 if (priv->config & CFG_STATIC_CHANNEL ||
6672 priv->status & STATUS_ASSOCIATED)
6673 wrqu->freq.m = priv->channel;
6674 else
6675 wrqu->freq.m = 0;
6676
6677 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6678 return 0;
6679
6680 }
6681
6682 static int ipw2100_wx_set_mode(struct net_device *dev,
6683 struct iw_request_info *info,
6684 union iwreq_data *wrqu, char *extra)
6685 {
6686 struct ipw2100_priv *priv = ieee80211_priv(dev);
6687 int err = 0;
6688
6689 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6690
6691 if (wrqu->mode == priv->ieee->iw_mode)
6692 return 0;
6693
6694 mutex_lock(&priv->action_mutex);
6695 if (!(priv->status & STATUS_INITIALIZED)) {
6696 err = -EIO;
6697 goto done;
6698 }
6699
6700 switch (wrqu->mode) {
6701 #ifdef CONFIG_IPW2100_MONITOR
6702 case IW_MODE_MONITOR:
6703 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6704 break;
6705 #endif /* CONFIG_IPW2100_MONITOR */
6706 case IW_MODE_ADHOC:
6707 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6708 break;
6709 case IW_MODE_INFRA:
6710 case IW_MODE_AUTO:
6711 default:
6712 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6713 break;
6714 }
6715
6716 done:
6717 mutex_unlock(&priv->action_mutex);
6718 return err;
6719 }
6720
6721 static int ipw2100_wx_get_mode(struct net_device *dev,
6722 struct iw_request_info *info,
6723 union iwreq_data *wrqu, char *extra)
6724 {
6725 /*
6726 * This can be called at any time. No action lock required
6727 */
6728
6729 struct ipw2100_priv *priv = ieee80211_priv(dev);
6730
6731 wrqu->mode = priv->ieee->iw_mode;
6732 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6733
6734 return 0;
6735 }
6736
6737 #define POWER_MODES 5
6738
6739 /* Values are in microsecond */
6740 static const s32 timeout_duration[POWER_MODES] = {
6741 350000,
6742 250000,
6743 75000,
6744 37000,
6745 25000,
6746 };
6747
6748 static const s32 period_duration[POWER_MODES] = {
6749 400000,
6750 700000,
6751 1000000,
6752 1000000,
6753 1000000
6754 };
6755
6756 static int ipw2100_wx_get_range(struct net_device *dev,
6757 struct iw_request_info *info,
6758 union iwreq_data *wrqu, char *extra)
6759 {
6760 /*
6761 * This can be called at any time. No action lock required
6762 */
6763
6764 struct ipw2100_priv *priv = ieee80211_priv(dev);
6765 struct iw_range *range = (struct iw_range *)extra;
6766 u16 val;
6767 int i, level;
6768
6769 wrqu->data.length = sizeof(*range);
6770 memset(range, 0, sizeof(*range));
6771
6772 /* Let's try to keep this struct in the same order as in
6773 * linux/include/wireless.h
6774 */
6775
6776 /* TODO: See what values we can set, and remove the ones we can't
6777 * set, or fill them with some default data.
6778 */
6779
6780 /* ~5 Mb/s real (802.11b) */
6781 range->throughput = 5 * 1000 * 1000;
6782
6783 // range->sensitivity; /* signal level threshold range */
6784
6785 range->max_qual.qual = 100;
6786 /* TODO: Find real max RSSI and stick here */
6787 range->max_qual.level = 0;
6788 range->max_qual.noise = 0;
6789 range->max_qual.updated = 7; /* Updated all three */
6790
6791 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6792 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6793 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6794 range->avg_qual.noise = 0;
6795 range->avg_qual.updated = 7; /* Updated all three */
6796
6797 range->num_bitrates = RATE_COUNT;
6798
6799 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6800 range->bitrate[i] = ipw2100_rates_11b[i];
6801 }
6802
6803 range->min_rts = MIN_RTS_THRESHOLD;
6804 range->max_rts = MAX_RTS_THRESHOLD;
6805 range->min_frag = MIN_FRAG_THRESHOLD;
6806 range->max_frag = MAX_FRAG_THRESHOLD;
6807
6808 range->min_pmp = period_duration[0]; /* Minimal PM period */
6809 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6810 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6811 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6812
6813 /* How to decode max/min PM period */
6814 range->pmp_flags = IW_POWER_PERIOD;
6815 /* How to decode max/min PM period */
6816 range->pmt_flags = IW_POWER_TIMEOUT;
6817 /* What PM options are supported */
6818 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6819
6820 range->encoding_size[0] = 5;
6821 range->encoding_size[1] = 13; /* Different token sizes */
6822 range->num_encoding_sizes = 2; /* Number of entry in the list */
6823 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6824 // range->encoding_login_index; /* token index for login token */
6825
6826 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6827 range->txpower_capa = IW_TXPOW_DBM;
6828 range->num_txpower = IW_MAX_TXPOWER;
6829 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6830 i < IW_MAX_TXPOWER;
6831 i++, level -=
6832 ((IPW_TX_POWER_MAX_DBM -
6833 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6834 range->txpower[i] = level / 16;
6835 } else {
6836 range->txpower_capa = 0;
6837 range->num_txpower = 0;
6838 }
6839
6840 /* Set the Wireless Extension versions */
6841 range->we_version_compiled = WIRELESS_EXT;
6842 range->we_version_source = 18;
6843
6844 // range->retry_capa; /* What retry options are supported */
6845 // range->retry_flags; /* How to decode max/min retry limit */
6846 // range->r_time_flags; /* How to decode max/min retry life */
6847 // range->min_retry; /* Minimal number of retries */
6848 // range->max_retry; /* Maximal number of retries */
6849 // range->min_r_time; /* Minimal retry lifetime */
6850 // range->max_r_time; /* Maximal retry lifetime */
6851
6852 range->num_channels = FREQ_COUNT;
6853
6854 val = 0;
6855 for (i = 0; i < FREQ_COUNT; i++) {
6856 // TODO: Include only legal frequencies for some countries
6857 // if (local->channel_mask & (1 << i)) {
6858 range->freq[val].i = i + 1;
6859 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6860 range->freq[val].e = 1;
6861 val++;
6862 // }
6863 if (val == IW_MAX_FREQUENCIES)
6864 break;
6865 }
6866 range->num_frequency = val;
6867
6868 /* Event capability (kernel + driver) */
6869 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6870 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6871 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6872
6873 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6874 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6875
6876 IPW_DEBUG_WX("GET Range\n");
6877
6878 return 0;
6879 }
6880
6881 static int ipw2100_wx_set_wap(struct net_device *dev,
6882 struct iw_request_info *info,
6883 union iwreq_data *wrqu, char *extra)
6884 {
6885 struct ipw2100_priv *priv = ieee80211_priv(dev);
6886 int err = 0;
6887
6888 static const unsigned char any[] = {
6889 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6890 };
6891 static const unsigned char off[] = {
6892 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6893 };
6894
6895 // sanity checks
6896 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6897 return -EINVAL;
6898
6899 mutex_lock(&priv->action_mutex);
6900 if (!(priv->status & STATUS_INITIALIZED)) {
6901 err = -EIO;
6902 goto done;
6903 }
6904
6905 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6906 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6907 /* we disable mandatory BSSID association */
6908 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6909 priv->config &= ~CFG_STATIC_BSSID;
6910 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6911 goto done;
6912 }
6913
6914 priv->config |= CFG_STATIC_BSSID;
6915 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6916
6917 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6918
6919 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6920 wrqu->ap_addr.sa_data[0] & 0xff,
6921 wrqu->ap_addr.sa_data[1] & 0xff,
6922 wrqu->ap_addr.sa_data[2] & 0xff,
6923 wrqu->ap_addr.sa_data[3] & 0xff,
6924 wrqu->ap_addr.sa_data[4] & 0xff,
6925 wrqu->ap_addr.sa_data[5] & 0xff);
6926
6927 done:
6928 mutex_unlock(&priv->action_mutex);
6929 return err;
6930 }
6931
6932 static int ipw2100_wx_get_wap(struct net_device *dev,
6933 struct iw_request_info *info,
6934 union iwreq_data *wrqu, char *extra)
6935 {
6936 /*
6937 * This can be called at any time. No action lock required
6938 */
6939
6940 struct ipw2100_priv *priv = ieee80211_priv(dev);
6941
6942 /* If we are associated, trying to associate, or have a statically
6943 * configured BSSID then return that; otherwise return ANY */
6944 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6945 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6946 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6947 } else
6948 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6949
6950 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6951 MAC_ARG(wrqu->ap_addr.sa_data));
6952 return 0;
6953 }
6954
6955 static int ipw2100_wx_set_essid(struct net_device *dev,
6956 struct iw_request_info *info,
6957 union iwreq_data *wrqu, char *extra)
6958 {
6959 struct ipw2100_priv *priv = ieee80211_priv(dev);
6960 char *essid = ""; /* ANY */
6961 int length = 0;
6962 int err = 0;
6963
6964 mutex_lock(&priv->action_mutex);
6965 if (!(priv->status & STATUS_INITIALIZED)) {
6966 err = -EIO;
6967 goto done;
6968 }
6969
6970 if (wrqu->essid.flags && wrqu->essid.length) {
6971 length = wrqu->essid.length;
6972 essid = extra;
6973 }
6974
6975 if (length == 0) {
6976 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6977 priv->config &= ~CFG_STATIC_ESSID;
6978 err = ipw2100_set_essid(priv, NULL, 0, 0);
6979 goto done;
6980 }
6981
6982 length = min(length, IW_ESSID_MAX_SIZE);
6983
6984 priv->config |= CFG_STATIC_ESSID;
6985
6986 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6987 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6988 err = 0;
6989 goto done;
6990 }
6991
6992 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6993 length);
6994
6995 priv->essid_len = length;
6996 memcpy(priv->essid, essid, priv->essid_len);
6997
6998 err = ipw2100_set_essid(priv, essid, length, 0);
6999
7000 done:
7001 mutex_unlock(&priv->action_mutex);
7002 return err;
7003 }
7004
7005 static int ipw2100_wx_get_essid(struct net_device *dev,
7006 struct iw_request_info *info,
7007 union iwreq_data *wrqu, char *extra)
7008 {
7009 /*
7010 * This can be called at any time. No action lock required
7011 */
7012
7013 struct ipw2100_priv *priv = ieee80211_priv(dev);
7014
7015 /* If we are associated, trying to associate, or have a statically
7016 * configured ESSID then return that; otherwise return ANY */
7017 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7018 IPW_DEBUG_WX("Getting essid: '%s'\n",
7019 escape_essid(priv->essid, priv->essid_len));
7020 memcpy(extra, priv->essid, priv->essid_len);
7021 wrqu->essid.length = priv->essid_len;
7022 wrqu->essid.flags = 1; /* active */
7023 } else {
7024 IPW_DEBUG_WX("Getting essid: ANY\n");
7025 wrqu->essid.length = 0;
7026 wrqu->essid.flags = 0; /* active */
7027 }
7028
7029 return 0;
7030 }
7031
7032 static int ipw2100_wx_set_nick(struct net_device *dev,
7033 struct iw_request_info *info,
7034 union iwreq_data *wrqu, char *extra)
7035 {
7036 /*
7037 * This can be called at any time. No action lock required
7038 */
7039
7040 struct ipw2100_priv *priv = ieee80211_priv(dev);
7041
7042 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7043 return -E2BIG;
7044
7045 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7046 memset(priv->nick, 0, sizeof(priv->nick));
7047 memcpy(priv->nick, extra, wrqu->data.length);
7048
7049 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7050
7051 return 0;
7052 }
7053
7054 static int ipw2100_wx_get_nick(struct net_device *dev,
7055 struct iw_request_info *info,
7056 union iwreq_data *wrqu, char *extra)
7057 {
7058 /*
7059 * This can be called at any time. No action lock required
7060 */
7061
7062 struct ipw2100_priv *priv = ieee80211_priv(dev);
7063
7064 wrqu->data.length = strlen(priv->nick);
7065 memcpy(extra, priv->nick, wrqu->data.length);
7066 wrqu->data.flags = 1; /* active */
7067
7068 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7069
7070 return 0;
7071 }
7072
7073 static int ipw2100_wx_set_rate(struct net_device *dev,
7074 struct iw_request_info *info,
7075 union iwreq_data *wrqu, char *extra)
7076 {
7077 struct ipw2100_priv *priv = ieee80211_priv(dev);
7078 u32 target_rate = wrqu->bitrate.value;
7079 u32 rate;
7080 int err = 0;
7081
7082 mutex_lock(&priv->action_mutex);
7083 if (!(priv->status & STATUS_INITIALIZED)) {
7084 err = -EIO;
7085 goto done;
7086 }
7087
7088 rate = 0;
7089
7090 if (target_rate == 1000000 ||
7091 (!wrqu->bitrate.fixed && target_rate > 1000000))
7092 rate |= TX_RATE_1_MBIT;
7093 if (target_rate == 2000000 ||
7094 (!wrqu->bitrate.fixed && target_rate > 2000000))
7095 rate |= TX_RATE_2_MBIT;
7096 if (target_rate == 5500000 ||
7097 (!wrqu->bitrate.fixed && target_rate > 5500000))
7098 rate |= TX_RATE_5_5_MBIT;
7099 if (target_rate == 11000000 ||
7100 (!wrqu->bitrate.fixed && target_rate > 11000000))
7101 rate |= TX_RATE_11_MBIT;
7102 if (rate == 0)
7103 rate = DEFAULT_TX_RATES;
7104
7105 err = ipw2100_set_tx_rates(priv, rate, 0);
7106
7107 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7108 done:
7109 mutex_unlock(&priv->action_mutex);
7110 return err;
7111 }
7112
7113 static int ipw2100_wx_get_rate(struct net_device *dev,
7114 struct iw_request_info *info,
7115 union iwreq_data *wrqu, char *extra)
7116 {
7117 struct ipw2100_priv *priv = ieee80211_priv(dev);
7118 int val;
7119 int len = sizeof(val);
7120 int err = 0;
7121
7122 if (!(priv->status & STATUS_ENABLED) ||
7123 priv->status & STATUS_RF_KILL_MASK ||
7124 !(priv->status & STATUS_ASSOCIATED)) {
7125 wrqu->bitrate.value = 0;
7126 return 0;
7127 }
7128
7129 mutex_lock(&priv->action_mutex);
7130 if (!(priv->status & STATUS_INITIALIZED)) {
7131 err = -EIO;
7132 goto done;
7133 }
7134
7135 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7136 if (err) {
7137 IPW_DEBUG_WX("failed querying ordinals.\n");
7138 return err;
7139 }
7140
7141 switch (val & TX_RATE_MASK) {
7142 case TX_RATE_1_MBIT:
7143 wrqu->bitrate.value = 1000000;
7144 break;
7145 case TX_RATE_2_MBIT:
7146 wrqu->bitrate.value = 2000000;
7147 break;
7148 case TX_RATE_5_5_MBIT:
7149 wrqu->bitrate.value = 5500000;
7150 break;
7151 case TX_RATE_11_MBIT:
7152 wrqu->bitrate.value = 11000000;
7153 break;
7154 default:
7155 wrqu->bitrate.value = 0;
7156 }
7157
7158 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7159
7160 done:
7161 mutex_unlock(&priv->action_mutex);
7162 return err;
7163 }
7164
7165 static int ipw2100_wx_set_rts(struct net_device *dev,
7166 struct iw_request_info *info,
7167 union iwreq_data *wrqu, char *extra)
7168 {
7169 struct ipw2100_priv *priv = ieee80211_priv(dev);
7170 int value, err;
7171
7172 /* Auto RTS not yet supported */
7173 if (wrqu->rts.fixed == 0)
7174 return -EINVAL;
7175
7176 mutex_lock(&priv->action_mutex);
7177 if (!(priv->status & STATUS_INITIALIZED)) {
7178 err = -EIO;
7179 goto done;
7180 }
7181
7182 if (wrqu->rts.disabled)
7183 value = priv->rts_threshold | RTS_DISABLED;
7184 else {
7185 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7186 err = -EINVAL;
7187 goto done;
7188 }
7189 value = wrqu->rts.value;
7190 }
7191
7192 err = ipw2100_set_rts_threshold(priv, value);
7193
7194 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7195 done:
7196 mutex_unlock(&priv->action_mutex);
7197 return err;
7198 }
7199
7200 static int ipw2100_wx_get_rts(struct net_device *dev,
7201 struct iw_request_info *info,
7202 union iwreq_data *wrqu, char *extra)
7203 {
7204 /*
7205 * This can be called at any time. No action lock required
7206 */
7207
7208 struct ipw2100_priv *priv = ieee80211_priv(dev);
7209
7210 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7211 wrqu->rts.fixed = 1; /* no auto select */
7212
7213 /* If RTS is set to the default value, then it is disabled */
7214 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7215
7216 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7217
7218 return 0;
7219 }
7220
7221 static int ipw2100_wx_set_txpow(struct net_device *dev,
7222 struct iw_request_info *info,
7223 union iwreq_data *wrqu, char *extra)
7224 {
7225 struct ipw2100_priv *priv = ieee80211_priv(dev);
7226 int err = 0, value;
7227
7228 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7229 return -EINPROGRESS;
7230
7231 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7232 return 0;
7233
7234 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7235 return -EINVAL;
7236
7237 if (wrqu->txpower.fixed == 0)
7238 value = IPW_TX_POWER_DEFAULT;
7239 else {
7240 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7241 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7242 return -EINVAL;
7243
7244 value = wrqu->txpower.value;
7245 }
7246
7247 mutex_lock(&priv->action_mutex);
7248 if (!(priv->status & STATUS_INITIALIZED)) {
7249 err = -EIO;
7250 goto done;
7251 }
7252
7253 err = ipw2100_set_tx_power(priv, value);
7254
7255 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7256
7257 done:
7258 mutex_unlock(&priv->action_mutex);
7259 return err;
7260 }
7261
7262 static int ipw2100_wx_get_txpow(struct net_device *dev,
7263 struct iw_request_info *info,
7264 union iwreq_data *wrqu, char *extra)
7265 {
7266 /*
7267 * This can be called at any time. No action lock required
7268 */
7269
7270 struct ipw2100_priv *priv = ieee80211_priv(dev);
7271
7272 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7273
7274 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7275 wrqu->txpower.fixed = 0;
7276 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7277 } else {
7278 wrqu->txpower.fixed = 1;
7279 wrqu->txpower.value = priv->tx_power;
7280 }
7281
7282 wrqu->txpower.flags = IW_TXPOW_DBM;
7283
7284 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7285
7286 return 0;
7287 }
7288
7289 static int ipw2100_wx_set_frag(struct net_device *dev,
7290 struct iw_request_info *info,
7291 union iwreq_data *wrqu, char *extra)
7292 {
7293 /*
7294 * This can be called at any time. No action lock required
7295 */
7296
7297 struct ipw2100_priv *priv = ieee80211_priv(dev);
7298
7299 if (!wrqu->frag.fixed)
7300 return -EINVAL;
7301
7302 if (wrqu->frag.disabled) {
7303 priv->frag_threshold |= FRAG_DISABLED;
7304 priv->ieee->fts = DEFAULT_FTS;
7305 } else {
7306 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7307 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7308 return -EINVAL;
7309
7310 priv->ieee->fts = wrqu->frag.value & ~0x1;
7311 priv->frag_threshold = priv->ieee->fts;
7312 }
7313
7314 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7315
7316 return 0;
7317 }
7318
7319 static int ipw2100_wx_get_frag(struct net_device *dev,
7320 struct iw_request_info *info,
7321 union iwreq_data *wrqu, char *extra)
7322 {
7323 /*
7324 * This can be called at any time. No action lock required
7325 */
7326
7327 struct ipw2100_priv *priv = ieee80211_priv(dev);
7328 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7329 wrqu->frag.fixed = 0; /* no auto select */
7330 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7331
7332 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7333
7334 return 0;
7335 }
7336
7337 static int ipw2100_wx_set_retry(struct net_device *dev,
7338 struct iw_request_info *info,
7339 union iwreq_data *wrqu, char *extra)
7340 {
7341 struct ipw2100_priv *priv = ieee80211_priv(dev);
7342 int err = 0;
7343
7344 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7345 return -EINVAL;
7346
7347 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7348 return 0;
7349
7350 mutex_lock(&priv->action_mutex);
7351 if (!(priv->status & STATUS_INITIALIZED)) {
7352 err = -EIO;
7353 goto done;
7354 }
7355
7356 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7357 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7358 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7359 wrqu->retry.value);
7360 goto done;
7361 }
7362
7363 if (wrqu->retry.flags & IW_RETRY_LONG) {
7364 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7365 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7366 wrqu->retry.value);
7367 goto done;
7368 }
7369
7370 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7371 if (!err)
7372 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7373
7374 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7375
7376 done:
7377 mutex_unlock(&priv->action_mutex);
7378 return err;
7379 }
7380
7381 static int ipw2100_wx_get_retry(struct net_device *dev,
7382 struct iw_request_info *info,
7383 union iwreq_data *wrqu, char *extra)
7384 {
7385 /*
7386 * This can be called at any time. No action lock required
7387 */
7388
7389 struct ipw2100_priv *priv = ieee80211_priv(dev);
7390
7391 wrqu->retry.disabled = 0; /* can't be disabled */
7392
7393 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7394 return -EINVAL;
7395
7396 if (wrqu->retry.flags & IW_RETRY_LONG) {
7397 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7398 wrqu->retry.value = priv->long_retry_limit;
7399 } else {
7400 wrqu->retry.flags =
7401 (priv->short_retry_limit !=
7402 priv->long_retry_limit) ?
7403 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7404
7405 wrqu->retry.value = priv->short_retry_limit;
7406 }
7407
7408 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7409
7410 return 0;
7411 }
7412
7413 static int ipw2100_wx_set_scan(struct net_device *dev,
7414 struct iw_request_info *info,
7415 union iwreq_data *wrqu, char *extra)
7416 {
7417 struct ipw2100_priv *priv = ieee80211_priv(dev);
7418 int err = 0;
7419
7420 mutex_lock(&priv->action_mutex);
7421 if (!(priv->status & STATUS_INITIALIZED)) {
7422 err = -EIO;
7423 goto done;
7424 }
7425
7426 IPW_DEBUG_WX("Initiating scan...\n");
7427 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7428 IPW_DEBUG_WX("Start scan failed.\n");
7429
7430 /* TODO: Mark a scan as pending so when hardware initialized
7431 * a scan starts */
7432 }
7433
7434 done:
7435 mutex_unlock(&priv->action_mutex);
7436 return err;
7437 }
7438
7439 static int ipw2100_wx_get_scan(struct net_device *dev,
7440 struct iw_request_info *info,
7441 union iwreq_data *wrqu, char *extra)
7442 {
7443 /*
7444 * This can be called at any time. No action lock required
7445 */
7446
7447 struct ipw2100_priv *priv = ieee80211_priv(dev);
7448 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7449 }
7450
7451 /*
7452 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7453 */
7454 static int ipw2100_wx_set_encode(struct net_device *dev,
7455 struct iw_request_info *info,
7456 union iwreq_data *wrqu, char *key)
7457 {
7458 /*
7459 * No check of STATUS_INITIALIZED required
7460 */
7461
7462 struct ipw2100_priv *priv = ieee80211_priv(dev);
7463 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7464 }
7465
7466 static int ipw2100_wx_get_encode(struct net_device *dev,
7467 struct iw_request_info *info,
7468 union iwreq_data *wrqu, char *key)
7469 {
7470 /*
7471 * This can be called at any time. No action lock required
7472 */
7473
7474 struct ipw2100_priv *priv = ieee80211_priv(dev);
7475 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7476 }
7477
7478 static int ipw2100_wx_set_power(struct net_device *dev,
7479 struct iw_request_info *info,
7480 union iwreq_data *wrqu, char *extra)
7481 {
7482 struct ipw2100_priv *priv = ieee80211_priv(dev);
7483 int err = 0;
7484
7485 mutex_lock(&priv->action_mutex);
7486 if (!(priv->status & STATUS_INITIALIZED)) {
7487 err = -EIO;
7488 goto done;
7489 }
7490
7491 if (wrqu->power.disabled) {
7492 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7493 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7494 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7495 goto done;
7496 }
7497
7498 switch (wrqu->power.flags & IW_POWER_MODE) {
7499 case IW_POWER_ON: /* If not specified */
7500 case IW_POWER_MODE: /* If set all mask */
7501 case IW_POWER_ALL_R: /* If explicitely state all */
7502 break;
7503 default: /* Otherwise we don't support it */
7504 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7505 wrqu->power.flags);
7506 err = -EOPNOTSUPP;
7507 goto done;
7508 }
7509
7510 /* If the user hasn't specified a power management mode yet, default
7511 * to BATTERY */
7512 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7513 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7514
7515 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7516
7517 done:
7518 mutex_unlock(&priv->action_mutex);
7519 return err;
7520
7521 }
7522
7523 static int ipw2100_wx_get_power(struct net_device *dev,
7524 struct iw_request_info *info,
7525 union iwreq_data *wrqu, char *extra)
7526 {
7527 /*
7528 * This can be called at any time. No action lock required
7529 */
7530
7531 struct ipw2100_priv *priv = ieee80211_priv(dev);
7532
7533 if (!(priv->power_mode & IPW_POWER_ENABLED))
7534 wrqu->power.disabled = 1;
7535 else {
7536 wrqu->power.disabled = 0;
7537 wrqu->power.flags = 0;
7538 }
7539
7540 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7541
7542 return 0;
7543 }
7544
7545 /*
7546 * WE-18 WPA support
7547 */
7548
7549 /* SIOCSIWGENIE */
7550 static int ipw2100_wx_set_genie(struct net_device *dev,
7551 struct iw_request_info *info,
7552 union iwreq_data *wrqu, char *extra)
7553 {
7554
7555 struct ipw2100_priv *priv = ieee80211_priv(dev);
7556 struct ieee80211_device *ieee = priv->ieee;
7557 u8 *buf;
7558
7559 if (!ieee->wpa_enabled)
7560 return -EOPNOTSUPP;
7561
7562 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7563 (wrqu->data.length && extra == NULL))
7564 return -EINVAL;
7565
7566 if (wrqu->data.length) {
7567 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7568 if (buf == NULL)
7569 return -ENOMEM;
7570
7571 kfree(ieee->wpa_ie);
7572 ieee->wpa_ie = buf;
7573 ieee->wpa_ie_len = wrqu->data.length;
7574 } else {
7575 kfree(ieee->wpa_ie);
7576 ieee->wpa_ie = NULL;
7577 ieee->wpa_ie_len = 0;
7578 }
7579
7580 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7581
7582 return 0;
7583 }
7584
7585 /* SIOCGIWGENIE */
7586 static int ipw2100_wx_get_genie(struct net_device *dev,
7587 struct iw_request_info *info,
7588 union iwreq_data *wrqu, char *extra)
7589 {
7590 struct ipw2100_priv *priv = ieee80211_priv(dev);
7591 struct ieee80211_device *ieee = priv->ieee;
7592
7593 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7594 wrqu->data.length = 0;
7595 return 0;
7596 }
7597
7598 if (wrqu->data.length < ieee->wpa_ie_len)
7599 return -E2BIG;
7600
7601 wrqu->data.length = ieee->wpa_ie_len;
7602 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7603
7604 return 0;
7605 }
7606
7607 /* SIOCSIWAUTH */
7608 static int ipw2100_wx_set_auth(struct net_device *dev,
7609 struct iw_request_info *info,
7610 union iwreq_data *wrqu, char *extra)
7611 {
7612 struct ipw2100_priv *priv = ieee80211_priv(dev);
7613 struct ieee80211_device *ieee = priv->ieee;
7614 struct iw_param *param = &wrqu->param;
7615 struct ieee80211_crypt_data *crypt;
7616 unsigned long flags;
7617 int ret = 0;
7618
7619 switch (param->flags & IW_AUTH_INDEX) {
7620 case IW_AUTH_WPA_VERSION:
7621 case IW_AUTH_CIPHER_PAIRWISE:
7622 case IW_AUTH_CIPHER_GROUP:
7623 case IW_AUTH_KEY_MGMT:
7624 /*
7625 * ipw2200 does not use these parameters
7626 */
7627 break;
7628
7629 case IW_AUTH_TKIP_COUNTERMEASURES:
7630 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7631 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7632 break;
7633
7634 flags = crypt->ops->get_flags(crypt->priv);
7635
7636 if (param->value)
7637 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7638 else
7639 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7640
7641 crypt->ops->set_flags(flags, crypt->priv);
7642
7643 break;
7644
7645 case IW_AUTH_DROP_UNENCRYPTED:{
7646 /* HACK:
7647 *
7648 * wpa_supplicant calls set_wpa_enabled when the driver
7649 * is loaded and unloaded, regardless of if WPA is being
7650 * used. No other calls are made which can be used to
7651 * determine if encryption will be used or not prior to
7652 * association being expected. If encryption is not being
7653 * used, drop_unencrypted is set to false, else true -- we
7654 * can use this to determine if the CAP_PRIVACY_ON bit should
7655 * be set.
7656 */
7657 struct ieee80211_security sec = {
7658 .flags = SEC_ENABLED,
7659 .enabled = param->value,
7660 };
7661 priv->ieee->drop_unencrypted = param->value;
7662 /* We only change SEC_LEVEL for open mode. Others
7663 * are set by ipw_wpa_set_encryption.
7664 */
7665 if (!param->value) {
7666 sec.flags |= SEC_LEVEL;
7667 sec.level = SEC_LEVEL_0;
7668 } else {
7669 sec.flags |= SEC_LEVEL;
7670 sec.level = SEC_LEVEL_1;
7671 }
7672 if (priv->ieee->set_security)
7673 priv->ieee->set_security(priv->ieee->dev, &sec);
7674 break;
7675 }
7676
7677 case IW_AUTH_80211_AUTH_ALG:
7678 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7679 break;
7680
7681 case IW_AUTH_WPA_ENABLED:
7682 ret = ipw2100_wpa_enable(priv, param->value);
7683 break;
7684
7685 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7686 ieee->ieee802_1x = param->value;
7687 break;
7688
7689 //case IW_AUTH_ROAMING_CONTROL:
7690 case IW_AUTH_PRIVACY_INVOKED:
7691 ieee->privacy_invoked = param->value;
7692 break;
7693
7694 default:
7695 return -EOPNOTSUPP;
7696 }
7697 return ret;
7698 }
7699
7700 /* SIOCGIWAUTH */
7701 static int ipw2100_wx_get_auth(struct net_device *dev,
7702 struct iw_request_info *info,
7703 union iwreq_data *wrqu, char *extra)
7704 {
7705 struct ipw2100_priv *priv = ieee80211_priv(dev);
7706 struct ieee80211_device *ieee = priv->ieee;
7707 struct ieee80211_crypt_data *crypt;
7708 struct iw_param *param = &wrqu->param;
7709 int ret = 0;
7710
7711 switch (param->flags & IW_AUTH_INDEX) {
7712 case IW_AUTH_WPA_VERSION:
7713 case IW_AUTH_CIPHER_PAIRWISE:
7714 case IW_AUTH_CIPHER_GROUP:
7715 case IW_AUTH_KEY_MGMT:
7716 /*
7717 * wpa_supplicant will control these internally
7718 */
7719 ret = -EOPNOTSUPP;
7720 break;
7721
7722 case IW_AUTH_TKIP_COUNTERMEASURES:
7723 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7724 if (!crypt || !crypt->ops->get_flags) {
7725 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7726 "crypt not set!\n");
7727 break;
7728 }
7729
7730 param->value = (crypt->ops->get_flags(crypt->priv) &
7731 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7732
7733 break;
7734
7735 case IW_AUTH_DROP_UNENCRYPTED:
7736 param->value = ieee->drop_unencrypted;
7737 break;
7738
7739 case IW_AUTH_80211_AUTH_ALG:
7740 param->value = priv->ieee->sec.auth_mode;
7741 break;
7742
7743 case IW_AUTH_WPA_ENABLED:
7744 param->value = ieee->wpa_enabled;
7745 break;
7746
7747 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7748 param->value = ieee->ieee802_1x;
7749 break;
7750
7751 case IW_AUTH_ROAMING_CONTROL:
7752 case IW_AUTH_PRIVACY_INVOKED:
7753 param->value = ieee->privacy_invoked;
7754 break;
7755
7756 default:
7757 return -EOPNOTSUPP;
7758 }
7759 return 0;
7760 }
7761
7762 /* SIOCSIWENCODEEXT */
7763 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7764 struct iw_request_info *info,
7765 union iwreq_data *wrqu, char *extra)
7766 {
7767 struct ipw2100_priv *priv = ieee80211_priv(dev);
7768 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7769 }
7770
7771 /* SIOCGIWENCODEEXT */
7772 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7773 struct iw_request_info *info,
7774 union iwreq_data *wrqu, char *extra)
7775 {
7776 struct ipw2100_priv *priv = ieee80211_priv(dev);
7777 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7778 }
7779
7780 /* SIOCSIWMLME */
7781 static int ipw2100_wx_set_mlme(struct net_device *dev,
7782 struct iw_request_info *info,
7783 union iwreq_data *wrqu, char *extra)
7784 {
7785 struct ipw2100_priv *priv = ieee80211_priv(dev);
7786 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7787 u16 reason;
7788
7789 reason = cpu_to_le16(mlme->reason_code);
7790
7791 switch (mlme->cmd) {
7792 case IW_MLME_DEAUTH:
7793 // silently ignore
7794 break;
7795
7796 case IW_MLME_DISASSOC:
7797 ipw2100_disassociate_bssid(priv);
7798 break;
7799
7800 default:
7801 return -EOPNOTSUPP;
7802 }
7803 return 0;
7804 }
7805
7806 /*
7807 *
7808 * IWPRIV handlers
7809 *
7810 */
7811 #ifdef CONFIG_IPW2100_MONITOR
7812 static int ipw2100_wx_set_promisc(struct net_device *dev,
7813 struct iw_request_info *info,
7814 union iwreq_data *wrqu, char *extra)
7815 {
7816 struct ipw2100_priv *priv = ieee80211_priv(dev);
7817 int *parms = (int *)extra;
7818 int enable = (parms[0] > 0);
7819 int err = 0;
7820
7821 mutex_lock(&priv->action_mutex);
7822 if (!(priv->status & STATUS_INITIALIZED)) {
7823 err = -EIO;
7824 goto done;
7825 }
7826
7827 if (enable) {
7828 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7829 err = ipw2100_set_channel(priv, parms[1], 0);
7830 goto done;
7831 }
7832 priv->channel = parms[1];
7833 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7834 } else {
7835 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7836 err = ipw2100_switch_mode(priv, priv->last_mode);
7837 }
7838 done:
7839 mutex_unlock(&priv->action_mutex);
7840 return err;
7841 }
7842
7843 static int ipw2100_wx_reset(struct net_device *dev,
7844 struct iw_request_info *info,
7845 union iwreq_data *wrqu, char *extra)
7846 {
7847 struct ipw2100_priv *priv = ieee80211_priv(dev);
7848 if (priv->status & STATUS_INITIALIZED)
7849 schedule_reset(priv);
7850 return 0;
7851 }
7852
7853 #endif
7854
7855 static int ipw2100_wx_set_powermode(struct net_device *dev,
7856 struct iw_request_info *info,
7857 union iwreq_data *wrqu, char *extra)
7858 {
7859 struct ipw2100_priv *priv = ieee80211_priv(dev);
7860 int err = 0, mode = *(int *)extra;
7861
7862 mutex_lock(&priv->action_mutex);
7863 if (!(priv->status & STATUS_INITIALIZED)) {
7864 err = -EIO;
7865 goto done;
7866 }
7867
7868 if ((mode < 1) || (mode > POWER_MODES))
7869 mode = IPW_POWER_AUTO;
7870
7871 if (priv->power_mode != mode)
7872 err = ipw2100_set_power_mode(priv, mode);
7873 done:
7874 mutex_unlock(&priv->action_mutex);
7875 return err;
7876 }
7877
7878 #define MAX_POWER_STRING 80
7879 static int ipw2100_wx_get_powermode(struct net_device *dev,
7880 struct iw_request_info *info,
7881 union iwreq_data *wrqu, char *extra)
7882 {
7883 /*
7884 * This can be called at any time. No action lock required
7885 */
7886
7887 struct ipw2100_priv *priv = ieee80211_priv(dev);
7888 int level = IPW_POWER_LEVEL(priv->power_mode);
7889 s32 timeout, period;
7890
7891 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7892 snprintf(extra, MAX_POWER_STRING,
7893 "Power save level: %d (Off)", level);
7894 } else {
7895 switch (level) {
7896 case IPW_POWER_MODE_CAM:
7897 snprintf(extra, MAX_POWER_STRING,
7898 "Power save level: %d (None)", level);
7899 break;
7900 case IPW_POWER_AUTO:
7901 snprintf(extra, MAX_POWER_STRING,
7902 "Power save level: %d (Auto)", 0);
7903 break;
7904 default:
7905 timeout = timeout_duration[level - 1] / 1000;
7906 period = period_duration[level - 1] / 1000;
7907 snprintf(extra, MAX_POWER_STRING,
7908 "Power save level: %d "
7909 "(Timeout %dms, Period %dms)",
7910 level, timeout, period);
7911 }
7912 }
7913
7914 wrqu->data.length = strlen(extra) + 1;
7915
7916 return 0;
7917 }
7918
7919 static int ipw2100_wx_set_preamble(struct net_device *dev,
7920 struct iw_request_info *info,
7921 union iwreq_data *wrqu, char *extra)
7922 {
7923 struct ipw2100_priv *priv = ieee80211_priv(dev);
7924 int err, mode = *(int *)extra;
7925
7926 mutex_lock(&priv->action_mutex);
7927 if (!(priv->status & STATUS_INITIALIZED)) {
7928 err = -EIO;
7929 goto done;
7930 }
7931
7932 if (mode == 1)
7933 priv->config |= CFG_LONG_PREAMBLE;
7934 else if (mode == 0)
7935 priv->config &= ~CFG_LONG_PREAMBLE;
7936 else {
7937 err = -EINVAL;
7938 goto done;
7939 }
7940
7941 err = ipw2100_system_config(priv, 0);
7942
7943 done:
7944 mutex_unlock(&priv->action_mutex);
7945 return err;
7946 }
7947
7948 static int ipw2100_wx_get_preamble(struct net_device *dev,
7949 struct iw_request_info *info,
7950 union iwreq_data *wrqu, char *extra)
7951 {
7952 /*
7953 * This can be called at any time. No action lock required
7954 */
7955
7956 struct ipw2100_priv *priv = ieee80211_priv(dev);
7957
7958 if (priv->config & CFG_LONG_PREAMBLE)
7959 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7960 else
7961 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7962
7963 return 0;
7964 }
7965
7966 #ifdef CONFIG_IPW2100_MONITOR
7967 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7968 struct iw_request_info *info,
7969 union iwreq_data *wrqu, char *extra)
7970 {
7971 struct ipw2100_priv *priv = ieee80211_priv(dev);
7972 int err, mode = *(int *)extra;
7973
7974 mutex_lock(&priv->action_mutex);
7975 if (!(priv->status & STATUS_INITIALIZED)) {
7976 err = -EIO;
7977 goto done;
7978 }
7979
7980 if (mode == 1)
7981 priv->config |= CFG_CRC_CHECK;
7982 else if (mode == 0)
7983 priv->config &= ~CFG_CRC_CHECK;
7984 else {
7985 err = -EINVAL;
7986 goto done;
7987 }
7988 err = 0;
7989
7990 done:
7991 mutex_unlock(&priv->action_mutex);
7992 return err;
7993 }
7994
7995 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7996 struct iw_request_info *info,
7997 union iwreq_data *wrqu, char *extra)
7998 {
7999 /*
8000 * This can be called at any time. No action lock required
8001 */
8002
8003 struct ipw2100_priv *priv = ieee80211_priv(dev);
8004
8005 if (priv->config & CFG_CRC_CHECK)
8006 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8007 else
8008 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8009
8010 return 0;
8011 }
8012 #endif /* CONFIG_IPW2100_MONITOR */
8013
8014 static iw_handler ipw2100_wx_handlers[] = {
8015 NULL, /* SIOCSIWCOMMIT */
8016 ipw2100_wx_get_name, /* SIOCGIWNAME */
8017 NULL, /* SIOCSIWNWID */
8018 NULL, /* SIOCGIWNWID */
8019 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8020 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8021 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8022 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8023 NULL, /* SIOCSIWSENS */
8024 NULL, /* SIOCGIWSENS */
8025 NULL, /* SIOCSIWRANGE */
8026 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8027 NULL, /* SIOCSIWPRIV */
8028 NULL, /* SIOCGIWPRIV */
8029 NULL, /* SIOCSIWSTATS */
8030 NULL, /* SIOCGIWSTATS */
8031 NULL, /* SIOCSIWSPY */
8032 NULL, /* SIOCGIWSPY */
8033 NULL, /* SIOCGIWTHRSPY */
8034 NULL, /* SIOCWIWTHRSPY */
8035 ipw2100_wx_set_wap, /* SIOCSIWAP */
8036 ipw2100_wx_get_wap, /* SIOCGIWAP */
8037 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8038 NULL, /* SIOCGIWAPLIST -- deprecated */
8039 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8040 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8041 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8042 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8043 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8044 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8045 NULL, /* -- hole -- */
8046 NULL, /* -- hole -- */
8047 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8048 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8049 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8050 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8051 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8052 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8053 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8054 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8055 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8056 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8057 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8058 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8059 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8060 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8061 NULL, /* -- hole -- */
8062 NULL, /* -- hole -- */
8063 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8064 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8065 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8066 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8067 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8068 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8069 NULL, /* SIOCSIWPMKSA */
8070 };
8071
8072 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8073 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8074 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8075 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8076 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8077 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8078 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8079 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8080
8081 static const struct iw_priv_args ipw2100_private_args[] = {
8082
8083 #ifdef CONFIG_IPW2100_MONITOR
8084 {
8085 IPW2100_PRIV_SET_MONITOR,
8086 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8087 {
8088 IPW2100_PRIV_RESET,
8089 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8090 #endif /* CONFIG_IPW2100_MONITOR */
8091
8092 {
8093 IPW2100_PRIV_SET_POWER,
8094 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8095 {
8096 IPW2100_PRIV_GET_POWER,
8097 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8098 "get_power"},
8099 {
8100 IPW2100_PRIV_SET_LONGPREAMBLE,
8101 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8102 {
8103 IPW2100_PRIV_GET_LONGPREAMBLE,
8104 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8105 #ifdef CONFIG_IPW2100_MONITOR
8106 {
8107 IPW2100_PRIV_SET_CRC_CHECK,
8108 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8109 {
8110 IPW2100_PRIV_GET_CRC_CHECK,
8111 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8112 #endif /* CONFIG_IPW2100_MONITOR */
8113 };
8114
8115 static iw_handler ipw2100_private_handler[] = {
8116 #ifdef CONFIG_IPW2100_MONITOR
8117 ipw2100_wx_set_promisc,
8118 ipw2100_wx_reset,
8119 #else /* CONFIG_IPW2100_MONITOR */
8120 NULL,
8121 NULL,
8122 #endif /* CONFIG_IPW2100_MONITOR */
8123 ipw2100_wx_set_powermode,
8124 ipw2100_wx_get_powermode,
8125 ipw2100_wx_set_preamble,
8126 ipw2100_wx_get_preamble,
8127 #ifdef CONFIG_IPW2100_MONITOR
8128 ipw2100_wx_set_crc_check,
8129 ipw2100_wx_get_crc_check,
8130 #else /* CONFIG_IPW2100_MONITOR */
8131 NULL,
8132 NULL,
8133 #endif /* CONFIG_IPW2100_MONITOR */
8134 };
8135
8136 /*
8137 * Get wireless statistics.
8138 * Called by /proc/net/wireless
8139 * Also called by SIOCGIWSTATS
8140 */
8141 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8142 {
8143 enum {
8144 POOR = 30,
8145 FAIR = 60,
8146 GOOD = 80,
8147 VERY_GOOD = 90,
8148 EXCELLENT = 95,
8149 PERFECT = 100
8150 };
8151 int rssi_qual;
8152 int tx_qual;
8153 int beacon_qual;
8154
8155 struct ipw2100_priv *priv = ieee80211_priv(dev);
8156 struct iw_statistics *wstats;
8157 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8158 u32 ord_len = sizeof(u32);
8159
8160 if (!priv)
8161 return (struct iw_statistics *)NULL;
8162
8163 wstats = &priv->wstats;
8164
8165 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8166 * ipw2100_wx_wireless_stats seems to be called before fw is
8167 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8168 * and associated; if not associcated, the values are all meaningless
8169 * anyway, so set them all to NULL and INVALID */
8170 if (!(priv->status & STATUS_ASSOCIATED)) {
8171 wstats->miss.beacon = 0;
8172 wstats->discard.retries = 0;
8173 wstats->qual.qual = 0;
8174 wstats->qual.level = 0;
8175 wstats->qual.noise = 0;
8176 wstats->qual.updated = 7;
8177 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8178 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8179 return wstats;
8180 }
8181
8182 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8183 &missed_beacons, &ord_len))
8184 goto fail_get_ordinal;
8185
8186 /* If we don't have a connection the quality and level is 0 */
8187 if (!(priv->status & STATUS_ASSOCIATED)) {
8188 wstats->qual.qual = 0;
8189 wstats->qual.level = 0;
8190 } else {
8191 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8192 &rssi, &ord_len))
8193 goto fail_get_ordinal;
8194 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8195 if (rssi < 10)
8196 rssi_qual = rssi * POOR / 10;
8197 else if (rssi < 15)
8198 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8199 else if (rssi < 20)
8200 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8201 else if (rssi < 30)
8202 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8203 10 + GOOD;
8204 else
8205 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8206 10 + VERY_GOOD;
8207
8208 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8209 &tx_retries, &ord_len))
8210 goto fail_get_ordinal;
8211
8212 if (tx_retries > 75)
8213 tx_qual = (90 - tx_retries) * POOR / 15;
8214 else if (tx_retries > 70)
8215 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8216 else if (tx_retries > 65)
8217 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8218 else if (tx_retries > 50)
8219 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8220 15 + GOOD;
8221 else
8222 tx_qual = (50 - tx_retries) *
8223 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8224
8225 if (missed_beacons > 50)
8226 beacon_qual = (60 - missed_beacons) * POOR / 10;
8227 else if (missed_beacons > 40)
8228 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8229 10 + POOR;
8230 else if (missed_beacons > 32)
8231 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8232 18 + FAIR;
8233 else if (missed_beacons > 20)
8234 beacon_qual = (32 - missed_beacons) *
8235 (VERY_GOOD - GOOD) / 20 + GOOD;
8236 else
8237 beacon_qual = (20 - missed_beacons) *
8238 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8239
8240 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8241
8242 #ifdef CONFIG_IPW2100_DEBUG
8243 if (beacon_qual == quality)
8244 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8245 else if (tx_qual == quality)
8246 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8247 else if (quality != 100)
8248 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8249 else
8250 IPW_DEBUG_WX("Quality not clamped.\n");
8251 #endif
8252
8253 wstats->qual.qual = quality;
8254 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8255 }
8256
8257 wstats->qual.noise = 0;
8258 wstats->qual.updated = 7;
8259 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8260
8261 /* FIXME: this is percent and not a # */
8262 wstats->miss.beacon = missed_beacons;
8263
8264 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8265 &tx_failures, &ord_len))
8266 goto fail_get_ordinal;
8267 wstats->discard.retries = tx_failures;
8268
8269 return wstats;
8270
8271 fail_get_ordinal:
8272 IPW_DEBUG_WX("failed querying ordinals.\n");
8273
8274 return (struct iw_statistics *)NULL;
8275 }
8276
8277 static struct iw_handler_def ipw2100_wx_handler_def = {
8278 .standard = ipw2100_wx_handlers,
8279 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8280 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8281 .num_private_args = sizeof(ipw2100_private_args) /
8282 sizeof(struct iw_priv_args),
8283 .private = (iw_handler *) ipw2100_private_handler,
8284 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8285 .get_wireless_stats = ipw2100_wx_wireless_stats,
8286 };
8287
8288 static void ipw2100_wx_event_work(struct work_struct *work)
8289 {
8290 struct ipw2100_priv *priv =
8291 container_of(work, struct ipw2100_priv, wx_event_work.work);
8292 union iwreq_data wrqu;
8293 int len = ETH_ALEN;
8294
8295 if (priv->status & STATUS_STOPPING)
8296 return;
8297
8298 mutex_lock(&priv->action_mutex);
8299
8300 IPW_DEBUG_WX("enter\n");
8301
8302 mutex_unlock(&priv->action_mutex);
8303
8304 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8305
8306 /* Fetch BSSID from the hardware */
8307 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8308 priv->status & STATUS_RF_KILL_MASK ||
8309 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8310 &priv->bssid, &len)) {
8311 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8312 } else {
8313 /* We now have the BSSID, so can finish setting to the full
8314 * associated state */
8315 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8316 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8317 priv->status &= ~STATUS_ASSOCIATING;
8318 priv->status |= STATUS_ASSOCIATED;
8319 netif_carrier_on(priv->net_dev);
8320 netif_wake_queue(priv->net_dev);
8321 }
8322
8323 if (!(priv->status & STATUS_ASSOCIATED)) {
8324 IPW_DEBUG_WX("Configuring ESSID\n");
8325 mutex_lock(&priv->action_mutex);
8326 /* This is a disassociation event, so kick the firmware to
8327 * look for another AP */
8328 if (priv->config & CFG_STATIC_ESSID)
8329 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8330 0);
8331 else
8332 ipw2100_set_essid(priv, NULL, 0, 0);
8333 mutex_unlock(&priv->action_mutex);
8334 }
8335
8336 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8337 }
8338
8339 #define IPW2100_FW_MAJOR_VERSION 1
8340 #define IPW2100_FW_MINOR_VERSION 3
8341
8342 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8343 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8344
8345 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8346 IPW2100_FW_MAJOR_VERSION)
8347
8348 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8349 "." __stringify(IPW2100_FW_MINOR_VERSION)
8350
8351 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8352
8353 /*
8354
8355 BINARY FIRMWARE HEADER FORMAT
8356
8357 offset length desc
8358 0 2 version
8359 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8360 4 4 fw_len
8361 8 4 uc_len
8362 C fw_len firmware data
8363 12 + fw_len uc_len microcode data
8364
8365 */
8366
8367 struct ipw2100_fw_header {
8368 short version;
8369 short mode;
8370 unsigned int fw_size;
8371 unsigned int uc_size;
8372 } __attribute__ ((packed));
8373
8374 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8375 {
8376 struct ipw2100_fw_header *h =
8377 (struct ipw2100_fw_header *)fw->fw_entry->data;
8378
8379 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8380 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8381 "(detected version id of %u). "
8382 "See Documentation/networking/README.ipw2100\n",
8383 h->version);
8384 return 1;
8385 }
8386
8387 fw->version = h->version;
8388 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8389 fw->fw.size = h->fw_size;
8390 fw->uc.data = fw->fw.data + h->fw_size;
8391 fw->uc.size = h->uc_size;
8392
8393 return 0;
8394 }
8395
8396 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8397 struct ipw2100_fw *fw)
8398 {
8399 char *fw_name;
8400 int rc;
8401
8402 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8403 priv->net_dev->name);
8404
8405 switch (priv->ieee->iw_mode) {
8406 case IW_MODE_ADHOC:
8407 fw_name = IPW2100_FW_NAME("-i");
8408 break;
8409 #ifdef CONFIG_IPW2100_MONITOR
8410 case IW_MODE_MONITOR:
8411 fw_name = IPW2100_FW_NAME("-p");
8412 break;
8413 #endif
8414 case IW_MODE_INFRA:
8415 default:
8416 fw_name = IPW2100_FW_NAME("");
8417 break;
8418 }
8419
8420 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8421
8422 if (rc < 0) {
8423 printk(KERN_ERR DRV_NAME ": "
8424 "%s: Firmware '%s' not available or load failed.\n",
8425 priv->net_dev->name, fw_name);
8426 return rc;
8427 }
8428 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8429 fw->fw_entry->size);
8430
8431 ipw2100_mod_firmware_load(fw);
8432
8433 return 0;
8434 }
8435
8436 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8437 struct ipw2100_fw *fw)
8438 {
8439 fw->version = 0;
8440 if (fw->fw_entry)
8441 release_firmware(fw->fw_entry);
8442 fw->fw_entry = NULL;
8443 }
8444
8445 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8446 size_t max)
8447 {
8448 char ver[MAX_FW_VERSION_LEN];
8449 u32 len = MAX_FW_VERSION_LEN;
8450 u32 tmp;
8451 int i;
8452 /* firmware version is an ascii string (max len of 14) */
8453 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8454 return -EIO;
8455 tmp = max;
8456 if (len >= max)
8457 len = max - 1;
8458 for (i = 0; i < len; i++)
8459 buf[i] = ver[i];
8460 buf[i] = '\0';
8461 return tmp;
8462 }
8463
8464 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8465 size_t max)
8466 {
8467 u32 ver;
8468 u32 len = sizeof(ver);
8469 /* microcode version is a 32 bit integer */
8470 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8471 return -EIO;
8472 return snprintf(buf, max, "%08X", ver);
8473 }
8474
8475 /*
8476 * On exit, the firmware will have been freed from the fw list
8477 */
8478 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8479 {
8480 /* firmware is constructed of N contiguous entries, each entry is
8481 * structured as:
8482 *
8483 * offset sie desc
8484 * 0 4 address to write to
8485 * 4 2 length of data run
8486 * 6 length data
8487 */
8488 unsigned int addr;
8489 unsigned short len;
8490
8491 const unsigned char *firmware_data = fw->fw.data;
8492 unsigned int firmware_data_left = fw->fw.size;
8493
8494 while (firmware_data_left > 0) {
8495 addr = *(u32 *) (firmware_data);
8496 firmware_data += 4;
8497 firmware_data_left -= 4;
8498
8499 len = *(u16 *) (firmware_data);
8500 firmware_data += 2;
8501 firmware_data_left -= 2;
8502
8503 if (len > 32) {
8504 printk(KERN_ERR DRV_NAME ": "
8505 "Invalid firmware run-length of %d bytes\n",
8506 len);
8507 return -EINVAL;
8508 }
8509
8510 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8511 firmware_data += len;
8512 firmware_data_left -= len;
8513 }
8514
8515 return 0;
8516 }
8517
8518 struct symbol_alive_response {
8519 u8 cmd_id;
8520 u8 seq_num;
8521 u8 ucode_rev;
8522 u8 eeprom_valid;
8523 u16 valid_flags;
8524 u8 IEEE_addr[6];
8525 u16 flags;
8526 u16 pcb_rev;
8527 u16 clock_settle_time; // 1us LSB
8528 u16 powerup_settle_time; // 1us LSB
8529 u16 hop_settle_time; // 1us LSB
8530 u8 date[3]; // month, day, year
8531 u8 time[2]; // hours, minutes
8532 u8 ucode_valid;
8533 };
8534
8535 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8536 struct ipw2100_fw *fw)
8537 {
8538 struct net_device *dev = priv->net_dev;
8539 const unsigned char *microcode_data = fw->uc.data;
8540 unsigned int microcode_data_left = fw->uc.size;
8541 void __iomem *reg = (void __iomem *)dev->base_addr;
8542
8543 struct symbol_alive_response response;
8544 int i, j;
8545 u8 data;
8546
8547 /* Symbol control */
8548 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8549 readl(reg);
8550 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8551 readl(reg);
8552
8553 /* HW config */
8554 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8555 readl(reg);
8556 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8557 readl(reg);
8558
8559 /* EN_CS_ACCESS bit to reset control store pointer */
8560 write_nic_byte(dev, 0x210000, 0x40);
8561 readl(reg);
8562 write_nic_byte(dev, 0x210000, 0x0);
8563 readl(reg);
8564 write_nic_byte(dev, 0x210000, 0x40);
8565 readl(reg);
8566
8567 /* copy microcode from buffer into Symbol */
8568
8569 while (microcode_data_left > 0) {
8570 write_nic_byte(dev, 0x210010, *microcode_data++);
8571 write_nic_byte(dev, 0x210010, *microcode_data++);
8572 microcode_data_left -= 2;
8573 }
8574
8575 /* EN_CS_ACCESS bit to reset the control store pointer */
8576 write_nic_byte(dev, 0x210000, 0x0);
8577 readl(reg);
8578
8579 /* Enable System (Reg 0)
8580 * first enable causes garbage in RX FIFO */
8581 write_nic_byte(dev, 0x210000, 0x0);
8582 readl(reg);
8583 write_nic_byte(dev, 0x210000, 0x80);
8584 readl(reg);
8585
8586 /* Reset External Baseband Reg */
8587 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8588 readl(reg);
8589 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8590 readl(reg);
8591
8592 /* HW Config (Reg 5) */
8593 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8594 readl(reg);
8595 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8596 readl(reg);
8597
8598 /* Enable System (Reg 0)
8599 * second enable should be OK */
8600 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8601 readl(reg);
8602 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8603
8604 /* check Symbol is enabled - upped this from 5 as it wasn't always
8605 * catching the update */
8606 for (i = 0; i < 10; i++) {
8607 udelay(10);
8608
8609 /* check Dino is enabled bit */
8610 read_nic_byte(dev, 0x210000, &data);
8611 if (data & 0x1)
8612 break;
8613 }
8614
8615 if (i == 10) {
8616 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8617 dev->name);
8618 return -EIO;
8619 }
8620
8621 /* Get Symbol alive response */
8622 for (i = 0; i < 30; i++) {
8623 /* Read alive response structure */
8624 for (j = 0;
8625 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8626 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8627
8628 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8629 break;
8630 udelay(10);
8631 }
8632
8633 if (i == 30) {
8634 printk(KERN_ERR DRV_NAME
8635 ": %s: No response from Symbol - hw not alive\n",
8636 dev->name);
8637 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8638 return -EIO;
8639 }
8640
8641 return 0;
8642 }