]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ipw2100.c
Pull ec into release branch
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
217 } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
337 {
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
415 {
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
420
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
432
433 len -= dif_len;
434 aligned_addr += 4;
435 }
436
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
453 {
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
458
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
470
471 len -= dif_len;
472 aligned_addr += 4;
473 }
474
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
499 {
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
506
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
511 }
512
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
520
521 return -EINVAL;
522 }
523
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
527
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530 return 0;
531 }
532
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535 ord -= IPW_START_ORD_TAB_2;
536
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
540
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
546
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
549
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
552
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
558 }
559
560 *len = total_length;
561 if (!total_length)
562 return 0;
563
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567 return 0;
568 }
569
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
572
573 return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
578 {
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
581
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
587 }
588
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
591
592 write_nic_dword(priv->net_dev, addr, *val);
593
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596 return 0;
597 }
598
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
602
603 return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
608 {
609 int out, i, j, l;
610 char c;
611
612 out = snprintf(buf, count, "%08X", ofs);
613
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
621 }
622
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
630
631 out += snprintf(buf + out, count - out, "%c", c);
632 }
633
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
636 }
637
638 return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
647
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
654 }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661 unsigned long now = get_seconds();
662
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
669
670 priv->last_reset = get_seconds();
671
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
683 0);
684
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
687
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
698 {
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
703
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
709
710 spin_lock_irqsave(&priv->low_lock, flags);
711
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
717 }
718
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
731 }
732
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
736 }
737
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
740
741 element = priv->msg_free_list.next;
742
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
745
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
759
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
762
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
765
766 spin_unlock_irqrestore(&priv->low_lock, flags);
767
768 /*
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
772 */
773
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
779
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
787 }
788
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
793 }
794
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
798 *
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802 return 0;
803
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
806
807 return err;
808 }
809
810 /*
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
813 */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816 u32 data1, data2;
817 u32 address;
818
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
821
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
828 }
829
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
843 }
844
845 return -EIO;
846 }
847
848 /*
849 *
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
852 *
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
855 *
856 */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
864
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
872 }
873
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
884
885 return 0;
886 }
887
888 udelay(50);
889 }
890
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
894 }
895
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903 int i;
904 u32 r;
905
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
918 }
919
920 if (i == 1000)
921 return -EIO; // TODO: better error value
922
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
936 }
937
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
940
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946 return 0;
947 }
948
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962 u32 address;
963 int err;
964
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
975 }
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
984 }
985 }
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
993 }
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
996
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1003 }
1004
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1025 }
1026
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1038 }
1039
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1046 }
1047 #ifndef CONFIG_PM
1048 /*
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1053 */
1054
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1075
1076 return 0;
1077
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103 IPW_DEBUG_INFO("enter\n");
1104
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1107
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1110
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114 ord->table2_size &= 0x0000FFFF;
1115
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123 u32 reg = 0;
1124 /*
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1127 */
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1141
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1145 }
1146
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151 }
1152
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158 return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163 u32 addr, len;
1164 u32 val;
1165
1166 /*
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 */
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1175 }
1176
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179 /*
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186 /*
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 *
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1192 */
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1208 */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211 int i;
1212 u32 inta, inta_mask, gpio;
1213
1214 IPW_DEBUG_INFO("enter\n");
1215
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1218
1219 /*
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1223 */
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1229 }
1230
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1234
1235 ipw2100_hw_set_gpio(priv);
1236
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1239
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1249
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1258 }
1259
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1269 }
1270 } while (i--);
1271
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1283
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1289 }
1290
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1300
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304 IPW_DEBUG_INFO("exit\n");
1305
1306 return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311 if (!priv->fatal_error)
1312 return;
1313
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322 u32 reg;
1323 int i;
1324
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327 ipw2100_hw_set_gpio(priv);
1328
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1343
1344 priv->status &= ~STATUS_RESET_PENDING;
1345
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1350 }
1351
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1357
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 *
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 *
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1372 */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1382 };
1383 int err, i;
1384 u32 val1, val2;
1385
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1392
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1400
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402 }
1403
1404 return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1413 };
1414 int err = 0;
1415
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1420
1421 mutex_lock(&priv->adapter_mutex);
1422
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1426 }
1427
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1432 }
1433
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1439 }
1440
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444 }
1445
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1459 };
1460 int err, i;
1461 u32 reg;
1462
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1465
1466 priv->status |= STATUS_STOPPING;
1467
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1475
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1480
1481 /*
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1485 *
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1489 *
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1493 *
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1496 *
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1500 */
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510 }
1511
1512 priv->status &= ~STATUS_ENABLED;
1513
1514 /*
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1517 */
1518 ipw2100_hw_set_gpio(priv);
1519
1520 /*
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1525 */
1526
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1535
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1541 }
1542
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1547
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554 return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1563 };
1564 int err = 0;
1565
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1570
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1577 }
1578
1579 mutex_lock(&priv->adapter_mutex);
1580
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1586 }
1587
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1593 }
1594
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1608 };
1609 int err;
1610
1611 IPW_DEBUG_INFO("enter\n");
1612
1613 IPW_DEBUG_SCAN("setting scan options\n");
1614
1615 cmd.host_command_parameters[0] = 0;
1616
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626 err = ipw2100_hw_send_command(priv, &cmd);
1627
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1630
1631 return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1640 };
1641 int err;
1642
1643 IPW_DEBUG_HC("START_SCAN\n");
1644
1645 cmd.host_command_parameters[0] = 0;
1646
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1650
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1654 }
1655
1656 IPW_DEBUG_INFO("enter\n");
1657
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1659 *
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1662 */
1663 IPW_DEBUG_SCAN("starting scan\n");
1664
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1669
1670 IPW_DEBUG_INFO("exit\n");
1671
1672 return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1684 },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1693
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1699 }
1700
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1703 */
1704 modify_acceptable_latency("ipw2100", 175);
1705
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1709
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1721 rc = 1;
1722 goto exit;
1723 }
1724 } else
1725 priv->status |= STATUS_POWERED;
1726
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1732 rc = 1;
1733 goto exit;
1734 }
1735
1736 ipw2100_initialize_ordinals(priv);
1737
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1743 rc = 1;
1744 goto exit;
1745 }
1746
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750 return 0;
1751 }
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754 lock = LOCK_NONE;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1759 rc = 1;
1760 goto exit;
1761 }
1762
1763 priv->status &= ~STATUS_SCANNING;
1764
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1768
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772 round_jiffies(HZ));
1773 }
1774
1775 deferred = 1;
1776 }
1777
1778 /* Turn on the interrupt so that commands can be processed */
1779 ipw2100_enable_interrupts(priv);
1780
1781 /* Send all of the commands that must be sent prior to
1782 * HOST_COMPLETE */
1783 if (ipw2100_adapter_setup(priv)) {
1784 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 if (!deferred) {
1791 /* Enable the adapter - sends HOST_COMPLETE */
1792 if (ipw2100_enable_adapter(priv)) {
1793 printk(KERN_ERR DRV_NAME ": "
1794 "%s: failed in call to enable adapter.\n",
1795 priv->net_dev->name);
1796 ipw2100_hw_stop_adapter(priv);
1797 rc = 1;
1798 goto exit;
1799 }
1800
1801 /* Start a scan . . . */
1802 ipw2100_set_scan_options(priv);
1803 ipw2100_start_scan(priv);
1804 }
1805
1806 exit:
1807 return rc;
1808 }
1809
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1812 {
1813 struct ipw2100_priv *priv = ieee80211_priv(dev);
1814 return ipw2100_up(priv, 1);
1815 }
1816
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1818 {
1819 unsigned long flags;
1820 union iwreq_data wrqu = {
1821 .ap_addr = {
1822 .sa_family = ARPHRD_ETHER}
1823 };
1824 int associated = priv->status & STATUS_ASSOCIATED;
1825
1826 /* Kill the RF switch timer */
1827 if (!priv->stop_rf_kill) {
1828 priv->stop_rf_kill = 1;
1829 cancel_delayed_work(&priv->rf_kill);
1830 }
1831
1832 /* Kill the firmare hang check timer */
1833 if (!priv->stop_hang_check) {
1834 priv->stop_hang_check = 1;
1835 cancel_delayed_work(&priv->hang_check);
1836 }
1837
1838 /* Kill any pending resets */
1839 if (priv->status & STATUS_RESET_PENDING)
1840 cancel_delayed_work(&priv->reset_work);
1841
1842 /* Make sure the interrupt is on so that FW commands will be
1843 * processed correctly */
1844 spin_lock_irqsave(&priv->low_lock, flags);
1845 ipw2100_enable_interrupts(priv);
1846 spin_unlock_irqrestore(&priv->low_lock, flags);
1847
1848 if (ipw2100_hw_stop_adapter(priv))
1849 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850 priv->net_dev->name);
1851
1852 /* Do not disable the interrupt until _after_ we disable
1853 * the adaptor. Otherwise the CARD_DISABLE command will never
1854 * be ack'd by the firmware */
1855 spin_lock_irqsave(&priv->low_lock, flags);
1856 ipw2100_disable_interrupts(priv);
1857 spin_unlock_irqrestore(&priv->low_lock, flags);
1858
1859 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860
1861 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1862 if (priv->config & CFG_C3_DISABLED) {
1863 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1864 acpi_set_cstate_limit(priv->cstate_limit);
1865 priv->config &= ~CFG_C3_DISABLED;
1866 }
1867 #endif
1868
1869 /* We have to signal any supplicant if we are disassociating */
1870 if (associated)
1871 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872
1873 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874 netif_carrier_off(priv->net_dev);
1875 netif_stop_queue(priv->net_dev);
1876 }
1877
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1879 {
1880 struct ipw2100_priv *priv =
1881 container_of(work, struct ipw2100_priv, reset_work.work);
1882 unsigned long flags;
1883 union iwreq_data wrqu = {
1884 .ap_addr = {
1885 .sa_family = ARPHRD_ETHER}
1886 };
1887 int associated = priv->status & STATUS_ASSOCIATED;
1888
1889 spin_lock_irqsave(&priv->low_lock, flags);
1890 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1891 priv->resets++;
1892 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893 priv->status |= STATUS_SECURITY_UPDATED;
1894
1895 /* Force a power cycle even if interface hasn't been opened
1896 * yet */
1897 cancel_delayed_work(&priv->reset_work);
1898 priv->status |= STATUS_RESET_PENDING;
1899 spin_unlock_irqrestore(&priv->low_lock, flags);
1900
1901 mutex_lock(&priv->action_mutex);
1902 /* stop timed checks so that they don't interfere with reset */
1903 priv->stop_hang_check = 1;
1904 cancel_delayed_work(&priv->hang_check);
1905
1906 /* We have to signal any supplicant if we are disassociating */
1907 if (associated)
1908 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909
1910 ipw2100_up(priv, 0);
1911 mutex_unlock(&priv->action_mutex);
1912
1913 }
1914
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1916 {
1917
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919 int ret, len, essid_len;
1920 char essid[IW_ESSID_MAX_SIZE];
1921 u32 txrate;
1922 u32 chan;
1923 char *txratename;
1924 u8 bssid[ETH_ALEN];
1925
1926 /*
1927 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1928 * an actual MAC of the AP. Seems like FW sets this
1929 * address too late. Read it later and expose through
1930 * /proc or schedule a later task to query and update
1931 */
1932
1933 essid_len = IW_ESSID_MAX_SIZE;
1934 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1935 essid, &essid_len);
1936 if (ret) {
1937 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1938 __LINE__);
1939 return;
1940 }
1941
1942 len = sizeof(u32);
1943 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1944 if (ret) {
1945 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1946 __LINE__);
1947 return;
1948 }
1949
1950 len = sizeof(u32);
1951 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1952 if (ret) {
1953 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1954 __LINE__);
1955 return;
1956 }
1957 len = ETH_ALEN;
1958 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1959 if (ret) {
1960 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1961 __LINE__);
1962 return;
1963 }
1964 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1965
1966 switch (txrate) {
1967 case TX_RATE_1_MBIT:
1968 txratename = "1Mbps";
1969 break;
1970 case TX_RATE_2_MBIT:
1971 txratename = "2Mbsp";
1972 break;
1973 case TX_RATE_5_5_MBIT:
1974 txratename = "5.5Mbps";
1975 break;
1976 case TX_RATE_11_MBIT:
1977 txratename = "11Mbps";
1978 break;
1979 default:
1980 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1981 txratename = "unknown rate";
1982 break;
1983 }
1984
1985 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1986 MAC_FMT ")\n",
1987 priv->net_dev->name, escape_essid(essid, essid_len),
1988 txratename, chan, MAC_ARG(bssid));
1989
1990 /* now we copy read ssid into dev */
1991 if (!(priv->config & CFG_STATIC_ESSID)) {
1992 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1993 memcpy(priv->essid, essid, priv->essid_len);
1994 }
1995 priv->channel = chan;
1996 memcpy(priv->bssid, bssid, ETH_ALEN);
1997
1998 priv->status |= STATUS_ASSOCIATING;
1999 priv->connect_start = get_seconds();
2000
2001 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2002 }
2003
2004 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2005 int length, int batch_mode)
2006 {
2007 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2008 struct host_command cmd = {
2009 .host_command = SSID,
2010 .host_command_sequence = 0,
2011 .host_command_length = ssid_len
2012 };
2013 int err;
2014
2015 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2016
2017 if (ssid_len)
2018 memcpy(cmd.host_command_parameters, essid, ssid_len);
2019
2020 if (!batch_mode) {
2021 err = ipw2100_disable_adapter(priv);
2022 if (err)
2023 return err;
2024 }
2025
2026 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2027 * disable auto association -- so we cheat by setting a bogus SSID */
2028 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2029 int i;
2030 u8 *bogus = (u8 *) cmd.host_command_parameters;
2031 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2032 bogus[i] = 0x18 + i;
2033 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2034 }
2035
2036 /* NOTE: We always send the SSID command even if the provided ESSID is
2037 * the same as what we currently think is set. */
2038
2039 err = ipw2100_hw_send_command(priv, &cmd);
2040 if (!err) {
2041 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2042 memcpy(priv->essid, essid, ssid_len);
2043 priv->essid_len = ssid_len;
2044 }
2045
2046 if (!batch_mode) {
2047 if (ipw2100_enable_adapter(priv))
2048 err = -EIO;
2049 }
2050
2051 return err;
2052 }
2053
2054 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2055 {
2056 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2057 "disassociated: '%s' " MAC_FMT " \n",
2058 escape_essid(priv->essid, priv->essid_len),
2059 MAC_ARG(priv->bssid));
2060
2061 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2062
2063 if (priv->status & STATUS_STOPPING) {
2064 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2065 return;
2066 }
2067
2068 memset(priv->bssid, 0, ETH_ALEN);
2069 memset(priv->ieee->bssid, 0, ETH_ALEN);
2070
2071 netif_carrier_off(priv->net_dev);
2072 netif_stop_queue(priv->net_dev);
2073
2074 if (!(priv->status & STATUS_RUNNING))
2075 return;
2076
2077 if (priv->status & STATUS_SECURITY_UPDATED)
2078 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2079
2080 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2081 }
2082
2083 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2084 {
2085 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2086 priv->net_dev->name);
2087
2088 /* RF_KILL is now enabled (else we wouldn't be here) */
2089 priv->status |= STATUS_RF_KILL_HW;
2090
2091 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2092 if (priv->config & CFG_C3_DISABLED) {
2093 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2094 acpi_set_cstate_limit(priv->cstate_limit);
2095 priv->config &= ~CFG_C3_DISABLED;
2096 }
2097 #endif
2098
2099 /* Make sure the RF Kill check timer is running */
2100 priv->stop_rf_kill = 0;
2101 cancel_delayed_work(&priv->rf_kill);
2102 queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2103 }
2104
2105 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2106 {
2107 IPW_DEBUG_SCAN("scan complete\n");
2108 /* Age the scan results... */
2109 priv->ieee->scans++;
2110 priv->status &= ~STATUS_SCANNING;
2111 }
2112
2113 #ifdef CONFIG_IPW2100_DEBUG
2114 #define IPW2100_HANDLER(v, f) { v, f, # v }
2115 struct ipw2100_status_indicator {
2116 int status;
2117 void (*cb) (struct ipw2100_priv * priv, u32 status);
2118 char *name;
2119 };
2120 #else
2121 #define IPW2100_HANDLER(v, f) { v, f }
2122 struct ipw2100_status_indicator {
2123 int status;
2124 void (*cb) (struct ipw2100_priv * priv, u32 status);
2125 };
2126 #endif /* CONFIG_IPW2100_DEBUG */
2127
2128 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2129 {
2130 IPW_DEBUG_SCAN("Scanning...\n");
2131 priv->status |= STATUS_SCANNING;
2132 }
2133
2134 static const struct ipw2100_status_indicator status_handlers[] = {
2135 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2136 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2137 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2138 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2139 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2140 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2141 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2142 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2143 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2144 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2145 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2146 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2147 IPW2100_HANDLER(-1, NULL)
2148 };
2149
2150 static void isr_status_change(struct ipw2100_priv *priv, int status)
2151 {
2152 int i;
2153
2154 if (status == IPW_STATE_SCANNING &&
2155 priv->status & STATUS_ASSOCIATED &&
2156 !(priv->status & STATUS_SCANNING)) {
2157 IPW_DEBUG_INFO("Scan detected while associated, with "
2158 "no scan request. Restarting firmware.\n");
2159
2160 /* Wake up any sleeping jobs */
2161 schedule_reset(priv);
2162 }
2163
2164 for (i = 0; status_handlers[i].status != -1; i++) {
2165 if (status == status_handlers[i].status) {
2166 IPW_DEBUG_NOTIF("Status change: %s\n",
2167 status_handlers[i].name);
2168 if (status_handlers[i].cb)
2169 status_handlers[i].cb(priv, status);
2170 priv->wstats.status = status;
2171 return;
2172 }
2173 }
2174
2175 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2176 }
2177
2178 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2179 struct ipw2100_cmd_header *cmd)
2180 {
2181 #ifdef CONFIG_IPW2100_DEBUG
2182 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2183 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2184 command_types[cmd->host_command_reg],
2185 cmd->host_command_reg);
2186 }
2187 #endif
2188 if (cmd->host_command_reg == HOST_COMPLETE)
2189 priv->status |= STATUS_ENABLED;
2190
2191 if (cmd->host_command_reg == CARD_DISABLE)
2192 priv->status &= ~STATUS_ENABLED;
2193
2194 priv->status &= ~STATUS_CMD_ACTIVE;
2195
2196 wake_up_interruptible(&priv->wait_command_queue);
2197 }
2198
2199 #ifdef CONFIG_IPW2100_DEBUG
2200 static const char *frame_types[] = {
2201 "COMMAND_STATUS_VAL",
2202 "STATUS_CHANGE_VAL",
2203 "P80211_DATA_VAL",
2204 "P8023_DATA_VAL",
2205 "HOST_NOTIFICATION_VAL"
2206 };
2207 #endif
2208
2209 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2210 struct ipw2100_rx_packet *packet)
2211 {
2212 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2213 if (!packet->skb)
2214 return -ENOMEM;
2215
2216 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2217 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2218 sizeof(struct ipw2100_rx),
2219 PCI_DMA_FROMDEVICE);
2220 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2221 * dma_addr */
2222
2223 return 0;
2224 }
2225
2226 #define SEARCH_ERROR 0xffffffff
2227 #define SEARCH_FAIL 0xfffffffe
2228 #define SEARCH_SUCCESS 0xfffffff0
2229 #define SEARCH_DISCARD 0
2230 #define SEARCH_SNAPSHOT 1
2231
2232 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2233 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2234 {
2235 int i;
2236 if (!priv->snapshot[0])
2237 return;
2238 for (i = 0; i < 0x30; i++)
2239 kfree(priv->snapshot[i]);
2240 priv->snapshot[0] = NULL;
2241 }
2242
2243 #ifdef IPW2100_DEBUG_C3
2244 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2245 {
2246 int i;
2247 if (priv->snapshot[0])
2248 return 1;
2249 for (i = 0; i < 0x30; i++) {
2250 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2251 if (!priv->snapshot[i]) {
2252 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2253 "buffer %d\n", priv->net_dev->name, i);
2254 while (i > 0)
2255 kfree(priv->snapshot[--i]);
2256 priv->snapshot[0] = NULL;
2257 return 0;
2258 }
2259 }
2260
2261 return 1;
2262 }
2263
2264 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2265 size_t len, int mode)
2266 {
2267 u32 i, j;
2268 u32 tmp;
2269 u8 *s, *d;
2270 u32 ret;
2271
2272 s = in_buf;
2273 if (mode == SEARCH_SNAPSHOT) {
2274 if (!ipw2100_snapshot_alloc(priv))
2275 mode = SEARCH_DISCARD;
2276 }
2277
2278 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2279 read_nic_dword(priv->net_dev, i, &tmp);
2280 if (mode == SEARCH_SNAPSHOT)
2281 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2282 if (ret == SEARCH_FAIL) {
2283 d = (u8 *) & tmp;
2284 for (j = 0; j < 4; j++) {
2285 if (*s != *d) {
2286 s = in_buf;
2287 continue;
2288 }
2289
2290 s++;
2291 d++;
2292
2293 if ((s - in_buf) == len)
2294 ret = (i + j) - len + 1;
2295 }
2296 } else if (mode == SEARCH_DISCARD)
2297 return ret;
2298 }
2299
2300 return ret;
2301 }
2302 #endif
2303
2304 /*
2305 *
2306 * 0) Disconnect the SKB from the firmware (just unmap)
2307 * 1) Pack the ETH header into the SKB
2308 * 2) Pass the SKB to the network stack
2309 *
2310 * When packet is provided by the firmware, it contains the following:
2311 *
2312 * . ieee80211_hdr
2313 * . ieee80211_snap_hdr
2314 *
2315 * The size of the constructed ethernet
2316 *
2317 */
2318 #ifdef IPW2100_RX_DEBUG
2319 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2320 #endif
2321
2322 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2323 {
2324 #ifdef IPW2100_DEBUG_C3
2325 struct ipw2100_status *status = &priv->status_queue.drv[i];
2326 u32 match, reg;
2327 int j;
2328 #endif
2329 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2330 int limit;
2331 #endif
2332
2333 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2334 i * sizeof(struct ipw2100_status));
2335
2336 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2337 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2338 limit = acpi_get_cstate_limit();
2339 if (limit > 2) {
2340 priv->cstate_limit = limit;
2341 acpi_set_cstate_limit(2);
2342 priv->config |= CFG_C3_DISABLED;
2343 }
2344 #endif
2345
2346 #ifdef IPW2100_DEBUG_C3
2347 /* Halt the fimrware so we can get a good image */
2348 write_register(priv->net_dev, IPW_REG_RESET_REG,
2349 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2350 j = 5;
2351 do {
2352 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2353 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2354
2355 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2356 break;
2357 } while (j--);
2358
2359 match = ipw2100_match_buf(priv, (u8 *) status,
2360 sizeof(struct ipw2100_status),
2361 SEARCH_SNAPSHOT);
2362 if (match < SEARCH_SUCCESS)
2363 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2364 "offset 0x%06X, length %d:\n",
2365 priv->net_dev->name, match,
2366 sizeof(struct ipw2100_status));
2367 else
2368 IPW_DEBUG_INFO("%s: No DMA status match in "
2369 "Firmware.\n", priv->net_dev->name);
2370
2371 printk_buf((u8 *) priv->status_queue.drv,
2372 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2373 #endif
2374
2375 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2376 priv->ieee->stats.rx_errors++;
2377 schedule_reset(priv);
2378 }
2379
2380 static void isr_rx(struct ipw2100_priv *priv, int i,
2381 struct ieee80211_rx_stats *stats)
2382 {
2383 struct ipw2100_status *status = &priv->status_queue.drv[i];
2384 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2385
2386 IPW_DEBUG_RX("Handler...\n");
2387
2388 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2389 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2390 " Dropping.\n",
2391 priv->net_dev->name,
2392 status->frame_size, skb_tailroom(packet->skb));
2393 priv->ieee->stats.rx_errors++;
2394 return;
2395 }
2396
2397 if (unlikely(!netif_running(priv->net_dev))) {
2398 priv->ieee->stats.rx_errors++;
2399 priv->wstats.discard.misc++;
2400 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2401 return;
2402 }
2403
2404 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2405 !(priv->status & STATUS_ASSOCIATED))) {
2406 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2407 priv->wstats.discard.misc++;
2408 return;
2409 }
2410
2411 pci_unmap_single(priv->pci_dev,
2412 packet->dma_addr,
2413 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2414
2415 skb_put(packet->skb, status->frame_size);
2416
2417 #ifdef IPW2100_RX_DEBUG
2418 /* Make a copy of the frame so we can dump it to the logs if
2419 * ieee80211_rx fails */
2420 skb_copy_from_linear_data(packet->skb, packet_data,
2421 min_t(u32, status->frame_size,
2422 IPW_RX_NIC_BUFFER_LENGTH));
2423 #endif
2424
2425 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2426 #ifdef IPW2100_RX_DEBUG
2427 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2428 priv->net_dev->name);
2429 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2430 #endif
2431 priv->ieee->stats.rx_errors++;
2432
2433 /* ieee80211_rx failed, so it didn't free the SKB */
2434 dev_kfree_skb_any(packet->skb);
2435 packet->skb = NULL;
2436 }
2437
2438 /* We need to allocate a new SKB and attach it to the RDB. */
2439 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2440 printk(KERN_WARNING DRV_NAME ": "
2441 "%s: Unable to allocate SKB onto RBD ring - disabling "
2442 "adapter.\n", priv->net_dev->name);
2443 /* TODO: schedule adapter shutdown */
2444 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2445 }
2446
2447 /* Update the RDB entry */
2448 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2449 }
2450
2451 #ifdef CONFIG_IPW2100_MONITOR
2452
2453 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2454 struct ieee80211_rx_stats *stats)
2455 {
2456 struct ipw2100_status *status = &priv->status_queue.drv[i];
2457 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2458
2459 /* Magic struct that slots into the radiotap header -- no reason
2460 * to build this manually element by element, we can write it much
2461 * more efficiently than we can parse it. ORDER MATTERS HERE */
2462 struct ipw_rt_hdr {
2463 struct ieee80211_radiotap_header rt_hdr;
2464 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2465 } *ipw_rt;
2466
2467 IPW_DEBUG_RX("Handler...\n");
2468
2469 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2470 sizeof(struct ipw_rt_hdr))) {
2471 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2472 " Dropping.\n",
2473 priv->net_dev->name,
2474 status->frame_size,
2475 skb_tailroom(packet->skb));
2476 priv->ieee->stats.rx_errors++;
2477 return;
2478 }
2479
2480 if (unlikely(!netif_running(priv->net_dev))) {
2481 priv->ieee->stats.rx_errors++;
2482 priv->wstats.discard.misc++;
2483 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2484 return;
2485 }
2486
2487 if (unlikely(priv->config & CFG_CRC_CHECK &&
2488 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2489 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2490 priv->ieee->stats.rx_errors++;
2491 return;
2492 }
2493
2494 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2495 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2496 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2497 packet->skb->data, status->frame_size);
2498
2499 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2500
2501 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2502 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2503 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2504
2505 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2506
2507 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2508
2509 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2510
2511 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2512 priv->ieee->stats.rx_errors++;
2513
2514 /* ieee80211_rx failed, so it didn't free the SKB */
2515 dev_kfree_skb_any(packet->skb);
2516 packet->skb = NULL;
2517 }
2518
2519 /* We need to allocate a new SKB and attach it to the RDB. */
2520 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2521 IPW_DEBUG_WARNING(
2522 "%s: Unable to allocate SKB onto RBD ring - disabling "
2523 "adapter.\n", priv->net_dev->name);
2524 /* TODO: schedule adapter shutdown */
2525 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2526 }
2527
2528 /* Update the RDB entry */
2529 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2530 }
2531
2532 #endif
2533
2534 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2535 {
2536 struct ipw2100_status *status = &priv->status_queue.drv[i];
2537 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2538 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2539
2540 switch (frame_type) {
2541 case COMMAND_STATUS_VAL:
2542 return (status->frame_size != sizeof(u->rx_data.command));
2543 case STATUS_CHANGE_VAL:
2544 return (status->frame_size != sizeof(u->rx_data.status));
2545 case HOST_NOTIFICATION_VAL:
2546 return (status->frame_size < sizeof(u->rx_data.notification));
2547 case P80211_DATA_VAL:
2548 case P8023_DATA_VAL:
2549 #ifdef CONFIG_IPW2100_MONITOR
2550 return 0;
2551 #else
2552 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2553 case IEEE80211_FTYPE_MGMT:
2554 case IEEE80211_FTYPE_CTL:
2555 return 0;
2556 case IEEE80211_FTYPE_DATA:
2557 return (status->frame_size >
2558 IPW_MAX_802_11_PAYLOAD_LENGTH);
2559 }
2560 #endif
2561 }
2562
2563 return 1;
2564 }
2565
2566 /*
2567 * ipw2100 interrupts are disabled at this point, and the ISR
2568 * is the only code that calls this method. So, we do not need
2569 * to play with any locks.
2570 *
2571 * RX Queue works as follows:
2572 *
2573 * Read index - firmware places packet in entry identified by the
2574 * Read index and advances Read index. In this manner,
2575 * Read index will always point to the next packet to
2576 * be filled--but not yet valid.
2577 *
2578 * Write index - driver fills this entry with an unused RBD entry.
2579 * This entry has not filled by the firmware yet.
2580 *
2581 * In between the W and R indexes are the RBDs that have been received
2582 * but not yet processed.
2583 *
2584 * The process of handling packets will start at WRITE + 1 and advance
2585 * until it reaches the READ index.
2586 *
2587 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2588 *
2589 */
2590 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2591 {
2592 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2593 struct ipw2100_status_queue *sq = &priv->status_queue;
2594 struct ipw2100_rx_packet *packet;
2595 u16 frame_type;
2596 u32 r, w, i, s;
2597 struct ipw2100_rx *u;
2598 struct ieee80211_rx_stats stats = {
2599 .mac_time = jiffies,
2600 };
2601
2602 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2603 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2604
2605 if (r >= rxq->entries) {
2606 IPW_DEBUG_RX("exit - bad read index\n");
2607 return;
2608 }
2609
2610 i = (rxq->next + 1) % rxq->entries;
2611 s = i;
2612 while (i != r) {
2613 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2614 r, rxq->next, i); */
2615
2616 packet = &priv->rx_buffers[i];
2617
2618 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2619 * the correct values */
2620 pci_dma_sync_single_for_cpu(priv->pci_dev,
2621 sq->nic +
2622 sizeof(struct ipw2100_status) * i,
2623 sizeof(struct ipw2100_status),
2624 PCI_DMA_FROMDEVICE);
2625
2626 /* Sync the DMA for the RX buffer so CPU is sure to get
2627 * the correct values */
2628 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2629 sizeof(struct ipw2100_rx),
2630 PCI_DMA_FROMDEVICE);
2631
2632 if (unlikely(ipw2100_corruption_check(priv, i))) {
2633 ipw2100_corruption_detected(priv, i);
2634 goto increment;
2635 }
2636
2637 u = packet->rxp;
2638 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2639 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2640 stats.len = sq->drv[i].frame_size;
2641
2642 stats.mask = 0;
2643 if (stats.rssi != 0)
2644 stats.mask |= IEEE80211_STATMASK_RSSI;
2645 stats.freq = IEEE80211_24GHZ_BAND;
2646
2647 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2648 priv->net_dev->name, frame_types[frame_type],
2649 stats.len);
2650
2651 switch (frame_type) {
2652 case COMMAND_STATUS_VAL:
2653 /* Reset Rx watchdog */
2654 isr_rx_complete_command(priv, &u->rx_data.command);
2655 break;
2656
2657 case STATUS_CHANGE_VAL:
2658 isr_status_change(priv, u->rx_data.status);
2659 break;
2660
2661 case P80211_DATA_VAL:
2662 case P8023_DATA_VAL:
2663 #ifdef CONFIG_IPW2100_MONITOR
2664 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2665 isr_rx_monitor(priv, i, &stats);
2666 break;
2667 }
2668 #endif
2669 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2670 break;
2671 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2672 case IEEE80211_FTYPE_MGMT:
2673 ieee80211_rx_mgt(priv->ieee,
2674 &u->rx_data.header, &stats);
2675 break;
2676
2677 case IEEE80211_FTYPE_CTL:
2678 break;
2679
2680 case IEEE80211_FTYPE_DATA:
2681 isr_rx(priv, i, &stats);
2682 break;
2683
2684 }
2685 break;
2686 }
2687
2688 increment:
2689 /* clear status field associated with this RBD */
2690 rxq->drv[i].status.info.field = 0;
2691
2692 i = (i + 1) % rxq->entries;
2693 }
2694
2695 if (i != s) {
2696 /* backtrack one entry, wrapping to end if at 0 */
2697 rxq->next = (i ? i : rxq->entries) - 1;
2698
2699 write_register(priv->net_dev,
2700 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2701 }
2702 }
2703
2704 /*
2705 * __ipw2100_tx_process
2706 *
2707 * This routine will determine whether the next packet on
2708 * the fw_pend_list has been processed by the firmware yet.
2709 *
2710 * If not, then it does nothing and returns.
2711 *
2712 * If so, then it removes the item from the fw_pend_list, frees
2713 * any associated storage, and places the item back on the
2714 * free list of its source (either msg_free_list or tx_free_list)
2715 *
2716 * TX Queue works as follows:
2717 *
2718 * Read index - points to the next TBD that the firmware will
2719 * process. The firmware will read the data, and once
2720 * done processing, it will advance the Read index.
2721 *
2722 * Write index - driver fills this entry with an constructed TBD
2723 * entry. The Write index is not advanced until the
2724 * packet has been configured.
2725 *
2726 * In between the W and R indexes are the TBDs that have NOT been
2727 * processed. Lagging behind the R index are packets that have
2728 * been processed but have not been freed by the driver.
2729 *
2730 * In order to free old storage, an internal index will be maintained
2731 * that points to the next packet to be freed. When all used
2732 * packets have been freed, the oldest index will be the same as the
2733 * firmware's read index.
2734 *
2735 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2736 *
2737 * Because the TBD structure can not contain arbitrary data, the
2738 * driver must keep an internal queue of cached allocations such that
2739 * it can put that data back into the tx_free_list and msg_free_list
2740 * for use by future command and data packets.
2741 *
2742 */
2743 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2744 {
2745 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2746 struct ipw2100_bd *tbd;
2747 struct list_head *element;
2748 struct ipw2100_tx_packet *packet;
2749 int descriptors_used;
2750 int e, i;
2751 u32 r, w, frag_num = 0;
2752
2753 if (list_empty(&priv->fw_pend_list))
2754 return 0;
2755
2756 element = priv->fw_pend_list.next;
2757
2758 packet = list_entry(element, struct ipw2100_tx_packet, list);
2759 tbd = &txq->drv[packet->index];
2760
2761 /* Determine how many TBD entries must be finished... */
2762 switch (packet->type) {
2763 case COMMAND:
2764 /* COMMAND uses only one slot; don't advance */
2765 descriptors_used = 1;
2766 e = txq->oldest;
2767 break;
2768
2769 case DATA:
2770 /* DATA uses two slots; advance and loop position. */
2771 descriptors_used = tbd->num_fragments;
2772 frag_num = tbd->num_fragments - 1;
2773 e = txq->oldest + frag_num;
2774 e %= txq->entries;
2775 break;
2776
2777 default:
2778 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2779 priv->net_dev->name);
2780 return 0;
2781 }
2782
2783 /* if the last TBD is not done by NIC yet, then packet is
2784 * not ready to be released.
2785 *
2786 */
2787 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2788 &r);
2789 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2790 &w);
2791 if (w != txq->next)
2792 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2793 priv->net_dev->name);
2794
2795 /*
2796 * txq->next is the index of the last packet written txq->oldest is
2797 * the index of the r is the index of the next packet to be read by
2798 * firmware
2799 */
2800
2801 /*
2802 * Quick graphic to help you visualize the following
2803 * if / else statement
2804 *
2805 * ===>| s---->|===============
2806 * e>|
2807 * | a | b | c | d | e | f | g | h | i | j | k | l
2808 * r---->|
2809 * w
2810 *
2811 * w - updated by driver
2812 * r - updated by firmware
2813 * s - start of oldest BD entry (txq->oldest)
2814 * e - end of oldest BD entry
2815 *
2816 */
2817 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2818 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2819 return 0;
2820 }
2821
2822 list_del(element);
2823 DEC_STAT(&priv->fw_pend_stat);
2824
2825 #ifdef CONFIG_IPW2100_DEBUG
2826 {
2827 int i = txq->oldest;
2828 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2829 &txq->drv[i],
2830 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2831 txq->drv[i].host_addr, txq->drv[i].buf_length);
2832
2833 if (packet->type == DATA) {
2834 i = (i + 1) % txq->entries;
2835
2836 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2837 &txq->drv[i],
2838 (u32) (txq->nic + i *
2839 sizeof(struct ipw2100_bd)),
2840 (u32) txq->drv[i].host_addr,
2841 txq->drv[i].buf_length);
2842 }
2843 }
2844 #endif
2845
2846 switch (packet->type) {
2847 case DATA:
2848 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2849 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2850 "Expecting DATA TBD but pulled "
2851 "something else: ids %d=%d.\n",
2852 priv->net_dev->name, txq->oldest, packet->index);
2853
2854 /* DATA packet; we have to unmap and free the SKB */
2855 for (i = 0; i < frag_num; i++) {
2856 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2857
2858 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2859 (packet->index + 1 + i) % txq->entries,
2860 tbd->host_addr, tbd->buf_length);
2861
2862 pci_unmap_single(priv->pci_dev,
2863 tbd->host_addr,
2864 tbd->buf_length, PCI_DMA_TODEVICE);
2865 }
2866
2867 ieee80211_txb_free(packet->info.d_struct.txb);
2868 packet->info.d_struct.txb = NULL;
2869
2870 list_add_tail(element, &priv->tx_free_list);
2871 INC_STAT(&priv->tx_free_stat);
2872
2873 /* We have a free slot in the Tx queue, so wake up the
2874 * transmit layer if it is stopped. */
2875 if (priv->status & STATUS_ASSOCIATED)
2876 netif_wake_queue(priv->net_dev);
2877
2878 /* A packet was processed by the hardware, so update the
2879 * watchdog */
2880 priv->net_dev->trans_start = jiffies;
2881
2882 break;
2883
2884 case COMMAND:
2885 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2886 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2887 "Expecting COMMAND TBD but pulled "
2888 "something else: ids %d=%d.\n",
2889 priv->net_dev->name, txq->oldest, packet->index);
2890
2891 #ifdef CONFIG_IPW2100_DEBUG
2892 if (packet->info.c_struct.cmd->host_command_reg <
2893 ARRAY_SIZE(command_types))
2894 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2895 command_types[packet->info.c_struct.cmd->
2896 host_command_reg],
2897 packet->info.c_struct.cmd->
2898 host_command_reg,
2899 packet->info.c_struct.cmd->cmd_status_reg);
2900 #endif
2901
2902 list_add_tail(element, &priv->msg_free_list);
2903 INC_STAT(&priv->msg_free_stat);
2904 break;
2905 }
2906
2907 /* advance oldest used TBD pointer to start of next entry */
2908 txq->oldest = (e + 1) % txq->entries;
2909 /* increase available TBDs number */
2910 txq->available += descriptors_used;
2911 SET_STAT(&priv->txq_stat, txq->available);
2912
2913 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2914 jiffies - packet->jiffy_start);
2915
2916 return (!list_empty(&priv->fw_pend_list));
2917 }
2918
2919 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2920 {
2921 int i = 0;
2922
2923 while (__ipw2100_tx_process(priv) && i < 200)
2924 i++;
2925
2926 if (i == 200) {
2927 printk(KERN_WARNING DRV_NAME ": "
2928 "%s: Driver is running slow (%d iters).\n",
2929 priv->net_dev->name, i);
2930 }
2931 }
2932
2933 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2934 {
2935 struct list_head *element;
2936 struct ipw2100_tx_packet *packet;
2937 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2938 struct ipw2100_bd *tbd;
2939 int next = txq->next;
2940
2941 while (!list_empty(&priv->msg_pend_list)) {
2942 /* if there isn't enough space in TBD queue, then
2943 * don't stuff a new one in.
2944 * NOTE: 3 are needed as a command will take one,
2945 * and there is a minimum of 2 that must be
2946 * maintained between the r and w indexes
2947 */
2948 if (txq->available <= 3) {
2949 IPW_DEBUG_TX("no room in tx_queue\n");
2950 break;
2951 }
2952
2953 element = priv->msg_pend_list.next;
2954 list_del(element);
2955 DEC_STAT(&priv->msg_pend_stat);
2956
2957 packet = list_entry(element, struct ipw2100_tx_packet, list);
2958
2959 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2960 &txq->drv[txq->next],
2961 (void *)(txq->nic + txq->next *
2962 sizeof(struct ipw2100_bd)));
2963
2964 packet->index = txq->next;
2965
2966 tbd = &txq->drv[txq->next];
2967
2968 /* initialize TBD */
2969 tbd->host_addr = packet->info.c_struct.cmd_phys;
2970 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2971 /* not marking number of fragments causes problems
2972 * with f/w debug version */
2973 tbd->num_fragments = 1;
2974 tbd->status.info.field =
2975 IPW_BD_STATUS_TX_FRAME_COMMAND |
2976 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2977
2978 /* update TBD queue counters */
2979 txq->next++;
2980 txq->next %= txq->entries;
2981 txq->available--;
2982 DEC_STAT(&priv->txq_stat);
2983
2984 list_add_tail(element, &priv->fw_pend_list);
2985 INC_STAT(&priv->fw_pend_stat);
2986 }
2987
2988 if (txq->next != next) {
2989 /* kick off the DMA by notifying firmware the
2990 * write index has moved; make sure TBD stores are sync'd */
2991 wmb();
2992 write_register(priv->net_dev,
2993 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2994 txq->next);
2995 }
2996 }
2997
2998 /*
2999 * ipw2100_tx_send_data
3000 *
3001 */
3002 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3003 {
3004 struct list_head *element;
3005 struct ipw2100_tx_packet *packet;
3006 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3007 struct ipw2100_bd *tbd;
3008 int next = txq->next;
3009 int i = 0;
3010 struct ipw2100_data_header *ipw_hdr;
3011 struct ieee80211_hdr_3addr *hdr;
3012
3013 while (!list_empty(&priv->tx_pend_list)) {
3014 /* if there isn't enough space in TBD queue, then
3015 * don't stuff a new one in.
3016 * NOTE: 4 are needed as a data will take two,
3017 * and there is a minimum of 2 that must be
3018 * maintained between the r and w indexes
3019 */
3020 element = priv->tx_pend_list.next;
3021 packet = list_entry(element, struct ipw2100_tx_packet, list);
3022
3023 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3024 IPW_MAX_BDS)) {
3025 /* TODO: Support merging buffers if more than
3026 * IPW_MAX_BDS are used */
3027 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3028 "Increase fragmentation level.\n",
3029 priv->net_dev->name);
3030 }
3031
3032 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3033 IPW_DEBUG_TX("no room in tx_queue\n");
3034 break;
3035 }
3036
3037 list_del(element);
3038 DEC_STAT(&priv->tx_pend_stat);
3039
3040 tbd = &txq->drv[txq->next];
3041
3042 packet->index = txq->next;
3043
3044 ipw_hdr = packet->info.d_struct.data;
3045 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3046 fragments[0]->data;
3047
3048 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3049 /* To DS: Addr1 = BSSID, Addr2 = SA,
3050 Addr3 = DA */
3051 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3052 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3053 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3054 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3055 Addr3 = BSSID */
3056 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3057 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3058 }
3059
3060 ipw_hdr->host_command_reg = SEND;
3061 ipw_hdr->host_command_reg1 = 0;
3062
3063 /* For now we only support host based encryption */
3064 ipw_hdr->needs_encryption = 0;
3065 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3066 if (packet->info.d_struct.txb->nr_frags > 1)
3067 ipw_hdr->fragment_size =
3068 packet->info.d_struct.txb->frag_size -
3069 IEEE80211_3ADDR_LEN;
3070 else
3071 ipw_hdr->fragment_size = 0;
3072
3073 tbd->host_addr = packet->info.d_struct.data_phys;
3074 tbd->buf_length = sizeof(struct ipw2100_data_header);
3075 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3076 tbd->status.info.field =
3077 IPW_BD_STATUS_TX_FRAME_802_3 |
3078 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3079 txq->next++;
3080 txq->next %= txq->entries;
3081
3082 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3083 packet->index, tbd->host_addr, tbd->buf_length);
3084 #ifdef CONFIG_IPW2100_DEBUG
3085 if (packet->info.d_struct.txb->nr_frags > 1)
3086 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3087 packet->info.d_struct.txb->nr_frags);
3088 #endif
3089
3090 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3091 tbd = &txq->drv[txq->next];
3092 if (i == packet->info.d_struct.txb->nr_frags - 1)
3093 tbd->status.info.field =
3094 IPW_BD_STATUS_TX_FRAME_802_3 |
3095 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3096 else
3097 tbd->status.info.field =
3098 IPW_BD_STATUS_TX_FRAME_802_3 |
3099 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3100
3101 tbd->buf_length = packet->info.d_struct.txb->
3102 fragments[i]->len - IEEE80211_3ADDR_LEN;
3103
3104 tbd->host_addr = pci_map_single(priv->pci_dev,
3105 packet->info.d_struct.
3106 txb->fragments[i]->
3107 data +
3108 IEEE80211_3ADDR_LEN,
3109 tbd->buf_length,
3110 PCI_DMA_TODEVICE);
3111
3112 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3113 txq->next, tbd->host_addr,
3114 tbd->buf_length);
3115
3116 pci_dma_sync_single_for_device(priv->pci_dev,
3117 tbd->host_addr,
3118 tbd->buf_length,
3119 PCI_DMA_TODEVICE);
3120
3121 txq->next++;
3122 txq->next %= txq->entries;
3123 }
3124
3125 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3126 SET_STAT(&priv->txq_stat, txq->available);
3127
3128 list_add_tail(element, &priv->fw_pend_list);
3129 INC_STAT(&priv->fw_pend_stat);
3130 }
3131
3132 if (txq->next != next) {
3133 /* kick off the DMA by notifying firmware the
3134 * write index has moved; make sure TBD stores are sync'd */
3135 write_register(priv->net_dev,
3136 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3137 txq->next);
3138 }
3139 return;
3140 }
3141
3142 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3143 {
3144 struct net_device *dev = priv->net_dev;
3145 unsigned long flags;
3146 u32 inta, tmp;
3147
3148 spin_lock_irqsave(&priv->low_lock, flags);
3149 ipw2100_disable_interrupts(priv);
3150
3151 read_register(dev, IPW_REG_INTA, &inta);
3152
3153 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3154 (unsigned long)inta & IPW_INTERRUPT_MASK);
3155
3156 priv->in_isr++;
3157 priv->interrupts++;
3158
3159 /* We do not loop and keep polling for more interrupts as this
3160 * is frowned upon and doesn't play nicely with other potentially
3161 * chained IRQs */
3162 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3163 (unsigned long)inta & IPW_INTERRUPT_MASK);
3164
3165 if (inta & IPW2100_INTA_FATAL_ERROR) {
3166 printk(KERN_WARNING DRV_NAME
3167 ": Fatal interrupt. Scheduling firmware restart.\n");
3168 priv->inta_other++;
3169 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3170
3171 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3172 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3173 priv->net_dev->name, priv->fatal_error);
3174
3175 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3176 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3177 priv->net_dev->name, tmp);
3178
3179 /* Wake up any sleeping jobs */
3180 schedule_reset(priv);
3181 }
3182
3183 if (inta & IPW2100_INTA_PARITY_ERROR) {
3184 printk(KERN_ERR DRV_NAME
3185 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3186 priv->inta_other++;
3187 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3188 }
3189
3190 if (inta & IPW2100_INTA_RX_TRANSFER) {
3191 IPW_DEBUG_ISR("RX interrupt\n");
3192
3193 priv->rx_interrupts++;
3194
3195 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3196
3197 __ipw2100_rx_process(priv);
3198 __ipw2100_tx_complete(priv);
3199 }
3200
3201 if (inta & IPW2100_INTA_TX_TRANSFER) {
3202 IPW_DEBUG_ISR("TX interrupt\n");
3203
3204 priv->tx_interrupts++;
3205
3206 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3207
3208 __ipw2100_tx_complete(priv);
3209 ipw2100_tx_send_commands(priv);
3210 ipw2100_tx_send_data(priv);
3211 }
3212
3213 if (inta & IPW2100_INTA_TX_COMPLETE) {
3214 IPW_DEBUG_ISR("TX complete\n");
3215 priv->inta_other++;
3216 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3217
3218 __ipw2100_tx_complete(priv);
3219 }
3220
3221 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3222 /* ipw2100_handle_event(dev); */
3223 priv->inta_other++;
3224 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3225 }
3226
3227 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3228 IPW_DEBUG_ISR("FW init done interrupt\n");
3229 priv->inta_other++;
3230
3231 read_register(dev, IPW_REG_INTA, &tmp);
3232 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3233 IPW2100_INTA_PARITY_ERROR)) {
3234 write_register(dev, IPW_REG_INTA,
3235 IPW2100_INTA_FATAL_ERROR |
3236 IPW2100_INTA_PARITY_ERROR);
3237 }
3238
3239 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3240 }
3241
3242 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3243 IPW_DEBUG_ISR("Status change interrupt\n");
3244 priv->inta_other++;
3245 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3246 }
3247
3248 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3249 IPW_DEBUG_ISR("slave host mode interrupt\n");
3250 priv->inta_other++;
3251 write_register(dev, IPW_REG_INTA,
3252 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3253 }
3254
3255 priv->in_isr--;
3256 ipw2100_enable_interrupts(priv);
3257
3258 spin_unlock_irqrestore(&priv->low_lock, flags);
3259
3260 IPW_DEBUG_ISR("exit\n");
3261 }
3262
3263 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3264 {
3265 struct ipw2100_priv *priv = data;
3266 u32 inta, inta_mask;
3267
3268 if (!data)
3269 return IRQ_NONE;
3270
3271 spin_lock(&priv->low_lock);
3272
3273 /* We check to see if we should be ignoring interrupts before
3274 * we touch the hardware. During ucode load if we try and handle
3275 * an interrupt we can cause keyboard problems as well as cause
3276 * the ucode to fail to initialize */
3277 if (!(priv->status & STATUS_INT_ENABLED)) {
3278 /* Shared IRQ */
3279 goto none;
3280 }
3281
3282 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3283 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3284
3285 if (inta == 0xFFFFFFFF) {
3286 /* Hardware disappeared */
3287 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3288 goto none;
3289 }
3290
3291 inta &= IPW_INTERRUPT_MASK;
3292
3293 if (!(inta & inta_mask)) {
3294 /* Shared interrupt */
3295 goto none;
3296 }
3297
3298 /* We disable the hardware interrupt here just to prevent unneeded
3299 * calls to be made. We disable this again within the actual
3300 * work tasklet, so if another part of the code re-enables the
3301 * interrupt, that is fine */
3302 ipw2100_disable_interrupts(priv);
3303
3304 tasklet_schedule(&priv->irq_tasklet);
3305 spin_unlock(&priv->low_lock);
3306
3307 return IRQ_HANDLED;
3308 none:
3309 spin_unlock(&priv->low_lock);
3310 return IRQ_NONE;
3311 }
3312
3313 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3314 int pri)
3315 {
3316 struct ipw2100_priv *priv = ieee80211_priv(dev);
3317 struct list_head *element;
3318 struct ipw2100_tx_packet *packet;
3319 unsigned long flags;
3320
3321 spin_lock_irqsave(&priv->low_lock, flags);
3322
3323 if (!(priv->status & STATUS_ASSOCIATED)) {
3324 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3325 priv->ieee->stats.tx_carrier_errors++;
3326 netif_stop_queue(dev);
3327 goto fail_unlock;
3328 }
3329
3330 if (list_empty(&priv->tx_free_list))
3331 goto fail_unlock;
3332
3333 element = priv->tx_free_list.next;
3334 packet = list_entry(element, struct ipw2100_tx_packet, list);
3335
3336 packet->info.d_struct.txb = txb;
3337
3338 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3339 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3340
3341 packet->jiffy_start = jiffies;
3342
3343 list_del(element);
3344 DEC_STAT(&priv->tx_free_stat);
3345
3346 list_add_tail(element, &priv->tx_pend_list);
3347 INC_STAT(&priv->tx_pend_stat);
3348
3349 ipw2100_tx_send_data(priv);
3350
3351 spin_unlock_irqrestore(&priv->low_lock, flags);
3352 return 0;
3353
3354 fail_unlock:
3355 netif_stop_queue(dev);
3356 spin_unlock_irqrestore(&priv->low_lock, flags);
3357 return 1;
3358 }
3359
3360 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3361 {
3362 int i, j, err = -EINVAL;
3363 void *v;
3364 dma_addr_t p;
3365
3366 priv->msg_buffers =
3367 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3368 sizeof(struct
3369 ipw2100_tx_packet),
3370 GFP_KERNEL);
3371 if (!priv->msg_buffers) {
3372 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3373 "buffers.\n", priv->net_dev->name);
3374 return -ENOMEM;
3375 }
3376
3377 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3378 v = pci_alloc_consistent(priv->pci_dev,
3379 sizeof(struct ipw2100_cmd_header), &p);
3380 if (!v) {
3381 printk(KERN_ERR DRV_NAME ": "
3382 "%s: PCI alloc failed for msg "
3383 "buffers.\n", priv->net_dev->name);
3384 err = -ENOMEM;
3385 break;
3386 }
3387
3388 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3389
3390 priv->msg_buffers[i].type = COMMAND;
3391 priv->msg_buffers[i].info.c_struct.cmd =
3392 (struct ipw2100_cmd_header *)v;
3393 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3394 }
3395
3396 if (i == IPW_COMMAND_POOL_SIZE)
3397 return 0;
3398
3399 for (j = 0; j < i; j++) {
3400 pci_free_consistent(priv->pci_dev,
3401 sizeof(struct ipw2100_cmd_header),
3402 priv->msg_buffers[j].info.c_struct.cmd,
3403 priv->msg_buffers[j].info.c_struct.
3404 cmd_phys);
3405 }
3406
3407 kfree(priv->msg_buffers);
3408 priv->msg_buffers = NULL;
3409
3410 return err;
3411 }
3412
3413 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3414 {
3415 int i;
3416
3417 INIT_LIST_HEAD(&priv->msg_free_list);
3418 INIT_LIST_HEAD(&priv->msg_pend_list);
3419
3420 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3421 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3422 SET_STAT(&priv->msg_free_stat, i);
3423
3424 return 0;
3425 }
3426
3427 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3428 {
3429 int i;
3430
3431 if (!priv->msg_buffers)
3432 return;
3433
3434 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3435 pci_free_consistent(priv->pci_dev,
3436 sizeof(struct ipw2100_cmd_header),
3437 priv->msg_buffers[i].info.c_struct.cmd,
3438 priv->msg_buffers[i].info.c_struct.
3439 cmd_phys);
3440 }
3441
3442 kfree(priv->msg_buffers);
3443 priv->msg_buffers = NULL;
3444 }
3445
3446 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3447 char *buf)
3448 {
3449 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3450 char *out = buf;
3451 int i, j;
3452 u32 val;
3453
3454 for (i = 0; i < 16; i++) {
3455 out += sprintf(out, "[%08X] ", i * 16);
3456 for (j = 0; j < 16; j += 4) {
3457 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3458 out += sprintf(out, "%08X ", val);
3459 }
3460 out += sprintf(out, "\n");
3461 }
3462
3463 return out - buf;
3464 }
3465
3466 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3467
3468 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3469 char *buf)
3470 {
3471 struct ipw2100_priv *p = d->driver_data;
3472 return sprintf(buf, "0x%08x\n", (int)p->config);
3473 }
3474
3475 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3476
3477 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3478 char *buf)
3479 {
3480 struct ipw2100_priv *p = d->driver_data;
3481 return sprintf(buf, "0x%08x\n", (int)p->status);
3482 }
3483
3484 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3485
3486 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3487 char *buf)
3488 {
3489 struct ipw2100_priv *p = d->driver_data;
3490 return sprintf(buf, "0x%08x\n", (int)p->capability);
3491 }
3492
3493 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3494
3495 #define IPW2100_REG(x) { IPW_ ##x, #x }
3496 static const struct {
3497 u32 addr;
3498 const char *name;
3499 } hw_data[] = {
3500 IPW2100_REG(REG_GP_CNTRL),
3501 IPW2100_REG(REG_GPIO),
3502 IPW2100_REG(REG_INTA),
3503 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3504 #define IPW2100_NIC(x, s) { x, #x, s }
3505 static const struct {
3506 u32 addr;
3507 const char *name;
3508 size_t size;
3509 } nic_data[] = {
3510 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3511 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3512 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3513 static const struct {
3514 u8 index;
3515 const char *name;
3516 const char *desc;
3517 } ord_data[] = {
3518 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3519 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3520 "successful Host Tx's (MSDU)"),
3521 IPW2100_ORD(STAT_TX_DIR_DATA,
3522 "successful Directed Tx's (MSDU)"),
3523 IPW2100_ORD(STAT_TX_DIR_DATA1,
3524 "successful Directed Tx's (MSDU) @ 1MB"),
3525 IPW2100_ORD(STAT_TX_DIR_DATA2,
3526 "successful Directed Tx's (MSDU) @ 2MB"),
3527 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3528 "successful Directed Tx's (MSDU) @ 5_5MB"),
3529 IPW2100_ORD(STAT_TX_DIR_DATA11,
3530 "successful Directed Tx's (MSDU) @ 11MB"),
3531 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3532 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3533 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3534 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3535 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3536 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3537 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3538 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3539 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3540 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3541 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3542 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3543 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3544 IPW2100_ORD(STAT_TX_ASSN_RESP,
3545 "successful Association response Tx's"),
3546 IPW2100_ORD(STAT_TX_REASSN,
3547 "successful Reassociation Tx's"),
3548 IPW2100_ORD(STAT_TX_REASSN_RESP,
3549 "successful Reassociation response Tx's"),
3550 IPW2100_ORD(STAT_TX_PROBE,
3551 "probes successfully transmitted"),
3552 IPW2100_ORD(STAT_TX_PROBE_RESP,
3553 "probe responses successfully transmitted"),
3554 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3555 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3556 IPW2100_ORD(STAT_TX_DISASSN,
3557 "successful Disassociation TX"),
3558 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3559 IPW2100_ORD(STAT_TX_DEAUTH,
3560 "successful Deauthentication TX"),
3561 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3562 "Total successful Tx data bytes"),
3563 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3564 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3565 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3566 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3567 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3568 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3569 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3570 "times max tries in a hop failed"),
3571 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3572 "times disassociation failed"),
3573 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3574 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3575 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3576 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3577 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3578 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3579 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3580 "directed packets at 5.5MB"),
3581 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3582 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3583 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3584 "nondirected packets at 1MB"),
3585 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3586 "nondirected packets at 2MB"),
3587 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3588 "nondirected packets at 5.5MB"),
3589 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3590 "nondirected packets at 11MB"),
3591 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3592 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3593 "Rx CTS"),
3594 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3595 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3596 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3597 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3598 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3599 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3600 IPW2100_ORD(STAT_RX_REASSN_RESP,
3601 "Reassociation response Rx's"),
3602 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3603 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3604 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3605 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3606 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3607 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3608 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3609 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3610 "Total rx data bytes received"),
3611 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3612 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3613 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3614 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3615 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3616 IPW2100_ORD(STAT_RX_DUPLICATE1,
3617 "duplicate rx packets at 1MB"),
3618 IPW2100_ORD(STAT_RX_DUPLICATE2,
3619 "duplicate rx packets at 2MB"),
3620 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3621 "duplicate rx packets at 5.5MB"),
3622 IPW2100_ORD(STAT_RX_DUPLICATE11,
3623 "duplicate rx packets at 11MB"),
3624 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3625 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3626 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3627 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3628 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3629 "rx frames with invalid protocol"),
3630 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3631 IPW2100_ORD(STAT_RX_NO_BUFFER,
3632 "rx frames rejected due to no buffer"),
3633 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3634 "rx frames dropped due to missing fragment"),
3635 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3636 "rx frames dropped due to non-sequential fragment"),
3637 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3638 "rx frames dropped due to unmatched 1st frame"),
3639 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3640 "rx frames dropped due to uncompleted frame"),
3641 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3642 "ICV errors during decryption"),
3643 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3644 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3645 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3646 "poll response timeouts"),
3647 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3648 "timeouts waiting for last {broad,multi}cast pkt"),
3649 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3650 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3651 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3652 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3653 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3654 "current calculation of % missed beacons"),
3655 IPW2100_ORD(STAT_PERCENT_RETRIES,
3656 "current calculation of % missed tx retries"),
3657 IPW2100_ORD(ASSOCIATED_AP_PTR,
3658 "0 if not associated, else pointer to AP table entry"),
3659 IPW2100_ORD(AVAILABLE_AP_CNT,
3660 "AP's decsribed in the AP table"),
3661 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3662 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3663 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3664 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3665 "failures due to response fail"),
3666 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3667 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3668 IPW2100_ORD(STAT_ROAM_INHIBIT,
3669 "times roaming was inhibited due to activity"),
3670 IPW2100_ORD(RSSI_AT_ASSN,
3671 "RSSI of associated AP at time of association"),
3672 IPW2100_ORD(STAT_ASSN_CAUSE1,
3673 "reassociation: no probe response or TX on hop"),
3674 IPW2100_ORD(STAT_ASSN_CAUSE2,
3675 "reassociation: poor tx/rx quality"),
3676 IPW2100_ORD(STAT_ASSN_CAUSE3,
3677 "reassociation: tx/rx quality (excessive AP load"),
3678 IPW2100_ORD(STAT_ASSN_CAUSE4,
3679 "reassociation: AP RSSI level"),
3680 IPW2100_ORD(STAT_ASSN_CAUSE5,
3681 "reassociations due to load leveling"),
3682 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3683 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3684 "times authentication response failed"),
3685 IPW2100_ORD(STATION_TABLE_CNT,
3686 "entries in association table"),
3687 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3688 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3689 IPW2100_ORD(COUNTRY_CODE,
3690 "IEEE country code as recv'd from beacon"),
3691 IPW2100_ORD(COUNTRY_CHANNELS,
3692 "channels suported by country"),
3693 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3694 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3695 IPW2100_ORD(ANTENNA_DIVERSITY,
3696 "TRUE if antenna diversity is disabled"),
3697 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3698 IPW2100_ORD(OUR_FREQ,
3699 "current radio freq lower digits - channel ID"),
3700 IPW2100_ORD(RTC_TIME, "current RTC time"),
3701 IPW2100_ORD(PORT_TYPE, "operating mode"),
3702 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3703 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3704 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3705 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3706 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3707 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3708 IPW2100_ORD(CAPABILITIES,
3709 "Management frame capability field"),
3710 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3711 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3712 IPW2100_ORD(RTS_THRESHOLD,
3713 "Min packet length for RTS handshaking"),
3714 IPW2100_ORD(INT_MODE, "International mode"),
3715 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3716 "protocol frag threshold"),
3717 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3718 "EEPROM offset in SRAM"),
3719 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3720 "EEPROM size in SRAM"),
3721 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3722 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3723 "EEPROM IBSS 11b channel set"),
3724 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3725 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3726 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3727 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3728 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3729
3730 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3731 char *buf)
3732 {
3733 int i;
3734 struct ipw2100_priv *priv = dev_get_drvdata(d);
3735 struct net_device *dev = priv->net_dev;
3736 char *out = buf;
3737 u32 val = 0;
3738
3739 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3740
3741 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3742 read_register(dev, hw_data[i].addr, &val);
3743 out += sprintf(out, "%30s [%08X] : %08X\n",
3744 hw_data[i].name, hw_data[i].addr, val);
3745 }
3746
3747 return out - buf;
3748 }
3749
3750 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3751
3752 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3753 char *buf)
3754 {
3755 struct ipw2100_priv *priv = dev_get_drvdata(d);
3756 struct net_device *dev = priv->net_dev;
3757 char *out = buf;
3758 int i;
3759
3760 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3761
3762 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3763 u8 tmp8;
3764 u16 tmp16;
3765 u32 tmp32;
3766
3767 switch (nic_data[i].size) {
3768 case 1:
3769 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3770 out += sprintf(out, "%30s [%08X] : %02X\n",
3771 nic_data[i].name, nic_data[i].addr,
3772 tmp8);
3773 break;
3774 case 2:
3775 read_nic_word(dev, nic_data[i].addr, &tmp16);
3776 out += sprintf(out, "%30s [%08X] : %04X\n",
3777 nic_data[i].name, nic_data[i].addr,
3778 tmp16);
3779 break;
3780 case 4:
3781 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3782 out += sprintf(out, "%30s [%08X] : %08X\n",
3783 nic_data[i].name, nic_data[i].addr,
3784 tmp32);
3785 break;
3786 }
3787 }
3788 return out - buf;
3789 }
3790
3791 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3792
3793 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3794 char *buf)
3795 {
3796 struct ipw2100_priv *priv = dev_get_drvdata(d);
3797 struct net_device *dev = priv->net_dev;
3798 static unsigned long loop = 0;
3799 int len = 0;
3800 u32 buffer[4];
3801 int i;
3802 char line[81];
3803
3804 if (loop >= 0x30000)
3805 loop = 0;
3806
3807 /* sysfs provides us PAGE_SIZE buffer */
3808 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3809
3810 if (priv->snapshot[0])
3811 for (i = 0; i < 4; i++)
3812 buffer[i] =
3813 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3814 else
3815 for (i = 0; i < 4; i++)
3816 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3817
3818 if (priv->dump_raw)
3819 len += sprintf(buf + len,
3820 "%c%c%c%c"
3821 "%c%c%c%c"
3822 "%c%c%c%c"
3823 "%c%c%c%c",
3824 ((u8 *) buffer)[0x0],
3825 ((u8 *) buffer)[0x1],
3826 ((u8 *) buffer)[0x2],
3827 ((u8 *) buffer)[0x3],
3828 ((u8 *) buffer)[0x4],
3829 ((u8 *) buffer)[0x5],
3830 ((u8 *) buffer)[0x6],
3831 ((u8 *) buffer)[0x7],
3832 ((u8 *) buffer)[0x8],
3833 ((u8 *) buffer)[0x9],
3834 ((u8 *) buffer)[0xa],
3835 ((u8 *) buffer)[0xb],
3836 ((u8 *) buffer)[0xc],
3837 ((u8 *) buffer)[0xd],
3838 ((u8 *) buffer)[0xe],
3839 ((u8 *) buffer)[0xf]);
3840 else
3841 len += sprintf(buf + len, "%s\n",
3842 snprint_line(line, sizeof(line),
3843 (u8 *) buffer, 16, loop));
3844 loop += 16;
3845 }
3846
3847 return len;
3848 }
3849
3850 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3851 const char *buf, size_t count)
3852 {
3853 struct ipw2100_priv *priv = dev_get_drvdata(d);
3854 struct net_device *dev = priv->net_dev;
3855 const char *p = buf;
3856
3857 (void)dev; /* kill unused-var warning for debug-only code */
3858
3859 if (count < 1)
3860 return count;
3861
3862 if (p[0] == '1' ||
3863 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3864 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3865 dev->name);
3866 priv->dump_raw = 1;
3867
3868 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3869 tolower(p[1]) == 'f')) {
3870 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3871 dev->name);
3872 priv->dump_raw = 0;
3873
3874 } else if (tolower(p[0]) == 'r') {
3875 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3876 ipw2100_snapshot_free(priv);
3877
3878 } else
3879 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3880 "reset = clear memory snapshot\n", dev->name);
3881
3882 return count;
3883 }
3884
3885 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3886
3887 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3888 char *buf)
3889 {
3890 struct ipw2100_priv *priv = dev_get_drvdata(d);
3891 u32 val = 0;
3892 int len = 0;
3893 u32 val_len;
3894 static int loop = 0;
3895
3896 if (priv->status & STATUS_RF_KILL_MASK)
3897 return 0;
3898
3899 if (loop >= ARRAY_SIZE(ord_data))
3900 loop = 0;
3901
3902 /* sysfs provides us PAGE_SIZE buffer */
3903 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3904 val_len = sizeof(u32);
3905
3906 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3907 &val_len))
3908 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3909 ord_data[loop].index,
3910 ord_data[loop].desc);
3911 else
3912 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3913 ord_data[loop].index, val,
3914 ord_data[loop].desc);
3915 loop++;
3916 }
3917
3918 return len;
3919 }
3920
3921 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3922
3923 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3924 char *buf)
3925 {
3926 struct ipw2100_priv *priv = dev_get_drvdata(d);
3927 char *out = buf;
3928
3929 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3930 priv->interrupts, priv->tx_interrupts,
3931 priv->rx_interrupts, priv->inta_other);
3932 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3933 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3934 #ifdef CONFIG_IPW2100_DEBUG
3935 out += sprintf(out, "packet mismatch image: %s\n",
3936 priv->snapshot[0] ? "YES" : "NO");
3937 #endif
3938
3939 return out - buf;
3940 }
3941
3942 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3943
3944 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3945 {
3946 int err;
3947
3948 if (mode == priv->ieee->iw_mode)
3949 return 0;
3950
3951 err = ipw2100_disable_adapter(priv);
3952 if (err) {
3953 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3954 priv->net_dev->name, err);
3955 return err;
3956 }
3957
3958 switch (mode) {
3959 case IW_MODE_INFRA:
3960 priv->net_dev->type = ARPHRD_ETHER;
3961 break;
3962 case IW_MODE_ADHOC:
3963 priv->net_dev->type = ARPHRD_ETHER;
3964 break;
3965 #ifdef CONFIG_IPW2100_MONITOR
3966 case IW_MODE_MONITOR:
3967 priv->last_mode = priv->ieee->iw_mode;
3968 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3969 break;
3970 #endif /* CONFIG_IPW2100_MONITOR */
3971 }
3972
3973 priv->ieee->iw_mode = mode;
3974
3975 #ifdef CONFIG_PM
3976 /* Indicate ipw2100_download_firmware download firmware
3977 * from disk instead of memory. */
3978 ipw2100_firmware.version = 0;
3979 #endif
3980
3981 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3982 priv->reset_backoff = 0;
3983 schedule_reset(priv);
3984
3985 return 0;
3986 }
3987
3988 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3989 char *buf)
3990 {
3991 struct ipw2100_priv *priv = dev_get_drvdata(d);
3992 int len = 0;
3993
3994 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3995
3996 if (priv->status & STATUS_ASSOCIATED)
3997 len += sprintf(buf + len, "connected: %lu\n",
3998 get_seconds() - priv->connect_start);
3999 else
4000 len += sprintf(buf + len, "not connected\n");
4001
4002 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4003 DUMP_VAR(status, "08lx");
4004 DUMP_VAR(config, "08lx");
4005 DUMP_VAR(capability, "08lx");
4006
4007 len +=
4008 sprintf(buf + len, "last_rtc: %lu\n",
4009 (unsigned long)priv->last_rtc);
4010
4011 DUMP_VAR(fatal_error, "d");
4012 DUMP_VAR(stop_hang_check, "d");
4013 DUMP_VAR(stop_rf_kill, "d");
4014 DUMP_VAR(messages_sent, "d");
4015
4016 DUMP_VAR(tx_pend_stat.value, "d");
4017 DUMP_VAR(tx_pend_stat.hi, "d");
4018
4019 DUMP_VAR(tx_free_stat.value, "d");
4020 DUMP_VAR(tx_free_stat.lo, "d");
4021
4022 DUMP_VAR(msg_free_stat.value, "d");
4023 DUMP_VAR(msg_free_stat.lo, "d");
4024
4025 DUMP_VAR(msg_pend_stat.value, "d");
4026 DUMP_VAR(msg_pend_stat.hi, "d");
4027
4028 DUMP_VAR(fw_pend_stat.value, "d");
4029 DUMP_VAR(fw_pend_stat.hi, "d");
4030
4031 DUMP_VAR(txq_stat.value, "d");
4032 DUMP_VAR(txq_stat.lo, "d");
4033
4034 DUMP_VAR(ieee->scans, "d");
4035 DUMP_VAR(reset_backoff, "d");
4036
4037 return len;
4038 }
4039
4040 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4041
4042 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4043 char *buf)
4044 {
4045 struct ipw2100_priv *priv = dev_get_drvdata(d);
4046 char essid[IW_ESSID_MAX_SIZE + 1];
4047 u8 bssid[ETH_ALEN];
4048 u32 chan = 0;
4049 char *out = buf;
4050 int length;
4051 int ret;
4052
4053 if (priv->status & STATUS_RF_KILL_MASK)
4054 return 0;
4055
4056 memset(essid, 0, sizeof(essid));
4057 memset(bssid, 0, sizeof(bssid));
4058
4059 length = IW_ESSID_MAX_SIZE;
4060 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4061 if (ret)
4062 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4063 __LINE__);
4064
4065 length = sizeof(bssid);
4066 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4067 bssid, &length);
4068 if (ret)
4069 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4070 __LINE__);
4071
4072 length = sizeof(u32);
4073 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4074 if (ret)
4075 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4076 __LINE__);
4077
4078 out += sprintf(out, "ESSID: %s\n", essid);
4079 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4080 bssid[0], bssid[1], bssid[2],
4081 bssid[3], bssid[4], bssid[5]);
4082 out += sprintf(out, "Channel: %d\n", chan);
4083
4084 return out - buf;
4085 }
4086
4087 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4088
4089 #ifdef CONFIG_IPW2100_DEBUG
4090 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4091 {
4092 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4093 }
4094
4095 static ssize_t store_debug_level(struct device_driver *d,
4096 const char *buf, size_t count)
4097 {
4098 char *p = (char *)buf;
4099 u32 val;
4100
4101 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4102 p++;
4103 if (p[0] == 'x' || p[0] == 'X')
4104 p++;
4105 val = simple_strtoul(p, &p, 16);
4106 } else
4107 val = simple_strtoul(p, &p, 10);
4108 if (p == buf)
4109 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4110 else
4111 ipw2100_debug_level = val;
4112
4113 return strnlen(buf, count);
4114 }
4115
4116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4117 store_debug_level);
4118 #endif /* CONFIG_IPW2100_DEBUG */
4119
4120 static ssize_t show_fatal_error(struct device *d,
4121 struct device_attribute *attr, char *buf)
4122 {
4123 struct ipw2100_priv *priv = dev_get_drvdata(d);
4124 char *out = buf;
4125 int i;
4126
4127 if (priv->fatal_error)
4128 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4129 else
4130 out += sprintf(out, "0\n");
4131
4132 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4133 if (!priv->fatal_errors[(priv->fatal_index - i) %
4134 IPW2100_ERROR_QUEUE])
4135 continue;
4136
4137 out += sprintf(out, "%d. 0x%08X\n", i,
4138 priv->fatal_errors[(priv->fatal_index - i) %
4139 IPW2100_ERROR_QUEUE]);
4140 }
4141
4142 return out - buf;
4143 }
4144
4145 static ssize_t store_fatal_error(struct device *d,
4146 struct device_attribute *attr, const char *buf,
4147 size_t count)
4148 {
4149 struct ipw2100_priv *priv = dev_get_drvdata(d);
4150 schedule_reset(priv);
4151 return count;
4152 }
4153
4154 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4155 store_fatal_error);
4156
4157 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4158 char *buf)
4159 {
4160 struct ipw2100_priv *priv = dev_get_drvdata(d);
4161 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4162 }
4163
4164 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4165 const char *buf, size_t count)
4166 {
4167 struct ipw2100_priv *priv = dev_get_drvdata(d);
4168 struct net_device *dev = priv->net_dev;
4169 char buffer[] = "00000000";
4170 unsigned long len =
4171 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4172 unsigned long val;
4173 char *p = buffer;
4174
4175 (void)dev; /* kill unused-var warning for debug-only code */
4176
4177 IPW_DEBUG_INFO("enter\n");
4178
4179 strncpy(buffer, buf, len);
4180 buffer[len] = 0;
4181
4182 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4183 p++;
4184 if (p[0] == 'x' || p[0] == 'X')
4185 p++;
4186 val = simple_strtoul(p, &p, 16);
4187 } else
4188 val = simple_strtoul(p, &p, 10);
4189 if (p == buffer) {
4190 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4191 } else {
4192 priv->ieee->scan_age = val;
4193 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4194 }
4195
4196 IPW_DEBUG_INFO("exit\n");
4197 return len;
4198 }
4199
4200 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4201
4202 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4203 char *buf)
4204 {
4205 /* 0 - RF kill not enabled
4206 1 - SW based RF kill active (sysfs)
4207 2 - HW based RF kill active
4208 3 - Both HW and SW baed RF kill active */
4209 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4210 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4211 (rf_kill_active(priv) ? 0x2 : 0x0);
4212 return sprintf(buf, "%i\n", val);
4213 }
4214
4215 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4216 {
4217 if ((disable_radio ? 1 : 0) ==
4218 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4219 return 0;
4220
4221 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4222 disable_radio ? "OFF" : "ON");
4223
4224 mutex_lock(&priv->action_mutex);
4225
4226 if (disable_radio) {
4227 priv->status |= STATUS_RF_KILL_SW;
4228 ipw2100_down(priv);
4229 } else {
4230 priv->status &= ~STATUS_RF_KILL_SW;
4231 if (rf_kill_active(priv)) {
4232 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4233 "disabled by HW switch\n");
4234 /* Make sure the RF_KILL check timer is running */
4235 priv->stop_rf_kill = 0;
4236 cancel_delayed_work(&priv->rf_kill);
4237 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4238 round_jiffies(HZ));
4239 } else
4240 schedule_reset(priv);
4241 }
4242
4243 mutex_unlock(&priv->action_mutex);
4244 return 1;
4245 }
4246
4247 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4248 const char *buf, size_t count)
4249 {
4250 struct ipw2100_priv *priv = dev_get_drvdata(d);
4251 ipw_radio_kill_sw(priv, buf[0] == '1');
4252 return count;
4253 }
4254
4255 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4256
4257 static struct attribute *ipw2100_sysfs_entries[] = {
4258 &dev_attr_hardware.attr,
4259 &dev_attr_registers.attr,
4260 &dev_attr_ordinals.attr,
4261 &dev_attr_pci.attr,
4262 &dev_attr_stats.attr,
4263 &dev_attr_internals.attr,
4264 &dev_attr_bssinfo.attr,
4265 &dev_attr_memory.attr,
4266 &dev_attr_scan_age.attr,
4267 &dev_attr_fatal_error.attr,
4268 &dev_attr_rf_kill.attr,
4269 &dev_attr_cfg.attr,
4270 &dev_attr_status.attr,
4271 &dev_attr_capability.attr,
4272 NULL,
4273 };
4274
4275 static struct attribute_group ipw2100_attribute_group = {
4276 .attrs = ipw2100_sysfs_entries,
4277 };
4278
4279 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4280 {
4281 struct ipw2100_status_queue *q = &priv->status_queue;
4282
4283 IPW_DEBUG_INFO("enter\n");
4284
4285 q->size = entries * sizeof(struct ipw2100_status);
4286 q->drv =
4287 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4288 q->size, &q->nic);
4289 if (!q->drv) {
4290 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4291 return -ENOMEM;
4292 }
4293
4294 memset(q->drv, 0, q->size);
4295
4296 IPW_DEBUG_INFO("exit\n");
4297
4298 return 0;
4299 }
4300
4301 static void status_queue_free(struct ipw2100_priv *priv)
4302 {
4303 IPW_DEBUG_INFO("enter\n");
4304
4305 if (priv->status_queue.drv) {
4306 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4307 priv->status_queue.drv,
4308 priv->status_queue.nic);
4309 priv->status_queue.drv = NULL;
4310 }
4311
4312 IPW_DEBUG_INFO("exit\n");
4313 }
4314
4315 static int bd_queue_allocate(struct ipw2100_priv *priv,
4316 struct ipw2100_bd_queue *q, int entries)
4317 {
4318 IPW_DEBUG_INFO("enter\n");
4319
4320 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4321
4322 q->entries = entries;
4323 q->size = entries * sizeof(struct ipw2100_bd);
4324 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4325 if (!q->drv) {
4326 IPW_DEBUG_INFO
4327 ("can't allocate shared memory for buffer descriptors\n");
4328 return -ENOMEM;
4329 }
4330 memset(q->drv, 0, q->size);
4331
4332 IPW_DEBUG_INFO("exit\n");
4333
4334 return 0;
4335 }
4336
4337 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4338 {
4339 IPW_DEBUG_INFO("enter\n");
4340
4341 if (!q)
4342 return;
4343
4344 if (q->drv) {
4345 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4346 q->drv = NULL;
4347 }
4348
4349 IPW_DEBUG_INFO("exit\n");
4350 }
4351
4352 static void bd_queue_initialize(struct ipw2100_priv *priv,
4353 struct ipw2100_bd_queue *q, u32 base, u32 size,
4354 u32 r, u32 w)
4355 {
4356 IPW_DEBUG_INFO("enter\n");
4357
4358 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4359 (u32) q->nic);
4360
4361 write_register(priv->net_dev, base, q->nic);
4362 write_register(priv->net_dev, size, q->entries);
4363 write_register(priv->net_dev, r, q->oldest);
4364 write_register(priv->net_dev, w, q->next);
4365
4366 IPW_DEBUG_INFO("exit\n");
4367 }
4368
4369 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4370 {
4371 if (priv->workqueue) {
4372 priv->stop_rf_kill = 1;
4373 priv->stop_hang_check = 1;
4374 cancel_delayed_work(&priv->reset_work);
4375 cancel_delayed_work(&priv->security_work);
4376 cancel_delayed_work(&priv->wx_event_work);
4377 cancel_delayed_work(&priv->hang_check);
4378 cancel_delayed_work(&priv->rf_kill);
4379 destroy_workqueue(priv->workqueue);
4380 priv->workqueue = NULL;
4381 }
4382 }
4383
4384 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4385 {
4386 int i, j, err = -EINVAL;
4387 void *v;
4388 dma_addr_t p;
4389
4390 IPW_DEBUG_INFO("enter\n");
4391
4392 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4393 if (err) {
4394 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4395 priv->net_dev->name);
4396 return err;
4397 }
4398
4399 priv->tx_buffers =
4400 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4401 sizeof(struct
4402 ipw2100_tx_packet),
4403 GFP_ATOMIC);
4404 if (!priv->tx_buffers) {
4405 printk(KERN_ERR DRV_NAME
4406 ": %s: alloc failed form tx buffers.\n",
4407 priv->net_dev->name);
4408 bd_queue_free(priv, &priv->tx_queue);
4409 return -ENOMEM;
4410 }
4411
4412 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4413 v = pci_alloc_consistent(priv->pci_dev,
4414 sizeof(struct ipw2100_data_header),
4415 &p);
4416 if (!v) {
4417 printk(KERN_ERR DRV_NAME
4418 ": %s: PCI alloc failed for tx " "buffers.\n",
4419 priv->net_dev->name);
4420 err = -ENOMEM;
4421 break;
4422 }
4423
4424 priv->tx_buffers[i].type = DATA;
4425 priv->tx_buffers[i].info.d_struct.data =
4426 (struct ipw2100_data_header *)v;
4427 priv->tx_buffers[i].info.d_struct.data_phys = p;
4428 priv->tx_buffers[i].info.d_struct.txb = NULL;
4429 }
4430
4431 if (i == TX_PENDED_QUEUE_LENGTH)
4432 return 0;
4433
4434 for (j = 0; j < i; j++) {
4435 pci_free_consistent(priv->pci_dev,
4436 sizeof(struct ipw2100_data_header),
4437 priv->tx_buffers[j].info.d_struct.data,
4438 priv->tx_buffers[j].info.d_struct.
4439 data_phys);
4440 }
4441
4442 kfree(priv->tx_buffers);
4443 priv->tx_buffers = NULL;
4444
4445 return err;
4446 }
4447
4448 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4449 {
4450 int i;
4451
4452 IPW_DEBUG_INFO("enter\n");
4453
4454 /*
4455 * reinitialize packet info lists
4456 */
4457 INIT_LIST_HEAD(&priv->fw_pend_list);
4458 INIT_STAT(&priv->fw_pend_stat);
4459
4460 /*
4461 * reinitialize lists
4462 */
4463 INIT_LIST_HEAD(&priv->tx_pend_list);
4464 INIT_LIST_HEAD(&priv->tx_free_list);
4465 INIT_STAT(&priv->tx_pend_stat);
4466 INIT_STAT(&priv->tx_free_stat);
4467
4468 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4469 /* We simply drop any SKBs that have been queued for
4470 * transmit */
4471 if (priv->tx_buffers[i].info.d_struct.txb) {
4472 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4473 txb);
4474 priv->tx_buffers[i].info.d_struct.txb = NULL;
4475 }
4476
4477 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4478 }
4479
4480 SET_STAT(&priv->tx_free_stat, i);
4481
4482 priv->tx_queue.oldest = 0;
4483 priv->tx_queue.available = priv->tx_queue.entries;
4484 priv->tx_queue.next = 0;
4485 INIT_STAT(&priv->txq_stat);
4486 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4487
4488 bd_queue_initialize(priv, &priv->tx_queue,
4489 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4490 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4491 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4492 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4493
4494 IPW_DEBUG_INFO("exit\n");
4495
4496 }
4497
4498 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4499 {
4500 int i;
4501
4502 IPW_DEBUG_INFO("enter\n");
4503
4504 bd_queue_free(priv, &priv->tx_queue);
4505
4506 if (!priv->tx_buffers)
4507 return;
4508
4509 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4510 if (priv->tx_buffers[i].info.d_struct.txb) {
4511 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4512 txb);
4513 priv->tx_buffers[i].info.d_struct.txb = NULL;
4514 }
4515 if (priv->tx_buffers[i].info.d_struct.data)
4516 pci_free_consistent(priv->pci_dev,
4517 sizeof(struct ipw2100_data_header),
4518 priv->tx_buffers[i].info.d_struct.
4519 data,
4520 priv->tx_buffers[i].info.d_struct.
4521 data_phys);
4522 }
4523
4524 kfree(priv->tx_buffers);
4525 priv->tx_buffers = NULL;
4526
4527 IPW_DEBUG_INFO("exit\n");
4528 }
4529
4530 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4531 {
4532 int i, j, err = -EINVAL;
4533
4534 IPW_DEBUG_INFO("enter\n");
4535
4536 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4537 if (err) {
4538 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4539 return err;
4540 }
4541
4542 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4543 if (err) {
4544 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4545 bd_queue_free(priv, &priv->rx_queue);
4546 return err;
4547 }
4548
4549 /*
4550 * allocate packets
4551 */
4552 priv->rx_buffers = (struct ipw2100_rx_packet *)
4553 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4554 GFP_KERNEL);
4555 if (!priv->rx_buffers) {
4556 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4557
4558 bd_queue_free(priv, &priv->rx_queue);
4559
4560 status_queue_free(priv);
4561
4562 return -ENOMEM;
4563 }
4564
4565 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4566 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4567
4568 err = ipw2100_alloc_skb(priv, packet);
4569 if (unlikely(err)) {
4570 err = -ENOMEM;
4571 break;
4572 }
4573
4574 /* The BD holds the cache aligned address */
4575 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4576 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4577 priv->status_queue.drv[i].status_fields = 0;
4578 }
4579
4580 if (i == RX_QUEUE_LENGTH)
4581 return 0;
4582
4583 for (j = 0; j < i; j++) {
4584 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4585 sizeof(struct ipw2100_rx_packet),
4586 PCI_DMA_FROMDEVICE);
4587 dev_kfree_skb(priv->rx_buffers[j].skb);
4588 }
4589
4590 kfree(priv->rx_buffers);
4591 priv->rx_buffers = NULL;
4592
4593 bd_queue_free(priv, &priv->rx_queue);
4594
4595 status_queue_free(priv);
4596
4597 return err;
4598 }
4599
4600 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4601 {
4602 IPW_DEBUG_INFO("enter\n");
4603
4604 priv->rx_queue.oldest = 0;
4605 priv->rx_queue.available = priv->rx_queue.entries - 1;
4606 priv->rx_queue.next = priv->rx_queue.entries - 1;
4607
4608 INIT_STAT(&priv->rxq_stat);
4609 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4610
4611 bd_queue_initialize(priv, &priv->rx_queue,
4612 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4613 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4614 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4615 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4616
4617 /* set up the status queue */
4618 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4619 priv->status_queue.nic);
4620
4621 IPW_DEBUG_INFO("exit\n");
4622 }
4623
4624 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4625 {
4626 int i;
4627
4628 IPW_DEBUG_INFO("enter\n");
4629
4630 bd_queue_free(priv, &priv->rx_queue);
4631 status_queue_free(priv);
4632
4633 if (!priv->rx_buffers)
4634 return;
4635
4636 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4637 if (priv->rx_buffers[i].rxp) {
4638 pci_unmap_single(priv->pci_dev,
4639 priv->rx_buffers[i].dma_addr,
4640 sizeof(struct ipw2100_rx),
4641 PCI_DMA_FROMDEVICE);
4642 dev_kfree_skb(priv->rx_buffers[i].skb);
4643 }
4644 }
4645
4646 kfree(priv->rx_buffers);
4647 priv->rx_buffers = NULL;
4648
4649 IPW_DEBUG_INFO("exit\n");
4650 }
4651
4652 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4653 {
4654 u32 length = ETH_ALEN;
4655 u8 mac[ETH_ALEN];
4656
4657 int err;
4658
4659 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4660 if (err) {
4661 IPW_DEBUG_INFO("MAC address read failed\n");
4662 return -EIO;
4663 }
4664 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4665 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4666
4667 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4668
4669 return 0;
4670 }
4671
4672 /********************************************************************
4673 *
4674 * Firmware Commands
4675 *
4676 ********************************************************************/
4677
4678 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4679 {
4680 struct host_command cmd = {
4681 .host_command = ADAPTER_ADDRESS,
4682 .host_command_sequence = 0,
4683 .host_command_length = ETH_ALEN
4684 };
4685 int err;
4686
4687 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4688
4689 IPW_DEBUG_INFO("enter\n");
4690
4691 if (priv->config & CFG_CUSTOM_MAC) {
4692 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4693 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4694 } else
4695 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4696 ETH_ALEN);
4697
4698 err = ipw2100_hw_send_command(priv, &cmd);
4699
4700 IPW_DEBUG_INFO("exit\n");
4701 return err;
4702 }
4703
4704 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4705 int batch_mode)
4706 {
4707 struct host_command cmd = {
4708 .host_command = PORT_TYPE,
4709 .host_command_sequence = 0,
4710 .host_command_length = sizeof(u32)
4711 };
4712 int err;
4713
4714 switch (port_type) {
4715 case IW_MODE_INFRA:
4716 cmd.host_command_parameters[0] = IPW_BSS;
4717 break;
4718 case IW_MODE_ADHOC:
4719 cmd.host_command_parameters[0] = IPW_IBSS;
4720 break;
4721 }
4722
4723 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4724 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4725
4726 if (!batch_mode) {
4727 err = ipw2100_disable_adapter(priv);
4728 if (err) {
4729 printk(KERN_ERR DRV_NAME
4730 ": %s: Could not disable adapter %d\n",
4731 priv->net_dev->name, err);
4732 return err;
4733 }
4734 }
4735
4736 /* send cmd to firmware */
4737 err = ipw2100_hw_send_command(priv, &cmd);
4738
4739 if (!batch_mode)
4740 ipw2100_enable_adapter(priv);
4741
4742 return err;
4743 }
4744
4745 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4746 int batch_mode)
4747 {
4748 struct host_command cmd = {
4749 .host_command = CHANNEL,
4750 .host_command_sequence = 0,
4751 .host_command_length = sizeof(u32)
4752 };
4753 int err;
4754
4755 cmd.host_command_parameters[0] = channel;
4756
4757 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4758
4759 /* If BSS then we don't support channel selection */
4760 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4761 return 0;
4762
4763 if ((channel != 0) &&
4764 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4765 return -EINVAL;
4766
4767 if (!batch_mode) {
4768 err = ipw2100_disable_adapter(priv);
4769 if (err)
4770 return err;
4771 }
4772
4773 err = ipw2100_hw_send_command(priv, &cmd);
4774 if (err) {
4775 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4776 return err;
4777 }
4778
4779 if (channel)
4780 priv->config |= CFG_STATIC_CHANNEL;
4781 else
4782 priv->config &= ~CFG_STATIC_CHANNEL;
4783
4784 priv->channel = channel;
4785
4786 if (!batch_mode) {
4787 err = ipw2100_enable_adapter(priv);
4788 if (err)
4789 return err;
4790 }
4791
4792 return 0;
4793 }
4794
4795 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4796 {
4797 struct host_command cmd = {
4798 .host_command = SYSTEM_CONFIG,
4799 .host_command_sequence = 0,
4800 .host_command_length = 12,
4801 };
4802 u32 ibss_mask, len = sizeof(u32);
4803 int err;
4804
4805 /* Set system configuration */
4806
4807 if (!batch_mode) {
4808 err = ipw2100_disable_adapter(priv);
4809 if (err)
4810 return err;
4811 }
4812
4813 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4814 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4815
4816 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4817 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4818
4819 if (!(priv->config & CFG_LONG_PREAMBLE))
4820 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4821
4822 err = ipw2100_get_ordinal(priv,
4823 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4824 &ibss_mask, &len);
4825 if (err)
4826 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4827
4828 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4829 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4830
4831 /* 11b only */
4832 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4833
4834 err = ipw2100_hw_send_command(priv, &cmd);
4835 if (err)
4836 return err;
4837
4838 /* If IPv6 is configured in the kernel then we don't want to filter out all
4839 * of the multicast packets as IPv6 needs some. */
4840 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4841 cmd.host_command = ADD_MULTICAST;
4842 cmd.host_command_sequence = 0;
4843 cmd.host_command_length = 0;
4844
4845 ipw2100_hw_send_command(priv, &cmd);
4846 #endif
4847 if (!batch_mode) {
4848 err = ipw2100_enable_adapter(priv);
4849 if (err)
4850 return err;
4851 }
4852
4853 return 0;
4854 }
4855
4856 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4857 int batch_mode)
4858 {
4859 struct host_command cmd = {
4860 .host_command = BASIC_TX_RATES,
4861 .host_command_sequence = 0,
4862 .host_command_length = 4
4863 };
4864 int err;
4865
4866 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4867
4868 if (!batch_mode) {
4869 err = ipw2100_disable_adapter(priv);
4870 if (err)
4871 return err;
4872 }
4873
4874 /* Set BASIC TX Rate first */
4875 ipw2100_hw_send_command(priv, &cmd);
4876
4877 /* Set TX Rate */
4878 cmd.host_command = TX_RATES;
4879 ipw2100_hw_send_command(priv, &cmd);
4880
4881 /* Set MSDU TX Rate */
4882 cmd.host_command = MSDU_TX_RATES;
4883 ipw2100_hw_send_command(priv, &cmd);
4884
4885 if (!batch_mode) {
4886 err = ipw2100_enable_adapter(priv);
4887 if (err)
4888 return err;
4889 }
4890
4891 priv->tx_rates = rate;
4892
4893 return 0;
4894 }
4895
4896 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4897 {
4898 struct host_command cmd = {
4899 .host_command = POWER_MODE,
4900 .host_command_sequence = 0,
4901 .host_command_length = 4
4902 };
4903 int err;
4904
4905 cmd.host_command_parameters[0] = power_level;
4906
4907 err = ipw2100_hw_send_command(priv, &cmd);
4908 if (err)
4909 return err;
4910
4911 if (power_level == IPW_POWER_MODE_CAM)
4912 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4913 else
4914 priv->power_mode = IPW_POWER_ENABLED | power_level;
4915
4916 #ifdef IPW2100_TX_POWER
4917 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4918 /* Set beacon interval */
4919 cmd.host_command = TX_POWER_INDEX;
4920 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4921
4922 err = ipw2100_hw_send_command(priv, &cmd);
4923 if (err)
4924 return err;
4925 }
4926 #endif
4927
4928 return 0;
4929 }
4930
4931 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4932 {
4933 struct host_command cmd = {
4934 .host_command = RTS_THRESHOLD,
4935 .host_command_sequence = 0,
4936 .host_command_length = 4
4937 };
4938 int err;
4939
4940 if (threshold & RTS_DISABLED)
4941 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4942 else
4943 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4944
4945 err = ipw2100_hw_send_command(priv, &cmd);
4946 if (err)
4947 return err;
4948
4949 priv->rts_threshold = threshold;
4950
4951 return 0;
4952 }
4953
4954 #if 0
4955 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4956 u32 threshold, int batch_mode)
4957 {
4958 struct host_command cmd = {
4959 .host_command = FRAG_THRESHOLD,
4960 .host_command_sequence = 0,
4961 .host_command_length = 4,
4962 .host_command_parameters[0] = 0,
4963 };
4964 int err;
4965
4966 if (!batch_mode) {
4967 err = ipw2100_disable_adapter(priv);
4968 if (err)
4969 return err;
4970 }
4971
4972 if (threshold == 0)
4973 threshold = DEFAULT_FRAG_THRESHOLD;
4974 else {
4975 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4976 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4977 }
4978
4979 cmd.host_command_parameters[0] = threshold;
4980
4981 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4982
4983 err = ipw2100_hw_send_command(priv, &cmd);
4984
4985 if (!batch_mode)
4986 ipw2100_enable_adapter(priv);
4987
4988 if (!err)
4989 priv->frag_threshold = threshold;
4990
4991 return err;
4992 }
4993 #endif
4994
4995 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4996 {
4997 struct host_command cmd = {
4998 .host_command = SHORT_RETRY_LIMIT,
4999 .host_command_sequence = 0,
5000 .host_command_length = 4
5001 };
5002 int err;
5003
5004 cmd.host_command_parameters[0] = retry;
5005
5006 err = ipw2100_hw_send_command(priv, &cmd);
5007 if (err)
5008 return err;
5009
5010 priv->short_retry_limit = retry;
5011
5012 return 0;
5013 }
5014
5015 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5016 {
5017 struct host_command cmd = {
5018 .host_command = LONG_RETRY_LIMIT,
5019 .host_command_sequence = 0,
5020 .host_command_length = 4
5021 };
5022 int err;
5023
5024 cmd.host_command_parameters[0] = retry;
5025
5026 err = ipw2100_hw_send_command(priv, &cmd);
5027 if (err)
5028 return err;
5029
5030 priv->long_retry_limit = retry;
5031
5032 return 0;
5033 }
5034
5035 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5036 int batch_mode)
5037 {
5038 struct host_command cmd = {
5039 .host_command = MANDATORY_BSSID,
5040 .host_command_sequence = 0,
5041 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5042 };
5043 int err;
5044
5045 #ifdef CONFIG_IPW2100_DEBUG
5046 if (bssid != NULL)
5047 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5048 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5049 bssid[5]);
5050 else
5051 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5052 #endif
5053 /* if BSSID is empty then we disable mandatory bssid mode */
5054 if (bssid != NULL)
5055 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5056
5057 if (!batch_mode) {
5058 err = ipw2100_disable_adapter(priv);
5059 if (err)
5060 return err;
5061 }
5062
5063 err = ipw2100_hw_send_command(priv, &cmd);
5064
5065 if (!batch_mode)
5066 ipw2100_enable_adapter(priv);
5067
5068 return err;
5069 }
5070
5071 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5072 {
5073 struct host_command cmd = {
5074 .host_command = DISASSOCIATION_BSSID,
5075 .host_command_sequence = 0,
5076 .host_command_length = ETH_ALEN
5077 };
5078 int err;
5079 int len;
5080
5081 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5082
5083 len = ETH_ALEN;
5084 /* The Firmware currently ignores the BSSID and just disassociates from
5085 * the currently associated AP -- but in the off chance that a future
5086 * firmware does use the BSSID provided here, we go ahead and try and
5087 * set it to the currently associated AP's BSSID */
5088 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5089
5090 err = ipw2100_hw_send_command(priv, &cmd);
5091
5092 return err;
5093 }
5094
5095 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5096 struct ipw2100_wpa_assoc_frame *, int)
5097 __attribute__ ((unused));
5098
5099 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5100 struct ipw2100_wpa_assoc_frame *wpa_frame,
5101 int batch_mode)
5102 {
5103 struct host_command cmd = {
5104 .host_command = SET_WPA_IE,
5105 .host_command_sequence = 0,
5106 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5107 };
5108 int err;
5109
5110 IPW_DEBUG_HC("SET_WPA_IE\n");
5111
5112 if (!batch_mode) {
5113 err = ipw2100_disable_adapter(priv);
5114 if (err)
5115 return err;
5116 }
5117
5118 memcpy(cmd.host_command_parameters, wpa_frame,
5119 sizeof(struct ipw2100_wpa_assoc_frame));
5120
5121 err = ipw2100_hw_send_command(priv, &cmd);
5122
5123 if (!batch_mode) {
5124 if (ipw2100_enable_adapter(priv))
5125 err = -EIO;
5126 }
5127
5128 return err;
5129 }
5130
5131 struct security_info_params {
5132 u32 allowed_ciphers;
5133 u16 version;
5134 u8 auth_mode;
5135 u8 replay_counters_number;
5136 u8 unicast_using_group;
5137 } __attribute__ ((packed));
5138
5139 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5140 int auth_mode,
5141 int security_level,
5142 int unicast_using_group,
5143 int batch_mode)
5144 {
5145 struct host_command cmd = {
5146 .host_command = SET_SECURITY_INFORMATION,
5147 .host_command_sequence = 0,
5148 .host_command_length = sizeof(struct security_info_params)
5149 };
5150 struct security_info_params *security =
5151 (struct security_info_params *)&cmd.host_command_parameters;
5152 int err;
5153 memset(security, 0, sizeof(*security));
5154
5155 /* If shared key AP authentication is turned on, then we need to
5156 * configure the firmware to try and use it.
5157 *
5158 * Actual data encryption/decryption is handled by the host. */
5159 security->auth_mode = auth_mode;
5160 security->unicast_using_group = unicast_using_group;
5161
5162 switch (security_level) {
5163 default:
5164 case SEC_LEVEL_0:
5165 security->allowed_ciphers = IPW_NONE_CIPHER;
5166 break;
5167 case SEC_LEVEL_1:
5168 security->allowed_ciphers = IPW_WEP40_CIPHER |
5169 IPW_WEP104_CIPHER;
5170 break;
5171 case SEC_LEVEL_2:
5172 security->allowed_ciphers = IPW_WEP40_CIPHER |
5173 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5174 break;
5175 case SEC_LEVEL_2_CKIP:
5176 security->allowed_ciphers = IPW_WEP40_CIPHER |
5177 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5178 break;
5179 case SEC_LEVEL_3:
5180 security->allowed_ciphers = IPW_WEP40_CIPHER |
5181 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5182 break;
5183 }
5184
5185 IPW_DEBUG_HC
5186 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5187 security->auth_mode, security->allowed_ciphers, security_level);
5188
5189 security->replay_counters_number = 0;
5190
5191 if (!batch_mode) {
5192 err = ipw2100_disable_adapter(priv);
5193 if (err)
5194 return err;
5195 }
5196
5197 err = ipw2100_hw_send_command(priv, &cmd);
5198
5199 if (!batch_mode)
5200 ipw2100_enable_adapter(priv);
5201
5202 return err;
5203 }
5204
5205 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5206 {
5207 struct host_command cmd = {
5208 .host_command = TX_POWER_INDEX,
5209 .host_command_sequence = 0,
5210 .host_command_length = 4
5211 };
5212 int err = 0;
5213 u32 tmp = tx_power;
5214
5215 if (tx_power != IPW_TX_POWER_DEFAULT)
5216 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5217 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5218
5219 cmd.host_command_parameters[0] = tmp;
5220
5221 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5222 err = ipw2100_hw_send_command(priv, &cmd);
5223 if (!err)
5224 priv->tx_power = tx_power;
5225
5226 return 0;
5227 }
5228
5229 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5230 u32 interval, int batch_mode)
5231 {
5232 struct host_command cmd = {
5233 .host_command = BEACON_INTERVAL,
5234 .host_command_sequence = 0,
5235 .host_command_length = 4
5236 };
5237 int err;
5238
5239 cmd.host_command_parameters[0] = interval;
5240
5241 IPW_DEBUG_INFO("enter\n");
5242
5243 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5244 if (!batch_mode) {
5245 err = ipw2100_disable_adapter(priv);
5246 if (err)
5247 return err;
5248 }
5249
5250 ipw2100_hw_send_command(priv, &cmd);
5251
5252 if (!batch_mode) {
5253 err = ipw2100_enable_adapter(priv);
5254 if (err)
5255 return err;
5256 }
5257 }
5258
5259 IPW_DEBUG_INFO("exit\n");
5260
5261 return 0;
5262 }
5263
5264 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5265 {
5266 ipw2100_tx_initialize(priv);
5267 ipw2100_rx_initialize(priv);
5268 ipw2100_msg_initialize(priv);
5269 }
5270
5271 void ipw2100_queues_free(struct ipw2100_priv *priv)
5272 {
5273 ipw2100_tx_free(priv);
5274 ipw2100_rx_free(priv);
5275 ipw2100_msg_free(priv);
5276 }
5277
5278 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5279 {
5280 if (ipw2100_tx_allocate(priv) ||
5281 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5282 goto fail;
5283
5284 return 0;
5285
5286 fail:
5287 ipw2100_tx_free(priv);
5288 ipw2100_rx_free(priv);
5289 ipw2100_msg_free(priv);
5290 return -ENOMEM;
5291 }
5292
5293 #define IPW_PRIVACY_CAPABLE 0x0008
5294
5295 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5296 int batch_mode)
5297 {
5298 struct host_command cmd = {
5299 .host_command = WEP_FLAGS,
5300 .host_command_sequence = 0,
5301 .host_command_length = 4
5302 };
5303 int err;
5304
5305 cmd.host_command_parameters[0] = flags;
5306
5307 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5308
5309 if (!batch_mode) {
5310 err = ipw2100_disable_adapter(priv);
5311 if (err) {
5312 printk(KERN_ERR DRV_NAME
5313 ": %s: Could not disable adapter %d\n",
5314 priv->net_dev->name, err);
5315 return err;
5316 }
5317 }
5318
5319 /* send cmd to firmware */
5320 err = ipw2100_hw_send_command(priv, &cmd);
5321
5322 if (!batch_mode)
5323 ipw2100_enable_adapter(priv);
5324
5325 return err;
5326 }
5327
5328 struct ipw2100_wep_key {
5329 u8 idx;
5330 u8 len;
5331 u8 key[13];
5332 };
5333
5334 /* Macros to ease up priting WEP keys */
5335 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5336 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5337 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5338 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5339
5340 /**
5341 * Set a the wep key
5342 *
5343 * @priv: struct to work on
5344 * @idx: index of the key we want to set
5345 * @key: ptr to the key data to set
5346 * @len: length of the buffer at @key
5347 * @batch_mode: FIXME perform the operation in batch mode, not
5348 * disabling the device.
5349 *
5350 * @returns 0 if OK, < 0 errno code on error.
5351 *
5352 * Fill out a command structure with the new wep key, length an
5353 * index and send it down the wire.
5354 */
5355 static int ipw2100_set_key(struct ipw2100_priv *priv,
5356 int idx, char *key, int len, int batch_mode)
5357 {
5358 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5359 struct host_command cmd = {
5360 .host_command = WEP_KEY_INFO,
5361 .host_command_sequence = 0,
5362 .host_command_length = sizeof(struct ipw2100_wep_key),
5363 };
5364 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5365 int err;
5366
5367 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5368 idx, keylen, len);
5369
5370 /* NOTE: We don't check cached values in case the firmware was reset
5371 * or some other problem is occurring. If the user is setting the key,
5372 * then we push the change */
5373
5374 wep_key->idx = idx;
5375 wep_key->len = keylen;
5376
5377 if (keylen) {
5378 memcpy(wep_key->key, key, len);
5379 memset(wep_key->key + len, 0, keylen - len);
5380 }
5381
5382 /* Will be optimized out on debug not being configured in */
5383 if (keylen == 0)
5384 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5385 priv->net_dev->name, wep_key->idx);
5386 else if (keylen == 5)
5387 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5388 priv->net_dev->name, wep_key->idx, wep_key->len,
5389 WEP_STR_64(wep_key->key));
5390 else
5391 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5392 "\n",
5393 priv->net_dev->name, wep_key->idx, wep_key->len,
5394 WEP_STR_128(wep_key->key));
5395
5396 if (!batch_mode) {
5397 err = ipw2100_disable_adapter(priv);
5398 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5399 if (err) {
5400 printk(KERN_ERR DRV_NAME
5401 ": %s: Could not disable adapter %d\n",
5402 priv->net_dev->name, err);
5403 return err;
5404 }
5405 }
5406
5407 /* send cmd to firmware */
5408 err = ipw2100_hw_send_command(priv, &cmd);
5409
5410 if (!batch_mode) {
5411 int err2 = ipw2100_enable_adapter(priv);
5412 if (err == 0)
5413 err = err2;
5414 }
5415 return err;
5416 }
5417
5418 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5419 int idx, int batch_mode)
5420 {
5421 struct host_command cmd = {
5422 .host_command = WEP_KEY_INDEX,
5423 .host_command_sequence = 0,
5424 .host_command_length = 4,
5425 .host_command_parameters = {idx},
5426 };
5427 int err;
5428
5429 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5430
5431 if (idx < 0 || idx > 3)
5432 return -EINVAL;
5433
5434 if (!batch_mode) {
5435 err = ipw2100_disable_adapter(priv);
5436 if (err) {
5437 printk(KERN_ERR DRV_NAME
5438 ": %s: Could not disable adapter %d\n",
5439 priv->net_dev->name, err);
5440 return err;
5441 }
5442 }
5443
5444 /* send cmd to firmware */
5445 err = ipw2100_hw_send_command(priv, &cmd);
5446
5447 if (!batch_mode)
5448 ipw2100_enable_adapter(priv);
5449
5450 return err;
5451 }
5452
5453 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5454 {
5455 int i, err, auth_mode, sec_level, use_group;
5456
5457 if (!(priv->status & STATUS_RUNNING))
5458 return 0;
5459
5460 if (!batch_mode) {
5461 err = ipw2100_disable_adapter(priv);
5462 if (err)
5463 return err;
5464 }
5465
5466 if (!priv->ieee->sec.enabled) {
5467 err =
5468 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5469 SEC_LEVEL_0, 0, 1);
5470 } else {
5471 auth_mode = IPW_AUTH_OPEN;
5472 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5473 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5474 auth_mode = IPW_AUTH_SHARED;
5475 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5476 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5477 }
5478
5479 sec_level = SEC_LEVEL_0;
5480 if (priv->ieee->sec.flags & SEC_LEVEL)
5481 sec_level = priv->ieee->sec.level;
5482
5483 use_group = 0;
5484 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5485 use_group = priv->ieee->sec.unicast_uses_group;
5486
5487 err =
5488 ipw2100_set_security_information(priv, auth_mode, sec_level,
5489 use_group, 1);
5490 }
5491
5492 if (err)
5493 goto exit;
5494
5495 if (priv->ieee->sec.enabled) {
5496 for (i = 0; i < 4; i++) {
5497 if (!(priv->ieee->sec.flags & (1 << i))) {
5498 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5499 priv->ieee->sec.key_sizes[i] = 0;
5500 } else {
5501 err = ipw2100_set_key(priv, i,
5502 priv->ieee->sec.keys[i],
5503 priv->ieee->sec.
5504 key_sizes[i], 1);
5505 if (err)
5506 goto exit;
5507 }
5508 }
5509
5510 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5511 }
5512
5513 /* Always enable privacy so the Host can filter WEP packets if
5514 * encrypted data is sent up */
5515 err =
5516 ipw2100_set_wep_flags(priv,
5517 priv->ieee->sec.
5518 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5519 if (err)
5520 goto exit;
5521
5522 priv->status &= ~STATUS_SECURITY_UPDATED;
5523
5524 exit:
5525 if (!batch_mode)
5526 ipw2100_enable_adapter(priv);
5527
5528 return err;
5529 }
5530
5531 static void ipw2100_security_work(struct work_struct *work)
5532 {
5533 struct ipw2100_priv *priv =
5534 container_of(work, struct ipw2100_priv, security_work.work);
5535
5536 /* If we happen to have reconnected before we get a chance to
5537 * process this, then update the security settings--which causes
5538 * a disassociation to occur */
5539 if (!(priv->status & STATUS_ASSOCIATED) &&
5540 priv->status & STATUS_SECURITY_UPDATED)
5541 ipw2100_configure_security(priv, 0);
5542 }
5543
5544 static void shim__set_security(struct net_device *dev,
5545 struct ieee80211_security *sec)
5546 {
5547 struct ipw2100_priv *priv = ieee80211_priv(dev);
5548 int i, force_update = 0;
5549
5550 mutex_lock(&priv->action_mutex);
5551 if (!(priv->status & STATUS_INITIALIZED))
5552 goto done;
5553
5554 for (i = 0; i < 4; i++) {
5555 if (sec->flags & (1 << i)) {
5556 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5557 if (sec->key_sizes[i] == 0)
5558 priv->ieee->sec.flags &= ~(1 << i);
5559 else
5560 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5561 sec->key_sizes[i]);
5562 if (sec->level == SEC_LEVEL_1) {
5563 priv->ieee->sec.flags |= (1 << i);
5564 priv->status |= STATUS_SECURITY_UPDATED;
5565 } else
5566 priv->ieee->sec.flags &= ~(1 << i);
5567 }
5568 }
5569
5570 if ((sec->flags & SEC_ACTIVE_KEY) &&
5571 priv->ieee->sec.active_key != sec->active_key) {
5572 if (sec->active_key <= 3) {
5573 priv->ieee->sec.active_key = sec->active_key;
5574 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5575 } else
5576 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5577
5578 priv->status |= STATUS_SECURITY_UPDATED;
5579 }
5580
5581 if ((sec->flags & SEC_AUTH_MODE) &&
5582 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5583 priv->ieee->sec.auth_mode = sec->auth_mode;
5584 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5585 priv->status |= STATUS_SECURITY_UPDATED;
5586 }
5587
5588 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5589 priv->ieee->sec.flags |= SEC_ENABLED;
5590 priv->ieee->sec.enabled = sec->enabled;
5591 priv->status |= STATUS_SECURITY_UPDATED;
5592 force_update = 1;
5593 }
5594
5595 if (sec->flags & SEC_ENCRYPT)
5596 priv->ieee->sec.encrypt = sec->encrypt;
5597
5598 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5599 priv->ieee->sec.level = sec->level;
5600 priv->ieee->sec.flags |= SEC_LEVEL;
5601 priv->status |= STATUS_SECURITY_UPDATED;
5602 }
5603
5604 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5605 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5612 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5613 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5614
5615 /* As a temporary work around to enable WPA until we figure out why
5616 * wpa_supplicant toggles the security capability of the driver, which
5617 * forces a disassocation with force_update...
5618 *
5619 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5620 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5621 ipw2100_configure_security(priv, 0);
5622 done:
5623 mutex_unlock(&priv->action_mutex);
5624 }
5625
5626 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5627 {
5628 int err;
5629 int batch_mode = 1;
5630 u8 *bssid;
5631
5632 IPW_DEBUG_INFO("enter\n");
5633
5634 err = ipw2100_disable_adapter(priv);
5635 if (err)
5636 return err;
5637 #ifdef CONFIG_IPW2100_MONITOR
5638 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5639 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5640 if (err)
5641 return err;
5642
5643 IPW_DEBUG_INFO("exit\n");
5644
5645 return 0;
5646 }
5647 #endif /* CONFIG_IPW2100_MONITOR */
5648
5649 err = ipw2100_read_mac_address(priv);
5650 if (err)
5651 return -EIO;
5652
5653 err = ipw2100_set_mac_address(priv, batch_mode);
5654 if (err)
5655 return err;
5656
5657 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5658 if (err)
5659 return err;
5660
5661 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5662 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5663 if (err)
5664 return err;
5665 }
5666
5667 err = ipw2100_system_config(priv, batch_mode);
5668 if (err)
5669 return err;
5670
5671 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5672 if (err)
5673 return err;
5674
5675 /* Default to power mode OFF */
5676 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5677 if (err)
5678 return err;
5679
5680 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5681 if (err)
5682 return err;
5683
5684 if (priv->config & CFG_STATIC_BSSID)
5685 bssid = priv->bssid;
5686 else
5687 bssid = NULL;
5688 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5689 if (err)
5690 return err;
5691
5692 if (priv->config & CFG_STATIC_ESSID)
5693 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5694 batch_mode);
5695 else
5696 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5697 if (err)
5698 return err;
5699
5700 err = ipw2100_configure_security(priv, batch_mode);
5701 if (err)
5702 return err;
5703
5704 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5705 err =
5706 ipw2100_set_ibss_beacon_interval(priv,
5707 priv->beacon_interval,
5708 batch_mode);
5709 if (err)
5710 return err;
5711
5712 err = ipw2100_set_tx_power(priv, priv->tx_power);
5713 if (err)
5714 return err;
5715 }
5716
5717 /*
5718 err = ipw2100_set_fragmentation_threshold(
5719 priv, priv->frag_threshold, batch_mode);
5720 if (err)
5721 return err;
5722 */
5723
5724 IPW_DEBUG_INFO("exit\n");
5725
5726 return 0;
5727 }
5728
5729 /*************************************************************************
5730 *
5731 * EXTERNALLY CALLED METHODS
5732 *
5733 *************************************************************************/
5734
5735 /* This method is called by the network layer -- not to be confused with
5736 * ipw2100_set_mac_address() declared above called by this driver (and this
5737 * method as well) to talk to the firmware */
5738 static int ipw2100_set_address(struct net_device *dev, void *p)
5739 {
5740 struct ipw2100_priv *priv = ieee80211_priv(dev);
5741 struct sockaddr *addr = p;
5742 int err = 0;
5743
5744 if (!is_valid_ether_addr(addr->sa_data))
5745 return -EADDRNOTAVAIL;
5746
5747 mutex_lock(&priv->action_mutex);
5748
5749 priv->config |= CFG_CUSTOM_MAC;
5750 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5751
5752 err = ipw2100_set_mac_address(priv, 0);
5753 if (err)
5754 goto done;
5755
5756 priv->reset_backoff = 0;
5757 mutex_unlock(&priv->action_mutex);
5758 ipw2100_reset_adapter(&priv->reset_work.work);
5759 return 0;
5760
5761 done:
5762 mutex_unlock(&priv->action_mutex);
5763 return err;
5764 }
5765
5766 static int ipw2100_open(struct net_device *dev)
5767 {
5768 struct ipw2100_priv *priv = ieee80211_priv(dev);
5769 unsigned long flags;
5770 IPW_DEBUG_INFO("dev->open\n");
5771
5772 spin_lock_irqsave(&priv->low_lock, flags);
5773 if (priv->status & STATUS_ASSOCIATED) {
5774 netif_carrier_on(dev);
5775 netif_start_queue(dev);
5776 }
5777 spin_unlock_irqrestore(&priv->low_lock, flags);
5778
5779 return 0;
5780 }
5781
5782 static int ipw2100_close(struct net_device *dev)
5783 {
5784 struct ipw2100_priv *priv = ieee80211_priv(dev);
5785 unsigned long flags;
5786 struct list_head *element;
5787 struct ipw2100_tx_packet *packet;
5788
5789 IPW_DEBUG_INFO("enter\n");
5790
5791 spin_lock_irqsave(&priv->low_lock, flags);
5792
5793 if (priv->status & STATUS_ASSOCIATED)
5794 netif_carrier_off(dev);
5795 netif_stop_queue(dev);
5796
5797 /* Flush the TX queue ... */
5798 while (!list_empty(&priv->tx_pend_list)) {
5799 element = priv->tx_pend_list.next;
5800 packet = list_entry(element, struct ipw2100_tx_packet, list);
5801
5802 list_del(element);
5803 DEC_STAT(&priv->tx_pend_stat);
5804
5805 ieee80211_txb_free(packet->info.d_struct.txb);
5806 packet->info.d_struct.txb = NULL;
5807
5808 list_add_tail(element, &priv->tx_free_list);
5809 INC_STAT(&priv->tx_free_stat);
5810 }
5811 spin_unlock_irqrestore(&priv->low_lock, flags);
5812
5813 IPW_DEBUG_INFO("exit\n");
5814
5815 return 0;
5816 }
5817
5818 /*
5819 * TODO: Fix this function... its just wrong
5820 */
5821 static void ipw2100_tx_timeout(struct net_device *dev)
5822 {
5823 struct ipw2100_priv *priv = ieee80211_priv(dev);
5824
5825 priv->ieee->stats.tx_errors++;
5826
5827 #ifdef CONFIG_IPW2100_MONITOR
5828 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5829 return;
5830 #endif
5831
5832 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5833 dev->name);
5834 schedule_reset(priv);
5835 }
5836
5837 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5838 {
5839 /* This is called when wpa_supplicant loads and closes the driver
5840 * interface. */
5841 priv->ieee->wpa_enabled = value;
5842 return 0;
5843 }
5844
5845 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5846 {
5847
5848 struct ieee80211_device *ieee = priv->ieee;
5849 struct ieee80211_security sec = {
5850 .flags = SEC_AUTH_MODE,
5851 };
5852 int ret = 0;
5853
5854 if (value & IW_AUTH_ALG_SHARED_KEY) {
5855 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5856 ieee->open_wep = 0;
5857 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5858 sec.auth_mode = WLAN_AUTH_OPEN;
5859 ieee->open_wep = 1;
5860 } else if (value & IW_AUTH_ALG_LEAP) {
5861 sec.auth_mode = WLAN_AUTH_LEAP;
5862 ieee->open_wep = 1;
5863 } else
5864 return -EINVAL;
5865
5866 if (ieee->set_security)
5867 ieee->set_security(ieee->dev, &sec);
5868 else
5869 ret = -EOPNOTSUPP;
5870
5871 return ret;
5872 }
5873
5874 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5875 char *wpa_ie, int wpa_ie_len)
5876 {
5877
5878 struct ipw2100_wpa_assoc_frame frame;
5879
5880 frame.fixed_ie_mask = 0;
5881
5882 /* copy WPA IE */
5883 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5884 frame.var_ie_len = wpa_ie_len;
5885
5886 /* make sure WPA is enabled */
5887 ipw2100_wpa_enable(priv, 1);
5888 ipw2100_set_wpa_ie(priv, &frame, 0);
5889 }
5890
5891 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5892 struct ethtool_drvinfo *info)
5893 {
5894 struct ipw2100_priv *priv = ieee80211_priv(dev);
5895 char fw_ver[64], ucode_ver[64];
5896
5897 strcpy(info->driver, DRV_NAME);
5898 strcpy(info->version, DRV_VERSION);
5899
5900 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5901 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5902
5903 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5904 fw_ver, priv->eeprom_version, ucode_ver);
5905
5906 strcpy(info->bus_info, pci_name(priv->pci_dev));
5907 }
5908
5909 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5910 {
5911 struct ipw2100_priv *priv = ieee80211_priv(dev);
5912 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5913 }
5914
5915 static const struct ethtool_ops ipw2100_ethtool_ops = {
5916 .get_link = ipw2100_ethtool_get_link,
5917 .get_drvinfo = ipw_ethtool_get_drvinfo,
5918 };
5919
5920 static void ipw2100_hang_check(struct work_struct *work)
5921 {
5922 struct ipw2100_priv *priv =
5923 container_of(work, struct ipw2100_priv, hang_check.work);
5924 unsigned long flags;
5925 u32 rtc = 0xa5a5a5a5;
5926 u32 len = sizeof(rtc);
5927 int restart = 0;
5928
5929 spin_lock_irqsave(&priv->low_lock, flags);
5930
5931 if (priv->fatal_error != 0) {
5932 /* If fatal_error is set then we need to restart */
5933 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5934 priv->net_dev->name);
5935
5936 restart = 1;
5937 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5938 (rtc == priv->last_rtc)) {
5939 /* Check if firmware is hung */
5940 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5941 priv->net_dev->name);
5942
5943 restart = 1;
5944 }
5945
5946 if (restart) {
5947 /* Kill timer */
5948 priv->stop_hang_check = 1;
5949 priv->hangs++;
5950
5951 /* Restart the NIC */
5952 schedule_reset(priv);
5953 }
5954
5955 priv->last_rtc = rtc;
5956
5957 if (!priv->stop_hang_check)
5958 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5959
5960 spin_unlock_irqrestore(&priv->low_lock, flags);
5961 }
5962
5963 static void ipw2100_rf_kill(struct work_struct *work)
5964 {
5965 struct ipw2100_priv *priv =
5966 container_of(work, struct ipw2100_priv, rf_kill.work);
5967 unsigned long flags;
5968
5969 spin_lock_irqsave(&priv->low_lock, flags);
5970
5971 if (rf_kill_active(priv)) {
5972 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5973 if (!priv->stop_rf_kill)
5974 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5975 round_jiffies(HZ));
5976 goto exit_unlock;
5977 }
5978
5979 /* RF Kill is now disabled, so bring the device back up */
5980
5981 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5982 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5983 "device\n");
5984 schedule_reset(priv);
5985 } else
5986 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5987 "enabled\n");
5988
5989 exit_unlock:
5990 spin_unlock_irqrestore(&priv->low_lock, flags);
5991 }
5992
5993 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5994
5995 /* Look into using netdev destructor to shutdown ieee80211? */
5996
5997 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5998 void __iomem * base_addr,
5999 unsigned long mem_start,
6000 unsigned long mem_len)
6001 {
6002 struct ipw2100_priv *priv;
6003 struct net_device *dev;
6004
6005 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6006 if (!dev)
6007 return NULL;
6008 priv = ieee80211_priv(dev);
6009 priv->ieee = netdev_priv(dev);
6010 priv->pci_dev = pci_dev;
6011 priv->net_dev = dev;
6012
6013 priv->ieee->hard_start_xmit = ipw2100_tx;
6014 priv->ieee->set_security = shim__set_security;
6015
6016 priv->ieee->perfect_rssi = -20;
6017 priv->ieee->worst_rssi = -85;
6018
6019 dev->open = ipw2100_open;
6020 dev->stop = ipw2100_close;
6021 dev->init = ipw2100_net_init;
6022 dev->ethtool_ops = &ipw2100_ethtool_ops;
6023 dev->tx_timeout = ipw2100_tx_timeout;
6024 dev->wireless_handlers = &ipw2100_wx_handler_def;
6025 priv->wireless_data.ieee80211 = priv->ieee;
6026 dev->wireless_data = &priv->wireless_data;
6027 dev->set_mac_address = ipw2100_set_address;
6028 dev->watchdog_timeo = 3 * HZ;
6029 dev->irq = 0;
6030
6031 dev->base_addr = (unsigned long)base_addr;
6032 dev->mem_start = mem_start;
6033 dev->mem_end = dev->mem_start + mem_len - 1;
6034
6035 /* NOTE: We don't use the wireless_handlers hook
6036 * in dev as the system will start throwing WX requests
6037 * to us before we're actually initialized and it just
6038 * ends up causing problems. So, we just handle
6039 * the WX extensions through the ipw2100_ioctl interface */
6040
6041 /* memset() puts everything to 0, so we only have explicitely set
6042 * those values that need to be something else */
6043
6044 /* If power management is turned on, default to AUTO mode */
6045 priv->power_mode = IPW_POWER_AUTO;
6046
6047 #ifdef CONFIG_IPW2100_MONITOR
6048 priv->config |= CFG_CRC_CHECK;
6049 #endif
6050 priv->ieee->wpa_enabled = 0;
6051 priv->ieee->drop_unencrypted = 0;
6052 priv->ieee->privacy_invoked = 0;
6053 priv->ieee->ieee802_1x = 1;
6054
6055 /* Set module parameters */
6056 switch (mode) {
6057 case 1:
6058 priv->ieee->iw_mode = IW_MODE_ADHOC;
6059 break;
6060 #ifdef CONFIG_IPW2100_MONITOR
6061 case 2:
6062 priv->ieee->iw_mode = IW_MODE_MONITOR;
6063 break;
6064 #endif
6065 default:
6066 case 0:
6067 priv->ieee->iw_mode = IW_MODE_INFRA;
6068 break;
6069 }
6070
6071 if (disable == 1)
6072 priv->status |= STATUS_RF_KILL_SW;
6073
6074 if (channel != 0 &&
6075 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6076 priv->config |= CFG_STATIC_CHANNEL;
6077 priv->channel = channel;
6078 }
6079
6080 if (associate)
6081 priv->config |= CFG_ASSOCIATE;
6082
6083 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6084 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6085 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6086 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6087 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6088 priv->tx_power = IPW_TX_POWER_DEFAULT;
6089 priv->tx_rates = DEFAULT_TX_RATES;
6090
6091 strcpy(priv->nick, "ipw2100");
6092
6093 spin_lock_init(&priv->low_lock);
6094 mutex_init(&priv->action_mutex);
6095 mutex_init(&priv->adapter_mutex);
6096
6097 init_waitqueue_head(&priv->wait_command_queue);
6098
6099 netif_carrier_off(dev);
6100
6101 INIT_LIST_HEAD(&priv->msg_free_list);
6102 INIT_LIST_HEAD(&priv->msg_pend_list);
6103 INIT_STAT(&priv->msg_free_stat);
6104 INIT_STAT(&priv->msg_pend_stat);
6105
6106 INIT_LIST_HEAD(&priv->tx_free_list);
6107 INIT_LIST_HEAD(&priv->tx_pend_list);
6108 INIT_STAT(&priv->tx_free_stat);
6109 INIT_STAT(&priv->tx_pend_stat);
6110
6111 INIT_LIST_HEAD(&priv->fw_pend_list);
6112 INIT_STAT(&priv->fw_pend_stat);
6113
6114 priv->workqueue = create_workqueue(DRV_NAME);
6115
6116 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6117 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6118 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6119 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6120 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6121
6122 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6123 ipw2100_irq_tasklet, (unsigned long)priv);
6124
6125 /* NOTE: We do not start the deferred work for status checks yet */
6126 priv->stop_rf_kill = 1;
6127 priv->stop_hang_check = 1;
6128
6129 return dev;
6130 }
6131
6132 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6133 const struct pci_device_id *ent)
6134 {
6135 unsigned long mem_start, mem_len, mem_flags;
6136 void __iomem *base_addr = NULL;
6137 struct net_device *dev = NULL;
6138 struct ipw2100_priv *priv = NULL;
6139 int err = 0;
6140 int registered = 0;
6141 u32 val;
6142
6143 IPW_DEBUG_INFO("enter\n");
6144
6145 mem_start = pci_resource_start(pci_dev, 0);
6146 mem_len = pci_resource_len(pci_dev, 0);
6147 mem_flags = pci_resource_flags(pci_dev, 0);
6148
6149 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6150 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6151 err = -ENODEV;
6152 goto fail;
6153 }
6154
6155 base_addr = ioremap_nocache(mem_start, mem_len);
6156 if (!base_addr) {
6157 printk(KERN_WARNING DRV_NAME
6158 "Error calling ioremap_nocache.\n");
6159 err = -EIO;
6160 goto fail;
6161 }
6162
6163 /* allocate and initialize our net_device */
6164 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6165 if (!dev) {
6166 printk(KERN_WARNING DRV_NAME
6167 "Error calling ipw2100_alloc_device.\n");
6168 err = -ENOMEM;
6169 goto fail;
6170 }
6171
6172 /* set up PCI mappings for device */
6173 err = pci_enable_device(pci_dev);
6174 if (err) {
6175 printk(KERN_WARNING DRV_NAME
6176 "Error calling pci_enable_device.\n");
6177 return err;
6178 }
6179
6180 priv = ieee80211_priv(dev);
6181
6182 pci_set_master(pci_dev);
6183 pci_set_drvdata(pci_dev, priv);
6184
6185 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6186 if (err) {
6187 printk(KERN_WARNING DRV_NAME
6188 "Error calling pci_set_dma_mask.\n");
6189 pci_disable_device(pci_dev);
6190 return err;
6191 }
6192
6193 err = pci_request_regions(pci_dev, DRV_NAME);
6194 if (err) {
6195 printk(KERN_WARNING DRV_NAME
6196 "Error calling pci_request_regions.\n");
6197 pci_disable_device(pci_dev);
6198 return err;
6199 }
6200
6201 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6202 * PCI Tx retries from interfering with C3 CPU state */
6203 pci_read_config_dword(pci_dev, 0x40, &val);
6204 if ((val & 0x0000ff00) != 0)
6205 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6206
6207 pci_set_power_state(pci_dev, PCI_D0);
6208
6209 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6210 printk(KERN_WARNING DRV_NAME
6211 "Device not found via register read.\n");
6212 err = -ENODEV;
6213 goto fail;
6214 }
6215
6216 SET_NETDEV_DEV(dev, &pci_dev->dev);
6217
6218 /* Force interrupts to be shut off on the device */
6219 priv->status |= STATUS_INT_ENABLED;
6220 ipw2100_disable_interrupts(priv);
6221
6222 /* Allocate and initialize the Tx/Rx queues and lists */
6223 if (ipw2100_queues_allocate(priv)) {
6224 printk(KERN_WARNING DRV_NAME
6225 "Error calling ipw2100_queues_allocate.\n");
6226 err = -ENOMEM;
6227 goto fail;
6228 }
6229 ipw2100_queues_initialize(priv);
6230
6231 err = request_irq(pci_dev->irq,
6232 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6233 if (err) {
6234 printk(KERN_WARNING DRV_NAME
6235 "Error calling request_irq: %d.\n", pci_dev->irq);
6236 goto fail;
6237 }
6238 dev->irq = pci_dev->irq;
6239
6240 IPW_DEBUG_INFO("Attempting to register device...\n");
6241
6242 SET_MODULE_OWNER(dev);
6243
6244 printk(KERN_INFO DRV_NAME
6245 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6246
6247 /* Bring up the interface. Pre 0.46, after we registered the
6248 * network device we would call ipw2100_up. This introduced a race
6249 * condition with newer hotplug configurations (network was coming
6250 * up and making calls before the device was initialized).
6251 *
6252 * If we called ipw2100_up before we registered the device, then the
6253 * device name wasn't registered. So, we instead use the net_dev->init
6254 * member to call a function that then just turns and calls ipw2100_up.
6255 * net_dev->init is called after name allocation but before the
6256 * notifier chain is called */
6257 err = register_netdev(dev);
6258 if (err) {
6259 printk(KERN_WARNING DRV_NAME
6260 "Error calling register_netdev.\n");
6261 goto fail;
6262 }
6263
6264 mutex_lock(&priv->action_mutex);
6265 registered = 1;
6266
6267 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6268
6269 /* perform this after register_netdev so that dev->name is set */
6270 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6271 if (err)
6272 goto fail_unlock;
6273
6274 /* If the RF Kill switch is disabled, go ahead and complete the
6275 * startup sequence */
6276 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6277 /* Enable the adapter - sends HOST_COMPLETE */
6278 if (ipw2100_enable_adapter(priv)) {
6279 printk(KERN_WARNING DRV_NAME
6280 ": %s: failed in call to enable adapter.\n",
6281 priv->net_dev->name);
6282 ipw2100_hw_stop_adapter(priv);
6283 err = -EIO;
6284 goto fail_unlock;
6285 }
6286
6287 /* Start a scan . . . */
6288 ipw2100_set_scan_options(priv);
6289 ipw2100_start_scan(priv);
6290 }
6291
6292 IPW_DEBUG_INFO("exit\n");
6293
6294 priv->status |= STATUS_INITIALIZED;
6295
6296 mutex_unlock(&priv->action_mutex);
6297
6298 return 0;
6299
6300 fail_unlock:
6301 mutex_unlock(&priv->action_mutex);
6302
6303 fail:
6304 if (dev) {
6305 if (registered)
6306 unregister_netdev(dev);
6307
6308 ipw2100_hw_stop_adapter(priv);
6309
6310 ipw2100_disable_interrupts(priv);
6311
6312 if (dev->irq)
6313 free_irq(dev->irq, priv);
6314
6315 ipw2100_kill_workqueue(priv);
6316
6317 /* These are safe to call even if they weren't allocated */
6318 ipw2100_queues_free(priv);
6319 sysfs_remove_group(&pci_dev->dev.kobj,
6320 &ipw2100_attribute_group);
6321
6322 free_ieee80211(dev);
6323 pci_set_drvdata(pci_dev, NULL);
6324 }
6325
6326 if (base_addr)
6327 iounmap(base_addr);
6328
6329 pci_release_regions(pci_dev);
6330 pci_disable_device(pci_dev);
6331
6332 return err;
6333 }
6334
6335 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6336 {
6337 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6338 struct net_device *dev;
6339
6340 if (priv) {
6341 mutex_lock(&priv->action_mutex);
6342
6343 priv->status &= ~STATUS_INITIALIZED;
6344
6345 dev = priv->net_dev;
6346 sysfs_remove_group(&pci_dev->dev.kobj,
6347 &ipw2100_attribute_group);
6348
6349 #ifdef CONFIG_PM
6350 if (ipw2100_firmware.version)
6351 ipw2100_release_firmware(priv, &ipw2100_firmware);
6352 #endif
6353 /* Take down the hardware */
6354 ipw2100_down(priv);
6355
6356 /* Release the mutex so that the network subsystem can
6357 * complete any needed calls into the driver... */
6358 mutex_unlock(&priv->action_mutex);
6359
6360 /* Unregister the device first - this results in close()
6361 * being called if the device is open. If we free storage
6362 * first, then close() will crash. */
6363 unregister_netdev(dev);
6364
6365 /* ipw2100_down will ensure that there is no more pending work
6366 * in the workqueue's, so we can safely remove them now. */
6367 ipw2100_kill_workqueue(priv);
6368
6369 ipw2100_queues_free(priv);
6370
6371 /* Free potential debugging firmware snapshot */
6372 ipw2100_snapshot_free(priv);
6373
6374 if (dev->irq)
6375 free_irq(dev->irq, priv);
6376
6377 if (dev->base_addr)
6378 iounmap((void __iomem *)dev->base_addr);
6379
6380 free_ieee80211(dev);
6381 }
6382
6383 pci_release_regions(pci_dev);
6384 pci_disable_device(pci_dev);
6385
6386 IPW_DEBUG_INFO("exit\n");
6387 }
6388
6389 #ifdef CONFIG_PM
6390 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6391 {
6392 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6393 struct net_device *dev = priv->net_dev;
6394
6395 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6396
6397 mutex_lock(&priv->action_mutex);
6398 if (priv->status & STATUS_INITIALIZED) {
6399 /* Take down the device; powers it off, etc. */
6400 ipw2100_down(priv);
6401 }
6402
6403 /* Remove the PRESENT state of the device */
6404 netif_device_detach(dev);
6405
6406 pci_save_state(pci_dev);
6407 pci_disable_device(pci_dev);
6408 pci_set_power_state(pci_dev, PCI_D3hot);
6409
6410 mutex_unlock(&priv->action_mutex);
6411
6412 return 0;
6413 }
6414
6415 static int ipw2100_resume(struct pci_dev *pci_dev)
6416 {
6417 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6418 struct net_device *dev = priv->net_dev;
6419 int err;
6420 u32 val;
6421
6422 if (IPW2100_PM_DISABLED)
6423 return 0;
6424
6425 mutex_lock(&priv->action_mutex);
6426
6427 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6428
6429 pci_set_power_state(pci_dev, PCI_D0);
6430 err = pci_enable_device(pci_dev);
6431 if (err) {
6432 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6433 dev->name);
6434 return err;
6435 }
6436 pci_restore_state(pci_dev);
6437
6438 /*
6439 * Suspend/Resume resets the PCI configuration space, so we have to
6440 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6441 * from interfering with C3 CPU state. pci_restore_state won't help
6442 * here since it only restores the first 64 bytes pci config header.
6443 */
6444 pci_read_config_dword(pci_dev, 0x40, &val);
6445 if ((val & 0x0000ff00) != 0)
6446 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6447
6448 /* Set the device back into the PRESENT state; this will also wake
6449 * the queue of needed */
6450 netif_device_attach(dev);
6451
6452 /* Bring the device back up */
6453 if (!(priv->status & STATUS_RF_KILL_SW))
6454 ipw2100_up(priv, 0);
6455
6456 mutex_unlock(&priv->action_mutex);
6457
6458 return 0;
6459 }
6460 #endif
6461
6462 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6463
6464 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6465 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6466 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6467 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6468 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6469 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6470 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6471 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6472 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6473 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6474 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6476 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6477 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6478
6479 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6480 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6481 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6484
6485 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6486 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6487 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6488 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6489 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6490 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6491 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6492
6493 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6494
6495 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6496 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6497 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6498 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6499 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6501 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6502
6503 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6504 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6505 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6506 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6507 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6508 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6509
6510 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6511 {0,},
6512 };
6513
6514 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6515
6516 static struct pci_driver ipw2100_pci_driver = {
6517 .name = DRV_NAME,
6518 .id_table = ipw2100_pci_id_table,
6519 .probe = ipw2100_pci_init_one,
6520 .remove = __devexit_p(ipw2100_pci_remove_one),
6521 #ifdef CONFIG_PM
6522 .suspend = ipw2100_suspend,
6523 .resume = ipw2100_resume,
6524 #endif
6525 };
6526
6527 /**
6528 * Initialize the ipw2100 driver/module
6529 *
6530 * @returns 0 if ok, < 0 errno node con error.
6531 *
6532 * Note: we cannot init the /proc stuff until the PCI driver is there,
6533 * or we risk an unlikely race condition on someone accessing
6534 * uninitialized data in the PCI dev struct through /proc.
6535 */
6536 static int __init ipw2100_init(void)
6537 {
6538 int ret;
6539
6540 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6541 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6542
6543 ret = pci_register_driver(&ipw2100_pci_driver);
6544 if (ret)
6545 goto out;
6546
6547 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6548 #ifdef CONFIG_IPW2100_DEBUG
6549 ipw2100_debug_level = debug;
6550 ret = driver_create_file(&ipw2100_pci_driver.driver,
6551 &driver_attr_debug_level);
6552 #endif
6553
6554 out:
6555 return ret;
6556 }
6557
6558 /**
6559 * Cleanup ipw2100 driver registration
6560 */
6561 static void __exit ipw2100_exit(void)
6562 {
6563 /* FIXME: IPG: check that we have no instances of the devices open */
6564 #ifdef CONFIG_IPW2100_DEBUG
6565 driver_remove_file(&ipw2100_pci_driver.driver,
6566 &driver_attr_debug_level);
6567 #endif
6568 pci_unregister_driver(&ipw2100_pci_driver);
6569 remove_acceptable_latency("ipw2100");
6570 }
6571
6572 module_init(ipw2100_init);
6573 module_exit(ipw2100_exit);
6574
6575 #define WEXT_USECHANNELS 1
6576
6577 static const long ipw2100_frequencies[] = {
6578 2412, 2417, 2422, 2427,
6579 2432, 2437, 2442, 2447,
6580 2452, 2457, 2462, 2467,
6581 2472, 2484
6582 };
6583
6584 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6585 sizeof(ipw2100_frequencies[0]))
6586
6587 static const long ipw2100_rates_11b[] = {
6588 1000000,
6589 2000000,
6590 5500000,
6591 11000000
6592 };
6593
6594 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6595
6596 static int ipw2100_wx_get_name(struct net_device *dev,
6597 struct iw_request_info *info,
6598 union iwreq_data *wrqu, char *extra)
6599 {
6600 /*
6601 * This can be called at any time. No action lock required
6602 */
6603
6604 struct ipw2100_priv *priv = ieee80211_priv(dev);
6605 if (!(priv->status & STATUS_ASSOCIATED))
6606 strcpy(wrqu->name, "unassociated");
6607 else
6608 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6609
6610 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6611 return 0;
6612 }
6613
6614 static int ipw2100_wx_set_freq(struct net_device *dev,
6615 struct iw_request_info *info,
6616 union iwreq_data *wrqu, char *extra)
6617 {
6618 struct ipw2100_priv *priv = ieee80211_priv(dev);
6619 struct iw_freq *fwrq = &wrqu->freq;
6620 int err = 0;
6621
6622 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6623 return -EOPNOTSUPP;
6624
6625 mutex_lock(&priv->action_mutex);
6626 if (!(priv->status & STATUS_INITIALIZED)) {
6627 err = -EIO;
6628 goto done;
6629 }
6630
6631 /* if setting by freq convert to channel */
6632 if (fwrq->e == 1) {
6633 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6634 int f = fwrq->m / 100000;
6635 int c = 0;
6636
6637 while ((c < REG_MAX_CHANNEL) &&
6638 (f != ipw2100_frequencies[c]))
6639 c++;
6640
6641 /* hack to fall through */
6642 fwrq->e = 0;
6643 fwrq->m = c + 1;
6644 }
6645 }
6646
6647 if (fwrq->e > 0 || fwrq->m > 1000) {
6648 err = -EOPNOTSUPP;
6649 goto done;
6650 } else { /* Set the channel */
6651 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6652 err = ipw2100_set_channel(priv, fwrq->m, 0);
6653 }
6654
6655 done:
6656 mutex_unlock(&priv->action_mutex);
6657 return err;
6658 }
6659
6660 static int ipw2100_wx_get_freq(struct net_device *dev,
6661 struct iw_request_info *info,
6662 union iwreq_data *wrqu, char *extra)
6663 {
6664 /*
6665 * This can be called at any time. No action lock required
6666 */
6667
6668 struct ipw2100_priv *priv = ieee80211_priv(dev);
6669
6670 wrqu->freq.e = 0;
6671
6672 /* If we are associated, trying to associate, or have a statically
6673 * configured CHANNEL then return that; otherwise return ANY */
6674 if (priv->config & CFG_STATIC_CHANNEL ||
6675 priv->status & STATUS_ASSOCIATED)
6676 wrqu->freq.m = priv->channel;
6677 else
6678 wrqu->freq.m = 0;
6679
6680 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6681 return 0;
6682
6683 }
6684
6685 static int ipw2100_wx_set_mode(struct net_device *dev,
6686 struct iw_request_info *info,
6687 union iwreq_data *wrqu, char *extra)
6688 {
6689 struct ipw2100_priv *priv = ieee80211_priv(dev);
6690 int err = 0;
6691
6692 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6693
6694 if (wrqu->mode == priv->ieee->iw_mode)
6695 return 0;
6696
6697 mutex_lock(&priv->action_mutex);
6698 if (!(priv->status & STATUS_INITIALIZED)) {
6699 err = -EIO;
6700 goto done;
6701 }
6702
6703 switch (wrqu->mode) {
6704 #ifdef CONFIG_IPW2100_MONITOR
6705 case IW_MODE_MONITOR:
6706 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6707 break;
6708 #endif /* CONFIG_IPW2100_MONITOR */
6709 case IW_MODE_ADHOC:
6710 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6711 break;
6712 case IW_MODE_INFRA:
6713 case IW_MODE_AUTO:
6714 default:
6715 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6716 break;
6717 }
6718
6719 done:
6720 mutex_unlock(&priv->action_mutex);
6721 return err;
6722 }
6723
6724 static int ipw2100_wx_get_mode(struct net_device *dev,
6725 struct iw_request_info *info,
6726 union iwreq_data *wrqu, char *extra)
6727 {
6728 /*
6729 * This can be called at any time. No action lock required
6730 */
6731
6732 struct ipw2100_priv *priv = ieee80211_priv(dev);
6733
6734 wrqu->mode = priv->ieee->iw_mode;
6735 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6736
6737 return 0;
6738 }
6739
6740 #define POWER_MODES 5
6741
6742 /* Values are in microsecond */
6743 static const s32 timeout_duration[POWER_MODES] = {
6744 350000,
6745 250000,
6746 75000,
6747 37000,
6748 25000,
6749 };
6750
6751 static const s32 period_duration[POWER_MODES] = {
6752 400000,
6753 700000,
6754 1000000,
6755 1000000,
6756 1000000
6757 };
6758
6759 static int ipw2100_wx_get_range(struct net_device *dev,
6760 struct iw_request_info *info,
6761 union iwreq_data *wrqu, char *extra)
6762 {
6763 /*
6764 * This can be called at any time. No action lock required
6765 */
6766
6767 struct ipw2100_priv *priv = ieee80211_priv(dev);
6768 struct iw_range *range = (struct iw_range *)extra;
6769 u16 val;
6770 int i, level;
6771
6772 wrqu->data.length = sizeof(*range);
6773 memset(range, 0, sizeof(*range));
6774
6775 /* Let's try to keep this struct in the same order as in
6776 * linux/include/wireless.h
6777 */
6778
6779 /* TODO: See what values we can set, and remove the ones we can't
6780 * set, or fill them with some default data.
6781 */
6782
6783 /* ~5 Mb/s real (802.11b) */
6784 range->throughput = 5 * 1000 * 1000;
6785
6786 // range->sensitivity; /* signal level threshold range */
6787
6788 range->max_qual.qual = 100;
6789 /* TODO: Find real max RSSI and stick here */
6790 range->max_qual.level = 0;
6791 range->max_qual.noise = 0;
6792 range->max_qual.updated = 7; /* Updated all three */
6793
6794 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6795 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6796 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6797 range->avg_qual.noise = 0;
6798 range->avg_qual.updated = 7; /* Updated all three */
6799
6800 range->num_bitrates = RATE_COUNT;
6801
6802 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6803 range->bitrate[i] = ipw2100_rates_11b[i];
6804 }
6805
6806 range->min_rts = MIN_RTS_THRESHOLD;
6807 range->max_rts = MAX_RTS_THRESHOLD;
6808 range->min_frag = MIN_FRAG_THRESHOLD;
6809 range->max_frag = MAX_FRAG_THRESHOLD;
6810
6811 range->min_pmp = period_duration[0]; /* Minimal PM period */
6812 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6813 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6814 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6815
6816 /* How to decode max/min PM period */
6817 range->pmp_flags = IW_POWER_PERIOD;
6818 /* How to decode max/min PM period */
6819 range->pmt_flags = IW_POWER_TIMEOUT;
6820 /* What PM options are supported */
6821 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6822
6823 range->encoding_size[0] = 5;
6824 range->encoding_size[1] = 13; /* Different token sizes */
6825 range->num_encoding_sizes = 2; /* Number of entry in the list */
6826 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6827 // range->encoding_login_index; /* token index for login token */
6828
6829 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6830 range->txpower_capa = IW_TXPOW_DBM;
6831 range->num_txpower = IW_MAX_TXPOWER;
6832 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6833 i < IW_MAX_TXPOWER;
6834 i++, level -=
6835 ((IPW_TX_POWER_MAX_DBM -
6836 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6837 range->txpower[i] = level / 16;
6838 } else {
6839 range->txpower_capa = 0;
6840 range->num_txpower = 0;
6841 }
6842
6843 /* Set the Wireless Extension versions */
6844 range->we_version_compiled = WIRELESS_EXT;
6845 range->we_version_source = 18;
6846
6847 // range->retry_capa; /* What retry options are supported */
6848 // range->retry_flags; /* How to decode max/min retry limit */
6849 // range->r_time_flags; /* How to decode max/min retry life */
6850 // range->min_retry; /* Minimal number of retries */
6851 // range->max_retry; /* Maximal number of retries */
6852 // range->min_r_time; /* Minimal retry lifetime */
6853 // range->max_r_time; /* Maximal retry lifetime */
6854
6855 range->num_channels = FREQ_COUNT;
6856
6857 val = 0;
6858 for (i = 0; i < FREQ_COUNT; i++) {
6859 // TODO: Include only legal frequencies for some countries
6860 // if (local->channel_mask & (1 << i)) {
6861 range->freq[val].i = i + 1;
6862 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6863 range->freq[val].e = 1;
6864 val++;
6865 // }
6866 if (val == IW_MAX_FREQUENCIES)
6867 break;
6868 }
6869 range->num_frequency = val;
6870
6871 /* Event capability (kernel + driver) */
6872 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6873 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6874 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6875
6876 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6877 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6878
6879 IPW_DEBUG_WX("GET Range\n");
6880
6881 return 0;
6882 }
6883
6884 static int ipw2100_wx_set_wap(struct net_device *dev,
6885 struct iw_request_info *info,
6886 union iwreq_data *wrqu, char *extra)
6887 {
6888 struct ipw2100_priv *priv = ieee80211_priv(dev);
6889 int err = 0;
6890
6891 static const unsigned char any[] = {
6892 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6893 };
6894 static const unsigned char off[] = {
6895 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6896 };
6897
6898 // sanity checks
6899 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6900 return -EINVAL;
6901
6902 mutex_lock(&priv->action_mutex);
6903 if (!(priv->status & STATUS_INITIALIZED)) {
6904 err = -EIO;
6905 goto done;
6906 }
6907
6908 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6909 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6910 /* we disable mandatory BSSID association */
6911 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6912 priv->config &= ~CFG_STATIC_BSSID;
6913 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6914 goto done;
6915 }
6916
6917 priv->config |= CFG_STATIC_BSSID;
6918 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6919
6920 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6921
6922 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6923 wrqu->ap_addr.sa_data[0] & 0xff,
6924 wrqu->ap_addr.sa_data[1] & 0xff,
6925 wrqu->ap_addr.sa_data[2] & 0xff,
6926 wrqu->ap_addr.sa_data[3] & 0xff,
6927 wrqu->ap_addr.sa_data[4] & 0xff,
6928 wrqu->ap_addr.sa_data[5] & 0xff);
6929
6930 done:
6931 mutex_unlock(&priv->action_mutex);
6932 return err;
6933 }
6934
6935 static int ipw2100_wx_get_wap(struct net_device *dev,
6936 struct iw_request_info *info,
6937 union iwreq_data *wrqu, char *extra)
6938 {
6939 /*
6940 * This can be called at any time. No action lock required
6941 */
6942
6943 struct ipw2100_priv *priv = ieee80211_priv(dev);
6944
6945 /* If we are associated, trying to associate, or have a statically
6946 * configured BSSID then return that; otherwise return ANY */
6947 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6948 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6949 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6950 } else
6951 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6952
6953 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6954 MAC_ARG(wrqu->ap_addr.sa_data));
6955 return 0;
6956 }
6957
6958 static int ipw2100_wx_set_essid(struct net_device *dev,
6959 struct iw_request_info *info,
6960 union iwreq_data *wrqu, char *extra)
6961 {
6962 struct ipw2100_priv *priv = ieee80211_priv(dev);
6963 char *essid = ""; /* ANY */
6964 int length = 0;
6965 int err = 0;
6966
6967 mutex_lock(&priv->action_mutex);
6968 if (!(priv->status & STATUS_INITIALIZED)) {
6969 err = -EIO;
6970 goto done;
6971 }
6972
6973 if (wrqu->essid.flags && wrqu->essid.length) {
6974 length = wrqu->essid.length;
6975 essid = extra;
6976 }
6977
6978 if (length == 0) {
6979 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6980 priv->config &= ~CFG_STATIC_ESSID;
6981 err = ipw2100_set_essid(priv, NULL, 0, 0);
6982 goto done;
6983 }
6984
6985 length = min(length, IW_ESSID_MAX_SIZE);
6986
6987 priv->config |= CFG_STATIC_ESSID;
6988
6989 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6990 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6991 err = 0;
6992 goto done;
6993 }
6994
6995 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6996 length);
6997
6998 priv->essid_len = length;
6999 memcpy(priv->essid, essid, priv->essid_len);
7000
7001 err = ipw2100_set_essid(priv, essid, length, 0);
7002
7003 done:
7004 mutex_unlock(&priv->action_mutex);
7005 return err;
7006 }
7007
7008 static int ipw2100_wx_get_essid(struct net_device *dev,
7009 struct iw_request_info *info,
7010 union iwreq_data *wrqu, char *extra)
7011 {
7012 /*
7013 * This can be called at any time. No action lock required
7014 */
7015
7016 struct ipw2100_priv *priv = ieee80211_priv(dev);
7017
7018 /* If we are associated, trying to associate, or have a statically
7019 * configured ESSID then return that; otherwise return ANY */
7020 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7021 IPW_DEBUG_WX("Getting essid: '%s'\n",
7022 escape_essid(priv->essid, priv->essid_len));
7023 memcpy(extra, priv->essid, priv->essid_len);
7024 wrqu->essid.length = priv->essid_len;
7025 wrqu->essid.flags = 1; /* active */
7026 } else {
7027 IPW_DEBUG_WX("Getting essid: ANY\n");
7028 wrqu->essid.length = 0;
7029 wrqu->essid.flags = 0; /* active */
7030 }
7031
7032 return 0;
7033 }
7034
7035 static int ipw2100_wx_set_nick(struct net_device *dev,
7036 struct iw_request_info *info,
7037 union iwreq_data *wrqu, char *extra)
7038 {
7039 /*
7040 * This can be called at any time. No action lock required
7041 */
7042
7043 struct ipw2100_priv *priv = ieee80211_priv(dev);
7044
7045 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7046 return -E2BIG;
7047
7048 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7049 memset(priv->nick, 0, sizeof(priv->nick));
7050 memcpy(priv->nick, extra, wrqu->data.length);
7051
7052 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7053
7054 return 0;
7055 }
7056
7057 static int ipw2100_wx_get_nick(struct net_device *dev,
7058 struct iw_request_info *info,
7059 union iwreq_data *wrqu, char *extra)
7060 {
7061 /*
7062 * This can be called at any time. No action lock required
7063 */
7064
7065 struct ipw2100_priv *priv = ieee80211_priv(dev);
7066
7067 wrqu->data.length = strlen(priv->nick);
7068 memcpy(extra, priv->nick, wrqu->data.length);
7069 wrqu->data.flags = 1; /* active */
7070
7071 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7072
7073 return 0;
7074 }
7075
7076 static int ipw2100_wx_set_rate(struct net_device *dev,
7077 struct iw_request_info *info,
7078 union iwreq_data *wrqu, char *extra)
7079 {
7080 struct ipw2100_priv *priv = ieee80211_priv(dev);
7081 u32 target_rate = wrqu->bitrate.value;
7082 u32 rate;
7083 int err = 0;
7084
7085 mutex_lock(&priv->action_mutex);
7086 if (!(priv->status & STATUS_INITIALIZED)) {
7087 err = -EIO;
7088 goto done;
7089 }
7090
7091 rate = 0;
7092
7093 if (target_rate == 1000000 ||
7094 (!wrqu->bitrate.fixed && target_rate > 1000000))
7095 rate |= TX_RATE_1_MBIT;
7096 if (target_rate == 2000000 ||
7097 (!wrqu->bitrate.fixed && target_rate > 2000000))
7098 rate |= TX_RATE_2_MBIT;
7099 if (target_rate == 5500000 ||
7100 (!wrqu->bitrate.fixed && target_rate > 5500000))
7101 rate |= TX_RATE_5_5_MBIT;
7102 if (target_rate == 11000000 ||
7103 (!wrqu->bitrate.fixed && target_rate > 11000000))
7104 rate |= TX_RATE_11_MBIT;
7105 if (rate == 0)
7106 rate = DEFAULT_TX_RATES;
7107
7108 err = ipw2100_set_tx_rates(priv, rate, 0);
7109
7110 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7111 done:
7112 mutex_unlock(&priv->action_mutex);
7113 return err;
7114 }
7115
7116 static int ipw2100_wx_get_rate(struct net_device *dev,
7117 struct iw_request_info *info,
7118 union iwreq_data *wrqu, char *extra)
7119 {
7120 struct ipw2100_priv *priv = ieee80211_priv(dev);
7121 int val;
7122 int len = sizeof(val);
7123 int err = 0;
7124
7125 if (!(priv->status & STATUS_ENABLED) ||
7126 priv->status & STATUS_RF_KILL_MASK ||
7127 !(priv->status & STATUS_ASSOCIATED)) {
7128 wrqu->bitrate.value = 0;
7129 return 0;
7130 }
7131
7132 mutex_lock(&priv->action_mutex);
7133 if (!(priv->status & STATUS_INITIALIZED)) {
7134 err = -EIO;
7135 goto done;
7136 }
7137
7138 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7139 if (err) {
7140 IPW_DEBUG_WX("failed querying ordinals.\n");
7141 return err;
7142 }
7143
7144 switch (val & TX_RATE_MASK) {
7145 case TX_RATE_1_MBIT:
7146 wrqu->bitrate.value = 1000000;
7147 break;
7148 case TX_RATE_2_MBIT:
7149 wrqu->bitrate.value = 2000000;
7150 break;
7151 case TX_RATE_5_5_MBIT:
7152 wrqu->bitrate.value = 5500000;
7153 break;
7154 case TX_RATE_11_MBIT:
7155 wrqu->bitrate.value = 11000000;
7156 break;
7157 default:
7158 wrqu->bitrate.value = 0;
7159 }
7160
7161 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7162
7163 done:
7164 mutex_unlock(&priv->action_mutex);
7165 return err;
7166 }
7167
7168 static int ipw2100_wx_set_rts(struct net_device *dev,
7169 struct iw_request_info *info,
7170 union iwreq_data *wrqu, char *extra)
7171 {
7172 struct ipw2100_priv *priv = ieee80211_priv(dev);
7173 int value, err;
7174
7175 /* Auto RTS not yet supported */
7176 if (wrqu->rts.fixed == 0)
7177 return -EINVAL;
7178
7179 mutex_lock(&priv->action_mutex);
7180 if (!(priv->status & STATUS_INITIALIZED)) {
7181 err = -EIO;
7182 goto done;
7183 }
7184
7185 if (wrqu->rts.disabled)
7186 value = priv->rts_threshold | RTS_DISABLED;
7187 else {
7188 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7189 err = -EINVAL;
7190 goto done;
7191 }
7192 value = wrqu->rts.value;
7193 }
7194
7195 err = ipw2100_set_rts_threshold(priv, value);
7196
7197 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7198 done:
7199 mutex_unlock(&priv->action_mutex);
7200 return err;
7201 }
7202
7203 static int ipw2100_wx_get_rts(struct net_device *dev,
7204 struct iw_request_info *info,
7205 union iwreq_data *wrqu, char *extra)
7206 {
7207 /*
7208 * This can be called at any time. No action lock required
7209 */
7210
7211 struct ipw2100_priv *priv = ieee80211_priv(dev);
7212
7213 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7214 wrqu->rts.fixed = 1; /* no auto select */
7215
7216 /* If RTS is set to the default value, then it is disabled */
7217 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7218
7219 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7220
7221 return 0;
7222 }
7223
7224 static int ipw2100_wx_set_txpow(struct net_device *dev,
7225 struct iw_request_info *info,
7226 union iwreq_data *wrqu, char *extra)
7227 {
7228 struct ipw2100_priv *priv = ieee80211_priv(dev);
7229 int err = 0, value;
7230
7231 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7232 return -EINPROGRESS;
7233
7234 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7235 return 0;
7236
7237 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7238 return -EINVAL;
7239
7240 if (wrqu->txpower.fixed == 0)
7241 value = IPW_TX_POWER_DEFAULT;
7242 else {
7243 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7244 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7245 return -EINVAL;
7246
7247 value = wrqu->txpower.value;
7248 }
7249
7250 mutex_lock(&priv->action_mutex);
7251 if (!(priv->status & STATUS_INITIALIZED)) {
7252 err = -EIO;
7253 goto done;
7254 }
7255
7256 err = ipw2100_set_tx_power(priv, value);
7257
7258 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7259
7260 done:
7261 mutex_unlock(&priv->action_mutex);
7262 return err;
7263 }
7264
7265 static int ipw2100_wx_get_txpow(struct net_device *dev,
7266 struct iw_request_info *info,
7267 union iwreq_data *wrqu, char *extra)
7268 {
7269 /*
7270 * This can be called at any time. No action lock required
7271 */
7272
7273 struct ipw2100_priv *priv = ieee80211_priv(dev);
7274
7275 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7276
7277 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7278 wrqu->txpower.fixed = 0;
7279 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7280 } else {
7281 wrqu->txpower.fixed = 1;
7282 wrqu->txpower.value = priv->tx_power;
7283 }
7284
7285 wrqu->txpower.flags = IW_TXPOW_DBM;
7286
7287 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7288
7289 return 0;
7290 }
7291
7292 static int ipw2100_wx_set_frag(struct net_device *dev,
7293 struct iw_request_info *info,
7294 union iwreq_data *wrqu, char *extra)
7295 {
7296 /*
7297 * This can be called at any time. No action lock required
7298 */
7299
7300 struct ipw2100_priv *priv = ieee80211_priv(dev);
7301
7302 if (!wrqu->frag.fixed)
7303 return -EINVAL;
7304
7305 if (wrqu->frag.disabled) {
7306 priv->frag_threshold |= FRAG_DISABLED;
7307 priv->ieee->fts = DEFAULT_FTS;
7308 } else {
7309 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7310 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7311 return -EINVAL;
7312
7313 priv->ieee->fts = wrqu->frag.value & ~0x1;
7314 priv->frag_threshold = priv->ieee->fts;
7315 }
7316
7317 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7318
7319 return 0;
7320 }
7321
7322 static int ipw2100_wx_get_frag(struct net_device *dev,
7323 struct iw_request_info *info,
7324 union iwreq_data *wrqu, char *extra)
7325 {
7326 /*
7327 * This can be called at any time. No action lock required
7328 */
7329
7330 struct ipw2100_priv *priv = ieee80211_priv(dev);
7331 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7332 wrqu->frag.fixed = 0; /* no auto select */
7333 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7334
7335 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7336
7337 return 0;
7338 }
7339
7340 static int ipw2100_wx_set_retry(struct net_device *dev,
7341 struct iw_request_info *info,
7342 union iwreq_data *wrqu, char *extra)
7343 {
7344 struct ipw2100_priv *priv = ieee80211_priv(dev);
7345 int err = 0;
7346
7347 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7348 return -EINVAL;
7349
7350 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7351 return 0;
7352
7353 mutex_lock(&priv->action_mutex);
7354 if (!(priv->status & STATUS_INITIALIZED)) {
7355 err = -EIO;
7356 goto done;
7357 }
7358
7359 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7360 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7361 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7362 wrqu->retry.value);
7363 goto done;
7364 }
7365
7366 if (wrqu->retry.flags & IW_RETRY_LONG) {
7367 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7368 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7369 wrqu->retry.value);
7370 goto done;
7371 }
7372
7373 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7374 if (!err)
7375 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7376
7377 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7378
7379 done:
7380 mutex_unlock(&priv->action_mutex);
7381 return err;
7382 }
7383
7384 static int ipw2100_wx_get_retry(struct net_device *dev,
7385 struct iw_request_info *info,
7386 union iwreq_data *wrqu, char *extra)
7387 {
7388 /*
7389 * This can be called at any time. No action lock required
7390 */
7391
7392 struct ipw2100_priv *priv = ieee80211_priv(dev);
7393
7394 wrqu->retry.disabled = 0; /* can't be disabled */
7395
7396 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7397 return -EINVAL;
7398
7399 if (wrqu->retry.flags & IW_RETRY_LONG) {
7400 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7401 wrqu->retry.value = priv->long_retry_limit;
7402 } else {
7403 wrqu->retry.flags =
7404 (priv->short_retry_limit !=
7405 priv->long_retry_limit) ?
7406 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7407
7408 wrqu->retry.value = priv->short_retry_limit;
7409 }
7410
7411 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7412
7413 return 0;
7414 }
7415
7416 static int ipw2100_wx_set_scan(struct net_device *dev,
7417 struct iw_request_info *info,
7418 union iwreq_data *wrqu, char *extra)
7419 {
7420 struct ipw2100_priv *priv = ieee80211_priv(dev);
7421 int err = 0;
7422
7423 mutex_lock(&priv->action_mutex);
7424 if (!(priv->status & STATUS_INITIALIZED)) {
7425 err = -EIO;
7426 goto done;
7427 }
7428
7429 IPW_DEBUG_WX("Initiating scan...\n");
7430 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7431 IPW_DEBUG_WX("Start scan failed.\n");
7432
7433 /* TODO: Mark a scan as pending so when hardware initialized
7434 * a scan starts */
7435 }
7436
7437 done:
7438 mutex_unlock(&priv->action_mutex);
7439 return err;
7440 }
7441
7442 static int ipw2100_wx_get_scan(struct net_device *dev,
7443 struct iw_request_info *info,
7444 union iwreq_data *wrqu, char *extra)
7445 {
7446 /*
7447 * This can be called at any time. No action lock required
7448 */
7449
7450 struct ipw2100_priv *priv = ieee80211_priv(dev);
7451 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7452 }
7453
7454 /*
7455 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7456 */
7457 static int ipw2100_wx_set_encode(struct net_device *dev,
7458 struct iw_request_info *info,
7459 union iwreq_data *wrqu, char *key)
7460 {
7461 /*
7462 * No check of STATUS_INITIALIZED required
7463 */
7464
7465 struct ipw2100_priv *priv = ieee80211_priv(dev);
7466 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7467 }
7468
7469 static int ipw2100_wx_get_encode(struct net_device *dev,
7470 struct iw_request_info *info,
7471 union iwreq_data *wrqu, char *key)
7472 {
7473 /*
7474 * This can be called at any time. No action lock required
7475 */
7476
7477 struct ipw2100_priv *priv = ieee80211_priv(dev);
7478 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7479 }
7480
7481 static int ipw2100_wx_set_power(struct net_device *dev,
7482 struct iw_request_info *info,
7483 union iwreq_data *wrqu, char *extra)
7484 {
7485 struct ipw2100_priv *priv = ieee80211_priv(dev);
7486 int err = 0;
7487
7488 mutex_lock(&priv->action_mutex);
7489 if (!(priv->status & STATUS_INITIALIZED)) {
7490 err = -EIO;
7491 goto done;
7492 }
7493
7494 if (wrqu->power.disabled) {
7495 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7496 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7497 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7498 goto done;
7499 }
7500
7501 switch (wrqu->power.flags & IW_POWER_MODE) {
7502 case IW_POWER_ON: /* If not specified */
7503 case IW_POWER_MODE: /* If set all mask */
7504 case IW_POWER_ALL_R: /* If explicitely state all */
7505 break;
7506 default: /* Otherwise we don't support it */
7507 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7508 wrqu->power.flags);
7509 err = -EOPNOTSUPP;
7510 goto done;
7511 }
7512
7513 /* If the user hasn't specified a power management mode yet, default
7514 * to BATTERY */
7515 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7516 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7517
7518 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7519
7520 done:
7521 mutex_unlock(&priv->action_mutex);
7522 return err;
7523
7524 }
7525
7526 static int ipw2100_wx_get_power(struct net_device *dev,
7527 struct iw_request_info *info,
7528 union iwreq_data *wrqu, char *extra)
7529 {
7530 /*
7531 * This can be called at any time. No action lock required
7532 */
7533
7534 struct ipw2100_priv *priv = ieee80211_priv(dev);
7535
7536 if (!(priv->power_mode & IPW_POWER_ENABLED))
7537 wrqu->power.disabled = 1;
7538 else {
7539 wrqu->power.disabled = 0;
7540 wrqu->power.flags = 0;
7541 }
7542
7543 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7544
7545 return 0;
7546 }
7547
7548 /*
7549 * WE-18 WPA support
7550 */
7551
7552 /* SIOCSIWGENIE */
7553 static int ipw2100_wx_set_genie(struct net_device *dev,
7554 struct iw_request_info *info,
7555 union iwreq_data *wrqu, char *extra)
7556 {
7557
7558 struct ipw2100_priv *priv = ieee80211_priv(dev);
7559 struct ieee80211_device *ieee = priv->ieee;
7560 u8 *buf;
7561
7562 if (!ieee->wpa_enabled)
7563 return -EOPNOTSUPP;
7564
7565 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7566 (wrqu->data.length && extra == NULL))
7567 return -EINVAL;
7568
7569 if (wrqu->data.length) {
7570 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7571 if (buf == NULL)
7572 return -ENOMEM;
7573
7574 kfree(ieee->wpa_ie);
7575 ieee->wpa_ie = buf;
7576 ieee->wpa_ie_len = wrqu->data.length;
7577 } else {
7578 kfree(ieee->wpa_ie);
7579 ieee->wpa_ie = NULL;
7580 ieee->wpa_ie_len = 0;
7581 }
7582
7583 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7584
7585 return 0;
7586 }
7587
7588 /* SIOCGIWGENIE */
7589 static int ipw2100_wx_get_genie(struct net_device *dev,
7590 struct iw_request_info *info,
7591 union iwreq_data *wrqu, char *extra)
7592 {
7593 struct ipw2100_priv *priv = ieee80211_priv(dev);
7594 struct ieee80211_device *ieee = priv->ieee;
7595
7596 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7597 wrqu->data.length = 0;
7598 return 0;
7599 }
7600
7601 if (wrqu->data.length < ieee->wpa_ie_len)
7602 return -E2BIG;
7603
7604 wrqu->data.length = ieee->wpa_ie_len;
7605 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7606
7607 return 0;
7608 }
7609
7610 /* SIOCSIWAUTH */
7611 static int ipw2100_wx_set_auth(struct net_device *dev,
7612 struct iw_request_info *info,
7613 union iwreq_data *wrqu, char *extra)
7614 {
7615 struct ipw2100_priv *priv = ieee80211_priv(dev);
7616 struct ieee80211_device *ieee = priv->ieee;
7617 struct iw_param *param = &wrqu->param;
7618 struct ieee80211_crypt_data *crypt;
7619 unsigned long flags;
7620 int ret = 0;
7621
7622 switch (param->flags & IW_AUTH_INDEX) {
7623 case IW_AUTH_WPA_VERSION:
7624 case IW_AUTH_CIPHER_PAIRWISE:
7625 case IW_AUTH_CIPHER_GROUP:
7626 case IW_AUTH_KEY_MGMT:
7627 /*
7628 * ipw2200 does not use these parameters
7629 */
7630 break;
7631
7632 case IW_AUTH_TKIP_COUNTERMEASURES:
7633 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7634 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7635 break;
7636
7637 flags = crypt->ops->get_flags(crypt->priv);
7638
7639 if (param->value)
7640 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7641 else
7642 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7643
7644 crypt->ops->set_flags(flags, crypt->priv);
7645
7646 break;
7647
7648 case IW_AUTH_DROP_UNENCRYPTED:{
7649 /* HACK:
7650 *
7651 * wpa_supplicant calls set_wpa_enabled when the driver
7652 * is loaded and unloaded, regardless of if WPA is being
7653 * used. No other calls are made which can be used to
7654 * determine if encryption will be used or not prior to
7655 * association being expected. If encryption is not being
7656 * used, drop_unencrypted is set to false, else true -- we
7657 * can use this to determine if the CAP_PRIVACY_ON bit should
7658 * be set.
7659 */
7660 struct ieee80211_security sec = {
7661 .flags = SEC_ENABLED,
7662 .enabled = param->value,
7663 };
7664 priv->ieee->drop_unencrypted = param->value;
7665 /* We only change SEC_LEVEL for open mode. Others
7666 * are set by ipw_wpa_set_encryption.
7667 */
7668 if (!param->value) {
7669 sec.flags |= SEC_LEVEL;
7670 sec.level = SEC_LEVEL_0;
7671 } else {
7672 sec.flags |= SEC_LEVEL;
7673 sec.level = SEC_LEVEL_1;
7674 }
7675 if (priv->ieee->set_security)
7676 priv->ieee->set_security(priv->ieee->dev, &sec);
7677 break;
7678 }
7679
7680 case IW_AUTH_80211_AUTH_ALG:
7681 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7682 break;
7683
7684 case IW_AUTH_WPA_ENABLED:
7685 ret = ipw2100_wpa_enable(priv, param->value);
7686 break;
7687
7688 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7689 ieee->ieee802_1x = param->value;
7690 break;
7691
7692 //case IW_AUTH_ROAMING_CONTROL:
7693 case IW_AUTH_PRIVACY_INVOKED:
7694 ieee->privacy_invoked = param->value;
7695 break;
7696
7697 default:
7698 return -EOPNOTSUPP;
7699 }
7700 return ret;
7701 }
7702
7703 /* SIOCGIWAUTH */
7704 static int ipw2100_wx_get_auth(struct net_device *dev,
7705 struct iw_request_info *info,
7706 union iwreq_data *wrqu, char *extra)
7707 {
7708 struct ipw2100_priv *priv = ieee80211_priv(dev);
7709 struct ieee80211_device *ieee = priv->ieee;
7710 struct ieee80211_crypt_data *crypt;
7711 struct iw_param *param = &wrqu->param;
7712 int ret = 0;
7713
7714 switch (param->flags & IW_AUTH_INDEX) {
7715 case IW_AUTH_WPA_VERSION:
7716 case IW_AUTH_CIPHER_PAIRWISE:
7717 case IW_AUTH_CIPHER_GROUP:
7718 case IW_AUTH_KEY_MGMT:
7719 /*
7720 * wpa_supplicant will control these internally
7721 */
7722 ret = -EOPNOTSUPP;
7723 break;
7724
7725 case IW_AUTH_TKIP_COUNTERMEASURES:
7726 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7727 if (!crypt || !crypt->ops->get_flags) {
7728 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7729 "crypt not set!\n");
7730 break;
7731 }
7732
7733 param->value = (crypt->ops->get_flags(crypt->priv) &
7734 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7735
7736 break;
7737
7738 case IW_AUTH_DROP_UNENCRYPTED:
7739 param->value = ieee->drop_unencrypted;
7740 break;
7741
7742 case IW_AUTH_80211_AUTH_ALG:
7743 param->value = priv->ieee->sec.auth_mode;
7744 break;
7745
7746 case IW_AUTH_WPA_ENABLED:
7747 param->value = ieee->wpa_enabled;
7748 break;
7749
7750 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7751 param->value = ieee->ieee802_1x;
7752 break;
7753
7754 case IW_AUTH_ROAMING_CONTROL:
7755 case IW_AUTH_PRIVACY_INVOKED:
7756 param->value = ieee->privacy_invoked;
7757 break;
7758
7759 default:
7760 return -EOPNOTSUPP;
7761 }
7762 return 0;
7763 }
7764
7765 /* SIOCSIWENCODEEXT */
7766 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7767 struct iw_request_info *info,
7768 union iwreq_data *wrqu, char *extra)
7769 {
7770 struct ipw2100_priv *priv = ieee80211_priv(dev);
7771 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7772 }
7773
7774 /* SIOCGIWENCODEEXT */
7775 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7776 struct iw_request_info *info,
7777 union iwreq_data *wrqu, char *extra)
7778 {
7779 struct ipw2100_priv *priv = ieee80211_priv(dev);
7780 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7781 }
7782
7783 /* SIOCSIWMLME */
7784 static int ipw2100_wx_set_mlme(struct net_device *dev,
7785 struct iw_request_info *info,
7786 union iwreq_data *wrqu, char *extra)
7787 {
7788 struct ipw2100_priv *priv = ieee80211_priv(dev);
7789 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7790 u16 reason;
7791
7792 reason = cpu_to_le16(mlme->reason_code);
7793
7794 switch (mlme->cmd) {
7795 case IW_MLME_DEAUTH:
7796 // silently ignore
7797 break;
7798
7799 case IW_MLME_DISASSOC:
7800 ipw2100_disassociate_bssid(priv);
7801 break;
7802
7803 default:
7804 return -EOPNOTSUPP;
7805 }
7806 return 0;
7807 }
7808
7809 /*
7810 *
7811 * IWPRIV handlers
7812 *
7813 */
7814 #ifdef CONFIG_IPW2100_MONITOR
7815 static int ipw2100_wx_set_promisc(struct net_device *dev,
7816 struct iw_request_info *info,
7817 union iwreq_data *wrqu, char *extra)
7818 {
7819 struct ipw2100_priv *priv = ieee80211_priv(dev);
7820 int *parms = (int *)extra;
7821 int enable = (parms[0] > 0);
7822 int err = 0;
7823
7824 mutex_lock(&priv->action_mutex);
7825 if (!(priv->status & STATUS_INITIALIZED)) {
7826 err = -EIO;
7827 goto done;
7828 }
7829
7830 if (enable) {
7831 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7832 err = ipw2100_set_channel(priv, parms[1], 0);
7833 goto done;
7834 }
7835 priv->channel = parms[1];
7836 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7837 } else {
7838 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7839 err = ipw2100_switch_mode(priv, priv->last_mode);
7840 }
7841 done:
7842 mutex_unlock(&priv->action_mutex);
7843 return err;
7844 }
7845
7846 static int ipw2100_wx_reset(struct net_device *dev,
7847 struct iw_request_info *info,
7848 union iwreq_data *wrqu, char *extra)
7849 {
7850 struct ipw2100_priv *priv = ieee80211_priv(dev);
7851 if (priv->status & STATUS_INITIALIZED)
7852 schedule_reset(priv);
7853 return 0;
7854 }
7855
7856 #endif
7857
7858 static int ipw2100_wx_set_powermode(struct net_device *dev,
7859 struct iw_request_info *info,
7860 union iwreq_data *wrqu, char *extra)
7861 {
7862 struct ipw2100_priv *priv = ieee80211_priv(dev);
7863 int err = 0, mode = *(int *)extra;
7864
7865 mutex_lock(&priv->action_mutex);
7866 if (!(priv->status & STATUS_INITIALIZED)) {
7867 err = -EIO;
7868 goto done;
7869 }
7870
7871 if ((mode < 0) || (mode > POWER_MODES))
7872 mode = IPW_POWER_AUTO;
7873
7874 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7875 err = ipw2100_set_power_mode(priv, mode);
7876 done:
7877 mutex_unlock(&priv->action_mutex);
7878 return err;
7879 }
7880
7881 #define MAX_POWER_STRING 80
7882 static int ipw2100_wx_get_powermode(struct net_device *dev,
7883 struct iw_request_info *info,
7884 union iwreq_data *wrqu, char *extra)
7885 {
7886 /*
7887 * This can be called at any time. No action lock required
7888 */
7889
7890 struct ipw2100_priv *priv = ieee80211_priv(dev);
7891 int level = IPW_POWER_LEVEL(priv->power_mode);
7892 s32 timeout, period;
7893
7894 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7895 snprintf(extra, MAX_POWER_STRING,
7896 "Power save level: %d (Off)", level);
7897 } else {
7898 switch (level) {
7899 case IPW_POWER_MODE_CAM:
7900 snprintf(extra, MAX_POWER_STRING,
7901 "Power save level: %d (None)", level);
7902 break;
7903 case IPW_POWER_AUTO:
7904 snprintf(extra, MAX_POWER_STRING,
7905 "Power save level: %d (Auto)", level);
7906 break;
7907 default:
7908 timeout = timeout_duration[level - 1] / 1000;
7909 period = period_duration[level - 1] / 1000;
7910 snprintf(extra, MAX_POWER_STRING,
7911 "Power save level: %d "
7912 "(Timeout %dms, Period %dms)",
7913 level, timeout, period);
7914 }
7915 }
7916
7917 wrqu->data.length = strlen(extra) + 1;
7918
7919 return 0;
7920 }
7921
7922 static int ipw2100_wx_set_preamble(struct net_device *dev,
7923 struct iw_request_info *info,
7924 union iwreq_data *wrqu, char *extra)
7925 {
7926 struct ipw2100_priv *priv = ieee80211_priv(dev);
7927 int err, mode = *(int *)extra;
7928
7929 mutex_lock(&priv->action_mutex);
7930 if (!(priv->status & STATUS_INITIALIZED)) {
7931 err = -EIO;
7932 goto done;
7933 }
7934
7935 if (mode == 1)
7936 priv->config |= CFG_LONG_PREAMBLE;
7937 else if (mode == 0)
7938 priv->config &= ~CFG_LONG_PREAMBLE;
7939 else {
7940 err = -EINVAL;
7941 goto done;
7942 }
7943
7944 err = ipw2100_system_config(priv, 0);
7945
7946 done:
7947 mutex_unlock(&priv->action_mutex);
7948 return err;
7949 }
7950
7951 static int ipw2100_wx_get_preamble(struct net_device *dev,
7952 struct iw_request_info *info,
7953 union iwreq_data *wrqu, char *extra)
7954 {
7955 /*
7956 * This can be called at any time. No action lock required
7957 */
7958
7959 struct ipw2100_priv *priv = ieee80211_priv(dev);
7960
7961 if (priv->config & CFG_LONG_PREAMBLE)
7962 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7963 else
7964 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7965
7966 return 0;
7967 }
7968
7969 #ifdef CONFIG_IPW2100_MONITOR
7970 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7971 struct iw_request_info *info,
7972 union iwreq_data *wrqu, char *extra)
7973 {
7974 struct ipw2100_priv *priv = ieee80211_priv(dev);
7975 int err, mode = *(int *)extra;
7976
7977 mutex_lock(&priv->action_mutex);
7978 if (!(priv->status & STATUS_INITIALIZED)) {
7979 err = -EIO;
7980 goto done;
7981 }
7982
7983 if (mode == 1)
7984 priv->config |= CFG_CRC_CHECK;
7985 else if (mode == 0)
7986 priv->config &= ~CFG_CRC_CHECK;
7987 else {
7988 err = -EINVAL;
7989 goto done;
7990 }
7991 err = 0;
7992
7993 done:
7994 mutex_unlock(&priv->action_mutex);
7995 return err;
7996 }
7997
7998 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7999 struct iw_request_info *info,
8000 union iwreq_data *wrqu, char *extra)
8001 {
8002 /*
8003 * This can be called at any time. No action lock required
8004 */
8005
8006 struct ipw2100_priv *priv = ieee80211_priv(dev);
8007
8008 if (priv->config & CFG_CRC_CHECK)
8009 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8010 else
8011 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8012
8013 return 0;
8014 }
8015 #endif /* CONFIG_IPW2100_MONITOR */
8016
8017 static iw_handler ipw2100_wx_handlers[] = {
8018 NULL, /* SIOCSIWCOMMIT */
8019 ipw2100_wx_get_name, /* SIOCGIWNAME */
8020 NULL, /* SIOCSIWNWID */
8021 NULL, /* SIOCGIWNWID */
8022 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8023 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8024 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8025 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8026 NULL, /* SIOCSIWSENS */
8027 NULL, /* SIOCGIWSENS */
8028 NULL, /* SIOCSIWRANGE */
8029 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8030 NULL, /* SIOCSIWPRIV */
8031 NULL, /* SIOCGIWPRIV */
8032 NULL, /* SIOCSIWSTATS */
8033 NULL, /* SIOCGIWSTATS */
8034 NULL, /* SIOCSIWSPY */
8035 NULL, /* SIOCGIWSPY */
8036 NULL, /* SIOCGIWTHRSPY */
8037 NULL, /* SIOCWIWTHRSPY */
8038 ipw2100_wx_set_wap, /* SIOCSIWAP */
8039 ipw2100_wx_get_wap, /* SIOCGIWAP */
8040 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8041 NULL, /* SIOCGIWAPLIST -- deprecated */
8042 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8043 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8044 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8045 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8046 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8047 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8048 NULL, /* -- hole -- */
8049 NULL, /* -- hole -- */
8050 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8051 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8052 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8053 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8054 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8055 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8056 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8057 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8058 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8059 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8060 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8061 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8062 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8063 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8064 NULL, /* -- hole -- */
8065 NULL, /* -- hole -- */
8066 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8067 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8068 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8069 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8070 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8071 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8072 NULL, /* SIOCSIWPMKSA */
8073 };
8074
8075 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8076 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8077 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8078 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8079 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8080 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8081 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8082 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8083
8084 static const struct iw_priv_args ipw2100_private_args[] = {
8085
8086 #ifdef CONFIG_IPW2100_MONITOR
8087 {
8088 IPW2100_PRIV_SET_MONITOR,
8089 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8090 {
8091 IPW2100_PRIV_RESET,
8092 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8093 #endif /* CONFIG_IPW2100_MONITOR */
8094
8095 {
8096 IPW2100_PRIV_SET_POWER,
8097 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8098 {
8099 IPW2100_PRIV_GET_POWER,
8100 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8101 "get_power"},
8102 {
8103 IPW2100_PRIV_SET_LONGPREAMBLE,
8104 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8105 {
8106 IPW2100_PRIV_GET_LONGPREAMBLE,
8107 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8108 #ifdef CONFIG_IPW2100_MONITOR
8109 {
8110 IPW2100_PRIV_SET_CRC_CHECK,
8111 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8112 {
8113 IPW2100_PRIV_GET_CRC_CHECK,
8114 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8115 #endif /* CONFIG_IPW2100_MONITOR */
8116 };
8117
8118 static iw_handler ipw2100_private_handler[] = {
8119 #ifdef CONFIG_IPW2100_MONITOR
8120 ipw2100_wx_set_promisc,
8121 ipw2100_wx_reset,
8122 #else /* CONFIG_IPW2100_MONITOR */
8123 NULL,
8124 NULL,
8125 #endif /* CONFIG_IPW2100_MONITOR */
8126 ipw2100_wx_set_powermode,
8127 ipw2100_wx_get_powermode,
8128 ipw2100_wx_set_preamble,
8129 ipw2100_wx_get_preamble,
8130 #ifdef CONFIG_IPW2100_MONITOR
8131 ipw2100_wx_set_crc_check,
8132 ipw2100_wx_get_crc_check,
8133 #else /* CONFIG_IPW2100_MONITOR */
8134 NULL,
8135 NULL,
8136 #endif /* CONFIG_IPW2100_MONITOR */
8137 };
8138
8139 /*
8140 * Get wireless statistics.
8141 * Called by /proc/net/wireless
8142 * Also called by SIOCGIWSTATS
8143 */
8144 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8145 {
8146 enum {
8147 POOR = 30,
8148 FAIR = 60,
8149 GOOD = 80,
8150 VERY_GOOD = 90,
8151 EXCELLENT = 95,
8152 PERFECT = 100
8153 };
8154 int rssi_qual;
8155 int tx_qual;
8156 int beacon_qual;
8157
8158 struct ipw2100_priv *priv = ieee80211_priv(dev);
8159 struct iw_statistics *wstats;
8160 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8161 u32 ord_len = sizeof(u32);
8162
8163 if (!priv)
8164 return (struct iw_statistics *)NULL;
8165
8166 wstats = &priv->wstats;
8167
8168 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8169 * ipw2100_wx_wireless_stats seems to be called before fw is
8170 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8171 * and associated; if not associcated, the values are all meaningless
8172 * anyway, so set them all to NULL and INVALID */
8173 if (!(priv->status & STATUS_ASSOCIATED)) {
8174 wstats->miss.beacon = 0;
8175 wstats->discard.retries = 0;
8176 wstats->qual.qual = 0;
8177 wstats->qual.level = 0;
8178 wstats->qual.noise = 0;
8179 wstats->qual.updated = 7;
8180 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8181 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8182 return wstats;
8183 }
8184
8185 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8186 &missed_beacons, &ord_len))
8187 goto fail_get_ordinal;
8188
8189 /* If we don't have a connection the quality and level is 0 */
8190 if (!(priv->status & STATUS_ASSOCIATED)) {
8191 wstats->qual.qual = 0;
8192 wstats->qual.level = 0;
8193 } else {
8194 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8195 &rssi, &ord_len))
8196 goto fail_get_ordinal;
8197 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8198 if (rssi < 10)
8199 rssi_qual = rssi * POOR / 10;
8200 else if (rssi < 15)
8201 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8202 else if (rssi < 20)
8203 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8204 else if (rssi < 30)
8205 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8206 10 + GOOD;
8207 else
8208 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8209 10 + VERY_GOOD;
8210
8211 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8212 &tx_retries, &ord_len))
8213 goto fail_get_ordinal;
8214
8215 if (tx_retries > 75)
8216 tx_qual = (90 - tx_retries) * POOR / 15;
8217 else if (tx_retries > 70)
8218 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8219 else if (tx_retries > 65)
8220 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8221 else if (tx_retries > 50)
8222 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8223 15 + GOOD;
8224 else
8225 tx_qual = (50 - tx_retries) *
8226 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8227
8228 if (missed_beacons > 50)
8229 beacon_qual = (60 - missed_beacons) * POOR / 10;
8230 else if (missed_beacons > 40)
8231 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8232 10 + POOR;
8233 else if (missed_beacons > 32)
8234 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8235 18 + FAIR;
8236 else if (missed_beacons > 20)
8237 beacon_qual = (32 - missed_beacons) *
8238 (VERY_GOOD - GOOD) / 20 + GOOD;
8239 else
8240 beacon_qual = (20 - missed_beacons) *
8241 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8242
8243 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8244
8245 #ifdef CONFIG_IPW2100_DEBUG
8246 if (beacon_qual == quality)
8247 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8248 else if (tx_qual == quality)
8249 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8250 else if (quality != 100)
8251 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8252 else
8253 IPW_DEBUG_WX("Quality not clamped.\n");
8254 #endif
8255
8256 wstats->qual.qual = quality;
8257 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8258 }
8259
8260 wstats->qual.noise = 0;
8261 wstats->qual.updated = 7;
8262 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8263
8264 /* FIXME: this is percent and not a # */
8265 wstats->miss.beacon = missed_beacons;
8266
8267 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8268 &tx_failures, &ord_len))
8269 goto fail_get_ordinal;
8270 wstats->discard.retries = tx_failures;
8271
8272 return wstats;
8273
8274 fail_get_ordinal:
8275 IPW_DEBUG_WX("failed querying ordinals.\n");
8276
8277 return (struct iw_statistics *)NULL;
8278 }
8279
8280 static struct iw_handler_def ipw2100_wx_handler_def = {
8281 .standard = ipw2100_wx_handlers,
8282 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8283 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8284 .num_private_args = sizeof(ipw2100_private_args) /
8285 sizeof(struct iw_priv_args),
8286 .private = (iw_handler *) ipw2100_private_handler,
8287 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8288 .get_wireless_stats = ipw2100_wx_wireless_stats,
8289 };
8290
8291 static void ipw2100_wx_event_work(struct work_struct *work)
8292 {
8293 struct ipw2100_priv *priv =
8294 container_of(work, struct ipw2100_priv, wx_event_work.work);
8295 union iwreq_data wrqu;
8296 int len = ETH_ALEN;
8297
8298 if (priv->status & STATUS_STOPPING)
8299 return;
8300
8301 mutex_lock(&priv->action_mutex);
8302
8303 IPW_DEBUG_WX("enter\n");
8304
8305 mutex_unlock(&priv->action_mutex);
8306
8307 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8308
8309 /* Fetch BSSID from the hardware */
8310 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8311 priv->status & STATUS_RF_KILL_MASK ||
8312 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8313 &priv->bssid, &len)) {
8314 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8315 } else {
8316 /* We now have the BSSID, so can finish setting to the full
8317 * associated state */
8318 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8319 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8320 priv->status &= ~STATUS_ASSOCIATING;
8321 priv->status |= STATUS_ASSOCIATED;
8322 netif_carrier_on(priv->net_dev);
8323 netif_wake_queue(priv->net_dev);
8324 }
8325
8326 if (!(priv->status & STATUS_ASSOCIATED)) {
8327 IPW_DEBUG_WX("Configuring ESSID\n");
8328 mutex_lock(&priv->action_mutex);
8329 /* This is a disassociation event, so kick the firmware to
8330 * look for another AP */
8331 if (priv->config & CFG_STATIC_ESSID)
8332 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8333 0);
8334 else
8335 ipw2100_set_essid(priv, NULL, 0, 0);
8336 mutex_unlock(&priv->action_mutex);
8337 }
8338
8339 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8340 }
8341
8342 #define IPW2100_FW_MAJOR_VERSION 1
8343 #define IPW2100_FW_MINOR_VERSION 3
8344
8345 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8346 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8347
8348 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8349 IPW2100_FW_MAJOR_VERSION)
8350
8351 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8352 "." __stringify(IPW2100_FW_MINOR_VERSION)
8353
8354 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8355
8356 /*
8357
8358 BINARY FIRMWARE HEADER FORMAT
8359
8360 offset length desc
8361 0 2 version
8362 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8363 4 4 fw_len
8364 8 4 uc_len
8365 C fw_len firmware data
8366 12 + fw_len uc_len microcode data
8367
8368 */
8369
8370 struct ipw2100_fw_header {
8371 short version;
8372 short mode;
8373 unsigned int fw_size;
8374 unsigned int uc_size;
8375 } __attribute__ ((packed));
8376
8377 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8378 {
8379 struct ipw2100_fw_header *h =
8380 (struct ipw2100_fw_header *)fw->fw_entry->data;
8381
8382 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8383 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8384 "(detected version id of %u). "
8385 "See Documentation/networking/README.ipw2100\n",
8386 h->version);
8387 return 1;
8388 }
8389
8390 fw->version = h->version;
8391 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8392 fw->fw.size = h->fw_size;
8393 fw->uc.data = fw->fw.data + h->fw_size;
8394 fw->uc.size = h->uc_size;
8395
8396 return 0;
8397 }
8398
8399 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8400 struct ipw2100_fw *fw)
8401 {
8402 char *fw_name;
8403 int rc;
8404
8405 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8406 priv->net_dev->name);
8407
8408 switch (priv->ieee->iw_mode) {
8409 case IW_MODE_ADHOC:
8410 fw_name = IPW2100_FW_NAME("-i");
8411 break;
8412 #ifdef CONFIG_IPW2100_MONITOR
8413 case IW_MODE_MONITOR:
8414 fw_name = IPW2100_FW_NAME("-p");
8415 break;
8416 #endif
8417 case IW_MODE_INFRA:
8418 default:
8419 fw_name = IPW2100_FW_NAME("");
8420 break;
8421 }
8422
8423 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8424
8425 if (rc < 0) {
8426 printk(KERN_ERR DRV_NAME ": "
8427 "%s: Firmware '%s' not available or load failed.\n",
8428 priv->net_dev->name, fw_name);
8429 return rc;
8430 }
8431 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8432 fw->fw_entry->size);
8433
8434 ipw2100_mod_firmware_load(fw);
8435
8436 return 0;
8437 }
8438
8439 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8440 struct ipw2100_fw *fw)
8441 {
8442 fw->version = 0;
8443 if (fw->fw_entry)
8444 release_firmware(fw->fw_entry);
8445 fw->fw_entry = NULL;
8446 }
8447
8448 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8449 size_t max)
8450 {
8451 char ver[MAX_FW_VERSION_LEN];
8452 u32 len = MAX_FW_VERSION_LEN;
8453 u32 tmp;
8454 int i;
8455 /* firmware version is an ascii string (max len of 14) */
8456 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8457 return -EIO;
8458 tmp = max;
8459 if (len >= max)
8460 len = max - 1;
8461 for (i = 0; i < len; i++)
8462 buf[i] = ver[i];
8463 buf[i] = '\0';
8464 return tmp;
8465 }
8466
8467 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8468 size_t max)
8469 {
8470 u32 ver;
8471 u32 len = sizeof(ver);
8472 /* microcode version is a 32 bit integer */
8473 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8474 return -EIO;
8475 return snprintf(buf, max, "%08X", ver);
8476 }
8477
8478 /*
8479 * On exit, the firmware will have been freed from the fw list
8480 */
8481 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8482 {
8483 /* firmware is constructed of N contiguous entries, each entry is
8484 * structured as:
8485 *
8486 * offset sie desc
8487 * 0 4 address to write to
8488 * 4 2 length of data run
8489 * 6 length data
8490 */
8491 unsigned int addr;
8492 unsigned short len;
8493
8494 const unsigned char *firmware_data = fw->fw.data;
8495 unsigned int firmware_data_left = fw->fw.size;
8496
8497 while (firmware_data_left > 0) {
8498 addr = *(u32 *) (firmware_data);
8499 firmware_data += 4;
8500 firmware_data_left -= 4;
8501
8502 len = *(u16 *) (firmware_data);
8503 firmware_data += 2;
8504 firmware_data_left -= 2;
8505
8506 if (len > 32) {
8507 printk(KERN_ERR DRV_NAME ": "
8508 "Invalid firmware run-length of %d bytes\n",
8509 len);
8510 return -EINVAL;
8511 }
8512
8513 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8514 firmware_data += len;
8515 firmware_data_left -= len;
8516 }
8517
8518 return 0;
8519 }
8520
8521 struct symbol_alive_response {
8522 u8 cmd_id;
8523 u8 seq_num;
8524 u8 ucode_rev;
8525 u8 eeprom_valid;
8526 u16 valid_flags;
8527 u8 IEEE_addr[6];
8528 u16 flags;
8529 u16 pcb_rev;
8530 u16 clock_settle_time; // 1us LSB
8531 u16 powerup_settle_time; // 1us LSB
8532 u16 hop_settle_time; // 1us LSB
8533 u8 date[3]; // month, day, year
8534 u8 time[2]; // hours, minutes
8535 u8 ucode_valid;
8536 };
8537
8538 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8539 struct ipw2100_fw *fw)
8540 {
8541 struct net_device *dev = priv->net_dev;
8542 const unsigned char *microcode_data = fw->uc.data;
8543 unsigned int microcode_data_left = fw->uc.size;
8544 void __iomem *reg = (void __iomem *)dev->base_addr;
8545
8546 struct symbol_alive_response response;
8547 int i, j;
8548 u8 data;
8549
8550 /* Symbol control */
8551 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8552 readl(reg);
8553 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8554 readl(reg);
8555
8556 /* HW config */
8557 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8558 readl(reg);
8559 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8560 readl(reg);
8561
8562 /* EN_CS_ACCESS bit to reset control store pointer */
8563 write_nic_byte(dev, 0x210000, 0x40);
8564 readl(reg);
8565 write_nic_byte(dev, 0x210000, 0x0);
8566 readl(reg);
8567 write_nic_byte(dev, 0x210000, 0x40);
8568 readl(reg);
8569
8570 /* copy microcode from buffer into Symbol */
8571
8572 while (microcode_data_left > 0) {
8573 write_nic_byte(dev, 0x210010, *microcode_data++);
8574 write_nic_byte(dev, 0x210010, *microcode_data++);
8575 microcode_data_left -= 2;
8576 }
8577
8578 /* EN_CS_ACCESS bit to reset the control store pointer */
8579 write_nic_byte(dev, 0x210000, 0x0);
8580 readl(reg);
8581
8582 /* Enable System (Reg 0)
8583 * first enable causes garbage in RX FIFO */
8584 write_nic_byte(dev, 0x210000, 0x0);
8585 readl(reg);
8586 write_nic_byte(dev, 0x210000, 0x80);
8587 readl(reg);
8588
8589 /* Reset External Baseband Reg */
8590 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8591 readl(reg);
8592 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8593 readl(reg);
8594
8595 /* HW Config (Reg 5) */
8596 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8597 readl(reg);
8598 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8599 readl(reg);
8600
8601 /* Enable System (Reg 0)
8602 * second enable should be OK */
8603 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8604 readl(reg);
8605 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8606
8607 /* check Symbol is enabled - upped this from 5 as it wasn't always
8608 * catching the update */
8609 for (i = 0; i < 10; i++) {
8610 udelay(10);
8611
8612 /* check Dino is enabled bit */
8613 read_nic_byte(dev, 0x210000, &data);
8614 if (data & 0x1)
8615 break;
8616 }
8617
8618 if (i == 10) {
8619 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8620 dev->name);
8621 return -EIO;
8622 }
8623
8624 /* Get Symbol alive response */
8625 for (i = 0; i < 30; i++) {
8626 /* Read alive response structure */
8627 for (j = 0;
8628 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8629 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8630
8631 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8632 break;
8633 udelay(10);
8634 }
8635
8636 if (i == 30) {
8637 printk(KERN_ERR DRV_NAME
8638 ": %s: No response from Symbol - hw not alive\n",
8639 dev->name);
8640 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8641 return -EIO;
8642 }
8643
8644 return 0;
8645 }