1 /******************************************************************************
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
34 #include <linux/version.h>
36 #define IPW2200_VERSION "git-1.0.8"
37 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
38 #define DRV_COPYRIGHT "Copyright(c) 2003-2005 Intel Corporation"
39 #define DRV_VERSION IPW2200_VERSION
41 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
43 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
44 MODULE_VERSION(DRV_VERSION
);
45 MODULE_AUTHOR(DRV_COPYRIGHT
);
46 MODULE_LICENSE("GPL");
48 static int cmdlog
= 0;
50 static int channel
= 0;
53 static u32 ipw_debug_level
;
54 static int associate
= 1;
55 static int auto_create
= 1;
57 static int disable
= 0;
58 static int hwcrypto
= 1;
59 static const char ipw_modes
[] = {
64 static int qos_enable
= 0;
65 static int qos_burst_enable
= 0;
66 static int qos_no_ack_mask
= 0;
67 static int burst_duration_CCK
= 0;
68 static int burst_duration_OFDM
= 0;
70 static struct ieee80211_qos_parameters def_qos_parameters_OFDM
= {
71 {QOS_TX0_CW_MIN_OFDM
, QOS_TX1_CW_MIN_OFDM
, QOS_TX2_CW_MIN_OFDM
,
73 {QOS_TX0_CW_MAX_OFDM
, QOS_TX1_CW_MAX_OFDM
, QOS_TX2_CW_MAX_OFDM
,
75 {QOS_TX0_AIFS
, QOS_TX1_AIFS
, QOS_TX2_AIFS
, QOS_TX3_AIFS
},
76 {QOS_TX0_ACM
, QOS_TX1_ACM
, QOS_TX2_ACM
, QOS_TX3_ACM
},
77 {QOS_TX0_TXOP_LIMIT_OFDM
, QOS_TX1_TXOP_LIMIT_OFDM
,
78 QOS_TX2_TXOP_LIMIT_OFDM
, QOS_TX3_TXOP_LIMIT_OFDM
}
81 static struct ieee80211_qos_parameters def_qos_parameters_CCK
= {
82 {QOS_TX0_CW_MIN_CCK
, QOS_TX1_CW_MIN_CCK
, QOS_TX2_CW_MIN_CCK
,
84 {QOS_TX0_CW_MAX_CCK
, QOS_TX1_CW_MAX_CCK
, QOS_TX2_CW_MAX_CCK
,
86 {QOS_TX0_AIFS
, QOS_TX1_AIFS
, QOS_TX2_AIFS
, QOS_TX3_AIFS
},
87 {QOS_TX0_ACM
, QOS_TX1_ACM
, QOS_TX2_ACM
, QOS_TX3_ACM
},
88 {QOS_TX0_TXOP_LIMIT_CCK
, QOS_TX1_TXOP_LIMIT_CCK
, QOS_TX2_TXOP_LIMIT_CCK
,
89 QOS_TX3_TXOP_LIMIT_CCK
}
92 static struct ieee80211_qos_parameters def_parameters_OFDM
= {
93 {DEF_TX0_CW_MIN_OFDM
, DEF_TX1_CW_MIN_OFDM
, DEF_TX2_CW_MIN_OFDM
,
95 {DEF_TX0_CW_MAX_OFDM
, DEF_TX1_CW_MAX_OFDM
, DEF_TX2_CW_MAX_OFDM
,
97 {DEF_TX0_AIFS
, DEF_TX1_AIFS
, DEF_TX2_AIFS
, DEF_TX3_AIFS
},
98 {DEF_TX0_ACM
, DEF_TX1_ACM
, DEF_TX2_ACM
, DEF_TX3_ACM
},
99 {DEF_TX0_TXOP_LIMIT_OFDM
, DEF_TX1_TXOP_LIMIT_OFDM
,
100 DEF_TX2_TXOP_LIMIT_OFDM
, DEF_TX3_TXOP_LIMIT_OFDM
}
103 static struct ieee80211_qos_parameters def_parameters_CCK
= {
104 {DEF_TX0_CW_MIN_CCK
, DEF_TX1_CW_MIN_CCK
, DEF_TX2_CW_MIN_CCK
,
106 {DEF_TX0_CW_MAX_CCK
, DEF_TX1_CW_MAX_CCK
, DEF_TX2_CW_MAX_CCK
,
108 {DEF_TX0_AIFS
, DEF_TX1_AIFS
, DEF_TX2_AIFS
, DEF_TX3_AIFS
},
109 {DEF_TX0_ACM
, DEF_TX1_ACM
, DEF_TX2_ACM
, DEF_TX3_ACM
},
110 {DEF_TX0_TXOP_LIMIT_CCK
, DEF_TX1_TXOP_LIMIT_CCK
, DEF_TX2_TXOP_LIMIT_CCK
,
111 DEF_TX3_TXOP_LIMIT_CCK
}
114 static u8 qos_oui
[QOS_OUI_LEN
] = { 0x00, 0x50, 0xF2 };
116 static int from_priority_to_tx_queue
[] = {
117 IPW_TX_QUEUE_1
, IPW_TX_QUEUE_2
, IPW_TX_QUEUE_2
, IPW_TX_QUEUE_1
,
118 IPW_TX_QUEUE_3
, IPW_TX_QUEUE_3
, IPW_TX_QUEUE_4
, IPW_TX_QUEUE_4
121 static u32
ipw_qos_get_burst_duration(struct ipw_priv
*priv
);
123 static int ipw_send_qos_params_command(struct ipw_priv
*priv
, struct ieee80211_qos_parameters
125 static int ipw_send_qos_info_command(struct ipw_priv
*priv
, struct ieee80211_qos_information_element
127 #endif /* CONFIG_IPW_QOS */
129 static struct iw_statistics
*ipw_get_wireless_stats(struct net_device
*dev
);
130 static void ipw_remove_current_network(struct ipw_priv
*priv
);
131 static void ipw_rx(struct ipw_priv
*priv
);
132 static int ipw_queue_tx_reclaim(struct ipw_priv
*priv
,
133 struct clx2_tx_queue
*txq
, int qindex
);
134 static int ipw_queue_reset(struct ipw_priv
*priv
);
136 static int ipw_queue_tx_hcmd(struct ipw_priv
*priv
, int hcmd
, void *buf
,
139 static void ipw_tx_queue_free(struct ipw_priv
*);
141 static struct ipw_rx_queue
*ipw_rx_queue_alloc(struct ipw_priv
*);
142 static void ipw_rx_queue_free(struct ipw_priv
*, struct ipw_rx_queue
*);
143 static void ipw_rx_queue_replenish(void *);
144 static int ipw_up(struct ipw_priv
*);
145 static void ipw_bg_up(void *);
146 static void ipw_down(struct ipw_priv
*);
147 static void ipw_bg_down(void *);
148 static int ipw_config(struct ipw_priv
*);
149 static int init_supported_rates(struct ipw_priv
*priv
,
150 struct ipw_supported_rates
*prates
);
151 static void ipw_set_hwcrypto_keys(struct ipw_priv
*);
152 static void ipw_send_wep_keys(struct ipw_priv
*, int);
154 static int ipw_is_valid_channel(struct ieee80211_device
*, u8
);
155 static int ipw_channel_to_index(struct ieee80211_device
*, u8
);
156 static u8
ipw_freq_to_channel(struct ieee80211_device
*, u32
);
157 static int ipw_set_geo(struct ieee80211_device
*, const struct ieee80211_geo
*);
158 static const struct ieee80211_geo
*ipw_get_geo(struct ieee80211_device
*);
160 static int snprint_line(char *buf
, size_t count
,
161 const u8
* data
, u32 len
, u32 ofs
)
166 out
= snprintf(buf
, count
, "%08X", ofs
);
168 for (l
= 0, i
= 0; i
< 2; i
++) {
169 out
+= snprintf(buf
+ out
, count
- out
, " ");
170 for (j
= 0; j
< 8 && l
< len
; j
++, l
++)
171 out
+= snprintf(buf
+ out
, count
- out
, "%02X ",
174 out
+= snprintf(buf
+ out
, count
- out
, " ");
177 out
+= snprintf(buf
+ out
, count
- out
, " ");
178 for (l
= 0, i
= 0; i
< 2; i
++) {
179 out
+= snprintf(buf
+ out
, count
- out
, " ");
180 for (j
= 0; j
< 8 && l
< len
; j
++, l
++) {
181 c
= data
[(i
* 8 + j
)];
182 if (!isascii(c
) || !isprint(c
))
185 out
+= snprintf(buf
+ out
, count
- out
, "%c", c
);
189 out
+= snprintf(buf
+ out
, count
- out
, " ");
195 static void printk_buf(int level
, const u8
* data
, u32 len
)
199 if (!(ipw_debug_level
& level
))
203 snprint_line(line
, sizeof(line
), &data
[ofs
],
205 printk(KERN_DEBUG
"%s\n", line
);
207 len
-= min(len
, 16U);
211 static int snprintk_buf(u8
* output
, size_t size
, const u8
* data
, size_t len
)
217 while (size
&& len
) {
218 out
= snprint_line(output
, size
, &data
[ofs
],
219 min_t(size_t, len
, 16U), ofs
);
224 len
-= min_t(size_t, len
, 16U);
230 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
231 static u32
_ipw_read_reg32(struct ipw_priv
*priv
, u32 reg
);
232 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
234 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
235 static u8
_ipw_read_reg8(struct ipw_priv
*ipw
, u32 reg
);
236 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
238 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
239 static void _ipw_write_reg8(struct ipw_priv
*priv
, u32 reg
, u8 value
);
240 static inline void ipw_write_reg8(struct ipw_priv
*a
, u32 b
, u8 c
)
242 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__
,
243 __LINE__
, (u32
) (b
), (u32
) (c
));
244 _ipw_write_reg8(a
, b
, c
);
247 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
248 static void _ipw_write_reg16(struct ipw_priv
*priv
, u32 reg
, u16 value
);
249 static inline void ipw_write_reg16(struct ipw_priv
*a
, u32 b
, u16 c
)
251 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__
,
252 __LINE__
, (u32
) (b
), (u32
) (c
));
253 _ipw_write_reg16(a
, b
, c
);
256 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
257 static void _ipw_write_reg32(struct ipw_priv
*priv
, u32 reg
, u32 value
);
258 static inline void ipw_write_reg32(struct ipw_priv
*a
, u32 b
, u32 c
)
260 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__
,
261 __LINE__
, (u32
) (b
), (u32
) (c
));
262 _ipw_write_reg32(a
, b
, c
);
265 /* 8-bit direct write (low 4K) */
266 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
268 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
269 #define ipw_write8(ipw, ofs, val) \
270 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
271 _ipw_write8(ipw, ofs, val)
274 /* 16-bit direct write (low 4K) */
275 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
277 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
278 #define ipw_write16(ipw, ofs, val) \
279 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
280 _ipw_write16(ipw, ofs, val)
283 /* 32-bit direct write (low 4K) */
284 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
286 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
287 #define ipw_write32(ipw, ofs, val) \
288 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
289 _ipw_write32(ipw, ofs, val)
292 /* 8-bit direct read (low 4K) */
293 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
295 /* 8-bit direct read (low 4K), with debug wrapper */
296 static inline u8
__ipw_read8(char *f
, u32 l
, struct ipw_priv
*ipw
, u32 ofs
)
298 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f
, l
, (u32
) (ofs
));
299 return _ipw_read8(ipw
, ofs
);
302 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
303 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
306 /* 16-bit direct read (low 4K) */
307 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
309 /* 16-bit direct read (low 4K), with debug wrapper */
310 static inline u16
__ipw_read16(char *f
, u32 l
, struct ipw_priv
*ipw
, u32 ofs
)
312 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f
, l
, (u32
) (ofs
));
313 return _ipw_read16(ipw
, ofs
);
316 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
317 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
320 /* 32-bit direct read (low 4K) */
321 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
323 /* 32-bit direct read (low 4K), with debug wrapper */
324 static inline u32
__ipw_read32(char *f
, u32 l
, struct ipw_priv
*ipw
, u32 ofs
)
326 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f
, l
, (u32
) (ofs
));
327 return _ipw_read32(ipw
, ofs
);
330 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
331 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
334 /* multi-byte read (above 4K), with debug wrapper */
335 static void _ipw_read_indirect(struct ipw_priv
*, u32
, u8
*, int);
336 static inline void __ipw_read_indirect(const char *f
, int l
,
337 struct ipw_priv
*a
, u32 b
, u8
* c
, int d
)
339 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f
, l
, (u32
) (b
),
341 _ipw_read_indirect(a
, b
, c
, d
);
344 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
345 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
347 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
348 static void _ipw_write_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* data
,
350 #define ipw_write_indirect(a, b, c, d) \
351 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
352 _ipw_write_indirect(a, b, c, d)
354 /* 32-bit indirect write (above 4K) */
355 static void _ipw_write_reg32(struct ipw_priv
*priv
, u32 reg
, u32 value
)
357 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv
, reg
, value
);
358 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
);
359 _ipw_write32(priv
, IPW_INDIRECT_DATA
, value
);
362 /* 8-bit indirect write (above 4K) */
363 static void _ipw_write_reg8(struct ipw_priv
*priv
, u32 reg
, u8 value
)
365 u32 aligned_addr
= reg
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
366 u32 dif_len
= reg
- aligned_addr
;
368 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg
, value
);
369 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
370 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ dif_len
, value
);
373 /* 16-bit indirect write (above 4K) */
374 static void _ipw_write_reg16(struct ipw_priv
*priv
, u32 reg
, u16 value
)
376 u32 aligned_addr
= reg
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
377 u32 dif_len
= (reg
- aligned_addr
) & (~0x1ul
);
379 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg
, value
);
380 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
381 _ipw_write16(priv
, IPW_INDIRECT_DATA
+ dif_len
, value
);
385 /* 8-bit indirect read (above 4K) */
386 static u8
_ipw_read_reg8(struct ipw_priv
*priv
, u32 reg
)
389 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
& IPW_INDIRECT_ADDR_MASK
);
390 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg
);
391 word
= _ipw_read32(priv
, IPW_INDIRECT_DATA
);
392 return (word
>> ((reg
& 0x3) * 8)) & 0xff;
395 /* 32-bit indirect read (above 4K) */
396 static u32
_ipw_read_reg32(struct ipw_priv
*priv
, u32 reg
)
400 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv
, reg
);
402 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
);
403 value
= _ipw_read32(priv
, IPW_INDIRECT_DATA
);
404 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg
, value
);
408 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
409 /* for area above 1st 4K of SRAM/reg space */
410 static void _ipw_read_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* buf
,
413 u32 aligned_addr
= addr
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
414 u32 dif_len
= addr
- aligned_addr
;
417 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr
, buf
, num
);
423 /* Read the first dword (or portion) byte by byte */
424 if (unlikely(dif_len
)) {
425 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
426 /* Start reading at aligned_addr + dif_len */
427 for (i
= dif_len
; ((i
< 4) && (num
> 0)); i
++, num
--)
428 *buf
++ = _ipw_read8(priv
, IPW_INDIRECT_DATA
+ i
);
432 /* Read all of the middle dwords as dwords, with auto-increment */
433 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, aligned_addr
);
434 for (; num
>= 4; buf
+= 4, aligned_addr
+= 4, num
-= 4)
435 *(u32
*) buf
= _ipw_read32(priv
, IPW_AUTOINC_DATA
);
437 /* Read the last dword (or portion) byte by byte */
439 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
440 for (i
= 0; num
> 0; i
++, num
--)
441 *buf
++ = ipw_read8(priv
, IPW_INDIRECT_DATA
+ i
);
445 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
446 /* for area above 1st 4K of SRAM/reg space */
447 static void _ipw_write_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* buf
,
450 u32 aligned_addr
= addr
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
451 u32 dif_len
= addr
- aligned_addr
;
454 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr
, buf
, num
);
460 /* Write the first dword (or portion) byte by byte */
461 if (unlikely(dif_len
)) {
462 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
463 /* Start writing at aligned_addr + dif_len */
464 for (i
= dif_len
; ((i
< 4) && (num
> 0)); i
++, num
--, buf
++)
465 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ i
, *buf
);
469 /* Write all of the middle dwords as dwords, with auto-increment */
470 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, aligned_addr
);
471 for (; num
>= 4; buf
+= 4, aligned_addr
+= 4, num
-= 4)
472 _ipw_write32(priv
, IPW_AUTOINC_DATA
, *(u32
*) buf
);
474 /* Write the last dword (or portion) byte by byte */
476 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
477 for (i
= 0; num
> 0; i
++, num
--, buf
++)
478 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ i
, *buf
);
482 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
483 /* for 1st 4K of SRAM/regs space */
484 static void ipw_write_direct(struct ipw_priv
*priv
, u32 addr
, void *buf
,
487 memcpy_toio((priv
->hw_base
+ addr
), buf
, num
);
490 /* Set bit(s) in low 4K of SRAM/regs */
491 static inline void ipw_set_bit(struct ipw_priv
*priv
, u32 reg
, u32 mask
)
493 ipw_write32(priv
, reg
, ipw_read32(priv
, reg
) | mask
);
496 /* Clear bit(s) in low 4K of SRAM/regs */
497 static inline void ipw_clear_bit(struct ipw_priv
*priv
, u32 reg
, u32 mask
)
499 ipw_write32(priv
, reg
, ipw_read32(priv
, reg
) & ~mask
);
502 static inline void ipw_enable_interrupts(struct ipw_priv
*priv
)
504 if (priv
->status
& STATUS_INT_ENABLED
)
506 priv
->status
|= STATUS_INT_ENABLED
;
507 ipw_write32(priv
, IPW_INTA_MASK_R
, IPW_INTA_MASK_ALL
);
510 static inline void ipw_disable_interrupts(struct ipw_priv
*priv
)
512 if (!(priv
->status
& STATUS_INT_ENABLED
))
514 priv
->status
&= ~STATUS_INT_ENABLED
;
515 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
518 #ifdef CONFIG_IPW2200_DEBUG
519 static char *ipw_error_desc(u32 val
)
522 case IPW_FW_ERROR_OK
:
524 case IPW_FW_ERROR_FAIL
:
526 case IPW_FW_ERROR_MEMORY_UNDERFLOW
:
527 return "MEMORY_UNDERFLOW";
528 case IPW_FW_ERROR_MEMORY_OVERFLOW
:
529 return "MEMORY_OVERFLOW";
530 case IPW_FW_ERROR_BAD_PARAM
:
532 case IPW_FW_ERROR_BAD_CHECKSUM
:
533 return "BAD_CHECKSUM";
534 case IPW_FW_ERROR_NMI_INTERRUPT
:
535 return "NMI_INTERRUPT";
536 case IPW_FW_ERROR_BAD_DATABASE
:
537 return "BAD_DATABASE";
538 case IPW_FW_ERROR_ALLOC_FAIL
:
540 case IPW_FW_ERROR_DMA_UNDERRUN
:
541 return "DMA_UNDERRUN";
542 case IPW_FW_ERROR_DMA_STATUS
:
544 case IPW_FW_ERROR_DINO_ERROR
:
546 case IPW_FW_ERROR_EEPROM_ERROR
:
547 return "EEPROM_ERROR";
548 case IPW_FW_ERROR_SYSASSERT
:
550 case IPW_FW_ERROR_FATAL_ERROR
:
551 return "FATAL_ERROR";
553 return "UNKNOWN_ERROR";
557 static void ipw_dump_error_log(struct ipw_priv
*priv
,
558 struct ipw_fw_error
*error
)
563 IPW_ERROR("Error allocating and capturing error log. "
564 "Nothing to dump.\n");
568 IPW_ERROR("Start IPW Error Log Dump:\n");
569 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
570 error
->status
, error
->config
);
572 for (i
= 0; i
< error
->elem_len
; i
++)
573 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
574 ipw_error_desc(error
->elem
[i
].desc
),
576 error
->elem
[i
].blink1
,
577 error
->elem
[i
].blink2
,
578 error
->elem
[i
].link1
,
579 error
->elem
[i
].link2
, error
->elem
[i
].data
);
580 for (i
= 0; i
< error
->log_len
; i
++)
581 IPW_ERROR("%i\t0x%08x\t%i\n",
583 error
->log
[i
].data
, error
->log
[i
].event
);
587 static inline int ipw_is_init(struct ipw_priv
*priv
)
589 return (priv
->status
& STATUS_INIT
) ? 1 : 0;
592 static int ipw_get_ordinal(struct ipw_priv
*priv
, u32 ord
, void *val
, u32
* len
)
594 u32 addr
, field_info
, field_len
, field_count
, total_len
;
596 IPW_DEBUG_ORD("ordinal = %i\n", ord
);
598 if (!priv
|| !val
|| !len
) {
599 IPW_DEBUG_ORD("Invalid argument\n");
603 /* verify device ordinal tables have been initialized */
604 if (!priv
->table0_addr
|| !priv
->table1_addr
|| !priv
->table2_addr
) {
605 IPW_DEBUG_ORD("Access ordinals before initialization\n");
609 switch (IPW_ORD_TABLE_ID_MASK
& ord
) {
610 case IPW_ORD_TABLE_0_MASK
:
612 * TABLE 0: Direct access to a table of 32 bit values
614 * This is a very simple table with the data directly
615 * read from the table
618 /* remove the table id from the ordinal */
619 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
622 if (ord
> priv
->table0_len
) {
623 IPW_DEBUG_ORD("ordinal value (%i) longer then "
624 "max (%i)\n", ord
, priv
->table0_len
);
628 /* verify we have enough room to store the value */
629 if (*len
< sizeof(u32
)) {
630 IPW_DEBUG_ORD("ordinal buffer length too small, "
631 "need %zd\n", sizeof(u32
));
635 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
636 ord
, priv
->table0_addr
+ (ord
<< 2));
640 *((u32
*) val
) = ipw_read32(priv
, priv
->table0_addr
+ ord
);
643 case IPW_ORD_TABLE_1_MASK
:
645 * TABLE 1: Indirect access to a table of 32 bit values
647 * This is a fairly large table of u32 values each
648 * representing starting addr for the data (which is
652 /* remove the table id from the ordinal */
653 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
656 if (ord
> priv
->table1_len
) {
657 IPW_DEBUG_ORD("ordinal value too long\n");
661 /* verify we have enough room to store the value */
662 if (*len
< sizeof(u32
)) {
663 IPW_DEBUG_ORD("ordinal buffer length too small, "
664 "need %zd\n", sizeof(u32
));
669 ipw_read_reg32(priv
, (priv
->table1_addr
+ (ord
<< 2)));
673 case IPW_ORD_TABLE_2_MASK
:
675 * TABLE 2: Indirect access to a table of variable sized values
677 * This table consist of six values, each containing
678 * - dword containing the starting offset of the data
679 * - dword containing the lengh in the first 16bits
680 * and the count in the second 16bits
683 /* remove the table id from the ordinal */
684 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
687 if (ord
> priv
->table2_len
) {
688 IPW_DEBUG_ORD("ordinal value too long\n");
692 /* get the address of statistic */
693 addr
= ipw_read_reg32(priv
, priv
->table2_addr
+ (ord
<< 3));
695 /* get the second DW of statistics ;
696 * two 16-bit words - first is length, second is count */
699 priv
->table2_addr
+ (ord
<< 3) +
702 /* get each entry length */
703 field_len
= *((u16
*) & field_info
);
705 /* get number of entries */
706 field_count
= *(((u16
*) & field_info
) + 1);
708 /* abort if not enought memory */
709 total_len
= field_len
* field_count
;
710 if (total_len
> *len
) {
719 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
720 "field_info = 0x%08x\n",
721 addr
, total_len
, field_info
);
722 ipw_read_indirect(priv
, addr
, val
, total_len
);
726 IPW_DEBUG_ORD("Invalid ordinal!\n");
734 static void ipw_init_ordinals(struct ipw_priv
*priv
)
736 priv
->table0_addr
= IPW_ORDINALS_TABLE_LOWER
;
737 priv
->table0_len
= ipw_read32(priv
, priv
->table0_addr
);
739 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
740 priv
->table0_addr
, priv
->table0_len
);
742 priv
->table1_addr
= ipw_read32(priv
, IPW_ORDINALS_TABLE_1
);
743 priv
->table1_len
= ipw_read_reg32(priv
, priv
->table1_addr
);
745 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
746 priv
->table1_addr
, priv
->table1_len
);
748 priv
->table2_addr
= ipw_read32(priv
, IPW_ORDINALS_TABLE_2
);
749 priv
->table2_len
= ipw_read_reg32(priv
, priv
->table2_addr
);
750 priv
->table2_len
&= 0x0000ffff; /* use first two bytes */
752 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
753 priv
->table2_addr
, priv
->table2_len
);
757 static u32
ipw_register_toggle(u32 reg
)
759 reg
&= ~IPW_START_STANDBY
;
760 if (reg
& IPW_GATE_ODMA
)
761 reg
&= ~IPW_GATE_ODMA
;
762 if (reg
& IPW_GATE_IDMA
)
763 reg
&= ~IPW_GATE_IDMA
;
764 if (reg
& IPW_GATE_ADMA
)
765 reg
&= ~IPW_GATE_ADMA
;
771 * - On radio ON, turn on any LEDs that require to be on during start
772 * - On initialization, start unassociated blink
773 * - On association, disable unassociated blink
774 * - On disassociation, start unassociated blink
775 * - On radio OFF, turn off any LEDs started during radio on
778 #define LD_TIME_LINK_ON 300
779 #define LD_TIME_LINK_OFF 2700
780 #define LD_TIME_ACT_ON 250
782 static void ipw_led_link_on(struct ipw_priv
*priv
)
787 /* If configured to not use LEDs, or nic_type is 1,
788 * then we don't toggle a LINK led */
789 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
== EEPROM_NIC_TYPE_1
)
792 spin_lock_irqsave(&priv
->lock
, flags
);
794 if (!(priv
->status
& STATUS_RF_KILL_MASK
) &&
795 !(priv
->status
& STATUS_LED_LINK_ON
)) {
796 IPW_DEBUG_LED("Link LED On\n");
797 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
798 led
|= priv
->led_association_on
;
800 led
= ipw_register_toggle(led
);
802 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
803 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
805 priv
->status
|= STATUS_LED_LINK_ON
;
807 /* If we aren't associated, schedule turning the LED off */
808 if (!(priv
->status
& STATUS_ASSOCIATED
))
809 queue_delayed_work(priv
->workqueue
,
814 spin_unlock_irqrestore(&priv
->lock
, flags
);
817 static void ipw_bg_led_link_on(void *data
)
819 struct ipw_priv
*priv
= data
;
821 ipw_led_link_on(data
);
825 static void ipw_led_link_off(struct ipw_priv
*priv
)
830 /* If configured not to use LEDs, or nic type is 1,
831 * then we don't goggle the LINK led. */
832 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
== EEPROM_NIC_TYPE_1
)
835 spin_lock_irqsave(&priv
->lock
, flags
);
837 if (priv
->status
& STATUS_LED_LINK_ON
) {
838 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
839 led
&= priv
->led_association_off
;
840 led
= ipw_register_toggle(led
);
842 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
843 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
845 IPW_DEBUG_LED("Link LED Off\n");
847 priv
->status
&= ~STATUS_LED_LINK_ON
;
849 /* If we aren't associated and the radio is on, schedule
850 * turning the LED on (blink while unassociated) */
851 if (!(priv
->status
& STATUS_RF_KILL_MASK
) &&
852 !(priv
->status
& STATUS_ASSOCIATED
))
853 queue_delayed_work(priv
->workqueue
, &priv
->led_link_on
,
858 spin_unlock_irqrestore(&priv
->lock
, flags
);
861 static void ipw_bg_led_link_off(void *data
)
863 struct ipw_priv
*priv
= data
;
865 ipw_led_link_off(data
);
869 static void __ipw_led_activity_on(struct ipw_priv
*priv
)
873 if (priv
->config
& CFG_NO_LED
)
876 if (priv
->status
& STATUS_RF_KILL_MASK
)
879 if (!(priv
->status
& STATUS_LED_ACT_ON
)) {
880 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
881 led
|= priv
->led_activity_on
;
883 led
= ipw_register_toggle(led
);
885 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
886 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
888 IPW_DEBUG_LED("Activity LED On\n");
890 priv
->status
|= STATUS_LED_ACT_ON
;
892 cancel_delayed_work(&priv
->led_act_off
);
893 queue_delayed_work(priv
->workqueue
, &priv
->led_act_off
,
896 /* Reschedule LED off for full time period */
897 cancel_delayed_work(&priv
->led_act_off
);
898 queue_delayed_work(priv
->workqueue
, &priv
->led_act_off
,
904 void ipw_led_activity_on(struct ipw_priv
*priv
)
907 spin_lock_irqsave(&priv
->lock
, flags
);
908 __ipw_led_activity_on(priv
);
909 spin_unlock_irqrestore(&priv
->lock
, flags
);
913 static void ipw_led_activity_off(struct ipw_priv
*priv
)
918 if (priv
->config
& CFG_NO_LED
)
921 spin_lock_irqsave(&priv
->lock
, flags
);
923 if (priv
->status
& STATUS_LED_ACT_ON
) {
924 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
925 led
&= priv
->led_activity_off
;
927 led
= ipw_register_toggle(led
);
929 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
930 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
932 IPW_DEBUG_LED("Activity LED Off\n");
934 priv
->status
&= ~STATUS_LED_ACT_ON
;
937 spin_unlock_irqrestore(&priv
->lock
, flags
);
940 static void ipw_bg_led_activity_off(void *data
)
942 struct ipw_priv
*priv
= data
;
944 ipw_led_activity_off(data
);
948 static void ipw_led_band_on(struct ipw_priv
*priv
)
953 /* Only nic type 1 supports mode LEDs */
954 if (priv
->config
& CFG_NO_LED
||
955 priv
->nic_type
!= EEPROM_NIC_TYPE_1
|| !priv
->assoc_network
)
958 spin_lock_irqsave(&priv
->lock
, flags
);
960 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
961 if (priv
->assoc_network
->mode
== IEEE_A
) {
962 led
|= priv
->led_ofdm_on
;
963 led
&= priv
->led_association_off
;
964 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
965 } else if (priv
->assoc_network
->mode
== IEEE_G
) {
966 led
|= priv
->led_ofdm_on
;
967 led
|= priv
->led_association_on
;
968 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
970 led
&= priv
->led_ofdm_off
;
971 led
|= priv
->led_association_on
;
972 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
975 led
= ipw_register_toggle(led
);
977 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
978 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
980 spin_unlock_irqrestore(&priv
->lock
, flags
);
983 static void ipw_led_band_off(struct ipw_priv
*priv
)
988 /* Only nic type 1 supports mode LEDs */
989 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
!= EEPROM_NIC_TYPE_1
)
992 spin_lock_irqsave(&priv
->lock
, flags
);
994 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
995 led
&= priv
->led_ofdm_off
;
996 led
&= priv
->led_association_off
;
998 led
= ipw_register_toggle(led
);
1000 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
1001 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
1003 spin_unlock_irqrestore(&priv
->lock
, flags
);
1006 static void ipw_led_radio_on(struct ipw_priv
*priv
)
1008 ipw_led_link_on(priv
);
1011 static void ipw_led_radio_off(struct ipw_priv
*priv
)
1013 ipw_led_activity_off(priv
);
1014 ipw_led_link_off(priv
);
1017 static void ipw_led_link_up(struct ipw_priv
*priv
)
1019 /* Set the Link Led on for all nic types */
1020 ipw_led_link_on(priv
);
1023 static void ipw_led_link_down(struct ipw_priv
*priv
)
1025 ipw_led_activity_off(priv
);
1026 ipw_led_link_off(priv
);
1028 if (priv
->status
& STATUS_RF_KILL_MASK
)
1029 ipw_led_radio_off(priv
);
1032 static void ipw_led_init(struct ipw_priv
*priv
)
1034 priv
->nic_type
= priv
->eeprom
[EEPROM_NIC_TYPE
];
1036 /* Set the default PINs for the link and activity leds */
1037 priv
->led_activity_on
= IPW_ACTIVITY_LED
;
1038 priv
->led_activity_off
= ~(IPW_ACTIVITY_LED
);
1040 priv
->led_association_on
= IPW_ASSOCIATED_LED
;
1041 priv
->led_association_off
= ~(IPW_ASSOCIATED_LED
);
1043 /* Set the default PINs for the OFDM leds */
1044 priv
->led_ofdm_on
= IPW_OFDM_LED
;
1045 priv
->led_ofdm_off
= ~(IPW_OFDM_LED
);
1047 switch (priv
->nic_type
) {
1048 case EEPROM_NIC_TYPE_1
:
1049 /* In this NIC type, the LEDs are reversed.... */
1050 priv
->led_activity_on
= IPW_ASSOCIATED_LED
;
1051 priv
->led_activity_off
= ~(IPW_ASSOCIATED_LED
);
1052 priv
->led_association_on
= IPW_ACTIVITY_LED
;
1053 priv
->led_association_off
= ~(IPW_ACTIVITY_LED
);
1055 if (!(priv
->config
& CFG_NO_LED
))
1056 ipw_led_band_on(priv
);
1058 /* And we don't blink link LEDs for this nic, so
1059 * just return here */
1062 case EEPROM_NIC_TYPE_3
:
1063 case EEPROM_NIC_TYPE_2
:
1064 case EEPROM_NIC_TYPE_4
:
1065 case EEPROM_NIC_TYPE_0
:
1069 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1071 priv
->nic_type
= EEPROM_NIC_TYPE_0
;
1075 if (!(priv
->config
& CFG_NO_LED
)) {
1076 if (priv
->status
& STATUS_ASSOCIATED
)
1077 ipw_led_link_on(priv
);
1079 ipw_led_link_off(priv
);
1083 static void ipw_led_shutdown(struct ipw_priv
*priv
)
1085 ipw_led_activity_off(priv
);
1086 ipw_led_link_off(priv
);
1087 ipw_led_band_off(priv
);
1088 cancel_delayed_work(&priv
->led_link_on
);
1089 cancel_delayed_work(&priv
->led_link_off
);
1090 cancel_delayed_work(&priv
->led_act_off
);
1094 * The following adds a new attribute to the sysfs representation
1095 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1096 * used for controling the debug level.
1098 * See the level definitions in ipw for details.
1100 static ssize_t
show_debug_level(struct device_driver
*d
, char *buf
)
1102 return sprintf(buf
, "0x%08X\n", ipw_debug_level
);
1105 static ssize_t
store_debug_level(struct device_driver
*d
, const char *buf
,
1108 char *p
= (char *)buf
;
1111 if (p
[1] == 'x' || p
[1] == 'X' || p
[0] == 'x' || p
[0] == 'X') {
1113 if (p
[0] == 'x' || p
[0] == 'X')
1115 val
= simple_strtoul(p
, &p
, 16);
1117 val
= simple_strtoul(p
, &p
, 10);
1119 printk(KERN_INFO DRV_NAME
1120 ": %s is not in hex or decimal form.\n", buf
);
1122 ipw_debug_level
= val
;
1124 return strnlen(buf
, count
);
1127 static DRIVER_ATTR(debug_level
, S_IWUSR
| S_IRUGO
,
1128 show_debug_level
, store_debug_level
);
1130 static inline u32
ipw_get_event_log_len(struct ipw_priv
*priv
)
1132 /* length = 1st dword in log */
1133 return ipw_read_reg32(priv
, ipw_read32(priv
, IPW_EVENT_LOG
));
1136 static void ipw_capture_event_log(struct ipw_priv
*priv
,
1137 u32 log_len
, struct ipw_event
*log
)
1142 base
= ipw_read32(priv
, IPW_EVENT_LOG
);
1143 ipw_read_indirect(priv
, base
+ sizeof(base
) + sizeof(u32
),
1144 (u8
*) log
, sizeof(*log
) * log_len
);
1148 static struct ipw_fw_error
*ipw_alloc_error_log(struct ipw_priv
*priv
)
1150 struct ipw_fw_error
*error
;
1151 u32 log_len
= ipw_get_event_log_len(priv
);
1152 u32 base
= ipw_read32(priv
, IPW_ERROR_LOG
);
1153 u32 elem_len
= ipw_read_reg32(priv
, base
);
1155 error
= kmalloc(sizeof(*error
) +
1156 sizeof(*error
->elem
) * elem_len
+
1157 sizeof(*error
->log
) * log_len
, GFP_ATOMIC
);
1159 IPW_ERROR("Memory allocation for firmware error log "
1163 error
->jiffies
= jiffies
;
1164 error
->status
= priv
->status
;
1165 error
->config
= priv
->config
;
1166 error
->elem_len
= elem_len
;
1167 error
->log_len
= log_len
;
1168 error
->elem
= (struct ipw_error_elem
*)error
->payload
;
1169 error
->log
= (struct ipw_event
*)(error
->elem
+ elem_len
);
1171 ipw_capture_event_log(priv
, log_len
, error
->log
);
1174 ipw_read_indirect(priv
, base
+ sizeof(base
), (u8
*) error
->elem
,
1175 sizeof(*error
->elem
) * elem_len
);
1180 static void ipw_free_error_log(struct ipw_fw_error
*error
)
1186 static ssize_t
show_event_log(struct device
*d
,
1187 struct device_attribute
*attr
, char *buf
)
1189 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1190 u32 log_len
= ipw_get_event_log_len(priv
);
1191 struct ipw_event log
[log_len
];
1194 ipw_capture_event_log(priv
, log_len
, log
);
1196 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "%08X", log_len
);
1197 for (i
= 0; i
< log_len
; i
++)
1198 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1200 log
[i
].time
, log
[i
].event
, log
[i
].data
);
1201 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1205 static DEVICE_ATTR(event_log
, S_IRUGO
, show_event_log
, NULL
);
1207 static ssize_t
show_error(struct device
*d
,
1208 struct device_attribute
*attr
, char *buf
)
1210 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1214 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1215 "%08lX%08X%08X%08X",
1216 priv
->error
->jiffies
,
1217 priv
->error
->status
,
1218 priv
->error
->config
, priv
->error
->elem_len
);
1219 for (i
= 0; i
< priv
->error
->elem_len
; i
++)
1220 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1221 "\n%08X%08X%08X%08X%08X%08X%08X",
1222 priv
->error
->elem
[i
].time
,
1223 priv
->error
->elem
[i
].desc
,
1224 priv
->error
->elem
[i
].blink1
,
1225 priv
->error
->elem
[i
].blink2
,
1226 priv
->error
->elem
[i
].link1
,
1227 priv
->error
->elem
[i
].link2
,
1228 priv
->error
->elem
[i
].data
);
1230 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1231 "\n%08X", priv
->error
->log_len
);
1232 for (i
= 0; i
< priv
->error
->log_len
; i
++)
1233 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1235 priv
->error
->log
[i
].time
,
1236 priv
->error
->log
[i
].event
,
1237 priv
->error
->log
[i
].data
);
1238 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1242 static ssize_t
clear_error(struct device
*d
,
1243 struct device_attribute
*attr
,
1244 const char *buf
, size_t count
)
1246 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1248 ipw_free_error_log(priv
->error
);
1254 static DEVICE_ATTR(error
, S_IRUGO
| S_IWUSR
, show_error
, clear_error
);
1256 static ssize_t
show_cmd_log(struct device
*d
,
1257 struct device_attribute
*attr
, char *buf
)
1259 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1263 for (i
= (priv
->cmdlog_pos
+ 1) % priv
->cmdlog_len
;
1264 (i
!= priv
->cmdlog_pos
) && (PAGE_SIZE
- len
);
1265 i
= (i
+ 1) % priv
->cmdlog_len
) {
1267 snprintf(buf
+ len
, PAGE_SIZE
- len
,
1268 "\n%08lX%08X%08X%08X\n", priv
->cmdlog
[i
].jiffies
,
1269 priv
->cmdlog
[i
].retcode
, priv
->cmdlog
[i
].cmd
.cmd
,
1270 priv
->cmdlog
[i
].cmd
.len
);
1272 snprintk_buf(buf
+ len
, PAGE_SIZE
- len
,
1273 (u8
*) priv
->cmdlog
[i
].cmd
.param
,
1274 priv
->cmdlog
[i
].cmd
.len
);
1275 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1277 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1281 static DEVICE_ATTR(cmd_log
, S_IRUGO
, show_cmd_log
, NULL
);
1283 static ssize_t
show_scan_age(struct device
*d
, struct device_attribute
*attr
,
1286 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1287 return sprintf(buf
, "%d\n", priv
->ieee
->scan_age
);
1290 static ssize_t
store_scan_age(struct device
*d
, struct device_attribute
*attr
,
1291 const char *buf
, size_t count
)
1293 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1294 #ifdef CONFIG_IPW2200_DEBUG
1295 struct net_device
*dev
= priv
->net_dev
;
1297 char buffer
[] = "00000000";
1299 (sizeof(buffer
) - 1) > count
? count
: sizeof(buffer
) - 1;
1303 IPW_DEBUG_INFO("enter\n");
1305 strncpy(buffer
, buf
, len
);
1308 if (p
[1] == 'x' || p
[1] == 'X' || p
[0] == 'x' || p
[0] == 'X') {
1310 if (p
[0] == 'x' || p
[0] == 'X')
1312 val
= simple_strtoul(p
, &p
, 16);
1314 val
= simple_strtoul(p
, &p
, 10);
1316 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev
->name
);
1318 priv
->ieee
->scan_age
= val
;
1319 IPW_DEBUG_INFO("set scan_age = %u\n", priv
->ieee
->scan_age
);
1322 IPW_DEBUG_INFO("exit\n");
1326 static DEVICE_ATTR(scan_age
, S_IWUSR
| S_IRUGO
, show_scan_age
, store_scan_age
);
1328 static ssize_t
show_led(struct device
*d
, struct device_attribute
*attr
,
1331 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1332 return sprintf(buf
, "%d\n", (priv
->config
& CFG_NO_LED
) ? 0 : 1);
1335 static ssize_t
store_led(struct device
*d
, struct device_attribute
*attr
,
1336 const char *buf
, size_t count
)
1338 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1340 IPW_DEBUG_INFO("enter\n");
1346 IPW_DEBUG_LED("Disabling LED control.\n");
1347 priv
->config
|= CFG_NO_LED
;
1348 ipw_led_shutdown(priv
);
1350 IPW_DEBUG_LED("Enabling LED control.\n");
1351 priv
->config
&= ~CFG_NO_LED
;
1355 IPW_DEBUG_INFO("exit\n");
1359 static DEVICE_ATTR(led
, S_IWUSR
| S_IRUGO
, show_led
, store_led
);
1361 static ssize_t
show_status(struct device
*d
,
1362 struct device_attribute
*attr
, char *buf
)
1364 struct ipw_priv
*p
= d
->driver_data
;
1365 return sprintf(buf
, "0x%08x\n", (int)p
->status
);
1368 static DEVICE_ATTR(status
, S_IRUGO
, show_status
, NULL
);
1370 static ssize_t
show_cfg(struct device
*d
, struct device_attribute
*attr
,
1373 struct ipw_priv
*p
= d
->driver_data
;
1374 return sprintf(buf
, "0x%08x\n", (int)p
->config
);
1377 static DEVICE_ATTR(cfg
, S_IRUGO
, show_cfg
, NULL
);
1379 static ssize_t
show_nic_type(struct device
*d
,
1380 struct device_attribute
*attr
, char *buf
)
1382 struct ipw_priv
*priv
= d
->driver_data
;
1383 return sprintf(buf
, "TYPE: %d\n", priv
->nic_type
);
1386 static DEVICE_ATTR(nic_type
, S_IRUGO
, show_nic_type
, NULL
);
1388 static ssize_t
show_ucode_version(struct device
*d
,
1389 struct device_attribute
*attr
, char *buf
)
1391 u32 len
= sizeof(u32
), tmp
= 0;
1392 struct ipw_priv
*p
= d
->driver_data
;
1394 if (ipw_get_ordinal(p
, IPW_ORD_STAT_UCODE_VERSION
, &tmp
, &len
))
1397 return sprintf(buf
, "0x%08x\n", tmp
);
1400 static DEVICE_ATTR(ucode_version
, S_IWUSR
| S_IRUGO
, show_ucode_version
, NULL
);
1402 static ssize_t
show_rtc(struct device
*d
, struct device_attribute
*attr
,
1405 u32 len
= sizeof(u32
), tmp
= 0;
1406 struct ipw_priv
*p
= d
->driver_data
;
1408 if (ipw_get_ordinal(p
, IPW_ORD_STAT_RTC
, &tmp
, &len
))
1411 return sprintf(buf
, "0x%08x\n", tmp
);
1414 static DEVICE_ATTR(rtc
, S_IWUSR
| S_IRUGO
, show_rtc
, NULL
);
1417 * Add a device attribute to view/control the delay between eeprom
1420 static ssize_t
show_eeprom_delay(struct device
*d
,
1421 struct device_attribute
*attr
, char *buf
)
1423 int n
= ((struct ipw_priv
*)d
->driver_data
)->eeprom_delay
;
1424 return sprintf(buf
, "%i\n", n
);
1426 static ssize_t
store_eeprom_delay(struct device
*d
,
1427 struct device_attribute
*attr
,
1428 const char *buf
, size_t count
)
1430 struct ipw_priv
*p
= d
->driver_data
;
1431 sscanf(buf
, "%i", &p
->eeprom_delay
);
1432 return strnlen(buf
, count
);
1435 static DEVICE_ATTR(eeprom_delay
, S_IWUSR
| S_IRUGO
,
1436 show_eeprom_delay
, store_eeprom_delay
);
1438 static ssize_t
show_command_event_reg(struct device
*d
,
1439 struct device_attribute
*attr
, char *buf
)
1442 struct ipw_priv
*p
= d
->driver_data
;
1444 reg
= ipw_read_reg32(p
, IPW_INTERNAL_CMD_EVENT
);
1445 return sprintf(buf
, "0x%08x\n", reg
);
1447 static ssize_t
store_command_event_reg(struct device
*d
,
1448 struct device_attribute
*attr
,
1449 const char *buf
, size_t count
)
1452 struct ipw_priv
*p
= d
->driver_data
;
1454 sscanf(buf
, "%x", ®
);
1455 ipw_write_reg32(p
, IPW_INTERNAL_CMD_EVENT
, reg
);
1456 return strnlen(buf
, count
);
1459 static DEVICE_ATTR(command_event_reg
, S_IWUSR
| S_IRUGO
,
1460 show_command_event_reg
, store_command_event_reg
);
1462 static ssize_t
show_mem_gpio_reg(struct device
*d
,
1463 struct device_attribute
*attr
, char *buf
)
1466 struct ipw_priv
*p
= d
->driver_data
;
1468 reg
= ipw_read_reg32(p
, 0x301100);
1469 return sprintf(buf
, "0x%08x\n", reg
);
1471 static ssize_t
store_mem_gpio_reg(struct device
*d
,
1472 struct device_attribute
*attr
,
1473 const char *buf
, size_t count
)
1476 struct ipw_priv
*p
= d
->driver_data
;
1478 sscanf(buf
, "%x", ®
);
1479 ipw_write_reg32(p
, 0x301100, reg
);
1480 return strnlen(buf
, count
);
1483 static DEVICE_ATTR(mem_gpio_reg
, S_IWUSR
| S_IRUGO
,
1484 show_mem_gpio_reg
, store_mem_gpio_reg
);
1486 static ssize_t
show_indirect_dword(struct device
*d
,
1487 struct device_attribute
*attr
, char *buf
)
1490 struct ipw_priv
*priv
= d
->driver_data
;
1492 if (priv
->status
& STATUS_INDIRECT_DWORD
)
1493 reg
= ipw_read_reg32(priv
, priv
->indirect_dword
);
1497 return sprintf(buf
, "0x%08x\n", reg
);
1499 static ssize_t
store_indirect_dword(struct device
*d
,
1500 struct device_attribute
*attr
,
1501 const char *buf
, size_t count
)
1503 struct ipw_priv
*priv
= d
->driver_data
;
1505 sscanf(buf
, "%x", &priv
->indirect_dword
);
1506 priv
->status
|= STATUS_INDIRECT_DWORD
;
1507 return strnlen(buf
, count
);
1510 static DEVICE_ATTR(indirect_dword
, S_IWUSR
| S_IRUGO
,
1511 show_indirect_dword
, store_indirect_dword
);
1513 static ssize_t
show_indirect_byte(struct device
*d
,
1514 struct device_attribute
*attr
, char *buf
)
1517 struct ipw_priv
*priv
= d
->driver_data
;
1519 if (priv
->status
& STATUS_INDIRECT_BYTE
)
1520 reg
= ipw_read_reg8(priv
, priv
->indirect_byte
);
1524 return sprintf(buf
, "0x%02x\n", reg
);
1526 static ssize_t
store_indirect_byte(struct device
*d
,
1527 struct device_attribute
*attr
,
1528 const char *buf
, size_t count
)
1530 struct ipw_priv
*priv
= d
->driver_data
;
1532 sscanf(buf
, "%x", &priv
->indirect_byte
);
1533 priv
->status
|= STATUS_INDIRECT_BYTE
;
1534 return strnlen(buf
, count
);
1537 static DEVICE_ATTR(indirect_byte
, S_IWUSR
| S_IRUGO
,
1538 show_indirect_byte
, store_indirect_byte
);
1540 static ssize_t
show_direct_dword(struct device
*d
,
1541 struct device_attribute
*attr
, char *buf
)
1544 struct ipw_priv
*priv
= d
->driver_data
;
1546 if (priv
->status
& STATUS_DIRECT_DWORD
)
1547 reg
= ipw_read32(priv
, priv
->direct_dword
);
1551 return sprintf(buf
, "0x%08x\n", reg
);
1553 static ssize_t
store_direct_dword(struct device
*d
,
1554 struct device_attribute
*attr
,
1555 const char *buf
, size_t count
)
1557 struct ipw_priv
*priv
= d
->driver_data
;
1559 sscanf(buf
, "%x", &priv
->direct_dword
);
1560 priv
->status
|= STATUS_DIRECT_DWORD
;
1561 return strnlen(buf
, count
);
1564 static DEVICE_ATTR(direct_dword
, S_IWUSR
| S_IRUGO
,
1565 show_direct_dword
, store_direct_dword
);
1567 static int rf_kill_active(struct ipw_priv
*priv
)
1569 if (0 == (ipw_read32(priv
, 0x30) & 0x10000))
1570 priv
->status
|= STATUS_RF_KILL_HW
;
1572 priv
->status
&= ~STATUS_RF_KILL_HW
;
1574 return (priv
->status
& STATUS_RF_KILL_HW
) ? 1 : 0;
1577 static ssize_t
show_rf_kill(struct device
*d
, struct device_attribute
*attr
,
1580 /* 0 - RF kill not enabled
1581 1 - SW based RF kill active (sysfs)
1582 2 - HW based RF kill active
1583 3 - Both HW and SW baed RF kill active */
1584 struct ipw_priv
*priv
= d
->driver_data
;
1585 int val
= ((priv
->status
& STATUS_RF_KILL_SW
) ? 0x1 : 0x0) |
1586 (rf_kill_active(priv
) ? 0x2 : 0x0);
1587 return sprintf(buf
, "%i\n", val
);
1590 static int ipw_radio_kill_sw(struct ipw_priv
*priv
, int disable_radio
)
1592 if ((disable_radio
? 1 : 0) ==
1593 ((priv
->status
& STATUS_RF_KILL_SW
) ? 1 : 0))
1596 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1597 disable_radio
? "OFF" : "ON");
1599 if (disable_radio
) {
1600 priv
->status
|= STATUS_RF_KILL_SW
;
1602 if (priv
->workqueue
)
1603 cancel_delayed_work(&priv
->request_scan
);
1604 queue_work(priv
->workqueue
, &priv
->down
);
1606 priv
->status
&= ~STATUS_RF_KILL_SW
;
1607 if (rf_kill_active(priv
)) {
1608 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1609 "disabled by HW switch\n");
1610 /* Make sure the RF_KILL check timer is running */
1611 cancel_delayed_work(&priv
->rf_kill
);
1612 queue_delayed_work(priv
->workqueue
, &priv
->rf_kill
,
1615 queue_work(priv
->workqueue
, &priv
->up
);
1621 static ssize_t
store_rf_kill(struct device
*d
, struct device_attribute
*attr
,
1622 const char *buf
, size_t count
)
1624 struct ipw_priv
*priv
= d
->driver_data
;
1626 ipw_radio_kill_sw(priv
, buf
[0] == '1');
1631 static DEVICE_ATTR(rf_kill
, S_IWUSR
| S_IRUGO
, show_rf_kill
, store_rf_kill
);
1633 static ssize_t
show_speed_scan(struct device
*d
, struct device_attribute
*attr
,
1636 struct ipw_priv
*priv
= (struct ipw_priv
*)d
->driver_data
;
1637 int pos
= 0, len
= 0;
1638 if (priv
->config
& CFG_SPEED_SCAN
) {
1639 while (priv
->speed_scan
[pos
] != 0)
1640 len
+= sprintf(&buf
[len
], "%d ",
1641 priv
->speed_scan
[pos
++]);
1642 return len
+ sprintf(&buf
[len
], "\n");
1645 return sprintf(buf
, "0\n");
1648 static ssize_t
store_speed_scan(struct device
*d
, struct device_attribute
*attr
,
1649 const char *buf
, size_t count
)
1651 struct ipw_priv
*priv
= (struct ipw_priv
*)d
->driver_data
;
1652 int channel
, pos
= 0;
1653 const char *p
= buf
;
1655 /* list of space separated channels to scan, optionally ending with 0 */
1656 while ((channel
= simple_strtol(p
, NULL
, 0))) {
1657 if (pos
== MAX_SPEED_SCAN
- 1) {
1658 priv
->speed_scan
[pos
] = 0;
1662 if (ipw_is_valid_channel(priv
->ieee
, channel
))
1663 priv
->speed_scan
[pos
++] = channel
;
1665 IPW_WARNING("Skipping invalid channel request: %d\n",
1670 while (*p
== ' ' || *p
== '\t')
1675 priv
->config
&= ~CFG_SPEED_SCAN
;
1677 priv
->speed_scan_pos
= 0;
1678 priv
->config
|= CFG_SPEED_SCAN
;
1684 static DEVICE_ATTR(speed_scan
, S_IWUSR
| S_IRUGO
, show_speed_scan
,
1687 static ssize_t
show_net_stats(struct device
*d
, struct device_attribute
*attr
,
1690 struct ipw_priv
*priv
= (struct ipw_priv
*)d
->driver_data
;
1691 return sprintf(buf
, "%c\n", (priv
->config
& CFG_NET_STATS
) ? '1' : '0');
1694 static ssize_t
store_net_stats(struct device
*d
, struct device_attribute
*attr
,
1695 const char *buf
, size_t count
)
1697 struct ipw_priv
*priv
= (struct ipw_priv
*)d
->driver_data
;
1699 priv
->config
|= CFG_NET_STATS
;
1701 priv
->config
&= ~CFG_NET_STATS
;
1706 static DEVICE_ATTR(net_stats
, S_IWUSR
| S_IRUGO
,
1707 show_net_stats
, store_net_stats
);
1709 static void notify_wx_assoc_event(struct ipw_priv
*priv
)
1711 union iwreq_data wrqu
;
1712 wrqu
.ap_addr
.sa_family
= ARPHRD_ETHER
;
1713 if (priv
->status
& STATUS_ASSOCIATED
)
1714 memcpy(wrqu
.ap_addr
.sa_data
, priv
->bssid
, ETH_ALEN
);
1716 memset(wrqu
.ap_addr
.sa_data
, 0, ETH_ALEN
);
1717 wireless_send_event(priv
->net_dev
, SIOCGIWAP
, &wrqu
, NULL
);
1720 static void ipw_irq_tasklet(struct ipw_priv
*priv
)
1722 u32 inta
, inta_mask
, handled
= 0;
1723 unsigned long flags
;
1726 spin_lock_irqsave(&priv
->lock
, flags
);
1728 inta
= ipw_read32(priv
, IPW_INTA_RW
);
1729 inta_mask
= ipw_read32(priv
, IPW_INTA_MASK_R
);
1730 inta
&= (IPW_INTA_MASK_ALL
& inta_mask
);
1732 /* Add any cached INTA values that need to be handled */
1733 inta
|= priv
->isr_inta
;
1735 /* handle all the justifications for the interrupt */
1736 if (inta
& IPW_INTA_BIT_RX_TRANSFER
) {
1738 handled
|= IPW_INTA_BIT_RX_TRANSFER
;
1741 if (inta
& IPW_INTA_BIT_TX_CMD_QUEUE
) {
1742 IPW_DEBUG_HC("Command completed.\n");
1743 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq_cmd
, -1);
1744 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
1745 wake_up_interruptible(&priv
->wait_command_queue
);
1746 handled
|= IPW_INTA_BIT_TX_CMD_QUEUE
;
1749 if (inta
& IPW_INTA_BIT_TX_QUEUE_1
) {
1750 IPW_DEBUG_TX("TX_QUEUE_1\n");
1751 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[0], 0);
1752 handled
|= IPW_INTA_BIT_TX_QUEUE_1
;
1755 if (inta
& IPW_INTA_BIT_TX_QUEUE_2
) {
1756 IPW_DEBUG_TX("TX_QUEUE_2\n");
1757 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[1], 1);
1758 handled
|= IPW_INTA_BIT_TX_QUEUE_2
;
1761 if (inta
& IPW_INTA_BIT_TX_QUEUE_3
) {
1762 IPW_DEBUG_TX("TX_QUEUE_3\n");
1763 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[2], 2);
1764 handled
|= IPW_INTA_BIT_TX_QUEUE_3
;
1767 if (inta
& IPW_INTA_BIT_TX_QUEUE_4
) {
1768 IPW_DEBUG_TX("TX_QUEUE_4\n");
1769 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[3], 3);
1770 handled
|= IPW_INTA_BIT_TX_QUEUE_4
;
1773 if (inta
& IPW_INTA_BIT_STATUS_CHANGE
) {
1774 IPW_WARNING("STATUS_CHANGE\n");
1775 handled
|= IPW_INTA_BIT_STATUS_CHANGE
;
1778 if (inta
& IPW_INTA_BIT_BEACON_PERIOD_EXPIRED
) {
1779 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1780 handled
|= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED
;
1783 if (inta
& IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE
) {
1784 IPW_WARNING("HOST_CMD_DONE\n");
1785 handled
|= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE
;
1788 if (inta
& IPW_INTA_BIT_FW_INITIALIZATION_DONE
) {
1789 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1790 handled
|= IPW_INTA_BIT_FW_INITIALIZATION_DONE
;
1793 if (inta
& IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE
) {
1794 IPW_WARNING("PHY_OFF_DONE\n");
1795 handled
|= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE
;
1798 if (inta
& IPW_INTA_BIT_RF_KILL_DONE
) {
1799 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1800 priv
->status
|= STATUS_RF_KILL_HW
;
1801 wake_up_interruptible(&priv
->wait_command_queue
);
1802 priv
->status
&= ~(STATUS_ASSOCIATED
| STATUS_ASSOCIATING
);
1803 cancel_delayed_work(&priv
->request_scan
);
1804 schedule_work(&priv
->link_down
);
1805 queue_delayed_work(priv
->workqueue
, &priv
->rf_kill
, 2 * HZ
);
1806 handled
|= IPW_INTA_BIT_RF_KILL_DONE
;
1809 if (inta
& IPW_INTA_BIT_FATAL_ERROR
) {
1810 IPW_ERROR("Firmware error detected. Restarting.\n");
1812 IPW_ERROR("Sysfs 'error' log already exists.\n");
1813 #ifdef CONFIG_IPW2200_DEBUG
1814 if (ipw_debug_level
& IPW_DL_FW_ERRORS
) {
1815 struct ipw_fw_error
*error
=
1816 ipw_alloc_error_log(priv
);
1817 ipw_dump_error_log(priv
, error
);
1819 ipw_free_error_log(error
);
1823 priv
->error
= ipw_alloc_error_log(priv
);
1825 IPW_ERROR("Sysfs 'error' log captured.\n");
1827 IPW_ERROR("Error allocating sysfs 'error' "
1829 #ifdef CONFIG_IPW2200_DEBUG
1830 if (ipw_debug_level
& IPW_DL_FW_ERRORS
)
1831 ipw_dump_error_log(priv
, priv
->error
);
1835 /* XXX: If hardware encryption is for WPA/WPA2,
1836 * we have to notify the supplicant. */
1837 if (priv
->ieee
->sec
.encrypt
) {
1838 priv
->status
&= ~STATUS_ASSOCIATED
;
1839 notify_wx_assoc_event(priv
);
1842 /* Keep the restart process from trying to send host
1843 * commands by clearing the INIT status bit */
1844 priv
->status
&= ~STATUS_INIT
;
1846 /* Cancel currently queued command. */
1847 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
1848 wake_up_interruptible(&priv
->wait_command_queue
);
1850 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
1851 handled
|= IPW_INTA_BIT_FATAL_ERROR
;
1854 if (inta
& IPW_INTA_BIT_PARITY_ERROR
) {
1855 IPW_ERROR("Parity error\n");
1856 handled
|= IPW_INTA_BIT_PARITY_ERROR
;
1859 if (handled
!= inta
) {
1860 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta
& ~handled
);
1863 /* enable all interrupts */
1864 ipw_enable_interrupts(priv
);
1866 spin_unlock_irqrestore(&priv
->lock
, flags
);
1869 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1870 static char *get_cmd_string(u8 cmd
)
1873 IPW_CMD(HOST_COMPLETE
);
1874 IPW_CMD(POWER_DOWN
);
1875 IPW_CMD(SYSTEM_CONFIG
);
1876 IPW_CMD(MULTICAST_ADDRESS
);
1878 IPW_CMD(ADAPTER_ADDRESS
);
1880 IPW_CMD(RTS_THRESHOLD
);
1881 IPW_CMD(FRAG_THRESHOLD
);
1882 IPW_CMD(POWER_MODE
);
1884 IPW_CMD(TGI_TX_KEY
);
1885 IPW_CMD(SCAN_REQUEST
);
1886 IPW_CMD(SCAN_REQUEST_EXT
);
1888 IPW_CMD(SUPPORTED_RATES
);
1889 IPW_CMD(SCAN_ABORT
);
1891 IPW_CMD(QOS_PARAMETERS
);
1892 IPW_CMD(DINO_CONFIG
);
1893 IPW_CMD(RSN_CAPABILITIES
);
1895 IPW_CMD(CARD_DISABLE
);
1896 IPW_CMD(SEED_NUMBER
);
1898 IPW_CMD(COUNTRY_INFO
);
1899 IPW_CMD(AIRONET_INFO
);
1900 IPW_CMD(AP_TX_POWER
);
1902 IPW_CMD(CCX_VER_INFO
);
1903 IPW_CMD(SET_CALIBRATION
);
1904 IPW_CMD(SENSITIVITY_CALIB
);
1905 IPW_CMD(RETRY_LIMIT
);
1906 IPW_CMD(IPW_PRE_POWER_DOWN
);
1907 IPW_CMD(VAP_BEACON_TEMPLATE
);
1908 IPW_CMD(VAP_DTIM_PERIOD
);
1909 IPW_CMD(EXT_SUPPORTED_RATES
);
1910 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT
);
1911 IPW_CMD(VAP_QUIET_INTERVALS
);
1912 IPW_CMD(VAP_CHANNEL_SWITCH
);
1913 IPW_CMD(VAP_MANDATORY_CHANNELS
);
1914 IPW_CMD(VAP_CELL_PWR_LIMIT
);
1915 IPW_CMD(VAP_CF_PARAM_SET
);
1916 IPW_CMD(VAP_SET_BEACONING_STATE
);
1917 IPW_CMD(MEASUREMENT
);
1918 IPW_CMD(POWER_CAPABILITY
);
1919 IPW_CMD(SUPPORTED_CHANNELS
);
1920 IPW_CMD(TPC_REPORT
);
1922 IPW_CMD(PRODUCTION_COMMAND
);
1928 #define HOST_COMPLETE_TIMEOUT HZ
1929 static int ipw_send_cmd(struct ipw_priv
*priv
, struct host_cmd
*cmd
)
1932 unsigned long flags
;
1934 spin_lock_irqsave(&priv
->lock
, flags
);
1935 if (priv
->status
& STATUS_HCMD_ACTIVE
) {
1936 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1937 get_cmd_string(cmd
->cmd
));
1938 spin_unlock_irqrestore(&priv
->lock
, flags
);
1942 priv
->status
|= STATUS_HCMD_ACTIVE
;
1945 priv
->cmdlog
[priv
->cmdlog_pos
].jiffies
= jiffies
;
1946 priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.cmd
= cmd
->cmd
;
1947 priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.len
= cmd
->len
;
1948 memcpy(priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.param
, cmd
->param
,
1950 priv
->cmdlog
[priv
->cmdlog_pos
].retcode
= -1;
1953 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1954 get_cmd_string(cmd
->cmd
), cmd
->cmd
, cmd
->len
,
1957 #ifndef DEBUG_CMD_WEP_KEY
1958 if (cmd
->cmd
== IPW_CMD_WEP_KEY
)
1959 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
1962 printk_buf(IPW_DL_HOST_COMMAND
, (u8
*) cmd
->param
, cmd
->len
);
1965 rc
= ipw_queue_tx_hcmd(priv
, cmd
->cmd
, &cmd
->param
, cmd
->len
, 0);
1967 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
1968 IPW_ERROR("Failed to send %s: Reason %d\n",
1969 get_cmd_string(cmd
->cmd
), rc
);
1970 spin_unlock_irqrestore(&priv
->lock
, flags
);
1973 spin_unlock_irqrestore(&priv
->lock
, flags
);
1975 rc
= wait_event_interruptible_timeout(priv
->wait_command_queue
,
1977 status
& STATUS_HCMD_ACTIVE
),
1978 HOST_COMPLETE_TIMEOUT
);
1980 spin_lock_irqsave(&priv
->lock
, flags
);
1981 if (priv
->status
& STATUS_HCMD_ACTIVE
) {
1982 IPW_ERROR("Failed to send %s: Command timed out.\n",
1983 get_cmd_string(cmd
->cmd
));
1984 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
1985 spin_unlock_irqrestore(&priv
->lock
, flags
);
1989 spin_unlock_irqrestore(&priv
->lock
, flags
);
1993 if (priv
->status
& STATUS_RF_KILL_HW
) {
1994 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1995 get_cmd_string(cmd
->cmd
));
2002 priv
->cmdlog
[priv
->cmdlog_pos
++].retcode
= rc
;
2003 priv
->cmdlog_pos
%= priv
->cmdlog_len
;
2008 static int ipw_send_host_complete(struct ipw_priv
*priv
)
2010 struct host_cmd cmd
= {
2011 .cmd
= IPW_CMD_HOST_COMPLETE
,
2016 IPW_ERROR("Invalid args\n");
2020 return ipw_send_cmd(priv
, &cmd
);
2023 static int ipw_send_system_config(struct ipw_priv
*priv
,
2024 struct ipw_sys_config
*config
)
2026 struct host_cmd cmd
= {
2027 .cmd
= IPW_CMD_SYSTEM_CONFIG
,
2028 .len
= sizeof(*config
)
2031 if (!priv
|| !config
) {
2032 IPW_ERROR("Invalid args\n");
2036 memcpy(cmd
.param
, config
, sizeof(*config
));
2037 return ipw_send_cmd(priv
, &cmd
);
2040 static int ipw_send_ssid(struct ipw_priv
*priv
, u8
* ssid
, int len
)
2042 struct host_cmd cmd
= {
2043 .cmd
= IPW_CMD_SSID
,
2044 .len
= min(len
, IW_ESSID_MAX_SIZE
)
2047 if (!priv
|| !ssid
) {
2048 IPW_ERROR("Invalid args\n");
2052 memcpy(cmd
.param
, ssid
, cmd
.len
);
2053 return ipw_send_cmd(priv
, &cmd
);
2056 static int ipw_send_adapter_address(struct ipw_priv
*priv
, u8
* mac
)
2058 struct host_cmd cmd
= {
2059 .cmd
= IPW_CMD_ADAPTER_ADDRESS
,
2063 if (!priv
|| !mac
) {
2064 IPW_ERROR("Invalid args\n");
2068 IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT
"\n",
2069 priv
->net_dev
->name
, MAC_ARG(mac
));
2071 memcpy(cmd
.param
, mac
, ETH_ALEN
);
2072 return ipw_send_cmd(priv
, &cmd
);
2076 * NOTE: This must be executed from our workqueue as it results in udelay
2077 * being called which may corrupt the keyboard if executed on default
2080 static void ipw_adapter_restart(void *adapter
)
2082 struct ipw_priv
*priv
= adapter
;
2084 if (priv
->status
& STATUS_RF_KILL_MASK
)
2089 if (priv
->assoc_network
&&
2090 (priv
->assoc_network
->capability
& WLAN_CAPABILITY_IBSS
))
2091 ipw_remove_current_network(priv
);
2094 IPW_ERROR("Failed to up device\n");
2099 static void ipw_bg_adapter_restart(void *data
)
2101 struct ipw_priv
*priv
= data
;
2103 ipw_adapter_restart(data
);
2107 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2109 static void ipw_scan_check(void *data
)
2111 struct ipw_priv
*priv
= data
;
2112 if (priv
->status
& (STATUS_SCANNING
| STATUS_SCAN_ABORTING
)) {
2113 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2114 "adapter (%dms).\n",
2115 IPW_SCAN_CHECK_WATCHDOG
/ 100);
2116 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
2120 static void ipw_bg_scan_check(void *data
)
2122 struct ipw_priv
*priv
= data
;
2124 ipw_scan_check(data
);
2128 static int ipw_send_scan_request_ext(struct ipw_priv
*priv
,
2129 struct ipw_scan_request_ext
*request
)
2131 struct host_cmd cmd
= {
2132 .cmd
= IPW_CMD_SCAN_REQUEST_EXT
,
2133 .len
= sizeof(*request
)
2136 memcpy(cmd
.param
, request
, sizeof(*request
));
2137 return ipw_send_cmd(priv
, &cmd
);
2140 static int ipw_send_scan_abort(struct ipw_priv
*priv
)
2142 struct host_cmd cmd
= {
2143 .cmd
= IPW_CMD_SCAN_ABORT
,
2148 IPW_ERROR("Invalid args\n");
2152 return ipw_send_cmd(priv
, &cmd
);
2155 static int ipw_set_sensitivity(struct ipw_priv
*priv
, u16 sens
)
2157 struct host_cmd cmd
= {
2158 .cmd
= IPW_CMD_SENSITIVITY_CALIB
,
2159 .len
= sizeof(struct ipw_sensitivity_calib
)
2161 struct ipw_sensitivity_calib
*calib
= (struct ipw_sensitivity_calib
*)
2163 calib
->beacon_rssi_raw
= sens
;
2164 return ipw_send_cmd(priv
, &cmd
);
2167 static int ipw_send_associate(struct ipw_priv
*priv
,
2168 struct ipw_associate
*associate
)
2170 struct host_cmd cmd
= {
2171 .cmd
= IPW_CMD_ASSOCIATE
,
2172 .len
= sizeof(*associate
)
2175 struct ipw_associate tmp_associate
;
2176 memcpy(&tmp_associate
, associate
, sizeof(*associate
));
2177 tmp_associate
.policy_support
=
2178 cpu_to_le16(tmp_associate
.policy_support
);
2179 tmp_associate
.assoc_tsf_msw
= cpu_to_le32(tmp_associate
.assoc_tsf_msw
);
2180 tmp_associate
.assoc_tsf_lsw
= cpu_to_le32(tmp_associate
.assoc_tsf_lsw
);
2181 tmp_associate
.capability
= cpu_to_le16(tmp_associate
.capability
);
2182 tmp_associate
.listen_interval
=
2183 cpu_to_le16(tmp_associate
.listen_interval
);
2184 tmp_associate
.beacon_interval
=
2185 cpu_to_le16(tmp_associate
.beacon_interval
);
2186 tmp_associate
.atim_window
= cpu_to_le16(tmp_associate
.atim_window
);
2188 if (!priv
|| !associate
) {
2189 IPW_ERROR("Invalid args\n");
2193 memcpy(cmd
.param
, &tmp_associate
, sizeof(*associate
));
2194 return ipw_send_cmd(priv
, &cmd
);
2197 static int ipw_send_supported_rates(struct ipw_priv
*priv
,
2198 struct ipw_supported_rates
*rates
)
2200 struct host_cmd cmd
= {
2201 .cmd
= IPW_CMD_SUPPORTED_RATES
,
2202 .len
= sizeof(*rates
)
2205 if (!priv
|| !rates
) {
2206 IPW_ERROR("Invalid args\n");
2210 memcpy(cmd
.param
, rates
, sizeof(*rates
));
2211 return ipw_send_cmd(priv
, &cmd
);
2214 static int ipw_set_random_seed(struct ipw_priv
*priv
)
2216 struct host_cmd cmd
= {
2217 .cmd
= IPW_CMD_SEED_NUMBER
,
2222 IPW_ERROR("Invalid args\n");
2226 get_random_bytes(&cmd
.param
, sizeof(u32
));
2228 return ipw_send_cmd(priv
, &cmd
);
2231 static int ipw_send_card_disable(struct ipw_priv
*priv
, u32 phy_off
)
2233 struct host_cmd cmd
= {
2234 .cmd
= IPW_CMD_CARD_DISABLE
,
2239 IPW_ERROR("Invalid args\n");
2243 *((u32
*) & cmd
.param
) = phy_off
;
2245 return ipw_send_cmd(priv
, &cmd
);
2248 static int ipw_send_tx_power(struct ipw_priv
*priv
, struct ipw_tx_power
*power
)
2250 struct host_cmd cmd
= {
2251 .cmd
= IPW_CMD_TX_POWER
,
2252 .len
= sizeof(*power
)
2255 if (!priv
|| !power
) {
2256 IPW_ERROR("Invalid args\n");
2260 memcpy(cmd
.param
, power
, sizeof(*power
));
2261 return ipw_send_cmd(priv
, &cmd
);
2264 static int ipw_set_tx_power(struct ipw_priv
*priv
)
2266 const struct ieee80211_geo
*geo
= ipw_get_geo(priv
->ieee
);
2267 struct ipw_tx_power tx_power
;
2271 memset(&tx_power
, 0, sizeof(tx_power
));
2273 /* configure device for 'G' band */
2274 tx_power
.ieee_mode
= IPW_G_MODE
;
2275 tx_power
.num_channels
= geo
->bg_channels
;
2276 for (i
= 0; i
< geo
->bg_channels
; i
++) {
2277 max_power
= geo
->bg
[i
].max_power
;
2278 tx_power
.channels_tx_power
[i
].channel_number
=
2280 tx_power
.channels_tx_power
[i
].tx_power
= max_power
?
2281 min(max_power
, priv
->tx_power
) : priv
->tx_power
;
2283 if (ipw_send_tx_power(priv
, &tx_power
))
2286 /* configure device to also handle 'B' band */
2287 tx_power
.ieee_mode
= IPW_B_MODE
;
2288 if (ipw_send_tx_power(priv
, &tx_power
))
2291 /* configure device to also handle 'A' band */
2292 if (priv
->ieee
->abg_true
) {
2293 tx_power
.ieee_mode
= IPW_A_MODE
;
2294 tx_power
.num_channels
= geo
->a_channels
;
2295 for (i
= 0; i
< tx_power
.num_channels
; i
++) {
2296 max_power
= geo
->a
[i
].max_power
;
2297 tx_power
.channels_tx_power
[i
].channel_number
=
2299 tx_power
.channels_tx_power
[i
].tx_power
= max_power
?
2300 min(max_power
, priv
->tx_power
) : priv
->tx_power
;
2302 if (ipw_send_tx_power(priv
, &tx_power
))
2308 static int ipw_send_rts_threshold(struct ipw_priv
*priv
, u16 rts
)
2310 struct ipw_rts_threshold rts_threshold
= {
2311 .rts_threshold
= rts
,
2313 struct host_cmd cmd
= {
2314 .cmd
= IPW_CMD_RTS_THRESHOLD
,
2315 .len
= sizeof(rts_threshold
)
2319 IPW_ERROR("Invalid args\n");
2323 memcpy(cmd
.param
, &rts_threshold
, sizeof(rts_threshold
));
2324 return ipw_send_cmd(priv
, &cmd
);
2327 static int ipw_send_frag_threshold(struct ipw_priv
*priv
, u16 frag
)
2329 struct ipw_frag_threshold frag_threshold
= {
2330 .frag_threshold
= frag
,
2332 struct host_cmd cmd
= {
2333 .cmd
= IPW_CMD_FRAG_THRESHOLD
,
2334 .len
= sizeof(frag_threshold
)
2338 IPW_ERROR("Invalid args\n");
2342 memcpy(cmd
.param
, &frag_threshold
, sizeof(frag_threshold
));
2343 return ipw_send_cmd(priv
, &cmd
);
2346 static int ipw_send_power_mode(struct ipw_priv
*priv
, u32 mode
)
2348 struct host_cmd cmd
= {
2349 .cmd
= IPW_CMD_POWER_MODE
,
2352 u32
*param
= (u32
*) (&cmd
.param
);
2355 IPW_ERROR("Invalid args\n");
2359 /* If on battery, set to 3, if AC set to CAM, else user
2362 case IPW_POWER_BATTERY
:
2363 *param
= IPW_POWER_INDEX_3
;
2366 *param
= IPW_POWER_MODE_CAM
;
2373 return ipw_send_cmd(priv
, &cmd
);
2376 static int ipw_send_retry_limit(struct ipw_priv
*priv
, u8 slimit
, u8 llimit
)
2378 struct ipw_retry_limit retry_limit
= {
2379 .short_retry_limit
= slimit
,
2380 .long_retry_limit
= llimit
2382 struct host_cmd cmd
= {
2383 .cmd
= IPW_CMD_RETRY_LIMIT
,
2384 .len
= sizeof(retry_limit
)
2388 IPW_ERROR("Invalid args\n");
2392 memcpy(cmd
.param
, &retry_limit
, sizeof(retry_limit
));
2393 return ipw_send_cmd(priv
, &cmd
);
2397 * The IPW device contains a Microwire compatible EEPROM that stores
2398 * various data like the MAC address. Usually the firmware has exclusive
2399 * access to the eeprom, but during device initialization (before the
2400 * device driver has sent the HostComplete command to the firmware) the
2401 * device driver has read access to the EEPROM by way of indirect addressing
2402 * through a couple of memory mapped registers.
2404 * The following is a simplified implementation for pulling data out of the
2405 * the eeprom, along with some helper functions to find information in
2406 * the per device private data's copy of the eeprom.
2408 * NOTE: To better understand how these functions work (i.e what is a chip
2409 * select and why do have to keep driving the eeprom clock?), read
2410 * just about any data sheet for a Microwire compatible EEPROM.
2413 /* write a 32 bit value into the indirect accessor register */
2414 static inline void eeprom_write_reg(struct ipw_priv
*p
, u32 data
)
2416 ipw_write_reg32(p
, FW_MEM_REG_EEPROM_ACCESS
, data
);
2418 /* the eeprom requires some time to complete the operation */
2419 udelay(p
->eeprom_delay
);
2424 /* perform a chip select operation */
2425 static void eeprom_cs(struct ipw_priv
*priv
)
2427 eeprom_write_reg(priv
, 0);
2428 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2429 eeprom_write_reg(priv
, EEPROM_BIT_CS
| EEPROM_BIT_SK
);
2430 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2433 /* perform a chip select operation */
2434 static void eeprom_disable_cs(struct ipw_priv
*priv
)
2436 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2437 eeprom_write_reg(priv
, 0);
2438 eeprom_write_reg(priv
, EEPROM_BIT_SK
);
2441 /* push a single bit down to the eeprom */
2442 static inline void eeprom_write_bit(struct ipw_priv
*p
, u8 bit
)
2444 int d
= (bit
? EEPROM_BIT_DI
: 0);
2445 eeprom_write_reg(p
, EEPROM_BIT_CS
| d
);
2446 eeprom_write_reg(p
, EEPROM_BIT_CS
| d
| EEPROM_BIT_SK
);
2449 /* push an opcode followed by an address down to the eeprom */
2450 static void eeprom_op(struct ipw_priv
*priv
, u8 op
, u8 addr
)
2455 eeprom_write_bit(priv
, 1);
2456 eeprom_write_bit(priv
, op
& 2);
2457 eeprom_write_bit(priv
, op
& 1);
2458 for (i
= 7; i
>= 0; i
--) {
2459 eeprom_write_bit(priv
, addr
& (1 << i
));
2463 /* pull 16 bits off the eeprom, one bit at a time */
2464 static u16
eeprom_read_u16(struct ipw_priv
*priv
, u8 addr
)
2469 /* Send READ Opcode */
2470 eeprom_op(priv
, EEPROM_CMD_READ
, addr
);
2472 /* Send dummy bit */
2473 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2475 /* Read the byte off the eeprom one bit at a time */
2476 for (i
= 0; i
< 16; i
++) {
2478 eeprom_write_reg(priv
, EEPROM_BIT_CS
| EEPROM_BIT_SK
);
2479 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2480 data
= ipw_read_reg32(priv
, FW_MEM_REG_EEPROM_ACCESS
);
2481 r
= (r
<< 1) | ((data
& EEPROM_BIT_DO
) ? 1 : 0);
2484 /* Send another dummy bit */
2485 eeprom_write_reg(priv
, 0);
2486 eeprom_disable_cs(priv
);
2491 /* helper function for pulling the mac address out of the private */
2492 /* data's copy of the eeprom data */
2493 static void eeprom_parse_mac(struct ipw_priv
*priv
, u8
* mac
)
2495 memcpy(mac
, &priv
->eeprom
[EEPROM_MAC_ADDRESS
], 6);
2499 * Either the device driver (i.e. the host) or the firmware can
2500 * load eeprom data into the designated region in SRAM. If neither
2501 * happens then the FW will shutdown with a fatal error.
2503 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2504 * bit needs region of shared SRAM needs to be non-zero.
2506 static void ipw_eeprom_init_sram(struct ipw_priv
*priv
)
2509 u16
*eeprom
= (u16
*) priv
->eeprom
;
2511 IPW_DEBUG_TRACE(">>\n");
2513 /* read entire contents of eeprom into private buffer */
2514 for (i
= 0; i
< 128; i
++)
2515 eeprom
[i
] = le16_to_cpu(eeprom_read_u16(priv
, (u8
) i
));
2518 If the data looks correct, then copy it to our private
2519 copy. Otherwise let the firmware know to perform the operation
2522 if ((priv
->eeprom
+ EEPROM_VERSION
) != 0) {
2523 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2525 /* write the eeprom data to sram */
2526 for (i
= 0; i
< IPW_EEPROM_IMAGE_SIZE
; i
++)
2527 ipw_write8(priv
, IPW_EEPROM_DATA
+ i
, priv
->eeprom
[i
]);
2529 /* Do not load eeprom data on fatal error or suspend */
2530 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 0);
2532 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2534 /* Load eeprom data on fatal error or suspend */
2535 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 1);
2538 IPW_DEBUG_TRACE("<<\n");
2541 static void ipw_zero_memory(struct ipw_priv
*priv
, u32 start
, u32 count
)
2546 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, start
);
2548 _ipw_write32(priv
, IPW_AUTOINC_DATA
, 0);
2551 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv
*priv
)
2553 ipw_zero_memory(priv
, IPW_SHARED_SRAM_DMA_CONTROL
,
2554 CB_NUMBER_OF_ELEMENTS_SMALL
*
2555 sizeof(struct command_block
));
2558 static int ipw_fw_dma_enable(struct ipw_priv
*priv
)
2559 { /* start dma engine but no transfers yet */
2561 IPW_DEBUG_FW(">> : \n");
2564 ipw_fw_dma_reset_command_blocks(priv
);
2566 /* Write CB base address */
2567 ipw_write_reg32(priv
, IPW_DMA_I_CB_BASE
, IPW_SHARED_SRAM_DMA_CONTROL
);
2569 IPW_DEBUG_FW("<< : \n");
2573 static void ipw_fw_dma_abort(struct ipw_priv
*priv
)
2577 IPW_DEBUG_FW(">> :\n");
2579 //set the Stop and Abort bit
2580 control
= DMA_CONTROL_SMALL_CB_CONST_VALUE
| DMA_CB_STOP_AND_ABORT
;
2581 ipw_write_reg32(priv
, IPW_DMA_I_DMA_CONTROL
, control
);
2582 priv
->sram_desc
.last_cb_index
= 0;
2584 IPW_DEBUG_FW("<< \n");
2587 static int ipw_fw_dma_write_command_block(struct ipw_priv
*priv
, int index
,
2588 struct command_block
*cb
)
2591 IPW_SHARED_SRAM_DMA_CONTROL
+
2592 (sizeof(struct command_block
) * index
);
2593 IPW_DEBUG_FW(">> :\n");
2595 ipw_write_indirect(priv
, address
, (u8
*) cb
,
2596 (int)sizeof(struct command_block
));
2598 IPW_DEBUG_FW("<< :\n");
2603 static int ipw_fw_dma_kick(struct ipw_priv
*priv
)
2608 IPW_DEBUG_FW(">> :\n");
2610 for (index
= 0; index
< priv
->sram_desc
.last_cb_index
; index
++)
2611 ipw_fw_dma_write_command_block(priv
, index
,
2612 &priv
->sram_desc
.cb_list
[index
]);
2614 /* Enable the DMA in the CSR register */
2615 ipw_clear_bit(priv
, IPW_RESET_REG
,
2616 IPW_RESET_REG_MASTER_DISABLED
|
2617 IPW_RESET_REG_STOP_MASTER
);
2619 /* Set the Start bit. */
2620 control
= DMA_CONTROL_SMALL_CB_CONST_VALUE
| DMA_CB_START
;
2621 ipw_write_reg32(priv
, IPW_DMA_I_DMA_CONTROL
, control
);
2623 IPW_DEBUG_FW("<< :\n");
2627 static void ipw_fw_dma_dump_command_block(struct ipw_priv
*priv
)
2630 u32 register_value
= 0;
2631 u32 cb_fields_address
= 0;
2633 IPW_DEBUG_FW(">> :\n");
2634 address
= ipw_read_reg32(priv
, IPW_DMA_I_CURRENT_CB
);
2635 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address
);
2637 /* Read the DMA Controlor register */
2638 register_value
= ipw_read_reg32(priv
, IPW_DMA_I_DMA_CONTROL
);
2639 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value
);
2641 /* Print the CB values */
2642 cb_fields_address
= address
;
2643 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2644 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value
);
2646 cb_fields_address
+= sizeof(u32
);
2647 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2648 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value
);
2650 cb_fields_address
+= sizeof(u32
);
2651 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2652 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2655 cb_fields_address
+= sizeof(u32
);
2656 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2657 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value
);
2659 IPW_DEBUG_FW(">> :\n");
2662 static int ipw_fw_dma_command_block_index(struct ipw_priv
*priv
)
2664 u32 current_cb_address
= 0;
2665 u32 current_cb_index
= 0;
2667 IPW_DEBUG_FW("<< :\n");
2668 current_cb_address
= ipw_read_reg32(priv
, IPW_DMA_I_CURRENT_CB
);
2670 current_cb_index
= (current_cb_address
- IPW_SHARED_SRAM_DMA_CONTROL
) /
2671 sizeof(struct command_block
);
2673 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2674 current_cb_index
, current_cb_address
);
2676 IPW_DEBUG_FW(">> :\n");
2677 return current_cb_index
;
2681 static int ipw_fw_dma_add_command_block(struct ipw_priv
*priv
,
2685 int interrupt_enabled
, int is_last
)
2688 u32 control
= CB_VALID
| CB_SRC_LE
| CB_DEST_LE
| CB_SRC_AUTOINC
|
2689 CB_SRC_IO_GATED
| CB_DEST_AUTOINC
| CB_SRC_SIZE_LONG
|
2691 struct command_block
*cb
;
2692 u32 last_cb_element
= 0;
2694 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2695 src_address
, dest_address
, length
);
2697 if (priv
->sram_desc
.last_cb_index
>= CB_NUMBER_OF_ELEMENTS_SMALL
)
2700 last_cb_element
= priv
->sram_desc
.last_cb_index
;
2701 cb
= &priv
->sram_desc
.cb_list
[last_cb_element
];
2702 priv
->sram_desc
.last_cb_index
++;
2704 /* Calculate the new CB control word */
2705 if (interrupt_enabled
)
2706 control
|= CB_INT_ENABLED
;
2709 control
|= CB_LAST_VALID
;
2713 /* Calculate the CB Element's checksum value */
2714 cb
->status
= control
^ src_address
^ dest_address
;
2716 /* Copy the Source and Destination addresses */
2717 cb
->dest_addr
= dest_address
;
2718 cb
->source_addr
= src_address
;
2720 /* Copy the Control Word last */
2721 cb
->control
= control
;
2726 static int ipw_fw_dma_add_buffer(struct ipw_priv
*priv
,
2727 u32 src_phys
, u32 dest_address
, u32 length
)
2729 u32 bytes_left
= length
;
2731 u32 dest_offset
= 0;
2733 IPW_DEBUG_FW(">> \n");
2734 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2735 src_phys
, dest_address
, length
);
2736 while (bytes_left
> CB_MAX_LENGTH
) {
2737 status
= ipw_fw_dma_add_command_block(priv
,
2738 src_phys
+ src_offset
,
2741 CB_MAX_LENGTH
, 0, 0);
2743 IPW_DEBUG_FW_INFO(": Failed\n");
2746 IPW_DEBUG_FW_INFO(": Added new cb\n");
2748 src_offset
+= CB_MAX_LENGTH
;
2749 dest_offset
+= CB_MAX_LENGTH
;
2750 bytes_left
-= CB_MAX_LENGTH
;
2753 /* add the buffer tail */
2754 if (bytes_left
> 0) {
2756 ipw_fw_dma_add_command_block(priv
, src_phys
+ src_offset
,
2757 dest_address
+ dest_offset
,
2760 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2764 (": Adding new cb - the buffer tail\n");
2767 IPW_DEBUG_FW("<< \n");
2771 static int ipw_fw_dma_wait(struct ipw_priv
*priv
)
2773 u32 current_index
= 0;
2776 IPW_DEBUG_FW(">> : \n");
2778 current_index
= ipw_fw_dma_command_block_index(priv
);
2779 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
2780 (int)priv
->sram_desc
.last_cb_index
);
2782 while (current_index
< priv
->sram_desc
.last_cb_index
) {
2784 current_index
= ipw_fw_dma_command_block_index(priv
);
2788 if (watchdog
> 400) {
2789 IPW_DEBUG_FW_INFO("Timeout\n");
2790 ipw_fw_dma_dump_command_block(priv
);
2791 ipw_fw_dma_abort(priv
);
2796 ipw_fw_dma_abort(priv
);
2798 /*Disable the DMA in the CSR register */
2799 ipw_set_bit(priv
, IPW_RESET_REG
,
2800 IPW_RESET_REG_MASTER_DISABLED
| IPW_RESET_REG_STOP_MASTER
);
2802 IPW_DEBUG_FW("<< dmaWaitSync \n");
2806 static void ipw_remove_current_network(struct ipw_priv
*priv
)
2808 struct list_head
*element
, *safe
;
2809 struct ieee80211_network
*network
= NULL
;
2810 unsigned long flags
;
2812 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
2813 list_for_each_safe(element
, safe
, &priv
->ieee
->network_list
) {
2814 network
= list_entry(element
, struct ieee80211_network
, list
);
2815 if (!memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
)) {
2817 list_add_tail(&network
->list
,
2818 &priv
->ieee
->network_free_list
);
2821 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
2825 * Check that card is still alive.
2826 * Reads debug register from domain0.
2827 * If card is present, pre-defined value should
2831 * @return 1 if card is present, 0 otherwise
2833 static inline int ipw_alive(struct ipw_priv
*priv
)
2835 return ipw_read32(priv
, 0x90) == 0xd55555d5;
2838 static int ipw_poll_bit(struct ipw_priv
*priv
, u32 addr
, u32 mask
,
2844 if ((ipw_read32(priv
, addr
) & mask
) == mask
)
2848 } while (i
< timeout
);
2853 /* These functions load the firmware and micro code for the operation of
2854 * the ipw hardware. It assumes the buffer has all the bits for the
2855 * image and the caller is handling the memory allocation and clean up.
2858 static int ipw_stop_master(struct ipw_priv
*priv
)
2862 IPW_DEBUG_TRACE(">> \n");
2863 /* stop master. typical delay - 0 */
2864 ipw_set_bit(priv
, IPW_RESET_REG
, IPW_RESET_REG_STOP_MASTER
);
2866 rc
= ipw_poll_bit(priv
, IPW_RESET_REG
,
2867 IPW_RESET_REG_MASTER_DISABLED
, 100);
2869 IPW_ERROR("stop master failed in 10ms\n");
2873 IPW_DEBUG_INFO("stop master %dms\n", rc
);
2878 static void ipw_arc_release(struct ipw_priv
*priv
)
2880 IPW_DEBUG_TRACE(">> \n");
2883 ipw_clear_bit(priv
, IPW_RESET_REG
, CBD_RESET_REG_PRINCETON_RESET
);
2885 /* no one knows timing, for safety add some delay */
2899 #define IPW_FW_MAJOR_VERSION 2
2900 #define IPW_FW_MINOR_VERSION 4
2902 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2903 #define IPW_FW_MAJOR(x) (x & 0xff)
2905 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | IPW_FW_MAJOR_VERSION)
2907 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2908 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2910 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2911 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2913 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2916 static int ipw_load_ucode(struct ipw_priv
*priv
, u8
* data
, size_t len
)
2918 int rc
= 0, i
, addr
;
2922 image
= (u16
*) data
;
2924 IPW_DEBUG_TRACE(">> \n");
2926 rc
= ipw_stop_master(priv
);
2931 // spin_lock_irqsave(&priv->lock, flags);
2933 for (addr
= IPW_SHARED_LOWER_BOUND
;
2934 addr
< IPW_REGISTER_DOMAIN1_END
; addr
+= 4) {
2935 ipw_write32(priv
, addr
, 0);
2938 /* no ucode (yet) */
2939 memset(&priv
->dino_alive
, 0, sizeof(priv
->dino_alive
));
2940 /* destroy DMA queues */
2941 /* reset sequence */
2943 ipw_write_reg32(priv
, IPW_MEM_HALT_AND_RESET
, IPW_BIT_HALT_RESET_ON
);
2944 ipw_arc_release(priv
);
2945 ipw_write_reg32(priv
, IPW_MEM_HALT_AND_RESET
, IPW_BIT_HALT_RESET_OFF
);
2949 ipw_write_reg32(priv
, IPW_INTERNAL_CMD_EVENT
, IPW_BASEBAND_POWER_DOWN
);
2952 ipw_write_reg32(priv
, IPW_INTERNAL_CMD_EVENT
, 0);
2955 /* enable ucode store */
2956 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0x0);
2957 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, DINO_ENABLE_CS
);
2963 * Do NOT set indirect address register once and then
2964 * store data to indirect data register in the loop.
2965 * It seems very reasonable, but in this case DINO do not
2966 * accept ucode. It is essential to set address each time.
2968 /* load new ipw uCode */
2969 for (i
= 0; i
< len
/ 2; i
++)
2970 ipw_write_reg16(priv
, IPW_BASEBAND_CONTROL_STORE
,
2971 cpu_to_le16(image
[i
]));
2974 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0);
2975 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, DINO_ENABLE_SYSTEM
);
2977 /* this is where the igx / win driver deveates from the VAP driver. */
2979 /* wait for alive response */
2980 for (i
= 0; i
< 100; i
++) {
2981 /* poll for incoming data */
2982 cr
= ipw_read_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
);
2983 if (cr
& DINO_RXFIFO_DATA
)
2988 if (cr
& DINO_RXFIFO_DATA
) {
2989 /* alive_command_responce size is NOT multiple of 4 */
2990 u32 response_buffer
[(sizeof(priv
->dino_alive
) + 3) / 4];
2992 for (i
= 0; i
< ARRAY_SIZE(response_buffer
); i
++)
2993 response_buffer
[i
] =
2994 le32_to_cpu(ipw_read_reg32(priv
,
2995 IPW_BASEBAND_RX_FIFO_READ
));
2996 memcpy(&priv
->dino_alive
, response_buffer
,
2997 sizeof(priv
->dino_alive
));
2998 if (priv
->dino_alive
.alive_command
== 1
2999 && priv
->dino_alive
.ucode_valid
== 1) {
3002 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3003 "of %02d/%02d/%02d %02d:%02d\n",
3004 priv
->dino_alive
.software_revision
,
3005 priv
->dino_alive
.software_revision
,
3006 priv
->dino_alive
.device_identifier
,
3007 priv
->dino_alive
.device_identifier
,
3008 priv
->dino_alive
.time_stamp
[0],
3009 priv
->dino_alive
.time_stamp
[1],
3010 priv
->dino_alive
.time_stamp
[2],
3011 priv
->dino_alive
.time_stamp
[3],
3012 priv
->dino_alive
.time_stamp
[4]);
3014 IPW_DEBUG_INFO("Microcode is not alive\n");
3018 IPW_DEBUG_INFO("No alive response from DINO\n");
3022 /* disable DINO, otherwise for some reason
3023 firmware have problem getting alive resp. */
3024 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0);
3026 // spin_unlock_irqrestore(&priv->lock, flags);
3031 static int ipw_load_firmware(struct ipw_priv
*priv
, u8
* data
, size_t len
)
3035 struct fw_chunk
*chunk
;
3036 dma_addr_t shared_phys
;
3039 IPW_DEBUG_TRACE("<< : \n");
3040 shared_virt
= pci_alloc_consistent(priv
->pci_dev
, len
, &shared_phys
);
3045 memmove(shared_virt
, data
, len
);
3048 rc
= ipw_fw_dma_enable(priv
);
3050 if (priv
->sram_desc
.last_cb_index
> 0) {
3051 /* the DMA is already ready this would be a bug. */
3057 chunk
= (struct fw_chunk
*)(data
+ offset
);
3058 offset
+= sizeof(struct fw_chunk
);
3059 /* build DMA packet and queue up for sending */
3060 /* dma to chunk->address, the chunk->length bytes from data +
3063 rc
= ipw_fw_dma_add_buffer(priv
, shared_phys
+ offset
,
3064 le32_to_cpu(chunk
->address
),
3065 le32_to_cpu(chunk
->length
));
3067 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3071 offset
+= le32_to_cpu(chunk
->length
);
3072 } while (offset
< len
);
3074 /* Run the DMA and wait for the answer */
3075 rc
= ipw_fw_dma_kick(priv
);
3077 IPW_ERROR("dmaKick Failed\n");
3081 rc
= ipw_fw_dma_wait(priv
);
3083 IPW_ERROR("dmaWaitSync Failed\n");
3087 pci_free_consistent(priv
->pci_dev
, len
, shared_virt
, shared_phys
);
3092 static int ipw_stop_nic(struct ipw_priv
*priv
)
3097 ipw_write32(priv
, IPW_RESET_REG
, IPW_RESET_REG_STOP_MASTER
);
3099 rc
= ipw_poll_bit(priv
, IPW_RESET_REG
,
3100 IPW_RESET_REG_MASTER_DISABLED
, 500);
3102 IPW_ERROR("wait for reg master disabled failed\n");
3106 ipw_set_bit(priv
, IPW_RESET_REG
, CBD_RESET_REG_PRINCETON_RESET
);
3111 static void ipw_start_nic(struct ipw_priv
*priv
)
3113 IPW_DEBUG_TRACE(">>\n");
3115 /* prvHwStartNic release ARC */
3116 ipw_clear_bit(priv
, IPW_RESET_REG
,
3117 IPW_RESET_REG_MASTER_DISABLED
|
3118 IPW_RESET_REG_STOP_MASTER
|
3119 CBD_RESET_REG_PRINCETON_RESET
);
3121 /* enable power management */
3122 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
,
3123 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY
);
3125 IPW_DEBUG_TRACE("<<\n");
3128 static int ipw_init_nic(struct ipw_priv
*priv
)
3132 IPW_DEBUG_TRACE(">>\n");
3135 /* set "initialization complete" bit to move adapter to D0 state */
3136 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
, IPW_GP_CNTRL_BIT_INIT_DONE
);
3138 /* low-level PLL activation */
3139 ipw_write32(priv
, IPW_READ_INT_REGISTER
,
3140 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER
);
3142 /* wait for clock stabilization */
3143 rc
= ipw_poll_bit(priv
, IPW_GP_CNTRL_RW
,
3144 IPW_GP_CNTRL_BIT_CLOCK_READY
, 250);
3146 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3148 /* assert SW reset */
3149 ipw_set_bit(priv
, IPW_RESET_REG
, IPW_RESET_REG_SW_RESET
);
3153 /* set "initialization complete" bit to move adapter to D0 state */
3154 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
, IPW_GP_CNTRL_BIT_INIT_DONE
);
3156 IPW_DEBUG_TRACE(">>\n");
3160 /* Call this function from process context, it will sleep in request_firmware.
3161 * Probe is an ok place to call this from.
3163 static int ipw_reset_nic(struct ipw_priv
*priv
)
3166 unsigned long flags
;
3168 IPW_DEBUG_TRACE(">>\n");
3170 rc
= ipw_init_nic(priv
);
3172 spin_lock_irqsave(&priv
->lock
, flags
);
3173 /* Clear the 'host command active' bit... */
3174 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
3175 wake_up_interruptible(&priv
->wait_command_queue
);
3176 priv
->status
&= ~(STATUS_SCANNING
| STATUS_SCAN_ABORTING
);
3177 wake_up_interruptible(&priv
->wait_state
);
3178 spin_unlock_irqrestore(&priv
->lock
, flags
);
3180 IPW_DEBUG_TRACE("<<\n");
3184 static int ipw_get_fw(struct ipw_priv
*priv
,
3185 const struct firmware
**fw
, const char *name
)
3187 struct fw_header
*header
;
3190 /* ask firmware_class module to get the boot firmware off disk */
3191 rc
= request_firmware(fw
, name
, &priv
->pci_dev
->dev
);
3193 IPW_ERROR("%s load failed: Reason %d\n", name
, rc
);
3197 header
= (struct fw_header
*)(*fw
)->data
;
3198 if (IPW_FW_MAJOR(le32_to_cpu(header
->version
)) != IPW_FW_MAJOR_VERSION
) {
3199 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
3201 IPW_FW_MAJOR(le32_to_cpu(header
->version
)),
3202 IPW_FW_MAJOR_VERSION
);
3206 IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
3208 IPW_FW_MAJOR(le32_to_cpu(header
->version
)),
3209 IPW_FW_MINOR(le32_to_cpu(header
->version
)),
3210 (*fw
)->size
- sizeof(struct fw_header
));
3214 #define IPW_RX_BUF_SIZE (3000)
3216 static void ipw_rx_queue_reset(struct ipw_priv
*priv
,
3217 struct ipw_rx_queue
*rxq
)
3219 unsigned long flags
;
3222 spin_lock_irqsave(&rxq
->lock
, flags
);
3224 INIT_LIST_HEAD(&rxq
->rx_free
);
3225 INIT_LIST_HEAD(&rxq
->rx_used
);
3227 /* Fill the rx_used queue with _all_ of the Rx buffers */
3228 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++) {
3229 /* In the reset function, these buffers may have been allocated
3230 * to an SKB, so we need to unmap and free potential storage */
3231 if (rxq
->pool
[i
].skb
!= NULL
) {
3232 pci_unmap_single(priv
->pci_dev
, rxq
->pool
[i
].dma_addr
,
3233 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
3234 dev_kfree_skb(rxq
->pool
[i
].skb
);
3235 rxq
->pool
[i
].skb
= NULL
;
3237 list_add_tail(&rxq
->pool
[i
].list
, &rxq
->rx_used
);
3240 /* Set us so that we have processed and used all buffers, but have
3241 * not restocked the Rx queue with fresh buffers */
3242 rxq
->read
= rxq
->write
= 0;
3243 rxq
->processed
= RX_QUEUE_SIZE
- 1;
3244 rxq
->free_count
= 0;
3245 spin_unlock_irqrestore(&rxq
->lock
, flags
);
3249 static int fw_loaded
= 0;
3250 static const struct firmware
*bootfw
= NULL
;
3251 static const struct firmware
*firmware
= NULL
;
3252 static const struct firmware
*ucode
= NULL
;
3254 static void free_firmware(void)
3257 release_firmware(bootfw
);
3258 release_firmware(ucode
);
3259 release_firmware(firmware
);
3260 bootfw
= ucode
= firmware
= NULL
;
3265 #define free_firmware() do {} while (0)
3268 static int ipw_load(struct ipw_priv
*priv
)
3271 const struct firmware
*bootfw
= NULL
;
3272 const struct firmware
*firmware
= NULL
;
3273 const struct firmware
*ucode
= NULL
;
3275 int rc
= 0, retries
= 3;
3280 rc
= ipw_get_fw(priv
, &bootfw
, IPW_FW_NAME("boot"));
3284 switch (priv
->ieee
->iw_mode
) {
3286 rc
= ipw_get_fw(priv
, &ucode
,
3287 IPW_FW_NAME("ibss_ucode"));
3291 rc
= ipw_get_fw(priv
, &firmware
, IPW_FW_NAME("ibss"));
3294 #ifdef CONFIG_IPW2200_MONITOR
3295 case IW_MODE_MONITOR
:
3296 rc
= ipw_get_fw(priv
, &ucode
,
3297 IPW_FW_NAME("sniffer_ucode"));
3301 rc
= ipw_get_fw(priv
, &firmware
,
3302 IPW_FW_NAME("sniffer"));
3306 rc
= ipw_get_fw(priv
, &ucode
, IPW_FW_NAME("bss_ucode"));
3310 rc
= ipw_get_fw(priv
, &firmware
, IPW_FW_NAME("bss"));
3326 priv
->rxq
= ipw_rx_queue_alloc(priv
);
3328 ipw_rx_queue_reset(priv
, priv
->rxq
);
3330 IPW_ERROR("Unable to initialize Rx queue\n");
3335 /* Ensure interrupts are disabled */
3336 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
3337 priv
->status
&= ~STATUS_INT_ENABLED
;
3339 /* ack pending interrupts */
3340 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3344 rc
= ipw_reset_nic(priv
);
3346 IPW_ERROR("Unable to reset NIC\n");
3350 ipw_zero_memory(priv
, IPW_NIC_SRAM_LOWER_BOUND
,
3351 IPW_NIC_SRAM_UPPER_BOUND
- IPW_NIC_SRAM_LOWER_BOUND
);
3353 /* DMA the initial boot firmware into the device */
3354 rc
= ipw_load_firmware(priv
, bootfw
->data
+ sizeof(struct fw_header
),
3355 bootfw
->size
- sizeof(struct fw_header
));
3357 IPW_ERROR("Unable to load boot firmware: %d\n", rc
);
3361 /* kick start the device */
3362 ipw_start_nic(priv
);
3364 /* wait for the device to finish it's initial startup sequence */
3365 rc
= ipw_poll_bit(priv
, IPW_INTA_RW
,
3366 IPW_INTA_BIT_FW_INITIALIZATION_DONE
, 500);
3368 IPW_ERROR("device failed to boot initial fw image\n");
3371 IPW_DEBUG_INFO("initial device response after %dms\n", rc
);
3373 /* ack fw init done interrupt */
3374 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_BIT_FW_INITIALIZATION_DONE
);
3376 /* DMA the ucode into the device */
3377 rc
= ipw_load_ucode(priv
, ucode
->data
+ sizeof(struct fw_header
),
3378 ucode
->size
- sizeof(struct fw_header
));
3380 IPW_ERROR("Unable to load ucode: %d\n", rc
);
3387 /* DMA bss firmware into the device */
3388 rc
= ipw_load_firmware(priv
, firmware
->data
+
3389 sizeof(struct fw_header
),
3390 firmware
->size
- sizeof(struct fw_header
));
3392 IPW_ERROR("Unable to load firmware: %d\n", rc
);
3396 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 0);
3398 rc
= ipw_queue_reset(priv
);
3400 IPW_ERROR("Unable to initialize queues\n");
3404 /* Ensure interrupts are disabled */
3405 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
3406 /* ack pending interrupts */
3407 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3409 /* kick start the device */
3410 ipw_start_nic(priv
);
3412 if (ipw_read32(priv
, IPW_INTA_RW
) & IPW_INTA_BIT_PARITY_ERROR
) {
3414 IPW_WARNING("Parity error. Retrying init.\n");
3419 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3424 /* wait for the device */
3425 rc
= ipw_poll_bit(priv
, IPW_INTA_RW
,
3426 IPW_INTA_BIT_FW_INITIALIZATION_DONE
, 500);
3428 IPW_ERROR("device failed to start after 500ms\n");
3431 IPW_DEBUG_INFO("device response after %dms\n", rc
);
3433 /* ack fw init done interrupt */
3434 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_BIT_FW_INITIALIZATION_DONE
);
3436 /* read eeprom data and initialize the eeprom region of sram */
3437 priv
->eeprom_delay
= 1;
3438 ipw_eeprom_init_sram(priv
);
3440 /* enable interrupts */
3441 ipw_enable_interrupts(priv
);
3443 /* Ensure our queue has valid packets */
3444 ipw_rx_queue_replenish(priv
);
3446 ipw_write32(priv
, IPW_RX_READ_INDEX
, priv
->rxq
->read
);
3448 /* ack pending interrupts */
3449 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3452 release_firmware(bootfw
);
3453 release_firmware(ucode
);
3454 release_firmware(firmware
);
3460 ipw_rx_queue_free(priv
, priv
->rxq
);
3463 ipw_tx_queue_free(priv
);
3465 release_firmware(bootfw
);
3467 release_firmware(ucode
);
3469 release_firmware(firmware
);
3472 bootfw
= ucode
= firmware
= NULL
;
3481 * Theory of operation
3483 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3484 * 2 empty entries always kept in the buffer to protect from overflow.
3486 * For Tx queue, there are low mark and high mark limits. If, after queuing
3487 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3488 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3491 * The IPW operates with six queues, one receive queue in the device's
3492 * sram, one transmit queue for sending commands to the device firmware,
3493 * and four transmit queues for data.
3495 * The four transmit queues allow for performing quality of service (qos)
3496 * transmissions as per the 802.11 protocol. Currently Linux does not
3497 * provide a mechanism to the user for utilizing prioritized queues, so
3498 * we only utilize the first data transmit queue (queue1).
3502 * Driver allocates buffers of this size for Rx
3505 static inline int ipw_queue_space(const struct clx2_queue
*q
)
3507 int s
= q
->last_used
- q
->first_empty
;
3510 s
-= 2; /* keep some reserve to not confuse empty and full situations */
3516 static inline int ipw_queue_inc_wrap(int index
, int n_bd
)
3518 return (++index
== n_bd
) ? 0 : index
;
3522 * Initialize common DMA queue structure
3524 * @param q queue to init
3525 * @param count Number of BD's to allocate. Should be power of 2
3526 * @param read_register Address for 'read' register
3527 * (not offset within BAR, full address)
3528 * @param write_register Address for 'write' register
3529 * (not offset within BAR, full address)
3530 * @param base_register Address for 'base' register
3531 * (not offset within BAR, full address)
3532 * @param size Address for 'size' register
3533 * (not offset within BAR, full address)
3535 static void ipw_queue_init(struct ipw_priv
*priv
, struct clx2_queue
*q
,
3536 int count
, u32 read
, u32 write
, u32 base
, u32 size
)
3540 q
->low_mark
= q
->n_bd
/ 4;
3541 if (q
->low_mark
< 4)
3544 q
->high_mark
= q
->n_bd
/ 8;
3545 if (q
->high_mark
< 2)
3548 q
->first_empty
= q
->last_used
= 0;
3552 ipw_write32(priv
, base
, q
->dma_addr
);
3553 ipw_write32(priv
, size
, count
);
3554 ipw_write32(priv
, read
, 0);
3555 ipw_write32(priv
, write
, 0);
3557 _ipw_read32(priv
, 0x90);
3560 static int ipw_queue_tx_init(struct ipw_priv
*priv
,
3561 struct clx2_tx_queue
*q
,
3562 int count
, u32 read
, u32 write
, u32 base
, u32 size
)
3564 struct pci_dev
*dev
= priv
->pci_dev
;
3566 q
->txb
= kmalloc(sizeof(q
->txb
[0]) * count
, GFP_KERNEL
);
3568 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3573 pci_alloc_consistent(dev
, sizeof(q
->bd
[0]) * count
, &q
->q
.dma_addr
);
3575 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3576 sizeof(q
->bd
[0]) * count
);
3582 ipw_queue_init(priv
, &q
->q
, count
, read
, write
, base
, size
);
3587 * Free one TFD, those at index [txq->q.last_used].
3588 * Do NOT advance any indexes
3593 static void ipw_queue_tx_free_tfd(struct ipw_priv
*priv
,
3594 struct clx2_tx_queue
*txq
)
3596 struct tfd_frame
*bd
= &txq
->bd
[txq
->q
.last_used
];
3597 struct pci_dev
*dev
= priv
->pci_dev
;
3601 if (bd
->control_flags
.message_type
== TX_HOST_COMMAND_TYPE
)
3602 /* nothing to cleanup after for host commands */
3606 if (le32_to_cpu(bd
->u
.data
.num_chunks
) > NUM_TFD_CHUNKS
) {
3607 IPW_ERROR("Too many chunks: %i\n",
3608 le32_to_cpu(bd
->u
.data
.num_chunks
));
3609 /** @todo issue fatal error, it is quite serious situation */
3613 /* unmap chunks if any */
3614 for (i
= 0; i
< le32_to_cpu(bd
->u
.data
.num_chunks
); i
++) {
3615 pci_unmap_single(dev
, le32_to_cpu(bd
->u
.data
.chunk_ptr
[i
]),
3616 le16_to_cpu(bd
->u
.data
.chunk_len
[i
]),
3618 if (txq
->txb
[txq
->q
.last_used
]) {
3619 ieee80211_txb_free(txq
->txb
[txq
->q
.last_used
]);
3620 txq
->txb
[txq
->q
.last_used
] = NULL
;
3626 * Deallocate DMA queue.
3628 * Empty queue by removing and destroying all BD's.
3634 static void ipw_queue_tx_free(struct ipw_priv
*priv
, struct clx2_tx_queue
*txq
)
3636 struct clx2_queue
*q
= &txq
->q
;
3637 struct pci_dev
*dev
= priv
->pci_dev
;
3642 /* first, empty all BD's */
3643 for (; q
->first_empty
!= q
->last_used
;
3644 q
->last_used
= ipw_queue_inc_wrap(q
->last_used
, q
->n_bd
)) {
3645 ipw_queue_tx_free_tfd(priv
, txq
);
3648 /* free buffers belonging to queue itself */
3649 pci_free_consistent(dev
, sizeof(txq
->bd
[0]) * q
->n_bd
, txq
->bd
,
3653 /* 0 fill whole structure */
3654 memset(txq
, 0, sizeof(*txq
));
3658 * Destroy all DMA queues and structures
3662 static void ipw_tx_queue_free(struct ipw_priv
*priv
)
3665 ipw_queue_tx_free(priv
, &priv
->txq_cmd
);
3668 ipw_queue_tx_free(priv
, &priv
->txq
[0]);
3669 ipw_queue_tx_free(priv
, &priv
->txq
[1]);
3670 ipw_queue_tx_free(priv
, &priv
->txq
[2]);
3671 ipw_queue_tx_free(priv
, &priv
->txq
[3]);
3674 static void ipw_create_bssid(struct ipw_priv
*priv
, u8
* bssid
)
3676 /* First 3 bytes are manufacturer */
3677 bssid
[0] = priv
->mac_addr
[0];
3678 bssid
[1] = priv
->mac_addr
[1];
3679 bssid
[2] = priv
->mac_addr
[2];
3681 /* Last bytes are random */
3682 get_random_bytes(&bssid
[3], ETH_ALEN
- 3);
3684 bssid
[0] &= 0xfe; /* clear multicast bit */
3685 bssid
[0] |= 0x02; /* set local assignment bit (IEEE802) */
3688 static u8
ipw_add_station(struct ipw_priv
*priv
, u8
* bssid
)
3690 struct ipw_station_entry entry
;
3693 for (i
= 0; i
< priv
->num_stations
; i
++) {
3694 if (!memcmp(priv
->stations
[i
], bssid
, ETH_ALEN
)) {
3695 /* Another node is active in network */
3696 priv
->missed_adhoc_beacons
= 0;
3697 if (!(priv
->config
& CFG_STATIC_CHANNEL
))
3698 /* when other nodes drop out, we drop out */
3699 priv
->config
&= ~CFG_ADHOC_PERSIST
;
3705 if (i
== MAX_STATIONS
)
3706 return IPW_INVALID_STATION
;
3708 IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT
"\n", MAC_ARG(bssid
));
3711 entry
.support_mode
= 0;
3712 memcpy(entry
.mac_addr
, bssid
, ETH_ALEN
);
3713 memcpy(priv
->stations
[i
], bssid
, ETH_ALEN
);
3714 ipw_write_direct(priv
, IPW_STATION_TABLE_LOWER
+ i
* sizeof(entry
),
3715 &entry
, sizeof(entry
));
3716 priv
->num_stations
++;
3721 static u8
ipw_find_station(struct ipw_priv
*priv
, u8
* bssid
)
3725 for (i
= 0; i
< priv
->num_stations
; i
++)
3726 if (!memcmp(priv
->stations
[i
], bssid
, ETH_ALEN
))
3729 return IPW_INVALID_STATION
;
3732 static void ipw_send_disassociate(struct ipw_priv
*priv
, int quiet
)
3736 if (priv
->status
& STATUS_ASSOCIATING
) {
3737 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3738 queue_work(priv
->workqueue
, &priv
->disassociate
);
3742 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
3743 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3747 IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT
" "
3749 MAC_ARG(priv
->assoc_request
.bssid
),
3750 priv
->assoc_request
.channel
);
3752 priv
->status
&= ~(STATUS_ASSOCIATING
| STATUS_ASSOCIATED
);
3753 priv
->status
|= STATUS_DISASSOCIATING
;
3756 priv
->assoc_request
.assoc_type
= HC_DISASSOC_QUIET
;
3758 priv
->assoc_request
.assoc_type
= HC_DISASSOCIATE
;
3760 err
= ipw_send_associate(priv
, &priv
->assoc_request
);
3762 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3769 static int ipw_disassociate(void *data
)
3771 struct ipw_priv
*priv
= data
;
3772 if (!(priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)))
3774 ipw_send_disassociate(data
, 0);
3778 static void ipw_bg_disassociate(void *data
)
3780 struct ipw_priv
*priv
= data
;
3782 ipw_disassociate(data
);
3786 static void ipw_system_config(void *data
)
3788 struct ipw_priv
*priv
= data
;
3789 ipw_send_system_config(priv
, &priv
->sys_config
);
3792 struct ipw_status_code
{
3797 static const struct ipw_status_code ipw_status_codes
[] = {
3798 {0x00, "Successful"},
3799 {0x01, "Unspecified failure"},
3800 {0x0A, "Cannot support all requested capabilities in the "
3801 "Capability information field"},
3802 {0x0B, "Reassociation denied due to inability to confirm that "
3803 "association exists"},
3804 {0x0C, "Association denied due to reason outside the scope of this "
3807 "Responding station does not support the specified authentication "
3810 "Received an Authentication frame with authentication sequence "
3811 "transaction sequence number out of expected sequence"},
3812 {0x0F, "Authentication rejected because of challenge failure"},
3813 {0x10, "Authentication rejected due to timeout waiting for next "
3814 "frame in sequence"},
3815 {0x11, "Association denied because AP is unable to handle additional "
3816 "associated stations"},
3818 "Association denied due to requesting station not supporting all "
3819 "of the datarates in the BSSBasicServiceSet Parameter"},
3821 "Association denied due to requesting station not supporting "
3822 "short preamble operation"},
3824 "Association denied due to requesting station not supporting "
3827 "Association denied due to requesting station not supporting "
3830 "Association denied due to requesting station not supporting "
3831 "short slot operation"},
3833 "Association denied due to requesting station not supporting "
3834 "DSSS-OFDM operation"},
3835 {0x28, "Invalid Information Element"},
3836 {0x29, "Group Cipher is not valid"},
3837 {0x2A, "Pairwise Cipher is not valid"},
3838 {0x2B, "AKMP is not valid"},
3839 {0x2C, "Unsupported RSN IE version"},
3840 {0x2D, "Invalid RSN IE Capabilities"},
3841 {0x2E, "Cipher suite is rejected per security policy"},
3844 #ifdef CONFIG_IPW2200_DEBUG
3845 static const char *ipw_get_status_code(u16 status
)
3848 for (i
= 0; i
< ARRAY_SIZE(ipw_status_codes
); i
++)
3849 if (ipw_status_codes
[i
].status
== (status
& 0xff))
3850 return ipw_status_codes
[i
].reason
;
3851 return "Unknown status value.";
3855 static void inline average_init(struct average
*avg
)
3857 memset(avg
, 0, sizeof(*avg
));
3860 static void average_add(struct average
*avg
, s16 val
)
3862 avg
->sum
-= avg
->entries
[avg
->pos
];
3864 avg
->entries
[avg
->pos
++] = val
;
3865 if (unlikely(avg
->pos
== AVG_ENTRIES
)) {
3871 static s16
average_value(struct average
*avg
)
3873 if (!unlikely(avg
->init
)) {
3875 return avg
->sum
/ avg
->pos
;
3879 return avg
->sum
/ AVG_ENTRIES
;
3882 static void ipw_reset_stats(struct ipw_priv
*priv
)
3884 u32 len
= sizeof(u32
);
3888 average_init(&priv
->average_missed_beacons
);
3889 average_init(&priv
->average_rssi
);
3890 average_init(&priv
->average_noise
);
3892 priv
->last_rate
= 0;
3893 priv
->last_missed_beacons
= 0;
3894 priv
->last_rx_packets
= 0;
3895 priv
->last_tx_packets
= 0;
3896 priv
->last_tx_failures
= 0;
3898 /* Firmware managed, reset only when NIC is restarted, so we have to
3899 * normalize on the current value */
3900 ipw_get_ordinal(priv
, IPW_ORD_STAT_RX_ERR_CRC
,
3901 &priv
->last_rx_err
, &len
);
3902 ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_FAILURE
,
3903 &priv
->last_tx_failures
, &len
);
3905 /* Driver managed, reset with each association */
3906 priv
->missed_adhoc_beacons
= 0;
3907 priv
->missed_beacons
= 0;
3908 priv
->tx_packets
= 0;
3909 priv
->rx_packets
= 0;
3913 static u32
ipw_get_max_rate(struct ipw_priv
*priv
)
3916 u32 mask
= priv
->rates_mask
;
3917 /* If currently associated in B mode, restrict the maximum
3918 * rate match to B rates */
3919 if (priv
->assoc_request
.ieee_mode
== IPW_B_MODE
)
3920 mask
&= IEEE80211_CCK_RATES_MASK
;
3922 /* TODO: Verify that the rate is supported by the current rates
3925 while (i
&& !(mask
& i
))
3928 case IEEE80211_CCK_RATE_1MB_MASK
:
3930 case IEEE80211_CCK_RATE_2MB_MASK
:
3932 case IEEE80211_CCK_RATE_5MB_MASK
:
3934 case IEEE80211_OFDM_RATE_6MB_MASK
:
3936 case IEEE80211_OFDM_RATE_9MB_MASK
:
3938 case IEEE80211_CCK_RATE_11MB_MASK
:
3940 case IEEE80211_OFDM_RATE_12MB_MASK
:
3942 case IEEE80211_OFDM_RATE_18MB_MASK
:
3944 case IEEE80211_OFDM_RATE_24MB_MASK
:
3946 case IEEE80211_OFDM_RATE_36MB_MASK
:
3948 case IEEE80211_OFDM_RATE_48MB_MASK
:
3950 case IEEE80211_OFDM_RATE_54MB_MASK
:
3954 if (priv
->ieee
->mode
== IEEE_B
)
3960 static u32
ipw_get_current_rate(struct ipw_priv
*priv
)
3962 u32 rate
, len
= sizeof(rate
);
3965 if (!(priv
->status
& STATUS_ASSOCIATED
))
3968 if (priv
->tx_packets
> IPW_REAL_RATE_RX_PACKET_THRESHOLD
) {
3969 err
= ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_CURR_RATE
, &rate
,
3972 IPW_DEBUG_INFO("failed querying ordinals.\n");
3976 return ipw_get_max_rate(priv
);
3979 case IPW_TX_RATE_1MB
:
3981 case IPW_TX_RATE_2MB
:
3983 case IPW_TX_RATE_5MB
:
3985 case IPW_TX_RATE_6MB
:
3987 case IPW_TX_RATE_9MB
:
3989 case IPW_TX_RATE_11MB
:
3991 case IPW_TX_RATE_12MB
:
3993 case IPW_TX_RATE_18MB
:
3995 case IPW_TX_RATE_24MB
:
3997 case IPW_TX_RATE_36MB
:
3999 case IPW_TX_RATE_48MB
:
4001 case IPW_TX_RATE_54MB
:
4008 #define IPW_STATS_INTERVAL (2 * HZ)
4009 static void ipw_gather_stats(struct ipw_priv
*priv
)
4011 u32 rx_err
, rx_err_delta
, rx_packets_delta
;
4012 u32 tx_failures
, tx_failures_delta
, tx_packets_delta
;
4013 u32 missed_beacons_percent
, missed_beacons_delta
;
4015 u32 len
= sizeof(u32
);
4017 u32 beacon_quality
, signal_quality
, tx_quality
, rx_quality
,
4021 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
4026 /* Update the statistics */
4027 ipw_get_ordinal(priv
, IPW_ORD_STAT_MISSED_BEACONS
,
4028 &priv
->missed_beacons
, &len
);
4029 missed_beacons_delta
= priv
->missed_beacons
- priv
->last_missed_beacons
;
4030 priv
->last_missed_beacons
= priv
->missed_beacons
;
4031 if (priv
->assoc_request
.beacon_interval
) {
4032 missed_beacons_percent
= missed_beacons_delta
*
4033 (HZ
* priv
->assoc_request
.beacon_interval
) /
4034 (IPW_STATS_INTERVAL
* 10);
4036 missed_beacons_percent
= 0;
4038 average_add(&priv
->average_missed_beacons
, missed_beacons_percent
);
4040 ipw_get_ordinal(priv
, IPW_ORD_STAT_RX_ERR_CRC
, &rx_err
, &len
);
4041 rx_err_delta
= rx_err
- priv
->last_rx_err
;
4042 priv
->last_rx_err
= rx_err
;
4044 ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_FAILURE
, &tx_failures
, &len
);
4045 tx_failures_delta
= tx_failures
- priv
->last_tx_failures
;
4046 priv
->last_tx_failures
= tx_failures
;
4048 rx_packets_delta
= priv
->rx_packets
- priv
->last_rx_packets
;
4049 priv
->last_rx_packets
= priv
->rx_packets
;
4051 tx_packets_delta
= priv
->tx_packets
- priv
->last_tx_packets
;
4052 priv
->last_tx_packets
= priv
->tx_packets
;
4054 /* Calculate quality based on the following:
4056 * Missed beacon: 100% = 0, 0% = 70% missed
4057 * Rate: 60% = 1Mbs, 100% = Max
4058 * Rx and Tx errors represent a straight % of total Rx/Tx
4059 * RSSI: 100% = > -50, 0% = < -80
4060 * Rx errors: 100% = 0, 0% = 50% missed
4062 * The lowest computed quality is used.
4065 #define BEACON_THRESHOLD 5
4066 beacon_quality
= 100 - missed_beacons_percent
;
4067 if (beacon_quality
< BEACON_THRESHOLD
)
4070 beacon_quality
= (beacon_quality
- BEACON_THRESHOLD
) * 100 /
4071 (100 - BEACON_THRESHOLD
);
4072 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4073 beacon_quality
, missed_beacons_percent
);
4075 priv
->last_rate
= ipw_get_current_rate(priv
);
4076 max_rate
= ipw_get_max_rate(priv
);
4077 rate_quality
= priv
->last_rate
* 40 / max_rate
+ 60;
4078 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4079 rate_quality
, priv
->last_rate
/ 1000000);
4081 if (rx_packets_delta
> 100 && rx_packets_delta
+ rx_err_delta
)
4082 rx_quality
= 100 - (rx_err_delta
* 100) /
4083 (rx_packets_delta
+ rx_err_delta
);
4086 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4087 rx_quality
, rx_err_delta
, rx_packets_delta
);
4089 if (tx_packets_delta
> 100 && tx_packets_delta
+ tx_failures_delta
)
4090 tx_quality
= 100 - (tx_failures_delta
* 100) /
4091 (tx_packets_delta
+ tx_failures_delta
);
4094 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4095 tx_quality
, tx_failures_delta
, tx_packets_delta
);
4097 rssi
= average_value(&priv
->average_rssi
);
4100 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) *
4101 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) -
4102 (priv
->ieee
->perfect_rssi
- rssi
) *
4103 (15 * (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) +
4104 62 * (priv
->ieee
->perfect_rssi
- rssi
))) /
4105 ((priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) *
4106 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
));
4107 if (signal_quality
> 100)
4108 signal_quality
= 100;
4109 else if (signal_quality
< 1)
4112 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4113 signal_quality
, rssi
);
4115 quality
= min(beacon_quality
,
4117 min(tx_quality
, min(rx_quality
, signal_quality
))));
4118 if (quality
== beacon_quality
)
4119 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4121 if (quality
== rate_quality
)
4122 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4124 if (quality
== tx_quality
)
4125 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4127 if (quality
== rx_quality
)
4128 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4130 if (quality
== signal_quality
)
4131 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4134 priv
->quality
= quality
;
4136 queue_delayed_work(priv
->workqueue
, &priv
->gather_stats
,
4137 IPW_STATS_INTERVAL
);
4140 static void ipw_bg_gather_stats(void *data
)
4142 struct ipw_priv
*priv
= data
;
4144 ipw_gather_stats(data
);
4148 /* Missed beacon behavior:
4149 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4150 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4151 * Above disassociate threshold, give up and stop scanning.
4152 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4153 static void ipw_handle_missed_beacon(struct ipw_priv
*priv
,
4156 priv
->notif_missed_beacons
= missed_count
;
4158 if (missed_count
> priv
->disassociate_threshold
&&
4159 priv
->status
& STATUS_ASSOCIATED
) {
4160 /* If associated and we've hit the missed
4161 * beacon threshold, disassociate, turn
4162 * off roaming, and abort any active scans */
4163 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
4164 IPW_DL_STATE
| IPW_DL_ASSOC
,
4165 "Missed beacon: %d - disassociate\n", missed_count
);
4166 priv
->status
&= ~STATUS_ROAMING
;
4167 if (priv
->status
& STATUS_SCANNING
) {
4168 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
4170 "Aborting scan with missed beacon.\n");
4171 queue_work(priv
->workqueue
, &priv
->abort_scan
);
4174 queue_work(priv
->workqueue
, &priv
->disassociate
);
4178 if (priv
->status
& STATUS_ROAMING
) {
4179 /* If we are currently roaming, then just
4180 * print a debug statement... */
4181 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4182 "Missed beacon: %d - roam in progress\n",
4187 if (missed_count
> priv
->roaming_threshold
&&
4188 missed_count
<= priv
->disassociate_threshold
) {
4189 /* If we are not already roaming, set the ROAM
4190 * bit in the status and kick off a scan.
4191 * This can happen several times before we reach
4192 * disassociate_threshold. */
4193 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4194 "Missed beacon: %d - initiate "
4195 "roaming\n", missed_count
);
4196 if (!(priv
->status
& STATUS_ROAMING
)) {
4197 priv
->status
|= STATUS_ROAMING
;
4198 if (!(priv
->status
& STATUS_SCANNING
))
4199 queue_work(priv
->workqueue
,
4200 &priv
->request_scan
);
4205 if (priv
->status
& STATUS_SCANNING
) {
4206 /* Stop scan to keep fw from getting
4207 * stuck (only if we aren't roaming --
4208 * otherwise we'll never scan more than 2 or 3
4210 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
| IPW_DL_STATE
,
4211 "Aborting scan with missed beacon.\n");
4212 queue_work(priv
->workqueue
, &priv
->abort_scan
);
4215 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count
);
4220 * Handle host notification packet.
4221 * Called from interrupt routine
4223 static void ipw_rx_notification(struct ipw_priv
*priv
,
4224 struct ipw_rx_notification
*notif
)
4226 notif
->size
= le16_to_cpu(notif
->size
);
4228 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif
->subtype
, notif
->size
);
4230 switch (notif
->subtype
) {
4231 case HOST_NOTIFICATION_STATUS_ASSOCIATED
:{
4232 struct notif_association
*assoc
= ¬if
->u
.assoc
;
4234 switch (assoc
->state
) {
4235 case CMAS_ASSOCIATED
:{
4236 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4238 "associated: '%s' " MAC_FMT
4240 escape_essid(priv
->essid
,
4242 MAC_ARG(priv
->bssid
));
4244 switch (priv
->ieee
->iw_mode
) {
4246 memcpy(priv
->ieee
->bssid
,
4247 priv
->bssid
, ETH_ALEN
);
4251 memcpy(priv
->ieee
->bssid
,
4252 priv
->bssid
, ETH_ALEN
);
4254 /* clear out the station table */
4255 priv
->num_stations
= 0;
4258 ("queueing adhoc check\n");
4259 queue_delayed_work(priv
->
4269 priv
->status
&= ~STATUS_ASSOCIATING
;
4270 priv
->status
|= STATUS_ASSOCIATED
;
4271 queue_work(priv
->workqueue
,
4272 &priv
->system_config
);
4274 #ifdef CONFIG_IPW_QOS
4275 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4276 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4277 if ((priv
->status
& STATUS_AUTH
) &&
4278 (IPW_GET_PACKET_STYPE(¬if
->u
.raw
)
4279 == IEEE80211_STYPE_ASSOC_RESP
)) {
4282 ieee80211_assoc_response
)
4284 && (notif
->size
<= 2314)) {
4297 ieee80211_rx_mgt(priv
->
4302 ¬if
->u
.raw
, &stats
);
4307 schedule_work(&priv
->link_up
);
4312 case CMAS_AUTHENTICATED
:{
4314 status
& (STATUS_ASSOCIATED
|
4316 #ifdef CONFIG_IPW2200_DEBUG
4317 struct notif_authenticate
*auth
4319 IPW_DEBUG(IPW_DL_NOTIF
|
4322 "deauthenticated: '%s' "
4324 ": (0x%04X) - %s \n",
4329 MAC_ARG(priv
->bssid
),
4330 ntohs(auth
->status
),
4337 ~(STATUS_ASSOCIATING
|
4341 schedule_work(&priv
->link_down
);
4345 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4347 "authenticated: '%s' " MAC_FMT
4349 escape_essid(priv
->essid
,
4351 MAC_ARG(priv
->bssid
));
4356 if (priv
->status
& STATUS_AUTH
) {
4358 ieee80211_assoc_response
4362 ieee80211_assoc_response
4364 IPW_DEBUG(IPW_DL_NOTIF
|
4367 "association failed (0x%04X): %s\n",
4368 ntohs(resp
->status
),
4374 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4376 "disassociated: '%s' " MAC_FMT
4378 escape_essid(priv
->essid
,
4380 MAC_ARG(priv
->bssid
));
4383 ~(STATUS_DISASSOCIATING
|
4384 STATUS_ASSOCIATING
|
4385 STATUS_ASSOCIATED
| STATUS_AUTH
);
4386 if (priv
->assoc_network
4387 && (priv
->assoc_network
->
4389 WLAN_CAPABILITY_IBSS
))
4390 ipw_remove_current_network
4393 schedule_work(&priv
->link_down
);
4398 case CMAS_RX_ASSOC_RESP
:
4402 IPW_ERROR("assoc: unknown (%d)\n",
4410 case HOST_NOTIFICATION_STATUS_AUTHENTICATE
:{
4411 struct notif_authenticate
*auth
= ¬if
->u
.auth
;
4412 switch (auth
->state
) {
4413 case CMAS_AUTHENTICATED
:
4414 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4415 "authenticated: '%s' " MAC_FMT
" \n",
4416 escape_essid(priv
->essid
,
4418 MAC_ARG(priv
->bssid
));
4419 priv
->status
|= STATUS_AUTH
;
4423 if (priv
->status
& STATUS_AUTH
) {
4424 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4426 "authentication failed (0x%04X): %s\n",
4427 ntohs(auth
->status
),
4428 ipw_get_status_code(ntohs
4432 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4434 "deauthenticated: '%s' " MAC_FMT
"\n",
4435 escape_essid(priv
->essid
,
4437 MAC_ARG(priv
->bssid
));
4439 priv
->status
&= ~(STATUS_ASSOCIATING
|
4443 schedule_work(&priv
->link_down
);
4446 case CMAS_TX_AUTH_SEQ_1
:
4447 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4448 IPW_DL_ASSOC
, "AUTH_SEQ_1\n");
4450 case CMAS_RX_AUTH_SEQ_2
:
4451 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4452 IPW_DL_ASSOC
, "AUTH_SEQ_2\n");
4454 case CMAS_AUTH_SEQ_1_PASS
:
4455 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4456 IPW_DL_ASSOC
, "AUTH_SEQ_1_PASS\n");
4458 case CMAS_AUTH_SEQ_1_FAIL
:
4459 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4460 IPW_DL_ASSOC
, "AUTH_SEQ_1_FAIL\n");
4462 case CMAS_TX_AUTH_SEQ_3
:
4463 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4464 IPW_DL_ASSOC
, "AUTH_SEQ_3\n");
4466 case CMAS_RX_AUTH_SEQ_4
:
4467 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4468 IPW_DL_ASSOC
, "RX_AUTH_SEQ_4\n");
4470 case CMAS_AUTH_SEQ_2_PASS
:
4471 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4472 IPW_DL_ASSOC
, "AUTH_SEQ_2_PASS\n");
4474 case CMAS_AUTH_SEQ_2_FAIL
:
4475 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4476 IPW_DL_ASSOC
, "AUT_SEQ_2_FAIL\n");
4479 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4480 IPW_DL_ASSOC
, "TX_ASSOC\n");
4482 case CMAS_RX_ASSOC_RESP
:
4483 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4484 IPW_DL_ASSOC
, "RX_ASSOC_RESP\n");
4487 case CMAS_ASSOCIATED
:
4488 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4489 IPW_DL_ASSOC
, "ASSOCIATED\n");
4492 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4499 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT
:{
4500 struct notif_channel_result
*x
=
4501 ¬if
->u
.channel_result
;
4503 if (notif
->size
== sizeof(*x
)) {
4504 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4507 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4508 "(should be %zd)\n",
4509 notif
->size
, sizeof(*x
));
4514 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED
:{
4515 struct notif_scan_complete
*x
= ¬if
->u
.scan_complete
;
4516 if (notif
->size
== sizeof(*x
)) {
4518 ("Scan completed: type %d, %d channels, "
4519 "%d status\n", x
->scan_type
,
4520 x
->num_channels
, x
->status
);
4522 IPW_ERROR("Scan completed of wrong size %d "
4523 "(should be %zd)\n",
4524 notif
->size
, sizeof(*x
));
4528 ~(STATUS_SCANNING
| STATUS_SCAN_ABORTING
);
4530 wake_up_interruptible(&priv
->wait_state
);
4531 cancel_delayed_work(&priv
->scan_check
);
4533 if (priv
->status
& STATUS_EXIT_PENDING
)
4536 priv
->ieee
->scans
++;
4538 #ifdef CONFIG_IPW2200_MONITOR
4539 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
4540 priv
->status
|= STATUS_SCAN_FORCED
;
4541 queue_work(priv
->workqueue
,
4542 &priv
->request_scan
);
4545 priv
->status
&= ~STATUS_SCAN_FORCED
;
4546 #endif /* CONFIG_IPW2200_MONITOR */
4548 if (!(priv
->status
& (STATUS_ASSOCIATED
|
4549 STATUS_ASSOCIATING
|
4551 STATUS_DISASSOCIATING
)))
4552 queue_work(priv
->workqueue
, &priv
->associate
);
4553 else if (priv
->status
& STATUS_ROAMING
) {
4554 if (x
->status
== SCAN_COMPLETED_STATUS_COMPLETE
)
4555 /* If a scan completed and we are in roam mode, then
4556 * the scan that completed was the one requested as a
4557 * result of entering roam... so, schedule the
4559 queue_work(priv
->workqueue
,
4562 /* Don't schedule if we aborted the scan */
4563 priv
->status
&= ~STATUS_ROAMING
;
4564 } else if (priv
->status
& STATUS_SCAN_PENDING
)
4565 queue_work(priv
->workqueue
,
4566 &priv
->request_scan
);
4567 else if (priv
->config
& CFG_BACKGROUND_SCAN
4568 && priv
->status
& STATUS_ASSOCIATED
)
4569 queue_delayed_work(priv
->workqueue
,
4570 &priv
->request_scan
, HZ
);
4574 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH
:{
4575 struct notif_frag_length
*x
= ¬if
->u
.frag_len
;
4577 if (notif
->size
== sizeof(*x
))
4578 IPW_ERROR("Frag length: %d\n",
4579 le16_to_cpu(x
->frag_length
));
4581 IPW_ERROR("Frag length of wrong size %d "
4582 "(should be %zd)\n",
4583 notif
->size
, sizeof(*x
));
4587 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION
:{
4588 struct notif_link_deterioration
*x
=
4589 ¬if
->u
.link_deterioration
;
4591 if (notif
->size
== sizeof(*x
)) {
4592 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4593 "link deterioration: '%s' " MAC_FMT
4594 " \n", escape_essid(priv
->essid
,
4596 MAC_ARG(priv
->bssid
));
4597 memcpy(&priv
->last_link_deterioration
, x
,
4600 IPW_ERROR("Link Deterioration of wrong size %d "
4601 "(should be %zd)\n",
4602 notif
->size
, sizeof(*x
));
4607 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE
:{
4608 IPW_ERROR("Dino config\n");
4610 && priv
->hcmd
->cmd
!= HOST_CMD_DINO_CONFIG
)
4611 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4616 case HOST_NOTIFICATION_STATUS_BEACON_STATE
:{
4617 struct notif_beacon_state
*x
= ¬if
->u
.beacon_state
;
4618 if (notif
->size
!= sizeof(*x
)) {
4620 ("Beacon state of wrong size %d (should "
4621 "be %zd)\n", notif
->size
, sizeof(*x
));
4625 if (le32_to_cpu(x
->state
) ==
4626 HOST_NOTIFICATION_STATUS_BEACON_MISSING
)
4627 ipw_handle_missed_beacon(priv
,
4634 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY
:{
4635 struct notif_tgi_tx_key
*x
= ¬if
->u
.tgi_tx_key
;
4636 if (notif
->size
== sizeof(*x
)) {
4637 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4638 "0x%02x station %d\n",
4639 x
->key_state
, x
->security_type
,
4645 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4646 notif
->size
, sizeof(*x
));
4650 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS
:{
4651 struct notif_calibration
*x
= ¬if
->u
.calibration
;
4653 if (notif
->size
== sizeof(*x
)) {
4654 memcpy(&priv
->calib
, x
, sizeof(*x
));
4655 IPW_DEBUG_INFO("TODO: Calibration\n");
4660 ("Calibration of wrong size %d (should be %zd)\n",
4661 notif
->size
, sizeof(*x
));
4665 case HOST_NOTIFICATION_NOISE_STATS
:{
4666 if (notif
->size
== sizeof(u32
)) {
4668 (u8
) (le32_to_cpu(notif
->u
.noise
.value
) &
4670 average_add(&priv
->average_noise
,
4676 ("Noise stat is wrong size %d (should be %zd)\n",
4677 notif
->size
, sizeof(u32
));
4682 IPW_ERROR("Unknown notification: "
4683 "subtype=%d,flags=0x%2x,size=%d\n",
4684 notif
->subtype
, notif
->flags
, notif
->size
);
4689 * Destroys all DMA structures and initialise them again
4692 * @return error code
4694 static int ipw_queue_reset(struct ipw_priv
*priv
)
4697 /** @todo customize queue sizes */
4698 int nTx
= 64, nTxCmd
= 8;
4699 ipw_tx_queue_free(priv
);
4701 rc
= ipw_queue_tx_init(priv
, &priv
->txq_cmd
, nTxCmd
,
4702 IPW_TX_CMD_QUEUE_READ_INDEX
,
4703 IPW_TX_CMD_QUEUE_WRITE_INDEX
,
4704 IPW_TX_CMD_QUEUE_BD_BASE
,
4705 IPW_TX_CMD_QUEUE_BD_SIZE
);
4707 IPW_ERROR("Tx Cmd queue init failed\n");
4711 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[0], nTx
,
4712 IPW_TX_QUEUE_0_READ_INDEX
,
4713 IPW_TX_QUEUE_0_WRITE_INDEX
,
4714 IPW_TX_QUEUE_0_BD_BASE
, IPW_TX_QUEUE_0_BD_SIZE
);
4716 IPW_ERROR("Tx 0 queue init failed\n");
4719 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[1], nTx
,
4720 IPW_TX_QUEUE_1_READ_INDEX
,
4721 IPW_TX_QUEUE_1_WRITE_INDEX
,
4722 IPW_TX_QUEUE_1_BD_BASE
, IPW_TX_QUEUE_1_BD_SIZE
);
4724 IPW_ERROR("Tx 1 queue init failed\n");
4727 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[2], nTx
,
4728 IPW_TX_QUEUE_2_READ_INDEX
,
4729 IPW_TX_QUEUE_2_WRITE_INDEX
,
4730 IPW_TX_QUEUE_2_BD_BASE
, IPW_TX_QUEUE_2_BD_SIZE
);
4732 IPW_ERROR("Tx 2 queue init failed\n");
4735 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[3], nTx
,
4736 IPW_TX_QUEUE_3_READ_INDEX
,
4737 IPW_TX_QUEUE_3_WRITE_INDEX
,
4738 IPW_TX_QUEUE_3_BD_BASE
, IPW_TX_QUEUE_3_BD_SIZE
);
4740 IPW_ERROR("Tx 3 queue init failed\n");
4744 priv
->rx_bufs_min
= 0;
4745 priv
->rx_pend_max
= 0;
4749 ipw_tx_queue_free(priv
);
4754 * Reclaim Tx queue entries no more used by NIC.
4756 * When FW adwances 'R' index, all entries between old and
4757 * new 'R' index need to be reclaimed. As result, some free space
4758 * forms. If there is enough free space (> low mark), wake Tx queue.
4760 * @note Need to protect against garbage in 'R' index
4764 * @return Number of used entries remains in the queue
4766 static int ipw_queue_tx_reclaim(struct ipw_priv
*priv
,
4767 struct clx2_tx_queue
*txq
, int qindex
)
4771 struct clx2_queue
*q
= &txq
->q
;
4773 hw_tail
= ipw_read32(priv
, q
->reg_r
);
4774 if (hw_tail
>= q
->n_bd
) {
4776 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4780 for (; q
->last_used
!= hw_tail
;
4781 q
->last_used
= ipw_queue_inc_wrap(q
->last_used
, q
->n_bd
)) {
4782 ipw_queue_tx_free_tfd(priv
, txq
);
4786 if ((ipw_queue_space(q
) > q
->low_mark
) &&
4788 (priv
->status
& STATUS_ASSOCIATED
) && netif_running(priv
->net_dev
))
4789 netif_wake_queue(priv
->net_dev
);
4790 used
= q
->first_empty
- q
->last_used
;
4797 static int ipw_queue_tx_hcmd(struct ipw_priv
*priv
, int hcmd
, void *buf
,
4800 struct clx2_tx_queue
*txq
= &priv
->txq_cmd
;
4801 struct clx2_queue
*q
= &txq
->q
;
4802 struct tfd_frame
*tfd
;
4804 if (ipw_queue_space(q
) < (sync
? 1 : 2)) {
4805 IPW_ERROR("No space for Tx\n");
4809 tfd
= &txq
->bd
[q
->first_empty
];
4810 txq
->txb
[q
->first_empty
] = NULL
;
4812 memset(tfd
, 0, sizeof(*tfd
));
4813 tfd
->control_flags
.message_type
= TX_HOST_COMMAND_TYPE
;
4814 tfd
->control_flags
.control_bits
= TFD_NEED_IRQ_MASK
;
4816 tfd
->u
.cmd
.index
= hcmd
;
4817 tfd
->u
.cmd
.length
= len
;
4818 memcpy(tfd
->u
.cmd
.payload
, buf
, len
);
4819 q
->first_empty
= ipw_queue_inc_wrap(q
->first_empty
, q
->n_bd
);
4820 ipw_write32(priv
, q
->reg_w
, q
->first_empty
);
4821 _ipw_read32(priv
, 0x90);
4827 * Rx theory of operation
4829 * The host allocates 32 DMA target addresses and passes the host address
4830 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4834 * The host/firmware share two index registers for managing the Rx buffers.
4836 * The READ index maps to the first position that the firmware may be writing
4837 * to -- the driver can read up to (but not including) this position and get
4839 * The READ index is managed by the firmware once the card is enabled.
4841 * The WRITE index maps to the last position the driver has read from -- the
4842 * position preceding WRITE is the last slot the firmware can place a packet.
4844 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4847 * During initialization the host sets up the READ queue position to the first
4848 * INDEX position, and WRITE to the last (READ - 1 wrapped)
4850 * When the firmware places a packet in a buffer it will advance the READ index
4851 * and fire the RX interrupt. The driver can then query the READ index and
4852 * process as many packets as possible, moving the WRITE index forward as it
4853 * resets the Rx queue buffers with new memory.
4855 * The management in the driver is as follows:
4856 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
4857 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4858 * to replensish the ipw->rxq->rx_free.
4859 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4860 * ipw->rxq is replenished and the READ INDEX is updated (updating the
4861 * 'processed' and 'read' driver indexes as well)
4862 * + A received packet is processed and handed to the kernel network stack,
4863 * detached from the ipw->rxq. The driver 'processed' index is updated.
4864 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4865 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4866 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
4867 * were enough free buffers and RX_STALLED is set it is cleared.
4872 * ipw_rx_queue_alloc() Allocates rx_free
4873 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
4874 * ipw_rx_queue_restock
4875 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
4876 * queue, updates firmware pointers, and updates
4877 * the WRITE index. If insufficient rx_free buffers
4878 * are available, schedules ipw_rx_queue_replenish
4880 * -- enable interrupts --
4881 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
4882 * READ INDEX, detaching the SKB from the pool.
4883 * Moves the packet buffer from queue to rx_used.
4884 * Calls ipw_rx_queue_restock to refill any empty
4891 * If there are slots in the RX queue that need to be restocked,
4892 * and we have free pre-allocated buffers, fill the ranks as much
4893 * as we can pulling from rx_free.
4895 * This moves the 'write' index forward to catch up with 'processed', and
4896 * also updates the memory address in the firmware to reference the new
4899 static void ipw_rx_queue_restock(struct ipw_priv
*priv
)
4901 struct ipw_rx_queue
*rxq
= priv
->rxq
;
4902 struct list_head
*element
;
4903 struct ipw_rx_mem_buffer
*rxb
;
4904 unsigned long flags
;
4907 spin_lock_irqsave(&rxq
->lock
, flags
);
4909 while ((rxq
->write
!= rxq
->processed
) && (rxq
->free_count
)) {
4910 element
= rxq
->rx_free
.next
;
4911 rxb
= list_entry(element
, struct ipw_rx_mem_buffer
, list
);
4914 ipw_write32(priv
, IPW_RFDS_TABLE_LOWER
+ rxq
->write
* RFD_SIZE
,
4916 rxq
->queue
[rxq
->write
] = rxb
;
4917 rxq
->write
= (rxq
->write
+ 1) % RX_QUEUE_SIZE
;
4920 spin_unlock_irqrestore(&rxq
->lock
, flags
);
4922 /* If the pre-allocated buffer pool is dropping low, schedule to
4924 if (rxq
->free_count
<= RX_LOW_WATERMARK
)
4925 queue_work(priv
->workqueue
, &priv
->rx_replenish
);
4927 /* If we've added more space for the firmware to place data, tell it */
4928 if (write
!= rxq
->write
)
4929 ipw_write32(priv
, IPW_RX_WRITE_INDEX
, rxq
->write
);
4933 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4934 * Also restock the Rx queue via ipw_rx_queue_restock.
4936 * This is called as a scheduled work item (except for during intialization)
4938 static void ipw_rx_queue_replenish(void *data
)
4940 struct ipw_priv
*priv
= data
;
4941 struct ipw_rx_queue
*rxq
= priv
->rxq
;
4942 struct list_head
*element
;
4943 struct ipw_rx_mem_buffer
*rxb
;
4944 unsigned long flags
;
4946 spin_lock_irqsave(&rxq
->lock
, flags
);
4947 while (!list_empty(&rxq
->rx_used
)) {
4948 element
= rxq
->rx_used
.next
;
4949 rxb
= list_entry(element
, struct ipw_rx_mem_buffer
, list
);
4950 rxb
->skb
= alloc_skb(IPW_RX_BUF_SIZE
, GFP_ATOMIC
);
4952 printk(KERN_CRIT
"%s: Can not allocate SKB buffers.\n",
4953 priv
->net_dev
->name
);
4954 /* We don't reschedule replenish work here -- we will
4955 * call the restock method and if it still needs
4956 * more buffers it will schedule replenish */
4961 rxb
->rxb
= (struct ipw_rx_buffer
*)rxb
->skb
->data
;
4963 pci_map_single(priv
->pci_dev
, rxb
->skb
->data
,
4964 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
4966 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
4969 spin_unlock_irqrestore(&rxq
->lock
, flags
);
4971 ipw_rx_queue_restock(priv
);
4974 static void ipw_bg_rx_queue_replenish(void *data
)
4976 struct ipw_priv
*priv
= data
;
4978 ipw_rx_queue_replenish(data
);
4982 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4983 * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
4984 * This free routine walks the list of POOL entries and if SKB is set to
4985 * non NULL it is unmapped and freed
4987 static void ipw_rx_queue_free(struct ipw_priv
*priv
, struct ipw_rx_queue
*rxq
)
4994 for (i
= 0; i
< RX_QUEUE_SIZE
+ RX_FREE_BUFFERS
; i
++) {
4995 if (rxq
->pool
[i
].skb
!= NULL
) {
4996 pci_unmap_single(priv
->pci_dev
, rxq
->pool
[i
].dma_addr
,
4997 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
4998 dev_kfree_skb(rxq
->pool
[i
].skb
);
5005 static struct ipw_rx_queue
*ipw_rx_queue_alloc(struct ipw_priv
*priv
)
5007 struct ipw_rx_queue
*rxq
;
5010 rxq
= kzalloc(sizeof(*rxq
), GFP_KERNEL
);
5011 if (unlikely(!rxq
)) {
5012 IPW_ERROR("memory allocation failed\n");
5015 spin_lock_init(&rxq
->lock
);
5016 INIT_LIST_HEAD(&rxq
->rx_free
);
5017 INIT_LIST_HEAD(&rxq
->rx_used
);
5019 /* Fill the rx_used queue with _all_ of the Rx buffers */
5020 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++)
5021 list_add_tail(&rxq
->pool
[i
].list
, &rxq
->rx_used
);
5023 /* Set us so that we have processed and used all buffers, but have
5024 * not restocked the Rx queue with fresh buffers */
5025 rxq
->read
= rxq
->write
= 0;
5026 rxq
->processed
= RX_QUEUE_SIZE
- 1;
5027 rxq
->free_count
= 0;
5032 static int ipw_is_rate_in_mask(struct ipw_priv
*priv
, int ieee_mode
, u8 rate
)
5034 rate
&= ~IEEE80211_BASIC_RATE_MASK
;
5035 if (ieee_mode
== IEEE_A
) {
5037 case IEEE80211_OFDM_RATE_6MB
:
5038 return priv
->rates_mask
& IEEE80211_OFDM_RATE_6MB_MASK
?
5040 case IEEE80211_OFDM_RATE_9MB
:
5041 return priv
->rates_mask
& IEEE80211_OFDM_RATE_9MB_MASK
?
5043 case IEEE80211_OFDM_RATE_12MB
:
5045 rates_mask
& IEEE80211_OFDM_RATE_12MB_MASK
? 1 : 0;
5046 case IEEE80211_OFDM_RATE_18MB
:
5048 rates_mask
& IEEE80211_OFDM_RATE_18MB_MASK
? 1 : 0;
5049 case IEEE80211_OFDM_RATE_24MB
:
5051 rates_mask
& IEEE80211_OFDM_RATE_24MB_MASK
? 1 : 0;
5052 case IEEE80211_OFDM_RATE_36MB
:
5054 rates_mask
& IEEE80211_OFDM_RATE_36MB_MASK
? 1 : 0;
5055 case IEEE80211_OFDM_RATE_48MB
:
5057 rates_mask
& IEEE80211_OFDM_RATE_48MB_MASK
? 1 : 0;
5058 case IEEE80211_OFDM_RATE_54MB
:
5060 rates_mask
& IEEE80211_OFDM_RATE_54MB_MASK
? 1 : 0;
5068 case IEEE80211_CCK_RATE_1MB
:
5069 return priv
->rates_mask
& IEEE80211_CCK_RATE_1MB_MASK
? 1 : 0;
5070 case IEEE80211_CCK_RATE_2MB
:
5071 return priv
->rates_mask
& IEEE80211_CCK_RATE_2MB_MASK
? 1 : 0;
5072 case IEEE80211_CCK_RATE_5MB
:
5073 return priv
->rates_mask
& IEEE80211_CCK_RATE_5MB_MASK
? 1 : 0;
5074 case IEEE80211_CCK_RATE_11MB
:
5075 return priv
->rates_mask
& IEEE80211_CCK_RATE_11MB_MASK
? 1 : 0;
5078 /* If we are limited to B modulations, bail at this point */
5079 if (ieee_mode
== IEEE_B
)
5084 case IEEE80211_OFDM_RATE_6MB
:
5085 return priv
->rates_mask
& IEEE80211_OFDM_RATE_6MB_MASK
? 1 : 0;
5086 case IEEE80211_OFDM_RATE_9MB
:
5087 return priv
->rates_mask
& IEEE80211_OFDM_RATE_9MB_MASK
? 1 : 0;
5088 case IEEE80211_OFDM_RATE_12MB
:
5089 return priv
->rates_mask
& IEEE80211_OFDM_RATE_12MB_MASK
? 1 : 0;
5090 case IEEE80211_OFDM_RATE_18MB
:
5091 return priv
->rates_mask
& IEEE80211_OFDM_RATE_18MB_MASK
? 1 : 0;
5092 case IEEE80211_OFDM_RATE_24MB
:
5093 return priv
->rates_mask
& IEEE80211_OFDM_RATE_24MB_MASK
? 1 : 0;
5094 case IEEE80211_OFDM_RATE_36MB
:
5095 return priv
->rates_mask
& IEEE80211_OFDM_RATE_36MB_MASK
? 1 : 0;
5096 case IEEE80211_OFDM_RATE_48MB
:
5097 return priv
->rates_mask
& IEEE80211_OFDM_RATE_48MB_MASK
? 1 : 0;
5098 case IEEE80211_OFDM_RATE_54MB
:
5099 return priv
->rates_mask
& IEEE80211_OFDM_RATE_54MB_MASK
? 1 : 0;
5105 static int ipw_compatible_rates(struct ipw_priv
*priv
,
5106 const struct ieee80211_network
*network
,
5107 struct ipw_supported_rates
*rates
)
5111 memset(rates
, 0, sizeof(*rates
));
5112 num_rates
= min(network
->rates_len
, (u8
) IPW_MAX_RATES
);
5113 rates
->num_rates
= 0;
5114 for (i
= 0; i
< num_rates
; i
++) {
5115 if (!ipw_is_rate_in_mask(priv
, network
->mode
,
5116 network
->rates
[i
])) {
5118 if (network
->rates
[i
] & IEEE80211_BASIC_RATE_MASK
) {
5119 IPW_DEBUG_SCAN("Adding masked mandatory "
5122 rates
->supported_rates
[rates
->num_rates
++] =
5127 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5128 network
->rates
[i
], priv
->rates_mask
);
5132 rates
->supported_rates
[rates
->num_rates
++] = network
->rates
[i
];
5135 num_rates
= min(network
->rates_ex_len
,
5136 (u8
) (IPW_MAX_RATES
- num_rates
));
5137 for (i
= 0; i
< num_rates
; i
++) {
5138 if (!ipw_is_rate_in_mask(priv
, network
->mode
,
5139 network
->rates_ex
[i
])) {
5140 if (network
->rates_ex
[i
] & IEEE80211_BASIC_RATE_MASK
) {
5141 IPW_DEBUG_SCAN("Adding masked mandatory "
5143 network
->rates_ex
[i
]);
5144 rates
->supported_rates
[rates
->num_rates
++] =
5149 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5150 network
->rates_ex
[i
], priv
->rates_mask
);
5154 rates
->supported_rates
[rates
->num_rates
++] =
5155 network
->rates_ex
[i
];
5161 static void ipw_copy_rates(struct ipw_supported_rates
*dest
,
5162 const struct ipw_supported_rates
*src
)
5165 for (i
= 0; i
< src
->num_rates
; i
++)
5166 dest
->supported_rates
[i
] = src
->supported_rates
[i
];
5167 dest
->num_rates
= src
->num_rates
;
5170 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5171 * mask should ever be used -- right now all callers to add the scan rates are
5172 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5173 static void ipw_add_cck_scan_rates(struct ipw_supported_rates
*rates
,
5174 u8 modulation
, u32 rate_mask
)
5176 u8 basic_mask
= (IEEE80211_OFDM_MODULATION
== modulation
) ?
5177 IEEE80211_BASIC_RATE_MASK
: 0;
5179 if (rate_mask
& IEEE80211_CCK_RATE_1MB_MASK
)
5180 rates
->supported_rates
[rates
->num_rates
++] =
5181 IEEE80211_BASIC_RATE_MASK
| IEEE80211_CCK_RATE_1MB
;
5183 if (rate_mask
& IEEE80211_CCK_RATE_2MB_MASK
)
5184 rates
->supported_rates
[rates
->num_rates
++] =
5185 IEEE80211_BASIC_RATE_MASK
| IEEE80211_CCK_RATE_2MB
;
5187 if (rate_mask
& IEEE80211_CCK_RATE_5MB_MASK
)
5188 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5189 IEEE80211_CCK_RATE_5MB
;
5191 if (rate_mask
& IEEE80211_CCK_RATE_11MB_MASK
)
5192 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5193 IEEE80211_CCK_RATE_11MB
;
5196 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates
*rates
,
5197 u8 modulation
, u32 rate_mask
)
5199 u8 basic_mask
= (IEEE80211_OFDM_MODULATION
== modulation
) ?
5200 IEEE80211_BASIC_RATE_MASK
: 0;
5202 if (rate_mask
& IEEE80211_OFDM_RATE_6MB_MASK
)
5203 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5204 IEEE80211_OFDM_RATE_6MB
;
5206 if (rate_mask
& IEEE80211_OFDM_RATE_9MB_MASK
)
5207 rates
->supported_rates
[rates
->num_rates
++] =
5208 IEEE80211_OFDM_RATE_9MB
;
5210 if (rate_mask
& IEEE80211_OFDM_RATE_12MB_MASK
)
5211 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5212 IEEE80211_OFDM_RATE_12MB
;
5214 if (rate_mask
& IEEE80211_OFDM_RATE_18MB_MASK
)
5215 rates
->supported_rates
[rates
->num_rates
++] =
5216 IEEE80211_OFDM_RATE_18MB
;
5218 if (rate_mask
& IEEE80211_OFDM_RATE_24MB_MASK
)
5219 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5220 IEEE80211_OFDM_RATE_24MB
;
5222 if (rate_mask
& IEEE80211_OFDM_RATE_36MB_MASK
)
5223 rates
->supported_rates
[rates
->num_rates
++] =
5224 IEEE80211_OFDM_RATE_36MB
;
5226 if (rate_mask
& IEEE80211_OFDM_RATE_48MB_MASK
)
5227 rates
->supported_rates
[rates
->num_rates
++] =
5228 IEEE80211_OFDM_RATE_48MB
;
5230 if (rate_mask
& IEEE80211_OFDM_RATE_54MB_MASK
)
5231 rates
->supported_rates
[rates
->num_rates
++] =
5232 IEEE80211_OFDM_RATE_54MB
;
5235 struct ipw_network_match
{
5236 struct ieee80211_network
*network
;
5237 struct ipw_supported_rates rates
;
5240 static int ipw_find_adhoc_network(struct ipw_priv
*priv
,
5241 struct ipw_network_match
*match
,
5242 struct ieee80211_network
*network
,
5245 struct ipw_supported_rates rates
;
5247 /* Verify that this network's capability is compatible with the
5248 * current mode (AdHoc or Infrastructure) */
5249 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
5250 !(network
->capability
& WLAN_CAPABILITY_IBSS
))) {
5251 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' excluded due to "
5252 "capability mismatch.\n",
5253 escape_essid(network
->ssid
, network
->ssid_len
),
5254 MAC_ARG(network
->bssid
));
5258 /* If we do not have an ESSID for this AP, we can not associate with
5260 if (network
->flags
& NETWORK_EMPTY_ESSID
) {
5261 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' excluded "
5262 "because of hidden ESSID.\n",
5263 escape_essid(network
->ssid
, network
->ssid_len
),
5264 MAC_ARG(network
->bssid
));
5268 if (unlikely(roaming
)) {
5269 /* If we are roaming, then ensure check if this is a valid
5270 * network to try and roam to */
5271 if ((network
->ssid_len
!= match
->network
->ssid_len
) ||
5272 memcmp(network
->ssid
, match
->network
->ssid
,
5273 network
->ssid_len
)) {
5274 IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT
")' excluded "
5275 "because of non-network ESSID.\n",
5276 escape_essid(network
->ssid
,
5278 MAC_ARG(network
->bssid
));
5282 /* If an ESSID has been configured then compare the broadcast
5284 if ((priv
->config
& CFG_STATIC_ESSID
) &&
5285 ((network
->ssid_len
!= priv
->essid_len
) ||
5286 memcmp(network
->ssid
, priv
->essid
,
5287 min(network
->ssid_len
, priv
->essid_len
)))) {
5288 char escaped
[IW_ESSID_MAX_SIZE
* 2 + 1];
5291 escape_essid(network
->ssid
, network
->ssid_len
),
5293 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' excluded "
5294 "because of ESSID mismatch: '%s'.\n",
5295 escaped
, MAC_ARG(network
->bssid
),
5296 escape_essid(priv
->essid
,
5302 /* If the old network rate is better than this one, don't bother
5303 * testing everything else. */
5305 if (network
->time_stamp
[0] < match
->network
->time_stamp
[0]) {
5306 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5307 "current network.\n",
5308 escape_essid(match
->network
->ssid
,
5309 match
->network
->ssid_len
));
5311 } else if (network
->time_stamp
[1] < match
->network
->time_stamp
[1]) {
5312 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5313 "current network.\n",
5314 escape_essid(match
->network
->ssid
,
5315 match
->network
->ssid_len
));
5319 /* Now go through and see if the requested network is valid... */
5320 if (priv
->ieee
->scan_age
!= 0 &&
5321 time_after(jiffies
, network
->last_scanned
+ priv
->ieee
->scan_age
)) {
5322 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' excluded "
5323 "because of age: %lums.\n",
5324 escape_essid(network
->ssid
, network
->ssid_len
),
5325 MAC_ARG(network
->bssid
),
5326 1000 * (jiffies
- network
->last_scanned
) / HZ
);
5330 if ((priv
->config
& CFG_STATIC_CHANNEL
) &&
5331 (network
->channel
!= priv
->channel
)) {
5332 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' excluded "
5333 "because of channel mismatch: %d != %d.\n",
5334 escape_essid(network
->ssid
, network
->ssid_len
),
5335 MAC_ARG(network
->bssid
),
5336 network
->channel
, priv
->channel
);
5340 /* Verify privacy compatability */
5341 if (((priv
->capability
& CAP_PRIVACY_ON
) ? 1 : 0) !=
5342 ((network
->capability
& WLAN_CAPABILITY_PRIVACY
) ? 1 : 0)) {
5343 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' excluded "
5344 "because of privacy mismatch: %s != %s.\n",
5345 escape_essid(network
->ssid
, network
->ssid_len
),
5346 MAC_ARG(network
->bssid
),
5348 capability
& CAP_PRIVACY_ON
? "on" : "off",
5350 capability
& WLAN_CAPABILITY_PRIVACY
? "on" :
5355 if (!memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
)) {
5356 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' excluded "
5357 "because of the same BSSID match: " MAC_FMT
5358 ".\n", escape_essid(network
->ssid
,
5360 MAC_ARG(network
->bssid
), MAC_ARG(priv
->bssid
));
5364 /* Filter out any incompatible freq / mode combinations */
5365 if (!ieee80211_is_valid_mode(priv
->ieee
, network
->mode
)) {
5366 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' excluded "
5367 "because of invalid frequency/mode "
5369 escape_essid(network
->ssid
, network
->ssid_len
),
5370 MAC_ARG(network
->bssid
));
5374 /* Ensure that the rates supported by the driver are compatible with
5375 * this AP, including verification of basic rates (mandatory) */
5376 if (!ipw_compatible_rates(priv
, network
, &rates
)) {
5377 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' excluded "
5378 "because configured rate mask excludes "
5379 "AP mandatory rate.\n",
5380 escape_essid(network
->ssid
, network
->ssid_len
),
5381 MAC_ARG(network
->bssid
));
5385 if (rates
.num_rates
== 0) {
5386 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' excluded "
5387 "because of no compatible rates.\n",
5388 escape_essid(network
->ssid
, network
->ssid_len
),
5389 MAC_ARG(network
->bssid
));
5393 /* TODO: Perform any further minimal comparititive tests. We do not
5394 * want to put too much policy logic here; intelligent scan selection
5395 * should occur within a generic IEEE 802.11 user space tool. */
5397 /* Set up 'new' AP to this network */
5398 ipw_copy_rates(&match
->rates
, &rates
);
5399 match
->network
= network
;
5400 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT
")' is a viable match.\n",
5401 escape_essid(network
->ssid
, network
->ssid_len
),
5402 MAC_ARG(network
->bssid
));
5407 static void ipw_merge_adhoc_network(void *data
)
5409 struct ipw_priv
*priv
= data
;
5410 struct ieee80211_network
*network
= NULL
;
5411 struct ipw_network_match match
= {
5412 .network
= priv
->assoc_network
5415 if ((priv
->status
& STATUS_ASSOCIATED
) &&
5416 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)) {
5417 /* First pass through ROAM process -- look for a better
5419 unsigned long flags
;
5421 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
5422 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
) {
5423 if (network
!= priv
->assoc_network
)
5424 ipw_find_adhoc_network(priv
, &match
, network
,
5427 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
5429 if (match
.network
== priv
->assoc_network
) {
5430 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5436 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)) {
5437 IPW_DEBUG_MERGE("remove network %s\n",
5438 escape_essid(priv
->essid
,
5440 ipw_remove_current_network(priv
);
5443 ipw_disassociate(priv
);
5444 priv
->assoc_network
= match
.network
;
5450 static int ipw_best_network(struct ipw_priv
*priv
,
5451 struct ipw_network_match
*match
,
5452 struct ieee80211_network
*network
, int roaming
)
5454 struct ipw_supported_rates rates
;
5456 /* Verify that this network's capability is compatible with the
5457 * current mode (AdHoc or Infrastructure) */
5458 if ((priv
->ieee
->iw_mode
== IW_MODE_INFRA
&&
5459 !(network
->capability
& WLAN_CAPABILITY_ESS
)) ||
5460 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
5461 !(network
->capability
& WLAN_CAPABILITY_IBSS
))) {
5462 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded due to "
5463 "capability mismatch.\n",
5464 escape_essid(network
->ssid
, network
->ssid_len
),
5465 MAC_ARG(network
->bssid
));
5469 /* If we do not have an ESSID for this AP, we can not associate with
5471 if (network
->flags
& NETWORK_EMPTY_ESSID
) {
5472 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5473 "because of hidden ESSID.\n",
5474 escape_essid(network
->ssid
, network
->ssid_len
),
5475 MAC_ARG(network
->bssid
));
5479 if (unlikely(roaming
)) {
5480 /* If we are roaming, then ensure check if this is a valid
5481 * network to try and roam to */
5482 if ((network
->ssid_len
!= match
->network
->ssid_len
) ||
5483 memcmp(network
->ssid
, match
->network
->ssid
,
5484 network
->ssid_len
)) {
5485 IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT
")' excluded "
5486 "because of non-network ESSID.\n",
5487 escape_essid(network
->ssid
,
5489 MAC_ARG(network
->bssid
));
5493 /* If an ESSID has been configured then compare the broadcast
5495 if ((priv
->config
& CFG_STATIC_ESSID
) &&
5496 ((network
->ssid_len
!= priv
->essid_len
) ||
5497 memcmp(network
->ssid
, priv
->essid
,
5498 min(network
->ssid_len
, priv
->essid_len
)))) {
5499 char escaped
[IW_ESSID_MAX_SIZE
* 2 + 1];
5501 escape_essid(network
->ssid
, network
->ssid_len
),
5503 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5504 "because of ESSID mismatch: '%s'.\n",
5505 escaped
, MAC_ARG(network
->bssid
),
5506 escape_essid(priv
->essid
,
5512 /* If the old network rate is better than this one, don't bother
5513 * testing everything else. */
5514 if (match
->network
&& match
->network
->stats
.rssi
> network
->stats
.rssi
) {
5515 char escaped
[IW_ESSID_MAX_SIZE
* 2 + 1];
5517 escape_essid(network
->ssid
, network
->ssid_len
),
5519 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded because "
5520 "'%s (" MAC_FMT
")' has a stronger signal.\n",
5521 escaped
, MAC_ARG(network
->bssid
),
5522 escape_essid(match
->network
->ssid
,
5523 match
->network
->ssid_len
),
5524 MAC_ARG(match
->network
->bssid
));
5528 /* If this network has already had an association attempt within the
5529 * last 3 seconds, do not try and associate again... */
5530 if (network
->last_associate
&&
5531 time_after(network
->last_associate
+ (HZ
* 3UL), jiffies
)) {
5532 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5533 "because of storming (%lus since last "
5534 "assoc attempt).\n",
5535 escape_essid(network
->ssid
, network
->ssid_len
),
5536 MAC_ARG(network
->bssid
),
5537 (jiffies
- network
->last_associate
) / HZ
);
5541 /* Now go through and see if the requested network is valid... */
5542 if (priv
->ieee
->scan_age
!= 0 &&
5543 time_after(jiffies
, network
->last_scanned
+ priv
->ieee
->scan_age
)) {
5544 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5545 "because of age: %lums.\n",
5546 escape_essid(network
->ssid
, network
->ssid_len
),
5547 MAC_ARG(network
->bssid
),
5548 1000 * (jiffies
- network
->last_scanned
) / HZ
);
5552 if ((priv
->config
& CFG_STATIC_CHANNEL
) &&
5553 (network
->channel
!= priv
->channel
)) {
5554 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5555 "because of channel mismatch: %d != %d.\n",
5556 escape_essid(network
->ssid
, network
->ssid_len
),
5557 MAC_ARG(network
->bssid
),
5558 network
->channel
, priv
->channel
);
5562 /* Verify privacy compatability */
5563 if (((priv
->capability
& CAP_PRIVACY_ON
) ? 1 : 0) !=
5564 ((network
->capability
& WLAN_CAPABILITY_PRIVACY
) ? 1 : 0)) {
5565 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5566 "because of privacy mismatch: %s != %s.\n",
5567 escape_essid(network
->ssid
, network
->ssid_len
),
5568 MAC_ARG(network
->bssid
),
5569 priv
->capability
& CAP_PRIVACY_ON
? "on" :
5571 network
->capability
&
5572 WLAN_CAPABILITY_PRIVACY
? "on" : "off");
5576 if (!priv
->ieee
->wpa_enabled
&& (network
->wpa_ie_len
> 0 ||
5577 network
->rsn_ie_len
> 0)) {
5578 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5579 "because of WPA capability mismatch.\n",
5580 escape_essid(network
->ssid
, network
->ssid_len
),
5581 MAC_ARG(network
->bssid
));
5585 if ((priv
->config
& CFG_STATIC_BSSID
) &&
5586 memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
)) {
5587 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5588 "because of BSSID mismatch: " MAC_FMT
".\n",
5589 escape_essid(network
->ssid
, network
->ssid_len
),
5590 MAC_ARG(network
->bssid
), MAC_ARG(priv
->bssid
));
5594 /* Filter out any incompatible freq / mode combinations */
5595 if (!ieee80211_is_valid_mode(priv
->ieee
, network
->mode
)) {
5596 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5597 "because of invalid frequency/mode "
5599 escape_essid(network
->ssid
, network
->ssid_len
),
5600 MAC_ARG(network
->bssid
));
5604 /* Filter out invalid channel in current GEO */
5605 if (!ipw_is_valid_channel(priv
->ieee
, network
->channel
)) {
5606 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5607 "because of invalid channel in current GEO\n",
5608 escape_essid(network
->ssid
, network
->ssid_len
),
5609 MAC_ARG(network
->bssid
));
5613 /* Ensure that the rates supported by the driver are compatible with
5614 * this AP, including verification of basic rates (mandatory) */
5615 if (!ipw_compatible_rates(priv
, network
, &rates
)) {
5616 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5617 "because configured rate mask excludes "
5618 "AP mandatory rate.\n",
5619 escape_essid(network
->ssid
, network
->ssid_len
),
5620 MAC_ARG(network
->bssid
));
5624 if (rates
.num_rates
== 0) {
5625 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' excluded "
5626 "because of no compatible rates.\n",
5627 escape_essid(network
->ssid
, network
->ssid_len
),
5628 MAC_ARG(network
->bssid
));
5632 /* TODO: Perform any further minimal comparititive tests. We do not
5633 * want to put too much policy logic here; intelligent scan selection
5634 * should occur within a generic IEEE 802.11 user space tool. */
5636 /* Set up 'new' AP to this network */
5637 ipw_copy_rates(&match
->rates
, &rates
);
5638 match
->network
= network
;
5640 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT
")' is a viable match.\n",
5641 escape_essid(network
->ssid
, network
->ssid_len
),
5642 MAC_ARG(network
->bssid
));
5647 static void ipw_adhoc_create(struct ipw_priv
*priv
,
5648 struct ieee80211_network
*network
)
5650 const struct ieee80211_geo
*geo
= ipw_get_geo(priv
->ieee
);
5654 * For the purposes of scanning, we can set our wireless mode
5655 * to trigger scans across combinations of bands, but when it
5656 * comes to creating a new ad-hoc network, we have tell the FW
5657 * exactly which band to use.
5659 * We also have the possibility of an invalid channel for the
5660 * chossen band. Attempting to create a new ad-hoc network
5661 * with an invalid channel for wireless mode will trigger a
5665 switch (ipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
5666 case IEEE80211_52GHZ_BAND
:
5667 network
->mode
= IEEE_A
;
5668 i
= ipw_channel_to_index(priv
->ieee
, priv
->channel
);
5671 if (geo
->a
[i
].flags
& IEEE80211_CH_PASSIVE_ONLY
) {
5672 IPW_WARNING("Overriding invalid channel\n");
5673 priv
->channel
= geo
->a
[0].channel
;
5677 case IEEE80211_24GHZ_BAND
:
5678 if (priv
->ieee
->mode
& IEEE_G
)
5679 network
->mode
= IEEE_G
;
5681 network
->mode
= IEEE_B
;
5682 i
= ipw_channel_to_index(priv
->ieee
, priv
->channel
);
5685 if (geo
->bg
[i
].flags
& IEEE80211_CH_PASSIVE_ONLY
) {
5686 IPW_WARNING("Overriding invalid channel\n");
5687 priv
->channel
= geo
->bg
[0].channel
;
5692 IPW_WARNING("Overriding invalid channel\n");
5693 if (priv
->ieee
->mode
& IEEE_A
) {
5694 network
->mode
= IEEE_A
;
5695 priv
->channel
= geo
->a
[0].channel
;
5696 } else if (priv
->ieee
->mode
& IEEE_G
) {
5697 network
->mode
= IEEE_G
;
5698 priv
->channel
= geo
->bg
[0].channel
;
5700 network
->mode
= IEEE_B
;
5701 priv
->channel
= geo
->bg
[0].channel
;
5706 network
->channel
= priv
->channel
;
5707 priv
->config
|= CFG_ADHOC_PERSIST
;
5708 ipw_create_bssid(priv
, network
->bssid
);
5709 network
->ssid_len
= priv
->essid_len
;
5710 memcpy(network
->ssid
, priv
->essid
, priv
->essid_len
);
5711 memset(&network
->stats
, 0, sizeof(network
->stats
));
5712 network
->capability
= WLAN_CAPABILITY_IBSS
;
5713 if (!(priv
->config
& CFG_PREAMBLE_LONG
))
5714 network
->capability
|= WLAN_CAPABILITY_SHORT_PREAMBLE
;
5715 if (priv
->capability
& CAP_PRIVACY_ON
)
5716 network
->capability
|= WLAN_CAPABILITY_PRIVACY
;
5717 network
->rates_len
= min(priv
->rates
.num_rates
, MAX_RATES_LENGTH
);
5718 memcpy(network
->rates
, priv
->rates
.supported_rates
, network
->rates_len
);
5719 network
->rates_ex_len
= priv
->rates
.num_rates
- network
->rates_len
;
5720 memcpy(network
->rates_ex
,
5721 &priv
->rates
.supported_rates
[network
->rates_len
],
5722 network
->rates_ex_len
);
5723 network
->last_scanned
= 0;
5725 network
->last_associate
= 0;
5726 network
->time_stamp
[0] = 0;
5727 network
->time_stamp
[1] = 0;
5728 network
->beacon_interval
= 100; /* Default */
5729 network
->listen_interval
= 10; /* Default */
5730 network
->atim_window
= 0; /* Default */
5731 network
->wpa_ie_len
= 0;
5732 network
->rsn_ie_len
= 0;
5735 static void ipw_send_tgi_tx_key(struct ipw_priv
*priv
, int type
, int index
)
5737 struct ipw_tgi_tx_key
*key
;
5738 struct host_cmd cmd
= {
5739 .cmd
= IPW_CMD_TGI_TX_KEY
,
5743 if (!(priv
->ieee
->sec
.flags
& (1 << index
)))
5746 key
= (struct ipw_tgi_tx_key
*)&cmd
.param
;
5747 key
->key_id
= index
;
5748 memcpy(key
->key
, priv
->ieee
->sec
.keys
[index
], SCM_TEMPORAL_KEY_LENGTH
);
5749 key
->security_type
= type
;
5750 key
->station_index
= 0; /* always 0 for BSS */
5752 /* 0 for new key; previous value of counter (after fatal error) */
5753 key
->tx_counter
[0] = 0;
5754 key
->tx_counter
[1] = 0;
5756 ipw_send_cmd(priv
, &cmd
);
5759 static void ipw_send_wep_keys(struct ipw_priv
*priv
, int type
)
5761 struct ipw_wep_key
*key
;
5763 struct host_cmd cmd
= {
5764 .cmd
= IPW_CMD_WEP_KEY
,
5768 key
= (struct ipw_wep_key
*)&cmd
.param
;
5769 key
->cmd_id
= DINO_CMD_WEP_KEY
;
5772 /* Note: AES keys cannot be set for multiple times.
5773 * Only set it at the first time. */
5774 for (i
= 0; i
< 4; i
++) {
5775 key
->key_index
= i
| type
;
5776 if (!(priv
->ieee
->sec
.flags
& (1 << i
))) {
5781 key
->key_size
= priv
->ieee
->sec
.key_sizes
[i
];
5782 memcpy(key
->key
, priv
->ieee
->sec
.keys
[i
], key
->key_size
);
5784 ipw_send_cmd(priv
, &cmd
);
5788 static void ipw_set_hw_decrypt_unicast(struct ipw_priv
*priv
, int level
)
5790 if (priv
->ieee
->host_encrypt
)
5795 priv
->sys_config
.disable_unicast_decryption
= 0;
5796 priv
->ieee
->host_decrypt
= 0;
5799 priv
->sys_config
.disable_unicast_decryption
= 1;
5800 priv
->ieee
->host_decrypt
= 1;
5803 priv
->sys_config
.disable_unicast_decryption
= 0;
5804 priv
->ieee
->host_decrypt
= 0;
5807 priv
->sys_config
.disable_unicast_decryption
= 1;
5814 static void ipw_set_hw_decrypt_multicast(struct ipw_priv
*priv
, int level
)
5816 if (priv
->ieee
->host_encrypt
)
5821 priv
->sys_config
.disable_multicast_decryption
= 0;
5824 priv
->sys_config
.disable_multicast_decryption
= 1;
5827 priv
->sys_config
.disable_multicast_decryption
= 0;
5830 priv
->sys_config
.disable_multicast_decryption
= 1;
5837 static void ipw_set_hwcrypto_keys(struct ipw_priv
*priv
)
5839 switch (priv
->ieee
->sec
.level
) {
5841 if (priv
->ieee
->sec
.flags
& SEC_ACTIVE_KEY
)
5842 ipw_send_tgi_tx_key(priv
,
5843 DCT_FLAG_EXT_SECURITY_CCM
,
5844 priv
->ieee
->sec
.active_key
);
5846 if (!priv
->ieee
->host_mc_decrypt
)
5847 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_CCM
);
5850 if (priv
->ieee
->sec
.flags
& SEC_ACTIVE_KEY
)
5851 ipw_send_tgi_tx_key(priv
,
5852 DCT_FLAG_EXT_SECURITY_TKIP
,
5853 priv
->ieee
->sec
.active_key
);
5856 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_WEP
);
5857 ipw_set_hw_decrypt_unicast(priv
, priv
->ieee
->sec
.level
);
5858 ipw_set_hw_decrypt_multicast(priv
, priv
->ieee
->sec
.level
);
5866 static void ipw_adhoc_check(void *data
)
5868 struct ipw_priv
*priv
= data
;
5870 if (priv
->missed_adhoc_beacons
++ > priv
->disassociate_threshold
&&
5871 !(priv
->config
& CFG_ADHOC_PERSIST
)) {
5872 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
5873 IPW_DL_STATE
| IPW_DL_ASSOC
,
5874 "Missed beacon: %d - disassociate\n",
5875 priv
->missed_adhoc_beacons
);
5876 ipw_remove_current_network(priv
);
5877 ipw_disassociate(priv
);
5881 queue_delayed_work(priv
->workqueue
, &priv
->adhoc_check
,
5882 priv
->assoc_request
.beacon_interval
);
5885 static void ipw_bg_adhoc_check(void *data
)
5887 struct ipw_priv
*priv
= data
;
5889 ipw_adhoc_check(data
);
5893 #ifdef CONFIG_IPW2200_DEBUG
5894 static void ipw_debug_config(struct ipw_priv
*priv
)
5896 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5897 "[CFG 0x%08X]\n", priv
->config
);
5898 if (priv
->config
& CFG_STATIC_CHANNEL
)
5899 IPW_DEBUG_INFO("Channel locked to %d\n", priv
->channel
);
5901 IPW_DEBUG_INFO("Channel unlocked.\n");
5902 if (priv
->config
& CFG_STATIC_ESSID
)
5903 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5904 escape_essid(priv
->essid
, priv
->essid_len
));
5906 IPW_DEBUG_INFO("ESSID unlocked.\n");
5907 if (priv
->config
& CFG_STATIC_BSSID
)
5908 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT
"\n",
5909 MAC_ARG(priv
->bssid
));
5911 IPW_DEBUG_INFO("BSSID unlocked.\n");
5912 if (priv
->capability
& CAP_PRIVACY_ON
)
5913 IPW_DEBUG_INFO("PRIVACY on\n");
5915 IPW_DEBUG_INFO("PRIVACY off\n");
5916 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv
->rates_mask
);
5919 #define ipw_debug_config(x) do {} while (0)
5922 static void ipw_set_fixed_rate(struct ipw_priv
*priv
, int mode
)
5924 /* TODO: Verify that this works... */
5925 struct ipw_fixed_rate fr
= {
5926 .tx_rates
= priv
->rates_mask
5931 /* Identify 'current FW band' and match it with the fixed
5934 switch (priv
->ieee
->freq_band
) {
5935 case IEEE80211_52GHZ_BAND
: /* A only */
5937 if (priv
->rates_mask
& ~IEEE80211_OFDM_RATES_MASK
) {
5938 /* Invalid fixed rate mask */
5940 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5945 fr
.tx_rates
>>= IEEE80211_OFDM_SHIFT_MASK_A
;
5948 default: /* 2.4Ghz or Mixed */
5950 if (mode
== IEEE_B
) {
5951 if (fr
.tx_rates
& ~IEEE80211_CCK_RATES_MASK
) {
5952 /* Invalid fixed rate mask */
5954 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5961 if (fr
.tx_rates
& ~(IEEE80211_CCK_RATES_MASK
|
5962 IEEE80211_OFDM_RATES_MASK
)) {
5963 /* Invalid fixed rate mask */
5965 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5970 if (IEEE80211_OFDM_RATE_6MB_MASK
& fr
.tx_rates
) {
5971 mask
|= (IEEE80211_OFDM_RATE_6MB_MASK
>> 1);
5972 fr
.tx_rates
&= ~IEEE80211_OFDM_RATE_6MB_MASK
;
5975 if (IEEE80211_OFDM_RATE_9MB_MASK
& fr
.tx_rates
) {
5976 mask
|= (IEEE80211_OFDM_RATE_9MB_MASK
>> 1);
5977 fr
.tx_rates
&= ~IEEE80211_OFDM_RATE_9MB_MASK
;
5980 if (IEEE80211_OFDM_RATE_12MB_MASK
& fr
.tx_rates
) {
5981 mask
|= (IEEE80211_OFDM_RATE_12MB_MASK
>> 1);
5982 fr
.tx_rates
&= ~IEEE80211_OFDM_RATE_12MB_MASK
;
5985 fr
.tx_rates
|= mask
;
5989 reg
= ipw_read32(priv
, IPW_MEM_FIXED_OVERRIDE
);
5990 ipw_write_reg32(priv
, reg
, *(u32
*) & fr
);
5993 static void ipw_abort_scan(struct ipw_priv
*priv
)
5997 if (priv
->status
& STATUS_SCAN_ABORTING
) {
5998 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6001 priv
->status
|= STATUS_SCAN_ABORTING
;
6003 err
= ipw_send_scan_abort(priv
);
6005 IPW_DEBUG_HC("Request to abort scan failed.\n");
6008 static void ipw_add_scan_channels(struct ipw_priv
*priv
,
6009 struct ipw_scan_request_ext
*scan
,
6012 int channel_index
= 0;
6013 const struct ieee80211_geo
*geo
;
6016 geo
= ipw_get_geo(priv
->ieee
);
6018 if (priv
->ieee
->freq_band
& IEEE80211_52GHZ_BAND
) {
6019 int start
= channel_index
;
6020 for (i
= 0; i
< geo
->a_channels
; i
++) {
6021 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6022 geo
->a
[i
].channel
== priv
->channel
)
6025 scan
->channels_list
[channel_index
] = geo
->a
[i
].channel
;
6026 ipw_set_scan_type(scan
, channel_index
,
6028 flags
& IEEE80211_CH_PASSIVE_ONLY
?
6029 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
:
6033 if (start
!= channel_index
) {
6034 scan
->channels_list
[start
] = (u8
) (IPW_A_MODE
<< 6) |
6035 (channel_index
- start
);
6040 if (priv
->ieee
->freq_band
& IEEE80211_24GHZ_BAND
) {
6041 int start
= channel_index
;
6042 if (priv
->config
& CFG_SPEED_SCAN
) {
6044 u8 channels
[IEEE80211_24GHZ_CHANNELS
] = {
6045 /* nop out the list */
6050 while (channel_index
< IPW_SCAN_CHANNELS
) {
6052 priv
->speed_scan
[priv
->speed_scan_pos
];
6054 priv
->speed_scan_pos
= 0;
6055 channel
= priv
->speed_scan
[0];
6057 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6058 channel
== priv
->channel
) {
6059 priv
->speed_scan_pos
++;
6063 /* If this channel has already been
6064 * added in scan, break from loop
6065 * and this will be the first channel
6068 if (channels
[channel
- 1] != 0)
6071 channels
[channel
- 1] = 1;
6072 priv
->speed_scan_pos
++;
6074 scan
->channels_list
[channel_index
] = channel
;
6076 ipw_channel_to_index(priv
->ieee
, channel
);
6077 ipw_set_scan_type(scan
, channel_index
,
6080 IEEE80211_CH_PASSIVE_ONLY
?
6081 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6085 for (i
= 0; i
< geo
->bg_channels
; i
++) {
6086 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6087 geo
->bg
[i
].channel
== priv
->channel
)
6090 scan
->channels_list
[channel_index
] =
6092 ipw_set_scan_type(scan
, channel_index
,
6095 IEEE80211_CH_PASSIVE_ONLY
?
6096 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6101 if (start
!= channel_index
) {
6102 scan
->channels_list
[start
] = (u8
) (IPW_B_MODE
<< 6) |
6103 (channel_index
- start
);
6108 static int ipw_request_scan(struct ipw_priv
*priv
)
6110 struct ipw_scan_request_ext scan
;
6111 int err
= 0, scan_type
;
6113 if (!(priv
->status
& STATUS_INIT
) ||
6114 (priv
->status
& STATUS_EXIT_PENDING
))
6119 if (priv
->status
& STATUS_SCANNING
) {
6120 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6121 priv
->status
|= STATUS_SCAN_PENDING
;
6125 if (!(priv
->status
& STATUS_SCAN_FORCED
) &&
6126 priv
->status
& STATUS_SCAN_ABORTING
) {
6127 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6128 priv
->status
|= STATUS_SCAN_PENDING
;
6132 if (priv
->status
& STATUS_RF_KILL_MASK
) {
6133 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6134 priv
->status
|= STATUS_SCAN_PENDING
;
6138 memset(&scan
, 0, sizeof(scan
));
6140 if (priv
->config
& CFG_SPEED_SCAN
)
6141 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_SCAN
] =
6144 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_SCAN
] =
6147 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
] =
6149 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] = cpu_to_le16(120);
6151 scan
.full_scan_index
= cpu_to_le32(ieee80211_get_scans(priv
->ieee
));
6153 #ifdef CONFIG_IPW2200_MONITOR
6154 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
6158 switch (ipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
6159 case IEEE80211_52GHZ_BAND
:
6160 band
= (u8
) (IPW_A_MODE
<< 6) | 1;
6161 channel
= priv
->channel
;
6164 case IEEE80211_24GHZ_BAND
:
6165 band
= (u8
) (IPW_B_MODE
<< 6) | 1;
6166 channel
= priv
->channel
;
6170 band
= (u8
) (IPW_B_MODE
<< 6) | 1;
6175 scan
.channels_list
[0] = band
;
6176 scan
.channels_list
[1] = channel
;
6177 ipw_set_scan_type(&scan
, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
);
6179 /* NOTE: The card will sit on this channel for this time
6180 * period. Scan aborts are timing sensitive and frequently
6181 * result in firmware restarts. As such, it is best to
6182 * set a small dwell_time here and just keep re-issuing
6183 * scans. Otherwise fast channel hopping will not actually
6186 * TODO: Move SPEED SCAN support to all modes and bands */
6187 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] =
6190 #endif /* CONFIG_IPW2200_MONITOR */
6191 /* If we are roaming, then make this a directed scan for the
6192 * current network. Otherwise, ensure that every other scan
6193 * is a fast channel hop scan */
6194 if ((priv
->status
& STATUS_ROAMING
)
6195 || (!(priv
->status
& STATUS_ASSOCIATED
)
6196 && (priv
->config
& CFG_STATIC_ESSID
)
6197 && (le32_to_cpu(scan
.full_scan_index
) % 2))) {
6198 err
= ipw_send_ssid(priv
, priv
->essid
, priv
->essid_len
);
6200 IPW_DEBUG_HC("Attempt to send SSID command "
6205 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
;
6207 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_SCAN
;
6209 ipw_add_scan_channels(priv
, &scan
, scan_type
);
6210 #ifdef CONFIG_IPW2200_MONITOR
6214 err
= ipw_send_scan_request_ext(priv
, &scan
);
6216 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err
);
6220 priv
->status
|= STATUS_SCANNING
;
6221 priv
->status
&= ~STATUS_SCAN_PENDING
;
6222 queue_delayed_work(priv
->workqueue
, &priv
->scan_check
,
6223 IPW_SCAN_CHECK_WATCHDOG
);
6229 static void ipw_bg_abort_scan(void *data
)
6231 struct ipw_priv
*priv
= data
;
6233 ipw_abort_scan(data
);
6237 static int ipw_wpa_enable(struct ipw_priv
*priv
, int value
)
6239 /* This is called when wpa_supplicant loads and closes the driver
6241 priv
->ieee
->wpa_enabled
= value
;
6245 static int ipw_wpa_set_auth_algs(struct ipw_priv
*priv
, int value
)
6247 struct ieee80211_device
*ieee
= priv
->ieee
;
6248 struct ieee80211_security sec
= {
6249 .flags
= SEC_AUTH_MODE
,
6253 if (value
& IW_AUTH_ALG_SHARED_KEY
) {
6254 sec
.auth_mode
= WLAN_AUTH_SHARED_KEY
;
6256 } else if (value
& IW_AUTH_ALG_OPEN_SYSTEM
) {
6257 sec
.auth_mode
= WLAN_AUTH_OPEN
;
6259 } else if (value
& IW_AUTH_ALG_LEAP
) {
6260 sec
.auth_mode
= WLAN_AUTH_LEAP
;
6265 if (ieee
->set_security
)
6266 ieee
->set_security(ieee
->dev
, &sec
);
6273 static void ipw_wpa_assoc_frame(struct ipw_priv
*priv
, char *wpa_ie
,
6276 /* make sure WPA is enabled */
6277 ipw_wpa_enable(priv
, 1);
6279 ipw_disassociate(priv
);
6282 static int ipw_set_rsn_capa(struct ipw_priv
*priv
,
6283 char *capabilities
, int length
)
6285 struct host_cmd cmd
= {
6286 .cmd
= IPW_CMD_RSN_CAPABILITIES
,
6290 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6292 memcpy(cmd
.param
, capabilities
, length
);
6293 return ipw_send_cmd(priv
, &cmd
);
6301 static int ipw_wx_set_genie(struct net_device
*dev
,
6302 struct iw_request_info
*info
,
6303 union iwreq_data
*wrqu
, char *extra
)
6305 struct ipw_priv
*priv
= ieee80211_priv(dev
);
6306 struct ieee80211_device
*ieee
= priv
->ieee
;
6310 if (wrqu
->data
.length
> MAX_WPA_IE_LEN
||
6311 (wrqu
->data
.length
&& extra
== NULL
))
6316 //if (!ieee->wpa_enabled) {
6317 // err = -EOPNOTSUPP;
6321 if (wrqu
->data
.length
) {
6322 buf
= kmalloc(wrqu
->data
.length
, GFP_KERNEL
);
6328 memcpy(buf
, extra
, wrqu
->data
.length
);
6329 kfree(ieee
->wpa_ie
);
6331 ieee
->wpa_ie_len
= wrqu
->data
.length
;
6333 kfree(ieee
->wpa_ie
);
6334 ieee
->wpa_ie
= NULL
;
6335 ieee
->wpa_ie_len
= 0;
6338 ipw_wpa_assoc_frame(priv
, ieee
->wpa_ie
, ieee
->wpa_ie_len
);
6345 static int ipw_wx_get_genie(struct net_device
*dev
,
6346 struct iw_request_info
*info
,
6347 union iwreq_data
*wrqu
, char *extra
)
6349 struct ipw_priv
*priv
= ieee80211_priv(dev
);
6350 struct ieee80211_device
*ieee
= priv
->ieee
;
6355 //if (!ieee->wpa_enabled) {
6356 // err = -EOPNOTSUPP;
6360 if (ieee
->wpa_ie_len
== 0 || ieee
->wpa_ie
== NULL
) {
6361 wrqu
->data
.length
= 0;
6365 if (wrqu
->data
.length
< ieee
->wpa_ie_len
) {
6370 wrqu
->data
.length
= ieee
->wpa_ie_len
;
6371 memcpy(extra
, ieee
->wpa_ie
, ieee
->wpa_ie_len
);
6378 static int wext_cipher2level(int cipher
)
6381 case IW_AUTH_CIPHER_NONE
:
6383 case IW_AUTH_CIPHER_WEP40
:
6384 case IW_AUTH_CIPHER_WEP104
:
6386 case IW_AUTH_CIPHER_TKIP
:
6388 case IW_AUTH_CIPHER_CCMP
:
6396 static int ipw_wx_set_auth(struct net_device
*dev
,
6397 struct iw_request_info
*info
,
6398 union iwreq_data
*wrqu
, char *extra
)
6400 struct ipw_priv
*priv
= ieee80211_priv(dev
);
6401 struct ieee80211_device
*ieee
= priv
->ieee
;
6402 struct iw_param
*param
= &wrqu
->param
;
6403 struct ieee80211_crypt_data
*crypt
;
6404 unsigned long flags
;
6407 switch (param
->flags
& IW_AUTH_INDEX
) {
6408 case IW_AUTH_WPA_VERSION
:
6410 case IW_AUTH_CIPHER_PAIRWISE
:
6411 ipw_set_hw_decrypt_unicast(priv
,
6412 wext_cipher2level(param
->value
));
6414 case IW_AUTH_CIPHER_GROUP
:
6415 ipw_set_hw_decrypt_multicast(priv
,
6416 wext_cipher2level(param
->value
));
6418 case IW_AUTH_KEY_MGMT
:
6420 * ipw2200 does not use these parameters
6424 case IW_AUTH_TKIP_COUNTERMEASURES
:
6425 crypt
= priv
->ieee
->crypt
[priv
->ieee
->tx_keyidx
];
6426 if (!crypt
|| !crypt
->ops
->set_flags
|| !crypt
->ops
->get_flags
)
6429 flags
= crypt
->ops
->get_flags(crypt
->priv
);
6432 flags
|= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
;
6434 flags
&= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
;
6436 crypt
->ops
->set_flags(flags
, crypt
->priv
);
6440 case IW_AUTH_DROP_UNENCRYPTED
:{
6443 * wpa_supplicant calls set_wpa_enabled when the driver
6444 * is loaded and unloaded, regardless of if WPA is being
6445 * used. No other calls are made which can be used to
6446 * determine if encryption will be used or not prior to
6447 * association being expected. If encryption is not being
6448 * used, drop_unencrypted is set to false, else true -- we
6449 * can use this to determine if the CAP_PRIVACY_ON bit should
6452 struct ieee80211_security sec
= {
6453 .flags
= SEC_ENABLED
,
6454 .enabled
= param
->value
,
6456 priv
->ieee
->drop_unencrypted
= param
->value
;
6457 /* We only change SEC_LEVEL for open mode. Others
6458 * are set by ipw_wpa_set_encryption.
6460 if (!param
->value
) {
6461 sec
.flags
|= SEC_LEVEL
;
6462 sec
.level
= SEC_LEVEL_0
;
6464 sec
.flags
|= SEC_LEVEL
;
6465 sec
.level
= SEC_LEVEL_1
;
6467 if (priv
->ieee
->set_security
)
6468 priv
->ieee
->set_security(priv
->ieee
->dev
, &sec
);
6472 case IW_AUTH_80211_AUTH_ALG
:
6473 ret
= ipw_wpa_set_auth_algs(priv
, param
->value
);
6476 case IW_AUTH_WPA_ENABLED
:
6477 ret
= ipw_wpa_enable(priv
, param
->value
);
6480 case IW_AUTH_RX_UNENCRYPTED_EAPOL
:
6481 ieee
->ieee802_1x
= param
->value
;
6484 //case IW_AUTH_ROAMING_CONTROL:
6485 case IW_AUTH_PRIVACY_INVOKED
:
6486 ieee
->privacy_invoked
= param
->value
;
6496 static int ipw_wx_get_auth(struct net_device
*dev
,
6497 struct iw_request_info
*info
,
6498 union iwreq_data
*wrqu
, char *extra
)
6500 struct ipw_priv
*priv
= ieee80211_priv(dev
);
6501 struct ieee80211_device
*ieee
= priv
->ieee
;
6502 struct ieee80211_crypt_data
*crypt
;
6503 struct iw_param
*param
= &wrqu
->param
;
6506 switch (param
->flags
& IW_AUTH_INDEX
) {
6507 case IW_AUTH_WPA_VERSION
:
6508 case IW_AUTH_CIPHER_PAIRWISE
:
6509 case IW_AUTH_CIPHER_GROUP
:
6510 case IW_AUTH_KEY_MGMT
:
6512 * wpa_supplicant will control these internally
6517 case IW_AUTH_TKIP_COUNTERMEASURES
:
6518 crypt
= priv
->ieee
->crypt
[priv
->ieee
->tx_keyidx
];
6519 if (!crypt
|| !crypt
->ops
->get_flags
)
6522 param
->value
= (crypt
->ops
->get_flags(crypt
->priv
) &
6523 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
) ? 1 : 0;
6527 case IW_AUTH_DROP_UNENCRYPTED
:
6528 param
->value
= ieee
->drop_unencrypted
;
6531 case IW_AUTH_80211_AUTH_ALG
:
6532 param
->value
= ieee
->sec
.auth_mode
;
6535 case IW_AUTH_WPA_ENABLED
:
6536 param
->value
= ieee
->wpa_enabled
;
6539 case IW_AUTH_RX_UNENCRYPTED_EAPOL
:
6540 param
->value
= ieee
->ieee802_1x
;
6543 case IW_AUTH_ROAMING_CONTROL
:
6544 case IW_AUTH_PRIVACY_INVOKED
:
6545 param
->value
= ieee
->privacy_invoked
;
6554 /* SIOCSIWENCODEEXT */
6555 static int ipw_wx_set_encodeext(struct net_device
*dev
,
6556 struct iw_request_info
*info
,
6557 union iwreq_data
*wrqu
, char *extra
)
6559 struct ipw_priv
*priv
= ieee80211_priv(dev
);
6560 struct iw_encode_ext
*ext
= (struct iw_encode_ext
*)extra
;
6563 if (ext
->alg
== IW_ENCODE_ALG_TKIP
) {
6564 /* IPW HW can't build TKIP MIC,
6565 host decryption still needed */
6566 if (ext
->ext_flags
& IW_ENCODE_EXT_GROUP_KEY
)
6567 priv
->ieee
->host_mc_decrypt
= 1;
6569 priv
->ieee
->host_encrypt
= 0;
6570 priv
->ieee
->host_encrypt_msdu
= 1;
6571 priv
->ieee
->host_decrypt
= 1;
6574 priv
->ieee
->host_encrypt
= 0;
6575 priv
->ieee
->host_encrypt_msdu
= 0;
6576 priv
->ieee
->host_decrypt
= 0;
6577 priv
->ieee
->host_mc_decrypt
= 0;
6581 return ieee80211_wx_set_encodeext(priv
->ieee
, info
, wrqu
, extra
);
6584 /* SIOCGIWENCODEEXT */
6585 static int ipw_wx_get_encodeext(struct net_device
*dev
,
6586 struct iw_request_info
*info
,
6587 union iwreq_data
*wrqu
, char *extra
)
6589 struct ipw_priv
*priv
= ieee80211_priv(dev
);
6590 return ieee80211_wx_get_encodeext(priv
->ieee
, info
, wrqu
, extra
);
6594 static int ipw_wx_set_mlme(struct net_device
*dev
,
6595 struct iw_request_info
*info
,
6596 union iwreq_data
*wrqu
, char *extra
)
6598 struct ipw_priv
*priv
= ieee80211_priv(dev
);
6599 struct iw_mlme
*mlme
= (struct iw_mlme
*)extra
;
6602 reason
= cpu_to_le16(mlme
->reason_code
);
6604 switch (mlme
->cmd
) {
6605 case IW_MLME_DEAUTH
:
6609 case IW_MLME_DISASSOC
:
6610 ipw_disassociate(priv
);
6619 #ifdef CONFIG_IPW_QOS
6623 * get the modulation type of the current network or
6624 * the card current mode
6626 u8
ipw_qos_current_mode(struct ipw_priv
* priv
)
6630 if (priv
->status
& STATUS_ASSOCIATED
) {
6631 unsigned long flags
;
6633 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
6634 mode
= priv
->assoc_network
->mode
;
6635 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
6637 mode
= priv
->ieee
->mode
;
6639 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode
);
6644 * Handle management frame beacon and probe response
6646 static int ipw_qos_handle_probe_response(struct ipw_priv
*priv
,
6648 struct ieee80211_network
*network
)
6650 u32 size
= sizeof(struct ieee80211_qos_parameters
);
6652 if (network
->capability
& WLAN_CAPABILITY_IBSS
)
6653 network
->qos_data
.active
= network
->qos_data
.supported
;
6655 if (network
->flags
& NETWORK_HAS_QOS_MASK
) {
6656 if (active_network
&&
6657 (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
))
6658 network
->qos_data
.active
= network
->qos_data
.supported
;
6660 if ((network
->qos_data
.active
== 1) && (active_network
== 1) &&
6661 (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
) &&
6662 (network
->qos_data
.old_param_count
!=
6663 network
->qos_data
.param_count
)) {
6664 network
->qos_data
.old_param_count
=
6665 network
->qos_data
.param_count
;
6666 schedule_work(&priv
->qos_activate
);
6667 IPW_DEBUG_QOS("QoS parameters change call "
6671 if ((priv
->ieee
->mode
== IEEE_B
) || (network
->mode
== IEEE_B
))
6672 memcpy(&network
->qos_data
.parameters
,
6673 &def_parameters_CCK
, size
);
6675 memcpy(&network
->qos_data
.parameters
,
6676 &def_parameters_OFDM
, size
);
6678 if ((network
->qos_data
.active
== 1) && (active_network
== 1)) {
6679 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6680 schedule_work(&priv
->qos_activate
);
6683 network
->qos_data
.active
= 0;
6684 network
->qos_data
.supported
= 0;
6686 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6687 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) && (active_network
== 0)) {
6688 if (memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
))
6689 if ((network
->capability
& WLAN_CAPABILITY_IBSS
) &&
6690 !(network
->flags
& NETWORK_EMPTY_ESSID
))
6691 if ((network
->ssid_len
==
6692 priv
->assoc_network
->ssid_len
) &&
6693 !memcmp(network
->ssid
,
6694 priv
->assoc_network
->ssid
,
6695 network
->ssid_len
)) {
6696 queue_work(priv
->workqueue
,
6697 &priv
->merge_networks
);
6705 * This function set up the firmware to support QoS. It sends
6706 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6708 static int ipw_qos_activate(struct ipw_priv
*priv
,
6709 struct ieee80211_qos_data
*qos_network_data
)
6712 struct ieee80211_qos_parameters qos_parameters
[QOS_QOS_SETS
];
6713 struct ieee80211_qos_parameters
*active_one
= NULL
;
6714 u32 size
= sizeof(struct ieee80211_qos_parameters
);
6719 type
= ipw_qos_current_mode(priv
);
6721 active_one
= &(qos_parameters
[QOS_PARAM_SET_DEF_CCK
]);
6722 memcpy(active_one
, priv
->qos_data
.def_qos_parm_CCK
, size
);
6723 active_one
= &(qos_parameters
[QOS_PARAM_SET_DEF_OFDM
]);
6724 memcpy(active_one
, priv
->qos_data
.def_qos_parm_OFDM
, size
);
6726 if (qos_network_data
== NULL
) {
6727 if (type
== IEEE_B
) {
6728 IPW_DEBUG_QOS("QoS activate network mode %d\n", type
);
6729 active_one
= &def_parameters_CCK
;
6731 active_one
= &def_parameters_OFDM
;
6733 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
6734 burst_duration
= ipw_qos_get_burst_duration(priv
);
6735 for (i
= 0; i
< QOS_QUEUE_NUM
; i
++)
6736 qos_parameters
[QOS_PARAM_SET_ACTIVE
].tx_op_limit
[i
] =
6737 (u16
) burst_duration
;
6738 } else if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
6739 if (type
== IEEE_B
) {
6740 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6742 if (priv
->qos_data
.qos_enable
== 0)
6743 active_one
= &def_parameters_CCK
;
6745 active_one
= priv
->qos_data
.def_qos_parm_CCK
;
6747 if (priv
->qos_data
.qos_enable
== 0)
6748 active_one
= &def_parameters_OFDM
;
6750 active_one
= priv
->qos_data
.def_qos_parm_OFDM
;
6752 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
6754 unsigned long flags
;
6757 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
6758 active_one
= &(qos_network_data
->parameters
);
6759 qos_network_data
->old_param_count
=
6760 qos_network_data
->param_count
;
6761 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
6762 active
= qos_network_data
->supported
;
6763 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
6766 burst_duration
= ipw_qos_get_burst_duration(priv
);
6767 for (i
= 0; i
< QOS_QUEUE_NUM
; i
++)
6768 qos_parameters
[QOS_PARAM_SET_ACTIVE
].
6769 tx_op_limit
[i
] = (u16
) burst_duration
;
6773 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6774 err
= ipw_send_qos_params_command(priv
,
6775 (struct ieee80211_qos_parameters
*)
6776 &(qos_parameters
[0]));
6778 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6784 * send IPW_CMD_WME_INFO to the firmware
6786 static int ipw_qos_set_info_element(struct ipw_priv
*priv
)
6789 struct ieee80211_qos_information_element qos_info
;
6794 qos_info
.elementID
= QOS_ELEMENT_ID
;
6795 qos_info
.length
= sizeof(struct ieee80211_qos_information_element
) - 2;
6797 qos_info
.version
= QOS_VERSION_1
;
6798 qos_info
.ac_info
= 0;
6800 memcpy(qos_info
.qui
, qos_oui
, QOS_OUI_LEN
);
6801 qos_info
.qui_type
= QOS_OUI_TYPE
;
6802 qos_info
.qui_subtype
= QOS_OUI_INFO_SUB_TYPE
;
6804 ret
= ipw_send_qos_info_command(priv
, &qos_info
);
6806 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6812 * Set the QoS parameter with the association request structure
6814 static int ipw_qos_association(struct ipw_priv
*priv
,
6815 struct ieee80211_network
*network
)
6818 struct ieee80211_qos_data
*qos_data
= NULL
;
6819 struct ieee80211_qos_data ibss_data
= {
6824 switch (priv
->ieee
->iw_mode
) {
6826 if (!(network
->capability
& WLAN_CAPABILITY_IBSS
))
6829 qos_data
= &ibss_data
;
6833 qos_data
= &network
->qos_data
;
6841 err
= ipw_qos_activate(priv
, qos_data
);
6843 priv
->assoc_request
.policy_support
&= ~HC_QOS_SUPPORT_ASSOC
;
6847 if (priv
->qos_data
.qos_enable
&& qos_data
->supported
) {
6848 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6849 priv
->assoc_request
.policy_support
|= HC_QOS_SUPPORT_ASSOC
;
6850 return ipw_qos_set_info_element(priv
);
6857 * handling the beaconing responces. if we get different QoS setting
6858 * of the network from the the associated setting adjust the QoS
6861 static int ipw_qos_association_resp(struct ipw_priv
*priv
,
6862 struct ieee80211_network
*network
)
6865 unsigned long flags
;
6866 u32 size
= sizeof(struct ieee80211_qos_parameters
);
6867 int set_qos_param
= 0;
6869 if ((priv
== NULL
) || (network
== NULL
) ||
6870 (priv
->assoc_network
== NULL
))
6873 if (!(priv
->status
& STATUS_ASSOCIATED
))
6876 if ((priv
->ieee
->iw_mode
!= IW_MODE_INFRA
))
6879 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
6880 if (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
) {
6881 memcpy(&priv
->assoc_network
->qos_data
, &network
->qos_data
,
6882 sizeof(struct ieee80211_qos_data
));
6883 priv
->assoc_network
->qos_data
.active
= 1;
6884 if ((network
->qos_data
.old_param_count
!=
6885 network
->qos_data
.param_count
)) {
6887 network
->qos_data
.old_param_count
=
6888 network
->qos_data
.param_count
;
6892 if ((network
->mode
== IEEE_B
) || (priv
->ieee
->mode
== IEEE_B
))
6893 memcpy(&priv
->assoc_network
->qos_data
.parameters
,
6894 &def_parameters_CCK
, size
);
6896 memcpy(&priv
->assoc_network
->qos_data
.parameters
,
6897 &def_parameters_OFDM
, size
);
6898 priv
->assoc_network
->qos_data
.active
= 0;
6899 priv
->assoc_network
->qos_data
.supported
= 0;
6903 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
6905 if (set_qos_param
== 1)
6906 schedule_work(&priv
->qos_activate
);
6911 static u32
ipw_qos_get_burst_duration(struct ipw_priv
*priv
)
6918 if (!(priv
->ieee
->modulation
& IEEE80211_OFDM_MODULATION
))
6919 ret
= priv
->qos_data
.burst_duration_CCK
;
6921 ret
= priv
->qos_data
.burst_duration_OFDM
;
6927 * Initialize the setting of QoS global
6929 static void ipw_qos_init(struct ipw_priv
*priv
, int enable
,
6930 int burst_enable
, u32 burst_duration_CCK
,
6931 u32 burst_duration_OFDM
)
6933 priv
->qos_data
.qos_enable
= enable
;
6935 if (priv
->qos_data
.qos_enable
) {
6936 priv
->qos_data
.def_qos_parm_CCK
= &def_qos_parameters_CCK
;
6937 priv
->qos_data
.def_qos_parm_OFDM
= &def_qos_parameters_OFDM
;
6938 IPW_DEBUG_QOS("QoS is enabled\n");
6940 priv
->qos_data
.def_qos_parm_CCK
= &def_parameters_CCK
;
6941 priv
->qos_data
.def_qos_parm_OFDM
= &def_parameters_OFDM
;
6942 IPW_DEBUG_QOS("QoS is not enabled\n");
6945 priv
->qos_data
.burst_enable
= burst_enable
;
6948 priv
->qos_data
.burst_duration_CCK
= burst_duration_CCK
;
6949 priv
->qos_data
.burst_duration_OFDM
= burst_duration_OFDM
;
6951 priv
->qos_data
.burst_duration_CCK
= 0;
6952 priv
->qos_data
.burst_duration_OFDM
= 0;
6957 * map the packet priority to the right TX Queue
6959 static int ipw_get_tx_queue_number(struct ipw_priv
*priv
, u16 priority
)
6961 if (priority
> 7 || !priv
->qos_data
.qos_enable
)
6964 return from_priority_to_tx_queue
[priority
] - 1;
6968 * add QoS parameter to the TX command
6970 static int ipw_qos_set_tx_queue_command(struct ipw_priv
*priv
,
6972 struct tfd_data
*tfd
, u8 unicast
)
6975 int tx_queue_id
= 0;
6976 struct ieee80211_qos_data
*qos_data
= NULL
;
6977 int active
, supported
;
6978 unsigned long flags
;
6980 if (!(priv
->status
& STATUS_ASSOCIATED
))
6983 qos_data
= &priv
->assoc_network
->qos_data
;
6985 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
6987 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
6989 qos_data
->active
= 0;
6991 qos_data
->active
= qos_data
->supported
;
6994 active
= qos_data
->active
;
6995 supported
= qos_data
->supported
;
6997 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
6999 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7001 priv
->qos_data
.qos_enable
, active
, supported
, unicast
);
7002 if (active
&& priv
->qos_data
.qos_enable
) {
7003 ret
= from_priority_to_tx_queue
[priority
];
7004 tx_queue_id
= ret
- 1;
7005 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority
);
7006 if (priority
<= 7) {
7007 tfd
->tx_flags_ext
|= DCT_FLAG_EXT_QOS_ENABLED
;
7008 tfd
->tfd
.tfd_26
.mchdr
.qos_ctrl
= priority
;
7009 tfd
->tfd
.tfd_26
.mchdr
.frame_ctl
|=
7010 IEEE80211_STYPE_QOS_DATA
;
7012 if (priv
->qos_data
.qos_no_ack_mask
&
7013 (1UL << tx_queue_id
)) {
7014 tfd
->tx_flags
&= ~DCT_FLAG_ACK_REQD
;
7015 tfd
->tfd
.tfd_26
.mchdr
.qos_ctrl
|=
7025 * background support to run QoS activate functionality
7027 static void ipw_bg_qos_activate(void *data
)
7029 struct ipw_priv
*priv
= data
;
7036 if (priv
->status
& STATUS_ASSOCIATED
)
7037 ipw_qos_activate(priv
, &(priv
->assoc_network
->qos_data
));
7042 static int ipw_handle_probe_response(struct net_device
*dev
,
7043 struct ieee80211_probe_response
*resp
,
7044 struct ieee80211_network
*network
)
7046 struct ipw_priv
*priv
= ieee80211_priv(dev
);
7047 int active_network
= ((priv
->status
& STATUS_ASSOCIATED
) &&
7048 (network
== priv
->assoc_network
));
7050 ipw_qos_handle_probe_response(priv
, active_network
, network
);
7055 static int ipw_handle_beacon(struct net_device
*dev
,
7056 struct ieee80211_beacon
*resp
,
7057 struct ieee80211_network
*network
)
7059 struct ipw_priv
*priv
= ieee80211_priv(dev
);
7060 int active_network
= ((priv
->status
& STATUS_ASSOCIATED
) &&
7061 (network
== priv
->assoc_network
));
7063 ipw_qos_handle_probe_response(priv
, active_network
, network
);
7068 static int ipw_handle_assoc_response(struct net_device
*dev
,
7069 struct ieee80211_assoc_response
*resp
,
7070 struct ieee80211_network
*network
)
7072 struct ipw_priv
*priv
= ieee80211_priv(dev
);
7073 ipw_qos_association_resp(priv
, network
);
7077 static int ipw_send_qos_params_command(struct ipw_priv
*priv
, struct ieee80211_qos_parameters
7080 struct host_cmd cmd
= {
7081 .cmd
= IPW_CMD_QOS_PARAMETERS
,
7082 .len
= (sizeof(struct ieee80211_qos_parameters
) * 3)
7085 memcpy(cmd
.param
, qos_param
, sizeof(*qos_param
) * 3);
7086 return ipw_send_cmd(priv
, &cmd
);
7089 static int ipw_send_qos_info_command(struct ipw_priv
*priv
, struct ieee80211_qos_information_element
7092 struct host_cmd cmd
= {
7093 .cmd
= IPW_CMD_WME_INFO
,
7094 .len
= sizeof(*qos_param
)
7097 memcpy(cmd
.param
, qos_param
, sizeof(*qos_param
));
7098 return ipw_send_cmd(priv
, &cmd
);
7101 #endif /* CONFIG_IPW_QOS */
7103 static int ipw_associate_network(struct ipw_priv
*priv
,
7104 struct ieee80211_network
*network
,
7105 struct ipw_supported_rates
*rates
, int roaming
)
7109 if (priv
->config
& CFG_FIXED_RATE
)
7110 ipw_set_fixed_rate(priv
, network
->mode
);
7112 if (!(priv
->config
& CFG_STATIC_ESSID
)) {
7113 priv
->essid_len
= min(network
->ssid_len
,
7114 (u8
) IW_ESSID_MAX_SIZE
);
7115 memcpy(priv
->essid
, network
->ssid
, priv
->essid_len
);
7118 network
->last_associate
= jiffies
;
7120 memset(&priv
->assoc_request
, 0, sizeof(priv
->assoc_request
));
7121 priv
->assoc_request
.channel
= network
->channel
;
7122 priv
->assoc_request
.auth_key
= 0;
7124 if ((priv
->capability
& CAP_PRIVACY_ON
) &&
7125 (priv
->ieee
->sec
.auth_mode
== WLAN_AUTH_SHARED_KEY
)) {
7126 priv
->assoc_request
.auth_type
= AUTH_SHARED_KEY
;
7127 priv
->assoc_request
.auth_key
= priv
->ieee
->sec
.active_key
;
7129 if ((priv
->ieee
->sec
.level
== SEC_LEVEL_1
) &&
7130 !(priv
->ieee
->host_encrypt
|| priv
->ieee
->host_decrypt
))
7131 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_WEP
);
7133 } else if ((priv
->capability
& CAP_PRIVACY_ON
) &&
7134 (priv
->ieee
->sec
.auth_mode
== WLAN_AUTH_LEAP
))
7135 priv
->assoc_request
.auth_type
= AUTH_LEAP
;
7137 priv
->assoc_request
.auth_type
= AUTH_OPEN
;
7139 if (priv
->ieee
->wpa_ie_len
) {
7140 priv
->assoc_request
.policy_support
= 0x02; /* RSN active */
7141 ipw_set_rsn_capa(priv
, priv
->ieee
->wpa_ie
,
7142 priv
->ieee
->wpa_ie_len
);
7146 * It is valid for our ieee device to support multiple modes, but
7147 * when it comes to associating to a given network we have to choose
7150 if (network
->mode
& priv
->ieee
->mode
& IEEE_A
)
7151 priv
->assoc_request
.ieee_mode
= IPW_A_MODE
;
7152 else if (network
->mode
& priv
->ieee
->mode
& IEEE_G
)
7153 priv
->assoc_request
.ieee_mode
= IPW_G_MODE
;
7154 else if (network
->mode
& priv
->ieee
->mode
& IEEE_B
)
7155 priv
->assoc_request
.ieee_mode
= IPW_B_MODE
;
7157 priv
->assoc_request
.capability
= network
->capability
;
7158 if ((network
->capability
& WLAN_CAPABILITY_SHORT_PREAMBLE
)
7159 && !(priv
->config
& CFG_PREAMBLE_LONG
)) {
7160 priv
->assoc_request
.preamble_length
= DCT_FLAG_SHORT_PREAMBLE
;
7162 priv
->assoc_request
.preamble_length
= DCT_FLAG_LONG_PREAMBLE
;
7164 /* Clear the short preamble if we won't be supporting it */
7165 priv
->assoc_request
.capability
&=
7166 ~WLAN_CAPABILITY_SHORT_PREAMBLE
;
7169 /* Clear capability bits that aren't used in Ad Hoc */
7170 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
7171 priv
->assoc_request
.capability
&=
7172 ~WLAN_CAPABILITY_SHORT_SLOT_TIME
;
7174 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7175 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7176 roaming
? "Rea" : "A",
7177 escape_essid(priv
->essid
, priv
->essid_len
),
7179 ipw_modes
[priv
->assoc_request
.ieee_mode
],
7181 (priv
->assoc_request
.preamble_length
==
7182 DCT_FLAG_LONG_PREAMBLE
) ? "long" : "short",
7183 network
->capability
&
7184 WLAN_CAPABILITY_SHORT_PREAMBLE
? "short" : "long",
7185 priv
->capability
& CAP_PRIVACY_ON
? "on " : "off",
7186 priv
->capability
& CAP_PRIVACY_ON
?
7187 (priv
->capability
& CAP_SHARED_KEY
? "(shared)" :
7189 priv
->capability
& CAP_PRIVACY_ON
? " key=" : "",
7190 priv
->capability
& CAP_PRIVACY_ON
?
7191 '1' + priv
->ieee
->sec
.active_key
: '.',
7192 priv
->capability
& CAP_PRIVACY_ON
? '.' : ' ');
7194 priv
->assoc_request
.beacon_interval
= network
->beacon_interval
;
7195 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) &&
7196 (network
->time_stamp
[0] == 0) && (network
->time_stamp
[1] == 0)) {
7197 priv
->assoc_request
.assoc_type
= HC_IBSS_START
;
7198 priv
->assoc_request
.assoc_tsf_msw
= 0;
7199 priv
->assoc_request
.assoc_tsf_lsw
= 0;
7201 if (unlikely(roaming
))
7202 priv
->assoc_request
.assoc_type
= HC_REASSOCIATE
;
7204 priv
->assoc_request
.assoc_type
= HC_ASSOCIATE
;
7205 priv
->assoc_request
.assoc_tsf_msw
= network
->time_stamp
[1];
7206 priv
->assoc_request
.assoc_tsf_lsw
= network
->time_stamp
[0];
7209 memcpy(priv
->assoc_request
.bssid
, network
->bssid
, ETH_ALEN
);
7211 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
7212 memset(&priv
->assoc_request
.dest
, 0xFF, ETH_ALEN
);
7213 priv
->assoc_request
.atim_window
= network
->atim_window
;
7215 memcpy(priv
->assoc_request
.dest
, network
->bssid
, ETH_ALEN
);
7216 priv
->assoc_request
.atim_window
= 0;
7219 priv
->assoc_request
.listen_interval
= network
->listen_interval
;
7221 err
= ipw_send_ssid(priv
, priv
->essid
, priv
->essid_len
);
7223 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7227 rates
->ieee_mode
= priv
->assoc_request
.ieee_mode
;
7228 rates
->purpose
= IPW_RATE_CONNECT
;
7229 ipw_send_supported_rates(priv
, rates
);
7231 if (priv
->assoc_request
.ieee_mode
== IPW_G_MODE
)
7232 priv
->sys_config
.dot11g_auto_detection
= 1;
7234 priv
->sys_config
.dot11g_auto_detection
= 0;
7236 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
7237 priv
->sys_config
.answer_broadcast_ssid_probe
= 1;
7239 priv
->sys_config
.answer_broadcast_ssid_probe
= 0;
7241 err
= ipw_send_system_config(priv
, &priv
->sys_config
);
7243 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7247 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network
->stats
.rssi
);
7248 err
= ipw_set_sensitivity(priv
, network
->stats
.rssi
+ IPW_RSSI_TO_DBM
);
7250 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7255 * If preemption is enabled, it is possible for the association
7256 * to complete before we return from ipw_send_associate. Therefore
7257 * we have to be sure and update our priviate data first.
7259 priv
->channel
= network
->channel
;
7260 memcpy(priv
->bssid
, network
->bssid
, ETH_ALEN
);
7261 priv
->status
|= STATUS_ASSOCIATING
;
7262 priv
->status
&= ~STATUS_SECURITY_UPDATED
;
7264 priv
->assoc_network
= network
;
7266 #ifdef CONFIG_IPW_QOS
7267 ipw_qos_association(priv
, network
);
7270 err
= ipw_send_associate(priv
, &priv
->assoc_request
);
7272 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7276 IPW_DEBUG(IPW_DL_STATE
, "associating: '%s' " MAC_FMT
" \n",
7277 escape_essid(priv
->essid
, priv
->essid_len
),
7278 MAC_ARG(priv
->bssid
));
7283 static void ipw_roam(void *data
)
7285 struct ipw_priv
*priv
= data
;
7286 struct ieee80211_network
*network
= NULL
;
7287 struct ipw_network_match match
= {
7288 .network
= priv
->assoc_network
7291 /* The roaming process is as follows:
7293 * 1. Missed beacon threshold triggers the roaming process by
7294 * setting the status ROAM bit and requesting a scan.
7295 * 2. When the scan completes, it schedules the ROAM work
7296 * 3. The ROAM work looks at all of the known networks for one that
7297 * is a better network than the currently associated. If none
7298 * found, the ROAM process is over (ROAM bit cleared)
7299 * 4. If a better network is found, a disassociation request is
7301 * 5. When the disassociation completes, the roam work is again
7302 * scheduled. The second time through, the driver is no longer
7303 * associated, and the newly selected network is sent an
7304 * association request.
7305 * 6. At this point ,the roaming process is complete and the ROAM
7306 * status bit is cleared.
7309 /* If we are no longer associated, and the roaming bit is no longer
7310 * set, then we are not actively roaming, so just return */
7311 if (!(priv
->status
& (STATUS_ASSOCIATED
| STATUS_ROAMING
)))
7314 if (priv
->status
& STATUS_ASSOCIATED
) {
7315 /* First pass through ROAM process -- look for a better
7317 unsigned long flags
;
7318 u8 rssi
= priv
->assoc_network
->stats
.rssi
;
7319 priv
->assoc_network
->stats
.rssi
= -128;
7320 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7321 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
) {
7322 if (network
!= priv
->assoc_network
)
7323 ipw_best_network(priv
, &match
, network
, 1);
7325 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7326 priv
->assoc_network
->stats
.rssi
= rssi
;
7328 if (match
.network
== priv
->assoc_network
) {
7329 IPW_DEBUG_ASSOC("No better APs in this network to "
7331 priv
->status
&= ~STATUS_ROAMING
;
7332 ipw_debug_config(priv
);
7336 ipw_send_disassociate(priv
, 1);
7337 priv
->assoc_network
= match
.network
;
7342 /* Second pass through ROAM process -- request association */
7343 ipw_compatible_rates(priv
, priv
->assoc_network
, &match
.rates
);
7344 ipw_associate_network(priv
, priv
->assoc_network
, &match
.rates
, 1);
7345 priv
->status
&= ~STATUS_ROAMING
;
7348 static void ipw_bg_roam(void *data
)
7350 struct ipw_priv
*priv
= data
;
7356 static int ipw_associate(void *data
)
7358 struct ipw_priv
*priv
= data
;
7360 struct ieee80211_network
*network
= NULL
;
7361 struct ipw_network_match match
= {
7364 struct ipw_supported_rates
*rates
;
7365 struct list_head
*element
;
7366 unsigned long flags
;
7368 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
7369 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7373 if (priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
7374 IPW_DEBUG_ASSOC("Not attempting association (already in "
7379 if (priv
->status
& STATUS_DISASSOCIATING
) {
7380 IPW_DEBUG_ASSOC("Not attempting association (in "
7381 "disassociating)\n ");
7382 queue_work(priv
->workqueue
, &priv
->associate
);
7386 if (!ipw_is_init(priv
) || (priv
->status
& STATUS_SCANNING
)) {
7387 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7392 if (!(priv
->config
& CFG_ASSOCIATE
) &&
7393 !(priv
->config
& (CFG_STATIC_ESSID
|
7394 CFG_STATIC_CHANNEL
| CFG_STATIC_BSSID
))) {
7395 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7399 /* Protect our use of the network_list */
7400 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7401 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
)
7402 ipw_best_network(priv
, &match
, network
, 0);
7404 network
= match
.network
;
7405 rates
= &match
.rates
;
7407 if (network
== NULL
&&
7408 priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
7409 priv
->config
& CFG_ADHOC_CREATE
&&
7410 priv
->config
& CFG_STATIC_ESSID
&&
7411 priv
->config
& CFG_STATIC_CHANNEL
&&
7412 !list_empty(&priv
->ieee
->network_free_list
)) {
7413 element
= priv
->ieee
->network_free_list
.next
;
7414 network
= list_entry(element
, struct ieee80211_network
, list
);
7415 ipw_adhoc_create(priv
, network
);
7416 rates
= &priv
->rates
;
7418 list_add_tail(&network
->list
, &priv
->ieee
->network_list
);
7420 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7422 /* If we reached the end of the list, then we don't have any valid
7425 ipw_debug_config(priv
);
7427 if (!(priv
->status
& STATUS_SCANNING
)) {
7428 if (!(priv
->config
& CFG_SPEED_SCAN
))
7429 queue_delayed_work(priv
->workqueue
,
7430 &priv
->request_scan
,
7433 queue_work(priv
->workqueue
,
7434 &priv
->request_scan
);
7440 ipw_associate_network(priv
, network
, rates
, 0);
7445 static void ipw_bg_associate(void *data
)
7447 struct ipw_priv
*priv
= data
;
7449 ipw_associate(data
);
7453 static void ipw_rebuild_decrypted_skb(struct ipw_priv
*priv
,
7454 struct sk_buff
*skb
)
7456 struct ieee80211_hdr
*hdr
;
7459 hdr
= (struct ieee80211_hdr
*)skb
->data
;
7460 fc
= le16_to_cpu(hdr
->frame_ctl
);
7461 if (!(fc
& IEEE80211_FCTL_PROTECTED
))
7464 fc
&= ~IEEE80211_FCTL_PROTECTED
;
7465 hdr
->frame_ctl
= cpu_to_le16(fc
);
7466 switch (priv
->ieee
->sec
.level
) {
7468 /* Remove CCMP HDR */
7469 memmove(skb
->data
+ IEEE80211_3ADDR_LEN
,
7470 skb
->data
+ IEEE80211_3ADDR_LEN
+ 8,
7471 skb
->len
- IEEE80211_3ADDR_LEN
- 8);
7472 skb_trim(skb
, skb
->len
- 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7478 memmove(skb
->data
+ IEEE80211_3ADDR_LEN
,
7479 skb
->data
+ IEEE80211_3ADDR_LEN
+ 4,
7480 skb
->len
- IEEE80211_3ADDR_LEN
- 4);
7481 skb_trim(skb
, skb
->len
- 8); /* IV + ICV */
7486 printk(KERN_ERR
"Unknow security level %d\n",
7487 priv
->ieee
->sec
.level
);
7492 static void ipw_handle_data_packet(struct ipw_priv
*priv
,
7493 struct ipw_rx_mem_buffer
*rxb
,
7494 struct ieee80211_rx_stats
*stats
)
7496 struct ieee80211_hdr_4addr
*hdr
;
7497 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
7499 /* We received data from the HW, so stop the watchdog */
7500 priv
->net_dev
->trans_start
= jiffies
;
7502 /* We only process data packets if the
7503 * interface is open */
7504 if (unlikely((le16_to_cpu(pkt
->u
.frame
.length
) + IPW_RX_FRAME_SIZE
) >
7505 skb_tailroom(rxb
->skb
))) {
7506 priv
->ieee
->stats
.rx_errors
++;
7507 priv
->wstats
.discard
.misc
++;
7508 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7510 } else if (unlikely(!netif_running(priv
->net_dev
))) {
7511 priv
->ieee
->stats
.rx_dropped
++;
7512 priv
->wstats
.discard
.misc
++;
7513 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7517 /* Advance skb->data to the start of the actual payload */
7518 skb_reserve(rxb
->skb
, offsetof(struct ipw_rx_packet
, u
.frame
.data
));
7520 /* Set the size of the skb to the size of the frame */
7521 skb_put(rxb
->skb
, le16_to_cpu(pkt
->u
.frame
.length
));
7523 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb
->skb
->len
);
7525 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7526 hdr
= (struct ieee80211_hdr_4addr
*)rxb
->skb
->data
;
7527 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
&&
7528 (is_multicast_ether_addr(hdr
->addr1
) ?
7529 !priv
->ieee
->host_mc_decrypt
: !priv
->ieee
->host_decrypt
))
7530 ipw_rebuild_decrypted_skb(priv
, rxb
->skb
);
7532 if (!ieee80211_rx(priv
->ieee
, rxb
->skb
, stats
))
7533 priv
->ieee
->stats
.rx_errors
++;
7534 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7536 __ipw_led_activity_on(priv
);
7540 #ifdef CONFIG_IEEE80211_RADIOTAP
7541 static void ipw_handle_data_packet_monitor(struct ipw_priv
*priv
,
7542 struct ipw_rx_mem_buffer
*rxb
,
7543 struct ieee80211_rx_stats
*stats
)
7545 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
7546 struct ipw_rx_frame
*frame
= &pkt
->u
.frame
;
7548 /* initial pull of some data */
7549 u16 received_channel
= frame
->received_channel
;
7550 u8 antennaAndPhy
= frame
->antennaAndPhy
;
7551 s8 antsignal
= frame
->rssi_dbm
- IPW_RSSI_TO_DBM
; /* call it signed anyhow */
7552 u16 pktrate
= frame
->rate
;
7554 /* Magic struct that slots into the radiotap header -- no reason
7555 * to build this manually element by element, we can write it much
7556 * more efficiently than we can parse it. ORDER MATTERS HERE */
7558 struct ieee80211_radiotap_header rt_hdr
;
7559 u8 rt_flags
; /* radiotap packet flags */
7560 u8 rt_rate
; /* rate in 500kb/s */
7561 u16 rt_channel
; /* channel in mhz */
7562 u16 rt_chbitmask
; /* channel bitfield */
7563 s8 rt_dbmsignal
; /* signal in dbM, kluged to signed */
7564 u8 rt_antenna
; /* antenna number */
7567 short len
= le16_to_cpu(pkt
->u
.frame
.length
);
7569 /* We received data from the HW, so stop the watchdog */
7570 priv
->net_dev
->trans_start
= jiffies
;
7572 /* We only process data packets if the
7573 * interface is open */
7574 if (unlikely((le16_to_cpu(pkt
->u
.frame
.length
) + IPW_RX_FRAME_SIZE
) >
7575 skb_tailroom(rxb
->skb
))) {
7576 priv
->ieee
->stats
.rx_errors
++;
7577 priv
->wstats
.discard
.misc
++;
7578 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7580 } else if (unlikely(!netif_running(priv
->net_dev
))) {
7581 priv
->ieee
->stats
.rx_dropped
++;
7582 priv
->wstats
.discard
.misc
++;
7583 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7587 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7589 if (len
> IPW_RX_BUF_SIZE
- sizeof(struct ipw_rt_hdr
)) {
7590 /* FIXME: Should alloc bigger skb instead */
7591 priv
->ieee
->stats
.rx_dropped
++;
7592 priv
->wstats
.discard
.misc
++;
7593 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7597 /* copy the frame itself */
7598 memmove(rxb
->skb
->data
+ sizeof(struct ipw_rt_hdr
),
7599 rxb
->skb
->data
+ IPW_RX_FRAME_SIZE
, len
);
7601 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7602 * part of our real header, saves a little time.
7604 * No longer necessary since we fill in all our data. Purge before merging
7606 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7607 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7610 ipw_rt
= (struct ipw_rt_hdr
*)rxb
->skb
->data
;
7612 ipw_rt
->rt_hdr
.it_version
= PKTHDR_RADIOTAP_VERSION
;
7613 ipw_rt
->rt_hdr
.it_pad
= 0; /* always good to zero */
7614 ipw_rt
->rt_hdr
.it_len
= sizeof(struct ipw_rt_hdr
); /* total header+data */
7616 /* Big bitfield of all the fields we provide in radiotap */
7617 ipw_rt
->rt_hdr
.it_present
=
7618 ((1 << IEEE80211_RADIOTAP_FLAGS
) |
7619 (1 << IEEE80211_RADIOTAP_RATE
) |
7620 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
7621 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
) |
7622 (1 << IEEE80211_RADIOTAP_ANTENNA
));
7624 /* Zero the flags, we'll add to them as we go */
7625 ipw_rt
->rt_flags
= 0;
7627 /* Convert signal to DBM */
7628 ipw_rt
->rt_dbmsignal
= antsignal
;
7630 /* Convert the channel data and set the flags */
7631 ipw_rt
->rt_channel
= cpu_to_le16(ieee80211chan2mhz(received_channel
));
7632 if (received_channel
> 14) { /* 802.11a */
7633 ipw_rt
->rt_chbitmask
=
7634 cpu_to_le16((IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
));
7635 } else if (antennaAndPhy
& 32) { /* 802.11b */
7636 ipw_rt
->rt_chbitmask
=
7637 cpu_to_le16((IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
));
7638 } else { /* 802.11g */
7639 ipw_rt
->rt_chbitmask
=
7640 (IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
);
7643 /* set the rate in multiples of 500k/s */
7645 case IPW_TX_RATE_1MB
:
7646 ipw_rt
->rt_rate
= 2;
7648 case IPW_TX_RATE_2MB
:
7649 ipw_rt
->rt_rate
= 4;
7651 case IPW_TX_RATE_5MB
:
7652 ipw_rt
->rt_rate
= 10;
7654 case IPW_TX_RATE_6MB
:
7655 ipw_rt
->rt_rate
= 12;
7657 case IPW_TX_RATE_9MB
:
7658 ipw_rt
->rt_rate
= 18;
7660 case IPW_TX_RATE_11MB
:
7661 ipw_rt
->rt_rate
= 22;
7663 case IPW_TX_RATE_12MB
:
7664 ipw_rt
->rt_rate
= 24;
7666 case IPW_TX_RATE_18MB
:
7667 ipw_rt
->rt_rate
= 36;
7669 case IPW_TX_RATE_24MB
:
7670 ipw_rt
->rt_rate
= 48;
7672 case IPW_TX_RATE_36MB
:
7673 ipw_rt
->rt_rate
= 72;
7675 case IPW_TX_RATE_48MB
:
7676 ipw_rt
->rt_rate
= 96;
7678 case IPW_TX_RATE_54MB
:
7679 ipw_rt
->rt_rate
= 108;
7682 ipw_rt
->rt_rate
= 0;
7686 /* antenna number */
7687 ipw_rt
->rt_antenna
= (antennaAndPhy
& 3); /* Is this right? */
7689 /* set the preamble flag if we have it */
7690 if ((antennaAndPhy
& 64))
7691 ipw_rt
->rt_flags
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
7693 /* Set the size of the skb to the size of the frame */
7694 skb_put(rxb
->skb
, len
+ sizeof(struct ipw_rt_hdr
));
7696 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb
->skb
->len
);
7698 if (!ieee80211_rx(priv
->ieee
, rxb
->skb
, stats
))
7699 priv
->ieee
->stats
.rx_errors
++;
7700 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7702 /* no LED during capture */
7707 static int is_network_packet(struct ipw_priv
*priv
,
7708 struct ieee80211_hdr_4addr
*header
)
7710 /* Filter incoming packets to determine if they are targetted toward
7711 * this network, discarding packets coming from ourselves */
7712 switch (priv
->ieee
->iw_mode
) {
7713 case IW_MODE_ADHOC
: /* Header: Dest. | Source | BSSID */
7714 /* packets from our adapter are dropped (echo) */
7715 if (!memcmp(header
->addr2
, priv
->net_dev
->dev_addr
, ETH_ALEN
))
7718 /* {broad,multi}cast packets to our BSSID go through */
7719 if (is_multicast_ether_addr(header
->addr1
))
7720 return !memcmp(header
->addr3
, priv
->bssid
, ETH_ALEN
);
7722 /* packets to our adapter go through */
7723 return !memcmp(header
->addr1
, priv
->net_dev
->dev_addr
,
7726 case IW_MODE_INFRA
: /* Header: Dest. | BSSID | Source */
7727 /* packets from our adapter are dropped (echo) */
7728 if (!memcmp(header
->addr3
, priv
->net_dev
->dev_addr
, ETH_ALEN
))
7731 /* {broad,multi}cast packets to our BSS go through */
7732 if (is_multicast_ether_addr(header
->addr1
))
7733 return !memcmp(header
->addr2
, priv
->bssid
, ETH_ALEN
);
7735 /* packets to our adapter go through */
7736 return !memcmp(header
->addr1
, priv
->net_dev
->dev_addr
,
7743 #define IPW_PACKET_RETRY_TIME HZ
7745 static int is_duplicate_packet(struct ipw_priv
*priv
,
7746 struct ieee80211_hdr_4addr
*header
)
7748 u16 sc
= le16_to_cpu(header
->seq_ctl
);
7749 u16 seq
= WLAN_GET_SEQ_SEQ(sc
);
7750 u16 frag
= WLAN_GET_SEQ_FRAG(sc
);
7751 u16
*last_seq
, *last_frag
;
7752 unsigned long *last_time
;
7754 switch (priv
->ieee
->iw_mode
) {
7757 struct list_head
*p
;
7758 struct ipw_ibss_seq
*entry
= NULL
;
7759 u8
*mac
= header
->addr2
;
7760 int index
= mac
[5] % IPW_IBSS_MAC_HASH_SIZE
;
7762 __list_for_each(p
, &priv
->ibss_mac_hash
[index
]) {
7764 list_entry(p
, struct ipw_ibss_seq
, list
);
7765 if (!memcmp(entry
->mac
, mac
, ETH_ALEN
))
7768 if (p
== &priv
->ibss_mac_hash
[index
]) {
7769 entry
= kmalloc(sizeof(*entry
), GFP_ATOMIC
);
7772 ("Cannot malloc new mac entry\n");
7775 memcpy(entry
->mac
, mac
, ETH_ALEN
);
7776 entry
->seq_num
= seq
;
7777 entry
->frag_num
= frag
;
7778 entry
->packet_time
= jiffies
;
7779 list_add(&entry
->list
,
7780 &priv
->ibss_mac_hash
[index
]);
7783 last_seq
= &entry
->seq_num
;
7784 last_frag
= &entry
->frag_num
;
7785 last_time
= &entry
->packet_time
;
7789 last_seq
= &priv
->last_seq_num
;
7790 last_frag
= &priv
->last_frag_num
;
7791 last_time
= &priv
->last_packet_time
;
7796 if ((*last_seq
== seq
) &&
7797 time_after(*last_time
+ IPW_PACKET_RETRY_TIME
, jiffies
)) {
7798 if (*last_frag
== frag
)
7800 if (*last_frag
+ 1 != frag
)
7801 /* out-of-order fragment */
7807 *last_time
= jiffies
;
7811 /* Comment this line now since we observed the card receives
7812 * duplicate packets but the FCTL_RETRY bit is not set in the
7813 * IBSS mode with fragmentation enabled.
7814 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
7818 static void ipw_handle_mgmt_packet(struct ipw_priv
*priv
,
7819 struct ipw_rx_mem_buffer
*rxb
,
7820 struct ieee80211_rx_stats
*stats
)
7822 struct sk_buff
*skb
= rxb
->skb
;
7823 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)skb
->data
;
7824 struct ieee80211_hdr_4addr
*header
= (struct ieee80211_hdr_4addr
*)
7825 (skb
->data
+ IPW_RX_FRAME_SIZE
);
7827 ieee80211_rx_mgt(priv
->ieee
, header
, stats
);
7829 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
7830 ((WLAN_FC_GET_STYPE(le16_to_cpu(header
->frame_ctl
)) ==
7831 IEEE80211_STYPE_PROBE_RESP
) ||
7832 (WLAN_FC_GET_STYPE(le16_to_cpu(header
->frame_ctl
)) ==
7833 IEEE80211_STYPE_BEACON
))) {
7834 if (!memcmp(header
->addr3
, priv
->bssid
, ETH_ALEN
))
7835 ipw_add_station(priv
, header
->addr2
);
7838 if (priv
->config
& CFG_NET_STATS
) {
7839 IPW_DEBUG_HC("sending stat packet\n");
7841 /* Set the size of the skb to the size of the full
7842 * ipw header and 802.11 frame */
7843 skb_put(skb
, le16_to_cpu(pkt
->u
.frame
.length
) +
7846 /* Advance past the ipw packet header to the 802.11 frame */
7847 skb_pull(skb
, IPW_RX_FRAME_SIZE
);
7849 /* Push the ieee80211_rx_stats before the 802.11 frame */
7850 memcpy(skb_push(skb
, sizeof(*stats
)), stats
, sizeof(*stats
));
7852 skb
->dev
= priv
->ieee
->dev
;
7854 /* Point raw at the ieee80211_stats */
7855 skb
->mac
.raw
= skb
->data
;
7857 skb
->pkt_type
= PACKET_OTHERHOST
;
7858 skb
->protocol
= __constant_htons(ETH_P_80211_STATS
);
7859 memset(skb
->cb
, 0, sizeof(rxb
->skb
->cb
));
7866 * Main entry function for recieving a packet with 80211 headers. This
7867 * should be called when ever the FW has notified us that there is a new
7868 * skb in the recieve queue.
7870 static void ipw_rx(struct ipw_priv
*priv
)
7872 struct ipw_rx_mem_buffer
*rxb
;
7873 struct ipw_rx_packet
*pkt
;
7874 struct ieee80211_hdr_4addr
*header
;
7878 r
= ipw_read32(priv
, IPW_RX_READ_INDEX
);
7879 w
= ipw_read32(priv
, IPW_RX_WRITE_INDEX
);
7880 i
= (priv
->rxq
->processed
+ 1) % RX_QUEUE_SIZE
;
7883 rxb
= priv
->rxq
->queue
[i
];
7884 #ifdef CONFIG_IPW2200_DEBUG
7885 if (unlikely(rxb
== NULL
)) {
7886 printk(KERN_CRIT
"Queue not allocated!\n");
7890 priv
->rxq
->queue
[i
] = NULL
;
7892 pci_dma_sync_single_for_cpu(priv
->pci_dev
, rxb
->dma_addr
,
7894 PCI_DMA_FROMDEVICE
);
7896 pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
7897 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
7898 pkt
->header
.message_type
,
7899 pkt
->header
.rx_seq_num
, pkt
->header
.control_bits
);
7901 switch (pkt
->header
.message_type
) {
7902 case RX_FRAME_TYPE
: /* 802.11 frame */ {
7903 struct ieee80211_rx_stats stats
= {
7905 le16_to_cpu(pkt
->u
.frame
.rssi_dbm
) -
7908 le16_to_cpu(pkt
->u
.frame
.signal
),
7910 le16_to_cpu(pkt
->u
.frame
.noise
),
7911 .rate
= pkt
->u
.frame
.rate
,
7912 .mac_time
= jiffies
,
7914 pkt
->u
.frame
.received_channel
,
7917 control
& (1 << 0)) ?
7918 IEEE80211_24GHZ_BAND
:
7919 IEEE80211_52GHZ_BAND
,
7920 .len
= le16_to_cpu(pkt
->u
.frame
.length
),
7923 if (stats
.rssi
!= 0)
7924 stats
.mask
|= IEEE80211_STATMASK_RSSI
;
7925 if (stats
.signal
!= 0)
7926 stats
.mask
|= IEEE80211_STATMASK_SIGNAL
;
7927 if (stats
.noise
!= 0)
7928 stats
.mask
|= IEEE80211_STATMASK_NOISE
;
7929 if (stats
.rate
!= 0)
7930 stats
.mask
|= IEEE80211_STATMASK_RATE
;
7934 #ifdef CONFIG_IPW2200_MONITOR
7935 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
7936 #ifdef CONFIG_IEEE80211_RADIOTAP
7937 ipw_handle_data_packet_monitor(priv
,
7941 ipw_handle_data_packet(priv
, rxb
,
7949 (struct ieee80211_hdr_4addr
*)(rxb
->skb
->
7952 /* TODO: Check Ad-Hoc dest/source and make sure
7953 * that we are actually parsing these packets
7954 * correctly -- we should probably use the
7955 * frame control of the packet and disregard
7956 * the current iw_mode */
7959 is_network_packet(priv
, header
);
7960 if (network_packet
&& priv
->assoc_network
) {
7961 priv
->assoc_network
->stats
.rssi
=
7963 average_add(&priv
->average_rssi
,
7965 priv
->last_rx_rssi
= stats
.rssi
;
7968 IPW_DEBUG_RX("Frame: len=%u\n",
7969 le16_to_cpu(pkt
->u
.frame
.length
));
7971 if (le16_to_cpu(pkt
->u
.frame
.length
) <
7972 frame_hdr_len(header
)) {
7974 ("Received packet is too small. "
7976 priv
->ieee
->stats
.rx_errors
++;
7977 priv
->wstats
.discard
.misc
++;
7981 switch (WLAN_FC_GET_TYPE
7982 (le16_to_cpu(header
->frame_ctl
))) {
7984 case IEEE80211_FTYPE_MGMT
:
7985 ipw_handle_mgmt_packet(priv
, rxb
,
7989 case IEEE80211_FTYPE_CTL
:
7992 case IEEE80211_FTYPE_DATA
:
7993 if (unlikely(!network_packet
||
7994 is_duplicate_packet(priv
,
7997 IPW_DEBUG_DROP("Dropping: "
8010 ipw_handle_data_packet(priv
, rxb
,
8018 case RX_HOST_NOTIFICATION_TYPE
:{
8020 ("Notification: subtype=%02X flags=%02X size=%d\n",
8021 pkt
->u
.notification
.subtype
,
8022 pkt
->u
.notification
.flags
,
8023 pkt
->u
.notification
.size
);
8024 ipw_rx_notification(priv
, &pkt
->u
.notification
);
8029 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8030 pkt
->header
.message_type
);
8034 /* For now we just don't re-use anything. We can tweak this
8035 * later to try and re-use notification packets and SKBs that
8036 * fail to Rx correctly */
8037 if (rxb
->skb
!= NULL
) {
8038 dev_kfree_skb_any(rxb
->skb
);
8042 pci_unmap_single(priv
->pci_dev
, rxb
->dma_addr
,
8043 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
8044 list_add_tail(&rxb
->list
, &priv
->rxq
->rx_used
);
8046 i
= (i
+ 1) % RX_QUEUE_SIZE
;
8049 /* Backtrack one entry */
8050 priv
->rxq
->processed
= (i
? i
: RX_QUEUE_SIZE
) - 1;
8052 ipw_rx_queue_restock(priv
);
8055 #define DEFAULT_RTS_THRESHOLD 2304U
8056 #define MIN_RTS_THRESHOLD 1U
8057 #define MAX_RTS_THRESHOLD 2304U
8058 #define DEFAULT_BEACON_INTERVAL 100U
8059 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8060 #define DEFAULT_LONG_RETRY_LIMIT 4U
8062 static int ipw_sw_reset(struct ipw_priv
*priv
, int init
)
8064 int band
, modulation
;
8065 int old_mode
= priv
->ieee
->iw_mode
;
8067 /* Initialize module parameter values here */
8070 /* We default to disabling the LED code as right now it causes
8071 * too many systems to lock up... */
8073 priv
->config
|= CFG_NO_LED
;
8076 priv
->config
|= CFG_ASSOCIATE
;
8078 IPW_DEBUG_INFO("Auto associate disabled.\n");
8081 priv
->config
|= CFG_ADHOC_CREATE
;
8083 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8085 priv
->config
&= ~CFG_STATIC_ESSID
;
8086 priv
->essid_len
= 0;
8087 memset(priv
->essid
, 0, IW_ESSID_MAX_SIZE
);
8090 priv
->status
|= STATUS_RF_KILL_SW
;
8091 IPW_DEBUG_INFO("Radio disabled.\n");
8095 priv
->config
|= CFG_STATIC_CHANNEL
;
8096 priv
->channel
= channel
;
8097 IPW_DEBUG_INFO("Bind to static channel %d\n", channel
);
8098 /* TODO: Validate that provided channel is in range */
8100 #ifdef CONFIG_IPW_QOS
8101 ipw_qos_init(priv
, qos_enable
, qos_burst_enable
,
8102 burst_duration_CCK
, burst_duration_OFDM
);
8103 #endif /* CONFIG_IPW_QOS */
8107 priv
->ieee
->iw_mode
= IW_MODE_ADHOC
;
8108 priv
->net_dev
->type
= ARPHRD_ETHER
;
8111 #ifdef CONFIG_IPW2200_MONITOR
8113 priv
->ieee
->iw_mode
= IW_MODE_MONITOR
;
8114 #ifdef CONFIG_IEEE80211_RADIOTAP
8115 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
8117 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
8123 priv
->net_dev
->type
= ARPHRD_ETHER
;
8124 priv
->ieee
->iw_mode
= IW_MODE_INFRA
;
8129 priv
->ieee
->host_encrypt
= 0;
8130 priv
->ieee
->host_encrypt_msdu
= 0;
8131 priv
->ieee
->host_decrypt
= 0;
8132 priv
->ieee
->host_mc_decrypt
= 0;
8134 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto
? "on" : "off");
8136 /* IPW2200/2915 is abled to do hardware fragmentation. */
8137 priv
->ieee
->host_open_frag
= 0;
8139 if ((priv
->pci_dev
->device
== 0x4223) ||
8140 (priv
->pci_dev
->device
== 0x4224)) {
8142 printk(KERN_INFO DRV_NAME
8143 ": Detected Intel PRO/Wireless 2915ABG Network "
8145 priv
->ieee
->abg_true
= 1;
8146 band
= IEEE80211_52GHZ_BAND
| IEEE80211_24GHZ_BAND
;
8147 modulation
= IEEE80211_OFDM_MODULATION
|
8148 IEEE80211_CCK_MODULATION
;
8149 priv
->adapter
= IPW_2915ABG
;
8150 priv
->ieee
->mode
= IEEE_A
| IEEE_G
| IEEE_B
;
8153 printk(KERN_INFO DRV_NAME
8154 ": Detected Intel PRO/Wireless 2200BG Network "
8157 priv
->ieee
->abg_true
= 0;
8158 band
= IEEE80211_24GHZ_BAND
;
8159 modulation
= IEEE80211_OFDM_MODULATION
|
8160 IEEE80211_CCK_MODULATION
;
8161 priv
->adapter
= IPW_2200BG
;
8162 priv
->ieee
->mode
= IEEE_G
| IEEE_B
;
8165 priv
->ieee
->freq_band
= band
;
8166 priv
->ieee
->modulation
= modulation
;
8168 priv
->rates_mask
= IEEE80211_DEFAULT_RATES_MASK
;
8170 priv
->disassociate_threshold
= IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT
;
8171 priv
->roaming_threshold
= IPW_MB_ROAMING_THRESHOLD_DEFAULT
;
8173 priv
->rts_threshold
= DEFAULT_RTS_THRESHOLD
;
8174 priv
->short_retry_limit
= DEFAULT_SHORT_RETRY_LIMIT
;
8175 priv
->long_retry_limit
= DEFAULT_LONG_RETRY_LIMIT
;
8177 /* If power management is turned on, default to AC mode */
8178 priv
->power_mode
= IPW_POWER_AC
;
8179 priv
->tx_power
= IPW_TX_POWER_DEFAULT
;
8181 return old_mode
== priv
->ieee
->iw_mode
;
8185 * This file defines the Wireless Extension handlers. It does not
8186 * define any methods of hardware manipulation and relies on the
8187 * functions defined in ipw_main to provide the HW interaction.
8189 * The exception to this is the use of the ipw_get_ordinal()
8190 * function used to poll the hardware vs. making unecessary calls.
8194 static int ipw_wx_get_name(struct net_device
*dev
,
8195 struct iw_request_info
*info
,
8196 union iwreq_data
*wrqu
, char *extra
)
8198 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8200 if (priv
->status
& STATUS_RF_KILL_MASK
)
8201 strcpy(wrqu
->name
, "radio off");
8202 else if (!(priv
->status
& STATUS_ASSOCIATED
))
8203 strcpy(wrqu
->name
, "unassociated");
8205 snprintf(wrqu
->name
, IFNAMSIZ
, "IEEE 802.11%c",
8206 ipw_modes
[priv
->assoc_request
.ieee_mode
]);
8207 IPW_DEBUG_WX("Name: %s\n", wrqu
->name
);
8212 static int ipw_set_channel(struct ipw_priv
*priv
, u8 channel
)
8215 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8216 priv
->config
&= ~CFG_STATIC_CHANNEL
;
8217 IPW_DEBUG_ASSOC("Attempting to associate with new "
8219 ipw_associate(priv
);
8223 priv
->config
|= CFG_STATIC_CHANNEL
;
8225 if (priv
->channel
== channel
) {
8226 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8231 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel
);
8232 priv
->channel
= channel
;
8234 #ifdef CONFIG_IPW2200_MONITOR
8235 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
8237 if (priv
->status
& STATUS_SCANNING
) {
8238 IPW_DEBUG_SCAN("Scan abort triggered due to "
8239 "channel change.\n");
8240 ipw_abort_scan(priv
);
8243 for (i
= 1000; i
&& (priv
->status
& STATUS_SCANNING
); i
--)
8246 if (priv
->status
& STATUS_SCANNING
)
8247 IPW_DEBUG_SCAN("Still scanning...\n");
8249 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8254 #endif /* CONFIG_IPW2200_MONITOR */
8256 /* Network configuration changed -- force [re]association */
8257 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8258 if (!ipw_disassociate(priv
))
8259 ipw_associate(priv
);
8264 static int ipw_wx_set_freq(struct net_device
*dev
,
8265 struct iw_request_info
*info
,
8266 union iwreq_data
*wrqu
, char *extra
)
8268 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8269 const struct ieee80211_geo
*geo
= ipw_get_geo(priv
->ieee
);
8270 struct iw_freq
*fwrq
= &wrqu
->freq
;
8276 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8278 ret
= ipw_set_channel(priv
, 0);
8282 /* if setting by freq convert to channel */
8284 channel
= ipw_freq_to_channel(priv
->ieee
, fwrq
->m
);
8290 if (!(band
= ipw_is_valid_channel(priv
->ieee
, channel
)))
8293 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
8294 i
= ipw_channel_to_index(priv
->ieee
, channel
);
8298 flags
= (band
== IEEE80211_24GHZ_BAND
) ?
8299 geo
->bg
[i
].flags
: geo
->a
[i
].flags
;
8300 if (flags
& IEEE80211_CH_PASSIVE_ONLY
) {
8301 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8306 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq
->m
);
8308 ret
= ipw_set_channel(priv
, channel
);
8313 static int ipw_wx_get_freq(struct net_device
*dev
,
8314 struct iw_request_info
*info
,
8315 union iwreq_data
*wrqu
, char *extra
)
8317 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8321 /* If we are associated, trying to associate, or have a statically
8322 * configured CHANNEL then return that; otherwise return ANY */
8324 if (priv
->config
& CFG_STATIC_CHANNEL
||
8325 priv
->status
& (STATUS_ASSOCIATING
| STATUS_ASSOCIATED
))
8326 wrqu
->freq
.m
= priv
->channel
;
8331 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv
->channel
);
8335 static int ipw_wx_set_mode(struct net_device
*dev
,
8336 struct iw_request_info
*info
,
8337 union iwreq_data
*wrqu
, char *extra
)
8339 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8342 IPW_DEBUG_WX("Set MODE: %d\n", wrqu
->mode
);
8344 switch (wrqu
->mode
) {
8345 #ifdef CONFIG_IPW2200_MONITOR
8346 case IW_MODE_MONITOR
:
8352 wrqu
->mode
= IW_MODE_INFRA
;
8357 if (wrqu
->mode
== priv
->ieee
->iw_mode
)
8362 ipw_sw_reset(priv
, 0);
8364 #ifdef CONFIG_IPW2200_MONITOR
8365 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
)
8366 priv
->net_dev
->type
= ARPHRD_ETHER
;
8368 if (wrqu
->mode
== IW_MODE_MONITOR
)
8369 #ifdef CONFIG_IEEE80211_RADIOTAP
8370 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
8372 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
8374 #endif /* CONFIG_IPW2200_MONITOR */
8376 /* Free the existing firmware and reset the fw_loaded
8377 * flag so ipw_load() will bring in the new firmawre */
8380 priv
->ieee
->iw_mode
= wrqu
->mode
;
8382 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
8387 static int ipw_wx_get_mode(struct net_device
*dev
,
8388 struct iw_request_info
*info
,
8389 union iwreq_data
*wrqu
, char *extra
)
8391 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8393 wrqu
->mode
= priv
->ieee
->iw_mode
;
8394 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu
->mode
);
8399 /* Values are in microsecond */
8400 static const s32 timeout_duration
[] = {
8408 static const s32 period_duration
[] = {
8416 static int ipw_wx_get_range(struct net_device
*dev
,
8417 struct iw_request_info
*info
,
8418 union iwreq_data
*wrqu
, char *extra
)
8420 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8421 struct iw_range
*range
= (struct iw_range
*)extra
;
8422 const struct ieee80211_geo
*geo
= ipw_get_geo(priv
->ieee
);
8425 wrqu
->data
.length
= sizeof(*range
);
8426 memset(range
, 0, sizeof(*range
));
8428 /* 54Mbs == ~27 Mb/s real (802.11g) */
8429 range
->throughput
= 27 * 1000 * 1000;
8431 range
->max_qual
.qual
= 100;
8432 /* TODO: Find real max RSSI and stick here */
8433 range
->max_qual
.level
= 0;
8434 range
->max_qual
.noise
= priv
->ieee
->worst_rssi
+ 0x100;
8435 range
->max_qual
.updated
= 7; /* Updated all three */
8437 range
->avg_qual
.qual
= 70;
8438 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8439 range
->avg_qual
.level
= 0; /* FIXME to real average level */
8440 range
->avg_qual
.noise
= 0;
8441 range
->avg_qual
.updated
= 7; /* Updated all three */
8443 range
->num_bitrates
= min(priv
->rates
.num_rates
, (u8
) IW_MAX_BITRATES
);
8445 for (i
= 0; i
< range
->num_bitrates
; i
++)
8446 range
->bitrate
[i
] = (priv
->rates
.supported_rates
[i
] & 0x7F) *
8449 range
->max_rts
= DEFAULT_RTS_THRESHOLD
;
8450 range
->min_frag
= MIN_FRAG_THRESHOLD
;
8451 range
->max_frag
= MAX_FRAG_THRESHOLD
;
8453 range
->encoding_size
[0] = 5;
8454 range
->encoding_size
[1] = 13;
8455 range
->num_encoding_sizes
= 2;
8456 range
->max_encoding_tokens
= WEP_KEYS
;
8458 /* Set the Wireless Extension versions */
8459 range
->we_version_compiled
= WIRELESS_EXT
;
8460 range
->we_version_source
= 16;
8463 if (priv
->ieee
->mode
& (IEEE_B
| IEEE_G
)) {
8464 for (j
= 0; j
< geo
->bg_channels
&& i
< IW_MAX_FREQUENCIES
;
8466 range
->freq
[i
].i
= geo
->bg
[j
].channel
;
8467 range
->freq
[i
].m
= geo
->bg
[j
].freq
* 100000;
8468 range
->freq
[i
].e
= 1;
8472 if (priv
->ieee
->mode
& IEEE_A
) {
8473 for (j
= 0; j
< geo
->a_channels
&& i
< IW_MAX_FREQUENCIES
;
8475 range
->freq
[i
].i
= geo
->a
[j
].channel
;
8476 range
->freq
[i
].m
= geo
->a
[j
].freq
* 100000;
8477 range
->freq
[i
].e
= 1;
8481 range
->num_channels
= i
;
8482 range
->num_frequency
= i
;
8486 /* Event capability (kernel + driver) */
8487 range
->event_capa
[0] = (IW_EVENT_CAPA_K_0
|
8488 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY
) |
8489 IW_EVENT_CAPA_MASK(SIOCGIWAP
));
8490 range
->event_capa
[1] = IW_EVENT_CAPA_K_1
;
8492 IPW_DEBUG_WX("GET Range\n");
8496 static int ipw_wx_set_wap(struct net_device
*dev
,
8497 struct iw_request_info
*info
,
8498 union iwreq_data
*wrqu
, char *extra
)
8500 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8502 static const unsigned char any
[] = {
8503 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8505 static const unsigned char off
[] = {
8506 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8509 if (wrqu
->ap_addr
.sa_family
!= ARPHRD_ETHER
)
8512 if (!memcmp(any
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
) ||
8513 !memcmp(off
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
)) {
8514 /* we disable mandatory BSSID association */
8515 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8516 priv
->config
&= ~CFG_STATIC_BSSID
;
8517 IPW_DEBUG_ASSOC("Attempting to associate with new "
8519 ipw_associate(priv
);
8524 priv
->config
|= CFG_STATIC_BSSID
;
8525 if (!memcmp(priv
->bssid
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
)) {
8526 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8531 IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT
"\n",
8532 MAC_ARG(wrqu
->ap_addr
.sa_data
));
8534 memcpy(priv
->bssid
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
);
8536 /* Network configuration changed -- force [re]association */
8537 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8538 if (!ipw_disassociate(priv
))
8539 ipw_associate(priv
);
8545 static int ipw_wx_get_wap(struct net_device
*dev
,
8546 struct iw_request_info
*info
,
8547 union iwreq_data
*wrqu
, char *extra
)
8549 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8550 /* If we are associated, trying to associate, or have a statically
8551 * configured BSSID then return that; otherwise return ANY */
8553 if (priv
->config
& CFG_STATIC_BSSID
||
8554 priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
8555 wrqu
->ap_addr
.sa_family
= ARPHRD_ETHER
;
8556 memcpy(wrqu
->ap_addr
.sa_data
, priv
->bssid
, ETH_ALEN
);
8558 memset(wrqu
->ap_addr
.sa_data
, 0, ETH_ALEN
);
8560 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT
"\n",
8561 MAC_ARG(wrqu
->ap_addr
.sa_data
));
8566 static int ipw_wx_set_essid(struct net_device
*dev
,
8567 struct iw_request_info
*info
,
8568 union iwreq_data
*wrqu
, char *extra
)
8570 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8571 char *essid
= ""; /* ANY */
8574 if (wrqu
->essid
.flags
&& wrqu
->essid
.length
) {
8575 length
= wrqu
->essid
.length
- 1;
8579 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8580 if ((priv
->config
& CFG_STATIC_ESSID
) &&
8581 !(priv
->status
& (STATUS_ASSOCIATED
|
8582 STATUS_ASSOCIATING
))) {
8583 IPW_DEBUG_ASSOC("Attempting to associate with new "
8585 priv
->config
&= ~CFG_STATIC_ESSID
;
8586 ipw_associate(priv
);
8592 length
= min(length
, IW_ESSID_MAX_SIZE
);
8594 priv
->config
|= CFG_STATIC_ESSID
;
8596 if (priv
->essid_len
== length
&& !memcmp(priv
->essid
, extra
, length
)) {
8597 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8602 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid
, length
),
8605 priv
->essid_len
= length
;
8606 memcpy(priv
->essid
, essid
, priv
->essid_len
);
8608 /* Network configuration changed -- force [re]association */
8609 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8610 if (!ipw_disassociate(priv
))
8611 ipw_associate(priv
);
8617 static int ipw_wx_get_essid(struct net_device
*dev
,
8618 struct iw_request_info
*info
,
8619 union iwreq_data
*wrqu
, char *extra
)
8621 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8623 /* If we are associated, trying to associate, or have a statically
8624 * configured ESSID then return that; otherwise return ANY */
8626 if (priv
->config
& CFG_STATIC_ESSID
||
8627 priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
8628 IPW_DEBUG_WX("Getting essid: '%s'\n",
8629 escape_essid(priv
->essid
, priv
->essid_len
));
8630 memcpy(extra
, priv
->essid
, priv
->essid_len
);
8631 wrqu
->essid
.length
= priv
->essid_len
;
8632 wrqu
->essid
.flags
= 1; /* active */
8634 IPW_DEBUG_WX("Getting essid: ANY\n");
8635 wrqu
->essid
.length
= 0;
8636 wrqu
->essid
.flags
= 0; /* active */
8642 static int ipw_wx_set_nick(struct net_device
*dev
,
8643 struct iw_request_info
*info
,
8644 union iwreq_data
*wrqu
, char *extra
)
8646 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8648 IPW_DEBUG_WX("Setting nick to '%s'\n", extra
);
8649 if (wrqu
->data
.length
> IW_ESSID_MAX_SIZE
)
8652 wrqu
->data
.length
= min((size_t) wrqu
->data
.length
, sizeof(priv
->nick
));
8653 memset(priv
->nick
, 0, sizeof(priv
->nick
));
8654 memcpy(priv
->nick
, extra
, wrqu
->data
.length
);
8655 IPW_DEBUG_TRACE("<<\n");
8661 static int ipw_wx_get_nick(struct net_device
*dev
,
8662 struct iw_request_info
*info
,
8663 union iwreq_data
*wrqu
, char *extra
)
8665 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8666 IPW_DEBUG_WX("Getting nick\n");
8668 wrqu
->data
.length
= strlen(priv
->nick
) + 1;
8669 memcpy(extra
, priv
->nick
, wrqu
->data
.length
);
8670 wrqu
->data
.flags
= 1; /* active */
8675 static int ipw_wx_set_rate(struct net_device
*dev
,
8676 struct iw_request_info
*info
,
8677 union iwreq_data
*wrqu
, char *extra
)
8679 /* TODO: We should use semaphores or locks for access to priv */
8680 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8681 u32 target_rate
= wrqu
->bitrate
.value
;
8684 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8685 /* value = X, fixed = 1 means only rate X */
8686 /* value = X, fixed = 0 means all rates lower equal X */
8688 if (target_rate
== -1) {
8690 mask
= IEEE80211_DEFAULT_RATES_MASK
;
8691 /* Now we should reassociate */
8696 fixed
= wrqu
->bitrate
.fixed
;
8698 if (target_rate
== 1000000 || !fixed
)
8699 mask
|= IEEE80211_CCK_RATE_1MB_MASK
;
8700 if (target_rate
== 1000000)
8703 if (target_rate
== 2000000 || !fixed
)
8704 mask
|= IEEE80211_CCK_RATE_2MB_MASK
;
8705 if (target_rate
== 2000000)
8708 if (target_rate
== 5500000 || !fixed
)
8709 mask
|= IEEE80211_CCK_RATE_5MB_MASK
;
8710 if (target_rate
== 5500000)
8713 if (target_rate
== 6000000 || !fixed
)
8714 mask
|= IEEE80211_OFDM_RATE_6MB_MASK
;
8715 if (target_rate
== 6000000)
8718 if (target_rate
== 9000000 || !fixed
)
8719 mask
|= IEEE80211_OFDM_RATE_9MB_MASK
;
8720 if (target_rate
== 9000000)
8723 if (target_rate
== 11000000 || !fixed
)
8724 mask
|= IEEE80211_CCK_RATE_11MB_MASK
;
8725 if (target_rate
== 11000000)
8728 if (target_rate
== 12000000 || !fixed
)
8729 mask
|= IEEE80211_OFDM_RATE_12MB_MASK
;
8730 if (target_rate
== 12000000)
8733 if (target_rate
== 18000000 || !fixed
)
8734 mask
|= IEEE80211_OFDM_RATE_18MB_MASK
;
8735 if (target_rate
== 18000000)
8738 if (target_rate
== 24000000 || !fixed
)
8739 mask
|= IEEE80211_OFDM_RATE_24MB_MASK
;
8740 if (target_rate
== 24000000)
8743 if (target_rate
== 36000000 || !fixed
)
8744 mask
|= IEEE80211_OFDM_RATE_36MB_MASK
;
8745 if (target_rate
== 36000000)
8748 if (target_rate
== 48000000 || !fixed
)
8749 mask
|= IEEE80211_OFDM_RATE_48MB_MASK
;
8750 if (target_rate
== 48000000)
8753 if (target_rate
== 54000000 || !fixed
)
8754 mask
|= IEEE80211_OFDM_RATE_54MB_MASK
;
8755 if (target_rate
== 54000000)
8758 IPW_DEBUG_WX("invalid rate specified, returning error\n");
8762 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
8763 mask
, fixed
? "fixed" : "sub-rates");
8765 if (mask
== IEEE80211_DEFAULT_RATES_MASK
) {
8766 priv
->config
&= ~CFG_FIXED_RATE
;
8767 ipw_set_fixed_rate(priv
, priv
->ieee
->mode
);
8769 priv
->config
|= CFG_FIXED_RATE
;
8771 if (priv
->rates_mask
== mask
) {
8772 IPW_DEBUG_WX("Mask set to current mask.\n");
8777 priv
->rates_mask
= mask
;
8779 /* Network configuration changed -- force [re]association */
8780 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
8781 if (!ipw_disassociate(priv
))
8782 ipw_associate(priv
);
8788 static int ipw_wx_get_rate(struct net_device
*dev
,
8789 struct iw_request_info
*info
,
8790 union iwreq_data
*wrqu
, char *extra
)
8792 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8794 wrqu
->bitrate
.value
= priv
->last_rate
;
8796 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu
->bitrate
.value
);
8800 static int ipw_wx_set_rts(struct net_device
*dev
,
8801 struct iw_request_info
*info
,
8802 union iwreq_data
*wrqu
, char *extra
)
8804 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8806 if (wrqu
->rts
.disabled
)
8807 priv
->rts_threshold
= DEFAULT_RTS_THRESHOLD
;
8809 if (wrqu
->rts
.value
< MIN_RTS_THRESHOLD
||
8810 wrqu
->rts
.value
> MAX_RTS_THRESHOLD
) {
8814 priv
->rts_threshold
= wrqu
->rts
.value
;
8817 ipw_send_rts_threshold(priv
, priv
->rts_threshold
);
8819 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv
->rts_threshold
);
8823 static int ipw_wx_get_rts(struct net_device
*dev
,
8824 struct iw_request_info
*info
,
8825 union iwreq_data
*wrqu
, char *extra
)
8827 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8829 wrqu
->rts
.value
= priv
->rts_threshold
;
8830 wrqu
->rts
.fixed
= 0; /* no auto select */
8831 wrqu
->rts
.disabled
= (wrqu
->rts
.value
== DEFAULT_RTS_THRESHOLD
);
8833 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu
->rts
.value
);
8837 static int ipw_wx_set_txpow(struct net_device
*dev
,
8838 struct iw_request_info
*info
,
8839 union iwreq_data
*wrqu
, char *extra
)
8841 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8845 if (ipw_radio_kill_sw(priv
, wrqu
->power
.disabled
)) {
8850 if (!wrqu
->power
.fixed
)
8851 wrqu
->power
.value
= IPW_TX_POWER_DEFAULT
;
8853 if (wrqu
->power
.flags
!= IW_TXPOW_DBM
) {
8858 if ((wrqu
->power
.value
> IPW_TX_POWER_MAX
) ||
8859 (wrqu
->power
.value
< IPW_TX_POWER_MIN
)) {
8864 priv
->tx_power
= wrqu
->power
.value
;
8865 err
= ipw_set_tx_power(priv
);
8871 static int ipw_wx_get_txpow(struct net_device
*dev
,
8872 struct iw_request_info
*info
,
8873 union iwreq_data
*wrqu
, char *extra
)
8875 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8877 wrqu
->power
.value
= priv
->tx_power
;
8878 wrqu
->power
.fixed
= 1;
8879 wrqu
->power
.flags
= IW_TXPOW_DBM
;
8880 wrqu
->power
.disabled
= (priv
->status
& STATUS_RF_KILL_MASK
) ? 1 : 0;
8883 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
8884 wrqu
->power
.disabled
? "OFF" : "ON", wrqu
->power
.value
);
8889 static int ipw_wx_set_frag(struct net_device
*dev
,
8890 struct iw_request_info
*info
,
8891 union iwreq_data
*wrqu
, char *extra
)
8893 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8895 if (wrqu
->frag
.disabled
)
8896 priv
->ieee
->fts
= DEFAULT_FTS
;
8898 if (wrqu
->frag
.value
< MIN_FRAG_THRESHOLD
||
8899 wrqu
->frag
.value
> MAX_FRAG_THRESHOLD
) {
8904 priv
->ieee
->fts
= wrqu
->frag
.value
& ~0x1;
8907 ipw_send_frag_threshold(priv
, wrqu
->frag
.value
);
8909 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu
->frag
.value
);
8913 static int ipw_wx_get_frag(struct net_device
*dev
,
8914 struct iw_request_info
*info
,
8915 union iwreq_data
*wrqu
, char *extra
)
8917 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8919 wrqu
->frag
.value
= priv
->ieee
->fts
;
8920 wrqu
->frag
.fixed
= 0; /* no auto select */
8921 wrqu
->frag
.disabled
= (wrqu
->frag
.value
== DEFAULT_FTS
);
8923 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu
->frag
.value
);
8928 static int ipw_wx_set_retry(struct net_device
*dev
,
8929 struct iw_request_info
*info
,
8930 union iwreq_data
*wrqu
, char *extra
)
8932 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8934 if (wrqu
->retry
.flags
& IW_RETRY_LIFETIME
|| wrqu
->retry
.disabled
)
8937 if (!(wrqu
->retry
.flags
& IW_RETRY_LIMIT
))
8940 if (wrqu
->retry
.value
< 0 || wrqu
->retry
.value
> 255)
8944 if (wrqu
->retry
.flags
& IW_RETRY_MIN
)
8945 priv
->short_retry_limit
= (u8
) wrqu
->retry
.value
;
8946 else if (wrqu
->retry
.flags
& IW_RETRY_MAX
)
8947 priv
->long_retry_limit
= (u8
) wrqu
->retry
.value
;
8949 priv
->short_retry_limit
= (u8
) wrqu
->retry
.value
;
8950 priv
->long_retry_limit
= (u8
) wrqu
->retry
.value
;
8953 ipw_send_retry_limit(priv
, priv
->short_retry_limit
,
8954 priv
->long_retry_limit
);
8956 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
8957 priv
->short_retry_limit
, priv
->long_retry_limit
);
8961 static int ipw_wx_get_retry(struct net_device
*dev
,
8962 struct iw_request_info
*info
,
8963 union iwreq_data
*wrqu
, char *extra
)
8965 struct ipw_priv
*priv
= ieee80211_priv(dev
);
8968 wrqu
->retry
.disabled
= 0;
8970 if ((wrqu
->retry
.flags
& IW_RETRY_TYPE
) == IW_RETRY_LIFETIME
) {
8975 if (wrqu
->retry
.flags
& IW_RETRY_MAX
) {
8976 wrqu
->retry
.flags
= IW_RETRY_LIMIT
| IW_RETRY_MAX
;
8977 wrqu
->retry
.value
= priv
->long_retry_limit
;
8978 } else if (wrqu
->retry
.flags
& IW_RETRY_MIN
) {
8979 wrqu
->retry
.flags
= IW_RETRY_LIMIT
| IW_RETRY_MIN
;
8980 wrqu
->retry
.value
= priv
->short_retry_limit
;
8982 wrqu
->retry
.flags
= IW_RETRY_LIMIT
;
8983 wrqu
->retry
.value
= priv
->short_retry_limit
;
8987 IPW_DEBUG_WX("GET retry -> %d \n", wrqu
->retry
.value
);
8992 static int ipw_request_direct_scan(struct ipw_priv
*priv
, char *essid
,
8995 struct ipw_scan_request_ext scan
;
8996 int err
= 0, scan_type
;
8998 if (!(priv
->status
& STATUS_INIT
) ||
8999 (priv
->status
& STATUS_EXIT_PENDING
))
9004 if (priv
->status
& STATUS_RF_KILL_MASK
) {
9005 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9006 priv
->status
|= STATUS_SCAN_PENDING
;
9010 IPW_DEBUG_HC("starting request direct scan!\n");
9012 if (priv
->status
& (STATUS_SCANNING
| STATUS_SCAN_ABORTING
)) {
9013 /* We should not sleep here; otherwise we will block most
9014 * of the system (for instance, we hold rtnl_lock when we
9020 memset(&scan
, 0, sizeof(scan
));
9022 if (priv
->config
& CFG_SPEED_SCAN
)
9023 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_SCAN
] =
9026 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_SCAN
] =
9029 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
] =
9031 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] = cpu_to_le16(120);
9032 scan
.dwell_time
[IPW_SCAN_ACTIVE_DIRECT_SCAN
] = cpu_to_le16(20);
9034 scan
.full_scan_index
= cpu_to_le32(ieee80211_get_scans(priv
->ieee
));
9036 err
= ipw_send_ssid(priv
, essid
, essid_len
);
9038 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9041 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
;
9043 ipw_add_scan_channels(priv
, &scan
, scan_type
);
9045 err
= ipw_send_scan_request_ext(priv
, &scan
);
9047 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err
);
9051 priv
->status
|= STATUS_SCANNING
;
9058 static int ipw_wx_set_scan(struct net_device
*dev
,
9059 struct iw_request_info
*info
,
9060 union iwreq_data
*wrqu
, char *extra
)
9062 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9063 struct iw_scan_req
*req
= NULL
;
9064 if (wrqu
->data
.length
9065 && wrqu
->data
.length
== sizeof(struct iw_scan_req
)) {
9066 req
= (struct iw_scan_req
*)extra
;
9067 if (wrqu
->data
.flags
& IW_SCAN_THIS_ESSID
) {
9068 ipw_request_direct_scan(priv
, req
->essid
,
9074 IPW_DEBUG_WX("Start scan\n");
9076 queue_work(priv
->workqueue
, &priv
->request_scan
);
9081 static int ipw_wx_get_scan(struct net_device
*dev
,
9082 struct iw_request_info
*info
,
9083 union iwreq_data
*wrqu
, char *extra
)
9085 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9086 return ieee80211_wx_get_scan(priv
->ieee
, info
, wrqu
, extra
);
9089 static int ipw_wx_set_encode(struct net_device
*dev
,
9090 struct iw_request_info
*info
,
9091 union iwreq_data
*wrqu
, char *key
)
9093 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9095 u32 cap
= priv
->capability
;
9098 ret
= ieee80211_wx_set_encode(priv
->ieee
, info
, wrqu
, key
);
9100 /* In IBSS mode, we need to notify the firmware to update
9101 * the beacon info after we changed the capability. */
9102 if (cap
!= priv
->capability
&&
9103 priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
9104 priv
->status
& STATUS_ASSOCIATED
)
9105 ipw_disassociate(priv
);
9111 static int ipw_wx_get_encode(struct net_device
*dev
,
9112 struct iw_request_info
*info
,
9113 union iwreq_data
*wrqu
, char *key
)
9115 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9116 return ieee80211_wx_get_encode(priv
->ieee
, info
, wrqu
, key
);
9119 static int ipw_wx_set_power(struct net_device
*dev
,
9120 struct iw_request_info
*info
,
9121 union iwreq_data
*wrqu
, char *extra
)
9123 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9126 if (wrqu
->power
.disabled
) {
9127 priv
->power_mode
= IPW_POWER_LEVEL(priv
->power_mode
);
9128 err
= ipw_send_power_mode(priv
, IPW_POWER_MODE_CAM
);
9130 IPW_DEBUG_WX("failed setting power mode.\n");
9134 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9139 switch (wrqu
->power
.flags
& IW_POWER_MODE
) {
9140 case IW_POWER_ON
: /* If not specified */
9141 case IW_POWER_MODE
: /* If set all mask */
9142 case IW_POWER_ALL_R
: /* If explicitely state all */
9144 default: /* Otherwise we don't support it */
9145 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9151 /* If the user hasn't specified a power management mode yet, default
9153 if (IPW_POWER_LEVEL(priv
->power_mode
) == IPW_POWER_AC
)
9154 priv
->power_mode
= IPW_POWER_ENABLED
| IPW_POWER_BATTERY
;
9156 priv
->power_mode
= IPW_POWER_ENABLED
| priv
->power_mode
;
9157 err
= ipw_send_power_mode(priv
, IPW_POWER_LEVEL(priv
->power_mode
));
9159 IPW_DEBUG_WX("failed setting power mode.\n");
9164 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv
->power_mode
);
9169 static int ipw_wx_get_power(struct net_device
*dev
,
9170 struct iw_request_info
*info
,
9171 union iwreq_data
*wrqu
, char *extra
)
9173 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9175 if (!(priv
->power_mode
& IPW_POWER_ENABLED
))
9176 wrqu
->power
.disabled
= 1;
9178 wrqu
->power
.disabled
= 0;
9181 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv
->power_mode
);
9186 static int ipw_wx_set_powermode(struct net_device
*dev
,
9187 struct iw_request_info
*info
,
9188 union iwreq_data
*wrqu
, char *extra
)
9190 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9191 int mode
= *(int *)extra
;
9194 if ((mode
< 1) || (mode
> IPW_POWER_LIMIT
)) {
9195 mode
= IPW_POWER_AC
;
9196 priv
->power_mode
= mode
;
9198 priv
->power_mode
= IPW_POWER_ENABLED
| mode
;
9201 if (priv
->power_mode
!= mode
) {
9202 err
= ipw_send_power_mode(priv
, mode
);
9205 IPW_DEBUG_WX("failed setting power mode.\n");
9214 #define MAX_WX_STRING 80
9215 static int ipw_wx_get_powermode(struct net_device
*dev
,
9216 struct iw_request_info
*info
,
9217 union iwreq_data
*wrqu
, char *extra
)
9219 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9220 int level
= IPW_POWER_LEVEL(priv
->power_mode
);
9223 p
+= snprintf(p
, MAX_WX_STRING
, "Power save level: %d ", level
);
9227 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), "(AC)");
9229 case IPW_POWER_BATTERY
:
9230 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), "(BATTERY)");
9233 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
),
9234 "(Timeout %dms, Period %dms)",
9235 timeout_duration
[level
- 1] / 1000,
9236 period_duration
[level
- 1] / 1000);
9239 if (!(priv
->power_mode
& IPW_POWER_ENABLED
))
9240 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), " OFF");
9242 wrqu
->data
.length
= p
- extra
+ 1;
9247 static int ipw_wx_set_wireless_mode(struct net_device
*dev
,
9248 struct iw_request_info
*info
,
9249 union iwreq_data
*wrqu
, char *extra
)
9251 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9252 int mode
= *(int *)extra
;
9253 u8 band
= 0, modulation
= 0;
9255 if (mode
== 0 || mode
& ~IEEE_MODE_MASK
) {
9256 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode
);
9260 if (priv
->adapter
== IPW_2915ABG
) {
9261 priv
->ieee
->abg_true
= 1;
9262 if (mode
& IEEE_A
) {
9263 band
|= IEEE80211_52GHZ_BAND
;
9264 modulation
|= IEEE80211_OFDM_MODULATION
;
9266 priv
->ieee
->abg_true
= 0;
9268 if (mode
& IEEE_A
) {
9269 IPW_WARNING("Attempt to set 2200BG into "
9275 priv
->ieee
->abg_true
= 0;
9278 if (mode
& IEEE_B
) {
9279 band
|= IEEE80211_24GHZ_BAND
;
9280 modulation
|= IEEE80211_CCK_MODULATION
;
9282 priv
->ieee
->abg_true
= 0;
9284 if (mode
& IEEE_G
) {
9285 band
|= IEEE80211_24GHZ_BAND
;
9286 modulation
|= IEEE80211_OFDM_MODULATION
;
9288 priv
->ieee
->abg_true
= 0;
9290 priv
->ieee
->mode
= mode
;
9291 priv
->ieee
->freq_band
= band
;
9292 priv
->ieee
->modulation
= modulation
;
9293 init_supported_rates(priv
, &priv
->rates
);
9295 /* Network configuration changed -- force [re]association */
9296 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9297 if (!ipw_disassociate(priv
)) {
9298 ipw_send_supported_rates(priv
, &priv
->rates
);
9299 ipw_associate(priv
);
9302 /* Update the band LEDs */
9303 ipw_led_band_on(priv
);
9305 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9306 mode
& IEEE_A
? 'a' : '.',
9307 mode
& IEEE_B
? 'b' : '.', mode
& IEEE_G
? 'g' : '.');
9312 static int ipw_wx_get_wireless_mode(struct net_device
*dev
,
9313 struct iw_request_info
*info
,
9314 union iwreq_data
*wrqu
, char *extra
)
9316 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9318 switch (priv
->ieee
->mode
) {
9320 strncpy(extra
, "802.11a (1)", MAX_WX_STRING
);
9323 strncpy(extra
, "802.11b (2)", MAX_WX_STRING
);
9325 case IEEE_A
| IEEE_B
:
9326 strncpy(extra
, "802.11ab (3)", MAX_WX_STRING
);
9329 strncpy(extra
, "802.11g (4)", MAX_WX_STRING
);
9331 case IEEE_A
| IEEE_G
:
9332 strncpy(extra
, "802.11ag (5)", MAX_WX_STRING
);
9334 case IEEE_B
| IEEE_G
:
9335 strncpy(extra
, "802.11bg (6)", MAX_WX_STRING
);
9337 case IEEE_A
| IEEE_B
| IEEE_G
:
9338 strncpy(extra
, "802.11abg (7)", MAX_WX_STRING
);
9341 strncpy(extra
, "unknown", MAX_WX_STRING
);
9345 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra
);
9347 wrqu
->data
.length
= strlen(extra
) + 1;
9353 static int ipw_wx_set_preamble(struct net_device
*dev
,
9354 struct iw_request_info
*info
,
9355 union iwreq_data
*wrqu
, char *extra
)
9357 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9358 int mode
= *(int *)extra
;
9360 /* Switching from SHORT -> LONG requires a disassociation */
9362 if (!(priv
->config
& CFG_PREAMBLE_LONG
)) {
9363 priv
->config
|= CFG_PREAMBLE_LONG
;
9365 /* Network configuration changed -- force [re]association */
9367 ("[re]association triggered due to preamble change.\n");
9368 if (!ipw_disassociate(priv
))
9369 ipw_associate(priv
);
9375 priv
->config
&= ~CFG_PREAMBLE_LONG
;
9386 static int ipw_wx_get_preamble(struct net_device
*dev
,
9387 struct iw_request_info
*info
,
9388 union iwreq_data
*wrqu
, char *extra
)
9390 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9392 if (priv
->config
& CFG_PREAMBLE_LONG
)
9393 snprintf(wrqu
->name
, IFNAMSIZ
, "long (1)");
9395 snprintf(wrqu
->name
, IFNAMSIZ
, "auto (0)");
9400 #ifdef CONFIG_IPW2200_MONITOR
9401 static int ipw_wx_set_monitor(struct net_device
*dev
,
9402 struct iw_request_info
*info
,
9403 union iwreq_data
*wrqu
, char *extra
)
9405 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9406 int *parms
= (int *)extra
;
9407 int enable
= (parms
[0] > 0);
9409 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable
, parms
[1]);
9411 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
9412 #ifdef CONFIG_IEEE80211_RADIOTAP
9413 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
9415 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
9417 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
9420 ipw_set_channel(priv
, parms
[1]);
9422 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
9426 priv
->net_dev
->type
= ARPHRD_ETHER
;
9427 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
9433 #endif // CONFIG_IPW2200_MONITOR
9435 static int ipw_wx_reset(struct net_device
*dev
,
9436 struct iw_request_info
*info
,
9437 union iwreq_data
*wrqu
, char *extra
)
9439 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9440 IPW_DEBUG_WX("RESET\n");
9441 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
9445 static int ipw_wx_sw_reset(struct net_device
*dev
,
9446 struct iw_request_info
*info
,
9447 union iwreq_data
*wrqu
, char *extra
)
9449 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9450 union iwreq_data wrqu_sec
= {
9452 .flags
= IW_ENCODE_DISABLED
,
9457 IPW_DEBUG_WX("SW_RESET\n");
9461 ret
= ipw_sw_reset(priv
, 0);
9464 ipw_adapter_restart(priv
);
9467 /* The SW reset bit might have been toggled on by the 'disable'
9468 * module parameter, so take appropriate action */
9469 ipw_radio_kill_sw(priv
, priv
->status
& STATUS_RF_KILL_SW
);
9472 ieee80211_wx_set_encode(priv
->ieee
, info
, &wrqu_sec
, NULL
);
9475 if (!(priv
->status
& STATUS_RF_KILL_MASK
)) {
9476 /* Configuration likely changed -- force [re]association */
9477 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9479 if (!ipw_disassociate(priv
))
9480 ipw_associate(priv
);
9488 /* Rebase the WE IOCTLs to zero for the handler array */
9489 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9490 static iw_handler ipw_wx_handlers
[] = {
9491 IW_IOCTL(SIOCGIWNAME
) = ipw_wx_get_name
,
9492 IW_IOCTL(SIOCSIWFREQ
) = ipw_wx_set_freq
,
9493 IW_IOCTL(SIOCGIWFREQ
) = ipw_wx_get_freq
,
9494 IW_IOCTL(SIOCSIWMODE
) = ipw_wx_set_mode
,
9495 IW_IOCTL(SIOCGIWMODE
) = ipw_wx_get_mode
,
9496 IW_IOCTL(SIOCGIWRANGE
) = ipw_wx_get_range
,
9497 IW_IOCTL(SIOCSIWAP
) = ipw_wx_set_wap
,
9498 IW_IOCTL(SIOCGIWAP
) = ipw_wx_get_wap
,
9499 IW_IOCTL(SIOCSIWSCAN
) = ipw_wx_set_scan
,
9500 IW_IOCTL(SIOCGIWSCAN
) = ipw_wx_get_scan
,
9501 IW_IOCTL(SIOCSIWESSID
) = ipw_wx_set_essid
,
9502 IW_IOCTL(SIOCGIWESSID
) = ipw_wx_get_essid
,
9503 IW_IOCTL(SIOCSIWNICKN
) = ipw_wx_set_nick
,
9504 IW_IOCTL(SIOCGIWNICKN
) = ipw_wx_get_nick
,
9505 IW_IOCTL(SIOCSIWRATE
) = ipw_wx_set_rate
,
9506 IW_IOCTL(SIOCGIWRATE
) = ipw_wx_get_rate
,
9507 IW_IOCTL(SIOCSIWRTS
) = ipw_wx_set_rts
,
9508 IW_IOCTL(SIOCGIWRTS
) = ipw_wx_get_rts
,
9509 IW_IOCTL(SIOCSIWFRAG
) = ipw_wx_set_frag
,
9510 IW_IOCTL(SIOCGIWFRAG
) = ipw_wx_get_frag
,
9511 IW_IOCTL(SIOCSIWTXPOW
) = ipw_wx_set_txpow
,
9512 IW_IOCTL(SIOCGIWTXPOW
) = ipw_wx_get_txpow
,
9513 IW_IOCTL(SIOCSIWRETRY
) = ipw_wx_set_retry
,
9514 IW_IOCTL(SIOCGIWRETRY
) = ipw_wx_get_retry
,
9515 IW_IOCTL(SIOCSIWENCODE
) = ipw_wx_set_encode
,
9516 IW_IOCTL(SIOCGIWENCODE
) = ipw_wx_get_encode
,
9517 IW_IOCTL(SIOCSIWPOWER
) = ipw_wx_set_power
,
9518 IW_IOCTL(SIOCGIWPOWER
) = ipw_wx_get_power
,
9519 IW_IOCTL(SIOCSIWSPY
) = iw_handler_set_spy
,
9520 IW_IOCTL(SIOCGIWSPY
) = iw_handler_get_spy
,
9521 IW_IOCTL(SIOCSIWTHRSPY
) = iw_handler_set_thrspy
,
9522 IW_IOCTL(SIOCGIWTHRSPY
) = iw_handler_get_thrspy
,
9523 IW_IOCTL(SIOCSIWGENIE
) = ipw_wx_set_genie
,
9524 IW_IOCTL(SIOCGIWGENIE
) = ipw_wx_get_genie
,
9525 IW_IOCTL(SIOCSIWMLME
) = ipw_wx_set_mlme
,
9526 IW_IOCTL(SIOCSIWAUTH
) = ipw_wx_set_auth
,
9527 IW_IOCTL(SIOCGIWAUTH
) = ipw_wx_get_auth
,
9528 IW_IOCTL(SIOCSIWENCODEEXT
) = ipw_wx_set_encodeext
,
9529 IW_IOCTL(SIOCGIWENCODEEXT
) = ipw_wx_get_encodeext
,
9533 IPW_PRIV_SET_POWER
= SIOCIWFIRSTPRIV
,
9537 IPW_PRIV_SET_PREAMBLE
,
9538 IPW_PRIV_GET_PREAMBLE
,
9541 #ifdef CONFIG_IPW2200_MONITOR
9542 IPW_PRIV_SET_MONITOR
,
9546 static struct iw_priv_args ipw_priv_args
[] = {
9548 .cmd
= IPW_PRIV_SET_POWER
,
9549 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
9550 .name
= "set_power"},
9552 .cmd
= IPW_PRIV_GET_POWER
,
9553 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| MAX_WX_STRING
,
9554 .name
= "get_power"},
9556 .cmd
= IPW_PRIV_SET_MODE
,
9557 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
9558 .name
= "set_mode"},
9560 .cmd
= IPW_PRIV_GET_MODE
,
9561 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| MAX_WX_STRING
,
9562 .name
= "get_mode"},
9564 .cmd
= IPW_PRIV_SET_PREAMBLE
,
9565 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
9566 .name
= "set_preamble"},
9568 .cmd
= IPW_PRIV_GET_PREAMBLE
,
9569 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| IFNAMSIZ
,
9570 .name
= "get_preamble"},
9573 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 0, 0, "reset"},
9576 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 0, 0, "sw_reset"},
9577 #ifdef CONFIG_IPW2200_MONITOR
9579 IPW_PRIV_SET_MONITOR
,
9580 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 2, 0, "monitor"},
9581 #endif /* CONFIG_IPW2200_MONITOR */
9584 static iw_handler ipw_priv_handler
[] = {
9585 ipw_wx_set_powermode
,
9586 ipw_wx_get_powermode
,
9587 ipw_wx_set_wireless_mode
,
9588 ipw_wx_get_wireless_mode
,
9589 ipw_wx_set_preamble
,
9590 ipw_wx_get_preamble
,
9593 #ifdef CONFIG_IPW2200_MONITOR
9598 static struct iw_handler_def ipw_wx_handler_def
= {
9599 .standard
= ipw_wx_handlers
,
9600 .num_standard
= ARRAY_SIZE(ipw_wx_handlers
),
9601 .num_private
= ARRAY_SIZE(ipw_priv_handler
),
9602 .num_private_args
= ARRAY_SIZE(ipw_priv_args
),
9603 .private = ipw_priv_handler
,
9604 .private_args
= ipw_priv_args
,
9605 .get_wireless_stats
= ipw_get_wireless_stats
,
9609 * Get wireless statistics.
9610 * Called by /proc/net/wireless
9611 * Also called by SIOCGIWSTATS
9613 static struct iw_statistics
*ipw_get_wireless_stats(struct net_device
*dev
)
9615 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9616 struct iw_statistics
*wstats
;
9618 wstats
= &priv
->wstats
;
9620 /* if hw is disabled, then ipw_get_ordinal() can't be called.
9621 * netdev->get_wireless_stats seems to be called before fw is
9622 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
9623 * and associated; if not associcated, the values are all meaningless
9624 * anyway, so set them all to NULL and INVALID */
9625 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
9626 wstats
->miss
.beacon
= 0;
9627 wstats
->discard
.retries
= 0;
9628 wstats
->qual
.qual
= 0;
9629 wstats
->qual
.level
= 0;
9630 wstats
->qual
.noise
= 0;
9631 wstats
->qual
.updated
= 7;
9632 wstats
->qual
.updated
|= IW_QUAL_NOISE_INVALID
|
9633 IW_QUAL_QUAL_INVALID
| IW_QUAL_LEVEL_INVALID
;
9637 wstats
->qual
.qual
= priv
->quality
;
9638 wstats
->qual
.level
= average_value(&priv
->average_rssi
);
9639 wstats
->qual
.noise
= average_value(&priv
->average_noise
);
9640 wstats
->qual
.updated
= IW_QUAL_QUAL_UPDATED
| IW_QUAL_LEVEL_UPDATED
|
9641 IW_QUAL_NOISE_UPDATED
;
9643 wstats
->miss
.beacon
= average_value(&priv
->average_missed_beacons
);
9644 wstats
->discard
.retries
= priv
->last_tx_failures
;
9645 wstats
->discard
.code
= priv
->ieee
->ieee_stats
.rx_discards_undecryptable
;
9647 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9648 goto fail_get_ordinal;
9649 wstats->discard.retries += tx_retry; */
9654 /* net device stuff */
9656 static void init_sys_config(struct ipw_sys_config
*sys_config
)
9658 memset(sys_config
, 0, sizeof(struct ipw_sys_config
));
9659 sys_config
->bt_coexistence
= 1; /* We may need to look into prvStaBtConfig */
9660 sys_config
->answer_broadcast_ssid_probe
= 0;
9661 sys_config
->accept_all_data_frames
= 0;
9662 sys_config
->accept_non_directed_frames
= 1;
9663 sys_config
->exclude_unicast_unencrypted
= 0;
9664 sys_config
->disable_unicast_decryption
= 1;
9665 sys_config
->exclude_multicast_unencrypted
= 0;
9666 sys_config
->disable_multicast_decryption
= 1;
9667 sys_config
->antenna_diversity
= CFG_SYS_ANTENNA_BOTH
;
9668 sys_config
->pass_crc_to_host
= 0; /* TODO: See if 1 gives us FCS */
9669 sys_config
->dot11g_auto_detection
= 0;
9670 sys_config
->enable_cts_to_self
= 0;
9671 sys_config
->bt_coexist_collision_thr
= 0;
9672 sys_config
->pass_noise_stats_to_host
= 1; //1 -- fix for 256
9675 static int ipw_net_open(struct net_device
*dev
)
9677 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9678 IPW_DEBUG_INFO("dev->open\n");
9679 /* we should be verifying the device is ready to be opened */
9681 if (!(priv
->status
& STATUS_RF_KILL_MASK
) &&
9682 (priv
->status
& STATUS_ASSOCIATED
))
9683 netif_start_queue(dev
);
9688 static int ipw_net_stop(struct net_device
*dev
)
9690 IPW_DEBUG_INFO("dev->close\n");
9691 netif_stop_queue(dev
);
9698 modify to send one tfd per fragment instead of using chunking. otherwise
9699 we need to heavily modify the ieee80211_skb_to_txb.
9702 static int ipw_tx_skb(struct ipw_priv
*priv
, struct ieee80211_txb
*txb
,
9705 struct ieee80211_hdr_3addr
*hdr
= (struct ieee80211_hdr_3addr
*)
9706 txb
->fragments
[0]->data
;
9708 struct tfd_frame
*tfd
;
9709 #ifdef CONFIG_IPW_QOS
9710 int tx_id
= ipw_get_tx_queue_number(priv
, pri
);
9711 struct clx2_tx_queue
*txq
= &priv
->txq
[tx_id
];
9713 struct clx2_tx_queue
*txq
= &priv
->txq
[0];
9715 struct clx2_queue
*q
= &txq
->q
;
9716 u8 id
, hdr_len
, unicast
;
9717 u16 remaining_bytes
;
9720 /* If there isn't room in the queue, we return busy and let the
9721 * network stack requeue the packet for us */
9722 if (ipw_queue_space(q
) < q
->high_mark
)
9723 return NETDEV_TX_BUSY
;
9725 switch (priv
->ieee
->iw_mode
) {
9727 hdr_len
= IEEE80211_3ADDR_LEN
;
9728 unicast
= !is_multicast_ether_addr(hdr
->addr1
);
9729 id
= ipw_find_station(priv
, hdr
->addr1
);
9730 if (id
== IPW_INVALID_STATION
) {
9731 id
= ipw_add_station(priv
, hdr
->addr1
);
9732 if (id
== IPW_INVALID_STATION
) {
9733 IPW_WARNING("Attempt to send data to "
9734 "invalid cell: " MAC_FMT
"\n",
9735 MAC_ARG(hdr
->addr1
));
9743 unicast
= !is_multicast_ether_addr(hdr
->addr3
);
9744 hdr_len
= IEEE80211_3ADDR_LEN
;
9749 tfd
= &txq
->bd
[q
->first_empty
];
9750 txq
->txb
[q
->first_empty
] = txb
;
9751 memset(tfd
, 0, sizeof(*tfd
));
9752 tfd
->u
.data
.station_number
= id
;
9754 tfd
->control_flags
.message_type
= TX_FRAME_TYPE
;
9755 tfd
->control_flags
.control_bits
= TFD_NEED_IRQ_MASK
;
9757 tfd
->u
.data
.cmd_id
= DINO_CMD_TX
;
9758 tfd
->u
.data
.len
= cpu_to_le16(txb
->payload_size
);
9759 remaining_bytes
= txb
->payload_size
;
9761 if (priv
->assoc_request
.ieee_mode
== IPW_B_MODE
)
9762 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_MODE_CCK
;
9764 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_MODE_OFDM
;
9766 if (priv
->assoc_request
.preamble_length
== DCT_FLAG_SHORT_PREAMBLE
)
9767 tfd
->u
.data
.tx_flags
|= DCT_FLAG_SHORT_PREAMBLE
;
9769 fc
= le16_to_cpu(hdr
->frame_ctl
);
9770 hdr
->frame_ctl
= cpu_to_le16(fc
& ~IEEE80211_FCTL_MOREFRAGS
);
9772 memcpy(&tfd
->u
.data
.tfd
.tfd_24
.mchdr
, hdr
, hdr_len
);
9774 if (likely(unicast
))
9775 tfd
->u
.data
.tx_flags
|= DCT_FLAG_ACK_REQD
;
9777 if (txb
->encrypted
&& !priv
->ieee
->host_encrypt
) {
9778 switch (priv
->ieee
->sec
.level
) {
9780 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
9781 IEEE80211_FCTL_PROTECTED
;
9782 /* XXX: ACK flag must be set for CCMP even if it
9783 * is a multicast/broadcast packet, because CCMP
9784 * group communication encrypted by GTK is
9785 * actually done by the AP. */
9787 tfd
->u
.data
.tx_flags
|= DCT_FLAG_ACK_REQD
;
9789 tfd
->u
.data
.tx_flags
&= ~DCT_FLAG_NO_WEP
;
9790 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_SECURITY_CCM
;
9791 tfd
->u
.data
.key_index
= 0;
9792 tfd
->u
.data
.key_index
|= DCT_WEP_INDEX_USE_IMMEDIATE
;
9795 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
9796 IEEE80211_FCTL_PROTECTED
;
9797 tfd
->u
.data
.tx_flags
&= ~DCT_FLAG_NO_WEP
;
9798 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_SECURITY_TKIP
;
9799 tfd
->u
.data
.key_index
= DCT_WEP_INDEX_USE_IMMEDIATE
;
9802 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
9803 IEEE80211_FCTL_PROTECTED
;
9804 tfd
->u
.data
.key_index
= priv
->ieee
->tx_keyidx
;
9805 if (priv
->ieee
->sec
.key_sizes
[priv
->ieee
->tx_keyidx
] <=
9807 tfd
->u
.data
.key_index
|= DCT_WEP_KEY_64Bit
;
9809 tfd
->u
.data
.key_index
|= DCT_WEP_KEY_128Bit
;
9814 printk(KERN_ERR
"Unknow security level %d\n",
9815 priv
->ieee
->sec
.level
);
9819 /* No hardware encryption */
9820 tfd
->u
.data
.tx_flags
|= DCT_FLAG_NO_WEP
;
9822 #ifdef CONFIG_IPW_QOS
9823 ipw_qos_set_tx_queue_command(priv
, pri
, &(tfd
->u
.data
), unicast
);
9824 #endif /* CONFIG_IPW_QOS */
9827 tfd
->u
.data
.num_chunks
= cpu_to_le32(min((u8
) (NUM_TFD_CHUNKS
- 2),
9829 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
9830 txb
->nr_frags
, le32_to_cpu(tfd
->u
.data
.num_chunks
));
9831 for (i
= 0; i
< le32_to_cpu(tfd
->u
.data
.num_chunks
); i
++) {
9832 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
9833 i
, le32_to_cpu(tfd
->u
.data
.num_chunks
),
9834 txb
->fragments
[i
]->len
- hdr_len
);
9835 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
9836 i
, tfd
->u
.data
.num_chunks
,
9837 txb
->fragments
[i
]->len
- hdr_len
);
9838 printk_buf(IPW_DL_TX
, txb
->fragments
[i
]->data
+ hdr_len
,
9839 txb
->fragments
[i
]->len
- hdr_len
);
9841 tfd
->u
.data
.chunk_ptr
[i
] =
9842 cpu_to_le32(pci_map_single
9844 txb
->fragments
[i
]->data
+ hdr_len
,
9845 txb
->fragments
[i
]->len
- hdr_len
,
9847 tfd
->u
.data
.chunk_len
[i
] =
9848 cpu_to_le16(txb
->fragments
[i
]->len
- hdr_len
);
9851 if (i
!= txb
->nr_frags
) {
9852 struct sk_buff
*skb
;
9853 u16 remaining_bytes
= 0;
9856 for (j
= i
; j
< txb
->nr_frags
; j
++)
9857 remaining_bytes
+= txb
->fragments
[j
]->len
- hdr_len
;
9859 printk(KERN_INFO
"Trying to reallocate for %d bytes\n",
9861 skb
= alloc_skb(remaining_bytes
, GFP_ATOMIC
);
9863 tfd
->u
.data
.chunk_len
[i
] = cpu_to_le16(remaining_bytes
);
9864 for (j
= i
; j
< txb
->nr_frags
; j
++) {
9865 int size
= txb
->fragments
[j
]->len
- hdr_len
;
9867 printk(KERN_INFO
"Adding frag %d %d...\n",
9869 memcpy(skb_put(skb
, size
),
9870 txb
->fragments
[j
]->data
+ hdr_len
, size
);
9872 dev_kfree_skb_any(txb
->fragments
[i
]);
9873 txb
->fragments
[i
] = skb
;
9874 tfd
->u
.data
.chunk_ptr
[i
] =
9875 cpu_to_le32(pci_map_single
9876 (priv
->pci_dev
, skb
->data
,
9877 tfd
->u
.data
.chunk_len
[i
],
9880 tfd
->u
.data
.num_chunks
=
9881 cpu_to_le32(le32_to_cpu(tfd
->u
.data
.num_chunks
) +
9887 q
->first_empty
= ipw_queue_inc_wrap(q
->first_empty
, q
->n_bd
);
9888 ipw_write32(priv
, q
->reg_w
, q
->first_empty
);
9890 return NETDEV_TX_OK
;
9893 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
9894 ieee80211_txb_free(txb
);
9895 return NETDEV_TX_OK
;
9898 static int ipw_net_is_queue_full(struct net_device
*dev
, int pri
)
9900 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9901 #ifdef CONFIG_IPW_QOS
9902 int tx_id
= ipw_get_tx_queue_number(priv
, pri
);
9903 struct clx2_tx_queue
*txq
= &priv
->txq
[tx_id
];
9905 struct clx2_tx_queue
*txq
= &priv
->txq
[0];
9906 #endif /* CONFIG_IPW_QOS */
9908 if (ipw_queue_space(&txq
->q
) < txq
->q
.high_mark
)
9914 static int ipw_net_hard_start_xmit(struct ieee80211_txb
*txb
,
9915 struct net_device
*dev
, int pri
)
9917 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9918 unsigned long flags
;
9921 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb
->payload_size
);
9922 spin_lock_irqsave(&priv
->lock
, flags
);
9924 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
9925 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
9926 priv
->ieee
->stats
.tx_carrier_errors
++;
9927 netif_stop_queue(dev
);
9931 ret
= ipw_tx_skb(priv
, txb
, pri
);
9932 if (ret
== NETDEV_TX_OK
)
9933 __ipw_led_activity_on(priv
);
9934 spin_unlock_irqrestore(&priv
->lock
, flags
);
9939 spin_unlock_irqrestore(&priv
->lock
, flags
);
9943 static struct net_device_stats
*ipw_net_get_stats(struct net_device
*dev
)
9945 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9947 priv
->ieee
->stats
.tx_packets
= priv
->tx_packets
;
9948 priv
->ieee
->stats
.rx_packets
= priv
->rx_packets
;
9949 return &priv
->ieee
->stats
;
9952 static void ipw_net_set_multicast_list(struct net_device
*dev
)
9957 static int ipw_net_set_mac_address(struct net_device
*dev
, void *p
)
9959 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9960 struct sockaddr
*addr
= p
;
9961 if (!is_valid_ether_addr(addr
->sa_data
))
9962 return -EADDRNOTAVAIL
;
9964 priv
->config
|= CFG_CUSTOM_MAC
;
9965 memcpy(priv
->mac_addr
, addr
->sa_data
, ETH_ALEN
);
9966 printk(KERN_INFO
"%s: Setting MAC to " MAC_FMT
"\n",
9967 priv
->net_dev
->name
, MAC_ARG(priv
->mac_addr
));
9968 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
9973 static void ipw_ethtool_get_drvinfo(struct net_device
*dev
,
9974 struct ethtool_drvinfo
*info
)
9976 struct ipw_priv
*p
= ieee80211_priv(dev
);
9981 strcpy(info
->driver
, DRV_NAME
);
9982 strcpy(info
->version
, DRV_VERSION
);
9985 ipw_get_ordinal(p
, IPW_ORD_STAT_FW_VERSION
, vers
, &len
);
9987 ipw_get_ordinal(p
, IPW_ORD_STAT_FW_DATE
, date
, &len
);
9989 snprintf(info
->fw_version
, sizeof(info
->fw_version
), "%s (%s)",
9991 strcpy(info
->bus_info
, pci_name(p
->pci_dev
));
9992 info
->eedump_len
= IPW_EEPROM_IMAGE_SIZE
;
9995 static u32
ipw_ethtool_get_link(struct net_device
*dev
)
9997 struct ipw_priv
*priv
= ieee80211_priv(dev
);
9998 return (priv
->status
& STATUS_ASSOCIATED
) != 0;
10001 static int ipw_ethtool_get_eeprom_len(struct net_device
*dev
)
10003 return IPW_EEPROM_IMAGE_SIZE
;
10006 static int ipw_ethtool_get_eeprom(struct net_device
*dev
,
10007 struct ethtool_eeprom
*eeprom
, u8
* bytes
)
10009 struct ipw_priv
*p
= ieee80211_priv(dev
);
10011 if (eeprom
->offset
+ eeprom
->len
> IPW_EEPROM_IMAGE_SIZE
)
10014 memcpy(bytes
, &p
->eeprom
[eeprom
->offset
], eeprom
->len
);
10019 static int ipw_ethtool_set_eeprom(struct net_device
*dev
,
10020 struct ethtool_eeprom
*eeprom
, u8
* bytes
)
10022 struct ipw_priv
*p
= ieee80211_priv(dev
);
10025 if (eeprom
->offset
+ eeprom
->len
> IPW_EEPROM_IMAGE_SIZE
)
10028 memcpy(&p
->eeprom
[eeprom
->offset
], bytes
, eeprom
->len
);
10029 for (i
= IPW_EEPROM_DATA
;
10030 i
< IPW_EEPROM_DATA
+ IPW_EEPROM_IMAGE_SIZE
; i
++)
10031 ipw_write8(p
, i
, p
->eeprom
[i
]);
10036 static struct ethtool_ops ipw_ethtool_ops
= {
10037 .get_link
= ipw_ethtool_get_link
,
10038 .get_drvinfo
= ipw_ethtool_get_drvinfo
,
10039 .get_eeprom_len
= ipw_ethtool_get_eeprom_len
,
10040 .get_eeprom
= ipw_ethtool_get_eeprom
,
10041 .set_eeprom
= ipw_ethtool_set_eeprom
,
10044 static irqreturn_t
ipw_isr(int irq
, void *data
, struct pt_regs
*regs
)
10046 struct ipw_priv
*priv
= data
;
10047 u32 inta
, inta_mask
;
10052 spin_lock(&priv
->lock
);
10054 if (!(priv
->status
& STATUS_INT_ENABLED
)) {
10059 inta
= ipw_read32(priv
, IPW_INTA_RW
);
10060 inta_mask
= ipw_read32(priv
, IPW_INTA_MASK_R
);
10062 if (inta
== 0xFFFFFFFF) {
10063 /* Hardware disappeared */
10064 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10068 if (!(inta
& (IPW_INTA_MASK_ALL
& inta_mask
))) {
10069 /* Shared interrupt */
10073 /* tell the device to stop sending interrupts */
10074 ipw_disable_interrupts(priv
);
10076 /* ack current interrupts */
10077 inta
&= (IPW_INTA_MASK_ALL
& inta_mask
);
10078 ipw_write32(priv
, IPW_INTA_RW
, inta
);
10080 /* Cache INTA value for our tasklet */
10081 priv
->isr_inta
= inta
;
10083 tasklet_schedule(&priv
->irq_tasklet
);
10085 spin_unlock(&priv
->lock
);
10087 return IRQ_HANDLED
;
10089 spin_unlock(&priv
->lock
);
10093 static void ipw_rf_kill(void *adapter
)
10095 struct ipw_priv
*priv
= adapter
;
10096 unsigned long flags
;
10098 spin_lock_irqsave(&priv
->lock
, flags
);
10100 if (rf_kill_active(priv
)) {
10101 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10102 if (priv
->workqueue
)
10103 queue_delayed_work(priv
->workqueue
,
10104 &priv
->rf_kill
, 2 * HZ
);
10108 /* RF Kill is now disabled, so bring the device back up */
10110 if (!(priv
->status
& STATUS_RF_KILL_MASK
)) {
10111 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10114 /* we can not do an adapter restart while inside an irq lock */
10115 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
10117 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10121 spin_unlock_irqrestore(&priv
->lock
, flags
);
10124 static void ipw_bg_rf_kill(void *data
)
10126 struct ipw_priv
*priv
= data
;
10132 static void ipw_link_up(struct ipw_priv
*priv
)
10134 priv
->last_seq_num
= -1;
10135 priv
->last_frag_num
= -1;
10136 priv
->last_packet_time
= 0;
10138 netif_carrier_on(priv
->net_dev
);
10139 if (netif_queue_stopped(priv
->net_dev
)) {
10140 IPW_DEBUG_NOTIF("waking queue\n");
10141 netif_wake_queue(priv
->net_dev
);
10143 IPW_DEBUG_NOTIF("starting queue\n");
10144 netif_start_queue(priv
->net_dev
);
10147 cancel_delayed_work(&priv
->request_scan
);
10148 ipw_reset_stats(priv
);
10149 /* Ensure the rate is updated immediately */
10150 priv
->last_rate
= ipw_get_current_rate(priv
);
10151 ipw_gather_stats(priv
);
10152 ipw_led_link_up(priv
);
10153 notify_wx_assoc_event(priv
);
10155 if (priv
->config
& CFG_BACKGROUND_SCAN
)
10156 queue_delayed_work(priv
->workqueue
, &priv
->request_scan
, HZ
);
10159 static void ipw_bg_link_up(void *data
)
10161 struct ipw_priv
*priv
= data
;
10167 static void ipw_link_down(struct ipw_priv
*priv
)
10169 ipw_led_link_down(priv
);
10170 netif_carrier_off(priv
->net_dev
);
10171 netif_stop_queue(priv
->net_dev
);
10172 notify_wx_assoc_event(priv
);
10174 /* Cancel any queued work ... */
10175 cancel_delayed_work(&priv
->request_scan
);
10176 cancel_delayed_work(&priv
->adhoc_check
);
10177 cancel_delayed_work(&priv
->gather_stats
);
10179 ipw_reset_stats(priv
);
10181 if (!(priv
->status
& STATUS_EXIT_PENDING
)) {
10182 /* Queue up another scan... */
10183 queue_work(priv
->workqueue
, &priv
->request_scan
);
10187 static void ipw_bg_link_down(void *data
)
10189 struct ipw_priv
*priv
= data
;
10191 ipw_link_down(data
);
10195 static int ipw_setup_deferred_work(struct ipw_priv
*priv
)
10199 priv
->workqueue
= create_workqueue(DRV_NAME
);
10200 init_waitqueue_head(&priv
->wait_command_queue
);
10201 init_waitqueue_head(&priv
->wait_state
);
10203 INIT_WORK(&priv
->adhoc_check
, ipw_bg_adhoc_check
, priv
);
10204 INIT_WORK(&priv
->associate
, ipw_bg_associate
, priv
);
10205 INIT_WORK(&priv
->disassociate
, ipw_bg_disassociate
, priv
);
10206 INIT_WORK(&priv
->system_config
, ipw_system_config
, priv
);
10207 INIT_WORK(&priv
->rx_replenish
, ipw_bg_rx_queue_replenish
, priv
);
10208 INIT_WORK(&priv
->adapter_restart
, ipw_bg_adapter_restart
, priv
);
10209 INIT_WORK(&priv
->rf_kill
, ipw_bg_rf_kill
, priv
);
10210 INIT_WORK(&priv
->up
, (void (*)(void *))ipw_bg_up
, priv
);
10211 INIT_WORK(&priv
->down
, (void (*)(void *))ipw_bg_down
, priv
);
10212 INIT_WORK(&priv
->request_scan
,
10213 (void (*)(void *))ipw_request_scan
, priv
);
10214 INIT_WORK(&priv
->gather_stats
,
10215 (void (*)(void *))ipw_bg_gather_stats
, priv
);
10216 INIT_WORK(&priv
->abort_scan
, (void (*)(void *))ipw_bg_abort_scan
, priv
);
10217 INIT_WORK(&priv
->roam
, ipw_bg_roam
, priv
);
10218 INIT_WORK(&priv
->scan_check
, ipw_bg_scan_check
, priv
);
10219 INIT_WORK(&priv
->link_up
, (void (*)(void *))ipw_bg_link_up
, priv
);
10220 INIT_WORK(&priv
->link_down
, (void (*)(void *))ipw_bg_link_down
, priv
);
10221 INIT_WORK(&priv
->led_link_on
, (void (*)(void *))ipw_bg_led_link_on
,
10223 INIT_WORK(&priv
->led_link_off
, (void (*)(void *))ipw_bg_led_link_off
,
10225 INIT_WORK(&priv
->led_act_off
, (void (*)(void *))ipw_bg_led_activity_off
,
10227 INIT_WORK(&priv
->merge_networks
,
10228 (void (*)(void *))ipw_merge_adhoc_network
, priv
);
10230 #ifdef CONFIG_IPW_QOS
10231 INIT_WORK(&priv
->qos_activate
, (void (*)(void *))ipw_bg_qos_activate
,
10233 #endif /* CONFIG_IPW_QOS */
10235 tasklet_init(&priv
->irq_tasklet
, (void (*)(unsigned long))
10236 ipw_irq_tasklet
, (unsigned long)priv
);
10241 static void shim__set_security(struct net_device
*dev
,
10242 struct ieee80211_security
*sec
)
10244 struct ipw_priv
*priv
= ieee80211_priv(dev
);
10246 for (i
= 0; i
< 4; i
++) {
10247 if (sec
->flags
& (1 << i
)) {
10248 priv
->ieee
->sec
.encode_alg
[i
] = sec
->encode_alg
[i
];
10249 priv
->ieee
->sec
.key_sizes
[i
] = sec
->key_sizes
[i
];
10250 if (sec
->key_sizes
[i
] == 0)
10251 priv
->ieee
->sec
.flags
&= ~(1 << i
);
10253 memcpy(priv
->ieee
->sec
.keys
[i
], sec
->keys
[i
],
10254 sec
->key_sizes
[i
]);
10255 priv
->ieee
->sec
.flags
|= (1 << i
);
10257 priv
->status
|= STATUS_SECURITY_UPDATED
;
10258 } else if (sec
->level
!= SEC_LEVEL_1
)
10259 priv
->ieee
->sec
.flags
&= ~(1 << i
);
10262 if (sec
->flags
& SEC_ACTIVE_KEY
) {
10263 if (sec
->active_key
<= 3) {
10264 priv
->ieee
->sec
.active_key
= sec
->active_key
;
10265 priv
->ieee
->sec
.flags
|= SEC_ACTIVE_KEY
;
10267 priv
->ieee
->sec
.flags
&= ~SEC_ACTIVE_KEY
;
10268 priv
->status
|= STATUS_SECURITY_UPDATED
;
10270 priv
->ieee
->sec
.flags
&= ~SEC_ACTIVE_KEY
;
10272 if ((sec
->flags
& SEC_AUTH_MODE
) &&
10273 (priv
->ieee
->sec
.auth_mode
!= sec
->auth_mode
)) {
10274 priv
->ieee
->sec
.auth_mode
= sec
->auth_mode
;
10275 priv
->ieee
->sec
.flags
|= SEC_AUTH_MODE
;
10276 if (sec
->auth_mode
== WLAN_AUTH_SHARED_KEY
)
10277 priv
->capability
|= CAP_SHARED_KEY
;
10279 priv
->capability
&= ~CAP_SHARED_KEY
;
10280 priv
->status
|= STATUS_SECURITY_UPDATED
;
10283 if (sec
->flags
& SEC_ENABLED
&& priv
->ieee
->sec
.enabled
!= sec
->enabled
) {
10284 priv
->ieee
->sec
.flags
|= SEC_ENABLED
;
10285 priv
->ieee
->sec
.enabled
= sec
->enabled
;
10286 priv
->status
|= STATUS_SECURITY_UPDATED
;
10288 priv
->capability
|= CAP_PRIVACY_ON
;
10290 priv
->capability
&= ~CAP_PRIVACY_ON
;
10293 if (sec
->flags
& SEC_ENCRYPT
)
10294 priv
->ieee
->sec
.encrypt
= sec
->encrypt
;
10296 if (sec
->flags
& SEC_LEVEL
&& priv
->ieee
->sec
.level
!= sec
->level
) {
10297 priv
->ieee
->sec
.level
= sec
->level
;
10298 priv
->ieee
->sec
.flags
|= SEC_LEVEL
;
10299 priv
->status
|= STATUS_SECURITY_UPDATED
;
10302 if (!priv
->ieee
->host_encrypt
&& (sec
->flags
& SEC_ENCRYPT
))
10303 ipw_set_hwcrypto_keys(priv
);
10305 /* To match current functionality of ipw2100 (which works well w/
10306 * various supplicants, we don't force a disassociate if the
10307 * privacy capability changes ... */
10309 if ((priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) &&
10310 (((priv
->assoc_request
.capability
&
10311 WLAN_CAPABILITY_PRIVACY
) && !sec
->enabled
) ||
10312 (!(priv
->assoc_request
.capability
&
10313 WLAN_CAPABILITY_PRIVACY
) && sec
->enabled
))) {
10314 IPW_DEBUG_ASSOC("Disassociating due to capability "
10316 ipw_disassociate(priv
);
10321 static int init_supported_rates(struct ipw_priv
*priv
,
10322 struct ipw_supported_rates
*rates
)
10324 /* TODO: Mask out rates based on priv->rates_mask */
10326 memset(rates
, 0, sizeof(*rates
));
10327 /* configure supported rates */
10328 switch (priv
->ieee
->freq_band
) {
10329 case IEEE80211_52GHZ_BAND
:
10330 rates
->ieee_mode
= IPW_A_MODE
;
10331 rates
->purpose
= IPW_RATE_CAPABILITIES
;
10332 ipw_add_ofdm_scan_rates(rates
, IEEE80211_CCK_MODULATION
,
10333 IEEE80211_OFDM_DEFAULT_RATES_MASK
);
10336 default: /* Mixed or 2.4Ghz */
10337 rates
->ieee_mode
= IPW_G_MODE
;
10338 rates
->purpose
= IPW_RATE_CAPABILITIES
;
10339 ipw_add_cck_scan_rates(rates
, IEEE80211_CCK_MODULATION
,
10340 IEEE80211_CCK_DEFAULT_RATES_MASK
);
10341 if (priv
->ieee
->modulation
& IEEE80211_OFDM_MODULATION
) {
10342 ipw_add_ofdm_scan_rates(rates
, IEEE80211_CCK_MODULATION
,
10343 IEEE80211_OFDM_DEFAULT_RATES_MASK
);
10351 static int ipw_config(struct ipw_priv
*priv
)
10353 /* This is only called from ipw_up, which resets/reloads the firmware
10354 so, we don't need to first disable the card before we configure
10356 if (ipw_set_tx_power(priv
))
10359 /* initialize adapter address */
10360 if (ipw_send_adapter_address(priv
, priv
->net_dev
->dev_addr
))
10363 /* set basic system config settings */
10364 init_sys_config(&priv
->sys_config
);
10365 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
10366 priv
->sys_config
.answer_broadcast_ssid_probe
= 1;
10368 priv
->sys_config
.answer_broadcast_ssid_probe
= 0;
10370 if (ipw_send_system_config(priv
, &priv
->sys_config
))
10373 init_supported_rates(priv
, &priv
->rates
);
10374 if (ipw_send_supported_rates(priv
, &priv
->rates
))
10377 /* Set request-to-send threshold */
10378 if (priv
->rts_threshold
) {
10379 if (ipw_send_rts_threshold(priv
, priv
->rts_threshold
))
10382 #ifdef CONFIG_IPW_QOS
10383 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10384 ipw_qos_activate(priv
, NULL
);
10385 #endif /* CONFIG_IPW_QOS */
10387 if (ipw_set_random_seed(priv
))
10390 /* final state transition to the RUN state */
10391 if (ipw_send_host_complete(priv
))
10394 priv
->status
|= STATUS_INIT
;
10396 ipw_led_init(priv
);
10397 ipw_led_radio_on(priv
);
10398 priv
->notif_missed_beacons
= 0;
10400 /* Set hardware WEP key if it is configured. */
10401 if ((priv
->capability
& CAP_PRIVACY_ON
) &&
10402 (priv
->ieee
->sec
.level
== SEC_LEVEL_1
) &&
10403 !(priv
->ieee
->host_encrypt
|| priv
->ieee
->host_decrypt
))
10404 ipw_set_hwcrypto_keys(priv
);
10415 * These tables have been tested in conjunction with the
10416 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10418 * Altering this values, using it on other hardware, or in geographies
10419 * not intended for resale of the above mentioned Intel adapters has
10423 static const struct ieee80211_geo ipw_geos
[] = {
10427 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10428 {2427, 4}, {2432, 5}, {2437, 6},
10429 {2442, 7}, {2447, 8}, {2452, 9},
10430 {2457, 10}, {2462, 11}},
10433 { /* Custom US/Canada */
10436 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10437 {2427, 4}, {2432, 5}, {2437, 6},
10438 {2442, 7}, {2447, 8}, {2452, 9},
10439 {2457, 10}, {2462, 11}},
10445 {5260, 52, IEEE80211_CH_PASSIVE_ONLY
},
10446 {5280, 56, IEEE80211_CH_PASSIVE_ONLY
},
10447 {5300, 60, IEEE80211_CH_PASSIVE_ONLY
},
10448 {5320, 64, IEEE80211_CH_PASSIVE_ONLY
}},
10451 { /* Rest of World */
10454 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10455 {2427, 4}, {2432, 5}, {2437, 6},
10456 {2442, 7}, {2447, 8}, {2452, 9},
10457 {2457, 10}, {2462, 11}, {2467, 12},
10461 { /* Custom USA & Europe & High */
10464 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10465 {2427, 4}, {2432, 5}, {2437, 6},
10466 {2442, 7}, {2447, 8}, {2452, 9},
10467 {2457, 10}, {2462, 11}},
10473 {5260, 52, IEEE80211_CH_PASSIVE_ONLY
},
10474 {5280, 56, IEEE80211_CH_PASSIVE_ONLY
},
10475 {5300, 60, IEEE80211_CH_PASSIVE_ONLY
},
10476 {5320, 64, IEEE80211_CH_PASSIVE_ONLY
},
10484 { /* Custom NA & Europe */
10487 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10488 {2427, 4}, {2432, 5}, {2437, 6},
10489 {2442, 7}, {2447, 8}, {2452, 9},
10490 {2457, 10}, {2462, 11}},
10496 {5260, 52, IEEE80211_CH_PASSIVE_ONLY
},
10497 {5280, 56, IEEE80211_CH_PASSIVE_ONLY
},
10498 {5300, 60, IEEE80211_CH_PASSIVE_ONLY
},
10499 {5320, 64, IEEE80211_CH_PASSIVE_ONLY
},
10500 {5745, 149, IEEE80211_CH_PASSIVE_ONLY
},
10501 {5765, 153, IEEE80211_CH_PASSIVE_ONLY
},
10502 {5785, 157, IEEE80211_CH_PASSIVE_ONLY
},
10503 {5805, 161, IEEE80211_CH_PASSIVE_ONLY
},
10504 {5825, 165, IEEE80211_CH_PASSIVE_ONLY
}},
10507 { /* Custom Japan */
10510 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10511 {2427, 4}, {2432, 5}, {2437, 6},
10512 {2442, 7}, {2447, 8}, {2452, 9},
10513 {2457, 10}, {2462, 11}},
10515 .a
= {{5170, 34}, {5190, 38},
10516 {5210, 42}, {5230, 46}},
10522 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10523 {2427, 4}, {2432, 5}, {2437, 6},
10524 {2442, 7}, {2447, 8}, {2452, 9},
10525 {2457, 10}, {2462, 11}},
10531 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10532 {2427, 4}, {2432, 5}, {2437, 6},
10533 {2442, 7}, {2447, 8}, {2452, 9},
10534 {2457, 10}, {2462, 11}, {2467, 12},
10541 {5260, 52, IEEE80211_CH_PASSIVE_ONLY
},
10542 {5280, 56, IEEE80211_CH_PASSIVE_ONLY
},
10543 {5300, 60, IEEE80211_CH_PASSIVE_ONLY
},
10544 {5320, 64, IEEE80211_CH_PASSIVE_ONLY
},
10545 {5500, 100, IEEE80211_CH_PASSIVE_ONLY
},
10546 {5520, 104, IEEE80211_CH_PASSIVE_ONLY
},
10547 {5540, 108, IEEE80211_CH_PASSIVE_ONLY
},
10548 {5560, 112, IEEE80211_CH_PASSIVE_ONLY
},
10549 {5580, 116, IEEE80211_CH_PASSIVE_ONLY
},
10550 {5600, 120, IEEE80211_CH_PASSIVE_ONLY
},
10551 {5620, 124, IEEE80211_CH_PASSIVE_ONLY
},
10552 {5640, 128, IEEE80211_CH_PASSIVE_ONLY
},
10553 {5660, 132, IEEE80211_CH_PASSIVE_ONLY
},
10554 {5680, 136, IEEE80211_CH_PASSIVE_ONLY
},
10555 {5700, 140, IEEE80211_CH_PASSIVE_ONLY
}},
10558 { /* Custom Japan */
10561 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10562 {2427, 4}, {2432, 5}, {2437, 6},
10563 {2442, 7}, {2447, 8}, {2452, 9},
10564 {2457, 10}, {2462, 11}, {2467, 12},
10565 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY
}},
10567 .a
= {{5170, 34}, {5190, 38},
10568 {5210, 42}, {5230, 46}},
10571 { /* Rest of World */
10574 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10575 {2427, 4}, {2432, 5}, {2437, 6},
10576 {2442, 7}, {2447, 8}, {2452, 9},
10577 {2457, 10}, {2462, 11}, {2467, 12},
10578 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY
|
10579 IEEE80211_CH_PASSIVE_ONLY
}},
10585 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10586 {2427, 4}, {2432, 5}, {2437, 6},
10587 {2442, 7}, {2447, 8}, {2452, 9},
10588 {2457, 10}, {2462, 11},
10589 {2467, 12, IEEE80211_CH_PASSIVE_ONLY
},
10590 {2472, 13, IEEE80211_CH_PASSIVE_ONLY
}},
10592 .a
= {{5745, 149}, {5765, 153},
10593 {5785, 157}, {5805, 161}},
10596 { /* Custom Europe */
10599 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10600 {2427, 4}, {2432, 5}, {2437, 6},
10601 {2442, 7}, {2447, 8}, {2452, 9},
10602 {2457, 10}, {2462, 11},
10603 {2467, 12}, {2472, 13}},
10605 .a
= {{5180, 36}, {5200, 40},
10606 {5220, 44}, {5240, 48}},
10612 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10613 {2427, 4}, {2432, 5}, {2437, 6},
10614 {2442, 7}, {2447, 8}, {2452, 9},
10615 {2457, 10}, {2462, 11},
10616 {2467, 12, IEEE80211_CH_PASSIVE_ONLY
},
10617 {2472, 13, IEEE80211_CH_PASSIVE_ONLY
}},
10619 .a
= {{5180, 36, IEEE80211_CH_PASSIVE_ONLY
},
10620 {5200, 40, IEEE80211_CH_PASSIVE_ONLY
},
10621 {5220, 44, IEEE80211_CH_PASSIVE_ONLY
},
10622 {5240, 48, IEEE80211_CH_PASSIVE_ONLY
},
10623 {5260, 52, IEEE80211_CH_PASSIVE_ONLY
},
10624 {5280, 56, IEEE80211_CH_PASSIVE_ONLY
},
10625 {5300, 60, IEEE80211_CH_PASSIVE_ONLY
},
10626 {5320, 64, IEEE80211_CH_PASSIVE_ONLY
},
10627 {5500, 100, IEEE80211_CH_PASSIVE_ONLY
},
10628 {5520, 104, IEEE80211_CH_PASSIVE_ONLY
},
10629 {5540, 108, IEEE80211_CH_PASSIVE_ONLY
},
10630 {5560, 112, IEEE80211_CH_PASSIVE_ONLY
},
10631 {5580, 116, IEEE80211_CH_PASSIVE_ONLY
},
10632 {5600, 120, IEEE80211_CH_PASSIVE_ONLY
},
10633 {5620, 124, IEEE80211_CH_PASSIVE_ONLY
},
10634 {5640, 128, IEEE80211_CH_PASSIVE_ONLY
},
10635 {5660, 132, IEEE80211_CH_PASSIVE_ONLY
},
10636 {5680, 136, IEEE80211_CH_PASSIVE_ONLY
},
10637 {5700, 140, IEEE80211_CH_PASSIVE_ONLY
},
10638 {5745, 149, IEEE80211_CH_PASSIVE_ONLY
},
10639 {5765, 153, IEEE80211_CH_PASSIVE_ONLY
},
10640 {5785, 157, IEEE80211_CH_PASSIVE_ONLY
},
10641 {5805, 161, IEEE80211_CH_PASSIVE_ONLY
},
10642 {5825, 165, IEEE80211_CH_PASSIVE_ONLY
}},
10648 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10649 {2427, 4}, {2432, 5}, {2437, 6},
10650 {2442, 7}, {2447, 8}, {2452, 9},
10651 {2457, 10}, {2462, 11}},
10653 .a
= {{5180, 36, IEEE80211_CH_PASSIVE_ONLY
},
10654 {5200, 40, IEEE80211_CH_PASSIVE_ONLY
},
10655 {5220, 44, IEEE80211_CH_PASSIVE_ONLY
},
10656 {5240, 48, IEEE80211_CH_PASSIVE_ONLY
},
10657 {5260, 52, IEEE80211_CH_PASSIVE_ONLY
},
10658 {5280, 56, IEEE80211_CH_PASSIVE_ONLY
},
10659 {5300, 60, IEEE80211_CH_PASSIVE_ONLY
},
10660 {5320, 64, IEEE80211_CH_PASSIVE_ONLY
},
10661 {5745, 149, IEEE80211_CH_PASSIVE_ONLY
},
10662 {5765, 153, IEEE80211_CH_PASSIVE_ONLY
},
10663 {5785, 157, IEEE80211_CH_PASSIVE_ONLY
},
10664 {5805, 161, IEEE80211_CH_PASSIVE_ONLY
},
10665 {5825, 165, IEEE80211_CH_PASSIVE_ONLY
}},
10669 /* GEO code borrowed from ieee80211_geo.c */
10670 static int ipw_is_valid_channel(struct ieee80211_device
*ieee
, u8 channel
)
10674 /* Driver needs to initialize the geography map before using
10675 * these helper functions */
10676 BUG_ON(ieee
->geo
.bg_channels
== 0 && ieee
->geo
.a_channels
== 0);
10678 if (ieee
->freq_band
& IEEE80211_24GHZ_BAND
)
10679 for (i
= 0; i
< ieee
->geo
.bg_channels
; i
++)
10680 /* NOTE: If G mode is currently supported but
10681 * this is a B only channel, we don't see it
10683 if ((ieee
->geo
.bg
[i
].channel
== channel
) &&
10684 (!(ieee
->mode
& IEEE_G
) ||
10685 !(ieee
->geo
.bg
[i
].flags
& IEEE80211_CH_B_ONLY
)))
10686 return IEEE80211_24GHZ_BAND
;
10688 if (ieee
->freq_band
& IEEE80211_52GHZ_BAND
)
10689 for (i
= 0; i
< ieee
->geo
.a_channels
; i
++)
10690 if (ieee
->geo
.a
[i
].channel
== channel
)
10691 return IEEE80211_52GHZ_BAND
;
10696 static int ipw_channel_to_index(struct ieee80211_device
*ieee
, u8 channel
)
10700 /* Driver needs to initialize the geography map before using
10701 * these helper functions */
10702 BUG_ON(ieee
->geo
.bg_channels
== 0 && ieee
->geo
.a_channels
== 0);
10704 if (ieee
->freq_band
& IEEE80211_24GHZ_BAND
)
10705 for (i
= 0; i
< ieee
->geo
.bg_channels
; i
++)
10706 if (ieee
->geo
.bg
[i
].channel
== channel
)
10709 if (ieee
->freq_band
& IEEE80211_52GHZ_BAND
)
10710 for (i
= 0; i
< ieee
->geo
.a_channels
; i
++)
10711 if (ieee
->geo
.a
[i
].channel
== channel
)
10717 static u8
ipw_freq_to_channel(struct ieee80211_device
*ieee
, u32 freq
)
10721 /* Driver needs to initialize the geography map before using
10722 * these helper functions */
10723 BUG_ON(ieee
->geo
.bg_channels
== 0 && ieee
->geo
.a_channels
== 0);
10727 if (ieee
->freq_band
& IEEE80211_24GHZ_BAND
)
10728 for (i
= 0; i
< ieee
->geo
.bg_channels
; i
++)
10729 if (ieee
->geo
.bg
[i
].freq
== freq
)
10730 return ieee
->geo
.bg
[i
].channel
;
10732 if (ieee
->freq_band
& IEEE80211_52GHZ_BAND
)
10733 for (i
= 0; i
< ieee
->geo
.a_channels
; i
++)
10734 if (ieee
->geo
.a
[i
].freq
== freq
)
10735 return ieee
->geo
.a
[i
].channel
;
10740 static int ipw_set_geo(struct ieee80211_device
*ieee
,
10741 const struct ieee80211_geo
*geo
)
10743 memcpy(ieee
->geo
.name
, geo
->name
, 3);
10744 ieee
->geo
.name
[3] = '\0';
10745 ieee
->geo
.bg_channels
= geo
->bg_channels
;
10746 ieee
->geo
.a_channels
= geo
->a_channels
;
10747 memcpy(ieee
->geo
.bg
, geo
->bg
, geo
->bg_channels
*
10748 sizeof(struct ieee80211_channel
));
10749 memcpy(ieee
->geo
.a
, geo
->a
, ieee
->geo
.a_channels
*
10750 sizeof(struct ieee80211_channel
));
10754 static const struct ieee80211_geo
*ipw_get_geo(struct ieee80211_device
*ieee
)
10759 #define MAX_HW_RESTARTS 5
10760 static int ipw_up(struct ipw_priv
*priv
)
10764 if (priv
->status
& STATUS_EXIT_PENDING
)
10767 if (cmdlog
&& !priv
->cmdlog
) {
10768 priv
->cmdlog
= kmalloc(sizeof(*priv
->cmdlog
) * cmdlog
,
10770 if (priv
->cmdlog
== NULL
) {
10771 IPW_ERROR("Error allocating %d command log entries.\n",
10774 memset(priv
->cmdlog
, 0, sizeof(*priv
->cmdlog
) * cmdlog
);
10775 priv
->cmdlog_len
= cmdlog
;
10779 for (i
= 0; i
< MAX_HW_RESTARTS
; i
++) {
10780 /* Load the microcode, firmware, and eeprom.
10781 * Also start the clocks. */
10782 rc
= ipw_load(priv
);
10784 IPW_ERROR("Unable to load firmware: %d\n", rc
);
10788 ipw_init_ordinals(priv
);
10789 if (!(priv
->config
& CFG_CUSTOM_MAC
))
10790 eeprom_parse_mac(priv
, priv
->mac_addr
);
10791 memcpy(priv
->net_dev
->dev_addr
, priv
->mac_addr
, ETH_ALEN
);
10793 for (j
= 0; j
< ARRAY_SIZE(ipw_geos
); j
++) {
10794 if (!memcmp(&priv
->eeprom
[EEPROM_COUNTRY_CODE
],
10795 ipw_geos
[j
].name
, 3))
10798 if (j
== ARRAY_SIZE(ipw_geos
)) {
10799 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
10800 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 0],
10801 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 1],
10802 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 2]);
10805 if (ipw_set_geo(priv
->ieee
, &ipw_geos
[j
])) {
10806 IPW_WARNING("Could not set geography.");
10810 IPW_DEBUG_INFO("Geography %03d [%s] detected.\n",
10811 j
, priv
->ieee
->geo
.name
);
10813 if (priv
->status
& STATUS_RF_KILL_SW
) {
10814 IPW_WARNING("Radio disabled by module parameter.\n");
10816 } else if (rf_kill_active(priv
)) {
10817 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
10818 "Kill switch must be turned off for "
10819 "wireless networking to work.\n");
10820 queue_delayed_work(priv
->workqueue
, &priv
->rf_kill
,
10825 rc
= ipw_config(priv
);
10827 IPW_DEBUG_INFO("Configured device on count %i\n", i
);
10829 /* If configure to try and auto-associate, kick
10831 queue_work(priv
->workqueue
, &priv
->request_scan
);
10836 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc
);
10837 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
10838 i
, MAX_HW_RESTARTS
);
10840 /* We had an error bringing up the hardware, so take it
10841 * all the way back down so we can try again */
10845 /* tried to restart and config the device for as long as our
10846 * patience could withstand */
10847 IPW_ERROR("Unable to initialize device after %d attempts.\n", i
);
10852 static void ipw_bg_up(void *data
)
10854 struct ipw_priv
*priv
= data
;
10860 static void ipw_deinit(struct ipw_priv
*priv
)
10864 if (priv
->status
& STATUS_SCANNING
) {
10865 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
10866 ipw_abort_scan(priv
);
10869 if (priv
->status
& STATUS_ASSOCIATED
) {
10870 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
10871 ipw_disassociate(priv
);
10874 ipw_led_shutdown(priv
);
10876 /* Wait up to 1s for status to change to not scanning and not
10877 * associated (disassociation can take a while for a ful 802.11
10879 for (i
= 1000; i
&& (priv
->status
&
10880 (STATUS_DISASSOCIATING
|
10881 STATUS_ASSOCIATED
| STATUS_SCANNING
)); i
--)
10884 if (priv
->status
& (STATUS_DISASSOCIATING
|
10885 STATUS_ASSOCIATED
| STATUS_SCANNING
))
10886 IPW_DEBUG_INFO("Still associated or scanning...\n");
10888 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i
);
10890 /* Attempt to disable the card */
10891 ipw_send_card_disable(priv
, 0);
10893 priv
->status
&= ~STATUS_INIT
;
10896 static void ipw_down(struct ipw_priv
*priv
)
10898 int exit_pending
= priv
->status
& STATUS_EXIT_PENDING
;
10900 priv
->status
|= STATUS_EXIT_PENDING
;
10902 if (ipw_is_init(priv
))
10905 /* Wipe out the EXIT_PENDING status bit if we are not actually
10906 * exiting the module */
10908 priv
->status
&= ~STATUS_EXIT_PENDING
;
10910 /* tell the device to stop sending interrupts */
10911 ipw_disable_interrupts(priv
);
10913 /* Clear all bits but the RF Kill */
10914 priv
->status
&= STATUS_RF_KILL_MASK
| STATUS_EXIT_PENDING
;
10915 netif_carrier_off(priv
->net_dev
);
10916 netif_stop_queue(priv
->net_dev
);
10918 ipw_stop_nic(priv
);
10920 ipw_led_radio_off(priv
);
10923 static void ipw_bg_down(void *data
)
10925 struct ipw_priv
*priv
= data
;
10931 /* Called by register_netdev() */
10932 static int ipw_net_init(struct net_device
*dev
)
10934 struct ipw_priv
*priv
= ieee80211_priv(dev
);
10937 if (ipw_up(priv
)) {
10946 /* PCI driver stuff */
10947 static struct pci_device_id card_ids
[] = {
10948 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2701, 0, 0, 0},
10949 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2702, 0, 0, 0},
10950 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2711, 0, 0, 0},
10951 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2712, 0, 0, 0},
10952 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2721, 0, 0, 0},
10953 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2722, 0, 0, 0},
10954 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2731, 0, 0, 0},
10955 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2732, 0, 0, 0},
10956 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2741, 0, 0, 0},
10957 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x103c, 0x2741, 0, 0, 0},
10958 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2742, 0, 0, 0},
10959 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2751, 0, 0, 0},
10960 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2752, 0, 0, 0},
10961 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2753, 0, 0, 0},
10962 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2754, 0, 0, 0},
10963 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2761, 0, 0, 0},
10964 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2762, 0, 0, 0},
10965 {PCI_VENDOR_ID_INTEL
, 0x104f, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
10966 {PCI_VENDOR_ID_INTEL
, 0x4220, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0}, /* BG */
10967 {PCI_VENDOR_ID_INTEL
, 0x4221, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0}, /* BG */
10968 {PCI_VENDOR_ID_INTEL
, 0x4223, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0}, /* ABG */
10969 {PCI_VENDOR_ID_INTEL
, 0x4224, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0}, /* ABG */
10971 /* required last entry */
10975 MODULE_DEVICE_TABLE(pci
, card_ids
);
10977 static struct attribute
*ipw_sysfs_entries
[] = {
10978 &dev_attr_rf_kill
.attr
,
10979 &dev_attr_direct_dword
.attr
,
10980 &dev_attr_indirect_byte
.attr
,
10981 &dev_attr_indirect_dword
.attr
,
10982 &dev_attr_mem_gpio_reg
.attr
,
10983 &dev_attr_command_event_reg
.attr
,
10984 &dev_attr_nic_type
.attr
,
10985 &dev_attr_status
.attr
,
10986 &dev_attr_cfg
.attr
,
10987 &dev_attr_error
.attr
,
10988 &dev_attr_event_log
.attr
,
10989 &dev_attr_cmd_log
.attr
,
10990 &dev_attr_eeprom_delay
.attr
,
10991 &dev_attr_ucode_version
.attr
,
10992 &dev_attr_rtc
.attr
,
10993 &dev_attr_scan_age
.attr
,
10994 &dev_attr_led
.attr
,
10995 &dev_attr_speed_scan
.attr
,
10996 &dev_attr_net_stats
.attr
,
11000 static struct attribute_group ipw_attribute_group
= {
11001 .name
= NULL
, /* put in device directory */
11002 .attrs
= ipw_sysfs_entries
,
11005 static int ipw_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
11008 struct net_device
*net_dev
;
11009 void __iomem
*base
;
11011 struct ipw_priv
*priv
;
11014 net_dev
= alloc_ieee80211(sizeof(struct ipw_priv
));
11015 if (net_dev
== NULL
) {
11020 priv
= ieee80211_priv(net_dev
);
11021 priv
->ieee
= netdev_priv(net_dev
);
11023 priv
->net_dev
= net_dev
;
11024 priv
->pci_dev
= pdev
;
11025 #ifdef CONFIG_IPW2200_DEBUG
11026 ipw_debug_level
= debug
;
11028 spin_lock_init(&priv
->lock
);
11029 for (i
= 0; i
< IPW_IBSS_MAC_HASH_SIZE
; i
++)
11030 INIT_LIST_HEAD(&priv
->ibss_mac_hash
[i
]);
11032 init_MUTEX(&priv
->sem
);
11033 if (pci_enable_device(pdev
)) {
11035 goto out_free_ieee80211
;
11038 pci_set_master(pdev
);
11040 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
11042 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
11044 printk(KERN_WARNING DRV_NAME
": No suitable DMA available.\n");
11045 goto out_pci_disable_device
;
11048 pci_set_drvdata(pdev
, priv
);
11050 err
= pci_request_regions(pdev
, DRV_NAME
);
11052 goto out_pci_disable_device
;
11054 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11055 * PCI Tx retries from interfering with C3 CPU state */
11056 pci_read_config_dword(pdev
, 0x40, &val
);
11057 if ((val
& 0x0000ff00) != 0)
11058 pci_write_config_dword(pdev
, 0x40, val
& 0xffff00ff);
11060 length
= pci_resource_len(pdev
, 0);
11061 priv
->hw_len
= length
;
11063 base
= ioremap_nocache(pci_resource_start(pdev
, 0), length
);
11066 goto out_pci_release_regions
;
11069 priv
->hw_base
= base
;
11070 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length
);
11071 IPW_DEBUG_INFO("pci_resource_base = %p\n", base
);
11073 err
= ipw_setup_deferred_work(priv
);
11075 IPW_ERROR("Unable to setup deferred work\n");
11079 ipw_sw_reset(priv
, 1);
11081 err
= request_irq(pdev
->irq
, ipw_isr
, SA_SHIRQ
, DRV_NAME
, priv
);
11083 IPW_ERROR("Error allocating IRQ %d\n", pdev
->irq
);
11084 goto out_destroy_workqueue
;
11087 SET_MODULE_OWNER(net_dev
);
11088 SET_NETDEV_DEV(net_dev
, &pdev
->dev
);
11092 priv
->ieee
->hard_start_xmit
= ipw_net_hard_start_xmit
;
11093 priv
->ieee
->set_security
= shim__set_security
;
11094 priv
->ieee
->is_queue_full
= ipw_net_is_queue_full
;
11096 #ifdef CONFIG_IPW_QOS
11097 priv
->ieee
->handle_probe_response
= ipw_handle_beacon
;
11098 priv
->ieee
->handle_beacon
= ipw_handle_probe_response
;
11099 priv
->ieee
->handle_assoc_response
= ipw_handle_assoc_response
;
11100 #endif /* CONFIG_IPW_QOS */
11102 priv
->ieee
->perfect_rssi
= -20;
11103 priv
->ieee
->worst_rssi
= -85;
11105 net_dev
->open
= ipw_net_open
;
11106 net_dev
->stop
= ipw_net_stop
;
11107 net_dev
->init
= ipw_net_init
;
11108 net_dev
->get_stats
= ipw_net_get_stats
;
11109 net_dev
->set_multicast_list
= ipw_net_set_multicast_list
;
11110 net_dev
->set_mac_address
= ipw_net_set_mac_address
;
11111 priv
->wireless_data
.spy_data
= &priv
->ieee
->spy_data
;
11112 net_dev
->wireless_data
= &priv
->wireless_data
;
11113 net_dev
->wireless_handlers
= &ipw_wx_handler_def
;
11114 net_dev
->ethtool_ops
= &ipw_ethtool_ops
;
11115 net_dev
->irq
= pdev
->irq
;
11116 net_dev
->base_addr
= (unsigned long)priv
->hw_base
;
11117 net_dev
->mem_start
= pci_resource_start(pdev
, 0);
11118 net_dev
->mem_end
= net_dev
->mem_start
+ pci_resource_len(pdev
, 0) - 1;
11120 err
= sysfs_create_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11122 IPW_ERROR("failed to create sysfs device attributes\n");
11124 goto out_release_irq
;
11128 err
= register_netdev(net_dev
);
11130 IPW_ERROR("failed to register network device\n");
11131 goto out_remove_sysfs
;
11136 sysfs_remove_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11138 free_irq(pdev
->irq
, priv
);
11139 out_destroy_workqueue
:
11140 destroy_workqueue(priv
->workqueue
);
11141 priv
->workqueue
= NULL
;
11143 iounmap(priv
->hw_base
);
11144 out_pci_release_regions
:
11145 pci_release_regions(pdev
);
11146 out_pci_disable_device
:
11147 pci_disable_device(pdev
);
11148 pci_set_drvdata(pdev
, NULL
);
11149 out_free_ieee80211
:
11150 free_ieee80211(priv
->net_dev
);
11155 static void ipw_pci_remove(struct pci_dev
*pdev
)
11157 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11158 struct list_head
*p
, *q
;
11166 priv
->status
|= STATUS_EXIT_PENDING
;
11168 sysfs_remove_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11172 unregister_netdev(priv
->net_dev
);
11175 ipw_rx_queue_free(priv
, priv
->rxq
);
11178 ipw_tx_queue_free(priv
);
11180 if (priv
->cmdlog
) {
11181 kfree(priv
->cmdlog
);
11182 priv
->cmdlog
= NULL
;
11184 /* ipw_down will ensure that there is no more pending work
11185 * in the workqueue's, so we can safely remove them now. */
11186 cancel_delayed_work(&priv
->adhoc_check
);
11187 cancel_delayed_work(&priv
->gather_stats
);
11188 cancel_delayed_work(&priv
->request_scan
);
11189 cancel_delayed_work(&priv
->rf_kill
);
11190 cancel_delayed_work(&priv
->scan_check
);
11191 destroy_workqueue(priv
->workqueue
);
11192 priv
->workqueue
= NULL
;
11194 /* Free MAC hash list for ADHOC */
11195 for (i
= 0; i
< IPW_IBSS_MAC_HASH_SIZE
; i
++) {
11196 list_for_each_safe(p
, q
, &priv
->ibss_mac_hash
[i
]) {
11198 kfree(list_entry(p
, struct ipw_ibss_seq
, list
));
11203 ipw_free_error_log(priv
->error
);
11204 priv
->error
= NULL
;
11207 free_irq(pdev
->irq
, priv
);
11208 iounmap(priv
->hw_base
);
11209 pci_release_regions(pdev
);
11210 pci_disable_device(pdev
);
11211 pci_set_drvdata(pdev
, NULL
);
11212 free_ieee80211(priv
->net_dev
);
11217 static int ipw_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
11219 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11220 struct net_device
*dev
= priv
->net_dev
;
11222 printk(KERN_INFO
"%s: Going into suspend...\n", dev
->name
);
11224 /* Take down the device; powers it off, etc. */
11227 /* Remove the PRESENT state of the device */
11228 netif_device_detach(dev
);
11230 pci_save_state(pdev
);
11231 pci_disable_device(pdev
);
11232 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
11237 static int ipw_pci_resume(struct pci_dev
*pdev
)
11239 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11240 struct net_device
*dev
= priv
->net_dev
;
11243 printk(KERN_INFO
"%s: Coming out of suspend...\n", dev
->name
);
11245 pci_set_power_state(pdev
, PCI_D0
);
11246 pci_enable_device(pdev
);
11247 pci_restore_state(pdev
);
11250 * Suspend/Resume resets the PCI configuration space, so we have to
11251 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11252 * from interfering with C3 CPU state. pci_restore_state won't help
11253 * here since it only restores the first 64 bytes pci config header.
11255 pci_read_config_dword(pdev
, 0x40, &val
);
11256 if ((val
& 0x0000ff00) != 0)
11257 pci_write_config_dword(pdev
, 0x40, val
& 0xffff00ff);
11259 /* Set the device back into the PRESENT state; this will also wake
11260 * the queue of needed */
11261 netif_device_attach(dev
);
11263 /* Bring the device back up */
11264 queue_work(priv
->workqueue
, &priv
->up
);
11270 /* driver initialization stuff */
11271 static struct pci_driver ipw_driver
= {
11273 .id_table
= card_ids
,
11274 .probe
= ipw_pci_probe
,
11275 .remove
= __devexit_p(ipw_pci_remove
),
11277 .suspend
= ipw_pci_suspend
,
11278 .resume
= ipw_pci_resume
,
11282 static int __init
ipw_init(void)
11286 printk(KERN_INFO DRV_NAME
": " DRV_DESCRIPTION
", " DRV_VERSION
"\n");
11287 printk(KERN_INFO DRV_NAME
": " DRV_COPYRIGHT
"\n");
11289 ret
= pci_module_init(&ipw_driver
);
11291 IPW_ERROR("Unable to initialize PCI module\n");
11295 ret
= driver_create_file(&ipw_driver
.driver
, &driver_attr_debug_level
);
11297 IPW_ERROR("Unable to create driver sysfs file\n");
11298 pci_unregister_driver(&ipw_driver
);
11305 static void __exit
ipw_exit(void)
11307 driver_remove_file(&ipw_driver
.driver
, &driver_attr_debug_level
);
11308 pci_unregister_driver(&ipw_driver
);
11311 module_param(disable
, int, 0444);
11312 MODULE_PARM_DESC(disable
, "manually disable the radio (default 0 [radio on])");
11314 module_param(associate
, int, 0444);
11315 MODULE_PARM_DESC(associate
, "auto associate when scanning (default on)");
11317 module_param(auto_create
, int, 0444);
11318 MODULE_PARM_DESC(auto_create
, "auto create adhoc network (default on)");
11320 module_param(led
, int, 0444);
11321 MODULE_PARM_DESC(led
, "enable led control on some systems (default 0 off)\n");
11323 module_param(debug
, int, 0444);
11324 MODULE_PARM_DESC(debug
, "debug output mask");
11326 module_param(channel
, int, 0444);
11327 MODULE_PARM_DESC(channel
, "channel to limit associate to (default 0 [ANY])");
11329 #ifdef CONFIG_IPW_QOS
11330 module_param(qos_enable
, int, 0444);
11331 MODULE_PARM_DESC(qos_enable
, "enable all QoS functionalitis");
11333 module_param(qos_burst_enable
, int, 0444);
11334 MODULE_PARM_DESC(qos_burst_enable
, "enable QoS burst mode");
11336 module_param(qos_no_ack_mask
, int, 0444);
11337 MODULE_PARM_DESC(qos_no_ack_mask
, "mask Tx_Queue to no ack");
11339 module_param(burst_duration_CCK
, int, 0444);
11340 MODULE_PARM_DESC(burst_duration_CCK
, "set CCK burst value");
11342 module_param(burst_duration_OFDM
, int, 0444);
11343 MODULE_PARM_DESC(burst_duration_OFDM
, "set OFDM burst value");
11344 #endif /* CONFIG_IPW_QOS */
11346 #ifdef CONFIG_IPW2200_MONITOR
11347 module_param(mode
, int, 0444);
11348 MODULE_PARM_DESC(mode
, "network mode (0=BSS,1=IBSS,2=Monitor)");
11350 module_param(mode
, int, 0444);
11351 MODULE_PARM_DESC(mode
, "network mode (0=BSS,1=IBSS)");
11354 module_param(hwcrypto
, int, 0444);
11355 MODULE_PARM_DESC(hwcrypto
, "enable hardware crypto (default on)");
11357 module_param(cmdlog
, int, 0444);
11358 MODULE_PARM_DESC(cmdlog
,
11359 "allocate a ring buffer for logging firmware commands");
11361 module_exit(ipw_exit
);
11362 module_init(ipw_init
);