]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/ipw2200.c
Merge branch 'master' of ../net-2.6/
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99 'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128 QOS_TX3_CW_MIN_CCK},
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130 QOS_TX3_CW_MAX_CCK},
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150 DEF_TX3_CW_MIN_CCK},
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152 DEF_TX3_CW_MAX_CCK},
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169 *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171 *qos_param);
172 #endif /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182 int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
201 {
202 int out, i, j, l;
203 char c;
204
205 out = snprintf(buf, count, "%08X", ofs);
206
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
211 data[(i * 8 + j)]);
212 for (; j < 8; j++)
213 out += snprintf(buf + out, count - out, " ");
214 }
215
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
222 c = '.';
223
224 out += snprintf(buf + out, count - out, "%c", c);
225 }
226
227 for (; j < 8; j++)
228 out += snprintf(buf + out, count - out, " ");
229 }
230
231 return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236 char line[81];
237 u32 ofs = 0;
238 if (!(ipw_debug_level & level))
239 return;
240
241 while (len) {
242 snprint_line(line, sizeof(line), &data[ofs],
243 min(len, 16U), ofs);
244 printk(KERN_DEBUG "%s\n", line);
245 ofs += 16;
246 len -= min(len, 16U);
247 }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252 size_t out = size;
253 u32 ofs = 0;
254 int total = 0;
255
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
259
260 ofs += 16;
261 output += out;
262 size -= out;
263 len -= min_t(size_t, len, 16U);
264 total += out;
265 }
266 return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373 d);
374 _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
400
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430 u32 value;
431
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
444 {
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
448
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451 if (num <= 0) {
452 return;
453 }
454
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
462 }
463
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474 }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
481 {
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
485
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488 if (num <= 0) {
489 return;
490 }
491
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
499 }
500
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511 }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
518 {
519 memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552 unsigned long flags;
553
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561 unsigned long flags;
562
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
603 }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
608 {
609 u32 i;
610
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
615 }
616
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
620
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637 return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642 u32 addr, field_info, field_len, field_count, total_len;
643
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
649 }
650
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
655 }
656
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
659 /*
660 * TABLE 0: Direct access to a table of 32 bit values
661 *
662 * This is a very simple table with the data directly
663 * read from the table
664 */
665
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
674 }
675
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
681 }
682
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
685
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
690
691 case IPW_ORD_TABLE_1_MASK:
692 /*
693 * TABLE 1: Indirect access to a table of 32 bit values
694 *
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
698 */
699
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
707 }
708
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
714 }
715
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
720
721 case IPW_ORD_TABLE_2_MASK:
722 /*
723 * TABLE 2: Indirect access to a table of variable sized values
724 *
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
729 */
730
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
738 }
739
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
749
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
752
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
755
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
761 }
762
763 *len = total_len;
764 if (!total_len)
765 return 0;
766
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
772
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
776
777 }
778
779 return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
789
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
795
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
815 }
816
817 /*
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
824 *
825 */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832 unsigned long flags;
833 u32 led;
834
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
839
840 spin_lock_irqsave(&priv->lock, flags);
841
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
847
848 led = ipw_register_toggle(led);
849
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853 priv->status |= STATUS_LED_LINK_ON;
854
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
860 }
861
862 spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876 unsigned long flags;
877 u32 led;
878
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
883
884 spin_lock_irqsave(&priv->lock, flags);
885
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
890
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894 IPW_DEBUG_LED("Link LED Off\n");
895
896 priv->status &= ~STATUS_LED_LINK_ON;
897
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
904
905 }
906
907 spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921 u32 led;
922
923 if (priv->config & CFG_NO_LED)
924 return;
925
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
928
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
932
933 led = ipw_register_toggle(led);
934
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938 IPW_DEBUG_LED("Activity LED On\n");
939
940 priv->status |= STATUS_LED_ACT_ON;
941
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
950 }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif /* 0 */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965 unsigned long flags;
966 u32 led;
967
968 if (priv->config & CFG_NO_LED)
969 return;
970
971 spin_lock_irqsave(&priv->lock, flags);
972
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
976
977 led = ipw_register_toggle(led);
978
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982 IPW_DEBUG_LED("Activity LED Off\n");
983
984 priv->status &= ~STATUS_LED_ACT_ON;
985 }
986
987 spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001 unsigned long flags;
1002 u32 led;
1003
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1008
1009 spin_lock_irqsave(&priv->lock, flags);
1010
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024 }
1025
1026 led = ipw_register_toggle(led);
1027
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031 spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036 unsigned long flags;
1037 u32 led;
1038
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1042
1043 spin_lock_irqsave(&priv->lock, flags);
1044
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1048
1049 led = ipw_register_toggle(led);
1050
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054 spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059 ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1078
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1108
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1112
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1118
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1124 }
1125
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1131 }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1148 *
1149 * See the level definitions in ipw for details.
1150 */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1158 {
1159 char *p = (char *)buf;
1160 u32 val;
1161
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1174
1175 return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1189 {
1190 u32 base;
1191
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1196 }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1205
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1213 }
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222 ipw_capture_event_log(priv, log_len, error->log);
1223
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1227
1228 return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1233 {
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 u32 log_size;
1237 struct ipw_event *log;
1238 u32 len = 0, i;
1239
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1244 if (!log) {
1245 IPW_ERROR("Unable to allocate memory for log\n");
1246 return 0;
1247 }
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1250
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1254 "\n%08X%08X%08X",
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257 kfree(log);
1258 return len;
1259 }
1260
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1262
1263 static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1265 {
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1267 u32 len = 0, i;
1268 if (!priv->error)
1269 return 0;
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1285
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1290 "\n%08X%08X%08X",
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295 return len;
1296 }
1297
1298 static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1301 {
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1303
1304 kfree(priv->error);
1305 priv->error = NULL;
1306 return count;
1307 }
1308
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1310
1311 static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1313 {
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1315 u32 len = 0, i;
1316 if (!priv->cmdlog)
1317 return 0;
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1321 len +=
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1326 len +=
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1331 }
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333 return len;
1334 }
1335
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1337
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1344 {
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 int rc = 0;
1347
1348 if (count < 1)
1349 return -EINVAL;
1350
1351 switch (buf[0]) {
1352 case '0':
1353 if (!rtap_iface)
1354 return count;
1355
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1358 return count;
1359 }
1360
1361 ipw_prom_free(priv);
1362 rtap_iface = 0;
1363 break;
1364
1365 case '1':
1366 if (rtap_iface)
1367 return count;
1368
1369 rc = ipw_prom_alloc(priv);
1370 if (!rc)
1371 rtap_iface = 1;
1372 break;
1373
1374 default:
1375 return -EINVAL;
1376 }
1377
1378 if (rc) {
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1381 }
1382
1383 return count;
1384 }
1385
1386 static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1388 char *buf)
1389 {
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1391 if (rtap_iface)
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393 else {
1394 buf[0] = '-';
1395 buf[1] = '1';
1396 buf[2] = '\0';
1397 return 3;
1398 }
1399 }
1400
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402 store_rtap_iface);
1403
1404 static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1407 {
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1409
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1413 return -EPERM;
1414 }
1415
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1417
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1420
1421 return count;
1422 }
1423
1424 static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1426 char *buf)
1427 {
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1431 }
1432
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434 store_rtap_filter);
1435 #endif
1436
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438 char *buf)
1439 {
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1442 }
1443
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1446 {
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1450 unsigned long len =
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452 unsigned long val;
1453 char *p = buffer;
1454
1455 IPW_DEBUG_INFO("enter\n");
1456
1457 strncpy(buffer, buf, len);
1458 buffer[len] = 0;
1459
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461 p++;
1462 if (p[0] == 'x' || p[0] == 'X')
1463 p++;
1464 val = simple_strtoul(p, &p, 16);
1465 } else
1466 val = simple_strtoul(p, &p, 10);
1467 if (p == buffer) {
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 } else {
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1472 }
1473
1474 IPW_DEBUG_INFO("exit\n");
1475 return len;
1476 }
1477
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1479
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481 char *buf)
1482 {
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1485 }
1486
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1489 {
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1491
1492 IPW_DEBUG_INFO("enter\n");
1493
1494 if (count == 0)
1495 return 0;
1496
1497 if (*buf == 0) {
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1501 } else {
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1504 ipw_led_init(priv);
1505 }
1506
1507 IPW_DEBUG_INFO("exit\n");
1508 return count;
1509 }
1510
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1512
1513 static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1515 {
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1518 }
1519
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1521
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523 char *buf)
1524 {
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1527 }
1528
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1530
1531 static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1533 {
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1536 }
1537
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1539
1540 static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1542 {
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1545
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 return 0;
1548
1549 return sprintf(buf, "0x%08x\n", tmp);
1550 }
1551
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1553
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555 char *buf)
1556 {
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1559
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 return 0;
1562
1563 return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1567
1568 /*
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1571 */
1572 static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1574 {
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1577 }
1578 static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1581 {
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1585 }
1586
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1589
1590 static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1592 {
1593 u32 reg = 0;
1594 struct ipw_priv *p = d->driver_data;
1595
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1598 }
1599 static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1602 {
1603 u32 reg;
1604 struct ipw_priv *p = d->driver_data;
1605
1606 sscanf(buf, "%x", &reg);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1609 }
1610
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1613
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1616 {
1617 u32 reg = 0;
1618 struct ipw_priv *p = d->driver_data;
1619
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1622 }
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1626 {
1627 u32 reg;
1628 struct ipw_priv *p = d->driver_data;
1629
1630 sscanf(buf, "%x", &reg);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1637
1638 static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1640 {
1641 u32 reg = 0;
1642 struct ipw_priv *priv = d->driver_data;
1643
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646 else
1647 reg = 0;
1648
1649 return sprintf(buf, "0x%08x\n", reg);
1650 }
1651 static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1654 {
1655 struct ipw_priv *priv = d->driver_data;
1656
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1660 }
1661
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1664
1665 static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1667 {
1668 u8 reg = 0;
1669 struct ipw_priv *priv = d->driver_data;
1670
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673 else
1674 reg = 0;
1675
1676 return sprintf(buf, "0x%02x\n", reg);
1677 }
1678 static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1681 {
1682 struct ipw_priv *priv = d->driver_data;
1683
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1687 }
1688
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1691
1692 static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1694 {
1695 u32 reg = 0;
1696 struct ipw_priv *priv = d->driver_data;
1697
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1700 else
1701 reg = 0;
1702
1703 return sprintf(buf, "0x%08x\n", reg);
1704 }
1705 static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1708 {
1709 struct ipw_priv *priv = d->driver_data;
1710
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1714 }
1715
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1718
1719 static int rf_kill_active(struct ipw_priv *priv)
1720 {
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1723 else
1724 priv->status &= ~STATUS_RF_KILL_HW;
1725
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1727 }
1728
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730 char *buf)
1731 {
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1740 }
1741
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1743 {
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746 return 0;
1747
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1750
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1753
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->scan_event);
1757 }
1758 queue_work(priv->workqueue, &priv->down);
1759 } else {
1760 priv->status &= ~STATUS_RF_KILL_SW;
1761 if (rf_kill_active(priv)) {
1762 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1763 "disabled by HW switch\n");
1764 /* Make sure the RF_KILL check timer is running */
1765 cancel_delayed_work(&priv->rf_kill);
1766 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1767 round_jiffies_relative(2 * HZ));
1768 } else
1769 queue_work(priv->workqueue, &priv->up);
1770 }
1771
1772 return 1;
1773 }
1774
1775 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1776 const char *buf, size_t count)
1777 {
1778 struct ipw_priv *priv = d->driver_data;
1779
1780 ipw_radio_kill_sw(priv, buf[0] == '1');
1781
1782 return count;
1783 }
1784
1785 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1786
1787 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1788 char *buf)
1789 {
1790 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1791 int pos = 0, len = 0;
1792 if (priv->config & CFG_SPEED_SCAN) {
1793 while (priv->speed_scan[pos] != 0)
1794 len += sprintf(&buf[len], "%d ",
1795 priv->speed_scan[pos++]);
1796 return len + sprintf(&buf[len], "\n");
1797 }
1798
1799 return sprintf(buf, "0\n");
1800 }
1801
1802 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1803 const char *buf, size_t count)
1804 {
1805 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1806 int channel, pos = 0;
1807 const char *p = buf;
1808
1809 /* list of space separated channels to scan, optionally ending with 0 */
1810 while ((channel = simple_strtol(p, NULL, 0))) {
1811 if (pos == MAX_SPEED_SCAN - 1) {
1812 priv->speed_scan[pos] = 0;
1813 break;
1814 }
1815
1816 if (ieee80211_is_valid_channel(priv->ieee, channel))
1817 priv->speed_scan[pos++] = channel;
1818 else
1819 IPW_WARNING("Skipping invalid channel request: %d\n",
1820 channel);
1821 p = strchr(p, ' ');
1822 if (!p)
1823 break;
1824 while (*p == ' ' || *p == '\t')
1825 p++;
1826 }
1827
1828 if (pos == 0)
1829 priv->config &= ~CFG_SPEED_SCAN;
1830 else {
1831 priv->speed_scan_pos = 0;
1832 priv->config |= CFG_SPEED_SCAN;
1833 }
1834
1835 return count;
1836 }
1837
1838 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1839 store_speed_scan);
1840
1841 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1842 char *buf)
1843 {
1844 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1845 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1846 }
1847
1848 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1849 const char *buf, size_t count)
1850 {
1851 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1852 if (buf[0] == '1')
1853 priv->config |= CFG_NET_STATS;
1854 else
1855 priv->config &= ~CFG_NET_STATS;
1856
1857 return count;
1858 }
1859
1860 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1861 show_net_stats, store_net_stats);
1862
1863 static ssize_t show_channels(struct device *d,
1864 struct device_attribute *attr,
1865 char *buf)
1866 {
1867 struct ipw_priv *priv = dev_get_drvdata(d);
1868 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1869 int len = 0, i;
1870
1871 len = sprintf(&buf[len],
1872 "Displaying %d channels in 2.4Ghz band "
1873 "(802.11bg):\n", geo->bg_channels);
1874
1875 for (i = 0; i < geo->bg_channels; i++) {
1876 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1877 geo->bg[i].channel,
1878 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1879 " (radar spectrum)" : "",
1880 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1881 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1882 ? "" : ", IBSS",
1883 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1884 "passive only" : "active/passive",
1885 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1886 "B" : "B/G");
1887 }
1888
1889 len += sprintf(&buf[len],
1890 "Displaying %d channels in 5.2Ghz band "
1891 "(802.11a):\n", geo->a_channels);
1892 for (i = 0; i < geo->a_channels; i++) {
1893 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1894 geo->a[i].channel,
1895 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896 " (radar spectrum)" : "",
1897 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1898 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1899 ? "" : ", IBSS",
1900 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901 "passive only" : "active/passive");
1902 }
1903
1904 return len;
1905 }
1906
1907 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1908
1909 static void notify_wx_assoc_event(struct ipw_priv *priv)
1910 {
1911 union iwreq_data wrqu;
1912 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1913 if (priv->status & STATUS_ASSOCIATED)
1914 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1915 else
1916 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1917 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1918 }
1919
1920 static void ipw_irq_tasklet(struct ipw_priv *priv)
1921 {
1922 u32 inta, inta_mask, handled = 0;
1923 unsigned long flags;
1924 int rc = 0;
1925
1926 spin_lock_irqsave(&priv->irq_lock, flags);
1927
1928 inta = ipw_read32(priv, IPW_INTA_RW);
1929 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1930 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1931
1932 /* Add any cached INTA values that need to be handled */
1933 inta |= priv->isr_inta;
1934
1935 spin_unlock_irqrestore(&priv->irq_lock, flags);
1936
1937 spin_lock_irqsave(&priv->lock, flags);
1938
1939 /* handle all the justifications for the interrupt */
1940 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1941 ipw_rx(priv);
1942 handled |= IPW_INTA_BIT_RX_TRANSFER;
1943 }
1944
1945 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1946 IPW_DEBUG_HC("Command completed.\n");
1947 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1948 priv->status &= ~STATUS_HCMD_ACTIVE;
1949 wake_up_interruptible(&priv->wait_command_queue);
1950 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1951 }
1952
1953 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1954 IPW_DEBUG_TX("TX_QUEUE_1\n");
1955 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1956 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1957 }
1958
1959 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1960 IPW_DEBUG_TX("TX_QUEUE_2\n");
1961 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1962 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1963 }
1964
1965 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1966 IPW_DEBUG_TX("TX_QUEUE_3\n");
1967 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1968 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1969 }
1970
1971 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1972 IPW_DEBUG_TX("TX_QUEUE_4\n");
1973 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1974 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1975 }
1976
1977 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1978 IPW_WARNING("STATUS_CHANGE\n");
1979 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1980 }
1981
1982 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1983 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1984 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1985 }
1986
1987 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1988 IPW_WARNING("HOST_CMD_DONE\n");
1989 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1990 }
1991
1992 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1993 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1994 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1995 }
1996
1997 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1998 IPW_WARNING("PHY_OFF_DONE\n");
1999 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2000 }
2001
2002 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2003 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2004 priv->status |= STATUS_RF_KILL_HW;
2005 wake_up_interruptible(&priv->wait_command_queue);
2006 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2007 cancel_delayed_work(&priv->request_scan);
2008 cancel_delayed_work(&priv->scan_event);
2009 schedule_work(&priv->link_down);
2010 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2011 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2012 }
2013
2014 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2015 IPW_WARNING("Firmware error detected. Restarting.\n");
2016 if (priv->error) {
2017 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2018 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2019 struct ipw_fw_error *error =
2020 ipw_alloc_error_log(priv);
2021 ipw_dump_error_log(priv, error);
2022 kfree(error);
2023 }
2024 } else {
2025 priv->error = ipw_alloc_error_log(priv);
2026 if (priv->error)
2027 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2028 else
2029 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2030 "log.\n");
2031 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2032 ipw_dump_error_log(priv, priv->error);
2033 }
2034
2035 /* XXX: If hardware encryption is for WPA/WPA2,
2036 * we have to notify the supplicant. */
2037 if (priv->ieee->sec.encrypt) {
2038 priv->status &= ~STATUS_ASSOCIATED;
2039 notify_wx_assoc_event(priv);
2040 }
2041
2042 /* Keep the restart process from trying to send host
2043 * commands by clearing the INIT status bit */
2044 priv->status &= ~STATUS_INIT;
2045
2046 /* Cancel currently queued command. */
2047 priv->status &= ~STATUS_HCMD_ACTIVE;
2048 wake_up_interruptible(&priv->wait_command_queue);
2049
2050 queue_work(priv->workqueue, &priv->adapter_restart);
2051 handled |= IPW_INTA_BIT_FATAL_ERROR;
2052 }
2053
2054 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2055 IPW_ERROR("Parity error\n");
2056 handled |= IPW_INTA_BIT_PARITY_ERROR;
2057 }
2058
2059 if (handled != inta) {
2060 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2061 }
2062
2063 spin_unlock_irqrestore(&priv->lock, flags);
2064
2065 /* enable all interrupts */
2066 ipw_enable_interrupts(priv);
2067 }
2068
2069 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2070 static char *get_cmd_string(u8 cmd)
2071 {
2072 switch (cmd) {
2073 IPW_CMD(HOST_COMPLETE);
2074 IPW_CMD(POWER_DOWN);
2075 IPW_CMD(SYSTEM_CONFIG);
2076 IPW_CMD(MULTICAST_ADDRESS);
2077 IPW_CMD(SSID);
2078 IPW_CMD(ADAPTER_ADDRESS);
2079 IPW_CMD(PORT_TYPE);
2080 IPW_CMD(RTS_THRESHOLD);
2081 IPW_CMD(FRAG_THRESHOLD);
2082 IPW_CMD(POWER_MODE);
2083 IPW_CMD(WEP_KEY);
2084 IPW_CMD(TGI_TX_KEY);
2085 IPW_CMD(SCAN_REQUEST);
2086 IPW_CMD(SCAN_REQUEST_EXT);
2087 IPW_CMD(ASSOCIATE);
2088 IPW_CMD(SUPPORTED_RATES);
2089 IPW_CMD(SCAN_ABORT);
2090 IPW_CMD(TX_FLUSH);
2091 IPW_CMD(QOS_PARAMETERS);
2092 IPW_CMD(DINO_CONFIG);
2093 IPW_CMD(RSN_CAPABILITIES);
2094 IPW_CMD(RX_KEY);
2095 IPW_CMD(CARD_DISABLE);
2096 IPW_CMD(SEED_NUMBER);
2097 IPW_CMD(TX_POWER);
2098 IPW_CMD(COUNTRY_INFO);
2099 IPW_CMD(AIRONET_INFO);
2100 IPW_CMD(AP_TX_POWER);
2101 IPW_CMD(CCKM_INFO);
2102 IPW_CMD(CCX_VER_INFO);
2103 IPW_CMD(SET_CALIBRATION);
2104 IPW_CMD(SENSITIVITY_CALIB);
2105 IPW_CMD(RETRY_LIMIT);
2106 IPW_CMD(IPW_PRE_POWER_DOWN);
2107 IPW_CMD(VAP_BEACON_TEMPLATE);
2108 IPW_CMD(VAP_DTIM_PERIOD);
2109 IPW_CMD(EXT_SUPPORTED_RATES);
2110 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2111 IPW_CMD(VAP_QUIET_INTERVALS);
2112 IPW_CMD(VAP_CHANNEL_SWITCH);
2113 IPW_CMD(VAP_MANDATORY_CHANNELS);
2114 IPW_CMD(VAP_CELL_PWR_LIMIT);
2115 IPW_CMD(VAP_CF_PARAM_SET);
2116 IPW_CMD(VAP_SET_BEACONING_STATE);
2117 IPW_CMD(MEASUREMENT);
2118 IPW_CMD(POWER_CAPABILITY);
2119 IPW_CMD(SUPPORTED_CHANNELS);
2120 IPW_CMD(TPC_REPORT);
2121 IPW_CMD(WME_INFO);
2122 IPW_CMD(PRODUCTION_COMMAND);
2123 default:
2124 return "UNKNOWN";
2125 }
2126 }
2127
2128 #define HOST_COMPLETE_TIMEOUT HZ
2129
2130 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2131 {
2132 int rc = 0;
2133 unsigned long flags;
2134
2135 spin_lock_irqsave(&priv->lock, flags);
2136 if (priv->status & STATUS_HCMD_ACTIVE) {
2137 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2138 get_cmd_string(cmd->cmd));
2139 spin_unlock_irqrestore(&priv->lock, flags);
2140 return -EAGAIN;
2141 }
2142
2143 priv->status |= STATUS_HCMD_ACTIVE;
2144
2145 if (priv->cmdlog) {
2146 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2147 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2148 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2149 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2150 cmd->len);
2151 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2152 }
2153
2154 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2155 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2156 priv->status);
2157
2158 #ifndef DEBUG_CMD_WEP_KEY
2159 if (cmd->cmd == IPW_CMD_WEP_KEY)
2160 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2161 else
2162 #endif
2163 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2164
2165 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2166 if (rc) {
2167 priv->status &= ~STATUS_HCMD_ACTIVE;
2168 IPW_ERROR("Failed to send %s: Reason %d\n",
2169 get_cmd_string(cmd->cmd), rc);
2170 spin_unlock_irqrestore(&priv->lock, flags);
2171 goto exit;
2172 }
2173 spin_unlock_irqrestore(&priv->lock, flags);
2174
2175 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2176 !(priv->
2177 status & STATUS_HCMD_ACTIVE),
2178 HOST_COMPLETE_TIMEOUT);
2179 if (rc == 0) {
2180 spin_lock_irqsave(&priv->lock, flags);
2181 if (priv->status & STATUS_HCMD_ACTIVE) {
2182 IPW_ERROR("Failed to send %s: Command timed out.\n",
2183 get_cmd_string(cmd->cmd));
2184 priv->status &= ~STATUS_HCMD_ACTIVE;
2185 spin_unlock_irqrestore(&priv->lock, flags);
2186 rc = -EIO;
2187 goto exit;
2188 }
2189 spin_unlock_irqrestore(&priv->lock, flags);
2190 } else
2191 rc = 0;
2192
2193 if (priv->status & STATUS_RF_KILL_HW) {
2194 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2195 get_cmd_string(cmd->cmd));
2196 rc = -EIO;
2197 goto exit;
2198 }
2199
2200 exit:
2201 if (priv->cmdlog) {
2202 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2203 priv->cmdlog_pos %= priv->cmdlog_len;
2204 }
2205 return rc;
2206 }
2207
2208 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2209 {
2210 struct host_cmd cmd = {
2211 .cmd = command,
2212 };
2213
2214 return __ipw_send_cmd(priv, &cmd);
2215 }
2216
2217 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2218 void *data)
2219 {
2220 struct host_cmd cmd = {
2221 .cmd = command,
2222 .len = len,
2223 .param = data,
2224 };
2225
2226 return __ipw_send_cmd(priv, &cmd);
2227 }
2228
2229 static int ipw_send_host_complete(struct ipw_priv *priv)
2230 {
2231 if (!priv) {
2232 IPW_ERROR("Invalid args\n");
2233 return -1;
2234 }
2235
2236 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2237 }
2238
2239 static int ipw_send_system_config(struct ipw_priv *priv)
2240 {
2241 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2242 sizeof(priv->sys_config),
2243 &priv->sys_config);
2244 }
2245
2246 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2247 {
2248 if (!priv || !ssid) {
2249 IPW_ERROR("Invalid args\n");
2250 return -1;
2251 }
2252
2253 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2254 ssid);
2255 }
2256
2257 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2258 {
2259 if (!priv || !mac) {
2260 IPW_ERROR("Invalid args\n");
2261 return -1;
2262 }
2263
2264 IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2265 priv->net_dev->name, print_mac(mac, mac));
2266
2267 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2268 }
2269
2270 /*
2271 * NOTE: This must be executed from our workqueue as it results in udelay
2272 * being called which may corrupt the keyboard if executed on default
2273 * workqueue
2274 */
2275 static void ipw_adapter_restart(void *adapter)
2276 {
2277 struct ipw_priv *priv = adapter;
2278
2279 if (priv->status & STATUS_RF_KILL_MASK)
2280 return;
2281
2282 ipw_down(priv);
2283
2284 if (priv->assoc_network &&
2285 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2286 ipw_remove_current_network(priv);
2287
2288 if (ipw_up(priv)) {
2289 IPW_ERROR("Failed to up device\n");
2290 return;
2291 }
2292 }
2293
2294 static void ipw_bg_adapter_restart(struct work_struct *work)
2295 {
2296 struct ipw_priv *priv =
2297 container_of(work, struct ipw_priv, adapter_restart);
2298 mutex_lock(&priv->mutex);
2299 ipw_adapter_restart(priv);
2300 mutex_unlock(&priv->mutex);
2301 }
2302
2303 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2304
2305 static void ipw_scan_check(void *data)
2306 {
2307 struct ipw_priv *priv = data;
2308 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2309 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2310 "adapter after (%dms).\n",
2311 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2312 queue_work(priv->workqueue, &priv->adapter_restart);
2313 }
2314 }
2315
2316 static void ipw_bg_scan_check(struct work_struct *work)
2317 {
2318 struct ipw_priv *priv =
2319 container_of(work, struct ipw_priv, scan_check.work);
2320 mutex_lock(&priv->mutex);
2321 ipw_scan_check(priv);
2322 mutex_unlock(&priv->mutex);
2323 }
2324
2325 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2326 struct ipw_scan_request_ext *request)
2327 {
2328 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2329 sizeof(*request), request);
2330 }
2331
2332 static int ipw_send_scan_abort(struct ipw_priv *priv)
2333 {
2334 if (!priv) {
2335 IPW_ERROR("Invalid args\n");
2336 return -1;
2337 }
2338
2339 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2340 }
2341
2342 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2343 {
2344 struct ipw_sensitivity_calib calib = {
2345 .beacon_rssi_raw = cpu_to_le16(sens),
2346 };
2347
2348 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2349 &calib);
2350 }
2351
2352 static int ipw_send_associate(struct ipw_priv *priv,
2353 struct ipw_associate *associate)
2354 {
2355 if (!priv || !associate) {
2356 IPW_ERROR("Invalid args\n");
2357 return -1;
2358 }
2359
2360 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2361 associate);
2362 }
2363
2364 static int ipw_send_supported_rates(struct ipw_priv *priv,
2365 struct ipw_supported_rates *rates)
2366 {
2367 if (!priv || !rates) {
2368 IPW_ERROR("Invalid args\n");
2369 return -1;
2370 }
2371
2372 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2373 rates);
2374 }
2375
2376 static int ipw_set_random_seed(struct ipw_priv *priv)
2377 {
2378 u32 val;
2379
2380 if (!priv) {
2381 IPW_ERROR("Invalid args\n");
2382 return -1;
2383 }
2384
2385 get_random_bytes(&val, sizeof(val));
2386
2387 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2388 }
2389
2390 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2391 {
2392 __le32 v = cpu_to_le32(phy_off);
2393 if (!priv) {
2394 IPW_ERROR("Invalid args\n");
2395 return -1;
2396 }
2397
2398 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2399 }
2400
2401 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2402 {
2403 if (!priv || !power) {
2404 IPW_ERROR("Invalid args\n");
2405 return -1;
2406 }
2407
2408 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2409 }
2410
2411 static int ipw_set_tx_power(struct ipw_priv *priv)
2412 {
2413 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2414 struct ipw_tx_power tx_power;
2415 s8 max_power;
2416 int i;
2417
2418 memset(&tx_power, 0, sizeof(tx_power));
2419
2420 /* configure device for 'G' band */
2421 tx_power.ieee_mode = IPW_G_MODE;
2422 tx_power.num_channels = geo->bg_channels;
2423 for (i = 0; i < geo->bg_channels; i++) {
2424 max_power = geo->bg[i].max_power;
2425 tx_power.channels_tx_power[i].channel_number =
2426 geo->bg[i].channel;
2427 tx_power.channels_tx_power[i].tx_power = max_power ?
2428 min(max_power, priv->tx_power) : priv->tx_power;
2429 }
2430 if (ipw_send_tx_power(priv, &tx_power))
2431 return -EIO;
2432
2433 /* configure device to also handle 'B' band */
2434 tx_power.ieee_mode = IPW_B_MODE;
2435 if (ipw_send_tx_power(priv, &tx_power))
2436 return -EIO;
2437
2438 /* configure device to also handle 'A' band */
2439 if (priv->ieee->abg_true) {
2440 tx_power.ieee_mode = IPW_A_MODE;
2441 tx_power.num_channels = geo->a_channels;
2442 for (i = 0; i < tx_power.num_channels; i++) {
2443 max_power = geo->a[i].max_power;
2444 tx_power.channels_tx_power[i].channel_number =
2445 geo->a[i].channel;
2446 tx_power.channels_tx_power[i].tx_power = max_power ?
2447 min(max_power, priv->tx_power) : priv->tx_power;
2448 }
2449 if (ipw_send_tx_power(priv, &tx_power))
2450 return -EIO;
2451 }
2452 return 0;
2453 }
2454
2455 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2456 {
2457 struct ipw_rts_threshold rts_threshold = {
2458 .rts_threshold = cpu_to_le16(rts),
2459 };
2460
2461 if (!priv) {
2462 IPW_ERROR("Invalid args\n");
2463 return -1;
2464 }
2465
2466 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2467 sizeof(rts_threshold), &rts_threshold);
2468 }
2469
2470 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2471 {
2472 struct ipw_frag_threshold frag_threshold = {
2473 .frag_threshold = cpu_to_le16(frag),
2474 };
2475
2476 if (!priv) {
2477 IPW_ERROR("Invalid args\n");
2478 return -1;
2479 }
2480
2481 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2482 sizeof(frag_threshold), &frag_threshold);
2483 }
2484
2485 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2486 {
2487 __le32 param;
2488
2489 if (!priv) {
2490 IPW_ERROR("Invalid args\n");
2491 return -1;
2492 }
2493
2494 /* If on battery, set to 3, if AC set to CAM, else user
2495 * level */
2496 switch (mode) {
2497 case IPW_POWER_BATTERY:
2498 param = cpu_to_le32(IPW_POWER_INDEX_3);
2499 break;
2500 case IPW_POWER_AC:
2501 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2502 break;
2503 default:
2504 param = cpu_to_le32(mode);
2505 break;
2506 }
2507
2508 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2509 &param);
2510 }
2511
2512 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2513 {
2514 struct ipw_retry_limit retry_limit = {
2515 .short_retry_limit = slimit,
2516 .long_retry_limit = llimit
2517 };
2518
2519 if (!priv) {
2520 IPW_ERROR("Invalid args\n");
2521 return -1;
2522 }
2523
2524 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2525 &retry_limit);
2526 }
2527
2528 /*
2529 * The IPW device contains a Microwire compatible EEPROM that stores
2530 * various data like the MAC address. Usually the firmware has exclusive
2531 * access to the eeprom, but during device initialization (before the
2532 * device driver has sent the HostComplete command to the firmware) the
2533 * device driver has read access to the EEPROM by way of indirect addressing
2534 * through a couple of memory mapped registers.
2535 *
2536 * The following is a simplified implementation for pulling data out of the
2537 * the eeprom, along with some helper functions to find information in
2538 * the per device private data's copy of the eeprom.
2539 *
2540 * NOTE: To better understand how these functions work (i.e what is a chip
2541 * select and why do have to keep driving the eeprom clock?), read
2542 * just about any data sheet for a Microwire compatible EEPROM.
2543 */
2544
2545 /* write a 32 bit value into the indirect accessor register */
2546 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2547 {
2548 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2549
2550 /* the eeprom requires some time to complete the operation */
2551 udelay(p->eeprom_delay);
2552
2553 return;
2554 }
2555
2556 /* perform a chip select operation */
2557 static void eeprom_cs(struct ipw_priv *priv)
2558 {
2559 eeprom_write_reg(priv, 0);
2560 eeprom_write_reg(priv, EEPROM_BIT_CS);
2561 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2562 eeprom_write_reg(priv, EEPROM_BIT_CS);
2563 }
2564
2565 /* perform a chip select operation */
2566 static void eeprom_disable_cs(struct ipw_priv *priv)
2567 {
2568 eeprom_write_reg(priv, EEPROM_BIT_CS);
2569 eeprom_write_reg(priv, 0);
2570 eeprom_write_reg(priv, EEPROM_BIT_SK);
2571 }
2572
2573 /* push a single bit down to the eeprom */
2574 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2575 {
2576 int d = (bit ? EEPROM_BIT_DI : 0);
2577 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2578 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2579 }
2580
2581 /* push an opcode followed by an address down to the eeprom */
2582 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2583 {
2584 int i;
2585
2586 eeprom_cs(priv);
2587 eeprom_write_bit(priv, 1);
2588 eeprom_write_bit(priv, op & 2);
2589 eeprom_write_bit(priv, op & 1);
2590 for (i = 7; i >= 0; i--) {
2591 eeprom_write_bit(priv, addr & (1 << i));
2592 }
2593 }
2594
2595 /* pull 16 bits off the eeprom, one bit at a time */
2596 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2597 {
2598 int i;
2599 u16 r = 0;
2600
2601 /* Send READ Opcode */
2602 eeprom_op(priv, EEPROM_CMD_READ, addr);
2603
2604 /* Send dummy bit */
2605 eeprom_write_reg(priv, EEPROM_BIT_CS);
2606
2607 /* Read the byte off the eeprom one bit at a time */
2608 for (i = 0; i < 16; i++) {
2609 u32 data = 0;
2610 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2611 eeprom_write_reg(priv, EEPROM_BIT_CS);
2612 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2613 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2614 }
2615
2616 /* Send another dummy bit */
2617 eeprom_write_reg(priv, 0);
2618 eeprom_disable_cs(priv);
2619
2620 return r;
2621 }
2622
2623 /* helper function for pulling the mac address out of the private */
2624 /* data's copy of the eeprom data */
2625 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2626 {
2627 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2628 }
2629
2630 /*
2631 * Either the device driver (i.e. the host) or the firmware can
2632 * load eeprom data into the designated region in SRAM. If neither
2633 * happens then the FW will shutdown with a fatal error.
2634 *
2635 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2636 * bit needs region of shared SRAM needs to be non-zero.
2637 */
2638 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2639 {
2640 int i;
2641 __le16 *eeprom = (__le16 *) priv->eeprom;
2642
2643 IPW_DEBUG_TRACE(">>\n");
2644
2645 /* read entire contents of eeprom into private buffer */
2646 for (i = 0; i < 128; i++)
2647 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2648
2649 /*
2650 If the data looks correct, then copy it to our private
2651 copy. Otherwise let the firmware know to perform the operation
2652 on its own.
2653 */
2654 if (priv->eeprom[EEPROM_VERSION] != 0) {
2655 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2656
2657 /* write the eeprom data to sram */
2658 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2659 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2660
2661 /* Do not load eeprom data on fatal error or suspend */
2662 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2663 } else {
2664 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2665
2666 /* Load eeprom data on fatal error or suspend */
2667 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2668 }
2669
2670 IPW_DEBUG_TRACE("<<\n");
2671 }
2672
2673 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2674 {
2675 count >>= 2;
2676 if (!count)
2677 return;
2678 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2679 while (count--)
2680 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2681 }
2682
2683 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2684 {
2685 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2686 CB_NUMBER_OF_ELEMENTS_SMALL *
2687 sizeof(struct command_block));
2688 }
2689
2690 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2691 { /* start dma engine but no transfers yet */
2692
2693 IPW_DEBUG_FW(">> : \n");
2694
2695 /* Start the dma */
2696 ipw_fw_dma_reset_command_blocks(priv);
2697
2698 /* Write CB base address */
2699 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2700
2701 IPW_DEBUG_FW("<< : \n");
2702 return 0;
2703 }
2704
2705 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2706 {
2707 u32 control = 0;
2708
2709 IPW_DEBUG_FW(">> :\n");
2710
2711 /* set the Stop and Abort bit */
2712 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2713 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2714 priv->sram_desc.last_cb_index = 0;
2715
2716 IPW_DEBUG_FW("<< \n");
2717 }
2718
2719 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2720 struct command_block *cb)
2721 {
2722 u32 address =
2723 IPW_SHARED_SRAM_DMA_CONTROL +
2724 (sizeof(struct command_block) * index);
2725 IPW_DEBUG_FW(">> :\n");
2726
2727 ipw_write_indirect(priv, address, (u8 *) cb,
2728 (int)sizeof(struct command_block));
2729
2730 IPW_DEBUG_FW("<< :\n");
2731 return 0;
2732
2733 }
2734
2735 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2736 {
2737 u32 control = 0;
2738 u32 index = 0;
2739
2740 IPW_DEBUG_FW(">> :\n");
2741
2742 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2743 ipw_fw_dma_write_command_block(priv, index,
2744 &priv->sram_desc.cb_list[index]);
2745
2746 /* Enable the DMA in the CSR register */
2747 ipw_clear_bit(priv, IPW_RESET_REG,
2748 IPW_RESET_REG_MASTER_DISABLED |
2749 IPW_RESET_REG_STOP_MASTER);
2750
2751 /* Set the Start bit. */
2752 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2753 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2754
2755 IPW_DEBUG_FW("<< :\n");
2756 return 0;
2757 }
2758
2759 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2760 {
2761 u32 address;
2762 u32 register_value = 0;
2763 u32 cb_fields_address = 0;
2764
2765 IPW_DEBUG_FW(">> :\n");
2766 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2767 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2768
2769 /* Read the DMA Controlor register */
2770 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2771 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2772
2773 /* Print the CB values */
2774 cb_fields_address = address;
2775 register_value = ipw_read_reg32(priv, cb_fields_address);
2776 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2777
2778 cb_fields_address += sizeof(u32);
2779 register_value = ipw_read_reg32(priv, cb_fields_address);
2780 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2781
2782 cb_fields_address += sizeof(u32);
2783 register_value = ipw_read_reg32(priv, cb_fields_address);
2784 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2785 register_value);
2786
2787 cb_fields_address += sizeof(u32);
2788 register_value = ipw_read_reg32(priv, cb_fields_address);
2789 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2790
2791 IPW_DEBUG_FW(">> :\n");
2792 }
2793
2794 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2795 {
2796 u32 current_cb_address = 0;
2797 u32 current_cb_index = 0;
2798
2799 IPW_DEBUG_FW("<< :\n");
2800 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2801
2802 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2803 sizeof(struct command_block);
2804
2805 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2806 current_cb_index, current_cb_address);
2807
2808 IPW_DEBUG_FW(">> :\n");
2809 return current_cb_index;
2810
2811 }
2812
2813 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2814 u32 src_address,
2815 u32 dest_address,
2816 u32 length,
2817 int interrupt_enabled, int is_last)
2818 {
2819
2820 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2821 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2822 CB_DEST_SIZE_LONG;
2823 struct command_block *cb;
2824 u32 last_cb_element = 0;
2825
2826 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2827 src_address, dest_address, length);
2828
2829 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2830 return -1;
2831
2832 last_cb_element = priv->sram_desc.last_cb_index;
2833 cb = &priv->sram_desc.cb_list[last_cb_element];
2834 priv->sram_desc.last_cb_index++;
2835
2836 /* Calculate the new CB control word */
2837 if (interrupt_enabled)
2838 control |= CB_INT_ENABLED;
2839
2840 if (is_last)
2841 control |= CB_LAST_VALID;
2842
2843 control |= length;
2844
2845 /* Calculate the CB Element's checksum value */
2846 cb->status = control ^ src_address ^ dest_address;
2847
2848 /* Copy the Source and Destination addresses */
2849 cb->dest_addr = dest_address;
2850 cb->source_addr = src_address;
2851
2852 /* Copy the Control Word last */
2853 cb->control = control;
2854
2855 return 0;
2856 }
2857
2858 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2859 u32 src_phys, u32 dest_address, u32 length)
2860 {
2861 u32 bytes_left = length;
2862 u32 src_offset = 0;
2863 u32 dest_offset = 0;
2864 int status = 0;
2865 IPW_DEBUG_FW(">> \n");
2866 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2867 src_phys, dest_address, length);
2868 while (bytes_left > CB_MAX_LENGTH) {
2869 status = ipw_fw_dma_add_command_block(priv,
2870 src_phys + src_offset,
2871 dest_address +
2872 dest_offset,
2873 CB_MAX_LENGTH, 0, 0);
2874 if (status) {
2875 IPW_DEBUG_FW_INFO(": Failed\n");
2876 return -1;
2877 } else
2878 IPW_DEBUG_FW_INFO(": Added new cb\n");
2879
2880 src_offset += CB_MAX_LENGTH;
2881 dest_offset += CB_MAX_LENGTH;
2882 bytes_left -= CB_MAX_LENGTH;
2883 }
2884
2885 /* add the buffer tail */
2886 if (bytes_left > 0) {
2887 status =
2888 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2889 dest_address + dest_offset,
2890 bytes_left, 0, 0);
2891 if (status) {
2892 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2893 return -1;
2894 } else
2895 IPW_DEBUG_FW_INFO
2896 (": Adding new cb - the buffer tail\n");
2897 }
2898
2899 IPW_DEBUG_FW("<< \n");
2900 return 0;
2901 }
2902
2903 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2904 {
2905 u32 current_index = 0, previous_index;
2906 u32 watchdog = 0;
2907
2908 IPW_DEBUG_FW(">> : \n");
2909
2910 current_index = ipw_fw_dma_command_block_index(priv);
2911 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2912 (int)priv->sram_desc.last_cb_index);
2913
2914 while (current_index < priv->sram_desc.last_cb_index) {
2915 udelay(50);
2916 previous_index = current_index;
2917 current_index = ipw_fw_dma_command_block_index(priv);
2918
2919 if (previous_index < current_index) {
2920 watchdog = 0;
2921 continue;
2922 }
2923 if (++watchdog > 400) {
2924 IPW_DEBUG_FW_INFO("Timeout\n");
2925 ipw_fw_dma_dump_command_block(priv);
2926 ipw_fw_dma_abort(priv);
2927 return -1;
2928 }
2929 }
2930
2931 ipw_fw_dma_abort(priv);
2932
2933 /*Disable the DMA in the CSR register */
2934 ipw_set_bit(priv, IPW_RESET_REG,
2935 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2936
2937 IPW_DEBUG_FW("<< dmaWaitSync \n");
2938 return 0;
2939 }
2940
2941 static void ipw_remove_current_network(struct ipw_priv *priv)
2942 {
2943 struct list_head *element, *safe;
2944 struct ieee80211_network *network = NULL;
2945 unsigned long flags;
2946
2947 spin_lock_irqsave(&priv->ieee->lock, flags);
2948 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2949 network = list_entry(element, struct ieee80211_network, list);
2950 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2951 list_del(element);
2952 list_add_tail(&network->list,
2953 &priv->ieee->network_free_list);
2954 }
2955 }
2956 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2957 }
2958
2959 /**
2960 * Check that card is still alive.
2961 * Reads debug register from domain0.
2962 * If card is present, pre-defined value should
2963 * be found there.
2964 *
2965 * @param priv
2966 * @return 1 if card is present, 0 otherwise
2967 */
2968 static inline int ipw_alive(struct ipw_priv *priv)
2969 {
2970 return ipw_read32(priv, 0x90) == 0xd55555d5;
2971 }
2972
2973 /* timeout in msec, attempted in 10-msec quanta */
2974 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2975 int timeout)
2976 {
2977 int i = 0;
2978
2979 do {
2980 if ((ipw_read32(priv, addr) & mask) == mask)
2981 return i;
2982 mdelay(10);
2983 i += 10;
2984 } while (i < timeout);
2985
2986 return -ETIME;
2987 }
2988
2989 /* These functions load the firmware and micro code for the operation of
2990 * the ipw hardware. It assumes the buffer has all the bits for the
2991 * image and the caller is handling the memory allocation and clean up.
2992 */
2993
2994 static int ipw_stop_master(struct ipw_priv *priv)
2995 {
2996 int rc;
2997
2998 IPW_DEBUG_TRACE(">> \n");
2999 /* stop master. typical delay - 0 */
3000 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3001
3002 /* timeout is in msec, polled in 10-msec quanta */
3003 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3004 IPW_RESET_REG_MASTER_DISABLED, 100);
3005 if (rc < 0) {
3006 IPW_ERROR("wait for stop master failed after 100ms\n");
3007 return -1;
3008 }
3009
3010 IPW_DEBUG_INFO("stop master %dms\n", rc);
3011
3012 return rc;
3013 }
3014
3015 static void ipw_arc_release(struct ipw_priv *priv)
3016 {
3017 IPW_DEBUG_TRACE(">> \n");
3018 mdelay(5);
3019
3020 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3021
3022 /* no one knows timing, for safety add some delay */
3023 mdelay(5);
3024 }
3025
3026 struct fw_chunk {
3027 __le32 address;
3028 __le32 length;
3029 };
3030
3031 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3032 {
3033 int rc = 0, i, addr;
3034 u8 cr = 0;
3035 __le16 *image;
3036
3037 image = (__le16 *) data;
3038
3039 IPW_DEBUG_TRACE(">> \n");
3040
3041 rc = ipw_stop_master(priv);
3042
3043 if (rc < 0)
3044 return rc;
3045
3046 for (addr = IPW_SHARED_LOWER_BOUND;
3047 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3048 ipw_write32(priv, addr, 0);
3049 }
3050
3051 /* no ucode (yet) */
3052 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3053 /* destroy DMA queues */
3054 /* reset sequence */
3055
3056 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3057 ipw_arc_release(priv);
3058 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3059 mdelay(1);
3060
3061 /* reset PHY */
3062 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3063 mdelay(1);
3064
3065 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3066 mdelay(1);
3067
3068 /* enable ucode store */
3069 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3070 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3071 mdelay(1);
3072
3073 /* write ucode */
3074 /**
3075 * @bug
3076 * Do NOT set indirect address register once and then
3077 * store data to indirect data register in the loop.
3078 * It seems very reasonable, but in this case DINO do not
3079 * accept ucode. It is essential to set address each time.
3080 */
3081 /* load new ipw uCode */
3082 for (i = 0; i < len / 2; i++)
3083 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3084 le16_to_cpu(image[i]));
3085
3086 /* enable DINO */
3087 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3088 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3089
3090 /* this is where the igx / win driver deveates from the VAP driver. */
3091
3092 /* wait for alive response */
3093 for (i = 0; i < 100; i++) {
3094 /* poll for incoming data */
3095 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3096 if (cr & DINO_RXFIFO_DATA)
3097 break;
3098 mdelay(1);
3099 }
3100
3101 if (cr & DINO_RXFIFO_DATA) {
3102 /* alive_command_responce size is NOT multiple of 4 */
3103 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3104
3105 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3106 response_buffer[i] =
3107 cpu_to_le32(ipw_read_reg32(priv,
3108 IPW_BASEBAND_RX_FIFO_READ));
3109 memcpy(&priv->dino_alive, response_buffer,
3110 sizeof(priv->dino_alive));
3111 if (priv->dino_alive.alive_command == 1
3112 && priv->dino_alive.ucode_valid == 1) {
3113 rc = 0;
3114 IPW_DEBUG_INFO
3115 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3116 "of %02d/%02d/%02d %02d:%02d\n",
3117 priv->dino_alive.software_revision,
3118 priv->dino_alive.software_revision,
3119 priv->dino_alive.device_identifier,
3120 priv->dino_alive.device_identifier,
3121 priv->dino_alive.time_stamp[0],
3122 priv->dino_alive.time_stamp[1],
3123 priv->dino_alive.time_stamp[2],
3124 priv->dino_alive.time_stamp[3],
3125 priv->dino_alive.time_stamp[4]);
3126 } else {
3127 IPW_DEBUG_INFO("Microcode is not alive\n");
3128 rc = -EINVAL;
3129 }
3130 } else {
3131 IPW_DEBUG_INFO("No alive response from DINO\n");
3132 rc = -ETIME;
3133 }
3134
3135 /* disable DINO, otherwise for some reason
3136 firmware have problem getting alive resp. */
3137 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3138
3139 return rc;
3140 }
3141
3142 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3143 {
3144 int rc = -1;
3145 int offset = 0;
3146 struct fw_chunk *chunk;
3147 dma_addr_t shared_phys;
3148 u8 *shared_virt;
3149
3150 IPW_DEBUG_TRACE("<< : \n");
3151 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3152
3153 if (!shared_virt)
3154 return -ENOMEM;
3155
3156 memmove(shared_virt, data, len);
3157
3158 /* Start the Dma */
3159 rc = ipw_fw_dma_enable(priv);
3160
3161 if (priv->sram_desc.last_cb_index > 0) {
3162 /* the DMA is already ready this would be a bug. */
3163 BUG();
3164 goto out;
3165 }
3166
3167 do {
3168 chunk = (struct fw_chunk *)(data + offset);
3169 offset += sizeof(struct fw_chunk);
3170 /* build DMA packet and queue up for sending */
3171 /* dma to chunk->address, the chunk->length bytes from data +
3172 * offeset*/
3173 /* Dma loading */
3174 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3175 le32_to_cpu(chunk->address),
3176 le32_to_cpu(chunk->length));
3177 if (rc) {
3178 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3179 goto out;
3180 }
3181
3182 offset += le32_to_cpu(chunk->length);
3183 } while (offset < len);
3184
3185 /* Run the DMA and wait for the answer */
3186 rc = ipw_fw_dma_kick(priv);
3187 if (rc) {
3188 IPW_ERROR("dmaKick Failed\n");
3189 goto out;
3190 }
3191
3192 rc = ipw_fw_dma_wait(priv);
3193 if (rc) {
3194 IPW_ERROR("dmaWaitSync Failed\n");
3195 goto out;
3196 }
3197 out:
3198 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3199 return rc;
3200 }
3201
3202 /* stop nic */
3203 static int ipw_stop_nic(struct ipw_priv *priv)
3204 {
3205 int rc = 0;
3206
3207 /* stop */
3208 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3209
3210 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3211 IPW_RESET_REG_MASTER_DISABLED, 500);
3212 if (rc < 0) {
3213 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3214 return rc;
3215 }
3216
3217 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3218
3219 return rc;
3220 }
3221
3222 static void ipw_start_nic(struct ipw_priv *priv)
3223 {
3224 IPW_DEBUG_TRACE(">>\n");
3225
3226 /* prvHwStartNic release ARC */
3227 ipw_clear_bit(priv, IPW_RESET_REG,
3228 IPW_RESET_REG_MASTER_DISABLED |
3229 IPW_RESET_REG_STOP_MASTER |
3230 CBD_RESET_REG_PRINCETON_RESET);
3231
3232 /* enable power management */
3233 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3234 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3235
3236 IPW_DEBUG_TRACE("<<\n");
3237 }
3238
3239 static int ipw_init_nic(struct ipw_priv *priv)
3240 {
3241 int rc;
3242
3243 IPW_DEBUG_TRACE(">>\n");
3244 /* reset */
3245 /*prvHwInitNic */
3246 /* set "initialization complete" bit to move adapter to D0 state */
3247 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3248
3249 /* low-level PLL activation */
3250 ipw_write32(priv, IPW_READ_INT_REGISTER,
3251 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3252
3253 /* wait for clock stabilization */
3254 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3255 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3256 if (rc < 0)
3257 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3258
3259 /* assert SW reset */
3260 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3261
3262 udelay(10);
3263
3264 /* set "initialization complete" bit to move adapter to D0 state */
3265 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3266
3267 IPW_DEBUG_TRACE(">>\n");
3268 return 0;
3269 }
3270
3271 /* Call this function from process context, it will sleep in request_firmware.
3272 * Probe is an ok place to call this from.
3273 */
3274 static int ipw_reset_nic(struct ipw_priv *priv)
3275 {
3276 int rc = 0;
3277 unsigned long flags;
3278
3279 IPW_DEBUG_TRACE(">>\n");
3280
3281 rc = ipw_init_nic(priv);
3282
3283 spin_lock_irqsave(&priv->lock, flags);
3284 /* Clear the 'host command active' bit... */
3285 priv->status &= ~STATUS_HCMD_ACTIVE;
3286 wake_up_interruptible(&priv->wait_command_queue);
3287 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3288 wake_up_interruptible(&priv->wait_state);
3289 spin_unlock_irqrestore(&priv->lock, flags);
3290
3291 IPW_DEBUG_TRACE("<<\n");
3292 return rc;
3293 }
3294
3295
3296 struct ipw_fw {
3297 __le32 ver;
3298 __le32 boot_size;
3299 __le32 ucode_size;
3300 __le32 fw_size;
3301 u8 data[0];
3302 };
3303
3304 static int ipw_get_fw(struct ipw_priv *priv,
3305 const struct firmware **raw, const char *name)
3306 {
3307 struct ipw_fw *fw;
3308 int rc;
3309
3310 /* ask firmware_class module to get the boot firmware off disk */
3311 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3312 if (rc < 0) {
3313 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3314 return rc;
3315 }
3316
3317 if ((*raw)->size < sizeof(*fw)) {
3318 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3319 return -EINVAL;
3320 }
3321
3322 fw = (void *)(*raw)->data;
3323
3324 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3325 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3326 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3327 name, (*raw)->size);
3328 return -EINVAL;
3329 }
3330
3331 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3332 name,
3333 le32_to_cpu(fw->ver) >> 16,
3334 le32_to_cpu(fw->ver) & 0xff,
3335 (*raw)->size - sizeof(*fw));
3336 return 0;
3337 }
3338
3339 #define IPW_RX_BUF_SIZE (3000)
3340
3341 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3342 struct ipw_rx_queue *rxq)
3343 {
3344 unsigned long flags;
3345 int i;
3346
3347 spin_lock_irqsave(&rxq->lock, flags);
3348
3349 INIT_LIST_HEAD(&rxq->rx_free);
3350 INIT_LIST_HEAD(&rxq->rx_used);
3351
3352 /* Fill the rx_used queue with _all_ of the Rx buffers */
3353 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3354 /* In the reset function, these buffers may have been allocated
3355 * to an SKB, so we need to unmap and free potential storage */
3356 if (rxq->pool[i].skb != NULL) {
3357 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3358 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3359 dev_kfree_skb(rxq->pool[i].skb);
3360 rxq->pool[i].skb = NULL;
3361 }
3362 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3363 }
3364
3365 /* Set us so that we have processed and used all buffers, but have
3366 * not restocked the Rx queue with fresh buffers */
3367 rxq->read = rxq->write = 0;
3368 rxq->free_count = 0;
3369 spin_unlock_irqrestore(&rxq->lock, flags);
3370 }
3371
3372 #ifdef CONFIG_PM
3373 static int fw_loaded = 0;
3374 static const struct firmware *raw = NULL;
3375
3376 static void free_firmware(void)
3377 {
3378 if (fw_loaded) {
3379 release_firmware(raw);
3380 raw = NULL;
3381 fw_loaded = 0;
3382 }
3383 }
3384 #else
3385 #define free_firmware() do {} while (0)
3386 #endif
3387
3388 static int ipw_load(struct ipw_priv *priv)
3389 {
3390 #ifndef CONFIG_PM
3391 const struct firmware *raw = NULL;
3392 #endif
3393 struct ipw_fw *fw;
3394 u8 *boot_img, *ucode_img, *fw_img;
3395 u8 *name = NULL;
3396 int rc = 0, retries = 3;
3397
3398 switch (priv->ieee->iw_mode) {
3399 case IW_MODE_ADHOC:
3400 name = "ipw2200-ibss.fw";
3401 break;
3402 #ifdef CONFIG_IPW2200_MONITOR
3403 case IW_MODE_MONITOR:
3404 name = "ipw2200-sniffer.fw";
3405 break;
3406 #endif
3407 case IW_MODE_INFRA:
3408 name = "ipw2200-bss.fw";
3409 break;
3410 }
3411
3412 if (!name) {
3413 rc = -EINVAL;
3414 goto error;
3415 }
3416
3417 #ifdef CONFIG_PM
3418 if (!fw_loaded) {
3419 #endif
3420 rc = ipw_get_fw(priv, &raw, name);
3421 if (rc < 0)
3422 goto error;
3423 #ifdef CONFIG_PM
3424 }
3425 #endif
3426
3427 fw = (void *)raw->data;
3428 boot_img = &fw->data[0];
3429 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3430 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3431 le32_to_cpu(fw->ucode_size)];
3432
3433 if (rc < 0)
3434 goto error;
3435
3436 if (!priv->rxq)
3437 priv->rxq = ipw_rx_queue_alloc(priv);
3438 else
3439 ipw_rx_queue_reset(priv, priv->rxq);
3440 if (!priv->rxq) {
3441 IPW_ERROR("Unable to initialize Rx queue\n");
3442 goto error;
3443 }
3444
3445 retry:
3446 /* Ensure interrupts are disabled */
3447 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3448 priv->status &= ~STATUS_INT_ENABLED;
3449
3450 /* ack pending interrupts */
3451 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3452
3453 ipw_stop_nic(priv);
3454
3455 rc = ipw_reset_nic(priv);
3456 if (rc < 0) {
3457 IPW_ERROR("Unable to reset NIC\n");
3458 goto error;
3459 }
3460
3461 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3462 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3463
3464 /* DMA the initial boot firmware into the device */
3465 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3466 if (rc < 0) {
3467 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3468 goto error;
3469 }
3470
3471 /* kick start the device */
3472 ipw_start_nic(priv);
3473
3474 /* wait for the device to finish its initial startup sequence */
3475 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3476 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3477 if (rc < 0) {
3478 IPW_ERROR("device failed to boot initial fw image\n");
3479 goto error;
3480 }
3481 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3482
3483 /* ack fw init done interrupt */
3484 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3485
3486 /* DMA the ucode into the device */
3487 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3488 if (rc < 0) {
3489 IPW_ERROR("Unable to load ucode: %d\n", rc);
3490 goto error;
3491 }
3492
3493 /* stop nic */
3494 ipw_stop_nic(priv);
3495
3496 /* DMA bss firmware into the device */
3497 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3498 if (rc < 0) {
3499 IPW_ERROR("Unable to load firmware: %d\n", rc);
3500 goto error;
3501 }
3502 #ifdef CONFIG_PM
3503 fw_loaded = 1;
3504 #endif
3505
3506 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3507
3508 rc = ipw_queue_reset(priv);
3509 if (rc < 0) {
3510 IPW_ERROR("Unable to initialize queues\n");
3511 goto error;
3512 }
3513
3514 /* Ensure interrupts are disabled */
3515 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3516 /* ack pending interrupts */
3517 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3518
3519 /* kick start the device */
3520 ipw_start_nic(priv);
3521
3522 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3523 if (retries > 0) {
3524 IPW_WARNING("Parity error. Retrying init.\n");
3525 retries--;
3526 goto retry;
3527 }
3528
3529 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3530 rc = -EIO;
3531 goto error;
3532 }
3533
3534 /* wait for the device */
3535 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3536 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3537 if (rc < 0) {
3538 IPW_ERROR("device failed to start within 500ms\n");
3539 goto error;
3540 }
3541 IPW_DEBUG_INFO("device response after %dms\n", rc);
3542
3543 /* ack fw init done interrupt */
3544 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3545
3546 /* read eeprom data and initialize the eeprom region of sram */
3547 priv->eeprom_delay = 1;
3548 ipw_eeprom_init_sram(priv);
3549
3550 /* enable interrupts */
3551 ipw_enable_interrupts(priv);
3552
3553 /* Ensure our queue has valid packets */
3554 ipw_rx_queue_replenish(priv);
3555
3556 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3557
3558 /* ack pending interrupts */
3559 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3560
3561 #ifndef CONFIG_PM
3562 release_firmware(raw);
3563 #endif
3564 return 0;
3565
3566 error:
3567 if (priv->rxq) {
3568 ipw_rx_queue_free(priv, priv->rxq);
3569 priv->rxq = NULL;
3570 }
3571 ipw_tx_queue_free(priv);
3572 if (raw)
3573 release_firmware(raw);
3574 #ifdef CONFIG_PM
3575 fw_loaded = 0;
3576 raw = NULL;
3577 #endif
3578
3579 return rc;
3580 }
3581
3582 /**
3583 * DMA services
3584 *
3585 * Theory of operation
3586 *
3587 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3588 * 2 empty entries always kept in the buffer to protect from overflow.
3589 *
3590 * For Tx queue, there are low mark and high mark limits. If, after queuing
3591 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3592 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3593 * Tx queue resumed.
3594 *
3595 * The IPW operates with six queues, one receive queue in the device's
3596 * sram, one transmit queue for sending commands to the device firmware,
3597 * and four transmit queues for data.
3598 *
3599 * The four transmit queues allow for performing quality of service (qos)
3600 * transmissions as per the 802.11 protocol. Currently Linux does not
3601 * provide a mechanism to the user for utilizing prioritized queues, so
3602 * we only utilize the first data transmit queue (queue1).
3603 */
3604
3605 /**
3606 * Driver allocates buffers of this size for Rx
3607 */
3608
3609 /**
3610 * ipw_rx_queue_space - Return number of free slots available in queue.
3611 */
3612 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3613 {
3614 int s = q->read - q->write;
3615 if (s <= 0)
3616 s += RX_QUEUE_SIZE;
3617 /* keep some buffer to not confuse full and empty queue */
3618 s -= 2;
3619 if (s < 0)
3620 s = 0;
3621 return s;
3622 }
3623
3624 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3625 {
3626 int s = q->last_used - q->first_empty;
3627 if (s <= 0)
3628 s += q->n_bd;
3629 s -= 2; /* keep some reserve to not confuse empty and full situations */
3630 if (s < 0)
3631 s = 0;
3632 return s;
3633 }
3634
3635 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3636 {
3637 return (++index == n_bd) ? 0 : index;
3638 }
3639
3640 /**
3641 * Initialize common DMA queue structure
3642 *
3643 * @param q queue to init
3644 * @param count Number of BD's to allocate. Should be power of 2
3645 * @param read_register Address for 'read' register
3646 * (not offset within BAR, full address)
3647 * @param write_register Address for 'write' register
3648 * (not offset within BAR, full address)
3649 * @param base_register Address for 'base' register
3650 * (not offset within BAR, full address)
3651 * @param size Address for 'size' register
3652 * (not offset within BAR, full address)
3653 */
3654 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3655 int count, u32 read, u32 write, u32 base, u32 size)
3656 {
3657 q->n_bd = count;
3658
3659 q->low_mark = q->n_bd / 4;
3660 if (q->low_mark < 4)
3661 q->low_mark = 4;
3662
3663 q->high_mark = q->n_bd / 8;
3664 if (q->high_mark < 2)
3665 q->high_mark = 2;
3666
3667 q->first_empty = q->last_used = 0;
3668 q->reg_r = read;
3669 q->reg_w = write;
3670
3671 ipw_write32(priv, base, q->dma_addr);
3672 ipw_write32(priv, size, count);
3673 ipw_write32(priv, read, 0);
3674 ipw_write32(priv, write, 0);
3675
3676 _ipw_read32(priv, 0x90);
3677 }
3678
3679 static int ipw_queue_tx_init(struct ipw_priv *priv,
3680 struct clx2_tx_queue *q,
3681 int count, u32 read, u32 write, u32 base, u32 size)
3682 {
3683 struct pci_dev *dev = priv->pci_dev;
3684
3685 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3686 if (!q->txb) {
3687 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3688 return -ENOMEM;
3689 }
3690
3691 q->bd =
3692 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3693 if (!q->bd) {
3694 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3695 sizeof(q->bd[0]) * count);
3696 kfree(q->txb);
3697 q->txb = NULL;
3698 return -ENOMEM;
3699 }
3700
3701 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3702 return 0;
3703 }
3704
3705 /**
3706 * Free one TFD, those at index [txq->q.last_used].
3707 * Do NOT advance any indexes
3708 *
3709 * @param dev
3710 * @param txq
3711 */
3712 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3713 struct clx2_tx_queue *txq)
3714 {
3715 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3716 struct pci_dev *dev = priv->pci_dev;
3717 int i;
3718
3719 /* classify bd */
3720 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3721 /* nothing to cleanup after for host commands */
3722 return;
3723
3724 /* sanity check */
3725 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3726 IPW_ERROR("Too many chunks: %i\n",
3727 le32_to_cpu(bd->u.data.num_chunks));
3728 /** @todo issue fatal error, it is quite serious situation */
3729 return;
3730 }
3731
3732 /* unmap chunks if any */
3733 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3734 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3735 le16_to_cpu(bd->u.data.chunk_len[i]),
3736 PCI_DMA_TODEVICE);
3737 if (txq->txb[txq->q.last_used]) {
3738 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3739 txq->txb[txq->q.last_used] = NULL;
3740 }
3741 }
3742 }
3743
3744 /**
3745 * Deallocate DMA queue.
3746 *
3747 * Empty queue by removing and destroying all BD's.
3748 * Free all buffers.
3749 *
3750 * @param dev
3751 * @param q
3752 */
3753 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3754 {
3755 struct clx2_queue *q = &txq->q;
3756 struct pci_dev *dev = priv->pci_dev;
3757
3758 if (q->n_bd == 0)
3759 return;
3760
3761 /* first, empty all BD's */
3762 for (; q->first_empty != q->last_used;
3763 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3764 ipw_queue_tx_free_tfd(priv, txq);
3765 }
3766
3767 /* free buffers belonging to queue itself */
3768 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3769 q->dma_addr);
3770 kfree(txq->txb);
3771
3772 /* 0 fill whole structure */
3773 memset(txq, 0, sizeof(*txq));
3774 }
3775
3776 /**
3777 * Destroy all DMA queues and structures
3778 *
3779 * @param priv
3780 */
3781 static void ipw_tx_queue_free(struct ipw_priv *priv)
3782 {
3783 /* Tx CMD queue */
3784 ipw_queue_tx_free(priv, &priv->txq_cmd);
3785
3786 /* Tx queues */
3787 ipw_queue_tx_free(priv, &priv->txq[0]);
3788 ipw_queue_tx_free(priv, &priv->txq[1]);
3789 ipw_queue_tx_free(priv, &priv->txq[2]);
3790 ipw_queue_tx_free(priv, &priv->txq[3]);
3791 }
3792
3793 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3794 {
3795 /* First 3 bytes are manufacturer */
3796 bssid[0] = priv->mac_addr[0];
3797 bssid[1] = priv->mac_addr[1];
3798 bssid[2] = priv->mac_addr[2];
3799
3800 /* Last bytes are random */
3801 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3802
3803 bssid[0] &= 0xfe; /* clear multicast bit */
3804 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3805 }
3806
3807 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3808 {
3809 struct ipw_station_entry entry;
3810 int i;
3811 DECLARE_MAC_BUF(mac);
3812
3813 for (i = 0; i < priv->num_stations; i++) {
3814 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3815 /* Another node is active in network */
3816 priv->missed_adhoc_beacons = 0;
3817 if (!(priv->config & CFG_STATIC_CHANNEL))
3818 /* when other nodes drop out, we drop out */
3819 priv->config &= ~CFG_ADHOC_PERSIST;
3820
3821 return i;
3822 }
3823 }
3824
3825 if (i == MAX_STATIONS)
3826 return IPW_INVALID_STATION;
3827
3828 IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3829
3830 entry.reserved = 0;
3831 entry.support_mode = 0;
3832 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3833 memcpy(priv->stations[i], bssid, ETH_ALEN);
3834 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3835 &entry, sizeof(entry));
3836 priv->num_stations++;
3837
3838 return i;
3839 }
3840
3841 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3842 {
3843 int i;
3844
3845 for (i = 0; i < priv->num_stations; i++)
3846 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3847 return i;
3848
3849 return IPW_INVALID_STATION;
3850 }
3851
3852 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3853 {
3854 int err;
3855 DECLARE_MAC_BUF(mac);
3856
3857 if (priv->status & STATUS_ASSOCIATING) {
3858 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3859 queue_work(priv->workqueue, &priv->disassociate);
3860 return;
3861 }
3862
3863 if (!(priv->status & STATUS_ASSOCIATED)) {
3864 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3865 return;
3866 }
3867
3868 IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3869 "on channel %d.\n",
3870 print_mac(mac, priv->assoc_request.bssid),
3871 priv->assoc_request.channel);
3872
3873 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3874 priv->status |= STATUS_DISASSOCIATING;
3875
3876 if (quiet)
3877 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3878 else
3879 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3880
3881 err = ipw_send_associate(priv, &priv->assoc_request);
3882 if (err) {
3883 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3884 "failed.\n");
3885 return;
3886 }
3887
3888 }
3889
3890 static int ipw_disassociate(void *data)
3891 {
3892 struct ipw_priv *priv = data;
3893 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3894 return 0;
3895 ipw_send_disassociate(data, 0);
3896 return 1;
3897 }
3898
3899 static void ipw_bg_disassociate(struct work_struct *work)
3900 {
3901 struct ipw_priv *priv =
3902 container_of(work, struct ipw_priv, disassociate);
3903 mutex_lock(&priv->mutex);
3904 ipw_disassociate(priv);
3905 mutex_unlock(&priv->mutex);
3906 }
3907
3908 static void ipw_system_config(struct work_struct *work)
3909 {
3910 struct ipw_priv *priv =
3911 container_of(work, struct ipw_priv, system_config);
3912
3913 #ifdef CONFIG_IPW2200_PROMISCUOUS
3914 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3915 priv->sys_config.accept_all_data_frames = 1;
3916 priv->sys_config.accept_non_directed_frames = 1;
3917 priv->sys_config.accept_all_mgmt_bcpr = 1;
3918 priv->sys_config.accept_all_mgmt_frames = 1;
3919 }
3920 #endif
3921
3922 ipw_send_system_config(priv);
3923 }
3924
3925 struct ipw_status_code {
3926 u16 status;
3927 const char *reason;
3928 };
3929
3930 static const struct ipw_status_code ipw_status_codes[] = {
3931 {0x00, "Successful"},
3932 {0x01, "Unspecified failure"},
3933 {0x0A, "Cannot support all requested capabilities in the "
3934 "Capability information field"},
3935 {0x0B, "Reassociation denied due to inability to confirm that "
3936 "association exists"},
3937 {0x0C, "Association denied due to reason outside the scope of this "
3938 "standard"},
3939 {0x0D,
3940 "Responding station does not support the specified authentication "
3941 "algorithm"},
3942 {0x0E,
3943 "Received an Authentication frame with authentication sequence "
3944 "transaction sequence number out of expected sequence"},
3945 {0x0F, "Authentication rejected because of challenge failure"},
3946 {0x10, "Authentication rejected due to timeout waiting for next "
3947 "frame in sequence"},
3948 {0x11, "Association denied because AP is unable to handle additional "
3949 "associated stations"},
3950 {0x12,
3951 "Association denied due to requesting station not supporting all "
3952 "of the datarates in the BSSBasicServiceSet Parameter"},
3953 {0x13,
3954 "Association denied due to requesting station not supporting "
3955 "short preamble operation"},
3956 {0x14,
3957 "Association denied due to requesting station not supporting "
3958 "PBCC encoding"},
3959 {0x15,
3960 "Association denied due to requesting station not supporting "
3961 "channel agility"},
3962 {0x19,
3963 "Association denied due to requesting station not supporting "
3964 "short slot operation"},
3965 {0x1A,
3966 "Association denied due to requesting station not supporting "
3967 "DSSS-OFDM operation"},
3968 {0x28, "Invalid Information Element"},
3969 {0x29, "Group Cipher is not valid"},
3970 {0x2A, "Pairwise Cipher is not valid"},
3971 {0x2B, "AKMP is not valid"},
3972 {0x2C, "Unsupported RSN IE version"},
3973 {0x2D, "Invalid RSN IE Capabilities"},
3974 {0x2E, "Cipher suite is rejected per security policy"},
3975 };
3976
3977 static const char *ipw_get_status_code(u16 status)
3978 {
3979 int i;
3980 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3981 if (ipw_status_codes[i].status == (status & 0xff))
3982 return ipw_status_codes[i].reason;
3983 return "Unknown status value.";
3984 }
3985
3986 static void inline average_init(struct average *avg)
3987 {
3988 memset(avg, 0, sizeof(*avg));
3989 }
3990
3991 #define DEPTH_RSSI 8
3992 #define DEPTH_NOISE 16
3993 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3994 {
3995 return ((depth-1)*prev_avg + val)/depth;
3996 }
3997
3998 static void average_add(struct average *avg, s16 val)
3999 {
4000 avg->sum -= avg->entries[avg->pos];
4001 avg->sum += val;
4002 avg->entries[avg->pos++] = val;
4003 if (unlikely(avg->pos == AVG_ENTRIES)) {
4004 avg->init = 1;
4005 avg->pos = 0;
4006 }
4007 }
4008
4009 static s16 average_value(struct average *avg)
4010 {
4011 if (!unlikely(avg->init)) {
4012 if (avg->pos)
4013 return avg->sum / avg->pos;
4014 return 0;
4015 }
4016
4017 return avg->sum / AVG_ENTRIES;
4018 }
4019
4020 static void ipw_reset_stats(struct ipw_priv *priv)
4021 {
4022 u32 len = sizeof(u32);
4023
4024 priv->quality = 0;
4025
4026 average_init(&priv->average_missed_beacons);
4027 priv->exp_avg_rssi = -60;
4028 priv->exp_avg_noise = -85 + 0x100;
4029
4030 priv->last_rate = 0;
4031 priv->last_missed_beacons = 0;
4032 priv->last_rx_packets = 0;
4033 priv->last_tx_packets = 0;
4034 priv->last_tx_failures = 0;
4035
4036 /* Firmware managed, reset only when NIC is restarted, so we have to
4037 * normalize on the current value */
4038 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4039 &priv->last_rx_err, &len);
4040 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4041 &priv->last_tx_failures, &len);
4042
4043 /* Driver managed, reset with each association */
4044 priv->missed_adhoc_beacons = 0;
4045 priv->missed_beacons = 0;
4046 priv->tx_packets = 0;
4047 priv->rx_packets = 0;
4048
4049 }
4050
4051 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4052 {
4053 u32 i = 0x80000000;
4054 u32 mask = priv->rates_mask;
4055 /* If currently associated in B mode, restrict the maximum
4056 * rate match to B rates */
4057 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4058 mask &= IEEE80211_CCK_RATES_MASK;
4059
4060 /* TODO: Verify that the rate is supported by the current rates
4061 * list. */
4062
4063 while (i && !(mask & i))
4064 i >>= 1;
4065 switch (i) {
4066 case IEEE80211_CCK_RATE_1MB_MASK:
4067 return 1000000;
4068 case IEEE80211_CCK_RATE_2MB_MASK:
4069 return 2000000;
4070 case IEEE80211_CCK_RATE_5MB_MASK:
4071 return 5500000;
4072 case IEEE80211_OFDM_RATE_6MB_MASK:
4073 return 6000000;
4074 case IEEE80211_OFDM_RATE_9MB_MASK:
4075 return 9000000;
4076 case IEEE80211_CCK_RATE_11MB_MASK:
4077 return 11000000;
4078 case IEEE80211_OFDM_RATE_12MB_MASK:
4079 return 12000000;
4080 case IEEE80211_OFDM_RATE_18MB_MASK:
4081 return 18000000;
4082 case IEEE80211_OFDM_RATE_24MB_MASK:
4083 return 24000000;
4084 case IEEE80211_OFDM_RATE_36MB_MASK:
4085 return 36000000;
4086 case IEEE80211_OFDM_RATE_48MB_MASK:
4087 return 48000000;
4088 case IEEE80211_OFDM_RATE_54MB_MASK:
4089 return 54000000;
4090 }
4091
4092 if (priv->ieee->mode == IEEE_B)
4093 return 11000000;
4094 else
4095 return 54000000;
4096 }
4097
4098 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4099 {
4100 u32 rate, len = sizeof(rate);
4101 int err;
4102
4103 if (!(priv->status & STATUS_ASSOCIATED))
4104 return 0;
4105
4106 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4107 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4108 &len);
4109 if (err) {
4110 IPW_DEBUG_INFO("failed querying ordinals.\n");
4111 return 0;
4112 }
4113 } else
4114 return ipw_get_max_rate(priv);
4115
4116 switch (rate) {
4117 case IPW_TX_RATE_1MB:
4118 return 1000000;
4119 case IPW_TX_RATE_2MB:
4120 return 2000000;
4121 case IPW_TX_RATE_5MB:
4122 return 5500000;
4123 case IPW_TX_RATE_6MB:
4124 return 6000000;
4125 case IPW_TX_RATE_9MB:
4126 return 9000000;
4127 case IPW_TX_RATE_11MB:
4128 return 11000000;
4129 case IPW_TX_RATE_12MB:
4130 return 12000000;
4131 case IPW_TX_RATE_18MB:
4132 return 18000000;
4133 case IPW_TX_RATE_24MB:
4134 return 24000000;
4135 case IPW_TX_RATE_36MB:
4136 return 36000000;
4137 case IPW_TX_RATE_48MB:
4138 return 48000000;
4139 case IPW_TX_RATE_54MB:
4140 return 54000000;
4141 }
4142
4143 return 0;
4144 }
4145
4146 #define IPW_STATS_INTERVAL (2 * HZ)
4147 static void ipw_gather_stats(struct ipw_priv *priv)
4148 {
4149 u32 rx_err, rx_err_delta, rx_packets_delta;
4150 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4151 u32 missed_beacons_percent, missed_beacons_delta;
4152 u32 quality = 0;
4153 u32 len = sizeof(u32);
4154 s16 rssi;
4155 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4156 rate_quality;
4157 u32 max_rate;
4158
4159 if (!(priv->status & STATUS_ASSOCIATED)) {
4160 priv->quality = 0;
4161 return;
4162 }
4163
4164 /* Update the statistics */
4165 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4166 &priv->missed_beacons, &len);
4167 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4168 priv->last_missed_beacons = priv->missed_beacons;
4169 if (priv->assoc_request.beacon_interval) {
4170 missed_beacons_percent = missed_beacons_delta *
4171 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4172 (IPW_STATS_INTERVAL * 10);
4173 } else {
4174 missed_beacons_percent = 0;
4175 }
4176 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4177
4178 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4179 rx_err_delta = rx_err - priv->last_rx_err;
4180 priv->last_rx_err = rx_err;
4181
4182 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4183 tx_failures_delta = tx_failures - priv->last_tx_failures;
4184 priv->last_tx_failures = tx_failures;
4185
4186 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4187 priv->last_rx_packets = priv->rx_packets;
4188
4189 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4190 priv->last_tx_packets = priv->tx_packets;
4191
4192 /* Calculate quality based on the following:
4193 *
4194 * Missed beacon: 100% = 0, 0% = 70% missed
4195 * Rate: 60% = 1Mbs, 100% = Max
4196 * Rx and Tx errors represent a straight % of total Rx/Tx
4197 * RSSI: 100% = > -50, 0% = < -80
4198 * Rx errors: 100% = 0, 0% = 50% missed
4199 *
4200 * The lowest computed quality is used.
4201 *
4202 */
4203 #define BEACON_THRESHOLD 5
4204 beacon_quality = 100 - missed_beacons_percent;
4205 if (beacon_quality < BEACON_THRESHOLD)
4206 beacon_quality = 0;
4207 else
4208 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4209 (100 - BEACON_THRESHOLD);
4210 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4211 beacon_quality, missed_beacons_percent);
4212
4213 priv->last_rate = ipw_get_current_rate(priv);
4214 max_rate = ipw_get_max_rate(priv);
4215 rate_quality = priv->last_rate * 40 / max_rate + 60;
4216 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4217 rate_quality, priv->last_rate / 1000000);
4218
4219 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4220 rx_quality = 100 - (rx_err_delta * 100) /
4221 (rx_packets_delta + rx_err_delta);
4222 else
4223 rx_quality = 100;
4224 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4225 rx_quality, rx_err_delta, rx_packets_delta);
4226
4227 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4228 tx_quality = 100 - (tx_failures_delta * 100) /
4229 (tx_packets_delta + tx_failures_delta);
4230 else
4231 tx_quality = 100;
4232 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4233 tx_quality, tx_failures_delta, tx_packets_delta);
4234
4235 rssi = priv->exp_avg_rssi;
4236 signal_quality =
4237 (100 *
4238 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4239 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4240 (priv->ieee->perfect_rssi - rssi) *
4241 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4242 62 * (priv->ieee->perfect_rssi - rssi))) /
4243 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4244 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4245 if (signal_quality > 100)
4246 signal_quality = 100;
4247 else if (signal_quality < 1)
4248 signal_quality = 0;
4249
4250 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4251 signal_quality, rssi);
4252
4253 quality = min(beacon_quality,
4254 min(rate_quality,
4255 min(tx_quality, min(rx_quality, signal_quality))));
4256 if (quality == beacon_quality)
4257 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4258 quality);
4259 if (quality == rate_quality)
4260 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4261 quality);
4262 if (quality == tx_quality)
4263 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4264 quality);
4265 if (quality == rx_quality)
4266 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4267 quality);
4268 if (quality == signal_quality)
4269 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4270 quality);
4271
4272 priv->quality = quality;
4273
4274 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4275 IPW_STATS_INTERVAL);
4276 }
4277
4278 static void ipw_bg_gather_stats(struct work_struct *work)
4279 {
4280 struct ipw_priv *priv =
4281 container_of(work, struct ipw_priv, gather_stats.work);
4282 mutex_lock(&priv->mutex);
4283 ipw_gather_stats(priv);
4284 mutex_unlock(&priv->mutex);
4285 }
4286
4287 /* Missed beacon behavior:
4288 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4289 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4290 * Above disassociate threshold, give up and stop scanning.
4291 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4292 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4293 int missed_count)
4294 {
4295 priv->notif_missed_beacons = missed_count;
4296
4297 if (missed_count > priv->disassociate_threshold &&
4298 priv->status & STATUS_ASSOCIATED) {
4299 /* If associated and we've hit the missed
4300 * beacon threshold, disassociate, turn
4301 * off roaming, and abort any active scans */
4302 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4303 IPW_DL_STATE | IPW_DL_ASSOC,
4304 "Missed beacon: %d - disassociate\n", missed_count);
4305 priv->status &= ~STATUS_ROAMING;
4306 if (priv->status & STATUS_SCANNING) {
4307 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4308 IPW_DL_STATE,
4309 "Aborting scan with missed beacon.\n");
4310 queue_work(priv->workqueue, &priv->abort_scan);
4311 }
4312
4313 queue_work(priv->workqueue, &priv->disassociate);
4314 return;
4315 }
4316
4317 if (priv->status & STATUS_ROAMING) {
4318 /* If we are currently roaming, then just
4319 * print a debug statement... */
4320 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4321 "Missed beacon: %d - roam in progress\n",
4322 missed_count);
4323 return;
4324 }
4325
4326 if (roaming &&
4327 (missed_count > priv->roaming_threshold &&
4328 missed_count <= priv->disassociate_threshold)) {
4329 /* If we are not already roaming, set the ROAM
4330 * bit in the status and kick off a scan.
4331 * This can happen several times before we reach
4332 * disassociate_threshold. */
4333 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4334 "Missed beacon: %d - initiate "
4335 "roaming\n", missed_count);
4336 if (!(priv->status & STATUS_ROAMING)) {
4337 priv->status |= STATUS_ROAMING;
4338 if (!(priv->status & STATUS_SCANNING))
4339 queue_delayed_work(priv->workqueue,
4340 &priv->request_scan, 0);
4341 }
4342 return;
4343 }
4344
4345 if (priv->status & STATUS_SCANNING) {
4346 /* Stop scan to keep fw from getting
4347 * stuck (only if we aren't roaming --
4348 * otherwise we'll never scan more than 2 or 3
4349 * channels..) */
4350 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4351 "Aborting scan with missed beacon.\n");
4352 queue_work(priv->workqueue, &priv->abort_scan);
4353 }
4354
4355 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4356 }
4357
4358 static void ipw_scan_event(struct work_struct *work)
4359 {
4360 union iwreq_data wrqu;
4361
4362 struct ipw_priv *priv =
4363 container_of(work, struct ipw_priv, scan_event.work);
4364
4365 wrqu.data.length = 0;
4366 wrqu.data.flags = 0;
4367 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4368 }
4369
4370 static void handle_scan_event(struct ipw_priv *priv)
4371 {
4372 /* Only userspace-requested scan completion events go out immediately */
4373 if (!priv->user_requested_scan) {
4374 if (!delayed_work_pending(&priv->scan_event))
4375 queue_delayed_work(priv->workqueue, &priv->scan_event,
4376 round_jiffies_relative(msecs_to_jiffies(4000)));
4377 } else {
4378 union iwreq_data wrqu;
4379
4380 priv->user_requested_scan = 0;
4381 cancel_delayed_work(&priv->scan_event);
4382
4383 wrqu.data.length = 0;
4384 wrqu.data.flags = 0;
4385 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4386 }
4387 }
4388
4389 /**
4390 * Handle host notification packet.
4391 * Called from interrupt routine
4392 */
4393 static void ipw_rx_notification(struct ipw_priv *priv,
4394 struct ipw_rx_notification *notif)
4395 {
4396 DECLARE_MAC_BUF(mac);
4397 u16 size = le16_to_cpu(notif->size);
4398 notif->size = le16_to_cpu(notif->size);
4399
4400 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4401
4402 switch (notif->subtype) {
4403 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4404 struct notif_association *assoc = &notif->u.assoc;
4405
4406 switch (assoc->state) {
4407 case CMAS_ASSOCIATED:{
4408 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4409 IPW_DL_ASSOC,
4410 "associated: '%s' %s"
4411 " \n",
4412 escape_essid(priv->essid,
4413 priv->essid_len),
4414 print_mac(mac, priv->bssid));
4415
4416 switch (priv->ieee->iw_mode) {
4417 case IW_MODE_INFRA:
4418 memcpy(priv->ieee->bssid,
4419 priv->bssid, ETH_ALEN);
4420 break;
4421
4422 case IW_MODE_ADHOC:
4423 memcpy(priv->ieee->bssid,
4424 priv->bssid, ETH_ALEN);
4425
4426 /* clear out the station table */
4427 priv->num_stations = 0;
4428
4429 IPW_DEBUG_ASSOC
4430 ("queueing adhoc check\n");
4431 queue_delayed_work(priv->
4432 workqueue,
4433 &priv->
4434 adhoc_check,
4435 le16_to_cpu(priv->
4436 assoc_request.
4437 beacon_interval));
4438 break;
4439 }
4440
4441 priv->status &= ~STATUS_ASSOCIATING;
4442 priv->status |= STATUS_ASSOCIATED;
4443 queue_work(priv->workqueue,
4444 &priv->system_config);
4445
4446 #ifdef CONFIG_IPW2200_QOS
4447 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4448 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4449 if ((priv->status & STATUS_AUTH) &&
4450 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4451 == IEEE80211_STYPE_ASSOC_RESP)) {
4452 if ((sizeof
4453 (struct
4454 ieee80211_assoc_response)
4455 <= size)
4456 && (size <= 2314)) {
4457 struct
4458 ieee80211_rx_stats
4459 stats = {
4460 .len = size - 1,
4461 };
4462
4463 IPW_DEBUG_QOS
4464 ("QoS Associate "
4465 "size %d\n", size);
4466 ieee80211_rx_mgt(priv->
4467 ieee,
4468 (struct
4469 ieee80211_hdr_4addr
4470 *)
4471 &notif->u.raw, &stats);
4472 }
4473 }
4474 #endif
4475
4476 schedule_work(&priv->link_up);
4477
4478 break;
4479 }
4480
4481 case CMAS_AUTHENTICATED:{
4482 if (priv->
4483 status & (STATUS_ASSOCIATED |
4484 STATUS_AUTH)) {
4485 struct notif_authenticate *auth
4486 = &notif->u.auth;
4487 IPW_DEBUG(IPW_DL_NOTIF |
4488 IPW_DL_STATE |
4489 IPW_DL_ASSOC,
4490 "deauthenticated: '%s' "
4491 "%s"
4492 ": (0x%04X) - %s \n",
4493 escape_essid(priv->
4494 essid,
4495 priv->
4496 essid_len),
4497 print_mac(mac, priv->bssid),
4498 ntohs(auth->status),
4499 ipw_get_status_code
4500 (ntohs
4501 (auth->status)));
4502
4503 priv->status &=
4504 ~(STATUS_ASSOCIATING |
4505 STATUS_AUTH |
4506 STATUS_ASSOCIATED);
4507
4508 schedule_work(&priv->link_down);
4509 break;
4510 }
4511
4512 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4513 IPW_DL_ASSOC,
4514 "authenticated: '%s' %s"
4515 "\n",
4516 escape_essid(priv->essid,
4517 priv->essid_len),
4518 print_mac(mac, priv->bssid));
4519 break;
4520 }
4521
4522 case CMAS_INIT:{
4523 if (priv->status & STATUS_AUTH) {
4524 struct
4525 ieee80211_assoc_response
4526 *resp;
4527 resp =
4528 (struct
4529 ieee80211_assoc_response
4530 *)&notif->u.raw;
4531 IPW_DEBUG(IPW_DL_NOTIF |
4532 IPW_DL_STATE |
4533 IPW_DL_ASSOC,
4534 "association failed (0x%04X): %s\n",
4535 ntohs(resp->status),
4536 ipw_get_status_code
4537 (ntohs
4538 (resp->status)));
4539 }
4540
4541 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4542 IPW_DL_ASSOC,
4543 "disassociated: '%s' %s"
4544 " \n",
4545 escape_essid(priv->essid,
4546 priv->essid_len),
4547 print_mac(mac, priv->bssid));
4548
4549 priv->status &=
4550 ~(STATUS_DISASSOCIATING |
4551 STATUS_ASSOCIATING |
4552 STATUS_ASSOCIATED | STATUS_AUTH);
4553 if (priv->assoc_network
4554 && (priv->assoc_network->
4555 capability &
4556 WLAN_CAPABILITY_IBSS))
4557 ipw_remove_current_network
4558 (priv);
4559
4560 schedule_work(&priv->link_down);
4561
4562 break;
4563 }
4564
4565 case CMAS_RX_ASSOC_RESP:
4566 break;
4567
4568 default:
4569 IPW_ERROR("assoc: unknown (%d)\n",
4570 assoc->state);
4571 break;
4572 }
4573
4574 break;
4575 }
4576
4577 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4578 struct notif_authenticate *auth = &notif->u.auth;
4579 switch (auth->state) {
4580 case CMAS_AUTHENTICATED:
4581 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4582 "authenticated: '%s' %s \n",
4583 escape_essid(priv->essid,
4584 priv->essid_len),
4585 print_mac(mac, priv->bssid));
4586 priv->status |= STATUS_AUTH;
4587 break;
4588
4589 case CMAS_INIT:
4590 if (priv->status & STATUS_AUTH) {
4591 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4592 IPW_DL_ASSOC,
4593 "authentication failed (0x%04X): %s\n",
4594 ntohs(auth->status),
4595 ipw_get_status_code(ntohs
4596 (auth->
4597 status)));
4598 }
4599 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4600 IPW_DL_ASSOC,
4601 "deauthenticated: '%s' %s\n",
4602 escape_essid(priv->essid,
4603 priv->essid_len),
4604 print_mac(mac, priv->bssid));
4605
4606 priv->status &= ~(STATUS_ASSOCIATING |
4607 STATUS_AUTH |
4608 STATUS_ASSOCIATED);
4609
4610 schedule_work(&priv->link_down);
4611 break;
4612
4613 case CMAS_TX_AUTH_SEQ_1:
4614 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4615 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4616 break;
4617 case CMAS_RX_AUTH_SEQ_2:
4618 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4620 break;
4621 case CMAS_AUTH_SEQ_1_PASS:
4622 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4624 break;
4625 case CMAS_AUTH_SEQ_1_FAIL:
4626 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4628 break;
4629 case CMAS_TX_AUTH_SEQ_3:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4632 break;
4633 case CMAS_RX_AUTH_SEQ_4:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4636 break;
4637 case CMAS_AUTH_SEQ_2_PASS:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4640 break;
4641 case CMAS_AUTH_SEQ_2_FAIL:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4644 break;
4645 case CMAS_TX_ASSOC:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "TX_ASSOC\n");
4648 break;
4649 case CMAS_RX_ASSOC_RESP:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4652
4653 break;
4654 case CMAS_ASSOCIATED:
4655 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4656 IPW_DL_ASSOC, "ASSOCIATED\n");
4657 break;
4658 default:
4659 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4660 auth->state);
4661 break;
4662 }
4663 break;
4664 }
4665
4666 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4667 struct notif_channel_result *x =
4668 &notif->u.channel_result;
4669
4670 if (size == sizeof(*x)) {
4671 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4672 x->channel_num);
4673 } else {
4674 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4675 "(should be %zd)\n",
4676 size, sizeof(*x));
4677 }
4678 break;
4679 }
4680
4681 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4682 struct notif_scan_complete *x = &notif->u.scan_complete;
4683 if (size == sizeof(*x)) {
4684 IPW_DEBUG_SCAN
4685 ("Scan completed: type %d, %d channels, "
4686 "%d status\n", x->scan_type,
4687 x->num_channels, x->status);
4688 } else {
4689 IPW_ERROR("Scan completed of wrong size %d "
4690 "(should be %zd)\n",
4691 size, sizeof(*x));
4692 }
4693
4694 priv->status &=
4695 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4696
4697 wake_up_interruptible(&priv->wait_state);
4698 cancel_delayed_work(&priv->scan_check);
4699
4700 if (priv->status & STATUS_EXIT_PENDING)
4701 break;
4702
4703 priv->ieee->scans++;
4704
4705 #ifdef CONFIG_IPW2200_MONITOR
4706 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4707 priv->status |= STATUS_SCAN_FORCED;
4708 queue_delayed_work(priv->workqueue,
4709 &priv->request_scan, 0);
4710 break;
4711 }
4712 priv->status &= ~STATUS_SCAN_FORCED;
4713 #endif /* CONFIG_IPW2200_MONITOR */
4714
4715 if (!(priv->status & (STATUS_ASSOCIATED |
4716 STATUS_ASSOCIATING |
4717 STATUS_ROAMING |
4718 STATUS_DISASSOCIATING)))
4719 queue_work(priv->workqueue, &priv->associate);
4720 else if (priv->status & STATUS_ROAMING) {
4721 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4722 /* If a scan completed and we are in roam mode, then
4723 * the scan that completed was the one requested as a
4724 * result of entering roam... so, schedule the
4725 * roam work */
4726 queue_work(priv->workqueue,
4727 &priv->roam);
4728 else
4729 /* Don't schedule if we aborted the scan */
4730 priv->status &= ~STATUS_ROAMING;
4731 } else if (priv->status & STATUS_SCAN_PENDING)
4732 queue_delayed_work(priv->workqueue,
4733 &priv->request_scan, 0);
4734 else if (priv->config & CFG_BACKGROUND_SCAN
4735 && priv->status & STATUS_ASSOCIATED)
4736 queue_delayed_work(priv->workqueue,
4737 &priv->request_scan,
4738 round_jiffies_relative(HZ));
4739
4740 /* Send an empty event to user space.
4741 * We don't send the received data on the event because
4742 * it would require us to do complex transcoding, and
4743 * we want to minimise the work done in the irq handler
4744 * Use a request to extract the data.
4745 * Also, we generate this even for any scan, regardless
4746 * on how the scan was initiated. User space can just
4747 * sync on periodic scan to get fresh data...
4748 * Jean II */
4749 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4750 handle_scan_event(priv);
4751 break;
4752 }
4753
4754 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4755 struct notif_frag_length *x = &notif->u.frag_len;
4756
4757 if (size == sizeof(*x))
4758 IPW_ERROR("Frag length: %d\n",
4759 le16_to_cpu(x->frag_length));
4760 else
4761 IPW_ERROR("Frag length of wrong size %d "
4762 "(should be %zd)\n",
4763 size, sizeof(*x));
4764 break;
4765 }
4766
4767 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4768 struct notif_link_deterioration *x =
4769 &notif->u.link_deterioration;
4770
4771 if (size == sizeof(*x)) {
4772 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4773 "link deterioration: type %d, cnt %d\n",
4774 x->silence_notification_type,
4775 x->silence_count);
4776 memcpy(&priv->last_link_deterioration, x,
4777 sizeof(*x));
4778 } else {
4779 IPW_ERROR("Link Deterioration of wrong size %d "
4780 "(should be %zd)\n",
4781 size, sizeof(*x));
4782 }
4783 break;
4784 }
4785
4786 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4787 IPW_ERROR("Dino config\n");
4788 if (priv->hcmd
4789 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4790 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4791
4792 break;
4793 }
4794
4795 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4796 struct notif_beacon_state *x = &notif->u.beacon_state;
4797 if (size != sizeof(*x)) {
4798 IPW_ERROR
4799 ("Beacon state of wrong size %d (should "
4800 "be %zd)\n", size, sizeof(*x));
4801 break;
4802 }
4803
4804 if (le32_to_cpu(x->state) ==
4805 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4806 ipw_handle_missed_beacon(priv,
4807 le32_to_cpu(x->
4808 number));
4809
4810 break;
4811 }
4812
4813 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4814 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4815 if (size == sizeof(*x)) {
4816 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4817 "0x%02x station %d\n",
4818 x->key_state, x->security_type,
4819 x->station_index);
4820 break;
4821 }
4822
4823 IPW_ERROR
4824 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4825 size, sizeof(*x));
4826 break;
4827 }
4828
4829 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4830 struct notif_calibration *x = &notif->u.calibration;
4831
4832 if (size == sizeof(*x)) {
4833 memcpy(&priv->calib, x, sizeof(*x));
4834 IPW_DEBUG_INFO("TODO: Calibration\n");
4835 break;
4836 }
4837
4838 IPW_ERROR
4839 ("Calibration of wrong size %d (should be %zd)\n",
4840 size, sizeof(*x));
4841 break;
4842 }
4843
4844 case HOST_NOTIFICATION_NOISE_STATS:{
4845 if (size == sizeof(u32)) {
4846 priv->exp_avg_noise =
4847 exponential_average(priv->exp_avg_noise,
4848 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4849 DEPTH_NOISE);
4850 break;
4851 }
4852
4853 IPW_ERROR
4854 ("Noise stat is wrong size %d (should be %zd)\n",
4855 size, sizeof(u32));
4856 break;
4857 }
4858
4859 default:
4860 IPW_DEBUG_NOTIF("Unknown notification: "
4861 "subtype=%d,flags=0x%2x,size=%d\n",
4862 notif->subtype, notif->flags, size);
4863 }
4864 }
4865
4866 /**
4867 * Destroys all DMA structures and initialise them again
4868 *
4869 * @param priv
4870 * @return error code
4871 */
4872 static int ipw_queue_reset(struct ipw_priv *priv)
4873 {
4874 int rc = 0;
4875 /** @todo customize queue sizes */
4876 int nTx = 64, nTxCmd = 8;
4877 ipw_tx_queue_free(priv);
4878 /* Tx CMD queue */
4879 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4880 IPW_TX_CMD_QUEUE_READ_INDEX,
4881 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4882 IPW_TX_CMD_QUEUE_BD_BASE,
4883 IPW_TX_CMD_QUEUE_BD_SIZE);
4884 if (rc) {
4885 IPW_ERROR("Tx Cmd queue init failed\n");
4886 goto error;
4887 }
4888 /* Tx queue(s) */
4889 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4890 IPW_TX_QUEUE_0_READ_INDEX,
4891 IPW_TX_QUEUE_0_WRITE_INDEX,
4892 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4893 if (rc) {
4894 IPW_ERROR("Tx 0 queue init failed\n");
4895 goto error;
4896 }
4897 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4898 IPW_TX_QUEUE_1_READ_INDEX,
4899 IPW_TX_QUEUE_1_WRITE_INDEX,
4900 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4901 if (rc) {
4902 IPW_ERROR("Tx 1 queue init failed\n");
4903 goto error;
4904 }
4905 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4906 IPW_TX_QUEUE_2_READ_INDEX,
4907 IPW_TX_QUEUE_2_WRITE_INDEX,
4908 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4909 if (rc) {
4910 IPW_ERROR("Tx 2 queue init failed\n");
4911 goto error;
4912 }
4913 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4914 IPW_TX_QUEUE_3_READ_INDEX,
4915 IPW_TX_QUEUE_3_WRITE_INDEX,
4916 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4917 if (rc) {
4918 IPW_ERROR("Tx 3 queue init failed\n");
4919 goto error;
4920 }
4921 /* statistics */
4922 priv->rx_bufs_min = 0;
4923 priv->rx_pend_max = 0;
4924 return rc;
4925
4926 error:
4927 ipw_tx_queue_free(priv);
4928 return rc;
4929 }
4930
4931 /**
4932 * Reclaim Tx queue entries no more used by NIC.
4933 *
4934 * When FW advances 'R' index, all entries between old and
4935 * new 'R' index need to be reclaimed. As result, some free space
4936 * forms. If there is enough free space (> low mark), wake Tx queue.
4937 *
4938 * @note Need to protect against garbage in 'R' index
4939 * @param priv
4940 * @param txq
4941 * @param qindex
4942 * @return Number of used entries remains in the queue
4943 */
4944 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4945 struct clx2_tx_queue *txq, int qindex)
4946 {
4947 u32 hw_tail;
4948 int used;
4949 struct clx2_queue *q = &txq->q;
4950
4951 hw_tail = ipw_read32(priv, q->reg_r);
4952 if (hw_tail >= q->n_bd) {
4953 IPW_ERROR
4954 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4955 hw_tail, q->n_bd);
4956 goto done;
4957 }
4958 for (; q->last_used != hw_tail;
4959 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4960 ipw_queue_tx_free_tfd(priv, txq);
4961 priv->tx_packets++;
4962 }
4963 done:
4964 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4965 (qindex >= 0) &&
4966 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4967 netif_wake_queue(priv->net_dev);
4968 used = q->first_empty - q->last_used;
4969 if (used < 0)
4970 used += q->n_bd;
4971
4972 return used;
4973 }
4974
4975 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4976 int len, int sync)
4977 {
4978 struct clx2_tx_queue *txq = &priv->txq_cmd;
4979 struct clx2_queue *q = &txq->q;
4980 struct tfd_frame *tfd;
4981
4982 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4983 IPW_ERROR("No space for Tx\n");
4984 return -EBUSY;
4985 }
4986
4987 tfd = &txq->bd[q->first_empty];
4988 txq->txb[q->first_empty] = NULL;
4989
4990 memset(tfd, 0, sizeof(*tfd));
4991 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4992 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4993 priv->hcmd_seq++;
4994 tfd->u.cmd.index = hcmd;
4995 tfd->u.cmd.length = len;
4996 memcpy(tfd->u.cmd.payload, buf, len);
4997 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4998 ipw_write32(priv, q->reg_w, q->first_empty);
4999 _ipw_read32(priv, 0x90);
5000
5001 return 0;
5002 }
5003
5004 /*
5005 * Rx theory of operation
5006 *
5007 * The host allocates 32 DMA target addresses and passes the host address
5008 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5009 * 0 to 31
5010 *
5011 * Rx Queue Indexes
5012 * The host/firmware share two index registers for managing the Rx buffers.
5013 *
5014 * The READ index maps to the first position that the firmware may be writing
5015 * to -- the driver can read up to (but not including) this position and get
5016 * good data.
5017 * The READ index is managed by the firmware once the card is enabled.
5018 *
5019 * The WRITE index maps to the last position the driver has read from -- the
5020 * position preceding WRITE is the last slot the firmware can place a packet.
5021 *
5022 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5023 * WRITE = READ.
5024 *
5025 * During initialization the host sets up the READ queue position to the first
5026 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5027 *
5028 * When the firmware places a packet in a buffer it will advance the READ index
5029 * and fire the RX interrupt. The driver can then query the READ index and
5030 * process as many packets as possible, moving the WRITE index forward as it
5031 * resets the Rx queue buffers with new memory.
5032 *
5033 * The management in the driver is as follows:
5034 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5035 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5036 * to replensish the ipw->rxq->rx_free.
5037 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5038 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5039 * 'processed' and 'read' driver indexes as well)
5040 * + A received packet is processed and handed to the kernel network stack,
5041 * detached from the ipw->rxq. The driver 'processed' index is updated.
5042 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5043 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5044 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5045 * were enough free buffers and RX_STALLED is set it is cleared.
5046 *
5047 *
5048 * Driver sequence:
5049 *
5050 * ipw_rx_queue_alloc() Allocates rx_free
5051 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5052 * ipw_rx_queue_restock
5053 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5054 * queue, updates firmware pointers, and updates
5055 * the WRITE index. If insufficient rx_free buffers
5056 * are available, schedules ipw_rx_queue_replenish
5057 *
5058 * -- enable interrupts --
5059 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5060 * READ INDEX, detaching the SKB from the pool.
5061 * Moves the packet buffer from queue to rx_used.
5062 * Calls ipw_rx_queue_restock to refill any empty
5063 * slots.
5064 * ...
5065 *
5066 */
5067
5068 /*
5069 * If there are slots in the RX queue that need to be restocked,
5070 * and we have free pre-allocated buffers, fill the ranks as much
5071 * as we can pulling from rx_free.
5072 *
5073 * This moves the 'write' index forward to catch up with 'processed', and
5074 * also updates the memory address in the firmware to reference the new
5075 * target buffer.
5076 */
5077 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5078 {
5079 struct ipw_rx_queue *rxq = priv->rxq;
5080 struct list_head *element;
5081 struct ipw_rx_mem_buffer *rxb;
5082 unsigned long flags;
5083 int write;
5084
5085 spin_lock_irqsave(&rxq->lock, flags);
5086 write = rxq->write;
5087 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5088 element = rxq->rx_free.next;
5089 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5090 list_del(element);
5091
5092 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5093 rxb->dma_addr);
5094 rxq->queue[rxq->write] = rxb;
5095 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5096 rxq->free_count--;
5097 }
5098 spin_unlock_irqrestore(&rxq->lock, flags);
5099
5100 /* If the pre-allocated buffer pool is dropping low, schedule to
5101 * refill it */
5102 if (rxq->free_count <= RX_LOW_WATERMARK)
5103 queue_work(priv->workqueue, &priv->rx_replenish);
5104
5105 /* If we've added more space for the firmware to place data, tell it */
5106 if (write != rxq->write)
5107 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5108 }
5109
5110 /*
5111 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5112 * Also restock the Rx queue via ipw_rx_queue_restock.
5113 *
5114 * This is called as a scheduled work item (except for during intialization)
5115 */
5116 static void ipw_rx_queue_replenish(void *data)
5117 {
5118 struct ipw_priv *priv = data;
5119 struct ipw_rx_queue *rxq = priv->rxq;
5120 struct list_head *element;
5121 struct ipw_rx_mem_buffer *rxb;
5122 unsigned long flags;
5123
5124 spin_lock_irqsave(&rxq->lock, flags);
5125 while (!list_empty(&rxq->rx_used)) {
5126 element = rxq->rx_used.next;
5127 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5128 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5129 if (!rxb->skb) {
5130 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5131 priv->net_dev->name);
5132 /* We don't reschedule replenish work here -- we will
5133 * call the restock method and if it still needs
5134 * more buffers it will schedule replenish */
5135 break;
5136 }
5137 list_del(element);
5138
5139 rxb->dma_addr =
5140 pci_map_single(priv->pci_dev, rxb->skb->data,
5141 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5142
5143 list_add_tail(&rxb->list, &rxq->rx_free);
5144 rxq->free_count++;
5145 }
5146 spin_unlock_irqrestore(&rxq->lock, flags);
5147
5148 ipw_rx_queue_restock(priv);
5149 }
5150
5151 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5152 {
5153 struct ipw_priv *priv =
5154 container_of(work, struct ipw_priv, rx_replenish);
5155 mutex_lock(&priv->mutex);
5156 ipw_rx_queue_replenish(priv);
5157 mutex_unlock(&priv->mutex);
5158 }
5159
5160 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5161 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5162 * This free routine walks the list of POOL entries and if SKB is set to
5163 * non NULL it is unmapped and freed
5164 */
5165 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5166 {
5167 int i;
5168
5169 if (!rxq)
5170 return;
5171
5172 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5173 if (rxq->pool[i].skb != NULL) {
5174 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5175 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5176 dev_kfree_skb(rxq->pool[i].skb);
5177 }
5178 }
5179
5180 kfree(rxq);
5181 }
5182
5183 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5184 {
5185 struct ipw_rx_queue *rxq;
5186 int i;
5187
5188 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5189 if (unlikely(!rxq)) {
5190 IPW_ERROR("memory allocation failed\n");
5191 return NULL;
5192 }
5193 spin_lock_init(&rxq->lock);
5194 INIT_LIST_HEAD(&rxq->rx_free);
5195 INIT_LIST_HEAD(&rxq->rx_used);
5196
5197 /* Fill the rx_used queue with _all_ of the Rx buffers */
5198 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5199 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5200
5201 /* Set us so that we have processed and used all buffers, but have
5202 * not restocked the Rx queue with fresh buffers */
5203 rxq->read = rxq->write = 0;
5204 rxq->free_count = 0;
5205
5206 return rxq;
5207 }
5208
5209 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5210 {
5211 rate &= ~IEEE80211_BASIC_RATE_MASK;
5212 if (ieee_mode == IEEE_A) {
5213 switch (rate) {
5214 case IEEE80211_OFDM_RATE_6MB:
5215 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5216 1 : 0;
5217 case IEEE80211_OFDM_RATE_9MB:
5218 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5219 1 : 0;
5220 case IEEE80211_OFDM_RATE_12MB:
5221 return priv->
5222 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5223 case IEEE80211_OFDM_RATE_18MB:
5224 return priv->
5225 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5226 case IEEE80211_OFDM_RATE_24MB:
5227 return priv->
5228 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5229 case IEEE80211_OFDM_RATE_36MB:
5230 return priv->
5231 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5232 case IEEE80211_OFDM_RATE_48MB:
5233 return priv->
5234 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5235 case IEEE80211_OFDM_RATE_54MB:
5236 return priv->
5237 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5238 default:
5239 return 0;
5240 }
5241 }
5242
5243 /* B and G mixed */
5244 switch (rate) {
5245 case IEEE80211_CCK_RATE_1MB:
5246 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5247 case IEEE80211_CCK_RATE_2MB:
5248 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5249 case IEEE80211_CCK_RATE_5MB:
5250 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5251 case IEEE80211_CCK_RATE_11MB:
5252 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5253 }
5254
5255 /* If we are limited to B modulations, bail at this point */
5256 if (ieee_mode == IEEE_B)
5257 return 0;
5258
5259 /* G */
5260 switch (rate) {
5261 case IEEE80211_OFDM_RATE_6MB:
5262 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5263 case IEEE80211_OFDM_RATE_9MB:
5264 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5265 case IEEE80211_OFDM_RATE_12MB:
5266 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5267 case IEEE80211_OFDM_RATE_18MB:
5268 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5269 case IEEE80211_OFDM_RATE_24MB:
5270 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5271 case IEEE80211_OFDM_RATE_36MB:
5272 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5273 case IEEE80211_OFDM_RATE_48MB:
5274 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5275 case IEEE80211_OFDM_RATE_54MB:
5276 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5277 }
5278
5279 return 0;
5280 }
5281
5282 static int ipw_compatible_rates(struct ipw_priv *priv,
5283 const struct ieee80211_network *network,
5284 struct ipw_supported_rates *rates)
5285 {
5286 int num_rates, i;
5287
5288 memset(rates, 0, sizeof(*rates));
5289 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5290 rates->num_rates = 0;
5291 for (i = 0; i < num_rates; i++) {
5292 if (!ipw_is_rate_in_mask(priv, network->mode,
5293 network->rates[i])) {
5294
5295 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5296 IPW_DEBUG_SCAN("Adding masked mandatory "
5297 "rate %02X\n",
5298 network->rates[i]);
5299 rates->supported_rates[rates->num_rates++] =
5300 network->rates[i];
5301 continue;
5302 }
5303
5304 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5305 network->rates[i], priv->rates_mask);
5306 continue;
5307 }
5308
5309 rates->supported_rates[rates->num_rates++] = network->rates[i];
5310 }
5311
5312 num_rates = min(network->rates_ex_len,
5313 (u8) (IPW_MAX_RATES - num_rates));
5314 for (i = 0; i < num_rates; i++) {
5315 if (!ipw_is_rate_in_mask(priv, network->mode,
5316 network->rates_ex[i])) {
5317 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5318 IPW_DEBUG_SCAN("Adding masked mandatory "
5319 "rate %02X\n",
5320 network->rates_ex[i]);
5321 rates->supported_rates[rates->num_rates++] =
5322 network->rates[i];
5323 continue;
5324 }
5325
5326 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5327 network->rates_ex[i], priv->rates_mask);
5328 continue;
5329 }
5330
5331 rates->supported_rates[rates->num_rates++] =
5332 network->rates_ex[i];
5333 }
5334
5335 return 1;
5336 }
5337
5338 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5339 const struct ipw_supported_rates *src)
5340 {
5341 u8 i;
5342 for (i = 0; i < src->num_rates; i++)
5343 dest->supported_rates[i] = src->supported_rates[i];
5344 dest->num_rates = src->num_rates;
5345 }
5346
5347 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5348 * mask should ever be used -- right now all callers to add the scan rates are
5349 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5350 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5351 u8 modulation, u32 rate_mask)
5352 {
5353 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5354 IEEE80211_BASIC_RATE_MASK : 0;
5355
5356 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5357 rates->supported_rates[rates->num_rates++] =
5358 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5359
5360 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5361 rates->supported_rates[rates->num_rates++] =
5362 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5363
5364 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5365 rates->supported_rates[rates->num_rates++] = basic_mask |
5366 IEEE80211_CCK_RATE_5MB;
5367
5368 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5369 rates->supported_rates[rates->num_rates++] = basic_mask |
5370 IEEE80211_CCK_RATE_11MB;
5371 }
5372
5373 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5374 u8 modulation, u32 rate_mask)
5375 {
5376 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5377 IEEE80211_BASIC_RATE_MASK : 0;
5378
5379 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5380 rates->supported_rates[rates->num_rates++] = basic_mask |
5381 IEEE80211_OFDM_RATE_6MB;
5382
5383 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5384 rates->supported_rates[rates->num_rates++] =
5385 IEEE80211_OFDM_RATE_9MB;
5386
5387 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5388 rates->supported_rates[rates->num_rates++] = basic_mask |
5389 IEEE80211_OFDM_RATE_12MB;
5390
5391 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5392 rates->supported_rates[rates->num_rates++] =
5393 IEEE80211_OFDM_RATE_18MB;
5394
5395 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5396 rates->supported_rates[rates->num_rates++] = basic_mask |
5397 IEEE80211_OFDM_RATE_24MB;
5398
5399 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5400 rates->supported_rates[rates->num_rates++] =
5401 IEEE80211_OFDM_RATE_36MB;
5402
5403 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5404 rates->supported_rates[rates->num_rates++] =
5405 IEEE80211_OFDM_RATE_48MB;
5406
5407 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5408 rates->supported_rates[rates->num_rates++] =
5409 IEEE80211_OFDM_RATE_54MB;
5410 }
5411
5412 struct ipw_network_match {
5413 struct ieee80211_network *network;
5414 struct ipw_supported_rates rates;
5415 };
5416
5417 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5418 struct ipw_network_match *match,
5419 struct ieee80211_network *network,
5420 int roaming)
5421 {
5422 struct ipw_supported_rates rates;
5423 DECLARE_MAC_BUF(mac);
5424 DECLARE_MAC_BUF(mac2);
5425
5426 /* Verify that this network's capability is compatible with the
5427 * current mode (AdHoc or Infrastructure) */
5428 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5429 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5430 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5431 "capability mismatch.\n",
5432 escape_essid(network->ssid, network->ssid_len),
5433 print_mac(mac, network->bssid));
5434 return 0;
5435 }
5436
5437 /* If we do not have an ESSID for this AP, we can not associate with
5438 * it */
5439 if (network->flags & NETWORK_EMPTY_ESSID) {
5440 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5441 "because of hidden ESSID.\n",
5442 escape_essid(network->ssid, network->ssid_len),
5443 print_mac(mac, network->bssid));
5444 return 0;
5445 }
5446
5447 if (unlikely(roaming)) {
5448 /* If we are roaming, then ensure check if this is a valid
5449 * network to try and roam to */
5450 if ((network->ssid_len != match->network->ssid_len) ||
5451 memcmp(network->ssid, match->network->ssid,
5452 network->ssid_len)) {
5453 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5454 "because of non-network ESSID.\n",
5455 escape_essid(network->ssid,
5456 network->ssid_len),
5457 print_mac(mac, network->bssid));
5458 return 0;
5459 }
5460 } else {
5461 /* If an ESSID has been configured then compare the broadcast
5462 * ESSID to ours */
5463 if ((priv->config & CFG_STATIC_ESSID) &&
5464 ((network->ssid_len != priv->essid_len) ||
5465 memcmp(network->ssid, priv->essid,
5466 min(network->ssid_len, priv->essid_len)))) {
5467 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5468
5469 strncpy(escaped,
5470 escape_essid(network->ssid, network->ssid_len),
5471 sizeof(escaped));
5472 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5473 "because of ESSID mismatch: '%s'.\n",
5474 escaped, print_mac(mac, network->bssid),
5475 escape_essid(priv->essid,
5476 priv->essid_len));
5477 return 0;
5478 }
5479 }
5480
5481 /* If the old network rate is better than this one, don't bother
5482 * testing everything else. */
5483
5484 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5485 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5486 "current network.\n",
5487 escape_essid(match->network->ssid,
5488 match->network->ssid_len));
5489 return 0;
5490 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5491 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5492 "current network.\n",
5493 escape_essid(match->network->ssid,
5494 match->network->ssid_len));
5495 return 0;
5496 }
5497
5498 /* Now go through and see if the requested network is valid... */
5499 if (priv->ieee->scan_age != 0 &&
5500 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5501 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5502 "because of age: %ums.\n",
5503 escape_essid(network->ssid, network->ssid_len),
5504 print_mac(mac, network->bssid),
5505 jiffies_to_msecs(jiffies -
5506 network->last_scanned));
5507 return 0;
5508 }
5509
5510 if ((priv->config & CFG_STATIC_CHANNEL) &&
5511 (network->channel != priv->channel)) {
5512 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5513 "because of channel mismatch: %d != %d.\n",
5514 escape_essid(network->ssid, network->ssid_len),
5515 print_mac(mac, network->bssid),
5516 network->channel, priv->channel);
5517 return 0;
5518 }
5519
5520 /* Verify privacy compatability */
5521 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5522 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5523 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5524 "because of privacy mismatch: %s != %s.\n",
5525 escape_essid(network->ssid, network->ssid_len),
5526 print_mac(mac, network->bssid),
5527 priv->
5528 capability & CAP_PRIVACY_ON ? "on" : "off",
5529 network->
5530 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5531 "off");
5532 return 0;
5533 }
5534
5535 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5536 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5537 "because of the same BSSID match: %s"
5538 ".\n", escape_essid(network->ssid,
5539 network->ssid_len),
5540 print_mac(mac, network->bssid),
5541 print_mac(mac2, priv->bssid));
5542 return 0;
5543 }
5544
5545 /* Filter out any incompatible freq / mode combinations */
5546 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5547 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5548 "because of invalid frequency/mode "
5549 "combination.\n",
5550 escape_essid(network->ssid, network->ssid_len),
5551 print_mac(mac, network->bssid));
5552 return 0;
5553 }
5554
5555 /* Ensure that the rates supported by the driver are compatible with
5556 * this AP, including verification of basic rates (mandatory) */
5557 if (!ipw_compatible_rates(priv, network, &rates)) {
5558 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5559 "because configured rate mask excludes "
5560 "AP mandatory rate.\n",
5561 escape_essid(network->ssid, network->ssid_len),
5562 print_mac(mac, network->bssid));
5563 return 0;
5564 }
5565
5566 if (rates.num_rates == 0) {
5567 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5568 "because of no compatible rates.\n",
5569 escape_essid(network->ssid, network->ssid_len),
5570 print_mac(mac, network->bssid));
5571 return 0;
5572 }
5573
5574 /* TODO: Perform any further minimal comparititive tests. We do not
5575 * want to put too much policy logic here; intelligent scan selection
5576 * should occur within a generic IEEE 802.11 user space tool. */
5577
5578 /* Set up 'new' AP to this network */
5579 ipw_copy_rates(&match->rates, &rates);
5580 match->network = network;
5581 IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5582 escape_essid(network->ssid, network->ssid_len),
5583 print_mac(mac, network->bssid));
5584
5585 return 1;
5586 }
5587
5588 static void ipw_merge_adhoc_network(struct work_struct *work)
5589 {
5590 struct ipw_priv *priv =
5591 container_of(work, struct ipw_priv, merge_networks);
5592 struct ieee80211_network *network = NULL;
5593 struct ipw_network_match match = {
5594 .network = priv->assoc_network
5595 };
5596
5597 if ((priv->status & STATUS_ASSOCIATED) &&
5598 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5599 /* First pass through ROAM process -- look for a better
5600 * network */
5601 unsigned long flags;
5602
5603 spin_lock_irqsave(&priv->ieee->lock, flags);
5604 list_for_each_entry(network, &priv->ieee->network_list, list) {
5605 if (network != priv->assoc_network)
5606 ipw_find_adhoc_network(priv, &match, network,
5607 1);
5608 }
5609 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5610
5611 if (match.network == priv->assoc_network) {
5612 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5613 "merge to.\n");
5614 return;
5615 }
5616
5617 mutex_lock(&priv->mutex);
5618 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5619 IPW_DEBUG_MERGE("remove network %s\n",
5620 escape_essid(priv->essid,
5621 priv->essid_len));
5622 ipw_remove_current_network(priv);
5623 }
5624
5625 ipw_disassociate(priv);
5626 priv->assoc_network = match.network;
5627 mutex_unlock(&priv->mutex);
5628 return;
5629 }
5630 }
5631
5632 static int ipw_best_network(struct ipw_priv *priv,
5633 struct ipw_network_match *match,
5634 struct ieee80211_network *network, int roaming)
5635 {
5636 struct ipw_supported_rates rates;
5637 DECLARE_MAC_BUF(mac);
5638
5639 /* Verify that this network's capability is compatible with the
5640 * current mode (AdHoc or Infrastructure) */
5641 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5642 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5643 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5644 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5645 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5646 "capability mismatch.\n",
5647 escape_essid(network->ssid, network->ssid_len),
5648 print_mac(mac, network->bssid));
5649 return 0;
5650 }
5651
5652 /* If we do not have an ESSID for this AP, we can not associate with
5653 * it */
5654 if (network->flags & NETWORK_EMPTY_ESSID) {
5655 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5656 "because of hidden ESSID.\n",
5657 escape_essid(network->ssid, network->ssid_len),
5658 print_mac(mac, network->bssid));
5659 return 0;
5660 }
5661
5662 if (unlikely(roaming)) {
5663 /* If we are roaming, then ensure check if this is a valid
5664 * network to try and roam to */
5665 if ((network->ssid_len != match->network->ssid_len) ||
5666 memcmp(network->ssid, match->network->ssid,
5667 network->ssid_len)) {
5668 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5669 "because of non-network ESSID.\n",
5670 escape_essid(network->ssid,
5671 network->ssid_len),
5672 print_mac(mac, network->bssid));
5673 return 0;
5674 }
5675 } else {
5676 /* If an ESSID has been configured then compare the broadcast
5677 * ESSID to ours */
5678 if ((priv->config & CFG_STATIC_ESSID) &&
5679 ((network->ssid_len != priv->essid_len) ||
5680 memcmp(network->ssid, priv->essid,
5681 min(network->ssid_len, priv->essid_len)))) {
5682 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5683 strncpy(escaped,
5684 escape_essid(network->ssid, network->ssid_len),
5685 sizeof(escaped));
5686 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5687 "because of ESSID mismatch: '%s'.\n",
5688 escaped, print_mac(mac, network->bssid),
5689 escape_essid(priv->essid,
5690 priv->essid_len));
5691 return 0;
5692 }
5693 }
5694
5695 /* If the old network rate is better than this one, don't bother
5696 * testing everything else. */
5697 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5698 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5699 strncpy(escaped,
5700 escape_essid(network->ssid, network->ssid_len),
5701 sizeof(escaped));
5702 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5703 "'%s (%s)' has a stronger signal.\n",
5704 escaped, print_mac(mac, network->bssid),
5705 escape_essid(match->network->ssid,
5706 match->network->ssid_len),
5707 print_mac(mac, match->network->bssid));
5708 return 0;
5709 }
5710
5711 /* If this network has already had an association attempt within the
5712 * last 3 seconds, do not try and associate again... */
5713 if (network->last_associate &&
5714 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5715 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5716 "because of storming (%ums since last "
5717 "assoc attempt).\n",
5718 escape_essid(network->ssid, network->ssid_len),
5719 print_mac(mac, network->bssid),
5720 jiffies_to_msecs(jiffies -
5721 network->last_associate));
5722 return 0;
5723 }
5724
5725 /* Now go through and see if the requested network is valid... */
5726 if (priv->ieee->scan_age != 0 &&
5727 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5728 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5729 "because of age: %ums.\n",
5730 escape_essid(network->ssid, network->ssid_len),
5731 print_mac(mac, network->bssid),
5732 jiffies_to_msecs(jiffies -
5733 network->last_scanned));
5734 return 0;
5735 }
5736
5737 if ((priv->config & CFG_STATIC_CHANNEL) &&
5738 (network->channel != priv->channel)) {
5739 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5740 "because of channel mismatch: %d != %d.\n",
5741 escape_essid(network->ssid, network->ssid_len),
5742 print_mac(mac, network->bssid),
5743 network->channel, priv->channel);
5744 return 0;
5745 }
5746
5747 /* Verify privacy compatability */
5748 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5749 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5750 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5751 "because of privacy mismatch: %s != %s.\n",
5752 escape_essid(network->ssid, network->ssid_len),
5753 print_mac(mac, network->bssid),
5754 priv->capability & CAP_PRIVACY_ON ? "on" :
5755 "off",
5756 network->capability &
5757 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5758 return 0;
5759 }
5760
5761 if ((priv->config & CFG_STATIC_BSSID) &&
5762 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5763 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5764 "because of BSSID mismatch: %s.\n",
5765 escape_essid(network->ssid, network->ssid_len),
5766 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5767 return 0;
5768 }
5769
5770 /* Filter out any incompatible freq / mode combinations */
5771 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5772 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5773 "because of invalid frequency/mode "
5774 "combination.\n",
5775 escape_essid(network->ssid, network->ssid_len),
5776 print_mac(mac, network->bssid));
5777 return 0;
5778 }
5779
5780 /* Filter out invalid channel in current GEO */
5781 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5782 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5783 "because of invalid channel in current GEO\n",
5784 escape_essid(network->ssid, network->ssid_len),
5785 print_mac(mac, network->bssid));
5786 return 0;
5787 }
5788
5789 /* Ensure that the rates supported by the driver are compatible with
5790 * this AP, including verification of basic rates (mandatory) */
5791 if (!ipw_compatible_rates(priv, network, &rates)) {
5792 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5793 "because configured rate mask excludes "
5794 "AP mandatory rate.\n",
5795 escape_essid(network->ssid, network->ssid_len),
5796 print_mac(mac, network->bssid));
5797 return 0;
5798 }
5799
5800 if (rates.num_rates == 0) {
5801 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5802 "because of no compatible rates.\n",
5803 escape_essid(network->ssid, network->ssid_len),
5804 print_mac(mac, network->bssid));
5805 return 0;
5806 }
5807
5808 /* TODO: Perform any further minimal comparititive tests. We do not
5809 * want to put too much policy logic here; intelligent scan selection
5810 * should occur within a generic IEEE 802.11 user space tool. */
5811
5812 /* Set up 'new' AP to this network */
5813 ipw_copy_rates(&match->rates, &rates);
5814 match->network = network;
5815
5816 IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5817 escape_essid(network->ssid, network->ssid_len),
5818 print_mac(mac, network->bssid));
5819
5820 return 1;
5821 }
5822
5823 static void ipw_adhoc_create(struct ipw_priv *priv,
5824 struct ieee80211_network *network)
5825 {
5826 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5827 int i;
5828
5829 /*
5830 * For the purposes of scanning, we can set our wireless mode
5831 * to trigger scans across combinations of bands, but when it
5832 * comes to creating a new ad-hoc network, we have tell the FW
5833 * exactly which band to use.
5834 *
5835 * We also have the possibility of an invalid channel for the
5836 * chossen band. Attempting to create a new ad-hoc network
5837 * with an invalid channel for wireless mode will trigger a
5838 * FW fatal error.
5839 *
5840 */
5841 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5842 case IEEE80211_52GHZ_BAND:
5843 network->mode = IEEE_A;
5844 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5845 BUG_ON(i == -1);
5846 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5847 IPW_WARNING("Overriding invalid channel\n");
5848 priv->channel = geo->a[0].channel;
5849 }
5850 break;
5851
5852 case IEEE80211_24GHZ_BAND:
5853 if (priv->ieee->mode & IEEE_G)
5854 network->mode = IEEE_G;
5855 else
5856 network->mode = IEEE_B;
5857 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5858 BUG_ON(i == -1);
5859 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5860 IPW_WARNING("Overriding invalid channel\n");
5861 priv->channel = geo->bg[0].channel;
5862 }
5863 break;
5864
5865 default:
5866 IPW_WARNING("Overriding invalid channel\n");
5867 if (priv->ieee->mode & IEEE_A) {
5868 network->mode = IEEE_A;
5869 priv->channel = geo->a[0].channel;
5870 } else if (priv->ieee->mode & IEEE_G) {
5871 network->mode = IEEE_G;
5872 priv->channel = geo->bg[0].channel;
5873 } else {
5874 network->mode = IEEE_B;
5875 priv->channel = geo->bg[0].channel;
5876 }
5877 break;
5878 }
5879
5880 network->channel = priv->channel;
5881 priv->config |= CFG_ADHOC_PERSIST;
5882 ipw_create_bssid(priv, network->bssid);
5883 network->ssid_len = priv->essid_len;
5884 memcpy(network->ssid, priv->essid, priv->essid_len);
5885 memset(&network->stats, 0, sizeof(network->stats));
5886 network->capability = WLAN_CAPABILITY_IBSS;
5887 if (!(priv->config & CFG_PREAMBLE_LONG))
5888 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5889 if (priv->capability & CAP_PRIVACY_ON)
5890 network->capability |= WLAN_CAPABILITY_PRIVACY;
5891 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5892 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5893 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5894 memcpy(network->rates_ex,
5895 &priv->rates.supported_rates[network->rates_len],
5896 network->rates_ex_len);
5897 network->last_scanned = 0;
5898 network->flags = 0;
5899 network->last_associate = 0;
5900 network->time_stamp[0] = 0;
5901 network->time_stamp[1] = 0;
5902 network->beacon_interval = 100; /* Default */
5903 network->listen_interval = 10; /* Default */
5904 network->atim_window = 0; /* Default */
5905 network->wpa_ie_len = 0;
5906 network->rsn_ie_len = 0;
5907 }
5908
5909 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5910 {
5911 struct ipw_tgi_tx_key key;
5912
5913 if (!(priv->ieee->sec.flags & (1 << index)))
5914 return;
5915
5916 key.key_id = index;
5917 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5918 key.security_type = type;
5919 key.station_index = 0; /* always 0 for BSS */
5920 key.flags = 0;
5921 /* 0 for new key; previous value of counter (after fatal error) */
5922 key.tx_counter[0] = cpu_to_le32(0);
5923 key.tx_counter[1] = cpu_to_le32(0);
5924
5925 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5926 }
5927
5928 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5929 {
5930 struct ipw_wep_key key;
5931 int i;
5932
5933 key.cmd_id = DINO_CMD_WEP_KEY;
5934 key.seq_num = 0;
5935
5936 /* Note: AES keys cannot be set for multiple times.
5937 * Only set it at the first time. */
5938 for (i = 0; i < 4; i++) {
5939 key.key_index = i | type;
5940 if (!(priv->ieee->sec.flags & (1 << i))) {
5941 key.key_size = 0;
5942 continue;
5943 }
5944
5945 key.key_size = priv->ieee->sec.key_sizes[i];
5946 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5947
5948 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5949 }
5950 }
5951
5952 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5953 {
5954 if (priv->ieee->host_encrypt)
5955 return;
5956
5957 switch (level) {
5958 case SEC_LEVEL_3:
5959 priv->sys_config.disable_unicast_decryption = 0;
5960 priv->ieee->host_decrypt = 0;
5961 break;
5962 case SEC_LEVEL_2:
5963 priv->sys_config.disable_unicast_decryption = 1;
5964 priv->ieee->host_decrypt = 1;
5965 break;
5966 case SEC_LEVEL_1:
5967 priv->sys_config.disable_unicast_decryption = 0;
5968 priv->ieee->host_decrypt = 0;
5969 break;
5970 case SEC_LEVEL_0:
5971 priv->sys_config.disable_unicast_decryption = 1;
5972 break;
5973 default:
5974 break;
5975 }
5976 }
5977
5978 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5979 {
5980 if (priv->ieee->host_encrypt)
5981 return;
5982
5983 switch (level) {
5984 case SEC_LEVEL_3:
5985 priv->sys_config.disable_multicast_decryption = 0;
5986 break;
5987 case SEC_LEVEL_2:
5988 priv->sys_config.disable_multicast_decryption = 1;
5989 break;
5990 case SEC_LEVEL_1:
5991 priv->sys_config.disable_multicast_decryption = 0;
5992 break;
5993 case SEC_LEVEL_0:
5994 priv->sys_config.disable_multicast_decryption = 1;
5995 break;
5996 default:
5997 break;
5998 }
5999 }
6000
6001 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6002 {
6003 switch (priv->ieee->sec.level) {
6004 case SEC_LEVEL_3:
6005 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6006 ipw_send_tgi_tx_key(priv,
6007 DCT_FLAG_EXT_SECURITY_CCM,
6008 priv->ieee->sec.active_key);
6009
6010 if (!priv->ieee->host_mc_decrypt)
6011 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6012 break;
6013 case SEC_LEVEL_2:
6014 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6015 ipw_send_tgi_tx_key(priv,
6016 DCT_FLAG_EXT_SECURITY_TKIP,
6017 priv->ieee->sec.active_key);
6018 break;
6019 case SEC_LEVEL_1:
6020 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6021 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6022 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6023 break;
6024 case SEC_LEVEL_0:
6025 default:
6026 break;
6027 }
6028 }
6029
6030 static void ipw_adhoc_check(void *data)
6031 {
6032 struct ipw_priv *priv = data;
6033
6034 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6035 !(priv->config & CFG_ADHOC_PERSIST)) {
6036 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6037 IPW_DL_STATE | IPW_DL_ASSOC,
6038 "Missed beacon: %d - disassociate\n",
6039 priv->missed_adhoc_beacons);
6040 ipw_remove_current_network(priv);
6041 ipw_disassociate(priv);
6042 return;
6043 }
6044
6045 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6046 le16_to_cpu(priv->assoc_request.beacon_interval));
6047 }
6048
6049 static void ipw_bg_adhoc_check(struct work_struct *work)
6050 {
6051 struct ipw_priv *priv =
6052 container_of(work, struct ipw_priv, adhoc_check.work);
6053 mutex_lock(&priv->mutex);
6054 ipw_adhoc_check(priv);
6055 mutex_unlock(&priv->mutex);
6056 }
6057
6058 static void ipw_debug_config(struct ipw_priv *priv)
6059 {
6060 DECLARE_MAC_BUF(mac);
6061 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6062 "[CFG 0x%08X]\n", priv->config);
6063 if (priv->config & CFG_STATIC_CHANNEL)
6064 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6065 else
6066 IPW_DEBUG_INFO("Channel unlocked.\n");
6067 if (priv->config & CFG_STATIC_ESSID)
6068 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6069 escape_essid(priv->essid, priv->essid_len));
6070 else
6071 IPW_DEBUG_INFO("ESSID unlocked.\n");
6072 if (priv->config & CFG_STATIC_BSSID)
6073 IPW_DEBUG_INFO("BSSID locked to %s\n",
6074 print_mac(mac, priv->bssid));
6075 else
6076 IPW_DEBUG_INFO("BSSID unlocked.\n");
6077 if (priv->capability & CAP_PRIVACY_ON)
6078 IPW_DEBUG_INFO("PRIVACY on\n");
6079 else
6080 IPW_DEBUG_INFO("PRIVACY off\n");
6081 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6082 }
6083
6084 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6085 {
6086 /* TODO: Verify that this works... */
6087 struct ipw_fixed_rate fr = {
6088 .tx_rates = priv->rates_mask
6089 };
6090 u32 reg;
6091 u16 mask = 0;
6092
6093 /* Identify 'current FW band' and match it with the fixed
6094 * Tx rates */
6095
6096 switch (priv->ieee->freq_band) {
6097 case IEEE80211_52GHZ_BAND: /* A only */
6098 /* IEEE_A */
6099 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6100 /* Invalid fixed rate mask */
6101 IPW_DEBUG_WX
6102 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6103 fr.tx_rates = 0;
6104 break;
6105 }
6106
6107 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6108 break;
6109
6110 default: /* 2.4Ghz or Mixed */
6111 /* IEEE_B */
6112 if (mode == IEEE_B) {
6113 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6114 /* Invalid fixed rate mask */
6115 IPW_DEBUG_WX
6116 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6117 fr.tx_rates = 0;
6118 }
6119 break;
6120 }
6121
6122 /* IEEE_G */
6123 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6124 IEEE80211_OFDM_RATES_MASK)) {
6125 /* Invalid fixed rate mask */
6126 IPW_DEBUG_WX
6127 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6128 fr.tx_rates = 0;
6129 break;
6130 }
6131
6132 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6133 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6134 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6135 }
6136
6137 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6138 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6139 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6140 }
6141
6142 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6143 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6144 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6145 }
6146
6147 fr.tx_rates |= mask;
6148 break;
6149 }
6150
6151 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6152 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6153 }
6154
6155 static void ipw_abort_scan(struct ipw_priv *priv)
6156 {
6157 int err;
6158
6159 if (priv->status & STATUS_SCAN_ABORTING) {
6160 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6161 return;
6162 }
6163 priv->status |= STATUS_SCAN_ABORTING;
6164
6165 err = ipw_send_scan_abort(priv);
6166 if (err)
6167 IPW_DEBUG_HC("Request to abort scan failed.\n");
6168 }
6169
6170 static void ipw_add_scan_channels(struct ipw_priv *priv,
6171 struct ipw_scan_request_ext *scan,
6172 int scan_type)
6173 {
6174 int channel_index = 0;
6175 const struct ieee80211_geo *geo;
6176 int i;
6177
6178 geo = ieee80211_get_geo(priv->ieee);
6179
6180 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6181 int start = channel_index;
6182 for (i = 0; i < geo->a_channels; i++) {
6183 if ((priv->status & STATUS_ASSOCIATED) &&
6184 geo->a[i].channel == priv->channel)
6185 continue;
6186 channel_index++;
6187 scan->channels_list[channel_index] = geo->a[i].channel;
6188 ipw_set_scan_type(scan, channel_index,
6189 geo->a[i].
6190 flags & IEEE80211_CH_PASSIVE_ONLY ?
6191 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6192 scan_type);
6193 }
6194
6195 if (start != channel_index) {
6196 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6197 (channel_index - start);
6198 channel_index++;
6199 }
6200 }
6201
6202 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6203 int start = channel_index;
6204 if (priv->config & CFG_SPEED_SCAN) {
6205 int index;
6206 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6207 /* nop out the list */
6208 [0] = 0
6209 };
6210
6211 u8 channel;
6212 while (channel_index < IPW_SCAN_CHANNELS) {
6213 channel =
6214 priv->speed_scan[priv->speed_scan_pos];
6215 if (channel == 0) {
6216 priv->speed_scan_pos = 0;
6217 channel = priv->speed_scan[0];
6218 }
6219 if ((priv->status & STATUS_ASSOCIATED) &&
6220 channel == priv->channel) {
6221 priv->speed_scan_pos++;
6222 continue;
6223 }
6224
6225 /* If this channel has already been
6226 * added in scan, break from loop
6227 * and this will be the first channel
6228 * in the next scan.
6229 */
6230 if (channels[channel - 1] != 0)
6231 break;
6232
6233 channels[channel - 1] = 1;
6234 priv->speed_scan_pos++;
6235 channel_index++;
6236 scan->channels_list[channel_index] = channel;
6237 index =
6238 ieee80211_channel_to_index(priv->ieee, channel);
6239 ipw_set_scan_type(scan, channel_index,
6240 geo->bg[index].
6241 flags &
6242 IEEE80211_CH_PASSIVE_ONLY ?
6243 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6244 : scan_type);
6245 }
6246 } else {
6247 for (i = 0; i < geo->bg_channels; i++) {
6248 if ((priv->status & STATUS_ASSOCIATED) &&
6249 geo->bg[i].channel == priv->channel)
6250 continue;
6251 channel_index++;
6252 scan->channels_list[channel_index] =
6253 geo->bg[i].channel;
6254 ipw_set_scan_type(scan, channel_index,
6255 geo->bg[i].
6256 flags &
6257 IEEE80211_CH_PASSIVE_ONLY ?
6258 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6259 : scan_type);
6260 }
6261 }
6262
6263 if (start != channel_index) {
6264 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6265 (channel_index - start);
6266 }
6267 }
6268 }
6269
6270 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6271 {
6272 struct ipw_scan_request_ext scan;
6273 int err = 0, scan_type;
6274
6275 if (!(priv->status & STATUS_INIT) ||
6276 (priv->status & STATUS_EXIT_PENDING))
6277 return 0;
6278
6279 mutex_lock(&priv->mutex);
6280
6281 if (priv->status & STATUS_SCANNING) {
6282 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6283 priv->status |= STATUS_SCAN_PENDING;
6284 goto done;
6285 }
6286
6287 if (!(priv->status & STATUS_SCAN_FORCED) &&
6288 priv->status & STATUS_SCAN_ABORTING) {
6289 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6290 priv->status |= STATUS_SCAN_PENDING;
6291 goto done;
6292 }
6293
6294 if (priv->status & STATUS_RF_KILL_MASK) {
6295 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6296 priv->status |= STATUS_SCAN_PENDING;
6297 goto done;
6298 }
6299
6300 memset(&scan, 0, sizeof(scan));
6301 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6302
6303 if (type == IW_SCAN_TYPE_PASSIVE) {
6304 IPW_DEBUG_WX("use passive scanning\n");
6305 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6306 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6307 cpu_to_le16(120);
6308 ipw_add_scan_channels(priv, &scan, scan_type);
6309 goto send_request;
6310 }
6311
6312 /* Use active scan by default. */
6313 if (priv->config & CFG_SPEED_SCAN)
6314 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6315 cpu_to_le16(30);
6316 else
6317 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6318 cpu_to_le16(20);
6319
6320 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6321 cpu_to_le16(20);
6322
6323 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6324
6325 #ifdef CONFIG_IPW2200_MONITOR
6326 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6327 u8 channel;
6328 u8 band = 0;
6329
6330 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6331 case IEEE80211_52GHZ_BAND:
6332 band = (u8) (IPW_A_MODE << 6) | 1;
6333 channel = priv->channel;
6334 break;
6335
6336 case IEEE80211_24GHZ_BAND:
6337 band = (u8) (IPW_B_MODE << 6) | 1;
6338 channel = priv->channel;
6339 break;
6340
6341 default:
6342 band = (u8) (IPW_B_MODE << 6) | 1;
6343 channel = 9;
6344 break;
6345 }
6346
6347 scan.channels_list[0] = band;
6348 scan.channels_list[1] = channel;
6349 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6350
6351 /* NOTE: The card will sit on this channel for this time
6352 * period. Scan aborts are timing sensitive and frequently
6353 * result in firmware restarts. As such, it is best to
6354 * set a small dwell_time here and just keep re-issuing
6355 * scans. Otherwise fast channel hopping will not actually
6356 * hop channels.
6357 *
6358 * TODO: Move SPEED SCAN support to all modes and bands */
6359 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6360 cpu_to_le16(2000);
6361 } else {
6362 #endif /* CONFIG_IPW2200_MONITOR */
6363 /* If we are roaming, then make this a directed scan for the
6364 * current network. Otherwise, ensure that every other scan
6365 * is a fast channel hop scan */
6366 if ((priv->status & STATUS_ROAMING)
6367 || (!(priv->status & STATUS_ASSOCIATED)
6368 && (priv->config & CFG_STATIC_ESSID)
6369 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6370 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6371 if (err) {
6372 IPW_DEBUG_HC("Attempt to send SSID command "
6373 "failed.\n");
6374 goto done;
6375 }
6376
6377 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6378 } else
6379 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6380
6381 ipw_add_scan_channels(priv, &scan, scan_type);
6382 #ifdef CONFIG_IPW2200_MONITOR
6383 }
6384 #endif
6385
6386 send_request:
6387 err = ipw_send_scan_request_ext(priv, &scan);
6388 if (err) {
6389 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6390 goto done;
6391 }
6392
6393 priv->status |= STATUS_SCANNING;
6394 priv->status &= ~STATUS_SCAN_PENDING;
6395 queue_delayed_work(priv->workqueue, &priv->scan_check,
6396 IPW_SCAN_CHECK_WATCHDOG);
6397 done:
6398 mutex_unlock(&priv->mutex);
6399 return err;
6400 }
6401
6402 static void ipw_request_passive_scan(struct work_struct *work)
6403 {
6404 struct ipw_priv *priv =
6405 container_of(work, struct ipw_priv, request_passive_scan);
6406 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6407 }
6408
6409 static void ipw_request_scan(struct work_struct *work)
6410 {
6411 struct ipw_priv *priv =
6412 container_of(work, struct ipw_priv, request_scan.work);
6413 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6414 }
6415
6416 static void ipw_bg_abort_scan(struct work_struct *work)
6417 {
6418 struct ipw_priv *priv =
6419 container_of(work, struct ipw_priv, abort_scan);
6420 mutex_lock(&priv->mutex);
6421 ipw_abort_scan(priv);
6422 mutex_unlock(&priv->mutex);
6423 }
6424
6425 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6426 {
6427 /* This is called when wpa_supplicant loads and closes the driver
6428 * interface. */
6429 priv->ieee->wpa_enabled = value;
6430 return 0;
6431 }
6432
6433 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6434 {
6435 struct ieee80211_device *ieee = priv->ieee;
6436 struct ieee80211_security sec = {
6437 .flags = SEC_AUTH_MODE,
6438 };
6439 int ret = 0;
6440
6441 if (value & IW_AUTH_ALG_SHARED_KEY) {
6442 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6443 ieee->open_wep = 0;
6444 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6445 sec.auth_mode = WLAN_AUTH_OPEN;
6446 ieee->open_wep = 1;
6447 } else if (value & IW_AUTH_ALG_LEAP) {
6448 sec.auth_mode = WLAN_AUTH_LEAP;
6449 ieee->open_wep = 1;
6450 } else
6451 return -EINVAL;
6452
6453 if (ieee->set_security)
6454 ieee->set_security(ieee->dev, &sec);
6455 else
6456 ret = -EOPNOTSUPP;
6457
6458 return ret;
6459 }
6460
6461 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6462 int wpa_ie_len)
6463 {
6464 /* make sure WPA is enabled */
6465 ipw_wpa_enable(priv, 1);
6466 }
6467
6468 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6469 char *capabilities, int length)
6470 {
6471 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6472
6473 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6474 capabilities);
6475 }
6476
6477 /*
6478 * WE-18 support
6479 */
6480
6481 /* SIOCSIWGENIE */
6482 static int ipw_wx_set_genie(struct net_device *dev,
6483 struct iw_request_info *info,
6484 union iwreq_data *wrqu, char *extra)
6485 {
6486 struct ipw_priv *priv = ieee80211_priv(dev);
6487 struct ieee80211_device *ieee = priv->ieee;
6488 u8 *buf;
6489 int err = 0;
6490
6491 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6492 (wrqu->data.length && extra == NULL))
6493 return -EINVAL;
6494
6495 if (wrqu->data.length) {
6496 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6497 if (buf == NULL) {
6498 err = -ENOMEM;
6499 goto out;
6500 }
6501
6502 memcpy(buf, extra, wrqu->data.length);
6503 kfree(ieee->wpa_ie);
6504 ieee->wpa_ie = buf;
6505 ieee->wpa_ie_len = wrqu->data.length;
6506 } else {
6507 kfree(ieee->wpa_ie);
6508 ieee->wpa_ie = NULL;
6509 ieee->wpa_ie_len = 0;
6510 }
6511
6512 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6513 out:
6514 return err;
6515 }
6516
6517 /* SIOCGIWGENIE */
6518 static int ipw_wx_get_genie(struct net_device *dev,
6519 struct iw_request_info *info,
6520 union iwreq_data *wrqu, char *extra)
6521 {
6522 struct ipw_priv *priv = ieee80211_priv(dev);
6523 struct ieee80211_device *ieee = priv->ieee;
6524 int err = 0;
6525
6526 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6527 wrqu->data.length = 0;
6528 goto out;
6529 }
6530
6531 if (wrqu->data.length < ieee->wpa_ie_len) {
6532 err = -E2BIG;
6533 goto out;
6534 }
6535
6536 wrqu->data.length = ieee->wpa_ie_len;
6537 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6538
6539 out:
6540 return err;
6541 }
6542
6543 static int wext_cipher2level(int cipher)
6544 {
6545 switch (cipher) {
6546 case IW_AUTH_CIPHER_NONE:
6547 return SEC_LEVEL_0;
6548 case IW_AUTH_CIPHER_WEP40:
6549 case IW_AUTH_CIPHER_WEP104:
6550 return SEC_LEVEL_1;
6551 case IW_AUTH_CIPHER_TKIP:
6552 return SEC_LEVEL_2;
6553 case IW_AUTH_CIPHER_CCMP:
6554 return SEC_LEVEL_3;
6555 default:
6556 return -1;
6557 }
6558 }
6559
6560 /* SIOCSIWAUTH */
6561 static int ipw_wx_set_auth(struct net_device *dev,
6562 struct iw_request_info *info,
6563 union iwreq_data *wrqu, char *extra)
6564 {
6565 struct ipw_priv *priv = ieee80211_priv(dev);
6566 struct ieee80211_device *ieee = priv->ieee;
6567 struct iw_param *param = &wrqu->param;
6568 struct ieee80211_crypt_data *crypt;
6569 unsigned long flags;
6570 int ret = 0;
6571
6572 switch (param->flags & IW_AUTH_INDEX) {
6573 case IW_AUTH_WPA_VERSION:
6574 break;
6575 case IW_AUTH_CIPHER_PAIRWISE:
6576 ipw_set_hw_decrypt_unicast(priv,
6577 wext_cipher2level(param->value));
6578 break;
6579 case IW_AUTH_CIPHER_GROUP:
6580 ipw_set_hw_decrypt_multicast(priv,
6581 wext_cipher2level(param->value));
6582 break;
6583 case IW_AUTH_KEY_MGMT:
6584 /*
6585 * ipw2200 does not use these parameters
6586 */
6587 break;
6588
6589 case IW_AUTH_TKIP_COUNTERMEASURES:
6590 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6591 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6592 break;
6593
6594 flags = crypt->ops->get_flags(crypt->priv);
6595
6596 if (param->value)
6597 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6598 else
6599 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6600
6601 crypt->ops->set_flags(flags, crypt->priv);
6602
6603 break;
6604
6605 case IW_AUTH_DROP_UNENCRYPTED:{
6606 /* HACK:
6607 *
6608 * wpa_supplicant calls set_wpa_enabled when the driver
6609 * is loaded and unloaded, regardless of if WPA is being
6610 * used. No other calls are made which can be used to
6611 * determine if encryption will be used or not prior to
6612 * association being expected. If encryption is not being
6613 * used, drop_unencrypted is set to false, else true -- we
6614 * can use this to determine if the CAP_PRIVACY_ON bit should
6615 * be set.
6616 */
6617 struct ieee80211_security sec = {
6618 .flags = SEC_ENABLED,
6619 .enabled = param->value,
6620 };
6621 priv->ieee->drop_unencrypted = param->value;
6622 /* We only change SEC_LEVEL for open mode. Others
6623 * are set by ipw_wpa_set_encryption.
6624 */
6625 if (!param->value) {
6626 sec.flags |= SEC_LEVEL;
6627 sec.level = SEC_LEVEL_0;
6628 } else {
6629 sec.flags |= SEC_LEVEL;
6630 sec.level = SEC_LEVEL_1;
6631 }
6632 if (priv->ieee->set_security)
6633 priv->ieee->set_security(priv->ieee->dev, &sec);
6634 break;
6635 }
6636
6637 case IW_AUTH_80211_AUTH_ALG:
6638 ret = ipw_wpa_set_auth_algs(priv, param->value);
6639 break;
6640
6641 case IW_AUTH_WPA_ENABLED:
6642 ret = ipw_wpa_enable(priv, param->value);
6643 ipw_disassociate(priv);
6644 break;
6645
6646 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6647 ieee->ieee802_1x = param->value;
6648 break;
6649
6650 case IW_AUTH_PRIVACY_INVOKED:
6651 ieee->privacy_invoked = param->value;
6652 break;
6653
6654 default:
6655 return -EOPNOTSUPP;
6656 }
6657 return ret;
6658 }
6659
6660 /* SIOCGIWAUTH */
6661 static int ipw_wx_get_auth(struct net_device *dev,
6662 struct iw_request_info *info,
6663 union iwreq_data *wrqu, char *extra)
6664 {
6665 struct ipw_priv *priv = ieee80211_priv(dev);
6666 struct ieee80211_device *ieee = priv->ieee;
6667 struct ieee80211_crypt_data *crypt;
6668 struct iw_param *param = &wrqu->param;
6669 int ret = 0;
6670
6671 switch (param->flags & IW_AUTH_INDEX) {
6672 case IW_AUTH_WPA_VERSION:
6673 case IW_AUTH_CIPHER_PAIRWISE:
6674 case IW_AUTH_CIPHER_GROUP:
6675 case IW_AUTH_KEY_MGMT:
6676 /*
6677 * wpa_supplicant will control these internally
6678 */
6679 ret = -EOPNOTSUPP;
6680 break;
6681
6682 case IW_AUTH_TKIP_COUNTERMEASURES:
6683 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6684 if (!crypt || !crypt->ops->get_flags)
6685 break;
6686
6687 param->value = (crypt->ops->get_flags(crypt->priv) &
6688 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6689
6690 break;
6691
6692 case IW_AUTH_DROP_UNENCRYPTED:
6693 param->value = ieee->drop_unencrypted;
6694 break;
6695
6696 case IW_AUTH_80211_AUTH_ALG:
6697 param->value = ieee->sec.auth_mode;
6698 break;
6699
6700 case IW_AUTH_WPA_ENABLED:
6701 param->value = ieee->wpa_enabled;
6702 break;
6703
6704 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6705 param->value = ieee->ieee802_1x;
6706 break;
6707
6708 case IW_AUTH_ROAMING_CONTROL:
6709 case IW_AUTH_PRIVACY_INVOKED:
6710 param->value = ieee->privacy_invoked;
6711 break;
6712
6713 default:
6714 return -EOPNOTSUPP;
6715 }
6716 return 0;
6717 }
6718
6719 /* SIOCSIWENCODEEXT */
6720 static int ipw_wx_set_encodeext(struct net_device *dev,
6721 struct iw_request_info *info,
6722 union iwreq_data *wrqu, char *extra)
6723 {
6724 struct ipw_priv *priv = ieee80211_priv(dev);
6725 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6726
6727 if (hwcrypto) {
6728 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6729 /* IPW HW can't build TKIP MIC,
6730 host decryption still needed */
6731 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6732 priv->ieee->host_mc_decrypt = 1;
6733 else {
6734 priv->ieee->host_encrypt = 0;
6735 priv->ieee->host_encrypt_msdu = 1;
6736 priv->ieee->host_decrypt = 1;
6737 }
6738 } else {
6739 priv->ieee->host_encrypt = 0;
6740 priv->ieee->host_encrypt_msdu = 0;
6741 priv->ieee->host_decrypt = 0;
6742 priv->ieee->host_mc_decrypt = 0;
6743 }
6744 }
6745
6746 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6747 }
6748
6749 /* SIOCGIWENCODEEXT */
6750 static int ipw_wx_get_encodeext(struct net_device *dev,
6751 struct iw_request_info *info,
6752 union iwreq_data *wrqu, char *extra)
6753 {
6754 struct ipw_priv *priv = ieee80211_priv(dev);
6755 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6756 }
6757
6758 /* SIOCSIWMLME */
6759 static int ipw_wx_set_mlme(struct net_device *dev,
6760 struct iw_request_info *info,
6761 union iwreq_data *wrqu, char *extra)
6762 {
6763 struct ipw_priv *priv = ieee80211_priv(dev);
6764 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6765 __le16 reason;
6766
6767 reason = cpu_to_le16(mlme->reason_code);
6768
6769 switch (mlme->cmd) {
6770 case IW_MLME_DEAUTH:
6771 /* silently ignore */
6772 break;
6773
6774 case IW_MLME_DISASSOC:
6775 ipw_disassociate(priv);
6776 break;
6777
6778 default:
6779 return -EOPNOTSUPP;
6780 }
6781 return 0;
6782 }
6783
6784 #ifdef CONFIG_IPW2200_QOS
6785
6786 /* QoS */
6787 /*
6788 * get the modulation type of the current network or
6789 * the card current mode
6790 */
6791 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6792 {
6793 u8 mode = 0;
6794
6795 if (priv->status & STATUS_ASSOCIATED) {
6796 unsigned long flags;
6797
6798 spin_lock_irqsave(&priv->ieee->lock, flags);
6799 mode = priv->assoc_network->mode;
6800 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6801 } else {
6802 mode = priv->ieee->mode;
6803 }
6804 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6805 return mode;
6806 }
6807
6808 /*
6809 * Handle management frame beacon and probe response
6810 */
6811 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6812 int active_network,
6813 struct ieee80211_network *network)
6814 {
6815 u32 size = sizeof(struct ieee80211_qos_parameters);
6816
6817 if (network->capability & WLAN_CAPABILITY_IBSS)
6818 network->qos_data.active = network->qos_data.supported;
6819
6820 if (network->flags & NETWORK_HAS_QOS_MASK) {
6821 if (active_network &&
6822 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6823 network->qos_data.active = network->qos_data.supported;
6824
6825 if ((network->qos_data.active == 1) && (active_network == 1) &&
6826 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6827 (network->qos_data.old_param_count !=
6828 network->qos_data.param_count)) {
6829 network->qos_data.old_param_count =
6830 network->qos_data.param_count;
6831 schedule_work(&priv->qos_activate);
6832 IPW_DEBUG_QOS("QoS parameters change call "
6833 "qos_activate\n");
6834 }
6835 } else {
6836 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6837 memcpy(&network->qos_data.parameters,
6838 &def_parameters_CCK, size);
6839 else
6840 memcpy(&network->qos_data.parameters,
6841 &def_parameters_OFDM, size);
6842
6843 if ((network->qos_data.active == 1) && (active_network == 1)) {
6844 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6845 schedule_work(&priv->qos_activate);
6846 }
6847
6848 network->qos_data.active = 0;
6849 network->qos_data.supported = 0;
6850 }
6851 if ((priv->status & STATUS_ASSOCIATED) &&
6852 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6853 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6854 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6855 !(network->flags & NETWORK_EMPTY_ESSID))
6856 if ((network->ssid_len ==
6857 priv->assoc_network->ssid_len) &&
6858 !memcmp(network->ssid,
6859 priv->assoc_network->ssid,
6860 network->ssid_len)) {
6861 queue_work(priv->workqueue,
6862 &priv->merge_networks);
6863 }
6864 }
6865
6866 return 0;
6867 }
6868
6869 /*
6870 * This function set up the firmware to support QoS. It sends
6871 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6872 */
6873 static int ipw_qos_activate(struct ipw_priv *priv,
6874 struct ieee80211_qos_data *qos_network_data)
6875 {
6876 int err;
6877 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6878 struct ieee80211_qos_parameters *active_one = NULL;
6879 u32 size = sizeof(struct ieee80211_qos_parameters);
6880 u32 burst_duration;
6881 int i;
6882 u8 type;
6883
6884 type = ipw_qos_current_mode(priv);
6885
6886 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6887 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6888 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6889 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6890
6891 if (qos_network_data == NULL) {
6892 if (type == IEEE_B) {
6893 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6894 active_one = &def_parameters_CCK;
6895 } else
6896 active_one = &def_parameters_OFDM;
6897
6898 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6899 burst_duration = ipw_qos_get_burst_duration(priv);
6900 for (i = 0; i < QOS_QUEUE_NUM; i++)
6901 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6902 cpu_to_le16(burst_duration);
6903 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6904 if (type == IEEE_B) {
6905 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6906 type);
6907 if (priv->qos_data.qos_enable == 0)
6908 active_one = &def_parameters_CCK;
6909 else
6910 active_one = priv->qos_data.def_qos_parm_CCK;
6911 } else {
6912 if (priv->qos_data.qos_enable == 0)
6913 active_one = &def_parameters_OFDM;
6914 else
6915 active_one = priv->qos_data.def_qos_parm_OFDM;
6916 }
6917 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6918 } else {
6919 unsigned long flags;
6920 int active;
6921
6922 spin_lock_irqsave(&priv->ieee->lock, flags);
6923 active_one = &(qos_network_data->parameters);
6924 qos_network_data->old_param_count =
6925 qos_network_data->param_count;
6926 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6927 active = qos_network_data->supported;
6928 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6929
6930 if (active == 0) {
6931 burst_duration = ipw_qos_get_burst_duration(priv);
6932 for (i = 0; i < QOS_QUEUE_NUM; i++)
6933 qos_parameters[QOS_PARAM_SET_ACTIVE].
6934 tx_op_limit[i] = cpu_to_le16(burst_duration);
6935 }
6936 }
6937
6938 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6939 err = ipw_send_qos_params_command(priv,
6940 (struct ieee80211_qos_parameters *)
6941 &(qos_parameters[0]));
6942 if (err)
6943 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6944
6945 return err;
6946 }
6947
6948 /*
6949 * send IPW_CMD_WME_INFO to the firmware
6950 */
6951 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6952 {
6953 int ret = 0;
6954 struct ieee80211_qos_information_element qos_info;
6955
6956 if (priv == NULL)
6957 return -1;
6958
6959 qos_info.elementID = QOS_ELEMENT_ID;
6960 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6961
6962 qos_info.version = QOS_VERSION_1;
6963 qos_info.ac_info = 0;
6964
6965 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6966 qos_info.qui_type = QOS_OUI_TYPE;
6967 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6968
6969 ret = ipw_send_qos_info_command(priv, &qos_info);
6970 if (ret != 0) {
6971 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6972 }
6973 return ret;
6974 }
6975
6976 /*
6977 * Set the QoS parameter with the association request structure
6978 */
6979 static int ipw_qos_association(struct ipw_priv *priv,
6980 struct ieee80211_network *network)
6981 {
6982 int err = 0;
6983 struct ieee80211_qos_data *qos_data = NULL;
6984 struct ieee80211_qos_data ibss_data = {
6985 .supported = 1,
6986 .active = 1,
6987 };
6988
6989 switch (priv->ieee->iw_mode) {
6990 case IW_MODE_ADHOC:
6991 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6992
6993 qos_data = &ibss_data;
6994 break;
6995
6996 case IW_MODE_INFRA:
6997 qos_data = &network->qos_data;
6998 break;
6999
7000 default:
7001 BUG();
7002 break;
7003 }
7004
7005 err = ipw_qos_activate(priv, qos_data);
7006 if (err) {
7007 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7008 return err;
7009 }
7010
7011 if (priv->qos_data.qos_enable && qos_data->supported) {
7012 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7013 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7014 return ipw_qos_set_info_element(priv);
7015 }
7016
7017 return 0;
7018 }
7019
7020 /*
7021 * handling the beaconing responses. if we get different QoS setting
7022 * off the network from the associated setting, adjust the QoS
7023 * setting
7024 */
7025 static int ipw_qos_association_resp(struct ipw_priv *priv,
7026 struct ieee80211_network *network)
7027 {
7028 int ret = 0;
7029 unsigned long flags;
7030 u32 size = sizeof(struct ieee80211_qos_parameters);
7031 int set_qos_param = 0;
7032
7033 if ((priv == NULL) || (network == NULL) ||
7034 (priv->assoc_network == NULL))
7035 return ret;
7036
7037 if (!(priv->status & STATUS_ASSOCIATED))
7038 return ret;
7039
7040 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7041 return ret;
7042
7043 spin_lock_irqsave(&priv->ieee->lock, flags);
7044 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7045 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7046 sizeof(struct ieee80211_qos_data));
7047 priv->assoc_network->qos_data.active = 1;
7048 if ((network->qos_data.old_param_count !=
7049 network->qos_data.param_count)) {
7050 set_qos_param = 1;
7051 network->qos_data.old_param_count =
7052 network->qos_data.param_count;
7053 }
7054
7055 } else {
7056 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7057 memcpy(&priv->assoc_network->qos_data.parameters,
7058 &def_parameters_CCK, size);
7059 else
7060 memcpy(&priv->assoc_network->qos_data.parameters,
7061 &def_parameters_OFDM, size);
7062 priv->assoc_network->qos_data.active = 0;
7063 priv->assoc_network->qos_data.supported = 0;
7064 set_qos_param = 1;
7065 }
7066
7067 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7068
7069 if (set_qos_param == 1)
7070 schedule_work(&priv->qos_activate);
7071
7072 return ret;
7073 }
7074
7075 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7076 {
7077 u32 ret = 0;
7078
7079 if ((priv == NULL))
7080 return 0;
7081
7082 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7083 ret = priv->qos_data.burst_duration_CCK;
7084 else
7085 ret = priv->qos_data.burst_duration_OFDM;
7086
7087 return ret;
7088 }
7089
7090 /*
7091 * Initialize the setting of QoS global
7092 */
7093 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7094 int burst_enable, u32 burst_duration_CCK,
7095 u32 burst_duration_OFDM)
7096 {
7097 priv->qos_data.qos_enable = enable;
7098
7099 if (priv->qos_data.qos_enable) {
7100 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7101 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7102 IPW_DEBUG_QOS("QoS is enabled\n");
7103 } else {
7104 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7105 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7106 IPW_DEBUG_QOS("QoS is not enabled\n");
7107 }
7108
7109 priv->qos_data.burst_enable = burst_enable;
7110
7111 if (burst_enable) {
7112 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7113 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7114 } else {
7115 priv->qos_data.burst_duration_CCK = 0;
7116 priv->qos_data.burst_duration_OFDM = 0;
7117 }
7118 }
7119
7120 /*
7121 * map the packet priority to the right TX Queue
7122 */
7123 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7124 {
7125 if (priority > 7 || !priv->qos_data.qos_enable)
7126 priority = 0;
7127
7128 return from_priority_to_tx_queue[priority] - 1;
7129 }
7130
7131 static int ipw_is_qos_active(struct net_device *dev,
7132 struct sk_buff *skb)
7133 {
7134 struct ipw_priv *priv = ieee80211_priv(dev);
7135 struct ieee80211_qos_data *qos_data = NULL;
7136 int active, supported;
7137 u8 *daddr = skb->data + ETH_ALEN;
7138 int unicast = !is_multicast_ether_addr(daddr);
7139
7140 if (!(priv->status & STATUS_ASSOCIATED))
7141 return 0;
7142
7143 qos_data = &priv->assoc_network->qos_data;
7144
7145 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7146 if (unicast == 0)
7147 qos_data->active = 0;
7148 else
7149 qos_data->active = qos_data->supported;
7150 }
7151 active = qos_data->active;
7152 supported = qos_data->supported;
7153 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7154 "unicast %d\n",
7155 priv->qos_data.qos_enable, active, supported, unicast);
7156 if (active && priv->qos_data.qos_enable)
7157 return 1;
7158
7159 return 0;
7160
7161 }
7162 /*
7163 * add QoS parameter to the TX command
7164 */
7165 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7166 u16 priority,
7167 struct tfd_data *tfd)
7168 {
7169 int tx_queue_id = 0;
7170
7171
7172 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7173 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7174
7175 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7176 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7177 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7178 }
7179 return 0;
7180 }
7181
7182 /*
7183 * background support to run QoS activate functionality
7184 */
7185 static void ipw_bg_qos_activate(struct work_struct *work)
7186 {
7187 struct ipw_priv *priv =
7188 container_of(work, struct ipw_priv, qos_activate);
7189
7190 if (priv == NULL)
7191 return;
7192
7193 mutex_lock(&priv->mutex);
7194
7195 if (priv->status & STATUS_ASSOCIATED)
7196 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7197
7198 mutex_unlock(&priv->mutex);
7199 }
7200
7201 static int ipw_handle_probe_response(struct net_device *dev,
7202 struct ieee80211_probe_response *resp,
7203 struct ieee80211_network *network)
7204 {
7205 struct ipw_priv *priv = ieee80211_priv(dev);
7206 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7207 (network == priv->assoc_network));
7208
7209 ipw_qos_handle_probe_response(priv, active_network, network);
7210
7211 return 0;
7212 }
7213
7214 static int ipw_handle_beacon(struct net_device *dev,
7215 struct ieee80211_beacon *resp,
7216 struct ieee80211_network *network)
7217 {
7218 struct ipw_priv *priv = ieee80211_priv(dev);
7219 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7220 (network == priv->assoc_network));
7221
7222 ipw_qos_handle_probe_response(priv, active_network, network);
7223
7224 return 0;
7225 }
7226
7227 static int ipw_handle_assoc_response(struct net_device *dev,
7228 struct ieee80211_assoc_response *resp,
7229 struct ieee80211_network *network)
7230 {
7231 struct ipw_priv *priv = ieee80211_priv(dev);
7232 ipw_qos_association_resp(priv, network);
7233 return 0;
7234 }
7235
7236 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7237 *qos_param)
7238 {
7239 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7240 sizeof(*qos_param) * 3, qos_param);
7241 }
7242
7243 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7244 *qos_param)
7245 {
7246 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7247 qos_param);
7248 }
7249
7250 #endif /* CONFIG_IPW2200_QOS */
7251
7252 static int ipw_associate_network(struct ipw_priv *priv,
7253 struct ieee80211_network *network,
7254 struct ipw_supported_rates *rates, int roaming)
7255 {
7256 int err;
7257 DECLARE_MAC_BUF(mac);
7258
7259 if (priv->config & CFG_FIXED_RATE)
7260 ipw_set_fixed_rate(priv, network->mode);
7261
7262 if (!(priv->config & CFG_STATIC_ESSID)) {
7263 priv->essid_len = min(network->ssid_len,
7264 (u8) IW_ESSID_MAX_SIZE);
7265 memcpy(priv->essid, network->ssid, priv->essid_len);
7266 }
7267
7268 network->last_associate = jiffies;
7269
7270 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7271 priv->assoc_request.channel = network->channel;
7272 priv->assoc_request.auth_key = 0;
7273
7274 if ((priv->capability & CAP_PRIVACY_ON) &&
7275 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7276 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7277 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7278
7279 if (priv->ieee->sec.level == SEC_LEVEL_1)
7280 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7281
7282 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7283 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7284 priv->assoc_request.auth_type = AUTH_LEAP;
7285 else
7286 priv->assoc_request.auth_type = AUTH_OPEN;
7287
7288 if (priv->ieee->wpa_ie_len) {
7289 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7290 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7291 priv->ieee->wpa_ie_len);
7292 }
7293
7294 /*
7295 * It is valid for our ieee device to support multiple modes, but
7296 * when it comes to associating to a given network we have to choose
7297 * just one mode.
7298 */
7299 if (network->mode & priv->ieee->mode & IEEE_A)
7300 priv->assoc_request.ieee_mode = IPW_A_MODE;
7301 else if (network->mode & priv->ieee->mode & IEEE_G)
7302 priv->assoc_request.ieee_mode = IPW_G_MODE;
7303 else if (network->mode & priv->ieee->mode & IEEE_B)
7304 priv->assoc_request.ieee_mode = IPW_B_MODE;
7305
7306 priv->assoc_request.capability = cpu_to_le16(network->capability);
7307 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7308 && !(priv->config & CFG_PREAMBLE_LONG)) {
7309 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7310 } else {
7311 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7312
7313 /* Clear the short preamble if we won't be supporting it */
7314 priv->assoc_request.capability &=
7315 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7316 }
7317
7318 /* Clear capability bits that aren't used in Ad Hoc */
7319 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7320 priv->assoc_request.capability &=
7321 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7322
7323 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7324 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7325 roaming ? "Rea" : "A",
7326 escape_essid(priv->essid, priv->essid_len),
7327 network->channel,
7328 ipw_modes[priv->assoc_request.ieee_mode],
7329 rates->num_rates,
7330 (priv->assoc_request.preamble_length ==
7331 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7332 network->capability &
7333 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7334 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7335 priv->capability & CAP_PRIVACY_ON ?
7336 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7337 "(open)") : "",
7338 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7339 priv->capability & CAP_PRIVACY_ON ?
7340 '1' + priv->ieee->sec.active_key : '.',
7341 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7342
7343 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7344 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7345 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7346 priv->assoc_request.assoc_type = HC_IBSS_START;
7347 priv->assoc_request.assoc_tsf_msw = 0;
7348 priv->assoc_request.assoc_tsf_lsw = 0;
7349 } else {
7350 if (unlikely(roaming))
7351 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7352 else
7353 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7354 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7355 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7356 }
7357
7358 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7359
7360 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7361 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7362 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7363 } else {
7364 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7365 priv->assoc_request.atim_window = 0;
7366 }
7367
7368 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7369
7370 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7371 if (err) {
7372 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7373 return err;
7374 }
7375
7376 rates->ieee_mode = priv->assoc_request.ieee_mode;
7377 rates->purpose = IPW_RATE_CONNECT;
7378 ipw_send_supported_rates(priv, rates);
7379
7380 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7381 priv->sys_config.dot11g_auto_detection = 1;
7382 else
7383 priv->sys_config.dot11g_auto_detection = 0;
7384
7385 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7386 priv->sys_config.answer_broadcast_ssid_probe = 1;
7387 else
7388 priv->sys_config.answer_broadcast_ssid_probe = 0;
7389
7390 err = ipw_send_system_config(priv);
7391 if (err) {
7392 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7393 return err;
7394 }
7395
7396 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7397 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7398 if (err) {
7399 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7400 return err;
7401 }
7402
7403 /*
7404 * If preemption is enabled, it is possible for the association
7405 * to complete before we return from ipw_send_associate. Therefore
7406 * we have to be sure and update our priviate data first.
7407 */
7408 priv->channel = network->channel;
7409 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7410 priv->status |= STATUS_ASSOCIATING;
7411 priv->status &= ~STATUS_SECURITY_UPDATED;
7412
7413 priv->assoc_network = network;
7414
7415 #ifdef CONFIG_IPW2200_QOS
7416 ipw_qos_association(priv, network);
7417 #endif
7418
7419 err = ipw_send_associate(priv, &priv->assoc_request);
7420 if (err) {
7421 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7422 return err;
7423 }
7424
7425 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7426 escape_essid(priv->essid, priv->essid_len),
7427 print_mac(mac, priv->bssid));
7428
7429 return 0;
7430 }
7431
7432 static void ipw_roam(void *data)
7433 {
7434 struct ipw_priv *priv = data;
7435 struct ieee80211_network *network = NULL;
7436 struct ipw_network_match match = {
7437 .network = priv->assoc_network
7438 };
7439
7440 /* The roaming process is as follows:
7441 *
7442 * 1. Missed beacon threshold triggers the roaming process by
7443 * setting the status ROAM bit and requesting a scan.
7444 * 2. When the scan completes, it schedules the ROAM work
7445 * 3. The ROAM work looks at all of the known networks for one that
7446 * is a better network than the currently associated. If none
7447 * found, the ROAM process is over (ROAM bit cleared)
7448 * 4. If a better network is found, a disassociation request is
7449 * sent.
7450 * 5. When the disassociation completes, the roam work is again
7451 * scheduled. The second time through, the driver is no longer
7452 * associated, and the newly selected network is sent an
7453 * association request.
7454 * 6. At this point ,the roaming process is complete and the ROAM
7455 * status bit is cleared.
7456 */
7457
7458 /* If we are no longer associated, and the roaming bit is no longer
7459 * set, then we are not actively roaming, so just return */
7460 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7461 return;
7462
7463 if (priv->status & STATUS_ASSOCIATED) {
7464 /* First pass through ROAM process -- look for a better
7465 * network */
7466 unsigned long flags;
7467 u8 rssi = priv->assoc_network->stats.rssi;
7468 priv->assoc_network->stats.rssi = -128;
7469 spin_lock_irqsave(&priv->ieee->lock, flags);
7470 list_for_each_entry(network, &priv->ieee->network_list, list) {
7471 if (network != priv->assoc_network)
7472 ipw_best_network(priv, &match, network, 1);
7473 }
7474 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7475 priv->assoc_network->stats.rssi = rssi;
7476
7477 if (match.network == priv->assoc_network) {
7478 IPW_DEBUG_ASSOC("No better APs in this network to "
7479 "roam to.\n");
7480 priv->status &= ~STATUS_ROAMING;
7481 ipw_debug_config(priv);
7482 return;
7483 }
7484
7485 ipw_send_disassociate(priv, 1);
7486 priv->assoc_network = match.network;
7487
7488 return;
7489 }
7490
7491 /* Second pass through ROAM process -- request association */
7492 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7493 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7494 priv->status &= ~STATUS_ROAMING;
7495 }
7496
7497 static void ipw_bg_roam(struct work_struct *work)
7498 {
7499 struct ipw_priv *priv =
7500 container_of(work, struct ipw_priv, roam);
7501 mutex_lock(&priv->mutex);
7502 ipw_roam(priv);
7503 mutex_unlock(&priv->mutex);
7504 }
7505
7506 static int ipw_associate(void *data)
7507 {
7508 struct ipw_priv *priv = data;
7509
7510 struct ieee80211_network *network = NULL;
7511 struct ipw_network_match match = {
7512 .network = NULL
7513 };
7514 struct ipw_supported_rates *rates;
7515 struct list_head *element;
7516 unsigned long flags;
7517
7518 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7519 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7520 return 0;
7521 }
7522
7523 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7524 IPW_DEBUG_ASSOC("Not attempting association (already in "
7525 "progress)\n");
7526 return 0;
7527 }
7528
7529 if (priv->status & STATUS_DISASSOCIATING) {
7530 IPW_DEBUG_ASSOC("Not attempting association (in "
7531 "disassociating)\n ");
7532 queue_work(priv->workqueue, &priv->associate);
7533 return 0;
7534 }
7535
7536 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7537 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7538 "initialized)\n");
7539 return 0;
7540 }
7541
7542 if (!(priv->config & CFG_ASSOCIATE) &&
7543 !(priv->config & (CFG_STATIC_ESSID |
7544 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7545 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7546 return 0;
7547 }
7548
7549 /* Protect our use of the network_list */
7550 spin_lock_irqsave(&priv->ieee->lock, flags);
7551 list_for_each_entry(network, &priv->ieee->network_list, list)
7552 ipw_best_network(priv, &match, network, 0);
7553
7554 network = match.network;
7555 rates = &match.rates;
7556
7557 if (network == NULL &&
7558 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7559 priv->config & CFG_ADHOC_CREATE &&
7560 priv->config & CFG_STATIC_ESSID &&
7561 priv->config & CFG_STATIC_CHANNEL &&
7562 !list_empty(&priv->ieee->network_free_list)) {
7563 element = priv->ieee->network_free_list.next;
7564 network = list_entry(element, struct ieee80211_network, list);
7565 ipw_adhoc_create(priv, network);
7566 rates = &priv->rates;
7567 list_del(element);
7568 list_add_tail(&network->list, &priv->ieee->network_list);
7569 }
7570 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7571
7572 /* If we reached the end of the list, then we don't have any valid
7573 * matching APs */
7574 if (!network) {
7575 ipw_debug_config(priv);
7576
7577 if (!(priv->status & STATUS_SCANNING)) {
7578 if (!(priv->config & CFG_SPEED_SCAN))
7579 queue_delayed_work(priv->workqueue,
7580 &priv->request_scan,
7581 SCAN_INTERVAL);
7582 else
7583 queue_delayed_work(priv->workqueue,
7584 &priv->request_scan, 0);
7585 }
7586
7587 return 0;
7588 }
7589
7590 ipw_associate_network(priv, network, rates, 0);
7591
7592 return 1;
7593 }
7594
7595 static void ipw_bg_associate(struct work_struct *work)
7596 {
7597 struct ipw_priv *priv =
7598 container_of(work, struct ipw_priv, associate);
7599 mutex_lock(&priv->mutex);
7600 ipw_associate(priv);
7601 mutex_unlock(&priv->mutex);
7602 }
7603
7604 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7605 struct sk_buff *skb)
7606 {
7607 struct ieee80211_hdr *hdr;
7608 u16 fc;
7609
7610 hdr = (struct ieee80211_hdr *)skb->data;
7611 fc = le16_to_cpu(hdr->frame_ctl);
7612 if (!(fc & IEEE80211_FCTL_PROTECTED))
7613 return;
7614
7615 fc &= ~IEEE80211_FCTL_PROTECTED;
7616 hdr->frame_ctl = cpu_to_le16(fc);
7617 switch (priv->ieee->sec.level) {
7618 case SEC_LEVEL_3:
7619 /* Remove CCMP HDR */
7620 memmove(skb->data + IEEE80211_3ADDR_LEN,
7621 skb->data + IEEE80211_3ADDR_LEN + 8,
7622 skb->len - IEEE80211_3ADDR_LEN - 8);
7623 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7624 break;
7625 case SEC_LEVEL_2:
7626 break;
7627 case SEC_LEVEL_1:
7628 /* Remove IV */
7629 memmove(skb->data + IEEE80211_3ADDR_LEN,
7630 skb->data + IEEE80211_3ADDR_LEN + 4,
7631 skb->len - IEEE80211_3ADDR_LEN - 4);
7632 skb_trim(skb, skb->len - 8); /* IV + ICV */
7633 break;
7634 case SEC_LEVEL_0:
7635 break;
7636 default:
7637 printk(KERN_ERR "Unknow security level %d\n",
7638 priv->ieee->sec.level);
7639 break;
7640 }
7641 }
7642
7643 static void ipw_handle_data_packet(struct ipw_priv *priv,
7644 struct ipw_rx_mem_buffer *rxb,
7645 struct ieee80211_rx_stats *stats)
7646 {
7647 struct ieee80211_hdr_4addr *hdr;
7648 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7649
7650 /* We received data from the HW, so stop the watchdog */
7651 priv->net_dev->trans_start = jiffies;
7652
7653 /* We only process data packets if the
7654 * interface is open */
7655 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7656 skb_tailroom(rxb->skb))) {
7657 priv->ieee->stats.rx_errors++;
7658 priv->wstats.discard.misc++;
7659 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7660 return;
7661 } else if (unlikely(!netif_running(priv->net_dev))) {
7662 priv->ieee->stats.rx_dropped++;
7663 priv->wstats.discard.misc++;
7664 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7665 return;
7666 }
7667
7668 /* Advance skb->data to the start of the actual payload */
7669 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7670
7671 /* Set the size of the skb to the size of the frame */
7672 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7673
7674 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7675
7676 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7677 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7678 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7679 (is_multicast_ether_addr(hdr->addr1) ?
7680 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7681 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7682
7683 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7684 priv->ieee->stats.rx_errors++;
7685 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7686 rxb->skb = NULL;
7687 __ipw_led_activity_on(priv);
7688 }
7689 }
7690
7691 #ifdef CONFIG_IPW2200_RADIOTAP
7692 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7693 struct ipw_rx_mem_buffer *rxb,
7694 struct ieee80211_rx_stats *stats)
7695 {
7696 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7697 struct ipw_rx_frame *frame = &pkt->u.frame;
7698
7699 /* initial pull of some data */
7700 u16 received_channel = frame->received_channel;
7701 u8 antennaAndPhy = frame->antennaAndPhy;
7702 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7703 u16 pktrate = frame->rate;
7704
7705 /* Magic struct that slots into the radiotap header -- no reason
7706 * to build this manually element by element, we can write it much
7707 * more efficiently than we can parse it. ORDER MATTERS HERE */
7708 struct ipw_rt_hdr *ipw_rt;
7709
7710 short len = le16_to_cpu(pkt->u.frame.length);
7711
7712 /* We received data from the HW, so stop the watchdog */
7713 priv->net_dev->trans_start = jiffies;
7714
7715 /* We only process data packets if the
7716 * interface is open */
7717 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7718 skb_tailroom(rxb->skb))) {
7719 priv->ieee->stats.rx_errors++;
7720 priv->wstats.discard.misc++;
7721 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7722 return;
7723 } else if (unlikely(!netif_running(priv->net_dev))) {
7724 priv->ieee->stats.rx_dropped++;
7725 priv->wstats.discard.misc++;
7726 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7727 return;
7728 }
7729
7730 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7731 * that now */
7732 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7733 /* FIXME: Should alloc bigger skb instead */
7734 priv->ieee->stats.rx_dropped++;
7735 priv->wstats.discard.misc++;
7736 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7737 return;
7738 }
7739
7740 /* copy the frame itself */
7741 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7742 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7743
7744 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7745 * part of our real header, saves a little time.
7746 *
7747 * No longer necessary since we fill in all our data. Purge before merging
7748 * patch officially.
7749 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7750 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7751 */
7752
7753 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7754
7755 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7756 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7757 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7758
7759 /* Big bitfield of all the fields we provide in radiotap */
7760 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7761 (1 << IEEE80211_RADIOTAP_TSFT) |
7762 (1 << IEEE80211_RADIOTAP_FLAGS) |
7763 (1 << IEEE80211_RADIOTAP_RATE) |
7764 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7765 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7766 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7767 (1 << IEEE80211_RADIOTAP_ANTENNA));
7768
7769 /* Zero the flags, we'll add to them as we go */
7770 ipw_rt->rt_flags = 0;
7771 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7772 frame->parent_tsf[2] << 16 |
7773 frame->parent_tsf[1] << 8 |
7774 frame->parent_tsf[0]);
7775
7776 /* Convert signal to DBM */
7777 ipw_rt->rt_dbmsignal = antsignal;
7778 ipw_rt->rt_dbmnoise = frame->noise;
7779
7780 /* Convert the channel data and set the flags */
7781 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7782 if (received_channel > 14) { /* 802.11a */
7783 ipw_rt->rt_chbitmask =
7784 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7785 } else if (antennaAndPhy & 32) { /* 802.11b */
7786 ipw_rt->rt_chbitmask =
7787 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7788 } else { /* 802.11g */
7789 ipw_rt->rt_chbitmask =
7790 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7791 }
7792
7793 /* set the rate in multiples of 500k/s */
7794 switch (pktrate) {
7795 case IPW_TX_RATE_1MB:
7796 ipw_rt->rt_rate = 2;
7797 break;
7798 case IPW_TX_RATE_2MB:
7799 ipw_rt->rt_rate = 4;
7800 break;
7801 case IPW_TX_RATE_5MB:
7802 ipw_rt->rt_rate = 10;
7803 break;
7804 case IPW_TX_RATE_6MB:
7805 ipw_rt->rt_rate = 12;
7806 break;
7807 case IPW_TX_RATE_9MB:
7808 ipw_rt->rt_rate = 18;
7809 break;
7810 case IPW_TX_RATE_11MB:
7811 ipw_rt->rt_rate = 22;
7812 break;
7813 case IPW_TX_RATE_12MB:
7814 ipw_rt->rt_rate = 24;
7815 break;
7816 case IPW_TX_RATE_18MB:
7817 ipw_rt->rt_rate = 36;
7818 break;
7819 case IPW_TX_RATE_24MB:
7820 ipw_rt->rt_rate = 48;
7821 break;
7822 case IPW_TX_RATE_36MB:
7823 ipw_rt->rt_rate = 72;
7824 break;
7825 case IPW_TX_RATE_48MB:
7826 ipw_rt->rt_rate = 96;
7827 break;
7828 case IPW_TX_RATE_54MB:
7829 ipw_rt->rt_rate = 108;
7830 break;
7831 default:
7832 ipw_rt->rt_rate = 0;
7833 break;
7834 }
7835
7836 /* antenna number */
7837 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7838
7839 /* set the preamble flag if we have it */
7840 if ((antennaAndPhy & 64))
7841 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7842
7843 /* Set the size of the skb to the size of the frame */
7844 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7845
7846 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7847
7848 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7849 priv->ieee->stats.rx_errors++;
7850 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7851 rxb->skb = NULL;
7852 /* no LED during capture */
7853 }
7854 }
7855 #endif
7856
7857 #ifdef CONFIG_IPW2200_PROMISCUOUS
7858 #define ieee80211_is_probe_response(fc) \
7859 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7860 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7861
7862 #define ieee80211_is_management(fc) \
7863 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7864
7865 #define ieee80211_is_control(fc) \
7866 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7867
7868 #define ieee80211_is_data(fc) \
7869 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7870
7871 #define ieee80211_is_assoc_request(fc) \
7872 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7873
7874 #define ieee80211_is_reassoc_request(fc) \
7875 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7876
7877 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7878 struct ipw_rx_mem_buffer *rxb,
7879 struct ieee80211_rx_stats *stats)
7880 {
7881 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7882 struct ipw_rx_frame *frame = &pkt->u.frame;
7883 struct ipw_rt_hdr *ipw_rt;
7884
7885 /* First cache any information we need before we overwrite
7886 * the information provided in the skb from the hardware */
7887 struct ieee80211_hdr *hdr;
7888 u16 channel = frame->received_channel;
7889 u8 phy_flags = frame->antennaAndPhy;
7890 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7891 s8 noise = frame->noise;
7892 u8 rate = frame->rate;
7893 short len = le16_to_cpu(pkt->u.frame.length);
7894 struct sk_buff *skb;
7895 int hdr_only = 0;
7896 u16 filter = priv->prom_priv->filter;
7897
7898 /* If the filter is set to not include Rx frames then return */
7899 if (filter & IPW_PROM_NO_RX)
7900 return;
7901
7902 /* We received data from the HW, so stop the watchdog */
7903 priv->prom_net_dev->trans_start = jiffies;
7904
7905 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7906 priv->prom_priv->ieee->stats.rx_errors++;
7907 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7908 return;
7909 }
7910
7911 /* We only process data packets if the interface is open */
7912 if (unlikely(!netif_running(priv->prom_net_dev))) {
7913 priv->prom_priv->ieee->stats.rx_dropped++;
7914 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7915 return;
7916 }
7917
7918 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7919 * that now */
7920 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7921 /* FIXME: Should alloc bigger skb instead */
7922 priv->prom_priv->ieee->stats.rx_dropped++;
7923 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7924 return;
7925 }
7926
7927 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7928 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7929 if (filter & IPW_PROM_NO_MGMT)
7930 return;
7931 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7932 hdr_only = 1;
7933 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7934 if (filter & IPW_PROM_NO_CTL)
7935 return;
7936 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7937 hdr_only = 1;
7938 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7939 if (filter & IPW_PROM_NO_DATA)
7940 return;
7941 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7942 hdr_only = 1;
7943 }
7944
7945 /* Copy the SKB since this is for the promiscuous side */
7946 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7947 if (skb == NULL) {
7948 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7949 return;
7950 }
7951
7952 /* copy the frame data to write after where the radiotap header goes */
7953 ipw_rt = (void *)skb->data;
7954
7955 if (hdr_only)
7956 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7957
7958 memcpy(ipw_rt->payload, hdr, len);
7959
7960 /* Zero the radiotap static buffer ... We only need to zero the bytes
7961 * NOT part of our real header, saves a little time.
7962 *
7963 * No longer necessary since we fill in all our data. Purge before
7964 * merging patch officially.
7965 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7966 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7967 */
7968
7969 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7970 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7971 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
7972
7973 /* Set the size of the skb to the size of the frame */
7974 skb_put(skb, sizeof(*ipw_rt) + len);
7975
7976 /* Big bitfield of all the fields we provide in radiotap */
7977 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7978 (1 << IEEE80211_RADIOTAP_TSFT) |
7979 (1 << IEEE80211_RADIOTAP_FLAGS) |
7980 (1 << IEEE80211_RADIOTAP_RATE) |
7981 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7982 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7983 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7984 (1 << IEEE80211_RADIOTAP_ANTENNA));
7985
7986 /* Zero the flags, we'll add to them as we go */
7987 ipw_rt->rt_flags = 0;
7988 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7989 frame->parent_tsf[2] << 16 |
7990 frame->parent_tsf[1] << 8 |
7991 frame->parent_tsf[0]);
7992
7993 /* Convert to DBM */
7994 ipw_rt->rt_dbmsignal = signal;
7995 ipw_rt->rt_dbmnoise = noise;
7996
7997 /* Convert the channel data and set the flags */
7998 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7999 if (channel > 14) { /* 802.11a */
8000 ipw_rt->rt_chbitmask =
8001 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8002 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8003 ipw_rt->rt_chbitmask =
8004 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8005 } else { /* 802.11g */
8006 ipw_rt->rt_chbitmask =
8007 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8008 }
8009
8010 /* set the rate in multiples of 500k/s */
8011 switch (rate) {
8012 case IPW_TX_RATE_1MB:
8013 ipw_rt->rt_rate = 2;
8014 break;
8015 case IPW_TX_RATE_2MB:
8016 ipw_rt->rt_rate = 4;
8017 break;
8018 case IPW_TX_RATE_5MB:
8019 ipw_rt->rt_rate = 10;
8020 break;
8021 case IPW_TX_RATE_6MB:
8022 ipw_rt->rt_rate = 12;
8023 break;
8024 case IPW_TX_RATE_9MB:
8025 ipw_rt->rt_rate = 18;
8026 break;
8027 case IPW_TX_RATE_11MB:
8028 ipw_rt->rt_rate = 22;
8029 break;
8030 case IPW_TX_RATE_12MB:
8031 ipw_rt->rt_rate = 24;
8032 break;
8033 case IPW_TX_RATE_18MB:
8034 ipw_rt->rt_rate = 36;
8035 break;
8036 case IPW_TX_RATE_24MB:
8037 ipw_rt->rt_rate = 48;
8038 break;
8039 case IPW_TX_RATE_36MB:
8040 ipw_rt->rt_rate = 72;
8041 break;
8042 case IPW_TX_RATE_48MB:
8043 ipw_rt->rt_rate = 96;
8044 break;
8045 case IPW_TX_RATE_54MB:
8046 ipw_rt->rt_rate = 108;
8047 break;
8048 default:
8049 ipw_rt->rt_rate = 0;
8050 break;
8051 }
8052
8053 /* antenna number */
8054 ipw_rt->rt_antenna = (phy_flags & 3);
8055
8056 /* set the preamble flag if we have it */
8057 if (phy_flags & (1 << 6))
8058 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8059
8060 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8061
8062 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8063 priv->prom_priv->ieee->stats.rx_errors++;
8064 dev_kfree_skb_any(skb);
8065 }
8066 }
8067 #endif
8068
8069 static int is_network_packet(struct ipw_priv *priv,
8070 struct ieee80211_hdr_4addr *header)
8071 {
8072 /* Filter incoming packets to determine if they are targetted toward
8073 * this network, discarding packets coming from ourselves */
8074 switch (priv->ieee->iw_mode) {
8075 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8076 /* packets from our adapter are dropped (echo) */
8077 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8078 return 0;
8079
8080 /* {broad,multi}cast packets to our BSSID go through */
8081 if (is_multicast_ether_addr(header->addr1))
8082 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8083
8084 /* packets to our adapter go through */
8085 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8086 ETH_ALEN);
8087
8088 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8089 /* packets from our adapter are dropped (echo) */
8090 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8091 return 0;
8092
8093 /* {broad,multi}cast packets to our BSS go through */
8094 if (is_multicast_ether_addr(header->addr1))
8095 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8096
8097 /* packets to our adapter go through */
8098 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8099 ETH_ALEN);
8100 }
8101
8102 return 1;
8103 }
8104
8105 #define IPW_PACKET_RETRY_TIME HZ
8106
8107 static int is_duplicate_packet(struct ipw_priv *priv,
8108 struct ieee80211_hdr_4addr *header)
8109 {
8110 u16 sc = le16_to_cpu(header->seq_ctl);
8111 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8112 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8113 u16 *last_seq, *last_frag;
8114 unsigned long *last_time;
8115
8116 switch (priv->ieee->iw_mode) {
8117 case IW_MODE_ADHOC:
8118 {
8119 struct list_head *p;
8120 struct ipw_ibss_seq *entry = NULL;
8121 u8 *mac = header->addr2;
8122 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8123
8124 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8125 entry =
8126 list_entry(p, struct ipw_ibss_seq, list);
8127 if (!memcmp(entry->mac, mac, ETH_ALEN))
8128 break;
8129 }
8130 if (p == &priv->ibss_mac_hash[index]) {
8131 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8132 if (!entry) {
8133 IPW_ERROR
8134 ("Cannot malloc new mac entry\n");
8135 return 0;
8136 }
8137 memcpy(entry->mac, mac, ETH_ALEN);
8138 entry->seq_num = seq;
8139 entry->frag_num = frag;
8140 entry->packet_time = jiffies;
8141 list_add(&entry->list,
8142 &priv->ibss_mac_hash[index]);
8143 return 0;
8144 }
8145 last_seq = &entry->seq_num;
8146 last_frag = &entry->frag_num;
8147 last_time = &entry->packet_time;
8148 break;
8149 }
8150 case IW_MODE_INFRA:
8151 last_seq = &priv->last_seq_num;
8152 last_frag = &priv->last_frag_num;
8153 last_time = &priv->last_packet_time;
8154 break;
8155 default:
8156 return 0;
8157 }
8158 if ((*last_seq == seq) &&
8159 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8160 if (*last_frag == frag)
8161 goto drop;
8162 if (*last_frag + 1 != frag)
8163 /* out-of-order fragment */
8164 goto drop;
8165 } else
8166 *last_seq = seq;
8167
8168 *last_frag = frag;
8169 *last_time = jiffies;
8170 return 0;
8171
8172 drop:
8173 /* Comment this line now since we observed the card receives
8174 * duplicate packets but the FCTL_RETRY bit is not set in the
8175 * IBSS mode with fragmentation enabled.
8176 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8177 return 1;
8178 }
8179
8180 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8181 struct ipw_rx_mem_buffer *rxb,
8182 struct ieee80211_rx_stats *stats)
8183 {
8184 struct sk_buff *skb = rxb->skb;
8185 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8186 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8187 (skb->data + IPW_RX_FRAME_SIZE);
8188
8189 ieee80211_rx_mgt(priv->ieee, header, stats);
8190
8191 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8192 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8193 IEEE80211_STYPE_PROBE_RESP) ||
8194 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8195 IEEE80211_STYPE_BEACON))) {
8196 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8197 ipw_add_station(priv, header->addr2);
8198 }
8199
8200 if (priv->config & CFG_NET_STATS) {
8201 IPW_DEBUG_HC("sending stat packet\n");
8202
8203 /* Set the size of the skb to the size of the full
8204 * ipw header and 802.11 frame */
8205 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8206 IPW_RX_FRAME_SIZE);
8207
8208 /* Advance past the ipw packet header to the 802.11 frame */
8209 skb_pull(skb, IPW_RX_FRAME_SIZE);
8210
8211 /* Push the ieee80211_rx_stats before the 802.11 frame */
8212 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8213
8214 skb->dev = priv->ieee->dev;
8215
8216 /* Point raw at the ieee80211_stats */
8217 skb_reset_mac_header(skb);
8218
8219 skb->pkt_type = PACKET_OTHERHOST;
8220 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8221 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8222 netif_rx(skb);
8223 rxb->skb = NULL;
8224 }
8225 }
8226
8227 /*
8228 * Main entry function for recieving a packet with 80211 headers. This
8229 * should be called when ever the FW has notified us that there is a new
8230 * skb in the recieve queue.
8231 */
8232 static void ipw_rx(struct ipw_priv *priv)
8233 {
8234 struct ipw_rx_mem_buffer *rxb;
8235 struct ipw_rx_packet *pkt;
8236 struct ieee80211_hdr_4addr *header;
8237 u32 r, w, i;
8238 u8 network_packet;
8239 u8 fill_rx = 0;
8240 DECLARE_MAC_BUF(mac);
8241 DECLARE_MAC_BUF(mac2);
8242 DECLARE_MAC_BUF(mac3);
8243
8244 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8245 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8246 i = priv->rxq->read;
8247
8248 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8249 fill_rx = 1;
8250
8251 while (i != r) {
8252 rxb = priv->rxq->queue[i];
8253 if (unlikely(rxb == NULL)) {
8254 printk(KERN_CRIT "Queue not allocated!\n");
8255 break;
8256 }
8257 priv->rxq->queue[i] = NULL;
8258
8259 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8260 IPW_RX_BUF_SIZE,
8261 PCI_DMA_FROMDEVICE);
8262
8263 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8264 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8265 pkt->header.message_type,
8266 pkt->header.rx_seq_num, pkt->header.control_bits);
8267
8268 switch (pkt->header.message_type) {
8269 case RX_FRAME_TYPE: /* 802.11 frame */ {
8270 struct ieee80211_rx_stats stats = {
8271 .rssi = pkt->u.frame.rssi_dbm -
8272 IPW_RSSI_TO_DBM,
8273 .signal =
8274 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8275 IPW_RSSI_TO_DBM + 0x100,
8276 .noise =
8277 le16_to_cpu(pkt->u.frame.noise),
8278 .rate = pkt->u.frame.rate,
8279 .mac_time = jiffies,
8280 .received_channel =
8281 pkt->u.frame.received_channel,
8282 .freq =
8283 (pkt->u.frame.
8284 control & (1 << 0)) ?
8285 IEEE80211_24GHZ_BAND :
8286 IEEE80211_52GHZ_BAND,
8287 .len = le16_to_cpu(pkt->u.frame.length),
8288 };
8289
8290 if (stats.rssi != 0)
8291 stats.mask |= IEEE80211_STATMASK_RSSI;
8292 if (stats.signal != 0)
8293 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8294 if (stats.noise != 0)
8295 stats.mask |= IEEE80211_STATMASK_NOISE;
8296 if (stats.rate != 0)
8297 stats.mask |= IEEE80211_STATMASK_RATE;
8298
8299 priv->rx_packets++;
8300
8301 #ifdef CONFIG_IPW2200_PROMISCUOUS
8302 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8303 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8304 #endif
8305
8306 #ifdef CONFIG_IPW2200_MONITOR
8307 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8308 #ifdef CONFIG_IPW2200_RADIOTAP
8309
8310 ipw_handle_data_packet_monitor(priv,
8311 rxb,
8312 &stats);
8313 #else
8314 ipw_handle_data_packet(priv, rxb,
8315 &stats);
8316 #endif
8317 break;
8318 }
8319 #endif
8320
8321 header =
8322 (struct ieee80211_hdr_4addr *)(rxb->skb->
8323 data +
8324 IPW_RX_FRAME_SIZE);
8325 /* TODO: Check Ad-Hoc dest/source and make sure
8326 * that we are actually parsing these packets
8327 * correctly -- we should probably use the
8328 * frame control of the packet and disregard
8329 * the current iw_mode */
8330
8331 network_packet =
8332 is_network_packet(priv, header);
8333 if (network_packet && priv->assoc_network) {
8334 priv->assoc_network->stats.rssi =
8335 stats.rssi;
8336 priv->exp_avg_rssi =
8337 exponential_average(priv->exp_avg_rssi,
8338 stats.rssi, DEPTH_RSSI);
8339 }
8340
8341 IPW_DEBUG_RX("Frame: len=%u\n",
8342 le16_to_cpu(pkt->u.frame.length));
8343
8344 if (le16_to_cpu(pkt->u.frame.length) <
8345 ieee80211_get_hdrlen(le16_to_cpu(
8346 header->frame_ctl))) {
8347 IPW_DEBUG_DROP
8348 ("Received packet is too small. "
8349 "Dropping.\n");
8350 priv->ieee->stats.rx_errors++;
8351 priv->wstats.discard.misc++;
8352 break;
8353 }
8354
8355 switch (WLAN_FC_GET_TYPE
8356 (le16_to_cpu(header->frame_ctl))) {
8357
8358 case IEEE80211_FTYPE_MGMT:
8359 ipw_handle_mgmt_packet(priv, rxb,
8360 &stats);
8361 break;
8362
8363 case IEEE80211_FTYPE_CTL:
8364 break;
8365
8366 case IEEE80211_FTYPE_DATA:
8367 if (unlikely(!network_packet ||
8368 is_duplicate_packet(priv,
8369 header)))
8370 {
8371 IPW_DEBUG_DROP("Dropping: "
8372 "%s, "
8373 "%s, "
8374 "%s\n",
8375 print_mac(mac,
8376 header->
8377 addr1),
8378 print_mac(mac2,
8379 header->
8380 addr2),
8381 print_mac(mac3,
8382 header->
8383 addr3));
8384 break;
8385 }
8386
8387 ipw_handle_data_packet(priv, rxb,
8388 &stats);
8389
8390 break;
8391 }
8392 break;
8393 }
8394
8395 case RX_HOST_NOTIFICATION_TYPE:{
8396 IPW_DEBUG_RX
8397 ("Notification: subtype=%02X flags=%02X size=%d\n",
8398 pkt->u.notification.subtype,
8399 pkt->u.notification.flags,
8400 le16_to_cpu(pkt->u.notification.size));
8401 ipw_rx_notification(priv, &pkt->u.notification);
8402 break;
8403 }
8404
8405 default:
8406 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8407 pkt->header.message_type);
8408 break;
8409 }
8410
8411 /* For now we just don't re-use anything. We can tweak this
8412 * later to try and re-use notification packets and SKBs that
8413 * fail to Rx correctly */
8414 if (rxb->skb != NULL) {
8415 dev_kfree_skb_any(rxb->skb);
8416 rxb->skb = NULL;
8417 }
8418
8419 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8420 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8421 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8422
8423 i = (i + 1) % RX_QUEUE_SIZE;
8424
8425 /* If there are a lot of unsued frames, restock the Rx queue
8426 * so the ucode won't assert */
8427 if (fill_rx) {
8428 priv->rxq->read = i;
8429 ipw_rx_queue_replenish(priv);
8430 }
8431 }
8432
8433 /* Backtrack one entry */
8434 priv->rxq->read = i;
8435 ipw_rx_queue_restock(priv);
8436 }
8437
8438 #define DEFAULT_RTS_THRESHOLD 2304U
8439 #define MIN_RTS_THRESHOLD 1U
8440 #define MAX_RTS_THRESHOLD 2304U
8441 #define DEFAULT_BEACON_INTERVAL 100U
8442 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8443 #define DEFAULT_LONG_RETRY_LIMIT 4U
8444
8445 /**
8446 * ipw_sw_reset
8447 * @option: options to control different reset behaviour
8448 * 0 = reset everything except the 'disable' module_param
8449 * 1 = reset everything and print out driver info (for probe only)
8450 * 2 = reset everything
8451 */
8452 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8453 {
8454 int band, modulation;
8455 int old_mode = priv->ieee->iw_mode;
8456
8457 /* Initialize module parameter values here */
8458 priv->config = 0;
8459
8460 /* We default to disabling the LED code as right now it causes
8461 * too many systems to lock up... */
8462 if (!led)
8463 priv->config |= CFG_NO_LED;
8464
8465 if (associate)
8466 priv->config |= CFG_ASSOCIATE;
8467 else
8468 IPW_DEBUG_INFO("Auto associate disabled.\n");
8469
8470 if (auto_create)
8471 priv->config |= CFG_ADHOC_CREATE;
8472 else
8473 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8474
8475 priv->config &= ~CFG_STATIC_ESSID;
8476 priv->essid_len = 0;
8477 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8478
8479 if (disable && option) {
8480 priv->status |= STATUS_RF_KILL_SW;
8481 IPW_DEBUG_INFO("Radio disabled.\n");
8482 }
8483
8484 if (channel != 0) {
8485 priv->config |= CFG_STATIC_CHANNEL;
8486 priv->channel = channel;
8487 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8488 /* TODO: Validate that provided channel is in range */
8489 }
8490 #ifdef CONFIG_IPW2200_QOS
8491 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8492 burst_duration_CCK, burst_duration_OFDM);
8493 #endif /* CONFIG_IPW2200_QOS */
8494
8495 switch (mode) {
8496 case 1:
8497 priv->ieee->iw_mode = IW_MODE_ADHOC;
8498 priv->net_dev->type = ARPHRD_ETHER;
8499
8500 break;
8501 #ifdef CONFIG_IPW2200_MONITOR
8502 case 2:
8503 priv->ieee->iw_mode = IW_MODE_MONITOR;
8504 #ifdef CONFIG_IPW2200_RADIOTAP
8505 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8506 #else
8507 priv->net_dev->type = ARPHRD_IEEE80211;
8508 #endif
8509 break;
8510 #endif
8511 default:
8512 case 0:
8513 priv->net_dev->type = ARPHRD_ETHER;
8514 priv->ieee->iw_mode = IW_MODE_INFRA;
8515 break;
8516 }
8517
8518 if (hwcrypto) {
8519 priv->ieee->host_encrypt = 0;
8520 priv->ieee->host_encrypt_msdu = 0;
8521 priv->ieee->host_decrypt = 0;
8522 priv->ieee->host_mc_decrypt = 0;
8523 }
8524 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8525
8526 /* IPW2200/2915 is abled to do hardware fragmentation. */
8527 priv->ieee->host_open_frag = 0;
8528
8529 if ((priv->pci_dev->device == 0x4223) ||
8530 (priv->pci_dev->device == 0x4224)) {
8531 if (option == 1)
8532 printk(KERN_INFO DRV_NAME
8533 ": Detected Intel PRO/Wireless 2915ABG Network "
8534 "Connection\n");
8535 priv->ieee->abg_true = 1;
8536 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8537 modulation = IEEE80211_OFDM_MODULATION |
8538 IEEE80211_CCK_MODULATION;
8539 priv->adapter = IPW_2915ABG;
8540 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8541 } else {
8542 if (option == 1)
8543 printk(KERN_INFO DRV_NAME
8544 ": Detected Intel PRO/Wireless 2200BG Network "
8545 "Connection\n");
8546
8547 priv->ieee->abg_true = 0;
8548 band = IEEE80211_24GHZ_BAND;
8549 modulation = IEEE80211_OFDM_MODULATION |
8550 IEEE80211_CCK_MODULATION;
8551 priv->adapter = IPW_2200BG;
8552 priv->ieee->mode = IEEE_G | IEEE_B;
8553 }
8554
8555 priv->ieee->freq_band = band;
8556 priv->ieee->modulation = modulation;
8557
8558 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8559
8560 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8561 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8562
8563 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8564 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8565 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8566
8567 /* If power management is turned on, default to AC mode */
8568 priv->power_mode = IPW_POWER_AC;
8569 priv->tx_power = IPW_TX_POWER_DEFAULT;
8570
8571 return old_mode == priv->ieee->iw_mode;
8572 }
8573
8574 /*
8575 * This file defines the Wireless Extension handlers. It does not
8576 * define any methods of hardware manipulation and relies on the
8577 * functions defined in ipw_main to provide the HW interaction.
8578 *
8579 * The exception to this is the use of the ipw_get_ordinal()
8580 * function used to poll the hardware vs. making unecessary calls.
8581 *
8582 */
8583
8584 static int ipw_wx_get_name(struct net_device *dev,
8585 struct iw_request_info *info,
8586 union iwreq_data *wrqu, char *extra)
8587 {
8588 struct ipw_priv *priv = ieee80211_priv(dev);
8589 mutex_lock(&priv->mutex);
8590 if (priv->status & STATUS_RF_KILL_MASK)
8591 strcpy(wrqu->name, "radio off");
8592 else if (!(priv->status & STATUS_ASSOCIATED))
8593 strcpy(wrqu->name, "unassociated");
8594 else
8595 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8596 ipw_modes[priv->assoc_request.ieee_mode]);
8597 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8598 mutex_unlock(&priv->mutex);
8599 return 0;
8600 }
8601
8602 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8603 {
8604 if (channel == 0) {
8605 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8606 priv->config &= ~CFG_STATIC_CHANNEL;
8607 IPW_DEBUG_ASSOC("Attempting to associate with new "
8608 "parameters.\n");
8609 ipw_associate(priv);
8610 return 0;
8611 }
8612
8613 priv->config |= CFG_STATIC_CHANNEL;
8614
8615 if (priv->channel == channel) {
8616 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8617 channel);
8618 return 0;
8619 }
8620
8621 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8622 priv->channel = channel;
8623
8624 #ifdef CONFIG_IPW2200_MONITOR
8625 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8626 int i;
8627 if (priv->status & STATUS_SCANNING) {
8628 IPW_DEBUG_SCAN("Scan abort triggered due to "
8629 "channel change.\n");
8630 ipw_abort_scan(priv);
8631 }
8632
8633 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8634 udelay(10);
8635
8636 if (priv->status & STATUS_SCANNING)
8637 IPW_DEBUG_SCAN("Still scanning...\n");
8638 else
8639 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8640 1000 - i);
8641
8642 return 0;
8643 }
8644 #endif /* CONFIG_IPW2200_MONITOR */
8645
8646 /* Network configuration changed -- force [re]association */
8647 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8648 if (!ipw_disassociate(priv))
8649 ipw_associate(priv);
8650
8651 return 0;
8652 }
8653
8654 static int ipw_wx_set_freq(struct net_device *dev,
8655 struct iw_request_info *info,
8656 union iwreq_data *wrqu, char *extra)
8657 {
8658 struct ipw_priv *priv = ieee80211_priv(dev);
8659 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8660 struct iw_freq *fwrq = &wrqu->freq;
8661 int ret = 0, i;
8662 u8 channel, flags;
8663 int band;
8664
8665 if (fwrq->m == 0) {
8666 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8667 mutex_lock(&priv->mutex);
8668 ret = ipw_set_channel(priv, 0);
8669 mutex_unlock(&priv->mutex);
8670 return ret;
8671 }
8672 /* if setting by freq convert to channel */
8673 if (fwrq->e == 1) {
8674 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8675 if (channel == 0)
8676 return -EINVAL;
8677 } else
8678 channel = fwrq->m;
8679
8680 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8681 return -EINVAL;
8682
8683 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8684 i = ieee80211_channel_to_index(priv->ieee, channel);
8685 if (i == -1)
8686 return -EINVAL;
8687
8688 flags = (band == IEEE80211_24GHZ_BAND) ?
8689 geo->bg[i].flags : geo->a[i].flags;
8690 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8691 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8692 return -EINVAL;
8693 }
8694 }
8695
8696 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8697 mutex_lock(&priv->mutex);
8698 ret = ipw_set_channel(priv, channel);
8699 mutex_unlock(&priv->mutex);
8700 return ret;
8701 }
8702
8703 static int ipw_wx_get_freq(struct net_device *dev,
8704 struct iw_request_info *info,
8705 union iwreq_data *wrqu, char *extra)
8706 {
8707 struct ipw_priv *priv = ieee80211_priv(dev);
8708
8709 wrqu->freq.e = 0;
8710
8711 /* If we are associated, trying to associate, or have a statically
8712 * configured CHANNEL then return that; otherwise return ANY */
8713 mutex_lock(&priv->mutex);
8714 if (priv->config & CFG_STATIC_CHANNEL ||
8715 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8716 int i;
8717
8718 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8719 BUG_ON(i == -1);
8720 wrqu->freq.e = 1;
8721
8722 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8723 case IEEE80211_52GHZ_BAND:
8724 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8725 break;
8726
8727 case IEEE80211_24GHZ_BAND:
8728 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8729 break;
8730
8731 default:
8732 BUG();
8733 }
8734 } else
8735 wrqu->freq.m = 0;
8736
8737 mutex_unlock(&priv->mutex);
8738 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8739 return 0;
8740 }
8741
8742 static int ipw_wx_set_mode(struct net_device *dev,
8743 struct iw_request_info *info,
8744 union iwreq_data *wrqu, char *extra)
8745 {
8746 struct ipw_priv *priv = ieee80211_priv(dev);
8747 int err = 0;
8748
8749 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8750
8751 switch (wrqu->mode) {
8752 #ifdef CONFIG_IPW2200_MONITOR
8753 case IW_MODE_MONITOR:
8754 #endif
8755 case IW_MODE_ADHOC:
8756 case IW_MODE_INFRA:
8757 break;
8758 case IW_MODE_AUTO:
8759 wrqu->mode = IW_MODE_INFRA;
8760 break;
8761 default:
8762 return -EINVAL;
8763 }
8764 if (wrqu->mode == priv->ieee->iw_mode)
8765 return 0;
8766
8767 mutex_lock(&priv->mutex);
8768
8769 ipw_sw_reset(priv, 0);
8770
8771 #ifdef CONFIG_IPW2200_MONITOR
8772 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8773 priv->net_dev->type = ARPHRD_ETHER;
8774
8775 if (wrqu->mode == IW_MODE_MONITOR)
8776 #ifdef CONFIG_IPW2200_RADIOTAP
8777 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8778 #else
8779 priv->net_dev->type = ARPHRD_IEEE80211;
8780 #endif
8781 #endif /* CONFIG_IPW2200_MONITOR */
8782
8783 /* Free the existing firmware and reset the fw_loaded
8784 * flag so ipw_load() will bring in the new firmawre */
8785 free_firmware();
8786
8787 priv->ieee->iw_mode = wrqu->mode;
8788
8789 queue_work(priv->workqueue, &priv->adapter_restart);
8790 mutex_unlock(&priv->mutex);
8791 return err;
8792 }
8793
8794 static int ipw_wx_get_mode(struct net_device *dev,
8795 struct iw_request_info *info,
8796 union iwreq_data *wrqu, char *extra)
8797 {
8798 struct ipw_priv *priv = ieee80211_priv(dev);
8799 mutex_lock(&priv->mutex);
8800 wrqu->mode = priv->ieee->iw_mode;
8801 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8802 mutex_unlock(&priv->mutex);
8803 return 0;
8804 }
8805
8806 /* Values are in microsecond */
8807 static const s32 timeout_duration[] = {
8808 350000,
8809 250000,
8810 75000,
8811 37000,
8812 25000,
8813 };
8814
8815 static const s32 period_duration[] = {
8816 400000,
8817 700000,
8818 1000000,
8819 1000000,
8820 1000000
8821 };
8822
8823 static int ipw_wx_get_range(struct net_device *dev,
8824 struct iw_request_info *info,
8825 union iwreq_data *wrqu, char *extra)
8826 {
8827 struct ipw_priv *priv = ieee80211_priv(dev);
8828 struct iw_range *range = (struct iw_range *)extra;
8829 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8830 int i = 0, j;
8831
8832 wrqu->data.length = sizeof(*range);
8833 memset(range, 0, sizeof(*range));
8834
8835 /* 54Mbs == ~27 Mb/s real (802.11g) */
8836 range->throughput = 27 * 1000 * 1000;
8837
8838 range->max_qual.qual = 100;
8839 /* TODO: Find real max RSSI and stick here */
8840 range->max_qual.level = 0;
8841 range->max_qual.noise = 0;
8842 range->max_qual.updated = 7; /* Updated all three */
8843
8844 range->avg_qual.qual = 70;
8845 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8846 range->avg_qual.level = 0; /* FIXME to real average level */
8847 range->avg_qual.noise = 0;
8848 range->avg_qual.updated = 7; /* Updated all three */
8849 mutex_lock(&priv->mutex);
8850 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8851
8852 for (i = 0; i < range->num_bitrates; i++)
8853 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8854 500000;
8855
8856 range->max_rts = DEFAULT_RTS_THRESHOLD;
8857 range->min_frag = MIN_FRAG_THRESHOLD;
8858 range->max_frag = MAX_FRAG_THRESHOLD;
8859
8860 range->encoding_size[0] = 5;
8861 range->encoding_size[1] = 13;
8862 range->num_encoding_sizes = 2;
8863 range->max_encoding_tokens = WEP_KEYS;
8864
8865 /* Set the Wireless Extension versions */
8866 range->we_version_compiled = WIRELESS_EXT;
8867 range->we_version_source = 18;
8868
8869 i = 0;
8870 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8871 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8872 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8873 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8874 continue;
8875
8876 range->freq[i].i = geo->bg[j].channel;
8877 range->freq[i].m = geo->bg[j].freq * 100000;
8878 range->freq[i].e = 1;
8879 i++;
8880 }
8881 }
8882
8883 if (priv->ieee->mode & IEEE_A) {
8884 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8885 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8886 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8887 continue;
8888
8889 range->freq[i].i = geo->a[j].channel;
8890 range->freq[i].m = geo->a[j].freq * 100000;
8891 range->freq[i].e = 1;
8892 i++;
8893 }
8894 }
8895
8896 range->num_channels = i;
8897 range->num_frequency = i;
8898
8899 mutex_unlock(&priv->mutex);
8900
8901 /* Event capability (kernel + driver) */
8902 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8903 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8904 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8905 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8906 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8907
8908 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8909 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8910
8911 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8912
8913 IPW_DEBUG_WX("GET Range\n");
8914 return 0;
8915 }
8916
8917 static int ipw_wx_set_wap(struct net_device *dev,
8918 struct iw_request_info *info,
8919 union iwreq_data *wrqu, char *extra)
8920 {
8921 struct ipw_priv *priv = ieee80211_priv(dev);
8922 DECLARE_MAC_BUF(mac);
8923
8924 static const unsigned char any[] = {
8925 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8926 };
8927 static const unsigned char off[] = {
8928 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8929 };
8930
8931 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8932 return -EINVAL;
8933 mutex_lock(&priv->mutex);
8934 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8935 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8936 /* we disable mandatory BSSID association */
8937 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8938 priv->config &= ~CFG_STATIC_BSSID;
8939 IPW_DEBUG_ASSOC("Attempting to associate with new "
8940 "parameters.\n");
8941 ipw_associate(priv);
8942 mutex_unlock(&priv->mutex);
8943 return 0;
8944 }
8945
8946 priv->config |= CFG_STATIC_BSSID;
8947 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8948 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8949 mutex_unlock(&priv->mutex);
8950 return 0;
8951 }
8952
8953 IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
8954 print_mac(mac, wrqu->ap_addr.sa_data));
8955
8956 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8957
8958 /* Network configuration changed -- force [re]association */
8959 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8960 if (!ipw_disassociate(priv))
8961 ipw_associate(priv);
8962
8963 mutex_unlock(&priv->mutex);
8964 return 0;
8965 }
8966
8967 static int ipw_wx_get_wap(struct net_device *dev,
8968 struct iw_request_info *info,
8969 union iwreq_data *wrqu, char *extra)
8970 {
8971 struct ipw_priv *priv = ieee80211_priv(dev);
8972 DECLARE_MAC_BUF(mac);
8973
8974 /* If we are associated, trying to associate, or have a statically
8975 * configured BSSID then return that; otherwise return ANY */
8976 mutex_lock(&priv->mutex);
8977 if (priv->config & CFG_STATIC_BSSID ||
8978 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8979 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8980 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8981 } else
8982 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8983
8984 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
8985 print_mac(mac, wrqu->ap_addr.sa_data));
8986 mutex_unlock(&priv->mutex);
8987 return 0;
8988 }
8989
8990 static int ipw_wx_set_essid(struct net_device *dev,
8991 struct iw_request_info *info,
8992 union iwreq_data *wrqu, char *extra)
8993 {
8994 struct ipw_priv *priv = ieee80211_priv(dev);
8995 int length;
8996
8997 mutex_lock(&priv->mutex);
8998
8999 if (!wrqu->essid.flags)
9000 {
9001 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9002 ipw_disassociate(priv);
9003 priv->config &= ~CFG_STATIC_ESSID;
9004 ipw_associate(priv);
9005 mutex_unlock(&priv->mutex);
9006 return 0;
9007 }
9008
9009 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9010
9011 priv->config |= CFG_STATIC_ESSID;
9012
9013 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9014 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9015 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9016 mutex_unlock(&priv->mutex);
9017 return 0;
9018 }
9019
9020 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9021 length);
9022
9023 priv->essid_len = length;
9024 memcpy(priv->essid, extra, priv->essid_len);
9025
9026 /* Network configuration changed -- force [re]association */
9027 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9028 if (!ipw_disassociate(priv))
9029 ipw_associate(priv);
9030
9031 mutex_unlock(&priv->mutex);
9032 return 0;
9033 }
9034
9035 static int ipw_wx_get_essid(struct net_device *dev,
9036 struct iw_request_info *info,
9037 union iwreq_data *wrqu, char *extra)
9038 {
9039 struct ipw_priv *priv = ieee80211_priv(dev);
9040
9041 /* If we are associated, trying to associate, or have a statically
9042 * configured ESSID then return that; otherwise return ANY */
9043 mutex_lock(&priv->mutex);
9044 if (priv->config & CFG_STATIC_ESSID ||
9045 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9046 IPW_DEBUG_WX("Getting essid: '%s'\n",
9047 escape_essid(priv->essid, priv->essid_len));
9048 memcpy(extra, priv->essid, priv->essid_len);
9049 wrqu->essid.length = priv->essid_len;
9050 wrqu->essid.flags = 1; /* active */
9051 } else {
9052 IPW_DEBUG_WX("Getting essid: ANY\n");
9053 wrqu->essid.length = 0;
9054 wrqu->essid.flags = 0; /* active */
9055 }
9056 mutex_unlock(&priv->mutex);
9057 return 0;
9058 }
9059
9060 static int ipw_wx_set_nick(struct net_device *dev,
9061 struct iw_request_info *info,
9062 union iwreq_data *wrqu, char *extra)
9063 {
9064 struct ipw_priv *priv = ieee80211_priv(dev);
9065
9066 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9067 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9068 return -E2BIG;
9069 mutex_lock(&priv->mutex);
9070 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9071 memset(priv->nick, 0, sizeof(priv->nick));
9072 memcpy(priv->nick, extra, wrqu->data.length);
9073 IPW_DEBUG_TRACE("<<\n");
9074 mutex_unlock(&priv->mutex);
9075 return 0;
9076
9077 }
9078
9079 static int ipw_wx_get_nick(struct net_device *dev,
9080 struct iw_request_info *info,
9081 union iwreq_data *wrqu, char *extra)
9082 {
9083 struct ipw_priv *priv = ieee80211_priv(dev);
9084 IPW_DEBUG_WX("Getting nick\n");
9085 mutex_lock(&priv->mutex);
9086 wrqu->data.length = strlen(priv->nick);
9087 memcpy(extra, priv->nick, wrqu->data.length);
9088 wrqu->data.flags = 1; /* active */
9089 mutex_unlock(&priv->mutex);
9090 return 0;
9091 }
9092
9093 static int ipw_wx_set_sens(struct net_device *dev,
9094 struct iw_request_info *info,
9095 union iwreq_data *wrqu, char *extra)
9096 {
9097 struct ipw_priv *priv = ieee80211_priv(dev);
9098 int err = 0;
9099
9100 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9101 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9102 mutex_lock(&priv->mutex);
9103
9104 if (wrqu->sens.fixed == 0)
9105 {
9106 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9107 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9108 goto out;
9109 }
9110 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9111 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9112 err = -EINVAL;
9113 goto out;
9114 }
9115
9116 priv->roaming_threshold = wrqu->sens.value;
9117 priv->disassociate_threshold = 3*wrqu->sens.value;
9118 out:
9119 mutex_unlock(&priv->mutex);
9120 return err;
9121 }
9122
9123 static int ipw_wx_get_sens(struct net_device *dev,
9124 struct iw_request_info *info,
9125 union iwreq_data *wrqu, char *extra)
9126 {
9127 struct ipw_priv *priv = ieee80211_priv(dev);
9128 mutex_lock(&priv->mutex);
9129 wrqu->sens.fixed = 1;
9130 wrqu->sens.value = priv->roaming_threshold;
9131 mutex_unlock(&priv->mutex);
9132
9133 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9134 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9135
9136 return 0;
9137 }
9138
9139 static int ipw_wx_set_rate(struct net_device *dev,
9140 struct iw_request_info *info,
9141 union iwreq_data *wrqu, char *extra)
9142 {
9143 /* TODO: We should use semaphores or locks for access to priv */
9144 struct ipw_priv *priv = ieee80211_priv(dev);
9145 u32 target_rate = wrqu->bitrate.value;
9146 u32 fixed, mask;
9147
9148 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9149 /* value = X, fixed = 1 means only rate X */
9150 /* value = X, fixed = 0 means all rates lower equal X */
9151
9152 if (target_rate == -1) {
9153 fixed = 0;
9154 mask = IEEE80211_DEFAULT_RATES_MASK;
9155 /* Now we should reassociate */
9156 goto apply;
9157 }
9158
9159 mask = 0;
9160 fixed = wrqu->bitrate.fixed;
9161
9162 if (target_rate == 1000000 || !fixed)
9163 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9164 if (target_rate == 1000000)
9165 goto apply;
9166
9167 if (target_rate == 2000000 || !fixed)
9168 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9169 if (target_rate == 2000000)
9170 goto apply;
9171
9172 if (target_rate == 5500000 || !fixed)
9173 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9174 if (target_rate == 5500000)
9175 goto apply;
9176
9177 if (target_rate == 6000000 || !fixed)
9178 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9179 if (target_rate == 6000000)
9180 goto apply;
9181
9182 if (target_rate == 9000000 || !fixed)
9183 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9184 if (target_rate == 9000000)
9185 goto apply;
9186
9187 if (target_rate == 11000000 || !fixed)
9188 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9189 if (target_rate == 11000000)
9190 goto apply;
9191
9192 if (target_rate == 12000000 || !fixed)
9193 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9194 if (target_rate == 12000000)
9195 goto apply;
9196
9197 if (target_rate == 18000000 || !fixed)
9198 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9199 if (target_rate == 18000000)
9200 goto apply;
9201
9202 if (target_rate == 24000000 || !fixed)
9203 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9204 if (target_rate == 24000000)
9205 goto apply;
9206
9207 if (target_rate == 36000000 || !fixed)
9208 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9209 if (target_rate == 36000000)
9210 goto apply;
9211
9212 if (target_rate == 48000000 || !fixed)
9213 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9214 if (target_rate == 48000000)
9215 goto apply;
9216
9217 if (target_rate == 54000000 || !fixed)
9218 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9219 if (target_rate == 54000000)
9220 goto apply;
9221
9222 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9223 return -EINVAL;
9224
9225 apply:
9226 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9227 mask, fixed ? "fixed" : "sub-rates");
9228 mutex_lock(&priv->mutex);
9229 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9230 priv->config &= ~CFG_FIXED_RATE;
9231 ipw_set_fixed_rate(priv, priv->ieee->mode);
9232 } else
9233 priv->config |= CFG_FIXED_RATE;
9234
9235 if (priv->rates_mask == mask) {
9236 IPW_DEBUG_WX("Mask set to current mask.\n");
9237 mutex_unlock(&priv->mutex);
9238 return 0;
9239 }
9240
9241 priv->rates_mask = mask;
9242
9243 /* Network configuration changed -- force [re]association */
9244 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9245 if (!ipw_disassociate(priv))
9246 ipw_associate(priv);
9247
9248 mutex_unlock(&priv->mutex);
9249 return 0;
9250 }
9251
9252 static int ipw_wx_get_rate(struct net_device *dev,
9253 struct iw_request_info *info,
9254 union iwreq_data *wrqu, char *extra)
9255 {
9256 struct ipw_priv *priv = ieee80211_priv(dev);
9257 mutex_lock(&priv->mutex);
9258 wrqu->bitrate.value = priv->last_rate;
9259 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9260 mutex_unlock(&priv->mutex);
9261 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9262 return 0;
9263 }
9264
9265 static int ipw_wx_set_rts(struct net_device *dev,
9266 struct iw_request_info *info,
9267 union iwreq_data *wrqu, char *extra)
9268 {
9269 struct ipw_priv *priv = ieee80211_priv(dev);
9270 mutex_lock(&priv->mutex);
9271 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9272 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9273 else {
9274 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9275 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9276 mutex_unlock(&priv->mutex);
9277 return -EINVAL;
9278 }
9279 priv->rts_threshold = wrqu->rts.value;
9280 }
9281
9282 ipw_send_rts_threshold(priv, priv->rts_threshold);
9283 mutex_unlock(&priv->mutex);
9284 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9285 return 0;
9286 }
9287
9288 static int ipw_wx_get_rts(struct net_device *dev,
9289 struct iw_request_info *info,
9290 union iwreq_data *wrqu, char *extra)
9291 {
9292 struct ipw_priv *priv = ieee80211_priv(dev);
9293 mutex_lock(&priv->mutex);
9294 wrqu->rts.value = priv->rts_threshold;
9295 wrqu->rts.fixed = 0; /* no auto select */
9296 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9297 mutex_unlock(&priv->mutex);
9298 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9299 return 0;
9300 }
9301
9302 static int ipw_wx_set_txpow(struct net_device *dev,
9303 struct iw_request_info *info,
9304 union iwreq_data *wrqu, char *extra)
9305 {
9306 struct ipw_priv *priv = ieee80211_priv(dev);
9307 int err = 0;
9308
9309 mutex_lock(&priv->mutex);
9310 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9311 err = -EINPROGRESS;
9312 goto out;
9313 }
9314
9315 if (!wrqu->power.fixed)
9316 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9317
9318 if (wrqu->power.flags != IW_TXPOW_DBM) {
9319 err = -EINVAL;
9320 goto out;
9321 }
9322
9323 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9324 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9325 err = -EINVAL;
9326 goto out;
9327 }
9328
9329 priv->tx_power = wrqu->power.value;
9330 err = ipw_set_tx_power(priv);
9331 out:
9332 mutex_unlock(&priv->mutex);
9333 return err;
9334 }
9335
9336 static int ipw_wx_get_txpow(struct net_device *dev,
9337 struct iw_request_info *info,
9338 union iwreq_data *wrqu, char *extra)
9339 {
9340 struct ipw_priv *priv = ieee80211_priv(dev);
9341 mutex_lock(&priv->mutex);
9342 wrqu->power.value = priv->tx_power;
9343 wrqu->power.fixed = 1;
9344 wrqu->power.flags = IW_TXPOW_DBM;
9345 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9346 mutex_unlock(&priv->mutex);
9347
9348 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9349 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9350
9351 return 0;
9352 }
9353
9354 static int ipw_wx_set_frag(struct net_device *dev,
9355 struct iw_request_info *info,
9356 union iwreq_data *wrqu, char *extra)
9357 {
9358 struct ipw_priv *priv = ieee80211_priv(dev);
9359 mutex_lock(&priv->mutex);
9360 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9361 priv->ieee->fts = DEFAULT_FTS;
9362 else {
9363 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9364 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9365 mutex_unlock(&priv->mutex);
9366 return -EINVAL;
9367 }
9368
9369 priv->ieee->fts = wrqu->frag.value & ~0x1;
9370 }
9371
9372 ipw_send_frag_threshold(priv, wrqu->frag.value);
9373 mutex_unlock(&priv->mutex);
9374 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9375 return 0;
9376 }
9377
9378 static int ipw_wx_get_frag(struct net_device *dev,
9379 struct iw_request_info *info,
9380 union iwreq_data *wrqu, char *extra)
9381 {
9382 struct ipw_priv *priv = ieee80211_priv(dev);
9383 mutex_lock(&priv->mutex);
9384 wrqu->frag.value = priv->ieee->fts;
9385 wrqu->frag.fixed = 0; /* no auto select */
9386 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9387 mutex_unlock(&priv->mutex);
9388 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9389
9390 return 0;
9391 }
9392
9393 static int ipw_wx_set_retry(struct net_device *dev,
9394 struct iw_request_info *info,
9395 union iwreq_data *wrqu, char *extra)
9396 {
9397 struct ipw_priv *priv = ieee80211_priv(dev);
9398
9399 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9400 return -EINVAL;
9401
9402 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9403 return 0;
9404
9405 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9406 return -EINVAL;
9407
9408 mutex_lock(&priv->mutex);
9409 if (wrqu->retry.flags & IW_RETRY_SHORT)
9410 priv->short_retry_limit = (u8) wrqu->retry.value;
9411 else if (wrqu->retry.flags & IW_RETRY_LONG)
9412 priv->long_retry_limit = (u8) wrqu->retry.value;
9413 else {
9414 priv->short_retry_limit = (u8) wrqu->retry.value;
9415 priv->long_retry_limit = (u8) wrqu->retry.value;
9416 }
9417
9418 ipw_send_retry_limit(priv, priv->short_retry_limit,
9419 priv->long_retry_limit);
9420 mutex_unlock(&priv->mutex);
9421 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9422 priv->short_retry_limit, priv->long_retry_limit);
9423 return 0;
9424 }
9425
9426 static int ipw_wx_get_retry(struct net_device *dev,
9427 struct iw_request_info *info,
9428 union iwreq_data *wrqu, char *extra)
9429 {
9430 struct ipw_priv *priv = ieee80211_priv(dev);
9431
9432 mutex_lock(&priv->mutex);
9433 wrqu->retry.disabled = 0;
9434
9435 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9436 mutex_unlock(&priv->mutex);
9437 return -EINVAL;
9438 }
9439
9440 if (wrqu->retry.flags & IW_RETRY_LONG) {
9441 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9442 wrqu->retry.value = priv->long_retry_limit;
9443 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9444 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9445 wrqu->retry.value = priv->short_retry_limit;
9446 } else {
9447 wrqu->retry.flags = IW_RETRY_LIMIT;
9448 wrqu->retry.value = priv->short_retry_limit;
9449 }
9450 mutex_unlock(&priv->mutex);
9451
9452 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9453
9454 return 0;
9455 }
9456
9457 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9458 int essid_len)
9459 {
9460 struct ipw_scan_request_ext scan;
9461 int err = 0, scan_type;
9462
9463 if (!(priv->status & STATUS_INIT) ||
9464 (priv->status & STATUS_EXIT_PENDING))
9465 return 0;
9466
9467 mutex_lock(&priv->mutex);
9468
9469 if (priv->status & STATUS_RF_KILL_MASK) {
9470 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9471 priv->status |= STATUS_SCAN_PENDING;
9472 goto done;
9473 }
9474
9475 IPW_DEBUG_HC("starting request direct scan!\n");
9476
9477 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9478 /* We should not sleep here; otherwise we will block most
9479 * of the system (for instance, we hold rtnl_lock when we
9480 * get here).
9481 */
9482 err = -EAGAIN;
9483 goto done;
9484 }
9485 memset(&scan, 0, sizeof(scan));
9486
9487 if (priv->config & CFG_SPEED_SCAN)
9488 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9489 cpu_to_le16(30);
9490 else
9491 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9492 cpu_to_le16(20);
9493
9494 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9495 cpu_to_le16(20);
9496 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9497 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9498
9499 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9500
9501 err = ipw_send_ssid(priv, essid, essid_len);
9502 if (err) {
9503 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9504 goto done;
9505 }
9506 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9507
9508 ipw_add_scan_channels(priv, &scan, scan_type);
9509
9510 err = ipw_send_scan_request_ext(priv, &scan);
9511 if (err) {
9512 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9513 goto done;
9514 }
9515
9516 priv->status |= STATUS_SCANNING;
9517
9518 done:
9519 mutex_unlock(&priv->mutex);
9520 return err;
9521 }
9522
9523 static int ipw_wx_set_scan(struct net_device *dev,
9524 struct iw_request_info *info,
9525 union iwreq_data *wrqu, char *extra)
9526 {
9527 struct ipw_priv *priv = ieee80211_priv(dev);
9528 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9529
9530 mutex_lock(&priv->mutex);
9531 priv->user_requested_scan = 1;
9532 mutex_unlock(&priv->mutex);
9533
9534 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9535 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9536 ipw_request_direct_scan(priv, req->essid,
9537 req->essid_len);
9538 return 0;
9539 }
9540 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9541 queue_work(priv->workqueue,
9542 &priv->request_passive_scan);
9543 return 0;
9544 }
9545 }
9546
9547 IPW_DEBUG_WX("Start scan\n");
9548
9549 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9550
9551 return 0;
9552 }
9553
9554 static int ipw_wx_get_scan(struct net_device *dev,
9555 struct iw_request_info *info,
9556 union iwreq_data *wrqu, char *extra)
9557 {
9558 struct ipw_priv *priv = ieee80211_priv(dev);
9559 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9560 }
9561
9562 static int ipw_wx_set_encode(struct net_device *dev,
9563 struct iw_request_info *info,
9564 union iwreq_data *wrqu, char *key)
9565 {
9566 struct ipw_priv *priv = ieee80211_priv(dev);
9567 int ret;
9568 u32 cap = priv->capability;
9569
9570 mutex_lock(&priv->mutex);
9571 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9572
9573 /* In IBSS mode, we need to notify the firmware to update
9574 * the beacon info after we changed the capability. */
9575 if (cap != priv->capability &&
9576 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9577 priv->status & STATUS_ASSOCIATED)
9578 ipw_disassociate(priv);
9579
9580 mutex_unlock(&priv->mutex);
9581 return ret;
9582 }
9583
9584 static int ipw_wx_get_encode(struct net_device *dev,
9585 struct iw_request_info *info,
9586 union iwreq_data *wrqu, char *key)
9587 {
9588 struct ipw_priv *priv = ieee80211_priv(dev);
9589 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9590 }
9591
9592 static int ipw_wx_set_power(struct net_device *dev,
9593 struct iw_request_info *info,
9594 union iwreq_data *wrqu, char *extra)
9595 {
9596 struct ipw_priv *priv = ieee80211_priv(dev);
9597 int err;
9598 mutex_lock(&priv->mutex);
9599 if (wrqu->power.disabled) {
9600 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9601 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9602 if (err) {
9603 IPW_DEBUG_WX("failed setting power mode.\n");
9604 mutex_unlock(&priv->mutex);
9605 return err;
9606 }
9607 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9608 mutex_unlock(&priv->mutex);
9609 return 0;
9610 }
9611
9612 switch (wrqu->power.flags & IW_POWER_MODE) {
9613 case IW_POWER_ON: /* If not specified */
9614 case IW_POWER_MODE: /* If set all mask */
9615 case IW_POWER_ALL_R: /* If explicitly state all */
9616 break;
9617 default: /* Otherwise we don't support it */
9618 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9619 wrqu->power.flags);
9620 mutex_unlock(&priv->mutex);
9621 return -EOPNOTSUPP;
9622 }
9623
9624 /* If the user hasn't specified a power management mode yet, default
9625 * to BATTERY */
9626 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9627 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9628 else
9629 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9630
9631 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9632 if (err) {
9633 IPW_DEBUG_WX("failed setting power mode.\n");
9634 mutex_unlock(&priv->mutex);
9635 return err;
9636 }
9637
9638 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9639 mutex_unlock(&priv->mutex);
9640 return 0;
9641 }
9642
9643 static int ipw_wx_get_power(struct net_device *dev,
9644 struct iw_request_info *info,
9645 union iwreq_data *wrqu, char *extra)
9646 {
9647 struct ipw_priv *priv = ieee80211_priv(dev);
9648 mutex_lock(&priv->mutex);
9649 if (!(priv->power_mode & IPW_POWER_ENABLED))
9650 wrqu->power.disabled = 1;
9651 else
9652 wrqu->power.disabled = 0;
9653
9654 mutex_unlock(&priv->mutex);
9655 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9656
9657 return 0;
9658 }
9659
9660 static int ipw_wx_set_powermode(struct net_device *dev,
9661 struct iw_request_info *info,
9662 union iwreq_data *wrqu, char *extra)
9663 {
9664 struct ipw_priv *priv = ieee80211_priv(dev);
9665 int mode = *(int *)extra;
9666 int err;
9667
9668 mutex_lock(&priv->mutex);
9669 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9670 mode = IPW_POWER_AC;
9671
9672 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9673 err = ipw_send_power_mode(priv, mode);
9674 if (err) {
9675 IPW_DEBUG_WX("failed setting power mode.\n");
9676 mutex_unlock(&priv->mutex);
9677 return err;
9678 }
9679 priv->power_mode = IPW_POWER_ENABLED | mode;
9680 }
9681 mutex_unlock(&priv->mutex);
9682 return 0;
9683 }
9684
9685 #define MAX_WX_STRING 80
9686 static int ipw_wx_get_powermode(struct net_device *dev,
9687 struct iw_request_info *info,
9688 union iwreq_data *wrqu, char *extra)
9689 {
9690 struct ipw_priv *priv = ieee80211_priv(dev);
9691 int level = IPW_POWER_LEVEL(priv->power_mode);
9692 char *p = extra;
9693
9694 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9695
9696 switch (level) {
9697 case IPW_POWER_AC:
9698 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9699 break;
9700 case IPW_POWER_BATTERY:
9701 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9702 break;
9703 default:
9704 p += snprintf(p, MAX_WX_STRING - (p - extra),
9705 "(Timeout %dms, Period %dms)",
9706 timeout_duration[level - 1] / 1000,
9707 period_duration[level - 1] / 1000);
9708 }
9709
9710 if (!(priv->power_mode & IPW_POWER_ENABLED))
9711 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9712
9713 wrqu->data.length = p - extra + 1;
9714
9715 return 0;
9716 }
9717
9718 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9719 struct iw_request_info *info,
9720 union iwreq_data *wrqu, char *extra)
9721 {
9722 struct ipw_priv *priv = ieee80211_priv(dev);
9723 int mode = *(int *)extra;
9724 u8 band = 0, modulation = 0;
9725
9726 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9727 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9728 return -EINVAL;
9729 }
9730 mutex_lock(&priv->mutex);
9731 if (priv->adapter == IPW_2915ABG) {
9732 priv->ieee->abg_true = 1;
9733 if (mode & IEEE_A) {
9734 band |= IEEE80211_52GHZ_BAND;
9735 modulation |= IEEE80211_OFDM_MODULATION;
9736 } else
9737 priv->ieee->abg_true = 0;
9738 } else {
9739 if (mode & IEEE_A) {
9740 IPW_WARNING("Attempt to set 2200BG into "
9741 "802.11a mode\n");
9742 mutex_unlock(&priv->mutex);
9743 return -EINVAL;
9744 }
9745
9746 priv->ieee->abg_true = 0;
9747 }
9748
9749 if (mode & IEEE_B) {
9750 band |= IEEE80211_24GHZ_BAND;
9751 modulation |= IEEE80211_CCK_MODULATION;
9752 } else
9753 priv->ieee->abg_true = 0;
9754
9755 if (mode & IEEE_G) {
9756 band |= IEEE80211_24GHZ_BAND;
9757 modulation |= IEEE80211_OFDM_MODULATION;
9758 } else
9759 priv->ieee->abg_true = 0;
9760
9761 priv->ieee->mode = mode;
9762 priv->ieee->freq_band = band;
9763 priv->ieee->modulation = modulation;
9764 init_supported_rates(priv, &priv->rates);
9765
9766 /* Network configuration changed -- force [re]association */
9767 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9768 if (!ipw_disassociate(priv)) {
9769 ipw_send_supported_rates(priv, &priv->rates);
9770 ipw_associate(priv);
9771 }
9772
9773 /* Update the band LEDs */
9774 ipw_led_band_on(priv);
9775
9776 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9777 mode & IEEE_A ? 'a' : '.',
9778 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9779 mutex_unlock(&priv->mutex);
9780 return 0;
9781 }
9782
9783 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9784 struct iw_request_info *info,
9785 union iwreq_data *wrqu, char *extra)
9786 {
9787 struct ipw_priv *priv = ieee80211_priv(dev);
9788 mutex_lock(&priv->mutex);
9789 switch (priv->ieee->mode) {
9790 case IEEE_A:
9791 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9792 break;
9793 case IEEE_B:
9794 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9795 break;
9796 case IEEE_A | IEEE_B:
9797 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9798 break;
9799 case IEEE_G:
9800 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9801 break;
9802 case IEEE_A | IEEE_G:
9803 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9804 break;
9805 case IEEE_B | IEEE_G:
9806 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9807 break;
9808 case IEEE_A | IEEE_B | IEEE_G:
9809 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9810 break;
9811 default:
9812 strncpy(extra, "unknown", MAX_WX_STRING);
9813 break;
9814 }
9815
9816 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9817
9818 wrqu->data.length = strlen(extra) + 1;
9819 mutex_unlock(&priv->mutex);
9820
9821 return 0;
9822 }
9823
9824 static int ipw_wx_set_preamble(struct net_device *dev,
9825 struct iw_request_info *info,
9826 union iwreq_data *wrqu, char *extra)
9827 {
9828 struct ipw_priv *priv = ieee80211_priv(dev);
9829 int mode = *(int *)extra;
9830 mutex_lock(&priv->mutex);
9831 /* Switching from SHORT -> LONG requires a disassociation */
9832 if (mode == 1) {
9833 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9834 priv->config |= CFG_PREAMBLE_LONG;
9835
9836 /* Network configuration changed -- force [re]association */
9837 IPW_DEBUG_ASSOC
9838 ("[re]association triggered due to preamble change.\n");
9839 if (!ipw_disassociate(priv))
9840 ipw_associate(priv);
9841 }
9842 goto done;
9843 }
9844
9845 if (mode == 0) {
9846 priv->config &= ~CFG_PREAMBLE_LONG;
9847 goto done;
9848 }
9849 mutex_unlock(&priv->mutex);
9850 return -EINVAL;
9851
9852 done:
9853 mutex_unlock(&priv->mutex);
9854 return 0;
9855 }
9856
9857 static int ipw_wx_get_preamble(struct net_device *dev,
9858 struct iw_request_info *info,
9859 union iwreq_data *wrqu, char *extra)
9860 {
9861 struct ipw_priv *priv = ieee80211_priv(dev);
9862 mutex_lock(&priv->mutex);
9863 if (priv->config & CFG_PREAMBLE_LONG)
9864 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9865 else
9866 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9867 mutex_unlock(&priv->mutex);
9868 return 0;
9869 }
9870
9871 #ifdef CONFIG_IPW2200_MONITOR
9872 static int ipw_wx_set_monitor(struct net_device *dev,
9873 struct iw_request_info *info,
9874 union iwreq_data *wrqu, char *extra)
9875 {
9876 struct ipw_priv *priv = ieee80211_priv(dev);
9877 int *parms = (int *)extra;
9878 int enable = (parms[0] > 0);
9879 mutex_lock(&priv->mutex);
9880 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9881 if (enable) {
9882 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9883 #ifdef CONFIG_IPW2200_RADIOTAP
9884 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9885 #else
9886 priv->net_dev->type = ARPHRD_IEEE80211;
9887 #endif
9888 queue_work(priv->workqueue, &priv->adapter_restart);
9889 }
9890
9891 ipw_set_channel(priv, parms[1]);
9892 } else {
9893 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9894 mutex_unlock(&priv->mutex);
9895 return 0;
9896 }
9897 priv->net_dev->type = ARPHRD_ETHER;
9898 queue_work(priv->workqueue, &priv->adapter_restart);
9899 }
9900 mutex_unlock(&priv->mutex);
9901 return 0;
9902 }
9903
9904 #endif /* CONFIG_IPW2200_MONITOR */
9905
9906 static int ipw_wx_reset(struct net_device *dev,
9907 struct iw_request_info *info,
9908 union iwreq_data *wrqu, char *extra)
9909 {
9910 struct ipw_priv *priv = ieee80211_priv(dev);
9911 IPW_DEBUG_WX("RESET\n");
9912 queue_work(priv->workqueue, &priv->adapter_restart);
9913 return 0;
9914 }
9915
9916 static int ipw_wx_sw_reset(struct net_device *dev,
9917 struct iw_request_info *info,
9918 union iwreq_data *wrqu, char *extra)
9919 {
9920 struct ipw_priv *priv = ieee80211_priv(dev);
9921 union iwreq_data wrqu_sec = {
9922 .encoding = {
9923 .flags = IW_ENCODE_DISABLED,
9924 },
9925 };
9926 int ret;
9927
9928 IPW_DEBUG_WX("SW_RESET\n");
9929
9930 mutex_lock(&priv->mutex);
9931
9932 ret = ipw_sw_reset(priv, 2);
9933 if (!ret) {
9934 free_firmware();
9935 ipw_adapter_restart(priv);
9936 }
9937
9938 /* The SW reset bit might have been toggled on by the 'disable'
9939 * module parameter, so take appropriate action */
9940 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9941
9942 mutex_unlock(&priv->mutex);
9943 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9944 mutex_lock(&priv->mutex);
9945
9946 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9947 /* Configuration likely changed -- force [re]association */
9948 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9949 "reset.\n");
9950 if (!ipw_disassociate(priv))
9951 ipw_associate(priv);
9952 }
9953
9954 mutex_unlock(&priv->mutex);
9955
9956 return 0;
9957 }
9958
9959 /* Rebase the WE IOCTLs to zero for the handler array */
9960 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9961 static iw_handler ipw_wx_handlers[] = {
9962 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9963 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9964 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9965 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9966 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9967 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9968 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9969 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9970 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9971 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9972 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9973 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9974 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9975 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9976 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9977 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9978 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9979 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9980 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9981 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9982 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9983 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9984 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9985 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9986 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9987 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9988 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9989 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9990 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9991 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9992 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9993 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9994 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9995 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9996 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9997 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9998 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9999 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10000 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10001 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10002 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10003 };
10004
10005 enum {
10006 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10007 IPW_PRIV_GET_POWER,
10008 IPW_PRIV_SET_MODE,
10009 IPW_PRIV_GET_MODE,
10010 IPW_PRIV_SET_PREAMBLE,
10011 IPW_PRIV_GET_PREAMBLE,
10012 IPW_PRIV_RESET,
10013 IPW_PRIV_SW_RESET,
10014 #ifdef CONFIG_IPW2200_MONITOR
10015 IPW_PRIV_SET_MONITOR,
10016 #endif
10017 };
10018
10019 static struct iw_priv_args ipw_priv_args[] = {
10020 {
10021 .cmd = IPW_PRIV_SET_POWER,
10022 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10023 .name = "set_power"},
10024 {
10025 .cmd = IPW_PRIV_GET_POWER,
10026 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10027 .name = "get_power"},
10028 {
10029 .cmd = IPW_PRIV_SET_MODE,
10030 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10031 .name = "set_mode"},
10032 {
10033 .cmd = IPW_PRIV_GET_MODE,
10034 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10035 .name = "get_mode"},
10036 {
10037 .cmd = IPW_PRIV_SET_PREAMBLE,
10038 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10039 .name = "set_preamble"},
10040 {
10041 .cmd = IPW_PRIV_GET_PREAMBLE,
10042 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10043 .name = "get_preamble"},
10044 {
10045 IPW_PRIV_RESET,
10046 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10047 {
10048 IPW_PRIV_SW_RESET,
10049 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10050 #ifdef CONFIG_IPW2200_MONITOR
10051 {
10052 IPW_PRIV_SET_MONITOR,
10053 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10054 #endif /* CONFIG_IPW2200_MONITOR */
10055 };
10056
10057 static iw_handler ipw_priv_handler[] = {
10058 ipw_wx_set_powermode,
10059 ipw_wx_get_powermode,
10060 ipw_wx_set_wireless_mode,
10061 ipw_wx_get_wireless_mode,
10062 ipw_wx_set_preamble,
10063 ipw_wx_get_preamble,
10064 ipw_wx_reset,
10065 ipw_wx_sw_reset,
10066 #ifdef CONFIG_IPW2200_MONITOR
10067 ipw_wx_set_monitor,
10068 #endif
10069 };
10070
10071 static struct iw_handler_def ipw_wx_handler_def = {
10072 .standard = ipw_wx_handlers,
10073 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10074 .num_private = ARRAY_SIZE(ipw_priv_handler),
10075 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10076 .private = ipw_priv_handler,
10077 .private_args = ipw_priv_args,
10078 .get_wireless_stats = ipw_get_wireless_stats,
10079 };
10080
10081 /*
10082 * Get wireless statistics.
10083 * Called by /proc/net/wireless
10084 * Also called by SIOCGIWSTATS
10085 */
10086 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10087 {
10088 struct ipw_priv *priv = ieee80211_priv(dev);
10089 struct iw_statistics *wstats;
10090
10091 wstats = &priv->wstats;
10092
10093 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10094 * netdev->get_wireless_stats seems to be called before fw is
10095 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10096 * and associated; if not associcated, the values are all meaningless
10097 * anyway, so set them all to NULL and INVALID */
10098 if (!(priv->status & STATUS_ASSOCIATED)) {
10099 wstats->miss.beacon = 0;
10100 wstats->discard.retries = 0;
10101 wstats->qual.qual = 0;
10102 wstats->qual.level = 0;
10103 wstats->qual.noise = 0;
10104 wstats->qual.updated = 7;
10105 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10106 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10107 return wstats;
10108 }
10109
10110 wstats->qual.qual = priv->quality;
10111 wstats->qual.level = priv->exp_avg_rssi;
10112 wstats->qual.noise = priv->exp_avg_noise;
10113 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10114 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10115
10116 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10117 wstats->discard.retries = priv->last_tx_failures;
10118 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10119
10120 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10121 goto fail_get_ordinal;
10122 wstats->discard.retries += tx_retry; */
10123
10124 return wstats;
10125 }
10126
10127 /* net device stuff */
10128
10129 static void init_sys_config(struct ipw_sys_config *sys_config)
10130 {
10131 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10132 sys_config->bt_coexistence = 0;
10133 sys_config->answer_broadcast_ssid_probe = 0;
10134 sys_config->accept_all_data_frames = 0;
10135 sys_config->accept_non_directed_frames = 1;
10136 sys_config->exclude_unicast_unencrypted = 0;
10137 sys_config->disable_unicast_decryption = 1;
10138 sys_config->exclude_multicast_unencrypted = 0;
10139 sys_config->disable_multicast_decryption = 1;
10140 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10141 antenna = CFG_SYS_ANTENNA_BOTH;
10142 sys_config->antenna_diversity = antenna;
10143 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10144 sys_config->dot11g_auto_detection = 0;
10145 sys_config->enable_cts_to_self = 0;
10146 sys_config->bt_coexist_collision_thr = 0;
10147 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10148 sys_config->silence_threshold = 0x1e;
10149 }
10150
10151 static int ipw_net_open(struct net_device *dev)
10152 {
10153 struct ipw_priv *priv = ieee80211_priv(dev);
10154 IPW_DEBUG_INFO("dev->open\n");
10155 /* we should be verifying the device is ready to be opened */
10156 mutex_lock(&priv->mutex);
10157 if (!(priv->status & STATUS_RF_KILL_MASK) &&
10158 (priv->status & STATUS_ASSOCIATED))
10159 netif_start_queue(dev);
10160 mutex_unlock(&priv->mutex);
10161 return 0;
10162 }
10163
10164 static int ipw_net_stop(struct net_device *dev)
10165 {
10166 IPW_DEBUG_INFO("dev->close\n");
10167 netif_stop_queue(dev);
10168 return 0;
10169 }
10170
10171 /*
10172 todo:
10173
10174 modify to send one tfd per fragment instead of using chunking. otherwise
10175 we need to heavily modify the ieee80211_skb_to_txb.
10176 */
10177
10178 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10179 int pri)
10180 {
10181 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10182 txb->fragments[0]->data;
10183 int i = 0;
10184 struct tfd_frame *tfd;
10185 #ifdef CONFIG_IPW2200_QOS
10186 int tx_id = ipw_get_tx_queue_number(priv, pri);
10187 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10188 #else
10189 struct clx2_tx_queue *txq = &priv->txq[0];
10190 #endif
10191 struct clx2_queue *q = &txq->q;
10192 u8 id, hdr_len, unicast;
10193 u16 remaining_bytes;
10194 int fc;
10195 DECLARE_MAC_BUF(mac);
10196
10197 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10198 switch (priv->ieee->iw_mode) {
10199 case IW_MODE_ADHOC:
10200 unicast = !is_multicast_ether_addr(hdr->addr1);
10201 id = ipw_find_station(priv, hdr->addr1);
10202 if (id == IPW_INVALID_STATION) {
10203 id = ipw_add_station(priv, hdr->addr1);
10204 if (id == IPW_INVALID_STATION) {
10205 IPW_WARNING("Attempt to send data to "
10206 "invalid cell: %s\n",
10207 print_mac(mac, hdr->addr1));
10208 goto drop;
10209 }
10210 }
10211 break;
10212
10213 case IW_MODE_INFRA:
10214 default:
10215 unicast = !is_multicast_ether_addr(hdr->addr3);
10216 id = 0;
10217 break;
10218 }
10219
10220 tfd = &txq->bd[q->first_empty];
10221 txq->txb[q->first_empty] = txb;
10222 memset(tfd, 0, sizeof(*tfd));
10223 tfd->u.data.station_number = id;
10224
10225 tfd->control_flags.message_type = TX_FRAME_TYPE;
10226 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10227
10228 tfd->u.data.cmd_id = DINO_CMD_TX;
10229 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10230 remaining_bytes = txb->payload_size;
10231
10232 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10233 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10234 else
10235 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10236
10237 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10238 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10239
10240 fc = le16_to_cpu(hdr->frame_ctl);
10241 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10242
10243 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10244
10245 if (likely(unicast))
10246 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10247
10248 if (txb->encrypted && !priv->ieee->host_encrypt) {
10249 switch (priv->ieee->sec.level) {
10250 case SEC_LEVEL_3:
10251 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10252 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10253 /* XXX: ACK flag must be set for CCMP even if it
10254 * is a multicast/broadcast packet, because CCMP
10255 * group communication encrypted by GTK is
10256 * actually done by the AP. */
10257 if (!unicast)
10258 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10259
10260 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10261 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10262 tfd->u.data.key_index = 0;
10263 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10264 break;
10265 case SEC_LEVEL_2:
10266 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10267 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10268 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10269 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10270 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10271 break;
10272 case SEC_LEVEL_1:
10273 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10274 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10275 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10276 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10277 40)
10278 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10279 else
10280 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10281 break;
10282 case SEC_LEVEL_0:
10283 break;
10284 default:
10285 printk(KERN_ERR "Unknow security level %d\n",
10286 priv->ieee->sec.level);
10287 break;
10288 }
10289 } else
10290 /* No hardware encryption */
10291 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10292
10293 #ifdef CONFIG_IPW2200_QOS
10294 if (fc & IEEE80211_STYPE_QOS_DATA)
10295 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10296 #endif /* CONFIG_IPW2200_QOS */
10297
10298 /* payload */
10299 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10300 txb->nr_frags));
10301 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10302 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10303 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10304 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10305 i, le32_to_cpu(tfd->u.data.num_chunks),
10306 txb->fragments[i]->len - hdr_len);
10307 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10308 i, tfd->u.data.num_chunks,
10309 txb->fragments[i]->len - hdr_len);
10310 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10311 txb->fragments[i]->len - hdr_len);
10312
10313 tfd->u.data.chunk_ptr[i] =
10314 cpu_to_le32(pci_map_single
10315 (priv->pci_dev,
10316 txb->fragments[i]->data + hdr_len,
10317 txb->fragments[i]->len - hdr_len,
10318 PCI_DMA_TODEVICE));
10319 tfd->u.data.chunk_len[i] =
10320 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10321 }
10322
10323 if (i != txb->nr_frags) {
10324 struct sk_buff *skb;
10325 u16 remaining_bytes = 0;
10326 int j;
10327
10328 for (j = i; j < txb->nr_frags; j++)
10329 remaining_bytes += txb->fragments[j]->len - hdr_len;
10330
10331 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10332 remaining_bytes);
10333 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10334 if (skb != NULL) {
10335 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10336 for (j = i; j < txb->nr_frags; j++) {
10337 int size = txb->fragments[j]->len - hdr_len;
10338
10339 printk(KERN_INFO "Adding frag %d %d...\n",
10340 j, size);
10341 memcpy(skb_put(skb, size),
10342 txb->fragments[j]->data + hdr_len, size);
10343 }
10344 dev_kfree_skb_any(txb->fragments[i]);
10345 txb->fragments[i] = skb;
10346 tfd->u.data.chunk_ptr[i] =
10347 cpu_to_le32(pci_map_single
10348 (priv->pci_dev, skb->data,
10349 remaining_bytes,
10350 PCI_DMA_TODEVICE));
10351
10352 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10353 }
10354 }
10355
10356 /* kick DMA */
10357 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10358 ipw_write32(priv, q->reg_w, q->first_empty);
10359
10360 if (ipw_tx_queue_space(q) < q->high_mark)
10361 netif_stop_queue(priv->net_dev);
10362
10363 return NETDEV_TX_OK;
10364
10365 drop:
10366 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10367 ieee80211_txb_free(txb);
10368 return NETDEV_TX_OK;
10369 }
10370
10371 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10372 {
10373 struct ipw_priv *priv = ieee80211_priv(dev);
10374 #ifdef CONFIG_IPW2200_QOS
10375 int tx_id = ipw_get_tx_queue_number(priv, pri);
10376 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10377 #else
10378 struct clx2_tx_queue *txq = &priv->txq[0];
10379 #endif /* CONFIG_IPW2200_QOS */
10380
10381 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10382 return 1;
10383
10384 return 0;
10385 }
10386
10387 #ifdef CONFIG_IPW2200_PROMISCUOUS
10388 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10389 struct ieee80211_txb *txb)
10390 {
10391 struct ieee80211_rx_stats dummystats;
10392 struct ieee80211_hdr *hdr;
10393 u8 n;
10394 u16 filter = priv->prom_priv->filter;
10395 int hdr_only = 0;
10396
10397 if (filter & IPW_PROM_NO_TX)
10398 return;
10399
10400 memset(&dummystats, 0, sizeof(dummystats));
10401
10402 /* Filtering of fragment chains is done agains the first fragment */
10403 hdr = (void *)txb->fragments[0]->data;
10404 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10405 if (filter & IPW_PROM_NO_MGMT)
10406 return;
10407 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10408 hdr_only = 1;
10409 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10410 if (filter & IPW_PROM_NO_CTL)
10411 return;
10412 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10413 hdr_only = 1;
10414 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10415 if (filter & IPW_PROM_NO_DATA)
10416 return;
10417 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10418 hdr_only = 1;
10419 }
10420
10421 for(n=0; n<txb->nr_frags; ++n) {
10422 struct sk_buff *src = txb->fragments[n];
10423 struct sk_buff *dst;
10424 struct ieee80211_radiotap_header *rt_hdr;
10425 int len;
10426
10427 if (hdr_only) {
10428 hdr = (void *)src->data;
10429 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10430 } else
10431 len = src->len;
10432
10433 dst = alloc_skb(
10434 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10435 if (!dst) continue;
10436
10437 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10438
10439 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10440 rt_hdr->it_pad = 0;
10441 rt_hdr->it_present = 0; /* after all, it's just an idea */
10442 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10443
10444 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10445 ieee80211chan2mhz(priv->channel));
10446 if (priv->channel > 14) /* 802.11a */
10447 *(__le16*)skb_put(dst, sizeof(u16)) =
10448 cpu_to_le16(IEEE80211_CHAN_OFDM |
10449 IEEE80211_CHAN_5GHZ);
10450 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10451 *(__le16*)skb_put(dst, sizeof(u16)) =
10452 cpu_to_le16(IEEE80211_CHAN_CCK |
10453 IEEE80211_CHAN_2GHZ);
10454 else /* 802.11g */
10455 *(__le16*)skb_put(dst, sizeof(u16)) =
10456 cpu_to_le16(IEEE80211_CHAN_OFDM |
10457 IEEE80211_CHAN_2GHZ);
10458
10459 rt_hdr->it_len = cpu_to_le16(dst->len);
10460
10461 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10462
10463 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10464 dev_kfree_skb_any(dst);
10465 }
10466 }
10467 #endif
10468
10469 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10470 struct net_device *dev, int pri)
10471 {
10472 struct ipw_priv *priv = ieee80211_priv(dev);
10473 unsigned long flags;
10474 int ret;
10475
10476 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10477 spin_lock_irqsave(&priv->lock, flags);
10478
10479 if (!(priv->status & STATUS_ASSOCIATED)) {
10480 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10481 priv->ieee->stats.tx_carrier_errors++;
10482 netif_stop_queue(dev);
10483 goto fail_unlock;
10484 }
10485
10486 #ifdef CONFIG_IPW2200_PROMISCUOUS
10487 if (rtap_iface && netif_running(priv->prom_net_dev))
10488 ipw_handle_promiscuous_tx(priv, txb);
10489 #endif
10490
10491 ret = ipw_tx_skb(priv, txb, pri);
10492 if (ret == NETDEV_TX_OK)
10493 __ipw_led_activity_on(priv);
10494 spin_unlock_irqrestore(&priv->lock, flags);
10495
10496 return ret;
10497
10498 fail_unlock:
10499 spin_unlock_irqrestore(&priv->lock, flags);
10500 return 1;
10501 }
10502
10503 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10504 {
10505 struct ipw_priv *priv = ieee80211_priv(dev);
10506
10507 priv->ieee->stats.tx_packets = priv->tx_packets;
10508 priv->ieee->stats.rx_packets = priv->rx_packets;
10509 return &priv->ieee->stats;
10510 }
10511
10512 static void ipw_net_set_multicast_list(struct net_device *dev)
10513 {
10514
10515 }
10516
10517 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10518 {
10519 struct ipw_priv *priv = ieee80211_priv(dev);
10520 struct sockaddr *addr = p;
10521 DECLARE_MAC_BUF(mac);
10522
10523 if (!is_valid_ether_addr(addr->sa_data))
10524 return -EADDRNOTAVAIL;
10525 mutex_lock(&priv->mutex);
10526 priv->config |= CFG_CUSTOM_MAC;
10527 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10528 printk(KERN_INFO "%s: Setting MAC to %s\n",
10529 priv->net_dev->name, print_mac(mac, priv->mac_addr));
10530 queue_work(priv->workqueue, &priv->adapter_restart);
10531 mutex_unlock(&priv->mutex);
10532 return 0;
10533 }
10534
10535 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10536 struct ethtool_drvinfo *info)
10537 {
10538 struct ipw_priv *p = ieee80211_priv(dev);
10539 char vers[64];
10540 char date[32];
10541 u32 len;
10542
10543 strcpy(info->driver, DRV_NAME);
10544 strcpy(info->version, DRV_VERSION);
10545
10546 len = sizeof(vers);
10547 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10548 len = sizeof(date);
10549 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10550
10551 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10552 vers, date);
10553 strcpy(info->bus_info, pci_name(p->pci_dev));
10554 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10555 }
10556
10557 static u32 ipw_ethtool_get_link(struct net_device *dev)
10558 {
10559 struct ipw_priv *priv = ieee80211_priv(dev);
10560 return (priv->status & STATUS_ASSOCIATED) != 0;
10561 }
10562
10563 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10564 {
10565 return IPW_EEPROM_IMAGE_SIZE;
10566 }
10567
10568 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10569 struct ethtool_eeprom *eeprom, u8 * bytes)
10570 {
10571 struct ipw_priv *p = ieee80211_priv(dev);
10572
10573 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10574 return -EINVAL;
10575 mutex_lock(&p->mutex);
10576 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10577 mutex_unlock(&p->mutex);
10578 return 0;
10579 }
10580
10581 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10582 struct ethtool_eeprom *eeprom, u8 * bytes)
10583 {
10584 struct ipw_priv *p = ieee80211_priv(dev);
10585 int i;
10586
10587 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10588 return -EINVAL;
10589 mutex_lock(&p->mutex);
10590 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10591 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10592 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10593 mutex_unlock(&p->mutex);
10594 return 0;
10595 }
10596
10597 static const struct ethtool_ops ipw_ethtool_ops = {
10598 .get_link = ipw_ethtool_get_link,
10599 .get_drvinfo = ipw_ethtool_get_drvinfo,
10600 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10601 .get_eeprom = ipw_ethtool_get_eeprom,
10602 .set_eeprom = ipw_ethtool_set_eeprom,
10603 };
10604
10605 static irqreturn_t ipw_isr(int irq, void *data)
10606 {
10607 struct ipw_priv *priv = data;
10608 u32 inta, inta_mask;
10609
10610 if (!priv)
10611 return IRQ_NONE;
10612
10613 spin_lock(&priv->irq_lock);
10614
10615 if (!(priv->status & STATUS_INT_ENABLED)) {
10616 /* IRQ is disabled */
10617 goto none;
10618 }
10619
10620 inta = ipw_read32(priv, IPW_INTA_RW);
10621 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10622
10623 if (inta == 0xFFFFFFFF) {
10624 /* Hardware disappeared */
10625 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10626 goto none;
10627 }
10628
10629 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10630 /* Shared interrupt */
10631 goto none;
10632 }
10633
10634 /* tell the device to stop sending interrupts */
10635 __ipw_disable_interrupts(priv);
10636
10637 /* ack current interrupts */
10638 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10639 ipw_write32(priv, IPW_INTA_RW, inta);
10640
10641 /* Cache INTA value for our tasklet */
10642 priv->isr_inta = inta;
10643
10644 tasklet_schedule(&priv->irq_tasklet);
10645
10646 spin_unlock(&priv->irq_lock);
10647
10648 return IRQ_HANDLED;
10649 none:
10650 spin_unlock(&priv->irq_lock);
10651 return IRQ_NONE;
10652 }
10653
10654 static void ipw_rf_kill(void *adapter)
10655 {
10656 struct ipw_priv *priv = adapter;
10657 unsigned long flags;
10658
10659 spin_lock_irqsave(&priv->lock, flags);
10660
10661 if (rf_kill_active(priv)) {
10662 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10663 if (priv->workqueue)
10664 queue_delayed_work(priv->workqueue,
10665 &priv->rf_kill, 2 * HZ);
10666 goto exit_unlock;
10667 }
10668
10669 /* RF Kill is now disabled, so bring the device back up */
10670
10671 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10672 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10673 "device\n");
10674
10675 /* we can not do an adapter restart while inside an irq lock */
10676 queue_work(priv->workqueue, &priv->adapter_restart);
10677 } else
10678 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10679 "enabled\n");
10680
10681 exit_unlock:
10682 spin_unlock_irqrestore(&priv->lock, flags);
10683 }
10684
10685 static void ipw_bg_rf_kill(struct work_struct *work)
10686 {
10687 struct ipw_priv *priv =
10688 container_of(work, struct ipw_priv, rf_kill.work);
10689 mutex_lock(&priv->mutex);
10690 ipw_rf_kill(priv);
10691 mutex_unlock(&priv->mutex);
10692 }
10693
10694 static void ipw_link_up(struct ipw_priv *priv)
10695 {
10696 priv->last_seq_num = -1;
10697 priv->last_frag_num = -1;
10698 priv->last_packet_time = 0;
10699
10700 netif_carrier_on(priv->net_dev);
10701 if (netif_queue_stopped(priv->net_dev)) {
10702 IPW_DEBUG_NOTIF("waking queue\n");
10703 netif_wake_queue(priv->net_dev);
10704 } else {
10705 IPW_DEBUG_NOTIF("starting queue\n");
10706 netif_start_queue(priv->net_dev);
10707 }
10708
10709 cancel_delayed_work(&priv->request_scan);
10710 cancel_delayed_work(&priv->scan_event);
10711 ipw_reset_stats(priv);
10712 /* Ensure the rate is updated immediately */
10713 priv->last_rate = ipw_get_current_rate(priv);
10714 ipw_gather_stats(priv);
10715 ipw_led_link_up(priv);
10716 notify_wx_assoc_event(priv);
10717
10718 if (priv->config & CFG_BACKGROUND_SCAN)
10719 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10720 }
10721
10722 static void ipw_bg_link_up(struct work_struct *work)
10723 {
10724 struct ipw_priv *priv =
10725 container_of(work, struct ipw_priv, link_up);
10726 mutex_lock(&priv->mutex);
10727 ipw_link_up(priv);
10728 mutex_unlock(&priv->mutex);
10729 }
10730
10731 static void ipw_link_down(struct ipw_priv *priv)
10732 {
10733 ipw_led_link_down(priv);
10734 netif_carrier_off(priv->net_dev);
10735 netif_stop_queue(priv->net_dev);
10736 notify_wx_assoc_event(priv);
10737
10738 /* Cancel any queued work ... */
10739 cancel_delayed_work(&priv->request_scan);
10740 cancel_delayed_work(&priv->adhoc_check);
10741 cancel_delayed_work(&priv->gather_stats);
10742
10743 ipw_reset_stats(priv);
10744
10745 if (!(priv->status & STATUS_EXIT_PENDING)) {
10746 /* Queue up another scan... */
10747 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10748 } else
10749 cancel_delayed_work(&priv->scan_event);
10750 }
10751
10752 static void ipw_bg_link_down(struct work_struct *work)
10753 {
10754 struct ipw_priv *priv =
10755 container_of(work, struct ipw_priv, link_down);
10756 mutex_lock(&priv->mutex);
10757 ipw_link_down(priv);
10758 mutex_unlock(&priv->mutex);
10759 }
10760
10761 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10762 {
10763 int ret = 0;
10764
10765 priv->workqueue = create_workqueue(DRV_NAME);
10766 init_waitqueue_head(&priv->wait_command_queue);
10767 init_waitqueue_head(&priv->wait_state);
10768
10769 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10770 INIT_WORK(&priv->associate, ipw_bg_associate);
10771 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10772 INIT_WORK(&priv->system_config, ipw_system_config);
10773 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10774 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10775 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10776 INIT_WORK(&priv->up, ipw_bg_up);
10777 INIT_WORK(&priv->down, ipw_bg_down);
10778 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10779 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10780 INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10781 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10782 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10783 INIT_WORK(&priv->roam, ipw_bg_roam);
10784 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10785 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10786 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10787 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10788 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10789 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10790 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10791
10792 #ifdef CONFIG_IPW2200_QOS
10793 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10794 #endif /* CONFIG_IPW2200_QOS */
10795
10796 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10797 ipw_irq_tasklet, (unsigned long)priv);
10798
10799 return ret;
10800 }
10801
10802 static void shim__set_security(struct net_device *dev,
10803 struct ieee80211_security *sec)
10804 {
10805 struct ipw_priv *priv = ieee80211_priv(dev);
10806 int i;
10807 for (i = 0; i < 4; i++) {
10808 if (sec->flags & (1 << i)) {
10809 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10810 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10811 if (sec->key_sizes[i] == 0)
10812 priv->ieee->sec.flags &= ~(1 << i);
10813 else {
10814 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10815 sec->key_sizes[i]);
10816 priv->ieee->sec.flags |= (1 << i);
10817 }
10818 priv->status |= STATUS_SECURITY_UPDATED;
10819 } else if (sec->level != SEC_LEVEL_1)
10820 priv->ieee->sec.flags &= ~(1 << i);
10821 }
10822
10823 if (sec->flags & SEC_ACTIVE_KEY) {
10824 if (sec->active_key <= 3) {
10825 priv->ieee->sec.active_key = sec->active_key;
10826 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10827 } else
10828 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10829 priv->status |= STATUS_SECURITY_UPDATED;
10830 } else
10831 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10832
10833 if ((sec->flags & SEC_AUTH_MODE) &&
10834 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10835 priv->ieee->sec.auth_mode = sec->auth_mode;
10836 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10837 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10838 priv->capability |= CAP_SHARED_KEY;
10839 else
10840 priv->capability &= ~CAP_SHARED_KEY;
10841 priv->status |= STATUS_SECURITY_UPDATED;
10842 }
10843
10844 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10845 priv->ieee->sec.flags |= SEC_ENABLED;
10846 priv->ieee->sec.enabled = sec->enabled;
10847 priv->status |= STATUS_SECURITY_UPDATED;
10848 if (sec->enabled)
10849 priv->capability |= CAP_PRIVACY_ON;
10850 else
10851 priv->capability &= ~CAP_PRIVACY_ON;
10852 }
10853
10854 if (sec->flags & SEC_ENCRYPT)
10855 priv->ieee->sec.encrypt = sec->encrypt;
10856
10857 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10858 priv->ieee->sec.level = sec->level;
10859 priv->ieee->sec.flags |= SEC_LEVEL;
10860 priv->status |= STATUS_SECURITY_UPDATED;
10861 }
10862
10863 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10864 ipw_set_hwcrypto_keys(priv);
10865
10866 /* To match current functionality of ipw2100 (which works well w/
10867 * various supplicants, we don't force a disassociate if the
10868 * privacy capability changes ... */
10869 #if 0
10870 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10871 (((priv->assoc_request.capability &
10872 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10873 (!(priv->assoc_request.capability &
10874 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10875 IPW_DEBUG_ASSOC("Disassociating due to capability "
10876 "change.\n");
10877 ipw_disassociate(priv);
10878 }
10879 #endif
10880 }
10881
10882 static int init_supported_rates(struct ipw_priv *priv,
10883 struct ipw_supported_rates *rates)
10884 {
10885 /* TODO: Mask out rates based on priv->rates_mask */
10886
10887 memset(rates, 0, sizeof(*rates));
10888 /* configure supported rates */
10889 switch (priv->ieee->freq_band) {
10890 case IEEE80211_52GHZ_BAND:
10891 rates->ieee_mode = IPW_A_MODE;
10892 rates->purpose = IPW_RATE_CAPABILITIES;
10893 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10894 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10895 break;
10896
10897 default: /* Mixed or 2.4Ghz */
10898 rates->ieee_mode = IPW_G_MODE;
10899 rates->purpose = IPW_RATE_CAPABILITIES;
10900 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10901 IEEE80211_CCK_DEFAULT_RATES_MASK);
10902 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10903 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10904 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10905 }
10906 break;
10907 }
10908
10909 return 0;
10910 }
10911
10912 static int ipw_config(struct ipw_priv *priv)
10913 {
10914 /* This is only called from ipw_up, which resets/reloads the firmware
10915 so, we don't need to first disable the card before we configure
10916 it */
10917 if (ipw_set_tx_power(priv))
10918 goto error;
10919
10920 /* initialize adapter address */
10921 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10922 goto error;
10923
10924 /* set basic system config settings */
10925 init_sys_config(&priv->sys_config);
10926
10927 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10928 * Does not support BT priority yet (don't abort or defer our Tx) */
10929 if (bt_coexist) {
10930 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10931
10932 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10933 priv->sys_config.bt_coexistence
10934 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10935 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10936 priv->sys_config.bt_coexistence
10937 |= CFG_BT_COEXISTENCE_OOB;
10938 }
10939
10940 #ifdef CONFIG_IPW2200_PROMISCUOUS
10941 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10942 priv->sys_config.accept_all_data_frames = 1;
10943 priv->sys_config.accept_non_directed_frames = 1;
10944 priv->sys_config.accept_all_mgmt_bcpr = 1;
10945 priv->sys_config.accept_all_mgmt_frames = 1;
10946 }
10947 #endif
10948
10949 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10950 priv->sys_config.answer_broadcast_ssid_probe = 1;
10951 else
10952 priv->sys_config.answer_broadcast_ssid_probe = 0;
10953
10954 if (ipw_send_system_config(priv))
10955 goto error;
10956
10957 init_supported_rates(priv, &priv->rates);
10958 if (ipw_send_supported_rates(priv, &priv->rates))
10959 goto error;
10960
10961 /* Set request-to-send threshold */
10962 if (priv->rts_threshold) {
10963 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10964 goto error;
10965 }
10966 #ifdef CONFIG_IPW2200_QOS
10967 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10968 ipw_qos_activate(priv, NULL);
10969 #endif /* CONFIG_IPW2200_QOS */
10970
10971 if (ipw_set_random_seed(priv))
10972 goto error;
10973
10974 /* final state transition to the RUN state */
10975 if (ipw_send_host_complete(priv))
10976 goto error;
10977
10978 priv->status |= STATUS_INIT;
10979
10980 ipw_led_init(priv);
10981 ipw_led_radio_on(priv);
10982 priv->notif_missed_beacons = 0;
10983
10984 /* Set hardware WEP key if it is configured. */
10985 if ((priv->capability & CAP_PRIVACY_ON) &&
10986 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10987 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10988 ipw_set_hwcrypto_keys(priv);
10989
10990 return 0;
10991
10992 error:
10993 return -EIO;
10994 }
10995
10996 /*
10997 * NOTE:
10998 *
10999 * These tables have been tested in conjunction with the
11000 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11001 *
11002 * Altering this values, using it on other hardware, or in geographies
11003 * not intended for resale of the above mentioned Intel adapters has
11004 * not been tested.
11005 *
11006 * Remember to update the table in README.ipw2200 when changing this
11007 * table.
11008 *
11009 */
11010 static const struct ieee80211_geo ipw_geos[] = {
11011 { /* Restricted */
11012 "---",
11013 .bg_channels = 11,
11014 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11015 {2427, 4}, {2432, 5}, {2437, 6},
11016 {2442, 7}, {2447, 8}, {2452, 9},
11017 {2457, 10}, {2462, 11}},
11018 },
11019
11020 { /* Custom US/Canada */
11021 "ZZF",
11022 .bg_channels = 11,
11023 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11024 {2427, 4}, {2432, 5}, {2437, 6},
11025 {2442, 7}, {2447, 8}, {2452, 9},
11026 {2457, 10}, {2462, 11}},
11027 .a_channels = 8,
11028 .a = {{5180, 36},
11029 {5200, 40},
11030 {5220, 44},
11031 {5240, 48},
11032 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11033 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11034 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11035 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11036 },
11037
11038 { /* Rest of World */
11039 "ZZD",
11040 .bg_channels = 13,
11041 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11042 {2427, 4}, {2432, 5}, {2437, 6},
11043 {2442, 7}, {2447, 8}, {2452, 9},
11044 {2457, 10}, {2462, 11}, {2467, 12},
11045 {2472, 13}},
11046 },
11047
11048 { /* Custom USA & Europe & High */
11049 "ZZA",
11050 .bg_channels = 11,
11051 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11052 {2427, 4}, {2432, 5}, {2437, 6},
11053 {2442, 7}, {2447, 8}, {2452, 9},
11054 {2457, 10}, {2462, 11}},
11055 .a_channels = 13,
11056 .a = {{5180, 36},
11057 {5200, 40},
11058 {5220, 44},
11059 {5240, 48},
11060 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11061 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11062 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11063 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11064 {5745, 149},
11065 {5765, 153},
11066 {5785, 157},
11067 {5805, 161},
11068 {5825, 165}},
11069 },
11070
11071 { /* Custom NA & Europe */
11072 "ZZB",
11073 .bg_channels = 11,
11074 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11075 {2427, 4}, {2432, 5}, {2437, 6},
11076 {2442, 7}, {2447, 8}, {2452, 9},
11077 {2457, 10}, {2462, 11}},
11078 .a_channels = 13,
11079 .a = {{5180, 36},
11080 {5200, 40},
11081 {5220, 44},
11082 {5240, 48},
11083 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11084 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11085 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11086 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11087 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11088 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11089 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11090 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11091 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11092 },
11093
11094 { /* Custom Japan */
11095 "ZZC",
11096 .bg_channels = 11,
11097 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11098 {2427, 4}, {2432, 5}, {2437, 6},
11099 {2442, 7}, {2447, 8}, {2452, 9},
11100 {2457, 10}, {2462, 11}},
11101 .a_channels = 4,
11102 .a = {{5170, 34}, {5190, 38},
11103 {5210, 42}, {5230, 46}},
11104 },
11105
11106 { /* Custom */
11107 "ZZM",
11108 .bg_channels = 11,
11109 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11110 {2427, 4}, {2432, 5}, {2437, 6},
11111 {2442, 7}, {2447, 8}, {2452, 9},
11112 {2457, 10}, {2462, 11}},
11113 },
11114
11115 { /* Europe */
11116 "ZZE",
11117 .bg_channels = 13,
11118 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11119 {2427, 4}, {2432, 5}, {2437, 6},
11120 {2442, 7}, {2447, 8}, {2452, 9},
11121 {2457, 10}, {2462, 11}, {2467, 12},
11122 {2472, 13}},
11123 .a_channels = 19,
11124 .a = {{5180, 36},
11125 {5200, 40},
11126 {5220, 44},
11127 {5240, 48},
11128 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11129 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11130 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11131 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11132 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11133 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11134 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11135 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11136 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11137 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11138 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11139 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11140 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11141 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11142 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11143 },
11144
11145 { /* Custom Japan */
11146 "ZZJ",
11147 .bg_channels = 14,
11148 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11149 {2427, 4}, {2432, 5}, {2437, 6},
11150 {2442, 7}, {2447, 8}, {2452, 9},
11151 {2457, 10}, {2462, 11}, {2467, 12},
11152 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11153 .a_channels = 4,
11154 .a = {{5170, 34}, {5190, 38},
11155 {5210, 42}, {5230, 46}},
11156 },
11157
11158 { /* Rest of World */
11159 "ZZR",
11160 .bg_channels = 14,
11161 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11162 {2427, 4}, {2432, 5}, {2437, 6},
11163 {2442, 7}, {2447, 8}, {2452, 9},
11164 {2457, 10}, {2462, 11}, {2467, 12},
11165 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11166 IEEE80211_CH_PASSIVE_ONLY}},
11167 },
11168
11169 { /* High Band */
11170 "ZZH",
11171 .bg_channels = 13,
11172 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11173 {2427, 4}, {2432, 5}, {2437, 6},
11174 {2442, 7}, {2447, 8}, {2452, 9},
11175 {2457, 10}, {2462, 11},
11176 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11177 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11178 .a_channels = 4,
11179 .a = {{5745, 149}, {5765, 153},
11180 {5785, 157}, {5805, 161}},
11181 },
11182
11183 { /* Custom Europe */
11184 "ZZG",
11185 .bg_channels = 13,
11186 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11187 {2427, 4}, {2432, 5}, {2437, 6},
11188 {2442, 7}, {2447, 8}, {2452, 9},
11189 {2457, 10}, {2462, 11},
11190 {2467, 12}, {2472, 13}},
11191 .a_channels = 4,
11192 .a = {{5180, 36}, {5200, 40},
11193 {5220, 44}, {5240, 48}},
11194 },
11195
11196 { /* Europe */
11197 "ZZK",
11198 .bg_channels = 13,
11199 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11200 {2427, 4}, {2432, 5}, {2437, 6},
11201 {2442, 7}, {2447, 8}, {2452, 9},
11202 {2457, 10}, {2462, 11},
11203 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11204 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11205 .a_channels = 24,
11206 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11207 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11208 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11209 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11210 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11211 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11212 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11213 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11214 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11215 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11216 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11217 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11218 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11219 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11220 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11221 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11222 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11223 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11224 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11225 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11226 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11227 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11228 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11229 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11230 },
11231
11232 { /* Europe */
11233 "ZZL",
11234 .bg_channels = 11,
11235 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11236 {2427, 4}, {2432, 5}, {2437, 6},
11237 {2442, 7}, {2447, 8}, {2452, 9},
11238 {2457, 10}, {2462, 11}},
11239 .a_channels = 13,
11240 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11241 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11242 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11243 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11244 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11245 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11246 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11247 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11248 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11249 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11250 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11251 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11252 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11253 }
11254 };
11255
11256 #define MAX_HW_RESTARTS 5
11257 static int ipw_up(struct ipw_priv *priv)
11258 {
11259 int rc, i, j;
11260
11261 if (priv->status & STATUS_EXIT_PENDING)
11262 return -EIO;
11263
11264 if (cmdlog && !priv->cmdlog) {
11265 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11266 GFP_KERNEL);
11267 if (priv->cmdlog == NULL) {
11268 IPW_ERROR("Error allocating %d command log entries.\n",
11269 cmdlog);
11270 return -ENOMEM;
11271 } else {
11272 priv->cmdlog_len = cmdlog;
11273 }
11274 }
11275
11276 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11277 /* Load the microcode, firmware, and eeprom.
11278 * Also start the clocks. */
11279 rc = ipw_load(priv);
11280 if (rc) {
11281 IPW_ERROR("Unable to load firmware: %d\n", rc);
11282 return rc;
11283 }
11284
11285 ipw_init_ordinals(priv);
11286 if (!(priv->config & CFG_CUSTOM_MAC))
11287 eeprom_parse_mac(priv, priv->mac_addr);
11288 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11289
11290 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11291 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11292 ipw_geos[j].name, 3))
11293 break;
11294 }
11295 if (j == ARRAY_SIZE(ipw_geos)) {
11296 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11297 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11298 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11299 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11300 j = 0;
11301 }
11302 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11303 IPW_WARNING("Could not set geography.");
11304 return 0;
11305 }
11306
11307 if (priv->status & STATUS_RF_KILL_SW) {
11308 IPW_WARNING("Radio disabled by module parameter.\n");
11309 return 0;
11310 } else if (rf_kill_active(priv)) {
11311 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11312 "Kill switch must be turned off for "
11313 "wireless networking to work.\n");
11314 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11315 2 * HZ);
11316 return 0;
11317 }
11318
11319 rc = ipw_config(priv);
11320 if (!rc) {
11321 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11322
11323 /* If configure to try and auto-associate, kick
11324 * off a scan. */
11325 queue_delayed_work(priv->workqueue,
11326 &priv->request_scan, 0);
11327
11328 return 0;
11329 }
11330
11331 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11332 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11333 i, MAX_HW_RESTARTS);
11334
11335 /* We had an error bringing up the hardware, so take it
11336 * all the way back down so we can try again */
11337 ipw_down(priv);
11338 }
11339
11340 /* tried to restart and config the device for as long as our
11341 * patience could withstand */
11342 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11343
11344 return -EIO;
11345 }
11346
11347 static void ipw_bg_up(struct work_struct *work)
11348 {
11349 struct ipw_priv *priv =
11350 container_of(work, struct ipw_priv, up);
11351 mutex_lock(&priv->mutex);
11352 ipw_up(priv);
11353 mutex_unlock(&priv->mutex);
11354 }
11355
11356 static void ipw_deinit(struct ipw_priv *priv)
11357 {
11358 int i;
11359
11360 if (priv->status & STATUS_SCANNING) {
11361 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11362 ipw_abort_scan(priv);
11363 }
11364
11365 if (priv->status & STATUS_ASSOCIATED) {
11366 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11367 ipw_disassociate(priv);
11368 }
11369
11370 ipw_led_shutdown(priv);
11371
11372 /* Wait up to 1s for status to change to not scanning and not
11373 * associated (disassociation can take a while for a ful 802.11
11374 * exchange */
11375 for (i = 1000; i && (priv->status &
11376 (STATUS_DISASSOCIATING |
11377 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11378 udelay(10);
11379
11380 if (priv->status & (STATUS_DISASSOCIATING |
11381 STATUS_ASSOCIATED | STATUS_SCANNING))
11382 IPW_DEBUG_INFO("Still associated or scanning...\n");
11383 else
11384 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11385
11386 /* Attempt to disable the card */
11387 ipw_send_card_disable(priv, 0);
11388
11389 priv->status &= ~STATUS_INIT;
11390 }
11391
11392 static void ipw_down(struct ipw_priv *priv)
11393 {
11394 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11395
11396 priv->status |= STATUS_EXIT_PENDING;
11397
11398 if (ipw_is_init(priv))
11399 ipw_deinit(priv);
11400
11401 /* Wipe out the EXIT_PENDING status bit if we are not actually
11402 * exiting the module */
11403 if (!exit_pending)
11404 priv->status &= ~STATUS_EXIT_PENDING;
11405
11406 /* tell the device to stop sending interrupts */
11407 ipw_disable_interrupts(priv);
11408
11409 /* Clear all bits but the RF Kill */
11410 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11411 netif_carrier_off(priv->net_dev);
11412 netif_stop_queue(priv->net_dev);
11413
11414 ipw_stop_nic(priv);
11415
11416 ipw_led_radio_off(priv);
11417 }
11418
11419 static void ipw_bg_down(struct work_struct *work)
11420 {
11421 struct ipw_priv *priv =
11422 container_of(work, struct ipw_priv, down);
11423 mutex_lock(&priv->mutex);
11424 ipw_down(priv);
11425 mutex_unlock(&priv->mutex);
11426 }
11427
11428 /* Called by register_netdev() */
11429 static int ipw_net_init(struct net_device *dev)
11430 {
11431 struct ipw_priv *priv = ieee80211_priv(dev);
11432 mutex_lock(&priv->mutex);
11433
11434 if (ipw_up(priv)) {
11435 mutex_unlock(&priv->mutex);
11436 return -EIO;
11437 }
11438
11439 mutex_unlock(&priv->mutex);
11440 return 0;
11441 }
11442
11443 /* PCI driver stuff */
11444 static struct pci_device_id card_ids[] = {
11445 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11446 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11447 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11448 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11449 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11450 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11451 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11452 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11453 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11454 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11455 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11456 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11457 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11458 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11459 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11460 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11461 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11462 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11463 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11464 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11465 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11466 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11467
11468 /* required last entry */
11469 {0,}
11470 };
11471
11472 MODULE_DEVICE_TABLE(pci, card_ids);
11473
11474 static struct attribute *ipw_sysfs_entries[] = {
11475 &dev_attr_rf_kill.attr,
11476 &dev_attr_direct_dword.attr,
11477 &dev_attr_indirect_byte.attr,
11478 &dev_attr_indirect_dword.attr,
11479 &dev_attr_mem_gpio_reg.attr,
11480 &dev_attr_command_event_reg.attr,
11481 &dev_attr_nic_type.attr,
11482 &dev_attr_status.attr,
11483 &dev_attr_cfg.attr,
11484 &dev_attr_error.attr,
11485 &dev_attr_event_log.attr,
11486 &dev_attr_cmd_log.attr,
11487 &dev_attr_eeprom_delay.attr,
11488 &dev_attr_ucode_version.attr,
11489 &dev_attr_rtc.attr,
11490 &dev_attr_scan_age.attr,
11491 &dev_attr_led.attr,
11492 &dev_attr_speed_scan.attr,
11493 &dev_attr_net_stats.attr,
11494 &dev_attr_channels.attr,
11495 #ifdef CONFIG_IPW2200_PROMISCUOUS
11496 &dev_attr_rtap_iface.attr,
11497 &dev_attr_rtap_filter.attr,
11498 #endif
11499 NULL
11500 };
11501
11502 static struct attribute_group ipw_attribute_group = {
11503 .name = NULL, /* put in device directory */
11504 .attrs = ipw_sysfs_entries,
11505 };
11506
11507 #ifdef CONFIG_IPW2200_PROMISCUOUS
11508 static int ipw_prom_open(struct net_device *dev)
11509 {
11510 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11511 struct ipw_priv *priv = prom_priv->priv;
11512
11513 IPW_DEBUG_INFO("prom dev->open\n");
11514 netif_carrier_off(dev);
11515 netif_stop_queue(dev);
11516
11517 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11518 priv->sys_config.accept_all_data_frames = 1;
11519 priv->sys_config.accept_non_directed_frames = 1;
11520 priv->sys_config.accept_all_mgmt_bcpr = 1;
11521 priv->sys_config.accept_all_mgmt_frames = 1;
11522
11523 ipw_send_system_config(priv);
11524 }
11525
11526 return 0;
11527 }
11528
11529 static int ipw_prom_stop(struct net_device *dev)
11530 {
11531 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11532 struct ipw_priv *priv = prom_priv->priv;
11533
11534 IPW_DEBUG_INFO("prom dev->stop\n");
11535
11536 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11537 priv->sys_config.accept_all_data_frames = 0;
11538 priv->sys_config.accept_non_directed_frames = 0;
11539 priv->sys_config.accept_all_mgmt_bcpr = 0;
11540 priv->sys_config.accept_all_mgmt_frames = 0;
11541
11542 ipw_send_system_config(priv);
11543 }
11544
11545 return 0;
11546 }
11547
11548 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11549 {
11550 IPW_DEBUG_INFO("prom dev->xmit\n");
11551 netif_stop_queue(dev);
11552 return -EOPNOTSUPP;
11553 }
11554
11555 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11556 {
11557 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11558 return &prom_priv->ieee->stats;
11559 }
11560
11561 static int ipw_prom_alloc(struct ipw_priv *priv)
11562 {
11563 int rc = 0;
11564
11565 if (priv->prom_net_dev)
11566 return -EPERM;
11567
11568 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11569 if (priv->prom_net_dev == NULL)
11570 return -ENOMEM;
11571
11572 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11573 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11574 priv->prom_priv->priv = priv;
11575
11576 strcpy(priv->prom_net_dev->name, "rtap%d");
11577
11578 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11579 priv->prom_net_dev->open = ipw_prom_open;
11580 priv->prom_net_dev->stop = ipw_prom_stop;
11581 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11582 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11583
11584 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11585
11586 rc = register_netdev(priv->prom_net_dev);
11587 if (rc) {
11588 free_ieee80211(priv->prom_net_dev);
11589 priv->prom_net_dev = NULL;
11590 return rc;
11591 }
11592
11593 return 0;
11594 }
11595
11596 static void ipw_prom_free(struct ipw_priv *priv)
11597 {
11598 if (!priv->prom_net_dev)
11599 return;
11600
11601 unregister_netdev(priv->prom_net_dev);
11602 free_ieee80211(priv->prom_net_dev);
11603
11604 priv->prom_net_dev = NULL;
11605 }
11606
11607 #endif
11608
11609
11610 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11611 const struct pci_device_id *ent)
11612 {
11613 int err = 0;
11614 struct net_device *net_dev;
11615 void __iomem *base;
11616 u32 length, val;
11617 struct ipw_priv *priv;
11618 int i;
11619
11620 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11621 if (net_dev == NULL) {
11622 err = -ENOMEM;
11623 goto out;
11624 }
11625
11626 priv = ieee80211_priv(net_dev);
11627 priv->ieee = netdev_priv(net_dev);
11628
11629 priv->net_dev = net_dev;
11630 priv->pci_dev = pdev;
11631 ipw_debug_level = debug;
11632 spin_lock_init(&priv->irq_lock);
11633 spin_lock_init(&priv->lock);
11634 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11635 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11636
11637 mutex_init(&priv->mutex);
11638 if (pci_enable_device(pdev)) {
11639 err = -ENODEV;
11640 goto out_free_ieee80211;
11641 }
11642
11643 pci_set_master(pdev);
11644
11645 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11646 if (!err)
11647 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11648 if (err) {
11649 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11650 goto out_pci_disable_device;
11651 }
11652
11653 pci_set_drvdata(pdev, priv);
11654
11655 err = pci_request_regions(pdev, DRV_NAME);
11656 if (err)
11657 goto out_pci_disable_device;
11658
11659 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11660 * PCI Tx retries from interfering with C3 CPU state */
11661 pci_read_config_dword(pdev, 0x40, &val);
11662 if ((val & 0x0000ff00) != 0)
11663 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11664
11665 length = pci_resource_len(pdev, 0);
11666 priv->hw_len = length;
11667
11668 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11669 if (!base) {
11670 err = -ENODEV;
11671 goto out_pci_release_regions;
11672 }
11673
11674 priv->hw_base = base;
11675 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11676 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11677
11678 err = ipw_setup_deferred_work(priv);
11679 if (err) {
11680 IPW_ERROR("Unable to setup deferred work\n");
11681 goto out_iounmap;
11682 }
11683
11684 ipw_sw_reset(priv, 1);
11685
11686 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11687 if (err) {
11688 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11689 goto out_destroy_workqueue;
11690 }
11691
11692 SET_NETDEV_DEV(net_dev, &pdev->dev);
11693
11694 mutex_lock(&priv->mutex);
11695
11696 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11697 priv->ieee->set_security = shim__set_security;
11698 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11699
11700 #ifdef CONFIG_IPW2200_QOS
11701 priv->ieee->is_qos_active = ipw_is_qos_active;
11702 priv->ieee->handle_probe_response = ipw_handle_beacon;
11703 priv->ieee->handle_beacon = ipw_handle_probe_response;
11704 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11705 #endif /* CONFIG_IPW2200_QOS */
11706
11707 priv->ieee->perfect_rssi = -20;
11708 priv->ieee->worst_rssi = -85;
11709
11710 net_dev->open = ipw_net_open;
11711 net_dev->stop = ipw_net_stop;
11712 net_dev->init = ipw_net_init;
11713 net_dev->get_stats = ipw_net_get_stats;
11714 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11715 net_dev->set_mac_address = ipw_net_set_mac_address;
11716 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11717 net_dev->wireless_data = &priv->wireless_data;
11718 net_dev->wireless_handlers = &ipw_wx_handler_def;
11719 net_dev->ethtool_ops = &ipw_ethtool_ops;
11720 net_dev->irq = pdev->irq;
11721 net_dev->base_addr = (unsigned long)priv->hw_base;
11722 net_dev->mem_start = pci_resource_start(pdev, 0);
11723 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11724
11725 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11726 if (err) {
11727 IPW_ERROR("failed to create sysfs device attributes\n");
11728 mutex_unlock(&priv->mutex);
11729 goto out_release_irq;
11730 }
11731
11732 mutex_unlock(&priv->mutex);
11733 err = register_netdev(net_dev);
11734 if (err) {
11735 IPW_ERROR("failed to register network device\n");
11736 goto out_remove_sysfs;
11737 }
11738
11739 #ifdef CONFIG_IPW2200_PROMISCUOUS
11740 if (rtap_iface) {
11741 err = ipw_prom_alloc(priv);
11742 if (err) {
11743 IPW_ERROR("Failed to register promiscuous network "
11744 "device (error %d).\n", err);
11745 unregister_netdev(priv->net_dev);
11746 goto out_remove_sysfs;
11747 }
11748 }
11749 #endif
11750
11751 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11752 "channels, %d 802.11a channels)\n",
11753 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11754 priv->ieee->geo.a_channels);
11755
11756 return 0;
11757
11758 out_remove_sysfs:
11759 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11760 out_release_irq:
11761 free_irq(pdev->irq, priv);
11762 out_destroy_workqueue:
11763 destroy_workqueue(priv->workqueue);
11764 priv->workqueue = NULL;
11765 out_iounmap:
11766 iounmap(priv->hw_base);
11767 out_pci_release_regions:
11768 pci_release_regions(pdev);
11769 out_pci_disable_device:
11770 pci_disable_device(pdev);
11771 pci_set_drvdata(pdev, NULL);
11772 out_free_ieee80211:
11773 free_ieee80211(priv->net_dev);
11774 out:
11775 return err;
11776 }
11777
11778 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11779 {
11780 struct ipw_priv *priv = pci_get_drvdata(pdev);
11781 struct list_head *p, *q;
11782 int i;
11783
11784 if (!priv)
11785 return;
11786
11787 mutex_lock(&priv->mutex);
11788
11789 priv->status |= STATUS_EXIT_PENDING;
11790 ipw_down(priv);
11791 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11792
11793 mutex_unlock(&priv->mutex);
11794
11795 unregister_netdev(priv->net_dev);
11796
11797 if (priv->rxq) {
11798 ipw_rx_queue_free(priv, priv->rxq);
11799 priv->rxq = NULL;
11800 }
11801 ipw_tx_queue_free(priv);
11802
11803 if (priv->cmdlog) {
11804 kfree(priv->cmdlog);
11805 priv->cmdlog = NULL;
11806 }
11807 /* ipw_down will ensure that there is no more pending work
11808 * in the workqueue's, so we can safely remove them now. */
11809 cancel_delayed_work(&priv->adhoc_check);
11810 cancel_delayed_work(&priv->gather_stats);
11811 cancel_delayed_work(&priv->request_scan);
11812 cancel_delayed_work(&priv->scan_event);
11813 cancel_delayed_work(&priv->rf_kill);
11814 cancel_delayed_work(&priv->scan_check);
11815 destroy_workqueue(priv->workqueue);
11816 priv->workqueue = NULL;
11817
11818 /* Free MAC hash list for ADHOC */
11819 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11820 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11821 list_del(p);
11822 kfree(list_entry(p, struct ipw_ibss_seq, list));
11823 }
11824 }
11825
11826 kfree(priv->error);
11827 priv->error = NULL;
11828
11829 #ifdef CONFIG_IPW2200_PROMISCUOUS
11830 ipw_prom_free(priv);
11831 #endif
11832
11833 free_irq(pdev->irq, priv);
11834 iounmap(priv->hw_base);
11835 pci_release_regions(pdev);
11836 pci_disable_device(pdev);
11837 pci_set_drvdata(pdev, NULL);
11838 free_ieee80211(priv->net_dev);
11839 free_firmware();
11840 }
11841
11842 #ifdef CONFIG_PM
11843 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11844 {
11845 struct ipw_priv *priv = pci_get_drvdata(pdev);
11846 struct net_device *dev = priv->net_dev;
11847
11848 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11849
11850 /* Take down the device; powers it off, etc. */
11851 ipw_down(priv);
11852
11853 /* Remove the PRESENT state of the device */
11854 netif_device_detach(dev);
11855
11856 pci_save_state(pdev);
11857 pci_disable_device(pdev);
11858 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11859
11860 return 0;
11861 }
11862
11863 static int ipw_pci_resume(struct pci_dev *pdev)
11864 {
11865 struct ipw_priv *priv = pci_get_drvdata(pdev);
11866 struct net_device *dev = priv->net_dev;
11867 int err;
11868 u32 val;
11869
11870 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11871
11872 pci_set_power_state(pdev, PCI_D0);
11873 err = pci_enable_device(pdev);
11874 if (err) {
11875 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11876 dev->name);
11877 return err;
11878 }
11879 pci_restore_state(pdev);
11880
11881 /*
11882 * Suspend/Resume resets the PCI configuration space, so we have to
11883 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11884 * from interfering with C3 CPU state. pci_restore_state won't help
11885 * here since it only restores the first 64 bytes pci config header.
11886 */
11887 pci_read_config_dword(pdev, 0x40, &val);
11888 if ((val & 0x0000ff00) != 0)
11889 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11890
11891 /* Set the device back into the PRESENT state; this will also wake
11892 * the queue of needed */
11893 netif_device_attach(dev);
11894
11895 /* Bring the device back up */
11896 queue_work(priv->workqueue, &priv->up);
11897
11898 return 0;
11899 }
11900 #endif
11901
11902 static void ipw_pci_shutdown(struct pci_dev *pdev)
11903 {
11904 struct ipw_priv *priv = pci_get_drvdata(pdev);
11905
11906 /* Take down the device; powers it off, etc. */
11907 ipw_down(priv);
11908
11909 pci_disable_device(pdev);
11910 }
11911
11912 /* driver initialization stuff */
11913 static struct pci_driver ipw_driver = {
11914 .name = DRV_NAME,
11915 .id_table = card_ids,
11916 .probe = ipw_pci_probe,
11917 .remove = __devexit_p(ipw_pci_remove),
11918 #ifdef CONFIG_PM
11919 .suspend = ipw_pci_suspend,
11920 .resume = ipw_pci_resume,
11921 #endif
11922 .shutdown = ipw_pci_shutdown,
11923 };
11924
11925 static int __init ipw_init(void)
11926 {
11927 int ret;
11928
11929 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11930 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11931
11932 ret = pci_register_driver(&ipw_driver);
11933 if (ret) {
11934 IPW_ERROR("Unable to initialize PCI module\n");
11935 return ret;
11936 }
11937
11938 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11939 if (ret) {
11940 IPW_ERROR("Unable to create driver sysfs file\n");
11941 pci_unregister_driver(&ipw_driver);
11942 return ret;
11943 }
11944
11945 return ret;
11946 }
11947
11948 static void __exit ipw_exit(void)
11949 {
11950 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11951 pci_unregister_driver(&ipw_driver);
11952 }
11953
11954 module_param(disable, int, 0444);
11955 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11956
11957 module_param(associate, int, 0444);
11958 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11959
11960 module_param(auto_create, int, 0444);
11961 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11962
11963 module_param(led, int, 0444);
11964 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11965
11966 module_param(debug, int, 0444);
11967 MODULE_PARM_DESC(debug, "debug output mask");
11968
11969 module_param(channel, int, 0444);
11970 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11971
11972 #ifdef CONFIG_IPW2200_PROMISCUOUS
11973 module_param(rtap_iface, int, 0444);
11974 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11975 #endif
11976
11977 #ifdef CONFIG_IPW2200_QOS
11978 module_param(qos_enable, int, 0444);
11979 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11980
11981 module_param(qos_burst_enable, int, 0444);
11982 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11983
11984 module_param(qos_no_ack_mask, int, 0444);
11985 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11986
11987 module_param(burst_duration_CCK, int, 0444);
11988 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11989
11990 module_param(burst_duration_OFDM, int, 0444);
11991 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11992 #endif /* CONFIG_IPW2200_QOS */
11993
11994 #ifdef CONFIG_IPW2200_MONITOR
11995 module_param(mode, int, 0444);
11996 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11997 #else
11998 module_param(mode, int, 0444);
11999 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12000 #endif
12001
12002 module_param(bt_coexist, int, 0444);
12003 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12004
12005 module_param(hwcrypto, int, 0444);
12006 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12007
12008 module_param(cmdlog, int, 0444);
12009 MODULE_PARM_DESC(cmdlog,
12010 "allocate a ring buffer for logging firmware commands");
12011
12012 module_param(roaming, int, 0444);
12013 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12014
12015 module_param(antenna, int, 0444);
12016 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12017
12018 module_exit(ipw_exit);
12019 module_init(ipw_init);