]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/ipw2200.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.0" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99 'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128 QOS_TX3_CW_MIN_CCK},
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130 QOS_TX3_CW_MAX_CCK},
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150 DEF_TX3_CW_MIN_CCK},
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152 DEF_TX3_CW_MAX_CCK},
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169 *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171 *qos_param);
172 #endif /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182 int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
201 {
202 int out, i, j, l;
203 char c;
204
205 out = snprintf(buf, count, "%08X", ofs);
206
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
211 data[(i * 8 + j)]);
212 for (; j < 8; j++)
213 out += snprintf(buf + out, count - out, " ");
214 }
215
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
222 c = '.';
223
224 out += snprintf(buf + out, count - out, "%c", c);
225 }
226
227 for (; j < 8; j++)
228 out += snprintf(buf + out, count - out, " ");
229 }
230
231 return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236 char line[81];
237 u32 ofs = 0;
238 if (!(ipw_debug_level & level))
239 return;
240
241 while (len) {
242 snprint_line(line, sizeof(line), &data[ofs],
243 min(len, 16U), ofs);
244 printk(KERN_DEBUG "%s\n", line);
245 ofs += 16;
246 len -= min(len, 16U);
247 }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252 size_t out = size;
253 u32 ofs = 0;
254 int total = 0;
255
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
259
260 ofs += 16;
261 output += out;
262 size -= out;
263 len -= min_t(size_t, len, 16U);
264 total += out;
265 }
266 return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373 d);
374 _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
400
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430 u32 value;
431
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
444 {
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
448
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451 if (num <= 0) {
452 return;
453 }
454
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
462 }
463
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474 }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
481 {
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
485
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488 if (num <= 0) {
489 return;
490 }
491
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
499 }
500
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511 }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
518 {
519 memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552 unsigned long flags;
553
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561 unsigned long flags;
562
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
603 }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
608 {
609 u32 i;
610
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
615 }
616
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
620
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637 return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642 u32 addr, field_info, field_len, field_count, total_len;
643
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
649 }
650
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
655 }
656
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
659 /*
660 * TABLE 0: Direct access to a table of 32 bit values
661 *
662 * This is a very simple table with the data directly
663 * read from the table
664 */
665
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
674 }
675
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
681 }
682
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
685
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
690
691 case IPW_ORD_TABLE_1_MASK:
692 /*
693 * TABLE 1: Indirect access to a table of 32 bit values
694 *
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
698 */
699
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
707 }
708
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
714 }
715
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
720
721 case IPW_ORD_TABLE_2_MASK:
722 /*
723 * TABLE 2: Indirect access to a table of variable sized values
724 *
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
729 */
730
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
738 }
739
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
749
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
752
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
755
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
761 }
762
763 *len = total_len;
764 if (!total_len)
765 return 0;
766
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
772
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
776
777 }
778
779 return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
789
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
795
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
815 }
816
817 /*
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
824 *
825 */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832 unsigned long flags;
833 u32 led;
834
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
839
840 spin_lock_irqsave(&priv->lock, flags);
841
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
847
848 led = ipw_register_toggle(led);
849
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853 priv->status |= STATUS_LED_LINK_ON;
854
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
860 }
861
862 spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876 unsigned long flags;
877 u32 led;
878
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
883
884 spin_lock_irqsave(&priv->lock, flags);
885
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
890
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894 IPW_DEBUG_LED("Link LED Off\n");
895
896 priv->status &= ~STATUS_LED_LINK_ON;
897
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
904
905 }
906
907 spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921 u32 led;
922
923 if (priv->config & CFG_NO_LED)
924 return;
925
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
928
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
932
933 led = ipw_register_toggle(led);
934
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938 IPW_DEBUG_LED("Activity LED On\n");
939
940 priv->status |= STATUS_LED_ACT_ON;
941
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
950 }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif /* 0 */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965 unsigned long flags;
966 u32 led;
967
968 if (priv->config & CFG_NO_LED)
969 return;
970
971 spin_lock_irqsave(&priv->lock, flags);
972
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
976
977 led = ipw_register_toggle(led);
978
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982 IPW_DEBUG_LED("Activity LED Off\n");
983
984 priv->status &= ~STATUS_LED_ACT_ON;
985 }
986
987 spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001 unsigned long flags;
1002 u32 led;
1003
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1008
1009 spin_lock_irqsave(&priv->lock, flags);
1010
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024 }
1025
1026 led = ipw_register_toggle(led);
1027
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031 spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036 unsigned long flags;
1037 u32 led;
1038
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1042
1043 spin_lock_irqsave(&priv->lock, flags);
1044
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1048
1049 led = ipw_register_toggle(led);
1050
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054 spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059 ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1078
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1108
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1112
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1118
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1124 }
1125
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1131 }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1148 *
1149 * See the level definitions in ipw for details.
1150 */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1158 {
1159 char *p = (char *)buf;
1160 u32 val;
1161
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1174
1175 return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1189 {
1190 u32 base;
1191
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1196 }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1205
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1213 }
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222 ipw_capture_event_log(priv, log_len, error->log);
1223
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1227
1228 return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1233 {
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 struct ipw_event log[log_len];
1237 u32 len = 0, i;
1238
1239 ipw_capture_event_log(priv, log_len, log);
1240
1241 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1242 for (i = 0; i < log_len; i++)
1243 len += snprintf(buf + len, PAGE_SIZE - len,
1244 "\n%08X%08X%08X",
1245 log[i].time, log[i].event, log[i].data);
1246 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1247 return len;
1248 }
1249
1250 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1251
1252 static ssize_t show_error(struct device *d,
1253 struct device_attribute *attr, char *buf)
1254 {
1255 struct ipw_priv *priv = dev_get_drvdata(d);
1256 u32 len = 0, i;
1257 if (!priv->error)
1258 return 0;
1259 len += snprintf(buf + len, PAGE_SIZE - len,
1260 "%08lX%08X%08X%08X",
1261 priv->error->jiffies,
1262 priv->error->status,
1263 priv->error->config, priv->error->elem_len);
1264 for (i = 0; i < priv->error->elem_len; i++)
1265 len += snprintf(buf + len, PAGE_SIZE - len,
1266 "\n%08X%08X%08X%08X%08X%08X%08X",
1267 priv->error->elem[i].time,
1268 priv->error->elem[i].desc,
1269 priv->error->elem[i].blink1,
1270 priv->error->elem[i].blink2,
1271 priv->error->elem[i].link1,
1272 priv->error->elem[i].link2,
1273 priv->error->elem[i].data);
1274
1275 len += snprintf(buf + len, PAGE_SIZE - len,
1276 "\n%08X", priv->error->log_len);
1277 for (i = 0; i < priv->error->log_len; i++)
1278 len += snprintf(buf + len, PAGE_SIZE - len,
1279 "\n%08X%08X%08X",
1280 priv->error->log[i].time,
1281 priv->error->log[i].event,
1282 priv->error->log[i].data);
1283 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1284 return len;
1285 }
1286
1287 static ssize_t clear_error(struct device *d,
1288 struct device_attribute *attr,
1289 const char *buf, size_t count)
1290 {
1291 struct ipw_priv *priv = dev_get_drvdata(d);
1292
1293 kfree(priv->error);
1294 priv->error = NULL;
1295 return count;
1296 }
1297
1298 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1299
1300 static ssize_t show_cmd_log(struct device *d,
1301 struct device_attribute *attr, char *buf)
1302 {
1303 struct ipw_priv *priv = dev_get_drvdata(d);
1304 u32 len = 0, i;
1305 if (!priv->cmdlog)
1306 return 0;
1307 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1308 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1309 i = (i + 1) % priv->cmdlog_len) {
1310 len +=
1311 snprintf(buf + len, PAGE_SIZE - len,
1312 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1313 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1314 priv->cmdlog[i].cmd.len);
1315 len +=
1316 snprintk_buf(buf + len, PAGE_SIZE - len,
1317 (u8 *) priv->cmdlog[i].cmd.param,
1318 priv->cmdlog[i].cmd.len);
1319 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1320 }
1321 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1322 return len;
1323 }
1324
1325 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1326
1327 #ifdef CONFIG_IPW2200_PROMISCUOUS
1328 static void ipw_prom_free(struct ipw_priv *priv);
1329 static int ipw_prom_alloc(struct ipw_priv *priv);
1330 static ssize_t store_rtap_iface(struct device *d,
1331 struct device_attribute *attr,
1332 const char *buf, size_t count)
1333 {
1334 struct ipw_priv *priv = dev_get_drvdata(d);
1335 int rc = 0;
1336
1337 if (count < 1)
1338 return -EINVAL;
1339
1340 switch (buf[0]) {
1341 case '0':
1342 if (!rtap_iface)
1343 return count;
1344
1345 if (netif_running(priv->prom_net_dev)) {
1346 IPW_WARNING("Interface is up. Cannot unregister.\n");
1347 return count;
1348 }
1349
1350 ipw_prom_free(priv);
1351 rtap_iface = 0;
1352 break;
1353
1354 case '1':
1355 if (rtap_iface)
1356 return count;
1357
1358 rc = ipw_prom_alloc(priv);
1359 if (!rc)
1360 rtap_iface = 1;
1361 break;
1362
1363 default:
1364 return -EINVAL;
1365 }
1366
1367 if (rc) {
1368 IPW_ERROR("Failed to register promiscuous network "
1369 "device (error %d).\n", rc);
1370 }
1371
1372 return count;
1373 }
1374
1375 static ssize_t show_rtap_iface(struct device *d,
1376 struct device_attribute *attr,
1377 char *buf)
1378 {
1379 struct ipw_priv *priv = dev_get_drvdata(d);
1380 if (rtap_iface)
1381 return sprintf(buf, "%s", priv->prom_net_dev->name);
1382 else {
1383 buf[0] = '-';
1384 buf[1] = '1';
1385 buf[2] = '\0';
1386 return 3;
1387 }
1388 }
1389
1390 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1391 store_rtap_iface);
1392
1393 static ssize_t store_rtap_filter(struct device *d,
1394 struct device_attribute *attr,
1395 const char *buf, size_t count)
1396 {
1397 struct ipw_priv *priv = dev_get_drvdata(d);
1398
1399 if (!priv->prom_priv) {
1400 IPW_ERROR("Attempting to set filter without "
1401 "rtap_iface enabled.\n");
1402 return -EPERM;
1403 }
1404
1405 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1406
1407 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1408 BIT_ARG16(priv->prom_priv->filter));
1409
1410 return count;
1411 }
1412
1413 static ssize_t show_rtap_filter(struct device *d,
1414 struct device_attribute *attr,
1415 char *buf)
1416 {
1417 struct ipw_priv *priv = dev_get_drvdata(d);
1418 return sprintf(buf, "0x%04X",
1419 priv->prom_priv ? priv->prom_priv->filter : 0);
1420 }
1421
1422 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1423 store_rtap_filter);
1424 #endif
1425
1426 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1427 char *buf)
1428 {
1429 struct ipw_priv *priv = dev_get_drvdata(d);
1430 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1431 }
1432
1433 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1434 const char *buf, size_t count)
1435 {
1436 struct ipw_priv *priv = dev_get_drvdata(d);
1437 struct net_device *dev = priv->net_dev;
1438 char buffer[] = "00000000";
1439 unsigned long len =
1440 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1441 unsigned long val;
1442 char *p = buffer;
1443
1444 IPW_DEBUG_INFO("enter\n");
1445
1446 strncpy(buffer, buf, len);
1447 buffer[len] = 0;
1448
1449 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1450 p++;
1451 if (p[0] == 'x' || p[0] == 'X')
1452 p++;
1453 val = simple_strtoul(p, &p, 16);
1454 } else
1455 val = simple_strtoul(p, &p, 10);
1456 if (p == buffer) {
1457 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1458 } else {
1459 priv->ieee->scan_age = val;
1460 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1461 }
1462
1463 IPW_DEBUG_INFO("exit\n");
1464 return len;
1465 }
1466
1467 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1468
1469 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1470 char *buf)
1471 {
1472 struct ipw_priv *priv = dev_get_drvdata(d);
1473 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1474 }
1475
1476 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1477 const char *buf, size_t count)
1478 {
1479 struct ipw_priv *priv = dev_get_drvdata(d);
1480
1481 IPW_DEBUG_INFO("enter\n");
1482
1483 if (count == 0)
1484 return 0;
1485
1486 if (*buf == 0) {
1487 IPW_DEBUG_LED("Disabling LED control.\n");
1488 priv->config |= CFG_NO_LED;
1489 ipw_led_shutdown(priv);
1490 } else {
1491 IPW_DEBUG_LED("Enabling LED control.\n");
1492 priv->config &= ~CFG_NO_LED;
1493 ipw_led_init(priv);
1494 }
1495
1496 IPW_DEBUG_INFO("exit\n");
1497 return count;
1498 }
1499
1500 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1501
1502 static ssize_t show_status(struct device *d,
1503 struct device_attribute *attr, char *buf)
1504 {
1505 struct ipw_priv *p = d->driver_data;
1506 return sprintf(buf, "0x%08x\n", (int)p->status);
1507 }
1508
1509 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1510
1511 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1512 char *buf)
1513 {
1514 struct ipw_priv *p = d->driver_data;
1515 return sprintf(buf, "0x%08x\n", (int)p->config);
1516 }
1517
1518 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1519
1520 static ssize_t show_nic_type(struct device *d,
1521 struct device_attribute *attr, char *buf)
1522 {
1523 struct ipw_priv *priv = d->driver_data;
1524 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1525 }
1526
1527 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1528
1529 static ssize_t show_ucode_version(struct device *d,
1530 struct device_attribute *attr, char *buf)
1531 {
1532 u32 len = sizeof(u32), tmp = 0;
1533 struct ipw_priv *p = d->driver_data;
1534
1535 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1536 return 0;
1537
1538 return sprintf(buf, "0x%08x\n", tmp);
1539 }
1540
1541 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1542
1543 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1544 char *buf)
1545 {
1546 u32 len = sizeof(u32), tmp = 0;
1547 struct ipw_priv *p = d->driver_data;
1548
1549 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1550 return 0;
1551
1552 return sprintf(buf, "0x%08x\n", tmp);
1553 }
1554
1555 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1556
1557 /*
1558 * Add a device attribute to view/control the delay between eeprom
1559 * operations.
1560 */
1561 static ssize_t show_eeprom_delay(struct device *d,
1562 struct device_attribute *attr, char *buf)
1563 {
1564 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1565 return sprintf(buf, "%i\n", n);
1566 }
1567 static ssize_t store_eeprom_delay(struct device *d,
1568 struct device_attribute *attr,
1569 const char *buf, size_t count)
1570 {
1571 struct ipw_priv *p = d->driver_data;
1572 sscanf(buf, "%i", &p->eeprom_delay);
1573 return strnlen(buf, count);
1574 }
1575
1576 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1577 show_eeprom_delay, store_eeprom_delay);
1578
1579 static ssize_t show_command_event_reg(struct device *d,
1580 struct device_attribute *attr, char *buf)
1581 {
1582 u32 reg = 0;
1583 struct ipw_priv *p = d->driver_data;
1584
1585 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1586 return sprintf(buf, "0x%08x\n", reg);
1587 }
1588 static ssize_t store_command_event_reg(struct device *d,
1589 struct device_attribute *attr,
1590 const char *buf, size_t count)
1591 {
1592 u32 reg;
1593 struct ipw_priv *p = d->driver_data;
1594
1595 sscanf(buf, "%x", &reg);
1596 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1597 return strnlen(buf, count);
1598 }
1599
1600 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1601 show_command_event_reg, store_command_event_reg);
1602
1603 static ssize_t show_mem_gpio_reg(struct device *d,
1604 struct device_attribute *attr, char *buf)
1605 {
1606 u32 reg = 0;
1607 struct ipw_priv *p = d->driver_data;
1608
1609 reg = ipw_read_reg32(p, 0x301100);
1610 return sprintf(buf, "0x%08x\n", reg);
1611 }
1612 static ssize_t store_mem_gpio_reg(struct device *d,
1613 struct device_attribute *attr,
1614 const char *buf, size_t count)
1615 {
1616 u32 reg;
1617 struct ipw_priv *p = d->driver_data;
1618
1619 sscanf(buf, "%x", &reg);
1620 ipw_write_reg32(p, 0x301100, reg);
1621 return strnlen(buf, count);
1622 }
1623
1624 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1625 show_mem_gpio_reg, store_mem_gpio_reg);
1626
1627 static ssize_t show_indirect_dword(struct device *d,
1628 struct device_attribute *attr, char *buf)
1629 {
1630 u32 reg = 0;
1631 struct ipw_priv *priv = d->driver_data;
1632
1633 if (priv->status & STATUS_INDIRECT_DWORD)
1634 reg = ipw_read_reg32(priv, priv->indirect_dword);
1635 else
1636 reg = 0;
1637
1638 return sprintf(buf, "0x%08x\n", reg);
1639 }
1640 static ssize_t store_indirect_dword(struct device *d,
1641 struct device_attribute *attr,
1642 const char *buf, size_t count)
1643 {
1644 struct ipw_priv *priv = d->driver_data;
1645
1646 sscanf(buf, "%x", &priv->indirect_dword);
1647 priv->status |= STATUS_INDIRECT_DWORD;
1648 return strnlen(buf, count);
1649 }
1650
1651 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1652 show_indirect_dword, store_indirect_dword);
1653
1654 static ssize_t show_indirect_byte(struct device *d,
1655 struct device_attribute *attr, char *buf)
1656 {
1657 u8 reg = 0;
1658 struct ipw_priv *priv = d->driver_data;
1659
1660 if (priv->status & STATUS_INDIRECT_BYTE)
1661 reg = ipw_read_reg8(priv, priv->indirect_byte);
1662 else
1663 reg = 0;
1664
1665 return sprintf(buf, "0x%02x\n", reg);
1666 }
1667 static ssize_t store_indirect_byte(struct device *d,
1668 struct device_attribute *attr,
1669 const char *buf, size_t count)
1670 {
1671 struct ipw_priv *priv = d->driver_data;
1672
1673 sscanf(buf, "%x", &priv->indirect_byte);
1674 priv->status |= STATUS_INDIRECT_BYTE;
1675 return strnlen(buf, count);
1676 }
1677
1678 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1679 show_indirect_byte, store_indirect_byte);
1680
1681 static ssize_t show_direct_dword(struct device *d,
1682 struct device_attribute *attr, char *buf)
1683 {
1684 u32 reg = 0;
1685 struct ipw_priv *priv = d->driver_data;
1686
1687 if (priv->status & STATUS_DIRECT_DWORD)
1688 reg = ipw_read32(priv, priv->direct_dword);
1689 else
1690 reg = 0;
1691
1692 return sprintf(buf, "0x%08x\n", reg);
1693 }
1694 static ssize_t store_direct_dword(struct device *d,
1695 struct device_attribute *attr,
1696 const char *buf, size_t count)
1697 {
1698 struct ipw_priv *priv = d->driver_data;
1699
1700 sscanf(buf, "%x", &priv->direct_dword);
1701 priv->status |= STATUS_DIRECT_DWORD;
1702 return strnlen(buf, count);
1703 }
1704
1705 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1706 show_direct_dword, store_direct_dword);
1707
1708 static int rf_kill_active(struct ipw_priv *priv)
1709 {
1710 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1711 priv->status |= STATUS_RF_KILL_HW;
1712 else
1713 priv->status &= ~STATUS_RF_KILL_HW;
1714
1715 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1716 }
1717
1718 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1719 char *buf)
1720 {
1721 /* 0 - RF kill not enabled
1722 1 - SW based RF kill active (sysfs)
1723 2 - HW based RF kill active
1724 3 - Both HW and SW baed RF kill active */
1725 struct ipw_priv *priv = d->driver_data;
1726 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1727 (rf_kill_active(priv) ? 0x2 : 0x0);
1728 return sprintf(buf, "%i\n", val);
1729 }
1730
1731 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1732 {
1733 if ((disable_radio ? 1 : 0) ==
1734 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1735 return 0;
1736
1737 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1738 disable_radio ? "OFF" : "ON");
1739
1740 if (disable_radio) {
1741 priv->status |= STATUS_RF_KILL_SW;
1742
1743 if (priv->workqueue)
1744 cancel_delayed_work(&priv->request_scan);
1745 queue_work(priv->workqueue, &priv->down);
1746 } else {
1747 priv->status &= ~STATUS_RF_KILL_SW;
1748 if (rf_kill_active(priv)) {
1749 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1750 "disabled by HW switch\n");
1751 /* Make sure the RF_KILL check timer is running */
1752 cancel_delayed_work(&priv->rf_kill);
1753 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1754 2 * HZ);
1755 } else
1756 queue_work(priv->workqueue, &priv->up);
1757 }
1758
1759 return 1;
1760 }
1761
1762 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1763 const char *buf, size_t count)
1764 {
1765 struct ipw_priv *priv = d->driver_data;
1766
1767 ipw_radio_kill_sw(priv, buf[0] == '1');
1768
1769 return count;
1770 }
1771
1772 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1773
1774 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1775 char *buf)
1776 {
1777 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1778 int pos = 0, len = 0;
1779 if (priv->config & CFG_SPEED_SCAN) {
1780 while (priv->speed_scan[pos] != 0)
1781 len += sprintf(&buf[len], "%d ",
1782 priv->speed_scan[pos++]);
1783 return len + sprintf(&buf[len], "\n");
1784 }
1785
1786 return sprintf(buf, "0\n");
1787 }
1788
1789 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1790 const char *buf, size_t count)
1791 {
1792 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793 int channel, pos = 0;
1794 const char *p = buf;
1795
1796 /* list of space separated channels to scan, optionally ending with 0 */
1797 while ((channel = simple_strtol(p, NULL, 0))) {
1798 if (pos == MAX_SPEED_SCAN - 1) {
1799 priv->speed_scan[pos] = 0;
1800 break;
1801 }
1802
1803 if (ieee80211_is_valid_channel(priv->ieee, channel))
1804 priv->speed_scan[pos++] = channel;
1805 else
1806 IPW_WARNING("Skipping invalid channel request: %d\n",
1807 channel);
1808 p = strchr(p, ' ');
1809 if (!p)
1810 break;
1811 while (*p == ' ' || *p == '\t')
1812 p++;
1813 }
1814
1815 if (pos == 0)
1816 priv->config &= ~CFG_SPEED_SCAN;
1817 else {
1818 priv->speed_scan_pos = 0;
1819 priv->config |= CFG_SPEED_SCAN;
1820 }
1821
1822 return count;
1823 }
1824
1825 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1826 store_speed_scan);
1827
1828 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1829 char *buf)
1830 {
1831 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1832 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1833 }
1834
1835 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1836 const char *buf, size_t count)
1837 {
1838 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1839 if (buf[0] == '1')
1840 priv->config |= CFG_NET_STATS;
1841 else
1842 priv->config &= ~CFG_NET_STATS;
1843
1844 return count;
1845 }
1846
1847 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1848 show_net_stats, store_net_stats);
1849
1850 static ssize_t show_channels(struct device *d,
1851 struct device_attribute *attr,
1852 char *buf)
1853 {
1854 struct ipw_priv *priv = dev_get_drvdata(d);
1855 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1856 int len = 0, i;
1857
1858 len = sprintf(&buf[len],
1859 "Displaying %d channels in 2.4Ghz band "
1860 "(802.11bg):\n", geo->bg_channels);
1861
1862 for (i = 0; i < geo->bg_channels; i++) {
1863 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1864 geo->bg[i].channel,
1865 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1866 " (radar spectrum)" : "",
1867 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1868 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1869 ? "" : ", IBSS",
1870 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1871 "passive only" : "active/passive",
1872 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1873 "B" : "B/G");
1874 }
1875
1876 len += sprintf(&buf[len],
1877 "Displaying %d channels in 5.2Ghz band "
1878 "(802.11a):\n", geo->a_channels);
1879 for (i = 0; i < geo->a_channels; i++) {
1880 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1881 geo->a[i].channel,
1882 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1883 " (radar spectrum)" : "",
1884 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1885 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1886 ? "" : ", IBSS",
1887 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1888 "passive only" : "active/passive");
1889 }
1890
1891 return len;
1892 }
1893
1894 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1895
1896 static void notify_wx_assoc_event(struct ipw_priv *priv)
1897 {
1898 union iwreq_data wrqu;
1899 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1900 if (priv->status & STATUS_ASSOCIATED)
1901 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1902 else
1903 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1904 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1905 }
1906
1907 static void ipw_irq_tasklet(struct ipw_priv *priv)
1908 {
1909 u32 inta, inta_mask, handled = 0;
1910 unsigned long flags;
1911 int rc = 0;
1912
1913 spin_lock_irqsave(&priv->irq_lock, flags);
1914
1915 inta = ipw_read32(priv, IPW_INTA_RW);
1916 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1917 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1918
1919 /* Add any cached INTA values that need to be handled */
1920 inta |= priv->isr_inta;
1921
1922 spin_unlock_irqrestore(&priv->irq_lock, flags);
1923
1924 spin_lock_irqsave(&priv->lock, flags);
1925
1926 /* handle all the justifications for the interrupt */
1927 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1928 ipw_rx(priv);
1929 handled |= IPW_INTA_BIT_RX_TRANSFER;
1930 }
1931
1932 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1933 IPW_DEBUG_HC("Command completed.\n");
1934 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1935 priv->status &= ~STATUS_HCMD_ACTIVE;
1936 wake_up_interruptible(&priv->wait_command_queue);
1937 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1938 }
1939
1940 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1941 IPW_DEBUG_TX("TX_QUEUE_1\n");
1942 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1943 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1944 }
1945
1946 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1947 IPW_DEBUG_TX("TX_QUEUE_2\n");
1948 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1949 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1950 }
1951
1952 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1953 IPW_DEBUG_TX("TX_QUEUE_3\n");
1954 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1955 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1956 }
1957
1958 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1959 IPW_DEBUG_TX("TX_QUEUE_4\n");
1960 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1961 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1962 }
1963
1964 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1965 IPW_WARNING("STATUS_CHANGE\n");
1966 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1967 }
1968
1969 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1970 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1971 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1972 }
1973
1974 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1975 IPW_WARNING("HOST_CMD_DONE\n");
1976 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1977 }
1978
1979 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1980 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1981 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1982 }
1983
1984 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1985 IPW_WARNING("PHY_OFF_DONE\n");
1986 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1987 }
1988
1989 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1990 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1991 priv->status |= STATUS_RF_KILL_HW;
1992 wake_up_interruptible(&priv->wait_command_queue);
1993 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1994 cancel_delayed_work(&priv->request_scan);
1995 schedule_work(&priv->link_down);
1996 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1997 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1998 }
1999
2000 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2001 IPW_WARNING("Firmware error detected. Restarting.\n");
2002 if (priv->error) {
2003 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2004 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2005 struct ipw_fw_error *error =
2006 ipw_alloc_error_log(priv);
2007 ipw_dump_error_log(priv, error);
2008 kfree(error);
2009 }
2010 } else {
2011 priv->error = ipw_alloc_error_log(priv);
2012 if (priv->error)
2013 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2014 else
2015 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2016 "log.\n");
2017 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2018 ipw_dump_error_log(priv, priv->error);
2019 }
2020
2021 /* XXX: If hardware encryption is for WPA/WPA2,
2022 * we have to notify the supplicant. */
2023 if (priv->ieee->sec.encrypt) {
2024 priv->status &= ~STATUS_ASSOCIATED;
2025 notify_wx_assoc_event(priv);
2026 }
2027
2028 /* Keep the restart process from trying to send host
2029 * commands by clearing the INIT status bit */
2030 priv->status &= ~STATUS_INIT;
2031
2032 /* Cancel currently queued command. */
2033 priv->status &= ~STATUS_HCMD_ACTIVE;
2034 wake_up_interruptible(&priv->wait_command_queue);
2035
2036 queue_work(priv->workqueue, &priv->adapter_restart);
2037 handled |= IPW_INTA_BIT_FATAL_ERROR;
2038 }
2039
2040 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2041 IPW_ERROR("Parity error\n");
2042 handled |= IPW_INTA_BIT_PARITY_ERROR;
2043 }
2044
2045 if (handled != inta) {
2046 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2047 }
2048
2049 spin_unlock_irqrestore(&priv->lock, flags);
2050
2051 /* enable all interrupts */
2052 ipw_enable_interrupts(priv);
2053 }
2054
2055 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2056 static char *get_cmd_string(u8 cmd)
2057 {
2058 switch (cmd) {
2059 IPW_CMD(HOST_COMPLETE);
2060 IPW_CMD(POWER_DOWN);
2061 IPW_CMD(SYSTEM_CONFIG);
2062 IPW_CMD(MULTICAST_ADDRESS);
2063 IPW_CMD(SSID);
2064 IPW_CMD(ADAPTER_ADDRESS);
2065 IPW_CMD(PORT_TYPE);
2066 IPW_CMD(RTS_THRESHOLD);
2067 IPW_CMD(FRAG_THRESHOLD);
2068 IPW_CMD(POWER_MODE);
2069 IPW_CMD(WEP_KEY);
2070 IPW_CMD(TGI_TX_KEY);
2071 IPW_CMD(SCAN_REQUEST);
2072 IPW_CMD(SCAN_REQUEST_EXT);
2073 IPW_CMD(ASSOCIATE);
2074 IPW_CMD(SUPPORTED_RATES);
2075 IPW_CMD(SCAN_ABORT);
2076 IPW_CMD(TX_FLUSH);
2077 IPW_CMD(QOS_PARAMETERS);
2078 IPW_CMD(DINO_CONFIG);
2079 IPW_CMD(RSN_CAPABILITIES);
2080 IPW_CMD(RX_KEY);
2081 IPW_CMD(CARD_DISABLE);
2082 IPW_CMD(SEED_NUMBER);
2083 IPW_CMD(TX_POWER);
2084 IPW_CMD(COUNTRY_INFO);
2085 IPW_CMD(AIRONET_INFO);
2086 IPW_CMD(AP_TX_POWER);
2087 IPW_CMD(CCKM_INFO);
2088 IPW_CMD(CCX_VER_INFO);
2089 IPW_CMD(SET_CALIBRATION);
2090 IPW_CMD(SENSITIVITY_CALIB);
2091 IPW_CMD(RETRY_LIMIT);
2092 IPW_CMD(IPW_PRE_POWER_DOWN);
2093 IPW_CMD(VAP_BEACON_TEMPLATE);
2094 IPW_CMD(VAP_DTIM_PERIOD);
2095 IPW_CMD(EXT_SUPPORTED_RATES);
2096 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2097 IPW_CMD(VAP_QUIET_INTERVALS);
2098 IPW_CMD(VAP_CHANNEL_SWITCH);
2099 IPW_CMD(VAP_MANDATORY_CHANNELS);
2100 IPW_CMD(VAP_CELL_PWR_LIMIT);
2101 IPW_CMD(VAP_CF_PARAM_SET);
2102 IPW_CMD(VAP_SET_BEACONING_STATE);
2103 IPW_CMD(MEASUREMENT);
2104 IPW_CMD(POWER_CAPABILITY);
2105 IPW_CMD(SUPPORTED_CHANNELS);
2106 IPW_CMD(TPC_REPORT);
2107 IPW_CMD(WME_INFO);
2108 IPW_CMD(PRODUCTION_COMMAND);
2109 default:
2110 return "UNKNOWN";
2111 }
2112 }
2113
2114 #define HOST_COMPLETE_TIMEOUT HZ
2115
2116 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2117 {
2118 int rc = 0;
2119 unsigned long flags;
2120
2121 spin_lock_irqsave(&priv->lock, flags);
2122 if (priv->status & STATUS_HCMD_ACTIVE) {
2123 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2124 get_cmd_string(cmd->cmd));
2125 spin_unlock_irqrestore(&priv->lock, flags);
2126 return -EAGAIN;
2127 }
2128
2129 priv->status |= STATUS_HCMD_ACTIVE;
2130
2131 if (priv->cmdlog) {
2132 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2133 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2134 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2135 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2136 cmd->len);
2137 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2138 }
2139
2140 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2141 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2142 priv->status);
2143
2144 #ifndef DEBUG_CMD_WEP_KEY
2145 if (cmd->cmd == IPW_CMD_WEP_KEY)
2146 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2147 else
2148 #endif
2149 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2150
2151 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2152 if (rc) {
2153 priv->status &= ~STATUS_HCMD_ACTIVE;
2154 IPW_ERROR("Failed to send %s: Reason %d\n",
2155 get_cmd_string(cmd->cmd), rc);
2156 spin_unlock_irqrestore(&priv->lock, flags);
2157 goto exit;
2158 }
2159 spin_unlock_irqrestore(&priv->lock, flags);
2160
2161 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2162 !(priv->
2163 status & STATUS_HCMD_ACTIVE),
2164 HOST_COMPLETE_TIMEOUT);
2165 if (rc == 0) {
2166 spin_lock_irqsave(&priv->lock, flags);
2167 if (priv->status & STATUS_HCMD_ACTIVE) {
2168 IPW_ERROR("Failed to send %s: Command timed out.\n",
2169 get_cmd_string(cmd->cmd));
2170 priv->status &= ~STATUS_HCMD_ACTIVE;
2171 spin_unlock_irqrestore(&priv->lock, flags);
2172 rc = -EIO;
2173 goto exit;
2174 }
2175 spin_unlock_irqrestore(&priv->lock, flags);
2176 } else
2177 rc = 0;
2178
2179 if (priv->status & STATUS_RF_KILL_HW) {
2180 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2181 get_cmd_string(cmd->cmd));
2182 rc = -EIO;
2183 goto exit;
2184 }
2185
2186 exit:
2187 if (priv->cmdlog) {
2188 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2189 priv->cmdlog_pos %= priv->cmdlog_len;
2190 }
2191 return rc;
2192 }
2193
2194 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2195 {
2196 struct host_cmd cmd = {
2197 .cmd = command,
2198 };
2199
2200 return __ipw_send_cmd(priv, &cmd);
2201 }
2202
2203 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2204 void *data)
2205 {
2206 struct host_cmd cmd = {
2207 .cmd = command,
2208 .len = len,
2209 .param = data,
2210 };
2211
2212 return __ipw_send_cmd(priv, &cmd);
2213 }
2214
2215 static int ipw_send_host_complete(struct ipw_priv *priv)
2216 {
2217 if (!priv) {
2218 IPW_ERROR("Invalid args\n");
2219 return -1;
2220 }
2221
2222 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2223 }
2224
2225 static int ipw_send_system_config(struct ipw_priv *priv)
2226 {
2227 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2228 sizeof(priv->sys_config),
2229 &priv->sys_config);
2230 }
2231
2232 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2233 {
2234 if (!priv || !ssid) {
2235 IPW_ERROR("Invalid args\n");
2236 return -1;
2237 }
2238
2239 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2240 ssid);
2241 }
2242
2243 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2244 {
2245 if (!priv || !mac) {
2246 IPW_ERROR("Invalid args\n");
2247 return -1;
2248 }
2249
2250 IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2251 priv->net_dev->name, MAC_ARG(mac));
2252
2253 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2254 }
2255
2256 /*
2257 * NOTE: This must be executed from our workqueue as it results in udelay
2258 * being called which may corrupt the keyboard if executed on default
2259 * workqueue
2260 */
2261 static void ipw_adapter_restart(void *adapter)
2262 {
2263 struct ipw_priv *priv = adapter;
2264
2265 if (priv->status & STATUS_RF_KILL_MASK)
2266 return;
2267
2268 ipw_down(priv);
2269
2270 if (priv->assoc_network &&
2271 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2272 ipw_remove_current_network(priv);
2273
2274 if (ipw_up(priv)) {
2275 IPW_ERROR("Failed to up device\n");
2276 return;
2277 }
2278 }
2279
2280 static void ipw_bg_adapter_restart(struct work_struct *work)
2281 {
2282 struct ipw_priv *priv =
2283 container_of(work, struct ipw_priv, adapter_restart);
2284 mutex_lock(&priv->mutex);
2285 ipw_adapter_restart(priv);
2286 mutex_unlock(&priv->mutex);
2287 }
2288
2289 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2290
2291 static void ipw_scan_check(void *data)
2292 {
2293 struct ipw_priv *priv = data;
2294 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2295 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2296 "adapter after (%dms).\n",
2297 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2298 queue_work(priv->workqueue, &priv->adapter_restart);
2299 }
2300 }
2301
2302 static void ipw_bg_scan_check(struct work_struct *work)
2303 {
2304 struct ipw_priv *priv =
2305 container_of(work, struct ipw_priv, scan_check.work);
2306 mutex_lock(&priv->mutex);
2307 ipw_scan_check(priv);
2308 mutex_unlock(&priv->mutex);
2309 }
2310
2311 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2312 struct ipw_scan_request_ext *request)
2313 {
2314 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2315 sizeof(*request), request);
2316 }
2317
2318 static int ipw_send_scan_abort(struct ipw_priv *priv)
2319 {
2320 if (!priv) {
2321 IPW_ERROR("Invalid args\n");
2322 return -1;
2323 }
2324
2325 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2326 }
2327
2328 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2329 {
2330 struct ipw_sensitivity_calib calib = {
2331 .beacon_rssi_raw = cpu_to_le16(sens),
2332 };
2333
2334 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2335 &calib);
2336 }
2337
2338 static int ipw_send_associate(struct ipw_priv *priv,
2339 struct ipw_associate *associate)
2340 {
2341 struct ipw_associate tmp_associate;
2342
2343 if (!priv || !associate) {
2344 IPW_ERROR("Invalid args\n");
2345 return -1;
2346 }
2347
2348 memcpy(&tmp_associate, associate, sizeof(*associate));
2349 tmp_associate.policy_support =
2350 cpu_to_le16(tmp_associate.policy_support);
2351 tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2352 tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2353 tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2354 tmp_associate.listen_interval =
2355 cpu_to_le16(tmp_associate.listen_interval);
2356 tmp_associate.beacon_interval =
2357 cpu_to_le16(tmp_associate.beacon_interval);
2358 tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2359
2360 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2361 &tmp_associate);
2362 }
2363
2364 static int ipw_send_supported_rates(struct ipw_priv *priv,
2365 struct ipw_supported_rates *rates)
2366 {
2367 if (!priv || !rates) {
2368 IPW_ERROR("Invalid args\n");
2369 return -1;
2370 }
2371
2372 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2373 rates);
2374 }
2375
2376 static int ipw_set_random_seed(struct ipw_priv *priv)
2377 {
2378 u32 val;
2379
2380 if (!priv) {
2381 IPW_ERROR("Invalid args\n");
2382 return -1;
2383 }
2384
2385 get_random_bytes(&val, sizeof(val));
2386
2387 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2388 }
2389
2390 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2391 {
2392 if (!priv) {
2393 IPW_ERROR("Invalid args\n");
2394 return -1;
2395 }
2396
2397 phy_off = cpu_to_le32(phy_off);
2398 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2399 &phy_off);
2400 }
2401
2402 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2403 {
2404 if (!priv || !power) {
2405 IPW_ERROR("Invalid args\n");
2406 return -1;
2407 }
2408
2409 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2410 }
2411
2412 static int ipw_set_tx_power(struct ipw_priv *priv)
2413 {
2414 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2415 struct ipw_tx_power tx_power;
2416 s8 max_power;
2417 int i;
2418
2419 memset(&tx_power, 0, sizeof(tx_power));
2420
2421 /* configure device for 'G' band */
2422 tx_power.ieee_mode = IPW_G_MODE;
2423 tx_power.num_channels = geo->bg_channels;
2424 for (i = 0; i < geo->bg_channels; i++) {
2425 max_power = geo->bg[i].max_power;
2426 tx_power.channels_tx_power[i].channel_number =
2427 geo->bg[i].channel;
2428 tx_power.channels_tx_power[i].tx_power = max_power ?
2429 min(max_power, priv->tx_power) : priv->tx_power;
2430 }
2431 if (ipw_send_tx_power(priv, &tx_power))
2432 return -EIO;
2433
2434 /* configure device to also handle 'B' band */
2435 tx_power.ieee_mode = IPW_B_MODE;
2436 if (ipw_send_tx_power(priv, &tx_power))
2437 return -EIO;
2438
2439 /* configure device to also handle 'A' band */
2440 if (priv->ieee->abg_true) {
2441 tx_power.ieee_mode = IPW_A_MODE;
2442 tx_power.num_channels = geo->a_channels;
2443 for (i = 0; i < tx_power.num_channels; i++) {
2444 max_power = geo->a[i].max_power;
2445 tx_power.channels_tx_power[i].channel_number =
2446 geo->a[i].channel;
2447 tx_power.channels_tx_power[i].tx_power = max_power ?
2448 min(max_power, priv->tx_power) : priv->tx_power;
2449 }
2450 if (ipw_send_tx_power(priv, &tx_power))
2451 return -EIO;
2452 }
2453 return 0;
2454 }
2455
2456 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2457 {
2458 struct ipw_rts_threshold rts_threshold = {
2459 .rts_threshold = cpu_to_le16(rts),
2460 };
2461
2462 if (!priv) {
2463 IPW_ERROR("Invalid args\n");
2464 return -1;
2465 }
2466
2467 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2468 sizeof(rts_threshold), &rts_threshold);
2469 }
2470
2471 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2472 {
2473 struct ipw_frag_threshold frag_threshold = {
2474 .frag_threshold = cpu_to_le16(frag),
2475 };
2476
2477 if (!priv) {
2478 IPW_ERROR("Invalid args\n");
2479 return -1;
2480 }
2481
2482 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2483 sizeof(frag_threshold), &frag_threshold);
2484 }
2485
2486 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2487 {
2488 u32 param;
2489
2490 if (!priv) {
2491 IPW_ERROR("Invalid args\n");
2492 return -1;
2493 }
2494
2495 /* If on battery, set to 3, if AC set to CAM, else user
2496 * level */
2497 switch (mode) {
2498 case IPW_POWER_BATTERY:
2499 param = IPW_POWER_INDEX_3;
2500 break;
2501 case IPW_POWER_AC:
2502 param = IPW_POWER_MODE_CAM;
2503 break;
2504 default:
2505 param = mode;
2506 break;
2507 }
2508
2509 param = cpu_to_le32(mode);
2510 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2511 &param);
2512 }
2513
2514 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2515 {
2516 struct ipw_retry_limit retry_limit = {
2517 .short_retry_limit = slimit,
2518 .long_retry_limit = llimit
2519 };
2520
2521 if (!priv) {
2522 IPW_ERROR("Invalid args\n");
2523 return -1;
2524 }
2525
2526 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2527 &retry_limit);
2528 }
2529
2530 /*
2531 * The IPW device contains a Microwire compatible EEPROM that stores
2532 * various data like the MAC address. Usually the firmware has exclusive
2533 * access to the eeprom, but during device initialization (before the
2534 * device driver has sent the HostComplete command to the firmware) the
2535 * device driver has read access to the EEPROM by way of indirect addressing
2536 * through a couple of memory mapped registers.
2537 *
2538 * The following is a simplified implementation for pulling data out of the
2539 * the eeprom, along with some helper functions to find information in
2540 * the per device private data's copy of the eeprom.
2541 *
2542 * NOTE: To better understand how these functions work (i.e what is a chip
2543 * select and why do have to keep driving the eeprom clock?), read
2544 * just about any data sheet for a Microwire compatible EEPROM.
2545 */
2546
2547 /* write a 32 bit value into the indirect accessor register */
2548 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2549 {
2550 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2551
2552 /* the eeprom requires some time to complete the operation */
2553 udelay(p->eeprom_delay);
2554
2555 return;
2556 }
2557
2558 /* perform a chip select operation */
2559 static void eeprom_cs(struct ipw_priv *priv)
2560 {
2561 eeprom_write_reg(priv, 0);
2562 eeprom_write_reg(priv, EEPROM_BIT_CS);
2563 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2564 eeprom_write_reg(priv, EEPROM_BIT_CS);
2565 }
2566
2567 /* perform a chip select operation */
2568 static void eeprom_disable_cs(struct ipw_priv *priv)
2569 {
2570 eeprom_write_reg(priv, EEPROM_BIT_CS);
2571 eeprom_write_reg(priv, 0);
2572 eeprom_write_reg(priv, EEPROM_BIT_SK);
2573 }
2574
2575 /* push a single bit down to the eeprom */
2576 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2577 {
2578 int d = (bit ? EEPROM_BIT_DI : 0);
2579 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2580 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2581 }
2582
2583 /* push an opcode followed by an address down to the eeprom */
2584 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2585 {
2586 int i;
2587
2588 eeprom_cs(priv);
2589 eeprom_write_bit(priv, 1);
2590 eeprom_write_bit(priv, op & 2);
2591 eeprom_write_bit(priv, op & 1);
2592 for (i = 7; i >= 0; i--) {
2593 eeprom_write_bit(priv, addr & (1 << i));
2594 }
2595 }
2596
2597 /* pull 16 bits off the eeprom, one bit at a time */
2598 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2599 {
2600 int i;
2601 u16 r = 0;
2602
2603 /* Send READ Opcode */
2604 eeprom_op(priv, EEPROM_CMD_READ, addr);
2605
2606 /* Send dummy bit */
2607 eeprom_write_reg(priv, EEPROM_BIT_CS);
2608
2609 /* Read the byte off the eeprom one bit at a time */
2610 for (i = 0; i < 16; i++) {
2611 u32 data = 0;
2612 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613 eeprom_write_reg(priv, EEPROM_BIT_CS);
2614 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2615 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2616 }
2617
2618 /* Send another dummy bit */
2619 eeprom_write_reg(priv, 0);
2620 eeprom_disable_cs(priv);
2621
2622 return r;
2623 }
2624
2625 /* helper function for pulling the mac address out of the private */
2626 /* data's copy of the eeprom data */
2627 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2628 {
2629 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2630 }
2631
2632 /*
2633 * Either the device driver (i.e. the host) or the firmware can
2634 * load eeprom data into the designated region in SRAM. If neither
2635 * happens then the FW will shutdown with a fatal error.
2636 *
2637 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2638 * bit needs region of shared SRAM needs to be non-zero.
2639 */
2640 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2641 {
2642 int i;
2643 u16 *eeprom = (u16 *) priv->eeprom;
2644
2645 IPW_DEBUG_TRACE(">>\n");
2646
2647 /* read entire contents of eeprom into private buffer */
2648 for (i = 0; i < 128; i++)
2649 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2650
2651 /*
2652 If the data looks correct, then copy it to our private
2653 copy. Otherwise let the firmware know to perform the operation
2654 on its own.
2655 */
2656 if (priv->eeprom[EEPROM_VERSION] != 0) {
2657 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2658
2659 /* write the eeprom data to sram */
2660 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2661 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2662
2663 /* Do not load eeprom data on fatal error or suspend */
2664 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2665 } else {
2666 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2667
2668 /* Load eeprom data on fatal error or suspend */
2669 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2670 }
2671
2672 IPW_DEBUG_TRACE("<<\n");
2673 }
2674
2675 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2676 {
2677 count >>= 2;
2678 if (!count)
2679 return;
2680 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2681 while (count--)
2682 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2683 }
2684
2685 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2686 {
2687 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2688 CB_NUMBER_OF_ELEMENTS_SMALL *
2689 sizeof(struct command_block));
2690 }
2691
2692 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2693 { /* start dma engine but no transfers yet */
2694
2695 IPW_DEBUG_FW(">> : \n");
2696
2697 /* Start the dma */
2698 ipw_fw_dma_reset_command_blocks(priv);
2699
2700 /* Write CB base address */
2701 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2702
2703 IPW_DEBUG_FW("<< : \n");
2704 return 0;
2705 }
2706
2707 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2708 {
2709 u32 control = 0;
2710
2711 IPW_DEBUG_FW(">> :\n");
2712
2713 /* set the Stop and Abort bit */
2714 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2715 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2716 priv->sram_desc.last_cb_index = 0;
2717
2718 IPW_DEBUG_FW("<< \n");
2719 }
2720
2721 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2722 struct command_block *cb)
2723 {
2724 u32 address =
2725 IPW_SHARED_SRAM_DMA_CONTROL +
2726 (sizeof(struct command_block) * index);
2727 IPW_DEBUG_FW(">> :\n");
2728
2729 ipw_write_indirect(priv, address, (u8 *) cb,
2730 (int)sizeof(struct command_block));
2731
2732 IPW_DEBUG_FW("<< :\n");
2733 return 0;
2734
2735 }
2736
2737 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2738 {
2739 u32 control = 0;
2740 u32 index = 0;
2741
2742 IPW_DEBUG_FW(">> :\n");
2743
2744 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2745 ipw_fw_dma_write_command_block(priv, index,
2746 &priv->sram_desc.cb_list[index]);
2747
2748 /* Enable the DMA in the CSR register */
2749 ipw_clear_bit(priv, IPW_RESET_REG,
2750 IPW_RESET_REG_MASTER_DISABLED |
2751 IPW_RESET_REG_STOP_MASTER);
2752
2753 /* Set the Start bit. */
2754 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2755 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2756
2757 IPW_DEBUG_FW("<< :\n");
2758 return 0;
2759 }
2760
2761 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2762 {
2763 u32 address;
2764 u32 register_value = 0;
2765 u32 cb_fields_address = 0;
2766
2767 IPW_DEBUG_FW(">> :\n");
2768 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2769 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2770
2771 /* Read the DMA Controlor register */
2772 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2773 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2774
2775 /* Print the CB values */
2776 cb_fields_address = address;
2777 register_value = ipw_read_reg32(priv, cb_fields_address);
2778 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2779
2780 cb_fields_address += sizeof(u32);
2781 register_value = ipw_read_reg32(priv, cb_fields_address);
2782 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2783
2784 cb_fields_address += sizeof(u32);
2785 register_value = ipw_read_reg32(priv, cb_fields_address);
2786 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2787 register_value);
2788
2789 cb_fields_address += sizeof(u32);
2790 register_value = ipw_read_reg32(priv, cb_fields_address);
2791 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2792
2793 IPW_DEBUG_FW(">> :\n");
2794 }
2795
2796 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2797 {
2798 u32 current_cb_address = 0;
2799 u32 current_cb_index = 0;
2800
2801 IPW_DEBUG_FW("<< :\n");
2802 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2803
2804 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2805 sizeof(struct command_block);
2806
2807 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2808 current_cb_index, current_cb_address);
2809
2810 IPW_DEBUG_FW(">> :\n");
2811 return current_cb_index;
2812
2813 }
2814
2815 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2816 u32 src_address,
2817 u32 dest_address,
2818 u32 length,
2819 int interrupt_enabled, int is_last)
2820 {
2821
2822 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2823 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2824 CB_DEST_SIZE_LONG;
2825 struct command_block *cb;
2826 u32 last_cb_element = 0;
2827
2828 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2829 src_address, dest_address, length);
2830
2831 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2832 return -1;
2833
2834 last_cb_element = priv->sram_desc.last_cb_index;
2835 cb = &priv->sram_desc.cb_list[last_cb_element];
2836 priv->sram_desc.last_cb_index++;
2837
2838 /* Calculate the new CB control word */
2839 if (interrupt_enabled)
2840 control |= CB_INT_ENABLED;
2841
2842 if (is_last)
2843 control |= CB_LAST_VALID;
2844
2845 control |= length;
2846
2847 /* Calculate the CB Element's checksum value */
2848 cb->status = control ^ src_address ^ dest_address;
2849
2850 /* Copy the Source and Destination addresses */
2851 cb->dest_addr = dest_address;
2852 cb->source_addr = src_address;
2853
2854 /* Copy the Control Word last */
2855 cb->control = control;
2856
2857 return 0;
2858 }
2859
2860 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2861 u32 src_phys, u32 dest_address, u32 length)
2862 {
2863 u32 bytes_left = length;
2864 u32 src_offset = 0;
2865 u32 dest_offset = 0;
2866 int status = 0;
2867 IPW_DEBUG_FW(">> \n");
2868 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2869 src_phys, dest_address, length);
2870 while (bytes_left > CB_MAX_LENGTH) {
2871 status = ipw_fw_dma_add_command_block(priv,
2872 src_phys + src_offset,
2873 dest_address +
2874 dest_offset,
2875 CB_MAX_LENGTH, 0, 0);
2876 if (status) {
2877 IPW_DEBUG_FW_INFO(": Failed\n");
2878 return -1;
2879 } else
2880 IPW_DEBUG_FW_INFO(": Added new cb\n");
2881
2882 src_offset += CB_MAX_LENGTH;
2883 dest_offset += CB_MAX_LENGTH;
2884 bytes_left -= CB_MAX_LENGTH;
2885 }
2886
2887 /* add the buffer tail */
2888 if (bytes_left > 0) {
2889 status =
2890 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2891 dest_address + dest_offset,
2892 bytes_left, 0, 0);
2893 if (status) {
2894 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2895 return -1;
2896 } else
2897 IPW_DEBUG_FW_INFO
2898 (": Adding new cb - the buffer tail\n");
2899 }
2900
2901 IPW_DEBUG_FW("<< \n");
2902 return 0;
2903 }
2904
2905 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2906 {
2907 u32 current_index = 0, previous_index;
2908 u32 watchdog = 0;
2909
2910 IPW_DEBUG_FW(">> : \n");
2911
2912 current_index = ipw_fw_dma_command_block_index(priv);
2913 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2914 (int)priv->sram_desc.last_cb_index);
2915
2916 while (current_index < priv->sram_desc.last_cb_index) {
2917 udelay(50);
2918 previous_index = current_index;
2919 current_index = ipw_fw_dma_command_block_index(priv);
2920
2921 if (previous_index < current_index) {
2922 watchdog = 0;
2923 continue;
2924 }
2925 if (++watchdog > 400) {
2926 IPW_DEBUG_FW_INFO("Timeout\n");
2927 ipw_fw_dma_dump_command_block(priv);
2928 ipw_fw_dma_abort(priv);
2929 return -1;
2930 }
2931 }
2932
2933 ipw_fw_dma_abort(priv);
2934
2935 /*Disable the DMA in the CSR register */
2936 ipw_set_bit(priv, IPW_RESET_REG,
2937 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2938
2939 IPW_DEBUG_FW("<< dmaWaitSync \n");
2940 return 0;
2941 }
2942
2943 static void ipw_remove_current_network(struct ipw_priv *priv)
2944 {
2945 struct list_head *element, *safe;
2946 struct ieee80211_network *network = NULL;
2947 unsigned long flags;
2948
2949 spin_lock_irqsave(&priv->ieee->lock, flags);
2950 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2951 network = list_entry(element, struct ieee80211_network, list);
2952 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2953 list_del(element);
2954 list_add_tail(&network->list,
2955 &priv->ieee->network_free_list);
2956 }
2957 }
2958 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2959 }
2960
2961 /**
2962 * Check that card is still alive.
2963 * Reads debug register from domain0.
2964 * If card is present, pre-defined value should
2965 * be found there.
2966 *
2967 * @param priv
2968 * @return 1 if card is present, 0 otherwise
2969 */
2970 static inline int ipw_alive(struct ipw_priv *priv)
2971 {
2972 return ipw_read32(priv, 0x90) == 0xd55555d5;
2973 }
2974
2975 /* timeout in msec, attempted in 10-msec quanta */
2976 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2977 int timeout)
2978 {
2979 int i = 0;
2980
2981 do {
2982 if ((ipw_read32(priv, addr) & mask) == mask)
2983 return i;
2984 mdelay(10);
2985 i += 10;
2986 } while (i < timeout);
2987
2988 return -ETIME;
2989 }
2990
2991 /* These functions load the firmware and micro code for the operation of
2992 * the ipw hardware. It assumes the buffer has all the bits for the
2993 * image and the caller is handling the memory allocation and clean up.
2994 */
2995
2996 static int ipw_stop_master(struct ipw_priv *priv)
2997 {
2998 int rc;
2999
3000 IPW_DEBUG_TRACE(">> \n");
3001 /* stop master. typical delay - 0 */
3002 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3003
3004 /* timeout is in msec, polled in 10-msec quanta */
3005 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3006 IPW_RESET_REG_MASTER_DISABLED, 100);
3007 if (rc < 0) {
3008 IPW_ERROR("wait for stop master failed after 100ms\n");
3009 return -1;
3010 }
3011
3012 IPW_DEBUG_INFO("stop master %dms\n", rc);
3013
3014 return rc;
3015 }
3016
3017 static void ipw_arc_release(struct ipw_priv *priv)
3018 {
3019 IPW_DEBUG_TRACE(">> \n");
3020 mdelay(5);
3021
3022 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3023
3024 /* no one knows timing, for safety add some delay */
3025 mdelay(5);
3026 }
3027
3028 struct fw_chunk {
3029 u32 address;
3030 u32 length;
3031 };
3032
3033 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3034 {
3035 int rc = 0, i, addr;
3036 u8 cr = 0;
3037 u16 *image;
3038
3039 image = (u16 *) data;
3040
3041 IPW_DEBUG_TRACE(">> \n");
3042
3043 rc = ipw_stop_master(priv);
3044
3045 if (rc < 0)
3046 return rc;
3047
3048 for (addr = IPW_SHARED_LOWER_BOUND;
3049 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3050 ipw_write32(priv, addr, 0);
3051 }
3052
3053 /* no ucode (yet) */
3054 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3055 /* destroy DMA queues */
3056 /* reset sequence */
3057
3058 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3059 ipw_arc_release(priv);
3060 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3061 mdelay(1);
3062
3063 /* reset PHY */
3064 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3065 mdelay(1);
3066
3067 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3068 mdelay(1);
3069
3070 /* enable ucode store */
3071 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3072 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3073 mdelay(1);
3074
3075 /* write ucode */
3076 /**
3077 * @bug
3078 * Do NOT set indirect address register once and then
3079 * store data to indirect data register in the loop.
3080 * It seems very reasonable, but in this case DINO do not
3081 * accept ucode. It is essential to set address each time.
3082 */
3083 /* load new ipw uCode */
3084 for (i = 0; i < len / 2; i++)
3085 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3086 cpu_to_le16(image[i]));
3087
3088 /* enable DINO */
3089 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3090 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3091
3092 /* this is where the igx / win driver deveates from the VAP driver. */
3093
3094 /* wait for alive response */
3095 for (i = 0; i < 100; i++) {
3096 /* poll for incoming data */
3097 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3098 if (cr & DINO_RXFIFO_DATA)
3099 break;
3100 mdelay(1);
3101 }
3102
3103 if (cr & DINO_RXFIFO_DATA) {
3104 /* alive_command_responce size is NOT multiple of 4 */
3105 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3106
3107 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3108 response_buffer[i] =
3109 le32_to_cpu(ipw_read_reg32(priv,
3110 IPW_BASEBAND_RX_FIFO_READ));
3111 memcpy(&priv->dino_alive, response_buffer,
3112 sizeof(priv->dino_alive));
3113 if (priv->dino_alive.alive_command == 1
3114 && priv->dino_alive.ucode_valid == 1) {
3115 rc = 0;
3116 IPW_DEBUG_INFO
3117 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3118 "of %02d/%02d/%02d %02d:%02d\n",
3119 priv->dino_alive.software_revision,
3120 priv->dino_alive.software_revision,
3121 priv->dino_alive.device_identifier,
3122 priv->dino_alive.device_identifier,
3123 priv->dino_alive.time_stamp[0],
3124 priv->dino_alive.time_stamp[1],
3125 priv->dino_alive.time_stamp[2],
3126 priv->dino_alive.time_stamp[3],
3127 priv->dino_alive.time_stamp[4]);
3128 } else {
3129 IPW_DEBUG_INFO("Microcode is not alive\n");
3130 rc = -EINVAL;
3131 }
3132 } else {
3133 IPW_DEBUG_INFO("No alive response from DINO\n");
3134 rc = -ETIME;
3135 }
3136
3137 /* disable DINO, otherwise for some reason
3138 firmware have problem getting alive resp. */
3139 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3140
3141 return rc;
3142 }
3143
3144 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3145 {
3146 int rc = -1;
3147 int offset = 0;
3148 struct fw_chunk *chunk;
3149 dma_addr_t shared_phys;
3150 u8 *shared_virt;
3151
3152 IPW_DEBUG_TRACE("<< : \n");
3153 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3154
3155 if (!shared_virt)
3156 return -ENOMEM;
3157
3158 memmove(shared_virt, data, len);
3159
3160 /* Start the Dma */
3161 rc = ipw_fw_dma_enable(priv);
3162
3163 if (priv->sram_desc.last_cb_index > 0) {
3164 /* the DMA is already ready this would be a bug. */
3165 BUG();
3166 goto out;
3167 }
3168
3169 do {
3170 chunk = (struct fw_chunk *)(data + offset);
3171 offset += sizeof(struct fw_chunk);
3172 /* build DMA packet and queue up for sending */
3173 /* dma to chunk->address, the chunk->length bytes from data +
3174 * offeset*/
3175 /* Dma loading */
3176 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3177 le32_to_cpu(chunk->address),
3178 le32_to_cpu(chunk->length));
3179 if (rc) {
3180 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3181 goto out;
3182 }
3183
3184 offset += le32_to_cpu(chunk->length);
3185 } while (offset < len);
3186
3187 /* Run the DMA and wait for the answer */
3188 rc = ipw_fw_dma_kick(priv);
3189 if (rc) {
3190 IPW_ERROR("dmaKick Failed\n");
3191 goto out;
3192 }
3193
3194 rc = ipw_fw_dma_wait(priv);
3195 if (rc) {
3196 IPW_ERROR("dmaWaitSync Failed\n");
3197 goto out;
3198 }
3199 out:
3200 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3201 return rc;
3202 }
3203
3204 /* stop nic */
3205 static int ipw_stop_nic(struct ipw_priv *priv)
3206 {
3207 int rc = 0;
3208
3209 /* stop */
3210 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3211
3212 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3213 IPW_RESET_REG_MASTER_DISABLED, 500);
3214 if (rc < 0) {
3215 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3216 return rc;
3217 }
3218
3219 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3220
3221 return rc;
3222 }
3223
3224 static void ipw_start_nic(struct ipw_priv *priv)
3225 {
3226 IPW_DEBUG_TRACE(">>\n");
3227
3228 /* prvHwStartNic release ARC */
3229 ipw_clear_bit(priv, IPW_RESET_REG,
3230 IPW_RESET_REG_MASTER_DISABLED |
3231 IPW_RESET_REG_STOP_MASTER |
3232 CBD_RESET_REG_PRINCETON_RESET);
3233
3234 /* enable power management */
3235 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3236 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3237
3238 IPW_DEBUG_TRACE("<<\n");
3239 }
3240
3241 static int ipw_init_nic(struct ipw_priv *priv)
3242 {
3243 int rc;
3244
3245 IPW_DEBUG_TRACE(">>\n");
3246 /* reset */
3247 /*prvHwInitNic */
3248 /* set "initialization complete" bit to move adapter to D0 state */
3249 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3250
3251 /* low-level PLL activation */
3252 ipw_write32(priv, IPW_READ_INT_REGISTER,
3253 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3254
3255 /* wait for clock stabilization */
3256 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3257 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3258 if (rc < 0)
3259 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3260
3261 /* assert SW reset */
3262 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3263
3264 udelay(10);
3265
3266 /* set "initialization complete" bit to move adapter to D0 state */
3267 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3268
3269 IPW_DEBUG_TRACE(">>\n");
3270 return 0;
3271 }
3272
3273 /* Call this function from process context, it will sleep in request_firmware.
3274 * Probe is an ok place to call this from.
3275 */
3276 static int ipw_reset_nic(struct ipw_priv *priv)
3277 {
3278 int rc = 0;
3279 unsigned long flags;
3280
3281 IPW_DEBUG_TRACE(">>\n");
3282
3283 rc = ipw_init_nic(priv);
3284
3285 spin_lock_irqsave(&priv->lock, flags);
3286 /* Clear the 'host command active' bit... */
3287 priv->status &= ~STATUS_HCMD_ACTIVE;
3288 wake_up_interruptible(&priv->wait_command_queue);
3289 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3290 wake_up_interruptible(&priv->wait_state);
3291 spin_unlock_irqrestore(&priv->lock, flags);
3292
3293 IPW_DEBUG_TRACE("<<\n");
3294 return rc;
3295 }
3296
3297
3298 struct ipw_fw {
3299 __le32 ver;
3300 __le32 boot_size;
3301 __le32 ucode_size;
3302 __le32 fw_size;
3303 u8 data[0];
3304 };
3305
3306 static int ipw_get_fw(struct ipw_priv *priv,
3307 const struct firmware **raw, const char *name)
3308 {
3309 struct ipw_fw *fw;
3310 int rc;
3311
3312 /* ask firmware_class module to get the boot firmware off disk */
3313 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3314 if (rc < 0) {
3315 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3316 return rc;
3317 }
3318
3319 if ((*raw)->size < sizeof(*fw)) {
3320 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3321 return -EINVAL;
3322 }
3323
3324 fw = (void *)(*raw)->data;
3325
3326 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3327 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3328 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3329 name, (*raw)->size);
3330 return -EINVAL;
3331 }
3332
3333 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3334 name,
3335 le32_to_cpu(fw->ver) >> 16,
3336 le32_to_cpu(fw->ver) & 0xff,
3337 (*raw)->size - sizeof(*fw));
3338 return 0;
3339 }
3340
3341 #define IPW_RX_BUF_SIZE (3000)
3342
3343 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3344 struct ipw_rx_queue *rxq)
3345 {
3346 unsigned long flags;
3347 int i;
3348
3349 spin_lock_irqsave(&rxq->lock, flags);
3350
3351 INIT_LIST_HEAD(&rxq->rx_free);
3352 INIT_LIST_HEAD(&rxq->rx_used);
3353
3354 /* Fill the rx_used queue with _all_ of the Rx buffers */
3355 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3356 /* In the reset function, these buffers may have been allocated
3357 * to an SKB, so we need to unmap and free potential storage */
3358 if (rxq->pool[i].skb != NULL) {
3359 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3360 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3361 dev_kfree_skb(rxq->pool[i].skb);
3362 rxq->pool[i].skb = NULL;
3363 }
3364 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3365 }
3366
3367 /* Set us so that we have processed and used all buffers, but have
3368 * not restocked the Rx queue with fresh buffers */
3369 rxq->read = rxq->write = 0;
3370 rxq->processed = RX_QUEUE_SIZE - 1;
3371 rxq->free_count = 0;
3372 spin_unlock_irqrestore(&rxq->lock, flags);
3373 }
3374
3375 #ifdef CONFIG_PM
3376 static int fw_loaded = 0;
3377 static const struct firmware *raw = NULL;
3378
3379 static void free_firmware(void)
3380 {
3381 if (fw_loaded) {
3382 release_firmware(raw);
3383 raw = NULL;
3384 fw_loaded = 0;
3385 }
3386 }
3387 #else
3388 #define free_firmware() do {} while (0)
3389 #endif
3390
3391 static int ipw_load(struct ipw_priv *priv)
3392 {
3393 #ifndef CONFIG_PM
3394 const struct firmware *raw = NULL;
3395 #endif
3396 struct ipw_fw *fw;
3397 u8 *boot_img, *ucode_img, *fw_img;
3398 u8 *name = NULL;
3399 int rc = 0, retries = 3;
3400
3401 switch (priv->ieee->iw_mode) {
3402 case IW_MODE_ADHOC:
3403 name = "ipw2200-ibss.fw";
3404 break;
3405 #ifdef CONFIG_IPW2200_MONITOR
3406 case IW_MODE_MONITOR:
3407 name = "ipw2200-sniffer.fw";
3408 break;
3409 #endif
3410 case IW_MODE_INFRA:
3411 name = "ipw2200-bss.fw";
3412 break;
3413 }
3414
3415 if (!name) {
3416 rc = -EINVAL;
3417 goto error;
3418 }
3419
3420 #ifdef CONFIG_PM
3421 if (!fw_loaded) {
3422 #endif
3423 rc = ipw_get_fw(priv, &raw, name);
3424 if (rc < 0)
3425 goto error;
3426 #ifdef CONFIG_PM
3427 }
3428 #endif
3429
3430 fw = (void *)raw->data;
3431 boot_img = &fw->data[0];
3432 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3433 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3434 le32_to_cpu(fw->ucode_size)];
3435
3436 if (rc < 0)
3437 goto error;
3438
3439 if (!priv->rxq)
3440 priv->rxq = ipw_rx_queue_alloc(priv);
3441 else
3442 ipw_rx_queue_reset(priv, priv->rxq);
3443 if (!priv->rxq) {
3444 IPW_ERROR("Unable to initialize Rx queue\n");
3445 goto error;
3446 }
3447
3448 retry:
3449 /* Ensure interrupts are disabled */
3450 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3451 priv->status &= ~STATUS_INT_ENABLED;
3452
3453 /* ack pending interrupts */
3454 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3455
3456 ipw_stop_nic(priv);
3457
3458 rc = ipw_reset_nic(priv);
3459 if (rc < 0) {
3460 IPW_ERROR("Unable to reset NIC\n");
3461 goto error;
3462 }
3463
3464 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3465 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3466
3467 /* DMA the initial boot firmware into the device */
3468 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3469 if (rc < 0) {
3470 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3471 goto error;
3472 }
3473
3474 /* kick start the device */
3475 ipw_start_nic(priv);
3476
3477 /* wait for the device to finish its initial startup sequence */
3478 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3479 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3480 if (rc < 0) {
3481 IPW_ERROR("device failed to boot initial fw image\n");
3482 goto error;
3483 }
3484 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3485
3486 /* ack fw init done interrupt */
3487 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3488
3489 /* DMA the ucode into the device */
3490 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3491 if (rc < 0) {
3492 IPW_ERROR("Unable to load ucode: %d\n", rc);
3493 goto error;
3494 }
3495
3496 /* stop nic */
3497 ipw_stop_nic(priv);
3498
3499 /* DMA bss firmware into the device */
3500 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3501 if (rc < 0) {
3502 IPW_ERROR("Unable to load firmware: %d\n", rc);
3503 goto error;
3504 }
3505 #ifdef CONFIG_PM
3506 fw_loaded = 1;
3507 #endif
3508
3509 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3510
3511 rc = ipw_queue_reset(priv);
3512 if (rc < 0) {
3513 IPW_ERROR("Unable to initialize queues\n");
3514 goto error;
3515 }
3516
3517 /* Ensure interrupts are disabled */
3518 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3519 /* ack pending interrupts */
3520 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3521
3522 /* kick start the device */
3523 ipw_start_nic(priv);
3524
3525 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3526 if (retries > 0) {
3527 IPW_WARNING("Parity error. Retrying init.\n");
3528 retries--;
3529 goto retry;
3530 }
3531
3532 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3533 rc = -EIO;
3534 goto error;
3535 }
3536
3537 /* wait for the device */
3538 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3539 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3540 if (rc < 0) {
3541 IPW_ERROR("device failed to start within 500ms\n");
3542 goto error;
3543 }
3544 IPW_DEBUG_INFO("device response after %dms\n", rc);
3545
3546 /* ack fw init done interrupt */
3547 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3548
3549 /* read eeprom data and initialize the eeprom region of sram */
3550 priv->eeprom_delay = 1;
3551 ipw_eeprom_init_sram(priv);
3552
3553 /* enable interrupts */
3554 ipw_enable_interrupts(priv);
3555
3556 /* Ensure our queue has valid packets */
3557 ipw_rx_queue_replenish(priv);
3558
3559 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3560
3561 /* ack pending interrupts */
3562 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3563
3564 #ifndef CONFIG_PM
3565 release_firmware(raw);
3566 #endif
3567 return 0;
3568
3569 error:
3570 if (priv->rxq) {
3571 ipw_rx_queue_free(priv, priv->rxq);
3572 priv->rxq = NULL;
3573 }
3574 ipw_tx_queue_free(priv);
3575 if (raw)
3576 release_firmware(raw);
3577 #ifdef CONFIG_PM
3578 fw_loaded = 0;
3579 raw = NULL;
3580 #endif
3581
3582 return rc;
3583 }
3584
3585 /**
3586 * DMA services
3587 *
3588 * Theory of operation
3589 *
3590 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3591 * 2 empty entries always kept in the buffer to protect from overflow.
3592 *
3593 * For Tx queue, there are low mark and high mark limits. If, after queuing
3594 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3595 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3596 * Tx queue resumed.
3597 *
3598 * The IPW operates with six queues, one receive queue in the device's
3599 * sram, one transmit queue for sending commands to the device firmware,
3600 * and four transmit queues for data.
3601 *
3602 * The four transmit queues allow for performing quality of service (qos)
3603 * transmissions as per the 802.11 protocol. Currently Linux does not
3604 * provide a mechanism to the user for utilizing prioritized queues, so
3605 * we only utilize the first data transmit queue (queue1).
3606 */
3607
3608 /**
3609 * Driver allocates buffers of this size for Rx
3610 */
3611
3612 static inline int ipw_queue_space(const struct clx2_queue *q)
3613 {
3614 int s = q->last_used - q->first_empty;
3615 if (s <= 0)
3616 s += q->n_bd;
3617 s -= 2; /* keep some reserve to not confuse empty and full situations */
3618 if (s < 0)
3619 s = 0;
3620 return s;
3621 }
3622
3623 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3624 {
3625 return (++index == n_bd) ? 0 : index;
3626 }
3627
3628 /**
3629 * Initialize common DMA queue structure
3630 *
3631 * @param q queue to init
3632 * @param count Number of BD's to allocate. Should be power of 2
3633 * @param read_register Address for 'read' register
3634 * (not offset within BAR, full address)
3635 * @param write_register Address for 'write' register
3636 * (not offset within BAR, full address)
3637 * @param base_register Address for 'base' register
3638 * (not offset within BAR, full address)
3639 * @param size Address for 'size' register
3640 * (not offset within BAR, full address)
3641 */
3642 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3643 int count, u32 read, u32 write, u32 base, u32 size)
3644 {
3645 q->n_bd = count;
3646
3647 q->low_mark = q->n_bd / 4;
3648 if (q->low_mark < 4)
3649 q->low_mark = 4;
3650
3651 q->high_mark = q->n_bd / 8;
3652 if (q->high_mark < 2)
3653 q->high_mark = 2;
3654
3655 q->first_empty = q->last_used = 0;
3656 q->reg_r = read;
3657 q->reg_w = write;
3658
3659 ipw_write32(priv, base, q->dma_addr);
3660 ipw_write32(priv, size, count);
3661 ipw_write32(priv, read, 0);
3662 ipw_write32(priv, write, 0);
3663
3664 _ipw_read32(priv, 0x90);
3665 }
3666
3667 static int ipw_queue_tx_init(struct ipw_priv *priv,
3668 struct clx2_tx_queue *q,
3669 int count, u32 read, u32 write, u32 base, u32 size)
3670 {
3671 struct pci_dev *dev = priv->pci_dev;
3672
3673 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3674 if (!q->txb) {
3675 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3676 return -ENOMEM;
3677 }
3678
3679 q->bd =
3680 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3681 if (!q->bd) {
3682 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3683 sizeof(q->bd[0]) * count);
3684 kfree(q->txb);
3685 q->txb = NULL;
3686 return -ENOMEM;
3687 }
3688
3689 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3690 return 0;
3691 }
3692
3693 /**
3694 * Free one TFD, those at index [txq->q.last_used].
3695 * Do NOT advance any indexes
3696 *
3697 * @param dev
3698 * @param txq
3699 */
3700 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3701 struct clx2_tx_queue *txq)
3702 {
3703 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3704 struct pci_dev *dev = priv->pci_dev;
3705 int i;
3706
3707 /* classify bd */
3708 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3709 /* nothing to cleanup after for host commands */
3710 return;
3711
3712 /* sanity check */
3713 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3714 IPW_ERROR("Too many chunks: %i\n",
3715 le32_to_cpu(bd->u.data.num_chunks));
3716 /** @todo issue fatal error, it is quite serious situation */
3717 return;
3718 }
3719
3720 /* unmap chunks if any */
3721 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3722 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3723 le16_to_cpu(bd->u.data.chunk_len[i]),
3724 PCI_DMA_TODEVICE);
3725 if (txq->txb[txq->q.last_used]) {
3726 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3727 txq->txb[txq->q.last_used] = NULL;
3728 }
3729 }
3730 }
3731
3732 /**
3733 * Deallocate DMA queue.
3734 *
3735 * Empty queue by removing and destroying all BD's.
3736 * Free all buffers.
3737 *
3738 * @param dev
3739 * @param q
3740 */
3741 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3742 {
3743 struct clx2_queue *q = &txq->q;
3744 struct pci_dev *dev = priv->pci_dev;
3745
3746 if (q->n_bd == 0)
3747 return;
3748
3749 /* first, empty all BD's */
3750 for (; q->first_empty != q->last_used;
3751 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3752 ipw_queue_tx_free_tfd(priv, txq);
3753 }
3754
3755 /* free buffers belonging to queue itself */
3756 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3757 q->dma_addr);
3758 kfree(txq->txb);
3759
3760 /* 0 fill whole structure */
3761 memset(txq, 0, sizeof(*txq));
3762 }
3763
3764 /**
3765 * Destroy all DMA queues and structures
3766 *
3767 * @param priv
3768 */
3769 static void ipw_tx_queue_free(struct ipw_priv *priv)
3770 {
3771 /* Tx CMD queue */
3772 ipw_queue_tx_free(priv, &priv->txq_cmd);
3773
3774 /* Tx queues */
3775 ipw_queue_tx_free(priv, &priv->txq[0]);
3776 ipw_queue_tx_free(priv, &priv->txq[1]);
3777 ipw_queue_tx_free(priv, &priv->txq[2]);
3778 ipw_queue_tx_free(priv, &priv->txq[3]);
3779 }
3780
3781 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3782 {
3783 /* First 3 bytes are manufacturer */
3784 bssid[0] = priv->mac_addr[0];
3785 bssid[1] = priv->mac_addr[1];
3786 bssid[2] = priv->mac_addr[2];
3787
3788 /* Last bytes are random */
3789 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3790
3791 bssid[0] &= 0xfe; /* clear multicast bit */
3792 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3793 }
3794
3795 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3796 {
3797 struct ipw_station_entry entry;
3798 int i;
3799
3800 for (i = 0; i < priv->num_stations; i++) {
3801 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3802 /* Another node is active in network */
3803 priv->missed_adhoc_beacons = 0;
3804 if (!(priv->config & CFG_STATIC_CHANNEL))
3805 /* when other nodes drop out, we drop out */
3806 priv->config &= ~CFG_ADHOC_PERSIST;
3807
3808 return i;
3809 }
3810 }
3811
3812 if (i == MAX_STATIONS)
3813 return IPW_INVALID_STATION;
3814
3815 IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3816
3817 entry.reserved = 0;
3818 entry.support_mode = 0;
3819 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3820 memcpy(priv->stations[i], bssid, ETH_ALEN);
3821 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3822 &entry, sizeof(entry));
3823 priv->num_stations++;
3824
3825 return i;
3826 }
3827
3828 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3829 {
3830 int i;
3831
3832 for (i = 0; i < priv->num_stations; i++)
3833 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3834 return i;
3835
3836 return IPW_INVALID_STATION;
3837 }
3838
3839 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3840 {
3841 int err;
3842
3843 if (priv->status & STATUS_ASSOCIATING) {
3844 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3845 queue_work(priv->workqueue, &priv->disassociate);
3846 return;
3847 }
3848
3849 if (!(priv->status & STATUS_ASSOCIATED)) {
3850 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3851 return;
3852 }
3853
3854 IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3855 "on channel %d.\n",
3856 MAC_ARG(priv->assoc_request.bssid),
3857 priv->assoc_request.channel);
3858
3859 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3860 priv->status |= STATUS_DISASSOCIATING;
3861
3862 if (quiet)
3863 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3864 else
3865 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3866
3867 err = ipw_send_associate(priv, &priv->assoc_request);
3868 if (err) {
3869 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3870 "failed.\n");
3871 return;
3872 }
3873
3874 }
3875
3876 static int ipw_disassociate(void *data)
3877 {
3878 struct ipw_priv *priv = data;
3879 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3880 return 0;
3881 ipw_send_disassociate(data, 0);
3882 return 1;
3883 }
3884
3885 static void ipw_bg_disassociate(struct work_struct *work)
3886 {
3887 struct ipw_priv *priv =
3888 container_of(work, struct ipw_priv, disassociate);
3889 mutex_lock(&priv->mutex);
3890 ipw_disassociate(priv);
3891 mutex_unlock(&priv->mutex);
3892 }
3893
3894 static void ipw_system_config(struct work_struct *work)
3895 {
3896 struct ipw_priv *priv =
3897 container_of(work, struct ipw_priv, system_config);
3898
3899 #ifdef CONFIG_IPW2200_PROMISCUOUS
3900 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3901 priv->sys_config.accept_all_data_frames = 1;
3902 priv->sys_config.accept_non_directed_frames = 1;
3903 priv->sys_config.accept_all_mgmt_bcpr = 1;
3904 priv->sys_config.accept_all_mgmt_frames = 1;
3905 }
3906 #endif
3907
3908 ipw_send_system_config(priv);
3909 }
3910
3911 struct ipw_status_code {
3912 u16 status;
3913 const char *reason;
3914 };
3915
3916 static const struct ipw_status_code ipw_status_codes[] = {
3917 {0x00, "Successful"},
3918 {0x01, "Unspecified failure"},
3919 {0x0A, "Cannot support all requested capabilities in the "
3920 "Capability information field"},
3921 {0x0B, "Reassociation denied due to inability to confirm that "
3922 "association exists"},
3923 {0x0C, "Association denied due to reason outside the scope of this "
3924 "standard"},
3925 {0x0D,
3926 "Responding station does not support the specified authentication "
3927 "algorithm"},
3928 {0x0E,
3929 "Received an Authentication frame with authentication sequence "
3930 "transaction sequence number out of expected sequence"},
3931 {0x0F, "Authentication rejected because of challenge failure"},
3932 {0x10, "Authentication rejected due to timeout waiting for next "
3933 "frame in sequence"},
3934 {0x11, "Association denied because AP is unable to handle additional "
3935 "associated stations"},
3936 {0x12,
3937 "Association denied due to requesting station not supporting all "
3938 "of the datarates in the BSSBasicServiceSet Parameter"},
3939 {0x13,
3940 "Association denied due to requesting station not supporting "
3941 "short preamble operation"},
3942 {0x14,
3943 "Association denied due to requesting station not supporting "
3944 "PBCC encoding"},
3945 {0x15,
3946 "Association denied due to requesting station not supporting "
3947 "channel agility"},
3948 {0x19,
3949 "Association denied due to requesting station not supporting "
3950 "short slot operation"},
3951 {0x1A,
3952 "Association denied due to requesting station not supporting "
3953 "DSSS-OFDM operation"},
3954 {0x28, "Invalid Information Element"},
3955 {0x29, "Group Cipher is not valid"},
3956 {0x2A, "Pairwise Cipher is not valid"},
3957 {0x2B, "AKMP is not valid"},
3958 {0x2C, "Unsupported RSN IE version"},
3959 {0x2D, "Invalid RSN IE Capabilities"},
3960 {0x2E, "Cipher suite is rejected per security policy"},
3961 };
3962
3963 static const char *ipw_get_status_code(u16 status)
3964 {
3965 int i;
3966 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3967 if (ipw_status_codes[i].status == (status & 0xff))
3968 return ipw_status_codes[i].reason;
3969 return "Unknown status value.";
3970 }
3971
3972 static void inline average_init(struct average *avg)
3973 {
3974 memset(avg, 0, sizeof(*avg));
3975 }
3976
3977 #define DEPTH_RSSI 8
3978 #define DEPTH_NOISE 16
3979 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3980 {
3981 return ((depth-1)*prev_avg + val)/depth;
3982 }
3983
3984 static void average_add(struct average *avg, s16 val)
3985 {
3986 avg->sum -= avg->entries[avg->pos];
3987 avg->sum += val;
3988 avg->entries[avg->pos++] = val;
3989 if (unlikely(avg->pos == AVG_ENTRIES)) {
3990 avg->init = 1;
3991 avg->pos = 0;
3992 }
3993 }
3994
3995 static s16 average_value(struct average *avg)
3996 {
3997 if (!unlikely(avg->init)) {
3998 if (avg->pos)
3999 return avg->sum / avg->pos;
4000 return 0;
4001 }
4002
4003 return avg->sum / AVG_ENTRIES;
4004 }
4005
4006 static void ipw_reset_stats(struct ipw_priv *priv)
4007 {
4008 u32 len = sizeof(u32);
4009
4010 priv->quality = 0;
4011
4012 average_init(&priv->average_missed_beacons);
4013 priv->exp_avg_rssi = -60;
4014 priv->exp_avg_noise = -85 + 0x100;
4015
4016 priv->last_rate = 0;
4017 priv->last_missed_beacons = 0;
4018 priv->last_rx_packets = 0;
4019 priv->last_tx_packets = 0;
4020 priv->last_tx_failures = 0;
4021
4022 /* Firmware managed, reset only when NIC is restarted, so we have to
4023 * normalize on the current value */
4024 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4025 &priv->last_rx_err, &len);
4026 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4027 &priv->last_tx_failures, &len);
4028
4029 /* Driver managed, reset with each association */
4030 priv->missed_adhoc_beacons = 0;
4031 priv->missed_beacons = 0;
4032 priv->tx_packets = 0;
4033 priv->rx_packets = 0;
4034
4035 }
4036
4037 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4038 {
4039 u32 i = 0x80000000;
4040 u32 mask = priv->rates_mask;
4041 /* If currently associated in B mode, restrict the maximum
4042 * rate match to B rates */
4043 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4044 mask &= IEEE80211_CCK_RATES_MASK;
4045
4046 /* TODO: Verify that the rate is supported by the current rates
4047 * list. */
4048
4049 while (i && !(mask & i))
4050 i >>= 1;
4051 switch (i) {
4052 case IEEE80211_CCK_RATE_1MB_MASK:
4053 return 1000000;
4054 case IEEE80211_CCK_RATE_2MB_MASK:
4055 return 2000000;
4056 case IEEE80211_CCK_RATE_5MB_MASK:
4057 return 5500000;
4058 case IEEE80211_OFDM_RATE_6MB_MASK:
4059 return 6000000;
4060 case IEEE80211_OFDM_RATE_9MB_MASK:
4061 return 9000000;
4062 case IEEE80211_CCK_RATE_11MB_MASK:
4063 return 11000000;
4064 case IEEE80211_OFDM_RATE_12MB_MASK:
4065 return 12000000;
4066 case IEEE80211_OFDM_RATE_18MB_MASK:
4067 return 18000000;
4068 case IEEE80211_OFDM_RATE_24MB_MASK:
4069 return 24000000;
4070 case IEEE80211_OFDM_RATE_36MB_MASK:
4071 return 36000000;
4072 case IEEE80211_OFDM_RATE_48MB_MASK:
4073 return 48000000;
4074 case IEEE80211_OFDM_RATE_54MB_MASK:
4075 return 54000000;
4076 }
4077
4078 if (priv->ieee->mode == IEEE_B)
4079 return 11000000;
4080 else
4081 return 54000000;
4082 }
4083
4084 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4085 {
4086 u32 rate, len = sizeof(rate);
4087 int err;
4088
4089 if (!(priv->status & STATUS_ASSOCIATED))
4090 return 0;
4091
4092 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4093 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4094 &len);
4095 if (err) {
4096 IPW_DEBUG_INFO("failed querying ordinals.\n");
4097 return 0;
4098 }
4099 } else
4100 return ipw_get_max_rate(priv);
4101
4102 switch (rate) {
4103 case IPW_TX_RATE_1MB:
4104 return 1000000;
4105 case IPW_TX_RATE_2MB:
4106 return 2000000;
4107 case IPW_TX_RATE_5MB:
4108 return 5500000;
4109 case IPW_TX_RATE_6MB:
4110 return 6000000;
4111 case IPW_TX_RATE_9MB:
4112 return 9000000;
4113 case IPW_TX_RATE_11MB:
4114 return 11000000;
4115 case IPW_TX_RATE_12MB:
4116 return 12000000;
4117 case IPW_TX_RATE_18MB:
4118 return 18000000;
4119 case IPW_TX_RATE_24MB:
4120 return 24000000;
4121 case IPW_TX_RATE_36MB:
4122 return 36000000;
4123 case IPW_TX_RATE_48MB:
4124 return 48000000;
4125 case IPW_TX_RATE_54MB:
4126 return 54000000;
4127 }
4128
4129 return 0;
4130 }
4131
4132 #define IPW_STATS_INTERVAL (2 * HZ)
4133 static void ipw_gather_stats(struct ipw_priv *priv)
4134 {
4135 u32 rx_err, rx_err_delta, rx_packets_delta;
4136 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4137 u32 missed_beacons_percent, missed_beacons_delta;
4138 u32 quality = 0;
4139 u32 len = sizeof(u32);
4140 s16 rssi;
4141 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4142 rate_quality;
4143 u32 max_rate;
4144
4145 if (!(priv->status & STATUS_ASSOCIATED)) {
4146 priv->quality = 0;
4147 return;
4148 }
4149
4150 /* Update the statistics */
4151 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4152 &priv->missed_beacons, &len);
4153 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4154 priv->last_missed_beacons = priv->missed_beacons;
4155 if (priv->assoc_request.beacon_interval) {
4156 missed_beacons_percent = missed_beacons_delta *
4157 (HZ * priv->assoc_request.beacon_interval) /
4158 (IPW_STATS_INTERVAL * 10);
4159 } else {
4160 missed_beacons_percent = 0;
4161 }
4162 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4163
4164 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4165 rx_err_delta = rx_err - priv->last_rx_err;
4166 priv->last_rx_err = rx_err;
4167
4168 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4169 tx_failures_delta = tx_failures - priv->last_tx_failures;
4170 priv->last_tx_failures = tx_failures;
4171
4172 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4173 priv->last_rx_packets = priv->rx_packets;
4174
4175 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4176 priv->last_tx_packets = priv->tx_packets;
4177
4178 /* Calculate quality based on the following:
4179 *
4180 * Missed beacon: 100% = 0, 0% = 70% missed
4181 * Rate: 60% = 1Mbs, 100% = Max
4182 * Rx and Tx errors represent a straight % of total Rx/Tx
4183 * RSSI: 100% = > -50, 0% = < -80
4184 * Rx errors: 100% = 0, 0% = 50% missed
4185 *
4186 * The lowest computed quality is used.
4187 *
4188 */
4189 #define BEACON_THRESHOLD 5
4190 beacon_quality = 100 - missed_beacons_percent;
4191 if (beacon_quality < BEACON_THRESHOLD)
4192 beacon_quality = 0;
4193 else
4194 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4195 (100 - BEACON_THRESHOLD);
4196 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4197 beacon_quality, missed_beacons_percent);
4198
4199 priv->last_rate = ipw_get_current_rate(priv);
4200 max_rate = ipw_get_max_rate(priv);
4201 rate_quality = priv->last_rate * 40 / max_rate + 60;
4202 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4203 rate_quality, priv->last_rate / 1000000);
4204
4205 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4206 rx_quality = 100 - (rx_err_delta * 100) /
4207 (rx_packets_delta + rx_err_delta);
4208 else
4209 rx_quality = 100;
4210 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4211 rx_quality, rx_err_delta, rx_packets_delta);
4212
4213 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4214 tx_quality = 100 - (tx_failures_delta * 100) /
4215 (tx_packets_delta + tx_failures_delta);
4216 else
4217 tx_quality = 100;
4218 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4219 tx_quality, tx_failures_delta, tx_packets_delta);
4220
4221 rssi = priv->exp_avg_rssi;
4222 signal_quality =
4223 (100 *
4224 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4225 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4226 (priv->ieee->perfect_rssi - rssi) *
4227 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4228 62 * (priv->ieee->perfect_rssi - rssi))) /
4229 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4230 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4231 if (signal_quality > 100)
4232 signal_quality = 100;
4233 else if (signal_quality < 1)
4234 signal_quality = 0;
4235
4236 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4237 signal_quality, rssi);
4238
4239 quality = min(beacon_quality,
4240 min(rate_quality,
4241 min(tx_quality, min(rx_quality, signal_quality))));
4242 if (quality == beacon_quality)
4243 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4244 quality);
4245 if (quality == rate_quality)
4246 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4247 quality);
4248 if (quality == tx_quality)
4249 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4250 quality);
4251 if (quality == rx_quality)
4252 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4253 quality);
4254 if (quality == signal_quality)
4255 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4256 quality);
4257
4258 priv->quality = quality;
4259
4260 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4261 IPW_STATS_INTERVAL);
4262 }
4263
4264 static void ipw_bg_gather_stats(struct work_struct *work)
4265 {
4266 struct ipw_priv *priv =
4267 container_of(work, struct ipw_priv, gather_stats.work);
4268 mutex_lock(&priv->mutex);
4269 ipw_gather_stats(priv);
4270 mutex_unlock(&priv->mutex);
4271 }
4272
4273 /* Missed beacon behavior:
4274 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4275 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4276 * Above disassociate threshold, give up and stop scanning.
4277 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4278 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4279 int missed_count)
4280 {
4281 priv->notif_missed_beacons = missed_count;
4282
4283 if (missed_count > priv->disassociate_threshold &&
4284 priv->status & STATUS_ASSOCIATED) {
4285 /* If associated and we've hit the missed
4286 * beacon threshold, disassociate, turn
4287 * off roaming, and abort any active scans */
4288 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4289 IPW_DL_STATE | IPW_DL_ASSOC,
4290 "Missed beacon: %d - disassociate\n", missed_count);
4291 priv->status &= ~STATUS_ROAMING;
4292 if (priv->status & STATUS_SCANNING) {
4293 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4294 IPW_DL_STATE,
4295 "Aborting scan with missed beacon.\n");
4296 queue_work(priv->workqueue, &priv->abort_scan);
4297 }
4298
4299 queue_work(priv->workqueue, &priv->disassociate);
4300 return;
4301 }
4302
4303 if (priv->status & STATUS_ROAMING) {
4304 /* If we are currently roaming, then just
4305 * print a debug statement... */
4306 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4307 "Missed beacon: %d - roam in progress\n",
4308 missed_count);
4309 return;
4310 }
4311
4312 if (roaming &&
4313 (missed_count > priv->roaming_threshold &&
4314 missed_count <= priv->disassociate_threshold)) {
4315 /* If we are not already roaming, set the ROAM
4316 * bit in the status and kick off a scan.
4317 * This can happen several times before we reach
4318 * disassociate_threshold. */
4319 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4320 "Missed beacon: %d - initiate "
4321 "roaming\n", missed_count);
4322 if (!(priv->status & STATUS_ROAMING)) {
4323 priv->status |= STATUS_ROAMING;
4324 if (!(priv->status & STATUS_SCANNING))
4325 queue_delayed_work(priv->workqueue,
4326 &priv->request_scan, 0);
4327 }
4328 return;
4329 }
4330
4331 if (priv->status & STATUS_SCANNING) {
4332 /* Stop scan to keep fw from getting
4333 * stuck (only if we aren't roaming --
4334 * otherwise we'll never scan more than 2 or 3
4335 * channels..) */
4336 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4337 "Aborting scan with missed beacon.\n");
4338 queue_work(priv->workqueue, &priv->abort_scan);
4339 }
4340
4341 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4342 }
4343
4344 /**
4345 * Handle host notification packet.
4346 * Called from interrupt routine
4347 */
4348 static void ipw_rx_notification(struct ipw_priv *priv,
4349 struct ipw_rx_notification *notif)
4350 {
4351 notif->size = le16_to_cpu(notif->size);
4352
4353 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4354
4355 switch (notif->subtype) {
4356 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4357 struct notif_association *assoc = &notif->u.assoc;
4358
4359 switch (assoc->state) {
4360 case CMAS_ASSOCIATED:{
4361 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4362 IPW_DL_ASSOC,
4363 "associated: '%s' " MAC_FMT
4364 " \n",
4365 escape_essid(priv->essid,
4366 priv->essid_len),
4367 MAC_ARG(priv->bssid));
4368
4369 switch (priv->ieee->iw_mode) {
4370 case IW_MODE_INFRA:
4371 memcpy(priv->ieee->bssid,
4372 priv->bssid, ETH_ALEN);
4373 break;
4374
4375 case IW_MODE_ADHOC:
4376 memcpy(priv->ieee->bssid,
4377 priv->bssid, ETH_ALEN);
4378
4379 /* clear out the station table */
4380 priv->num_stations = 0;
4381
4382 IPW_DEBUG_ASSOC
4383 ("queueing adhoc check\n");
4384 queue_delayed_work(priv->
4385 workqueue,
4386 &priv->
4387 adhoc_check,
4388 priv->
4389 assoc_request.
4390 beacon_interval);
4391 break;
4392 }
4393
4394 priv->status &= ~STATUS_ASSOCIATING;
4395 priv->status |= STATUS_ASSOCIATED;
4396 queue_work(priv->workqueue,
4397 &priv->system_config);
4398
4399 #ifdef CONFIG_IPW2200_QOS
4400 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4401 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4402 if ((priv->status & STATUS_AUTH) &&
4403 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4404 == IEEE80211_STYPE_ASSOC_RESP)) {
4405 if ((sizeof
4406 (struct
4407 ieee80211_assoc_response)
4408 <= notif->size)
4409 && (notif->size <= 2314)) {
4410 struct
4411 ieee80211_rx_stats
4412 stats = {
4413 .len =
4414 notif->
4415 size - 1,
4416 };
4417
4418 IPW_DEBUG_QOS
4419 ("QoS Associate "
4420 "size %d\n",
4421 notif->size);
4422 ieee80211_rx_mgt(priv->
4423 ieee,
4424 (struct
4425 ieee80211_hdr_4addr
4426 *)
4427 &notif->u.raw, &stats);
4428 }
4429 }
4430 #endif
4431
4432 schedule_work(&priv->link_up);
4433
4434 break;
4435 }
4436
4437 case CMAS_AUTHENTICATED:{
4438 if (priv->
4439 status & (STATUS_ASSOCIATED |
4440 STATUS_AUTH)) {
4441 struct notif_authenticate *auth
4442 = &notif->u.auth;
4443 IPW_DEBUG(IPW_DL_NOTIF |
4444 IPW_DL_STATE |
4445 IPW_DL_ASSOC,
4446 "deauthenticated: '%s' "
4447 MAC_FMT
4448 ": (0x%04X) - %s \n",
4449 escape_essid(priv->
4450 essid,
4451 priv->
4452 essid_len),
4453 MAC_ARG(priv->bssid),
4454 ntohs(auth->status),
4455 ipw_get_status_code
4456 (ntohs
4457 (auth->status)));
4458
4459 priv->status &=
4460 ~(STATUS_ASSOCIATING |
4461 STATUS_AUTH |
4462 STATUS_ASSOCIATED);
4463
4464 schedule_work(&priv->link_down);
4465 break;
4466 }
4467
4468 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4469 IPW_DL_ASSOC,
4470 "authenticated: '%s' " MAC_FMT
4471 "\n",
4472 escape_essid(priv->essid,
4473 priv->essid_len),
4474 MAC_ARG(priv->bssid));
4475 break;
4476 }
4477
4478 case CMAS_INIT:{
4479 if (priv->status & STATUS_AUTH) {
4480 struct
4481 ieee80211_assoc_response
4482 *resp;
4483 resp =
4484 (struct
4485 ieee80211_assoc_response
4486 *)&notif->u.raw;
4487 IPW_DEBUG(IPW_DL_NOTIF |
4488 IPW_DL_STATE |
4489 IPW_DL_ASSOC,
4490 "association failed (0x%04X): %s\n",
4491 ntohs(resp->status),
4492 ipw_get_status_code
4493 (ntohs
4494 (resp->status)));
4495 }
4496
4497 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4498 IPW_DL_ASSOC,
4499 "disassociated: '%s' " MAC_FMT
4500 " \n",
4501 escape_essid(priv->essid,
4502 priv->essid_len),
4503 MAC_ARG(priv->bssid));
4504
4505 priv->status &=
4506 ~(STATUS_DISASSOCIATING |
4507 STATUS_ASSOCIATING |
4508 STATUS_ASSOCIATED | STATUS_AUTH);
4509 if (priv->assoc_network
4510 && (priv->assoc_network->
4511 capability &
4512 WLAN_CAPABILITY_IBSS))
4513 ipw_remove_current_network
4514 (priv);
4515
4516 schedule_work(&priv->link_down);
4517
4518 break;
4519 }
4520
4521 case CMAS_RX_ASSOC_RESP:
4522 break;
4523
4524 default:
4525 IPW_ERROR("assoc: unknown (%d)\n",
4526 assoc->state);
4527 break;
4528 }
4529
4530 break;
4531 }
4532
4533 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4534 struct notif_authenticate *auth = &notif->u.auth;
4535 switch (auth->state) {
4536 case CMAS_AUTHENTICATED:
4537 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4538 "authenticated: '%s' " MAC_FMT " \n",
4539 escape_essid(priv->essid,
4540 priv->essid_len),
4541 MAC_ARG(priv->bssid));
4542 priv->status |= STATUS_AUTH;
4543 break;
4544
4545 case CMAS_INIT:
4546 if (priv->status & STATUS_AUTH) {
4547 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4548 IPW_DL_ASSOC,
4549 "authentication failed (0x%04X): %s\n",
4550 ntohs(auth->status),
4551 ipw_get_status_code(ntohs
4552 (auth->
4553 status)));
4554 }
4555 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4556 IPW_DL_ASSOC,
4557 "deauthenticated: '%s' " MAC_FMT "\n",
4558 escape_essid(priv->essid,
4559 priv->essid_len),
4560 MAC_ARG(priv->bssid));
4561
4562 priv->status &= ~(STATUS_ASSOCIATING |
4563 STATUS_AUTH |
4564 STATUS_ASSOCIATED);
4565
4566 schedule_work(&priv->link_down);
4567 break;
4568
4569 case CMAS_TX_AUTH_SEQ_1:
4570 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4571 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4572 break;
4573 case CMAS_RX_AUTH_SEQ_2:
4574 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4575 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4576 break;
4577 case CMAS_AUTH_SEQ_1_PASS:
4578 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4579 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4580 break;
4581 case CMAS_AUTH_SEQ_1_FAIL:
4582 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4583 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4584 break;
4585 case CMAS_TX_AUTH_SEQ_3:
4586 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4587 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4588 break;
4589 case CMAS_RX_AUTH_SEQ_4:
4590 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4591 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4592 break;
4593 case CMAS_AUTH_SEQ_2_PASS:
4594 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4595 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4596 break;
4597 case CMAS_AUTH_SEQ_2_FAIL:
4598 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4599 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4600 break;
4601 case CMAS_TX_ASSOC:
4602 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4603 IPW_DL_ASSOC, "TX_ASSOC\n");
4604 break;
4605 case CMAS_RX_ASSOC_RESP:
4606 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4607 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4608
4609 break;
4610 case CMAS_ASSOCIATED:
4611 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4612 IPW_DL_ASSOC, "ASSOCIATED\n");
4613 break;
4614 default:
4615 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4616 auth->state);
4617 break;
4618 }
4619 break;
4620 }
4621
4622 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4623 struct notif_channel_result *x =
4624 &notif->u.channel_result;
4625
4626 if (notif->size == sizeof(*x)) {
4627 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4628 x->channel_num);
4629 } else {
4630 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4631 "(should be %zd)\n",
4632 notif->size, sizeof(*x));
4633 }
4634 break;
4635 }
4636
4637 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4638 struct notif_scan_complete *x = &notif->u.scan_complete;
4639 if (notif->size == sizeof(*x)) {
4640 IPW_DEBUG_SCAN
4641 ("Scan completed: type %d, %d channels, "
4642 "%d status\n", x->scan_type,
4643 x->num_channels, x->status);
4644 } else {
4645 IPW_ERROR("Scan completed of wrong size %d "
4646 "(should be %zd)\n",
4647 notif->size, sizeof(*x));
4648 }
4649
4650 priv->status &=
4651 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4652
4653 wake_up_interruptible(&priv->wait_state);
4654 cancel_delayed_work(&priv->scan_check);
4655
4656 if (priv->status & STATUS_EXIT_PENDING)
4657 break;
4658
4659 priv->ieee->scans++;
4660
4661 #ifdef CONFIG_IPW2200_MONITOR
4662 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4663 priv->status |= STATUS_SCAN_FORCED;
4664 queue_delayed_work(priv->workqueue,
4665 &priv->request_scan, 0);
4666 break;
4667 }
4668 priv->status &= ~STATUS_SCAN_FORCED;
4669 #endif /* CONFIG_IPW2200_MONITOR */
4670
4671 if (!(priv->status & (STATUS_ASSOCIATED |
4672 STATUS_ASSOCIATING |
4673 STATUS_ROAMING |
4674 STATUS_DISASSOCIATING)))
4675 queue_work(priv->workqueue, &priv->associate);
4676 else if (priv->status & STATUS_ROAMING) {
4677 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4678 /* If a scan completed and we are in roam mode, then
4679 * the scan that completed was the one requested as a
4680 * result of entering roam... so, schedule the
4681 * roam work */
4682 queue_work(priv->workqueue,
4683 &priv->roam);
4684 else
4685 /* Don't schedule if we aborted the scan */
4686 priv->status &= ~STATUS_ROAMING;
4687 } else if (priv->status & STATUS_SCAN_PENDING)
4688 queue_delayed_work(priv->workqueue,
4689 &priv->request_scan, 0);
4690 else if (priv->config & CFG_BACKGROUND_SCAN
4691 && priv->status & STATUS_ASSOCIATED)
4692 queue_delayed_work(priv->workqueue,
4693 &priv->request_scan, HZ);
4694
4695 /* Send an empty event to user space.
4696 * We don't send the received data on the event because
4697 * it would require us to do complex transcoding, and
4698 * we want to minimise the work done in the irq handler
4699 * Use a request to extract the data.
4700 * Also, we generate this even for any scan, regardless
4701 * on how the scan was initiated. User space can just
4702 * sync on periodic scan to get fresh data...
4703 * Jean II */
4704 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4705 union iwreq_data wrqu;
4706
4707 wrqu.data.length = 0;
4708 wrqu.data.flags = 0;
4709 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4710 &wrqu, NULL);
4711 }
4712 break;
4713 }
4714
4715 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4716 struct notif_frag_length *x = &notif->u.frag_len;
4717
4718 if (notif->size == sizeof(*x))
4719 IPW_ERROR("Frag length: %d\n",
4720 le16_to_cpu(x->frag_length));
4721 else
4722 IPW_ERROR("Frag length of wrong size %d "
4723 "(should be %zd)\n",
4724 notif->size, sizeof(*x));
4725 break;
4726 }
4727
4728 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4729 struct notif_link_deterioration *x =
4730 &notif->u.link_deterioration;
4731
4732 if (notif->size == sizeof(*x)) {
4733 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4734 "link deterioration: type %d, cnt %d\n",
4735 x->silence_notification_type,
4736 x->silence_count);
4737 memcpy(&priv->last_link_deterioration, x,
4738 sizeof(*x));
4739 } else {
4740 IPW_ERROR("Link Deterioration of wrong size %d "
4741 "(should be %zd)\n",
4742 notif->size, sizeof(*x));
4743 }
4744 break;
4745 }
4746
4747 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4748 IPW_ERROR("Dino config\n");
4749 if (priv->hcmd
4750 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4751 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4752
4753 break;
4754 }
4755
4756 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4757 struct notif_beacon_state *x = &notif->u.beacon_state;
4758 if (notif->size != sizeof(*x)) {
4759 IPW_ERROR
4760 ("Beacon state of wrong size %d (should "
4761 "be %zd)\n", notif->size, sizeof(*x));
4762 break;
4763 }
4764
4765 if (le32_to_cpu(x->state) ==
4766 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4767 ipw_handle_missed_beacon(priv,
4768 le32_to_cpu(x->
4769 number));
4770
4771 break;
4772 }
4773
4774 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4775 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4776 if (notif->size == sizeof(*x)) {
4777 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4778 "0x%02x station %d\n",
4779 x->key_state, x->security_type,
4780 x->station_index);
4781 break;
4782 }
4783
4784 IPW_ERROR
4785 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4786 notif->size, sizeof(*x));
4787 break;
4788 }
4789
4790 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4791 struct notif_calibration *x = &notif->u.calibration;
4792
4793 if (notif->size == sizeof(*x)) {
4794 memcpy(&priv->calib, x, sizeof(*x));
4795 IPW_DEBUG_INFO("TODO: Calibration\n");
4796 break;
4797 }
4798
4799 IPW_ERROR
4800 ("Calibration of wrong size %d (should be %zd)\n",
4801 notif->size, sizeof(*x));
4802 break;
4803 }
4804
4805 case HOST_NOTIFICATION_NOISE_STATS:{
4806 if (notif->size == sizeof(u32)) {
4807 priv->exp_avg_noise =
4808 exponential_average(priv->exp_avg_noise,
4809 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4810 DEPTH_NOISE);
4811 break;
4812 }
4813
4814 IPW_ERROR
4815 ("Noise stat is wrong size %d (should be %zd)\n",
4816 notif->size, sizeof(u32));
4817 break;
4818 }
4819
4820 default:
4821 IPW_DEBUG_NOTIF("Unknown notification: "
4822 "subtype=%d,flags=0x%2x,size=%d\n",
4823 notif->subtype, notif->flags, notif->size);
4824 }
4825 }
4826
4827 /**
4828 * Destroys all DMA structures and initialise them again
4829 *
4830 * @param priv
4831 * @return error code
4832 */
4833 static int ipw_queue_reset(struct ipw_priv *priv)
4834 {
4835 int rc = 0;
4836 /** @todo customize queue sizes */
4837 int nTx = 64, nTxCmd = 8;
4838 ipw_tx_queue_free(priv);
4839 /* Tx CMD queue */
4840 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4841 IPW_TX_CMD_QUEUE_READ_INDEX,
4842 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4843 IPW_TX_CMD_QUEUE_BD_BASE,
4844 IPW_TX_CMD_QUEUE_BD_SIZE);
4845 if (rc) {
4846 IPW_ERROR("Tx Cmd queue init failed\n");
4847 goto error;
4848 }
4849 /* Tx queue(s) */
4850 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4851 IPW_TX_QUEUE_0_READ_INDEX,
4852 IPW_TX_QUEUE_0_WRITE_INDEX,
4853 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4854 if (rc) {
4855 IPW_ERROR("Tx 0 queue init failed\n");
4856 goto error;
4857 }
4858 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4859 IPW_TX_QUEUE_1_READ_INDEX,
4860 IPW_TX_QUEUE_1_WRITE_INDEX,
4861 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4862 if (rc) {
4863 IPW_ERROR("Tx 1 queue init failed\n");
4864 goto error;
4865 }
4866 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4867 IPW_TX_QUEUE_2_READ_INDEX,
4868 IPW_TX_QUEUE_2_WRITE_INDEX,
4869 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4870 if (rc) {
4871 IPW_ERROR("Tx 2 queue init failed\n");
4872 goto error;
4873 }
4874 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4875 IPW_TX_QUEUE_3_READ_INDEX,
4876 IPW_TX_QUEUE_3_WRITE_INDEX,
4877 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4878 if (rc) {
4879 IPW_ERROR("Tx 3 queue init failed\n");
4880 goto error;
4881 }
4882 /* statistics */
4883 priv->rx_bufs_min = 0;
4884 priv->rx_pend_max = 0;
4885 return rc;
4886
4887 error:
4888 ipw_tx_queue_free(priv);
4889 return rc;
4890 }
4891
4892 /**
4893 * Reclaim Tx queue entries no more used by NIC.
4894 *
4895 * When FW adwances 'R' index, all entries between old and
4896 * new 'R' index need to be reclaimed. As result, some free space
4897 * forms. If there is enough free space (> low mark), wake Tx queue.
4898 *
4899 * @note Need to protect against garbage in 'R' index
4900 * @param priv
4901 * @param txq
4902 * @param qindex
4903 * @return Number of used entries remains in the queue
4904 */
4905 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4906 struct clx2_tx_queue *txq, int qindex)
4907 {
4908 u32 hw_tail;
4909 int used;
4910 struct clx2_queue *q = &txq->q;
4911
4912 hw_tail = ipw_read32(priv, q->reg_r);
4913 if (hw_tail >= q->n_bd) {
4914 IPW_ERROR
4915 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4916 hw_tail, q->n_bd);
4917 goto done;
4918 }
4919 for (; q->last_used != hw_tail;
4920 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4921 ipw_queue_tx_free_tfd(priv, txq);
4922 priv->tx_packets++;
4923 }
4924 done:
4925 if ((ipw_queue_space(q) > q->low_mark) &&
4926 (qindex >= 0) &&
4927 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4928 netif_wake_queue(priv->net_dev);
4929 used = q->first_empty - q->last_used;
4930 if (used < 0)
4931 used += q->n_bd;
4932
4933 return used;
4934 }
4935
4936 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4937 int len, int sync)
4938 {
4939 struct clx2_tx_queue *txq = &priv->txq_cmd;
4940 struct clx2_queue *q = &txq->q;
4941 struct tfd_frame *tfd;
4942
4943 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4944 IPW_ERROR("No space for Tx\n");
4945 return -EBUSY;
4946 }
4947
4948 tfd = &txq->bd[q->first_empty];
4949 txq->txb[q->first_empty] = NULL;
4950
4951 memset(tfd, 0, sizeof(*tfd));
4952 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4953 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4954 priv->hcmd_seq++;
4955 tfd->u.cmd.index = hcmd;
4956 tfd->u.cmd.length = len;
4957 memcpy(tfd->u.cmd.payload, buf, len);
4958 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4959 ipw_write32(priv, q->reg_w, q->first_empty);
4960 _ipw_read32(priv, 0x90);
4961
4962 return 0;
4963 }
4964
4965 /*
4966 * Rx theory of operation
4967 *
4968 * The host allocates 32 DMA target addresses and passes the host address
4969 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4970 * 0 to 31
4971 *
4972 * Rx Queue Indexes
4973 * The host/firmware share two index registers for managing the Rx buffers.
4974 *
4975 * The READ index maps to the first position that the firmware may be writing
4976 * to -- the driver can read up to (but not including) this position and get
4977 * good data.
4978 * The READ index is managed by the firmware once the card is enabled.
4979 *
4980 * The WRITE index maps to the last position the driver has read from -- the
4981 * position preceding WRITE is the last slot the firmware can place a packet.
4982 *
4983 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4984 * WRITE = READ.
4985 *
4986 * During initialization the host sets up the READ queue position to the first
4987 * INDEX position, and WRITE to the last (READ - 1 wrapped)
4988 *
4989 * When the firmware places a packet in a buffer it will advance the READ index
4990 * and fire the RX interrupt. The driver can then query the READ index and
4991 * process as many packets as possible, moving the WRITE index forward as it
4992 * resets the Rx queue buffers with new memory.
4993 *
4994 * The management in the driver is as follows:
4995 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
4996 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4997 * to replensish the ipw->rxq->rx_free.
4998 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4999 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5000 * 'processed' and 'read' driver indexes as well)
5001 * + A received packet is processed and handed to the kernel network stack,
5002 * detached from the ipw->rxq. The driver 'processed' index is updated.
5003 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5004 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5005 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5006 * were enough free buffers and RX_STALLED is set it is cleared.
5007 *
5008 *
5009 * Driver sequence:
5010 *
5011 * ipw_rx_queue_alloc() Allocates rx_free
5012 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5013 * ipw_rx_queue_restock
5014 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5015 * queue, updates firmware pointers, and updates
5016 * the WRITE index. If insufficient rx_free buffers
5017 * are available, schedules ipw_rx_queue_replenish
5018 *
5019 * -- enable interrupts --
5020 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5021 * READ INDEX, detaching the SKB from the pool.
5022 * Moves the packet buffer from queue to rx_used.
5023 * Calls ipw_rx_queue_restock to refill any empty
5024 * slots.
5025 * ...
5026 *
5027 */
5028
5029 /*
5030 * If there are slots in the RX queue that need to be restocked,
5031 * and we have free pre-allocated buffers, fill the ranks as much
5032 * as we can pulling from rx_free.
5033 *
5034 * This moves the 'write' index forward to catch up with 'processed', and
5035 * also updates the memory address in the firmware to reference the new
5036 * target buffer.
5037 */
5038 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5039 {
5040 struct ipw_rx_queue *rxq = priv->rxq;
5041 struct list_head *element;
5042 struct ipw_rx_mem_buffer *rxb;
5043 unsigned long flags;
5044 int write;
5045
5046 spin_lock_irqsave(&rxq->lock, flags);
5047 write = rxq->write;
5048 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5049 element = rxq->rx_free.next;
5050 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5051 list_del(element);
5052
5053 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5054 rxb->dma_addr);
5055 rxq->queue[rxq->write] = rxb;
5056 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5057 rxq->free_count--;
5058 }
5059 spin_unlock_irqrestore(&rxq->lock, flags);
5060
5061 /* If the pre-allocated buffer pool is dropping low, schedule to
5062 * refill it */
5063 if (rxq->free_count <= RX_LOW_WATERMARK)
5064 queue_work(priv->workqueue, &priv->rx_replenish);
5065
5066 /* If we've added more space for the firmware to place data, tell it */
5067 if (write != rxq->write)
5068 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5069 }
5070
5071 /*
5072 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5073 * Also restock the Rx queue via ipw_rx_queue_restock.
5074 *
5075 * This is called as a scheduled work item (except for during intialization)
5076 */
5077 static void ipw_rx_queue_replenish(void *data)
5078 {
5079 struct ipw_priv *priv = data;
5080 struct ipw_rx_queue *rxq = priv->rxq;
5081 struct list_head *element;
5082 struct ipw_rx_mem_buffer *rxb;
5083 unsigned long flags;
5084
5085 spin_lock_irqsave(&rxq->lock, flags);
5086 while (!list_empty(&rxq->rx_used)) {
5087 element = rxq->rx_used.next;
5088 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5089 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5090 if (!rxb->skb) {
5091 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5092 priv->net_dev->name);
5093 /* We don't reschedule replenish work here -- we will
5094 * call the restock method and if it still needs
5095 * more buffers it will schedule replenish */
5096 break;
5097 }
5098 list_del(element);
5099
5100 rxb->dma_addr =
5101 pci_map_single(priv->pci_dev, rxb->skb->data,
5102 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5103
5104 list_add_tail(&rxb->list, &rxq->rx_free);
5105 rxq->free_count++;
5106 }
5107 spin_unlock_irqrestore(&rxq->lock, flags);
5108
5109 ipw_rx_queue_restock(priv);
5110 }
5111
5112 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5113 {
5114 struct ipw_priv *priv =
5115 container_of(work, struct ipw_priv, rx_replenish);
5116 mutex_lock(&priv->mutex);
5117 ipw_rx_queue_replenish(priv);
5118 mutex_unlock(&priv->mutex);
5119 }
5120
5121 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5122 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5123 * This free routine walks the list of POOL entries and if SKB is set to
5124 * non NULL it is unmapped and freed
5125 */
5126 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5127 {
5128 int i;
5129
5130 if (!rxq)
5131 return;
5132
5133 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5134 if (rxq->pool[i].skb != NULL) {
5135 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5136 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5137 dev_kfree_skb(rxq->pool[i].skb);
5138 }
5139 }
5140
5141 kfree(rxq);
5142 }
5143
5144 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5145 {
5146 struct ipw_rx_queue *rxq;
5147 int i;
5148
5149 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5150 if (unlikely(!rxq)) {
5151 IPW_ERROR("memory allocation failed\n");
5152 return NULL;
5153 }
5154 spin_lock_init(&rxq->lock);
5155 INIT_LIST_HEAD(&rxq->rx_free);
5156 INIT_LIST_HEAD(&rxq->rx_used);
5157
5158 /* Fill the rx_used queue with _all_ of the Rx buffers */
5159 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5160 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5161
5162 /* Set us so that we have processed and used all buffers, but have
5163 * not restocked the Rx queue with fresh buffers */
5164 rxq->read = rxq->write = 0;
5165 rxq->processed = RX_QUEUE_SIZE - 1;
5166 rxq->free_count = 0;
5167
5168 return rxq;
5169 }
5170
5171 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5172 {
5173 rate &= ~IEEE80211_BASIC_RATE_MASK;
5174 if (ieee_mode == IEEE_A) {
5175 switch (rate) {
5176 case IEEE80211_OFDM_RATE_6MB:
5177 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5178 1 : 0;
5179 case IEEE80211_OFDM_RATE_9MB:
5180 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5181 1 : 0;
5182 case IEEE80211_OFDM_RATE_12MB:
5183 return priv->
5184 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5185 case IEEE80211_OFDM_RATE_18MB:
5186 return priv->
5187 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5188 case IEEE80211_OFDM_RATE_24MB:
5189 return priv->
5190 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5191 case IEEE80211_OFDM_RATE_36MB:
5192 return priv->
5193 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5194 case IEEE80211_OFDM_RATE_48MB:
5195 return priv->
5196 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5197 case IEEE80211_OFDM_RATE_54MB:
5198 return priv->
5199 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5200 default:
5201 return 0;
5202 }
5203 }
5204
5205 /* B and G mixed */
5206 switch (rate) {
5207 case IEEE80211_CCK_RATE_1MB:
5208 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5209 case IEEE80211_CCK_RATE_2MB:
5210 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5211 case IEEE80211_CCK_RATE_5MB:
5212 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5213 case IEEE80211_CCK_RATE_11MB:
5214 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5215 }
5216
5217 /* If we are limited to B modulations, bail at this point */
5218 if (ieee_mode == IEEE_B)
5219 return 0;
5220
5221 /* G */
5222 switch (rate) {
5223 case IEEE80211_OFDM_RATE_6MB:
5224 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5225 case IEEE80211_OFDM_RATE_9MB:
5226 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5227 case IEEE80211_OFDM_RATE_12MB:
5228 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5229 case IEEE80211_OFDM_RATE_18MB:
5230 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5231 case IEEE80211_OFDM_RATE_24MB:
5232 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5233 case IEEE80211_OFDM_RATE_36MB:
5234 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5235 case IEEE80211_OFDM_RATE_48MB:
5236 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5237 case IEEE80211_OFDM_RATE_54MB:
5238 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5239 }
5240
5241 return 0;
5242 }
5243
5244 static int ipw_compatible_rates(struct ipw_priv *priv,
5245 const struct ieee80211_network *network,
5246 struct ipw_supported_rates *rates)
5247 {
5248 int num_rates, i;
5249
5250 memset(rates, 0, sizeof(*rates));
5251 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5252 rates->num_rates = 0;
5253 for (i = 0; i < num_rates; i++) {
5254 if (!ipw_is_rate_in_mask(priv, network->mode,
5255 network->rates[i])) {
5256
5257 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5258 IPW_DEBUG_SCAN("Adding masked mandatory "
5259 "rate %02X\n",
5260 network->rates[i]);
5261 rates->supported_rates[rates->num_rates++] =
5262 network->rates[i];
5263 continue;
5264 }
5265
5266 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5267 network->rates[i], priv->rates_mask);
5268 continue;
5269 }
5270
5271 rates->supported_rates[rates->num_rates++] = network->rates[i];
5272 }
5273
5274 num_rates = min(network->rates_ex_len,
5275 (u8) (IPW_MAX_RATES - num_rates));
5276 for (i = 0; i < num_rates; i++) {
5277 if (!ipw_is_rate_in_mask(priv, network->mode,
5278 network->rates_ex[i])) {
5279 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5280 IPW_DEBUG_SCAN("Adding masked mandatory "
5281 "rate %02X\n",
5282 network->rates_ex[i]);
5283 rates->supported_rates[rates->num_rates++] =
5284 network->rates[i];
5285 continue;
5286 }
5287
5288 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5289 network->rates_ex[i], priv->rates_mask);
5290 continue;
5291 }
5292
5293 rates->supported_rates[rates->num_rates++] =
5294 network->rates_ex[i];
5295 }
5296
5297 return 1;
5298 }
5299
5300 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5301 const struct ipw_supported_rates *src)
5302 {
5303 u8 i;
5304 for (i = 0; i < src->num_rates; i++)
5305 dest->supported_rates[i] = src->supported_rates[i];
5306 dest->num_rates = src->num_rates;
5307 }
5308
5309 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5310 * mask should ever be used -- right now all callers to add the scan rates are
5311 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5312 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5313 u8 modulation, u32 rate_mask)
5314 {
5315 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5316 IEEE80211_BASIC_RATE_MASK : 0;
5317
5318 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5319 rates->supported_rates[rates->num_rates++] =
5320 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5321
5322 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5323 rates->supported_rates[rates->num_rates++] =
5324 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5325
5326 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5327 rates->supported_rates[rates->num_rates++] = basic_mask |
5328 IEEE80211_CCK_RATE_5MB;
5329
5330 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5331 rates->supported_rates[rates->num_rates++] = basic_mask |
5332 IEEE80211_CCK_RATE_11MB;
5333 }
5334
5335 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5336 u8 modulation, u32 rate_mask)
5337 {
5338 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5339 IEEE80211_BASIC_RATE_MASK : 0;
5340
5341 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5342 rates->supported_rates[rates->num_rates++] = basic_mask |
5343 IEEE80211_OFDM_RATE_6MB;
5344
5345 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5346 rates->supported_rates[rates->num_rates++] =
5347 IEEE80211_OFDM_RATE_9MB;
5348
5349 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5350 rates->supported_rates[rates->num_rates++] = basic_mask |
5351 IEEE80211_OFDM_RATE_12MB;
5352
5353 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5354 rates->supported_rates[rates->num_rates++] =
5355 IEEE80211_OFDM_RATE_18MB;
5356
5357 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5358 rates->supported_rates[rates->num_rates++] = basic_mask |
5359 IEEE80211_OFDM_RATE_24MB;
5360
5361 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5362 rates->supported_rates[rates->num_rates++] =
5363 IEEE80211_OFDM_RATE_36MB;
5364
5365 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5366 rates->supported_rates[rates->num_rates++] =
5367 IEEE80211_OFDM_RATE_48MB;
5368
5369 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5370 rates->supported_rates[rates->num_rates++] =
5371 IEEE80211_OFDM_RATE_54MB;
5372 }
5373
5374 struct ipw_network_match {
5375 struct ieee80211_network *network;
5376 struct ipw_supported_rates rates;
5377 };
5378
5379 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5380 struct ipw_network_match *match,
5381 struct ieee80211_network *network,
5382 int roaming)
5383 {
5384 struct ipw_supported_rates rates;
5385
5386 /* Verify that this network's capability is compatible with the
5387 * current mode (AdHoc or Infrastructure) */
5388 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5389 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5390 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5391 "capability mismatch.\n",
5392 escape_essid(network->ssid, network->ssid_len),
5393 MAC_ARG(network->bssid));
5394 return 0;
5395 }
5396
5397 /* If we do not have an ESSID for this AP, we can not associate with
5398 * it */
5399 if (network->flags & NETWORK_EMPTY_ESSID) {
5400 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5401 "because of hidden ESSID.\n",
5402 escape_essid(network->ssid, network->ssid_len),
5403 MAC_ARG(network->bssid));
5404 return 0;
5405 }
5406
5407 if (unlikely(roaming)) {
5408 /* If we are roaming, then ensure check if this is a valid
5409 * network to try and roam to */
5410 if ((network->ssid_len != match->network->ssid_len) ||
5411 memcmp(network->ssid, match->network->ssid,
5412 network->ssid_len)) {
5413 IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5414 "because of non-network ESSID.\n",
5415 escape_essid(network->ssid,
5416 network->ssid_len),
5417 MAC_ARG(network->bssid));
5418 return 0;
5419 }
5420 } else {
5421 /* If an ESSID has been configured then compare the broadcast
5422 * ESSID to ours */
5423 if ((priv->config & CFG_STATIC_ESSID) &&
5424 ((network->ssid_len != priv->essid_len) ||
5425 memcmp(network->ssid, priv->essid,
5426 min(network->ssid_len, priv->essid_len)))) {
5427 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5428
5429 strncpy(escaped,
5430 escape_essid(network->ssid, network->ssid_len),
5431 sizeof(escaped));
5432 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5433 "because of ESSID mismatch: '%s'.\n",
5434 escaped, MAC_ARG(network->bssid),
5435 escape_essid(priv->essid,
5436 priv->essid_len));
5437 return 0;
5438 }
5439 }
5440
5441 /* If the old network rate is better than this one, don't bother
5442 * testing everything else. */
5443
5444 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5445 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5446 "current network.\n",
5447 escape_essid(match->network->ssid,
5448 match->network->ssid_len));
5449 return 0;
5450 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5451 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5452 "current network.\n",
5453 escape_essid(match->network->ssid,
5454 match->network->ssid_len));
5455 return 0;
5456 }
5457
5458 /* Now go through and see if the requested network is valid... */
5459 if (priv->ieee->scan_age != 0 &&
5460 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5461 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5462 "because of age: %ums.\n",
5463 escape_essid(network->ssid, network->ssid_len),
5464 MAC_ARG(network->bssid),
5465 jiffies_to_msecs(jiffies -
5466 network->last_scanned));
5467 return 0;
5468 }
5469
5470 if ((priv->config & CFG_STATIC_CHANNEL) &&
5471 (network->channel != priv->channel)) {
5472 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5473 "because of channel mismatch: %d != %d.\n",
5474 escape_essid(network->ssid, network->ssid_len),
5475 MAC_ARG(network->bssid),
5476 network->channel, priv->channel);
5477 return 0;
5478 }
5479
5480 /* Verify privacy compatability */
5481 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5482 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5483 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5484 "because of privacy mismatch: %s != %s.\n",
5485 escape_essid(network->ssid, network->ssid_len),
5486 MAC_ARG(network->bssid),
5487 priv->
5488 capability & CAP_PRIVACY_ON ? "on" : "off",
5489 network->
5490 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5491 "off");
5492 return 0;
5493 }
5494
5495 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5496 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5497 "because of the same BSSID match: " MAC_FMT
5498 ".\n", escape_essid(network->ssid,
5499 network->ssid_len),
5500 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5501 return 0;
5502 }
5503
5504 /* Filter out any incompatible freq / mode combinations */
5505 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5506 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5507 "because of invalid frequency/mode "
5508 "combination.\n",
5509 escape_essid(network->ssid, network->ssid_len),
5510 MAC_ARG(network->bssid));
5511 return 0;
5512 }
5513
5514 /* Ensure that the rates supported by the driver are compatible with
5515 * this AP, including verification of basic rates (mandatory) */
5516 if (!ipw_compatible_rates(priv, network, &rates)) {
5517 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5518 "because configured rate mask excludes "
5519 "AP mandatory rate.\n",
5520 escape_essid(network->ssid, network->ssid_len),
5521 MAC_ARG(network->bssid));
5522 return 0;
5523 }
5524
5525 if (rates.num_rates == 0) {
5526 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5527 "because of no compatible rates.\n",
5528 escape_essid(network->ssid, network->ssid_len),
5529 MAC_ARG(network->bssid));
5530 return 0;
5531 }
5532
5533 /* TODO: Perform any further minimal comparititive tests. We do not
5534 * want to put too much policy logic here; intelligent scan selection
5535 * should occur within a generic IEEE 802.11 user space tool. */
5536
5537 /* Set up 'new' AP to this network */
5538 ipw_copy_rates(&match->rates, &rates);
5539 match->network = network;
5540 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5541 escape_essid(network->ssid, network->ssid_len),
5542 MAC_ARG(network->bssid));
5543
5544 return 1;
5545 }
5546
5547 static void ipw_merge_adhoc_network(struct work_struct *work)
5548 {
5549 struct ipw_priv *priv =
5550 container_of(work, struct ipw_priv, merge_networks);
5551 struct ieee80211_network *network = NULL;
5552 struct ipw_network_match match = {
5553 .network = priv->assoc_network
5554 };
5555
5556 if ((priv->status & STATUS_ASSOCIATED) &&
5557 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5558 /* First pass through ROAM process -- look for a better
5559 * network */
5560 unsigned long flags;
5561
5562 spin_lock_irqsave(&priv->ieee->lock, flags);
5563 list_for_each_entry(network, &priv->ieee->network_list, list) {
5564 if (network != priv->assoc_network)
5565 ipw_find_adhoc_network(priv, &match, network,
5566 1);
5567 }
5568 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5569
5570 if (match.network == priv->assoc_network) {
5571 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5572 "merge to.\n");
5573 return;
5574 }
5575
5576 mutex_lock(&priv->mutex);
5577 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5578 IPW_DEBUG_MERGE("remove network %s\n",
5579 escape_essid(priv->essid,
5580 priv->essid_len));
5581 ipw_remove_current_network(priv);
5582 }
5583
5584 ipw_disassociate(priv);
5585 priv->assoc_network = match.network;
5586 mutex_unlock(&priv->mutex);
5587 return;
5588 }
5589 }
5590
5591 static int ipw_best_network(struct ipw_priv *priv,
5592 struct ipw_network_match *match,
5593 struct ieee80211_network *network, int roaming)
5594 {
5595 struct ipw_supported_rates rates;
5596
5597 /* Verify that this network's capability is compatible with the
5598 * current mode (AdHoc or Infrastructure) */
5599 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5600 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5601 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5602 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5603 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5604 "capability mismatch.\n",
5605 escape_essid(network->ssid, network->ssid_len),
5606 MAC_ARG(network->bssid));
5607 return 0;
5608 }
5609
5610 /* If we do not have an ESSID for this AP, we can not associate with
5611 * it */
5612 if (network->flags & NETWORK_EMPTY_ESSID) {
5613 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5614 "because of hidden ESSID.\n",
5615 escape_essid(network->ssid, network->ssid_len),
5616 MAC_ARG(network->bssid));
5617 return 0;
5618 }
5619
5620 if (unlikely(roaming)) {
5621 /* If we are roaming, then ensure check if this is a valid
5622 * network to try and roam to */
5623 if ((network->ssid_len != match->network->ssid_len) ||
5624 memcmp(network->ssid, match->network->ssid,
5625 network->ssid_len)) {
5626 IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5627 "because of non-network ESSID.\n",
5628 escape_essid(network->ssid,
5629 network->ssid_len),
5630 MAC_ARG(network->bssid));
5631 return 0;
5632 }
5633 } else {
5634 /* If an ESSID has been configured then compare the broadcast
5635 * ESSID to ours */
5636 if ((priv->config & CFG_STATIC_ESSID) &&
5637 ((network->ssid_len != priv->essid_len) ||
5638 memcmp(network->ssid, priv->essid,
5639 min(network->ssid_len, priv->essid_len)))) {
5640 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5641 strncpy(escaped,
5642 escape_essid(network->ssid, network->ssid_len),
5643 sizeof(escaped));
5644 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5645 "because of ESSID mismatch: '%s'.\n",
5646 escaped, MAC_ARG(network->bssid),
5647 escape_essid(priv->essid,
5648 priv->essid_len));
5649 return 0;
5650 }
5651 }
5652
5653 /* If the old network rate is better than this one, don't bother
5654 * testing everything else. */
5655 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5656 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5657 strncpy(escaped,
5658 escape_essid(network->ssid, network->ssid_len),
5659 sizeof(escaped));
5660 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5661 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5662 escaped, MAC_ARG(network->bssid),
5663 escape_essid(match->network->ssid,
5664 match->network->ssid_len),
5665 MAC_ARG(match->network->bssid));
5666 return 0;
5667 }
5668
5669 /* If this network has already had an association attempt within the
5670 * last 3 seconds, do not try and associate again... */
5671 if (network->last_associate &&
5672 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5673 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5674 "because of storming (%ums since last "
5675 "assoc attempt).\n",
5676 escape_essid(network->ssid, network->ssid_len),
5677 MAC_ARG(network->bssid),
5678 jiffies_to_msecs(jiffies -
5679 network->last_associate));
5680 return 0;
5681 }
5682
5683 /* Now go through and see if the requested network is valid... */
5684 if (priv->ieee->scan_age != 0 &&
5685 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5686 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5687 "because of age: %ums.\n",
5688 escape_essid(network->ssid, network->ssid_len),
5689 MAC_ARG(network->bssid),
5690 jiffies_to_msecs(jiffies -
5691 network->last_scanned));
5692 return 0;
5693 }
5694
5695 if ((priv->config & CFG_STATIC_CHANNEL) &&
5696 (network->channel != priv->channel)) {
5697 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5698 "because of channel mismatch: %d != %d.\n",
5699 escape_essid(network->ssid, network->ssid_len),
5700 MAC_ARG(network->bssid),
5701 network->channel, priv->channel);
5702 return 0;
5703 }
5704
5705 /* Verify privacy compatability */
5706 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5707 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5708 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5709 "because of privacy mismatch: %s != %s.\n",
5710 escape_essid(network->ssid, network->ssid_len),
5711 MAC_ARG(network->bssid),
5712 priv->capability & CAP_PRIVACY_ON ? "on" :
5713 "off",
5714 network->capability &
5715 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5716 return 0;
5717 }
5718
5719 if ((priv->config & CFG_STATIC_BSSID) &&
5720 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5721 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5722 "because of BSSID mismatch: " MAC_FMT ".\n",
5723 escape_essid(network->ssid, network->ssid_len),
5724 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5725 return 0;
5726 }
5727
5728 /* Filter out any incompatible freq / mode combinations */
5729 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5730 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5731 "because of invalid frequency/mode "
5732 "combination.\n",
5733 escape_essid(network->ssid, network->ssid_len),
5734 MAC_ARG(network->bssid));
5735 return 0;
5736 }
5737
5738 /* Filter out invalid channel in current GEO */
5739 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5740 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5741 "because of invalid channel in current GEO\n",
5742 escape_essid(network->ssid, network->ssid_len),
5743 MAC_ARG(network->bssid));
5744 return 0;
5745 }
5746
5747 /* Ensure that the rates supported by the driver are compatible with
5748 * this AP, including verification of basic rates (mandatory) */
5749 if (!ipw_compatible_rates(priv, network, &rates)) {
5750 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5751 "because configured rate mask excludes "
5752 "AP mandatory rate.\n",
5753 escape_essid(network->ssid, network->ssid_len),
5754 MAC_ARG(network->bssid));
5755 return 0;
5756 }
5757
5758 if (rates.num_rates == 0) {
5759 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5760 "because of no compatible rates.\n",
5761 escape_essid(network->ssid, network->ssid_len),
5762 MAC_ARG(network->bssid));
5763 return 0;
5764 }
5765
5766 /* TODO: Perform any further minimal comparititive tests. We do not
5767 * want to put too much policy logic here; intelligent scan selection
5768 * should occur within a generic IEEE 802.11 user space tool. */
5769
5770 /* Set up 'new' AP to this network */
5771 ipw_copy_rates(&match->rates, &rates);
5772 match->network = network;
5773
5774 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5775 escape_essid(network->ssid, network->ssid_len),
5776 MAC_ARG(network->bssid));
5777
5778 return 1;
5779 }
5780
5781 static void ipw_adhoc_create(struct ipw_priv *priv,
5782 struct ieee80211_network *network)
5783 {
5784 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5785 int i;
5786
5787 /*
5788 * For the purposes of scanning, we can set our wireless mode
5789 * to trigger scans across combinations of bands, but when it
5790 * comes to creating a new ad-hoc network, we have tell the FW
5791 * exactly which band to use.
5792 *
5793 * We also have the possibility of an invalid channel for the
5794 * chossen band. Attempting to create a new ad-hoc network
5795 * with an invalid channel for wireless mode will trigger a
5796 * FW fatal error.
5797 *
5798 */
5799 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5800 case IEEE80211_52GHZ_BAND:
5801 network->mode = IEEE_A;
5802 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5803 BUG_ON(i == -1);
5804 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5805 IPW_WARNING("Overriding invalid channel\n");
5806 priv->channel = geo->a[0].channel;
5807 }
5808 break;
5809
5810 case IEEE80211_24GHZ_BAND:
5811 if (priv->ieee->mode & IEEE_G)
5812 network->mode = IEEE_G;
5813 else
5814 network->mode = IEEE_B;
5815 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5816 BUG_ON(i == -1);
5817 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5818 IPW_WARNING("Overriding invalid channel\n");
5819 priv->channel = geo->bg[0].channel;
5820 }
5821 break;
5822
5823 default:
5824 IPW_WARNING("Overriding invalid channel\n");
5825 if (priv->ieee->mode & IEEE_A) {
5826 network->mode = IEEE_A;
5827 priv->channel = geo->a[0].channel;
5828 } else if (priv->ieee->mode & IEEE_G) {
5829 network->mode = IEEE_G;
5830 priv->channel = geo->bg[0].channel;
5831 } else {
5832 network->mode = IEEE_B;
5833 priv->channel = geo->bg[0].channel;
5834 }
5835 break;
5836 }
5837
5838 network->channel = priv->channel;
5839 priv->config |= CFG_ADHOC_PERSIST;
5840 ipw_create_bssid(priv, network->bssid);
5841 network->ssid_len = priv->essid_len;
5842 memcpy(network->ssid, priv->essid, priv->essid_len);
5843 memset(&network->stats, 0, sizeof(network->stats));
5844 network->capability = WLAN_CAPABILITY_IBSS;
5845 if (!(priv->config & CFG_PREAMBLE_LONG))
5846 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5847 if (priv->capability & CAP_PRIVACY_ON)
5848 network->capability |= WLAN_CAPABILITY_PRIVACY;
5849 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5850 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5851 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5852 memcpy(network->rates_ex,
5853 &priv->rates.supported_rates[network->rates_len],
5854 network->rates_ex_len);
5855 network->last_scanned = 0;
5856 network->flags = 0;
5857 network->last_associate = 0;
5858 network->time_stamp[0] = 0;
5859 network->time_stamp[1] = 0;
5860 network->beacon_interval = 100; /* Default */
5861 network->listen_interval = 10; /* Default */
5862 network->atim_window = 0; /* Default */
5863 network->wpa_ie_len = 0;
5864 network->rsn_ie_len = 0;
5865 }
5866
5867 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5868 {
5869 struct ipw_tgi_tx_key key;
5870
5871 if (!(priv->ieee->sec.flags & (1 << index)))
5872 return;
5873
5874 key.key_id = index;
5875 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5876 key.security_type = type;
5877 key.station_index = 0; /* always 0 for BSS */
5878 key.flags = 0;
5879 /* 0 for new key; previous value of counter (after fatal error) */
5880 key.tx_counter[0] = cpu_to_le32(0);
5881 key.tx_counter[1] = cpu_to_le32(0);
5882
5883 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5884 }
5885
5886 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5887 {
5888 struct ipw_wep_key key;
5889 int i;
5890
5891 key.cmd_id = DINO_CMD_WEP_KEY;
5892 key.seq_num = 0;
5893
5894 /* Note: AES keys cannot be set for multiple times.
5895 * Only set it at the first time. */
5896 for (i = 0; i < 4; i++) {
5897 key.key_index = i | type;
5898 if (!(priv->ieee->sec.flags & (1 << i))) {
5899 key.key_size = 0;
5900 continue;
5901 }
5902
5903 key.key_size = priv->ieee->sec.key_sizes[i];
5904 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5905
5906 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5907 }
5908 }
5909
5910 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5911 {
5912 if (priv->ieee->host_encrypt)
5913 return;
5914
5915 switch (level) {
5916 case SEC_LEVEL_3:
5917 priv->sys_config.disable_unicast_decryption = 0;
5918 priv->ieee->host_decrypt = 0;
5919 break;
5920 case SEC_LEVEL_2:
5921 priv->sys_config.disable_unicast_decryption = 1;
5922 priv->ieee->host_decrypt = 1;
5923 break;
5924 case SEC_LEVEL_1:
5925 priv->sys_config.disable_unicast_decryption = 0;
5926 priv->ieee->host_decrypt = 0;
5927 break;
5928 case SEC_LEVEL_0:
5929 priv->sys_config.disable_unicast_decryption = 1;
5930 break;
5931 default:
5932 break;
5933 }
5934 }
5935
5936 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5937 {
5938 if (priv->ieee->host_encrypt)
5939 return;
5940
5941 switch (level) {
5942 case SEC_LEVEL_3:
5943 priv->sys_config.disable_multicast_decryption = 0;
5944 break;
5945 case SEC_LEVEL_2:
5946 priv->sys_config.disable_multicast_decryption = 1;
5947 break;
5948 case SEC_LEVEL_1:
5949 priv->sys_config.disable_multicast_decryption = 0;
5950 break;
5951 case SEC_LEVEL_0:
5952 priv->sys_config.disable_multicast_decryption = 1;
5953 break;
5954 default:
5955 break;
5956 }
5957 }
5958
5959 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5960 {
5961 switch (priv->ieee->sec.level) {
5962 case SEC_LEVEL_3:
5963 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5964 ipw_send_tgi_tx_key(priv,
5965 DCT_FLAG_EXT_SECURITY_CCM,
5966 priv->ieee->sec.active_key);
5967
5968 if (!priv->ieee->host_mc_decrypt)
5969 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5970 break;
5971 case SEC_LEVEL_2:
5972 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5973 ipw_send_tgi_tx_key(priv,
5974 DCT_FLAG_EXT_SECURITY_TKIP,
5975 priv->ieee->sec.active_key);
5976 break;
5977 case SEC_LEVEL_1:
5978 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5979 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5980 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5981 break;
5982 case SEC_LEVEL_0:
5983 default:
5984 break;
5985 }
5986 }
5987
5988 static void ipw_adhoc_check(void *data)
5989 {
5990 struct ipw_priv *priv = data;
5991
5992 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5993 !(priv->config & CFG_ADHOC_PERSIST)) {
5994 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5995 IPW_DL_STATE | IPW_DL_ASSOC,
5996 "Missed beacon: %d - disassociate\n",
5997 priv->missed_adhoc_beacons);
5998 ipw_remove_current_network(priv);
5999 ipw_disassociate(priv);
6000 return;
6001 }
6002
6003 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6004 priv->assoc_request.beacon_interval);
6005 }
6006
6007 static void ipw_bg_adhoc_check(struct work_struct *work)
6008 {
6009 struct ipw_priv *priv =
6010 container_of(work, struct ipw_priv, adhoc_check.work);
6011 mutex_lock(&priv->mutex);
6012 ipw_adhoc_check(priv);
6013 mutex_unlock(&priv->mutex);
6014 }
6015
6016 static void ipw_debug_config(struct ipw_priv *priv)
6017 {
6018 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6019 "[CFG 0x%08X]\n", priv->config);
6020 if (priv->config & CFG_STATIC_CHANNEL)
6021 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6022 else
6023 IPW_DEBUG_INFO("Channel unlocked.\n");
6024 if (priv->config & CFG_STATIC_ESSID)
6025 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6026 escape_essid(priv->essid, priv->essid_len));
6027 else
6028 IPW_DEBUG_INFO("ESSID unlocked.\n");
6029 if (priv->config & CFG_STATIC_BSSID)
6030 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
6031 MAC_ARG(priv->bssid));
6032 else
6033 IPW_DEBUG_INFO("BSSID unlocked.\n");
6034 if (priv->capability & CAP_PRIVACY_ON)
6035 IPW_DEBUG_INFO("PRIVACY on\n");
6036 else
6037 IPW_DEBUG_INFO("PRIVACY off\n");
6038 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6039 }
6040
6041 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6042 {
6043 /* TODO: Verify that this works... */
6044 struct ipw_fixed_rate fr = {
6045 .tx_rates = priv->rates_mask
6046 };
6047 u32 reg;
6048 u16 mask = 0;
6049
6050 /* Identify 'current FW band' and match it with the fixed
6051 * Tx rates */
6052
6053 switch (priv->ieee->freq_band) {
6054 case IEEE80211_52GHZ_BAND: /* A only */
6055 /* IEEE_A */
6056 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6057 /* Invalid fixed rate mask */
6058 IPW_DEBUG_WX
6059 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6060 fr.tx_rates = 0;
6061 break;
6062 }
6063
6064 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6065 break;
6066
6067 default: /* 2.4Ghz or Mixed */
6068 /* IEEE_B */
6069 if (mode == IEEE_B) {
6070 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6071 /* Invalid fixed rate mask */
6072 IPW_DEBUG_WX
6073 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6074 fr.tx_rates = 0;
6075 }
6076 break;
6077 }
6078
6079 /* IEEE_G */
6080 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6081 IEEE80211_OFDM_RATES_MASK)) {
6082 /* Invalid fixed rate mask */
6083 IPW_DEBUG_WX
6084 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6085 fr.tx_rates = 0;
6086 break;
6087 }
6088
6089 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6090 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6091 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6092 }
6093
6094 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6095 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6096 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6097 }
6098
6099 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6100 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6101 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6102 }
6103
6104 fr.tx_rates |= mask;
6105 break;
6106 }
6107
6108 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6109 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6110 }
6111
6112 static void ipw_abort_scan(struct ipw_priv *priv)
6113 {
6114 int err;
6115
6116 if (priv->status & STATUS_SCAN_ABORTING) {
6117 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6118 return;
6119 }
6120 priv->status |= STATUS_SCAN_ABORTING;
6121
6122 err = ipw_send_scan_abort(priv);
6123 if (err)
6124 IPW_DEBUG_HC("Request to abort scan failed.\n");
6125 }
6126
6127 static void ipw_add_scan_channels(struct ipw_priv *priv,
6128 struct ipw_scan_request_ext *scan,
6129 int scan_type)
6130 {
6131 int channel_index = 0;
6132 const struct ieee80211_geo *geo;
6133 int i;
6134
6135 geo = ieee80211_get_geo(priv->ieee);
6136
6137 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6138 int start = channel_index;
6139 for (i = 0; i < geo->a_channels; i++) {
6140 if ((priv->status & STATUS_ASSOCIATED) &&
6141 geo->a[i].channel == priv->channel)
6142 continue;
6143 channel_index++;
6144 scan->channels_list[channel_index] = geo->a[i].channel;
6145 ipw_set_scan_type(scan, channel_index,
6146 geo->a[i].
6147 flags & IEEE80211_CH_PASSIVE_ONLY ?
6148 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6149 scan_type);
6150 }
6151
6152 if (start != channel_index) {
6153 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6154 (channel_index - start);
6155 channel_index++;
6156 }
6157 }
6158
6159 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6160 int start = channel_index;
6161 if (priv->config & CFG_SPEED_SCAN) {
6162 int index;
6163 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6164 /* nop out the list */
6165 [0] = 0
6166 };
6167
6168 u8 channel;
6169 while (channel_index < IPW_SCAN_CHANNELS) {
6170 channel =
6171 priv->speed_scan[priv->speed_scan_pos];
6172 if (channel == 0) {
6173 priv->speed_scan_pos = 0;
6174 channel = priv->speed_scan[0];
6175 }
6176 if ((priv->status & STATUS_ASSOCIATED) &&
6177 channel == priv->channel) {
6178 priv->speed_scan_pos++;
6179 continue;
6180 }
6181
6182 /* If this channel has already been
6183 * added in scan, break from loop
6184 * and this will be the first channel
6185 * in the next scan.
6186 */
6187 if (channels[channel - 1] != 0)
6188 break;
6189
6190 channels[channel - 1] = 1;
6191 priv->speed_scan_pos++;
6192 channel_index++;
6193 scan->channels_list[channel_index] = channel;
6194 index =
6195 ieee80211_channel_to_index(priv->ieee, channel);
6196 ipw_set_scan_type(scan, channel_index,
6197 geo->bg[index].
6198 flags &
6199 IEEE80211_CH_PASSIVE_ONLY ?
6200 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6201 : scan_type);
6202 }
6203 } else {
6204 for (i = 0; i < geo->bg_channels; i++) {
6205 if ((priv->status & STATUS_ASSOCIATED) &&
6206 geo->bg[i].channel == priv->channel)
6207 continue;
6208 channel_index++;
6209 scan->channels_list[channel_index] =
6210 geo->bg[i].channel;
6211 ipw_set_scan_type(scan, channel_index,
6212 geo->bg[i].
6213 flags &
6214 IEEE80211_CH_PASSIVE_ONLY ?
6215 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6216 : scan_type);
6217 }
6218 }
6219
6220 if (start != channel_index) {
6221 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6222 (channel_index - start);
6223 }
6224 }
6225 }
6226
6227 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6228 {
6229 struct ipw_scan_request_ext scan;
6230 int err = 0, scan_type;
6231
6232 if (!(priv->status & STATUS_INIT) ||
6233 (priv->status & STATUS_EXIT_PENDING))
6234 return 0;
6235
6236 mutex_lock(&priv->mutex);
6237
6238 if (priv->status & STATUS_SCANNING) {
6239 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6240 priv->status |= STATUS_SCAN_PENDING;
6241 goto done;
6242 }
6243
6244 if (!(priv->status & STATUS_SCAN_FORCED) &&
6245 priv->status & STATUS_SCAN_ABORTING) {
6246 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6247 priv->status |= STATUS_SCAN_PENDING;
6248 goto done;
6249 }
6250
6251 if (priv->status & STATUS_RF_KILL_MASK) {
6252 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6253 priv->status |= STATUS_SCAN_PENDING;
6254 goto done;
6255 }
6256
6257 memset(&scan, 0, sizeof(scan));
6258 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6259
6260 if (type == IW_SCAN_TYPE_PASSIVE) {
6261 IPW_DEBUG_WX("use passive scanning\n");
6262 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6263 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6264 cpu_to_le16(120);
6265 ipw_add_scan_channels(priv, &scan, scan_type);
6266 goto send_request;
6267 }
6268
6269 /* Use active scan by default. */
6270 if (priv->config & CFG_SPEED_SCAN)
6271 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6272 cpu_to_le16(30);
6273 else
6274 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6275 cpu_to_le16(20);
6276
6277 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6278 cpu_to_le16(20);
6279
6280 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6281
6282 #ifdef CONFIG_IPW2200_MONITOR
6283 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6284 u8 channel;
6285 u8 band = 0;
6286
6287 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6288 case IEEE80211_52GHZ_BAND:
6289 band = (u8) (IPW_A_MODE << 6) | 1;
6290 channel = priv->channel;
6291 break;
6292
6293 case IEEE80211_24GHZ_BAND:
6294 band = (u8) (IPW_B_MODE << 6) | 1;
6295 channel = priv->channel;
6296 break;
6297
6298 default:
6299 band = (u8) (IPW_B_MODE << 6) | 1;
6300 channel = 9;
6301 break;
6302 }
6303
6304 scan.channels_list[0] = band;
6305 scan.channels_list[1] = channel;
6306 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6307
6308 /* NOTE: The card will sit on this channel for this time
6309 * period. Scan aborts are timing sensitive and frequently
6310 * result in firmware restarts. As such, it is best to
6311 * set a small dwell_time here and just keep re-issuing
6312 * scans. Otherwise fast channel hopping will not actually
6313 * hop channels.
6314 *
6315 * TODO: Move SPEED SCAN support to all modes and bands */
6316 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6317 cpu_to_le16(2000);
6318 } else {
6319 #endif /* CONFIG_IPW2200_MONITOR */
6320 /* If we are roaming, then make this a directed scan for the
6321 * current network. Otherwise, ensure that every other scan
6322 * is a fast channel hop scan */
6323 if ((priv->status & STATUS_ROAMING)
6324 || (!(priv->status & STATUS_ASSOCIATED)
6325 && (priv->config & CFG_STATIC_ESSID)
6326 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6327 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6328 if (err) {
6329 IPW_DEBUG_HC("Attempt to send SSID command "
6330 "failed.\n");
6331 goto done;
6332 }
6333
6334 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6335 } else
6336 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6337
6338 ipw_add_scan_channels(priv, &scan, scan_type);
6339 #ifdef CONFIG_IPW2200_MONITOR
6340 }
6341 #endif
6342
6343 send_request:
6344 err = ipw_send_scan_request_ext(priv, &scan);
6345 if (err) {
6346 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6347 goto done;
6348 }
6349
6350 priv->status |= STATUS_SCANNING;
6351 priv->status &= ~STATUS_SCAN_PENDING;
6352 queue_delayed_work(priv->workqueue, &priv->scan_check,
6353 IPW_SCAN_CHECK_WATCHDOG);
6354 done:
6355 mutex_unlock(&priv->mutex);
6356 return err;
6357 }
6358
6359 static void ipw_request_passive_scan(struct work_struct *work)
6360 {
6361 struct ipw_priv *priv =
6362 container_of(work, struct ipw_priv, request_passive_scan);
6363 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6364 }
6365
6366 static void ipw_request_scan(struct work_struct *work)
6367 {
6368 struct ipw_priv *priv =
6369 container_of(work, struct ipw_priv, request_scan.work);
6370 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6371 }
6372
6373 static void ipw_bg_abort_scan(struct work_struct *work)
6374 {
6375 struct ipw_priv *priv =
6376 container_of(work, struct ipw_priv, abort_scan);
6377 mutex_lock(&priv->mutex);
6378 ipw_abort_scan(priv);
6379 mutex_unlock(&priv->mutex);
6380 }
6381
6382 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6383 {
6384 /* This is called when wpa_supplicant loads and closes the driver
6385 * interface. */
6386 priv->ieee->wpa_enabled = value;
6387 return 0;
6388 }
6389
6390 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6391 {
6392 struct ieee80211_device *ieee = priv->ieee;
6393 struct ieee80211_security sec = {
6394 .flags = SEC_AUTH_MODE,
6395 };
6396 int ret = 0;
6397
6398 if (value & IW_AUTH_ALG_SHARED_KEY) {
6399 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6400 ieee->open_wep = 0;
6401 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6402 sec.auth_mode = WLAN_AUTH_OPEN;
6403 ieee->open_wep = 1;
6404 } else if (value & IW_AUTH_ALG_LEAP) {
6405 sec.auth_mode = WLAN_AUTH_LEAP;
6406 ieee->open_wep = 1;
6407 } else
6408 return -EINVAL;
6409
6410 if (ieee->set_security)
6411 ieee->set_security(ieee->dev, &sec);
6412 else
6413 ret = -EOPNOTSUPP;
6414
6415 return ret;
6416 }
6417
6418 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6419 int wpa_ie_len)
6420 {
6421 /* make sure WPA is enabled */
6422 ipw_wpa_enable(priv, 1);
6423 }
6424
6425 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6426 char *capabilities, int length)
6427 {
6428 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6429
6430 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6431 capabilities);
6432 }
6433
6434 /*
6435 * WE-18 support
6436 */
6437
6438 /* SIOCSIWGENIE */
6439 static int ipw_wx_set_genie(struct net_device *dev,
6440 struct iw_request_info *info,
6441 union iwreq_data *wrqu, char *extra)
6442 {
6443 struct ipw_priv *priv = ieee80211_priv(dev);
6444 struct ieee80211_device *ieee = priv->ieee;
6445 u8 *buf;
6446 int err = 0;
6447
6448 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6449 (wrqu->data.length && extra == NULL))
6450 return -EINVAL;
6451
6452 if (wrqu->data.length) {
6453 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6454 if (buf == NULL) {
6455 err = -ENOMEM;
6456 goto out;
6457 }
6458
6459 memcpy(buf, extra, wrqu->data.length);
6460 kfree(ieee->wpa_ie);
6461 ieee->wpa_ie = buf;
6462 ieee->wpa_ie_len = wrqu->data.length;
6463 } else {
6464 kfree(ieee->wpa_ie);
6465 ieee->wpa_ie = NULL;
6466 ieee->wpa_ie_len = 0;
6467 }
6468
6469 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6470 out:
6471 return err;
6472 }
6473
6474 /* SIOCGIWGENIE */
6475 static int ipw_wx_get_genie(struct net_device *dev,
6476 struct iw_request_info *info,
6477 union iwreq_data *wrqu, char *extra)
6478 {
6479 struct ipw_priv *priv = ieee80211_priv(dev);
6480 struct ieee80211_device *ieee = priv->ieee;
6481 int err = 0;
6482
6483 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6484 wrqu->data.length = 0;
6485 goto out;
6486 }
6487
6488 if (wrqu->data.length < ieee->wpa_ie_len) {
6489 err = -E2BIG;
6490 goto out;
6491 }
6492
6493 wrqu->data.length = ieee->wpa_ie_len;
6494 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6495
6496 out:
6497 return err;
6498 }
6499
6500 static int wext_cipher2level(int cipher)
6501 {
6502 switch (cipher) {
6503 case IW_AUTH_CIPHER_NONE:
6504 return SEC_LEVEL_0;
6505 case IW_AUTH_CIPHER_WEP40:
6506 case IW_AUTH_CIPHER_WEP104:
6507 return SEC_LEVEL_1;
6508 case IW_AUTH_CIPHER_TKIP:
6509 return SEC_LEVEL_2;
6510 case IW_AUTH_CIPHER_CCMP:
6511 return SEC_LEVEL_3;
6512 default:
6513 return -1;
6514 }
6515 }
6516
6517 /* SIOCSIWAUTH */
6518 static int ipw_wx_set_auth(struct net_device *dev,
6519 struct iw_request_info *info,
6520 union iwreq_data *wrqu, char *extra)
6521 {
6522 struct ipw_priv *priv = ieee80211_priv(dev);
6523 struct ieee80211_device *ieee = priv->ieee;
6524 struct iw_param *param = &wrqu->param;
6525 struct ieee80211_crypt_data *crypt;
6526 unsigned long flags;
6527 int ret = 0;
6528
6529 switch (param->flags & IW_AUTH_INDEX) {
6530 case IW_AUTH_WPA_VERSION:
6531 break;
6532 case IW_AUTH_CIPHER_PAIRWISE:
6533 ipw_set_hw_decrypt_unicast(priv,
6534 wext_cipher2level(param->value));
6535 break;
6536 case IW_AUTH_CIPHER_GROUP:
6537 ipw_set_hw_decrypt_multicast(priv,
6538 wext_cipher2level(param->value));
6539 break;
6540 case IW_AUTH_KEY_MGMT:
6541 /*
6542 * ipw2200 does not use these parameters
6543 */
6544 break;
6545
6546 case IW_AUTH_TKIP_COUNTERMEASURES:
6547 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6548 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6549 break;
6550
6551 flags = crypt->ops->get_flags(crypt->priv);
6552
6553 if (param->value)
6554 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6555 else
6556 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6557
6558 crypt->ops->set_flags(flags, crypt->priv);
6559
6560 break;
6561
6562 case IW_AUTH_DROP_UNENCRYPTED:{
6563 /* HACK:
6564 *
6565 * wpa_supplicant calls set_wpa_enabled when the driver
6566 * is loaded and unloaded, regardless of if WPA is being
6567 * used. No other calls are made which can be used to
6568 * determine if encryption will be used or not prior to
6569 * association being expected. If encryption is not being
6570 * used, drop_unencrypted is set to false, else true -- we
6571 * can use this to determine if the CAP_PRIVACY_ON bit should
6572 * be set.
6573 */
6574 struct ieee80211_security sec = {
6575 .flags = SEC_ENABLED,
6576 .enabled = param->value,
6577 };
6578 priv->ieee->drop_unencrypted = param->value;
6579 /* We only change SEC_LEVEL for open mode. Others
6580 * are set by ipw_wpa_set_encryption.
6581 */
6582 if (!param->value) {
6583 sec.flags |= SEC_LEVEL;
6584 sec.level = SEC_LEVEL_0;
6585 } else {
6586 sec.flags |= SEC_LEVEL;
6587 sec.level = SEC_LEVEL_1;
6588 }
6589 if (priv->ieee->set_security)
6590 priv->ieee->set_security(priv->ieee->dev, &sec);
6591 break;
6592 }
6593
6594 case IW_AUTH_80211_AUTH_ALG:
6595 ret = ipw_wpa_set_auth_algs(priv, param->value);
6596 break;
6597
6598 case IW_AUTH_WPA_ENABLED:
6599 ret = ipw_wpa_enable(priv, param->value);
6600 ipw_disassociate(priv);
6601 break;
6602
6603 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6604 ieee->ieee802_1x = param->value;
6605 break;
6606
6607 case IW_AUTH_PRIVACY_INVOKED:
6608 ieee->privacy_invoked = param->value;
6609 break;
6610
6611 default:
6612 return -EOPNOTSUPP;
6613 }
6614 return ret;
6615 }
6616
6617 /* SIOCGIWAUTH */
6618 static int ipw_wx_get_auth(struct net_device *dev,
6619 struct iw_request_info *info,
6620 union iwreq_data *wrqu, char *extra)
6621 {
6622 struct ipw_priv *priv = ieee80211_priv(dev);
6623 struct ieee80211_device *ieee = priv->ieee;
6624 struct ieee80211_crypt_data *crypt;
6625 struct iw_param *param = &wrqu->param;
6626 int ret = 0;
6627
6628 switch (param->flags & IW_AUTH_INDEX) {
6629 case IW_AUTH_WPA_VERSION:
6630 case IW_AUTH_CIPHER_PAIRWISE:
6631 case IW_AUTH_CIPHER_GROUP:
6632 case IW_AUTH_KEY_MGMT:
6633 /*
6634 * wpa_supplicant will control these internally
6635 */
6636 ret = -EOPNOTSUPP;
6637 break;
6638
6639 case IW_AUTH_TKIP_COUNTERMEASURES:
6640 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6641 if (!crypt || !crypt->ops->get_flags)
6642 break;
6643
6644 param->value = (crypt->ops->get_flags(crypt->priv) &
6645 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6646
6647 break;
6648
6649 case IW_AUTH_DROP_UNENCRYPTED:
6650 param->value = ieee->drop_unencrypted;
6651 break;
6652
6653 case IW_AUTH_80211_AUTH_ALG:
6654 param->value = ieee->sec.auth_mode;
6655 break;
6656
6657 case IW_AUTH_WPA_ENABLED:
6658 param->value = ieee->wpa_enabled;
6659 break;
6660
6661 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6662 param->value = ieee->ieee802_1x;
6663 break;
6664
6665 case IW_AUTH_ROAMING_CONTROL:
6666 case IW_AUTH_PRIVACY_INVOKED:
6667 param->value = ieee->privacy_invoked;
6668 break;
6669
6670 default:
6671 return -EOPNOTSUPP;
6672 }
6673 return 0;
6674 }
6675
6676 /* SIOCSIWENCODEEXT */
6677 static int ipw_wx_set_encodeext(struct net_device *dev,
6678 struct iw_request_info *info,
6679 union iwreq_data *wrqu, char *extra)
6680 {
6681 struct ipw_priv *priv = ieee80211_priv(dev);
6682 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6683
6684 if (hwcrypto) {
6685 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6686 /* IPW HW can't build TKIP MIC,
6687 host decryption still needed */
6688 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6689 priv->ieee->host_mc_decrypt = 1;
6690 else {
6691 priv->ieee->host_encrypt = 0;
6692 priv->ieee->host_encrypt_msdu = 1;
6693 priv->ieee->host_decrypt = 1;
6694 }
6695 } else {
6696 priv->ieee->host_encrypt = 0;
6697 priv->ieee->host_encrypt_msdu = 0;
6698 priv->ieee->host_decrypt = 0;
6699 priv->ieee->host_mc_decrypt = 0;
6700 }
6701 }
6702
6703 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6704 }
6705
6706 /* SIOCGIWENCODEEXT */
6707 static int ipw_wx_get_encodeext(struct net_device *dev,
6708 struct iw_request_info *info,
6709 union iwreq_data *wrqu, char *extra)
6710 {
6711 struct ipw_priv *priv = ieee80211_priv(dev);
6712 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6713 }
6714
6715 /* SIOCSIWMLME */
6716 static int ipw_wx_set_mlme(struct net_device *dev,
6717 struct iw_request_info *info,
6718 union iwreq_data *wrqu, char *extra)
6719 {
6720 struct ipw_priv *priv = ieee80211_priv(dev);
6721 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6722 u16 reason;
6723
6724 reason = cpu_to_le16(mlme->reason_code);
6725
6726 switch (mlme->cmd) {
6727 case IW_MLME_DEAUTH:
6728 /* silently ignore */
6729 break;
6730
6731 case IW_MLME_DISASSOC:
6732 ipw_disassociate(priv);
6733 break;
6734
6735 default:
6736 return -EOPNOTSUPP;
6737 }
6738 return 0;
6739 }
6740
6741 #ifdef CONFIG_IPW2200_QOS
6742
6743 /* QoS */
6744 /*
6745 * get the modulation type of the current network or
6746 * the card current mode
6747 */
6748 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6749 {
6750 u8 mode = 0;
6751
6752 if (priv->status & STATUS_ASSOCIATED) {
6753 unsigned long flags;
6754
6755 spin_lock_irqsave(&priv->ieee->lock, flags);
6756 mode = priv->assoc_network->mode;
6757 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6758 } else {
6759 mode = priv->ieee->mode;
6760 }
6761 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6762 return mode;
6763 }
6764
6765 /*
6766 * Handle management frame beacon and probe response
6767 */
6768 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6769 int active_network,
6770 struct ieee80211_network *network)
6771 {
6772 u32 size = sizeof(struct ieee80211_qos_parameters);
6773
6774 if (network->capability & WLAN_CAPABILITY_IBSS)
6775 network->qos_data.active = network->qos_data.supported;
6776
6777 if (network->flags & NETWORK_HAS_QOS_MASK) {
6778 if (active_network &&
6779 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6780 network->qos_data.active = network->qos_data.supported;
6781
6782 if ((network->qos_data.active == 1) && (active_network == 1) &&
6783 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6784 (network->qos_data.old_param_count !=
6785 network->qos_data.param_count)) {
6786 network->qos_data.old_param_count =
6787 network->qos_data.param_count;
6788 schedule_work(&priv->qos_activate);
6789 IPW_DEBUG_QOS("QoS parameters change call "
6790 "qos_activate\n");
6791 }
6792 } else {
6793 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6794 memcpy(&network->qos_data.parameters,
6795 &def_parameters_CCK, size);
6796 else
6797 memcpy(&network->qos_data.parameters,
6798 &def_parameters_OFDM, size);
6799
6800 if ((network->qos_data.active == 1) && (active_network == 1)) {
6801 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6802 schedule_work(&priv->qos_activate);
6803 }
6804
6805 network->qos_data.active = 0;
6806 network->qos_data.supported = 0;
6807 }
6808 if ((priv->status & STATUS_ASSOCIATED) &&
6809 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6810 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6811 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6812 !(network->flags & NETWORK_EMPTY_ESSID))
6813 if ((network->ssid_len ==
6814 priv->assoc_network->ssid_len) &&
6815 !memcmp(network->ssid,
6816 priv->assoc_network->ssid,
6817 network->ssid_len)) {
6818 queue_work(priv->workqueue,
6819 &priv->merge_networks);
6820 }
6821 }
6822
6823 return 0;
6824 }
6825
6826 /*
6827 * This function set up the firmware to support QoS. It sends
6828 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6829 */
6830 static int ipw_qos_activate(struct ipw_priv *priv,
6831 struct ieee80211_qos_data *qos_network_data)
6832 {
6833 int err;
6834 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6835 struct ieee80211_qos_parameters *active_one = NULL;
6836 u32 size = sizeof(struct ieee80211_qos_parameters);
6837 u32 burst_duration;
6838 int i;
6839 u8 type;
6840
6841 type = ipw_qos_current_mode(priv);
6842
6843 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6844 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6845 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6846 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6847
6848 if (qos_network_data == NULL) {
6849 if (type == IEEE_B) {
6850 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6851 active_one = &def_parameters_CCK;
6852 } else
6853 active_one = &def_parameters_OFDM;
6854
6855 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6856 burst_duration = ipw_qos_get_burst_duration(priv);
6857 for (i = 0; i < QOS_QUEUE_NUM; i++)
6858 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6859 (u16)burst_duration;
6860 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6861 if (type == IEEE_B) {
6862 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6863 type);
6864 if (priv->qos_data.qos_enable == 0)
6865 active_one = &def_parameters_CCK;
6866 else
6867 active_one = priv->qos_data.def_qos_parm_CCK;
6868 } else {
6869 if (priv->qos_data.qos_enable == 0)
6870 active_one = &def_parameters_OFDM;
6871 else
6872 active_one = priv->qos_data.def_qos_parm_OFDM;
6873 }
6874 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6875 } else {
6876 unsigned long flags;
6877 int active;
6878
6879 spin_lock_irqsave(&priv->ieee->lock, flags);
6880 active_one = &(qos_network_data->parameters);
6881 qos_network_data->old_param_count =
6882 qos_network_data->param_count;
6883 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6884 active = qos_network_data->supported;
6885 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6886
6887 if (active == 0) {
6888 burst_duration = ipw_qos_get_burst_duration(priv);
6889 for (i = 0; i < QOS_QUEUE_NUM; i++)
6890 qos_parameters[QOS_PARAM_SET_ACTIVE].
6891 tx_op_limit[i] = (u16)burst_duration;
6892 }
6893 }
6894
6895 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6896 for (i = 0; i < 3; i++) {
6897 int j;
6898 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6899 qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6900 qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6901 qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6902 }
6903 }
6904
6905 err = ipw_send_qos_params_command(priv,
6906 (struct ieee80211_qos_parameters *)
6907 &(qos_parameters[0]));
6908 if (err)
6909 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6910
6911 return err;
6912 }
6913
6914 /*
6915 * send IPW_CMD_WME_INFO to the firmware
6916 */
6917 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6918 {
6919 int ret = 0;
6920 struct ieee80211_qos_information_element qos_info;
6921
6922 if (priv == NULL)
6923 return -1;
6924
6925 qos_info.elementID = QOS_ELEMENT_ID;
6926 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6927
6928 qos_info.version = QOS_VERSION_1;
6929 qos_info.ac_info = 0;
6930
6931 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6932 qos_info.qui_type = QOS_OUI_TYPE;
6933 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6934
6935 ret = ipw_send_qos_info_command(priv, &qos_info);
6936 if (ret != 0) {
6937 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6938 }
6939 return ret;
6940 }
6941
6942 /*
6943 * Set the QoS parameter with the association request structure
6944 */
6945 static int ipw_qos_association(struct ipw_priv *priv,
6946 struct ieee80211_network *network)
6947 {
6948 int err = 0;
6949 struct ieee80211_qos_data *qos_data = NULL;
6950 struct ieee80211_qos_data ibss_data = {
6951 .supported = 1,
6952 .active = 1,
6953 };
6954
6955 switch (priv->ieee->iw_mode) {
6956 case IW_MODE_ADHOC:
6957 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6958
6959 qos_data = &ibss_data;
6960 break;
6961
6962 case IW_MODE_INFRA:
6963 qos_data = &network->qos_data;
6964 break;
6965
6966 default:
6967 BUG();
6968 break;
6969 }
6970
6971 err = ipw_qos_activate(priv, qos_data);
6972 if (err) {
6973 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6974 return err;
6975 }
6976
6977 if (priv->qos_data.qos_enable && qos_data->supported) {
6978 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6979 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6980 return ipw_qos_set_info_element(priv);
6981 }
6982
6983 return 0;
6984 }
6985
6986 /*
6987 * handling the beaconing responses. if we get different QoS setting
6988 * off the network from the associated setting, adjust the QoS
6989 * setting
6990 */
6991 static int ipw_qos_association_resp(struct ipw_priv *priv,
6992 struct ieee80211_network *network)
6993 {
6994 int ret = 0;
6995 unsigned long flags;
6996 u32 size = sizeof(struct ieee80211_qos_parameters);
6997 int set_qos_param = 0;
6998
6999 if ((priv == NULL) || (network == NULL) ||
7000 (priv->assoc_network == NULL))
7001 return ret;
7002
7003 if (!(priv->status & STATUS_ASSOCIATED))
7004 return ret;
7005
7006 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7007 return ret;
7008
7009 spin_lock_irqsave(&priv->ieee->lock, flags);
7010 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7011 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7012 sizeof(struct ieee80211_qos_data));
7013 priv->assoc_network->qos_data.active = 1;
7014 if ((network->qos_data.old_param_count !=
7015 network->qos_data.param_count)) {
7016 set_qos_param = 1;
7017 network->qos_data.old_param_count =
7018 network->qos_data.param_count;
7019 }
7020
7021 } else {
7022 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7023 memcpy(&priv->assoc_network->qos_data.parameters,
7024 &def_parameters_CCK, size);
7025 else
7026 memcpy(&priv->assoc_network->qos_data.parameters,
7027 &def_parameters_OFDM, size);
7028 priv->assoc_network->qos_data.active = 0;
7029 priv->assoc_network->qos_data.supported = 0;
7030 set_qos_param = 1;
7031 }
7032
7033 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7034
7035 if (set_qos_param == 1)
7036 schedule_work(&priv->qos_activate);
7037
7038 return ret;
7039 }
7040
7041 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7042 {
7043 u32 ret = 0;
7044
7045 if ((priv == NULL))
7046 return 0;
7047
7048 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7049 ret = priv->qos_data.burst_duration_CCK;
7050 else
7051 ret = priv->qos_data.burst_duration_OFDM;
7052
7053 return ret;
7054 }
7055
7056 /*
7057 * Initialize the setting of QoS global
7058 */
7059 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7060 int burst_enable, u32 burst_duration_CCK,
7061 u32 burst_duration_OFDM)
7062 {
7063 priv->qos_data.qos_enable = enable;
7064
7065 if (priv->qos_data.qos_enable) {
7066 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7067 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7068 IPW_DEBUG_QOS("QoS is enabled\n");
7069 } else {
7070 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7071 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7072 IPW_DEBUG_QOS("QoS is not enabled\n");
7073 }
7074
7075 priv->qos_data.burst_enable = burst_enable;
7076
7077 if (burst_enable) {
7078 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7079 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7080 } else {
7081 priv->qos_data.burst_duration_CCK = 0;
7082 priv->qos_data.burst_duration_OFDM = 0;
7083 }
7084 }
7085
7086 /*
7087 * map the packet priority to the right TX Queue
7088 */
7089 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7090 {
7091 if (priority > 7 || !priv->qos_data.qos_enable)
7092 priority = 0;
7093
7094 return from_priority_to_tx_queue[priority] - 1;
7095 }
7096
7097 static int ipw_is_qos_active(struct net_device *dev,
7098 struct sk_buff *skb)
7099 {
7100 struct ipw_priv *priv = ieee80211_priv(dev);
7101 struct ieee80211_qos_data *qos_data = NULL;
7102 int active, supported;
7103 u8 *daddr = skb->data + ETH_ALEN;
7104 int unicast = !is_multicast_ether_addr(daddr);
7105
7106 if (!(priv->status & STATUS_ASSOCIATED))
7107 return 0;
7108
7109 qos_data = &priv->assoc_network->qos_data;
7110
7111 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7112 if (unicast == 0)
7113 qos_data->active = 0;
7114 else
7115 qos_data->active = qos_data->supported;
7116 }
7117 active = qos_data->active;
7118 supported = qos_data->supported;
7119 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7120 "unicast %d\n",
7121 priv->qos_data.qos_enable, active, supported, unicast);
7122 if (active && priv->qos_data.qos_enable)
7123 return 1;
7124
7125 return 0;
7126
7127 }
7128 /*
7129 * add QoS parameter to the TX command
7130 */
7131 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7132 u16 priority,
7133 struct tfd_data *tfd)
7134 {
7135 int tx_queue_id = 0;
7136
7137
7138 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7139 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7140
7141 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7142 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7143 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7144 }
7145 return 0;
7146 }
7147
7148 /*
7149 * background support to run QoS activate functionality
7150 */
7151 static void ipw_bg_qos_activate(struct work_struct *work)
7152 {
7153 struct ipw_priv *priv =
7154 container_of(work, struct ipw_priv, qos_activate);
7155
7156 if (priv == NULL)
7157 return;
7158
7159 mutex_lock(&priv->mutex);
7160
7161 if (priv->status & STATUS_ASSOCIATED)
7162 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7163
7164 mutex_unlock(&priv->mutex);
7165 }
7166
7167 static int ipw_handle_probe_response(struct net_device *dev,
7168 struct ieee80211_probe_response *resp,
7169 struct ieee80211_network *network)
7170 {
7171 struct ipw_priv *priv = ieee80211_priv(dev);
7172 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7173 (network == priv->assoc_network));
7174
7175 ipw_qos_handle_probe_response(priv, active_network, network);
7176
7177 return 0;
7178 }
7179
7180 static int ipw_handle_beacon(struct net_device *dev,
7181 struct ieee80211_beacon *resp,
7182 struct ieee80211_network *network)
7183 {
7184 struct ipw_priv *priv = ieee80211_priv(dev);
7185 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7186 (network == priv->assoc_network));
7187
7188 ipw_qos_handle_probe_response(priv, active_network, network);
7189
7190 return 0;
7191 }
7192
7193 static int ipw_handle_assoc_response(struct net_device *dev,
7194 struct ieee80211_assoc_response *resp,
7195 struct ieee80211_network *network)
7196 {
7197 struct ipw_priv *priv = ieee80211_priv(dev);
7198 ipw_qos_association_resp(priv, network);
7199 return 0;
7200 }
7201
7202 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7203 *qos_param)
7204 {
7205 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7206 sizeof(*qos_param) * 3, qos_param);
7207 }
7208
7209 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7210 *qos_param)
7211 {
7212 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7213 qos_param);
7214 }
7215
7216 #endif /* CONFIG_IPW2200_QOS */
7217
7218 static int ipw_associate_network(struct ipw_priv *priv,
7219 struct ieee80211_network *network,
7220 struct ipw_supported_rates *rates, int roaming)
7221 {
7222 int err;
7223
7224 if (priv->config & CFG_FIXED_RATE)
7225 ipw_set_fixed_rate(priv, network->mode);
7226
7227 if (!(priv->config & CFG_STATIC_ESSID)) {
7228 priv->essid_len = min(network->ssid_len,
7229 (u8) IW_ESSID_MAX_SIZE);
7230 memcpy(priv->essid, network->ssid, priv->essid_len);
7231 }
7232
7233 network->last_associate = jiffies;
7234
7235 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7236 priv->assoc_request.channel = network->channel;
7237 priv->assoc_request.auth_key = 0;
7238
7239 if ((priv->capability & CAP_PRIVACY_ON) &&
7240 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7241 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7242 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7243
7244 if (priv->ieee->sec.level == SEC_LEVEL_1)
7245 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7246
7247 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7248 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7249 priv->assoc_request.auth_type = AUTH_LEAP;
7250 else
7251 priv->assoc_request.auth_type = AUTH_OPEN;
7252
7253 if (priv->ieee->wpa_ie_len) {
7254 priv->assoc_request.policy_support = 0x02; /* RSN active */
7255 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7256 priv->ieee->wpa_ie_len);
7257 }
7258
7259 /*
7260 * It is valid for our ieee device to support multiple modes, but
7261 * when it comes to associating to a given network we have to choose
7262 * just one mode.
7263 */
7264 if (network->mode & priv->ieee->mode & IEEE_A)
7265 priv->assoc_request.ieee_mode = IPW_A_MODE;
7266 else if (network->mode & priv->ieee->mode & IEEE_G)
7267 priv->assoc_request.ieee_mode = IPW_G_MODE;
7268 else if (network->mode & priv->ieee->mode & IEEE_B)
7269 priv->assoc_request.ieee_mode = IPW_B_MODE;
7270
7271 priv->assoc_request.capability = network->capability;
7272 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7273 && !(priv->config & CFG_PREAMBLE_LONG)) {
7274 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7275 } else {
7276 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7277
7278 /* Clear the short preamble if we won't be supporting it */
7279 priv->assoc_request.capability &=
7280 ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7281 }
7282
7283 /* Clear capability bits that aren't used in Ad Hoc */
7284 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7285 priv->assoc_request.capability &=
7286 ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7287
7288 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7289 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7290 roaming ? "Rea" : "A",
7291 escape_essid(priv->essid, priv->essid_len),
7292 network->channel,
7293 ipw_modes[priv->assoc_request.ieee_mode],
7294 rates->num_rates,
7295 (priv->assoc_request.preamble_length ==
7296 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7297 network->capability &
7298 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7299 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7300 priv->capability & CAP_PRIVACY_ON ?
7301 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7302 "(open)") : "",
7303 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7304 priv->capability & CAP_PRIVACY_ON ?
7305 '1' + priv->ieee->sec.active_key : '.',
7306 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7307
7308 priv->assoc_request.beacon_interval = network->beacon_interval;
7309 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7310 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7311 priv->assoc_request.assoc_type = HC_IBSS_START;
7312 priv->assoc_request.assoc_tsf_msw = 0;
7313 priv->assoc_request.assoc_tsf_lsw = 0;
7314 } else {
7315 if (unlikely(roaming))
7316 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7317 else
7318 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7319 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7320 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7321 }
7322
7323 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7324
7325 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7326 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7327 priv->assoc_request.atim_window = network->atim_window;
7328 } else {
7329 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7330 priv->assoc_request.atim_window = 0;
7331 }
7332
7333 priv->assoc_request.listen_interval = network->listen_interval;
7334
7335 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7336 if (err) {
7337 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7338 return err;
7339 }
7340
7341 rates->ieee_mode = priv->assoc_request.ieee_mode;
7342 rates->purpose = IPW_RATE_CONNECT;
7343 ipw_send_supported_rates(priv, rates);
7344
7345 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7346 priv->sys_config.dot11g_auto_detection = 1;
7347 else
7348 priv->sys_config.dot11g_auto_detection = 0;
7349
7350 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7351 priv->sys_config.answer_broadcast_ssid_probe = 1;
7352 else
7353 priv->sys_config.answer_broadcast_ssid_probe = 0;
7354
7355 err = ipw_send_system_config(priv);
7356 if (err) {
7357 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7358 return err;
7359 }
7360
7361 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7362 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7363 if (err) {
7364 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7365 return err;
7366 }
7367
7368 /*
7369 * If preemption is enabled, it is possible for the association
7370 * to complete before we return from ipw_send_associate. Therefore
7371 * we have to be sure and update our priviate data first.
7372 */
7373 priv->channel = network->channel;
7374 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7375 priv->status |= STATUS_ASSOCIATING;
7376 priv->status &= ~STATUS_SECURITY_UPDATED;
7377
7378 priv->assoc_network = network;
7379
7380 #ifdef CONFIG_IPW2200_QOS
7381 ipw_qos_association(priv, network);
7382 #endif
7383
7384 err = ipw_send_associate(priv, &priv->assoc_request);
7385 if (err) {
7386 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7387 return err;
7388 }
7389
7390 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7391 escape_essid(priv->essid, priv->essid_len),
7392 MAC_ARG(priv->bssid));
7393
7394 return 0;
7395 }
7396
7397 static void ipw_roam(void *data)
7398 {
7399 struct ipw_priv *priv = data;
7400 struct ieee80211_network *network = NULL;
7401 struct ipw_network_match match = {
7402 .network = priv->assoc_network
7403 };
7404
7405 /* The roaming process is as follows:
7406 *
7407 * 1. Missed beacon threshold triggers the roaming process by
7408 * setting the status ROAM bit and requesting a scan.
7409 * 2. When the scan completes, it schedules the ROAM work
7410 * 3. The ROAM work looks at all of the known networks for one that
7411 * is a better network than the currently associated. If none
7412 * found, the ROAM process is over (ROAM bit cleared)
7413 * 4. If a better network is found, a disassociation request is
7414 * sent.
7415 * 5. When the disassociation completes, the roam work is again
7416 * scheduled. The second time through, the driver is no longer
7417 * associated, and the newly selected network is sent an
7418 * association request.
7419 * 6. At this point ,the roaming process is complete and the ROAM
7420 * status bit is cleared.
7421 */
7422
7423 /* If we are no longer associated, and the roaming bit is no longer
7424 * set, then we are not actively roaming, so just return */
7425 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7426 return;
7427
7428 if (priv->status & STATUS_ASSOCIATED) {
7429 /* First pass through ROAM process -- look for a better
7430 * network */
7431 unsigned long flags;
7432 u8 rssi = priv->assoc_network->stats.rssi;
7433 priv->assoc_network->stats.rssi = -128;
7434 spin_lock_irqsave(&priv->ieee->lock, flags);
7435 list_for_each_entry(network, &priv->ieee->network_list, list) {
7436 if (network != priv->assoc_network)
7437 ipw_best_network(priv, &match, network, 1);
7438 }
7439 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7440 priv->assoc_network->stats.rssi = rssi;
7441
7442 if (match.network == priv->assoc_network) {
7443 IPW_DEBUG_ASSOC("No better APs in this network to "
7444 "roam to.\n");
7445 priv->status &= ~STATUS_ROAMING;
7446 ipw_debug_config(priv);
7447 return;
7448 }
7449
7450 ipw_send_disassociate(priv, 1);
7451 priv->assoc_network = match.network;
7452
7453 return;
7454 }
7455
7456 /* Second pass through ROAM process -- request association */
7457 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7458 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7459 priv->status &= ~STATUS_ROAMING;
7460 }
7461
7462 static void ipw_bg_roam(struct work_struct *work)
7463 {
7464 struct ipw_priv *priv =
7465 container_of(work, struct ipw_priv, roam);
7466 mutex_lock(&priv->mutex);
7467 ipw_roam(priv);
7468 mutex_unlock(&priv->mutex);
7469 }
7470
7471 static int ipw_associate(void *data)
7472 {
7473 struct ipw_priv *priv = data;
7474
7475 struct ieee80211_network *network = NULL;
7476 struct ipw_network_match match = {
7477 .network = NULL
7478 };
7479 struct ipw_supported_rates *rates;
7480 struct list_head *element;
7481 unsigned long flags;
7482
7483 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7484 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7485 return 0;
7486 }
7487
7488 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7489 IPW_DEBUG_ASSOC("Not attempting association (already in "
7490 "progress)\n");
7491 return 0;
7492 }
7493
7494 if (priv->status & STATUS_DISASSOCIATING) {
7495 IPW_DEBUG_ASSOC("Not attempting association (in "
7496 "disassociating)\n ");
7497 queue_work(priv->workqueue, &priv->associate);
7498 return 0;
7499 }
7500
7501 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7502 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7503 "initialized)\n");
7504 return 0;
7505 }
7506
7507 if (!(priv->config & CFG_ASSOCIATE) &&
7508 !(priv->config & (CFG_STATIC_ESSID |
7509 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7510 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7511 return 0;
7512 }
7513
7514 /* Protect our use of the network_list */
7515 spin_lock_irqsave(&priv->ieee->lock, flags);
7516 list_for_each_entry(network, &priv->ieee->network_list, list)
7517 ipw_best_network(priv, &match, network, 0);
7518
7519 network = match.network;
7520 rates = &match.rates;
7521
7522 if (network == NULL &&
7523 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7524 priv->config & CFG_ADHOC_CREATE &&
7525 priv->config & CFG_STATIC_ESSID &&
7526 priv->config & CFG_STATIC_CHANNEL &&
7527 !list_empty(&priv->ieee->network_free_list)) {
7528 element = priv->ieee->network_free_list.next;
7529 network = list_entry(element, struct ieee80211_network, list);
7530 ipw_adhoc_create(priv, network);
7531 rates = &priv->rates;
7532 list_del(element);
7533 list_add_tail(&network->list, &priv->ieee->network_list);
7534 }
7535 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7536
7537 /* If we reached the end of the list, then we don't have any valid
7538 * matching APs */
7539 if (!network) {
7540 ipw_debug_config(priv);
7541
7542 if (!(priv->status & STATUS_SCANNING)) {
7543 if (!(priv->config & CFG_SPEED_SCAN))
7544 queue_delayed_work(priv->workqueue,
7545 &priv->request_scan,
7546 SCAN_INTERVAL);
7547 else
7548 queue_delayed_work(priv->workqueue,
7549 &priv->request_scan, 0);
7550 }
7551
7552 return 0;
7553 }
7554
7555 ipw_associate_network(priv, network, rates, 0);
7556
7557 return 1;
7558 }
7559
7560 static void ipw_bg_associate(struct work_struct *work)
7561 {
7562 struct ipw_priv *priv =
7563 container_of(work, struct ipw_priv, associate);
7564 mutex_lock(&priv->mutex);
7565 ipw_associate(priv);
7566 mutex_unlock(&priv->mutex);
7567 }
7568
7569 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7570 struct sk_buff *skb)
7571 {
7572 struct ieee80211_hdr *hdr;
7573 u16 fc;
7574
7575 hdr = (struct ieee80211_hdr *)skb->data;
7576 fc = le16_to_cpu(hdr->frame_ctl);
7577 if (!(fc & IEEE80211_FCTL_PROTECTED))
7578 return;
7579
7580 fc &= ~IEEE80211_FCTL_PROTECTED;
7581 hdr->frame_ctl = cpu_to_le16(fc);
7582 switch (priv->ieee->sec.level) {
7583 case SEC_LEVEL_3:
7584 /* Remove CCMP HDR */
7585 memmove(skb->data + IEEE80211_3ADDR_LEN,
7586 skb->data + IEEE80211_3ADDR_LEN + 8,
7587 skb->len - IEEE80211_3ADDR_LEN - 8);
7588 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7589 break;
7590 case SEC_LEVEL_2:
7591 break;
7592 case SEC_LEVEL_1:
7593 /* Remove IV */
7594 memmove(skb->data + IEEE80211_3ADDR_LEN,
7595 skb->data + IEEE80211_3ADDR_LEN + 4,
7596 skb->len - IEEE80211_3ADDR_LEN - 4);
7597 skb_trim(skb, skb->len - 8); /* IV + ICV */
7598 break;
7599 case SEC_LEVEL_0:
7600 break;
7601 default:
7602 printk(KERN_ERR "Unknow security level %d\n",
7603 priv->ieee->sec.level);
7604 break;
7605 }
7606 }
7607
7608 static void ipw_handle_data_packet(struct ipw_priv *priv,
7609 struct ipw_rx_mem_buffer *rxb,
7610 struct ieee80211_rx_stats *stats)
7611 {
7612 struct ieee80211_hdr_4addr *hdr;
7613 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7614
7615 /* We received data from the HW, so stop the watchdog */
7616 priv->net_dev->trans_start = jiffies;
7617
7618 /* We only process data packets if the
7619 * interface is open */
7620 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7621 skb_tailroom(rxb->skb))) {
7622 priv->ieee->stats.rx_errors++;
7623 priv->wstats.discard.misc++;
7624 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7625 return;
7626 } else if (unlikely(!netif_running(priv->net_dev))) {
7627 priv->ieee->stats.rx_dropped++;
7628 priv->wstats.discard.misc++;
7629 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7630 return;
7631 }
7632
7633 /* Advance skb->data to the start of the actual payload */
7634 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7635
7636 /* Set the size of the skb to the size of the frame */
7637 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7638
7639 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7640
7641 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7642 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7643 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7644 (is_multicast_ether_addr(hdr->addr1) ?
7645 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7646 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7647
7648 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7649 priv->ieee->stats.rx_errors++;
7650 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7651 rxb->skb = NULL;
7652 __ipw_led_activity_on(priv);
7653 }
7654 }
7655
7656 #ifdef CONFIG_IPW2200_RADIOTAP
7657 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7658 struct ipw_rx_mem_buffer *rxb,
7659 struct ieee80211_rx_stats *stats)
7660 {
7661 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7662 struct ipw_rx_frame *frame = &pkt->u.frame;
7663
7664 /* initial pull of some data */
7665 u16 received_channel = frame->received_channel;
7666 u8 antennaAndPhy = frame->antennaAndPhy;
7667 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7668 u16 pktrate = frame->rate;
7669
7670 /* Magic struct that slots into the radiotap header -- no reason
7671 * to build this manually element by element, we can write it much
7672 * more efficiently than we can parse it. ORDER MATTERS HERE */
7673 struct ipw_rt_hdr *ipw_rt;
7674
7675 short len = le16_to_cpu(pkt->u.frame.length);
7676
7677 /* We received data from the HW, so stop the watchdog */
7678 priv->net_dev->trans_start = jiffies;
7679
7680 /* We only process data packets if the
7681 * interface is open */
7682 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7683 skb_tailroom(rxb->skb))) {
7684 priv->ieee->stats.rx_errors++;
7685 priv->wstats.discard.misc++;
7686 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7687 return;
7688 } else if (unlikely(!netif_running(priv->net_dev))) {
7689 priv->ieee->stats.rx_dropped++;
7690 priv->wstats.discard.misc++;
7691 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7692 return;
7693 }
7694
7695 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7696 * that now */
7697 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7698 /* FIXME: Should alloc bigger skb instead */
7699 priv->ieee->stats.rx_dropped++;
7700 priv->wstats.discard.misc++;
7701 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7702 return;
7703 }
7704
7705 /* copy the frame itself */
7706 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7707 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7708
7709 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7710 * part of our real header, saves a little time.
7711 *
7712 * No longer necessary since we fill in all our data. Purge before merging
7713 * patch officially.
7714 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7715 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7716 */
7717
7718 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7719
7720 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7721 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7722 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total header+data */
7723
7724 /* Big bitfield of all the fields we provide in radiotap */
7725 ipw_rt->rt_hdr.it_present =
7726 ((1 << IEEE80211_RADIOTAP_TSFT) |
7727 (1 << IEEE80211_RADIOTAP_FLAGS) |
7728 (1 << IEEE80211_RADIOTAP_RATE) |
7729 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7730 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7731 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7732 (1 << IEEE80211_RADIOTAP_ANTENNA));
7733
7734 /* Zero the flags, we'll add to them as we go */
7735 ipw_rt->rt_flags = 0;
7736 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7737 frame->parent_tsf[2] << 16 |
7738 frame->parent_tsf[1] << 8 |
7739 frame->parent_tsf[0]);
7740
7741 /* Convert signal to DBM */
7742 ipw_rt->rt_dbmsignal = antsignal;
7743 ipw_rt->rt_dbmnoise = frame->noise;
7744
7745 /* Convert the channel data and set the flags */
7746 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7747 if (received_channel > 14) { /* 802.11a */
7748 ipw_rt->rt_chbitmask =
7749 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7750 } else if (antennaAndPhy & 32) { /* 802.11b */
7751 ipw_rt->rt_chbitmask =
7752 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7753 } else { /* 802.11g */
7754 ipw_rt->rt_chbitmask =
7755 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7756 }
7757
7758 /* set the rate in multiples of 500k/s */
7759 switch (pktrate) {
7760 case IPW_TX_RATE_1MB:
7761 ipw_rt->rt_rate = 2;
7762 break;
7763 case IPW_TX_RATE_2MB:
7764 ipw_rt->rt_rate = 4;
7765 break;
7766 case IPW_TX_RATE_5MB:
7767 ipw_rt->rt_rate = 10;
7768 break;
7769 case IPW_TX_RATE_6MB:
7770 ipw_rt->rt_rate = 12;
7771 break;
7772 case IPW_TX_RATE_9MB:
7773 ipw_rt->rt_rate = 18;
7774 break;
7775 case IPW_TX_RATE_11MB:
7776 ipw_rt->rt_rate = 22;
7777 break;
7778 case IPW_TX_RATE_12MB:
7779 ipw_rt->rt_rate = 24;
7780 break;
7781 case IPW_TX_RATE_18MB:
7782 ipw_rt->rt_rate = 36;
7783 break;
7784 case IPW_TX_RATE_24MB:
7785 ipw_rt->rt_rate = 48;
7786 break;
7787 case IPW_TX_RATE_36MB:
7788 ipw_rt->rt_rate = 72;
7789 break;
7790 case IPW_TX_RATE_48MB:
7791 ipw_rt->rt_rate = 96;
7792 break;
7793 case IPW_TX_RATE_54MB:
7794 ipw_rt->rt_rate = 108;
7795 break;
7796 default:
7797 ipw_rt->rt_rate = 0;
7798 break;
7799 }
7800
7801 /* antenna number */
7802 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7803
7804 /* set the preamble flag if we have it */
7805 if ((antennaAndPhy & 64))
7806 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7807
7808 /* Set the size of the skb to the size of the frame */
7809 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7810
7811 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7812
7813 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7814 priv->ieee->stats.rx_errors++;
7815 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7816 rxb->skb = NULL;
7817 /* no LED during capture */
7818 }
7819 }
7820 #endif
7821
7822 #ifdef CONFIG_IPW2200_PROMISCUOUS
7823 #define ieee80211_is_probe_response(fc) \
7824 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7825 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7826
7827 #define ieee80211_is_management(fc) \
7828 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7829
7830 #define ieee80211_is_control(fc) \
7831 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7832
7833 #define ieee80211_is_data(fc) \
7834 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7835
7836 #define ieee80211_is_assoc_request(fc) \
7837 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7838
7839 #define ieee80211_is_reassoc_request(fc) \
7840 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7841
7842 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7843 struct ipw_rx_mem_buffer *rxb,
7844 struct ieee80211_rx_stats *stats)
7845 {
7846 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7847 struct ipw_rx_frame *frame = &pkt->u.frame;
7848 struct ipw_rt_hdr *ipw_rt;
7849
7850 /* First cache any information we need before we overwrite
7851 * the information provided in the skb from the hardware */
7852 struct ieee80211_hdr *hdr;
7853 u16 channel = frame->received_channel;
7854 u8 phy_flags = frame->antennaAndPhy;
7855 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7856 s8 noise = frame->noise;
7857 u8 rate = frame->rate;
7858 short len = le16_to_cpu(pkt->u.frame.length);
7859 struct sk_buff *skb;
7860 int hdr_only = 0;
7861 u16 filter = priv->prom_priv->filter;
7862
7863 /* If the filter is set to not include Rx frames then return */
7864 if (filter & IPW_PROM_NO_RX)
7865 return;
7866
7867 /* We received data from the HW, so stop the watchdog */
7868 priv->prom_net_dev->trans_start = jiffies;
7869
7870 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7871 priv->prom_priv->ieee->stats.rx_errors++;
7872 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7873 return;
7874 }
7875
7876 /* We only process data packets if the interface is open */
7877 if (unlikely(!netif_running(priv->prom_net_dev))) {
7878 priv->prom_priv->ieee->stats.rx_dropped++;
7879 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7880 return;
7881 }
7882
7883 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7884 * that now */
7885 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7886 /* FIXME: Should alloc bigger skb instead */
7887 priv->prom_priv->ieee->stats.rx_dropped++;
7888 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7889 return;
7890 }
7891
7892 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7893 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7894 if (filter & IPW_PROM_NO_MGMT)
7895 return;
7896 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7897 hdr_only = 1;
7898 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7899 if (filter & IPW_PROM_NO_CTL)
7900 return;
7901 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7902 hdr_only = 1;
7903 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7904 if (filter & IPW_PROM_NO_DATA)
7905 return;
7906 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7907 hdr_only = 1;
7908 }
7909
7910 /* Copy the SKB since this is for the promiscuous side */
7911 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7912 if (skb == NULL) {
7913 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7914 return;
7915 }
7916
7917 /* copy the frame data to write after where the radiotap header goes */
7918 ipw_rt = (void *)skb->data;
7919
7920 if (hdr_only)
7921 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7922
7923 memcpy(ipw_rt->payload, hdr, len);
7924
7925 /* Zero the radiotap static buffer ... We only need to zero the bytes
7926 * NOT part of our real header, saves a little time.
7927 *
7928 * No longer necessary since we fill in all our data. Purge before
7929 * merging patch officially.
7930 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7931 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7932 */
7933
7934 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7935 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7936 ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt); /* total header+data */
7937
7938 /* Set the size of the skb to the size of the frame */
7939 skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7940
7941 /* Big bitfield of all the fields we provide in radiotap */
7942 ipw_rt->rt_hdr.it_present =
7943 ((1 << IEEE80211_RADIOTAP_TSFT) |
7944 (1 << IEEE80211_RADIOTAP_FLAGS) |
7945 (1 << IEEE80211_RADIOTAP_RATE) |
7946 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7947 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7948 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7949 (1 << IEEE80211_RADIOTAP_ANTENNA));
7950
7951 /* Zero the flags, we'll add to them as we go */
7952 ipw_rt->rt_flags = 0;
7953 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7954 frame->parent_tsf[2] << 16 |
7955 frame->parent_tsf[1] << 8 |
7956 frame->parent_tsf[0]);
7957
7958 /* Convert to DBM */
7959 ipw_rt->rt_dbmsignal = signal;
7960 ipw_rt->rt_dbmnoise = noise;
7961
7962 /* Convert the channel data and set the flags */
7963 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7964 if (channel > 14) { /* 802.11a */
7965 ipw_rt->rt_chbitmask =
7966 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7967 } else if (phy_flags & (1 << 5)) { /* 802.11b */
7968 ipw_rt->rt_chbitmask =
7969 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7970 } else { /* 802.11g */
7971 ipw_rt->rt_chbitmask =
7972 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7973 }
7974
7975 /* set the rate in multiples of 500k/s */
7976 switch (rate) {
7977 case IPW_TX_RATE_1MB:
7978 ipw_rt->rt_rate = 2;
7979 break;
7980 case IPW_TX_RATE_2MB:
7981 ipw_rt->rt_rate = 4;
7982 break;
7983 case IPW_TX_RATE_5MB:
7984 ipw_rt->rt_rate = 10;
7985 break;
7986 case IPW_TX_RATE_6MB:
7987 ipw_rt->rt_rate = 12;
7988 break;
7989 case IPW_TX_RATE_9MB:
7990 ipw_rt->rt_rate = 18;
7991 break;
7992 case IPW_TX_RATE_11MB:
7993 ipw_rt->rt_rate = 22;
7994 break;
7995 case IPW_TX_RATE_12MB:
7996 ipw_rt->rt_rate = 24;
7997 break;
7998 case IPW_TX_RATE_18MB:
7999 ipw_rt->rt_rate = 36;
8000 break;
8001 case IPW_TX_RATE_24MB:
8002 ipw_rt->rt_rate = 48;
8003 break;
8004 case IPW_TX_RATE_36MB:
8005 ipw_rt->rt_rate = 72;
8006 break;
8007 case IPW_TX_RATE_48MB:
8008 ipw_rt->rt_rate = 96;
8009 break;
8010 case IPW_TX_RATE_54MB:
8011 ipw_rt->rt_rate = 108;
8012 break;
8013 default:
8014 ipw_rt->rt_rate = 0;
8015 break;
8016 }
8017
8018 /* antenna number */
8019 ipw_rt->rt_antenna = (phy_flags & 3);
8020
8021 /* set the preamble flag if we have it */
8022 if (phy_flags & (1 << 6))
8023 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8024
8025 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8026
8027 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8028 priv->prom_priv->ieee->stats.rx_errors++;
8029 dev_kfree_skb_any(skb);
8030 }
8031 }
8032 #endif
8033
8034 static int is_network_packet(struct ipw_priv *priv,
8035 struct ieee80211_hdr_4addr *header)
8036 {
8037 /* Filter incoming packets to determine if they are targetted toward
8038 * this network, discarding packets coming from ourselves */
8039 switch (priv->ieee->iw_mode) {
8040 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8041 /* packets from our adapter are dropped (echo) */
8042 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8043 return 0;
8044
8045 /* {broad,multi}cast packets to our BSSID go through */
8046 if (is_multicast_ether_addr(header->addr1))
8047 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8048
8049 /* packets to our adapter go through */
8050 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8051 ETH_ALEN);
8052
8053 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8054 /* packets from our adapter are dropped (echo) */
8055 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8056 return 0;
8057
8058 /* {broad,multi}cast packets to our BSS go through */
8059 if (is_multicast_ether_addr(header->addr1))
8060 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8061
8062 /* packets to our adapter go through */
8063 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8064 ETH_ALEN);
8065 }
8066
8067 return 1;
8068 }
8069
8070 #define IPW_PACKET_RETRY_TIME HZ
8071
8072 static int is_duplicate_packet(struct ipw_priv *priv,
8073 struct ieee80211_hdr_4addr *header)
8074 {
8075 u16 sc = le16_to_cpu(header->seq_ctl);
8076 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8077 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8078 u16 *last_seq, *last_frag;
8079 unsigned long *last_time;
8080
8081 switch (priv->ieee->iw_mode) {
8082 case IW_MODE_ADHOC:
8083 {
8084 struct list_head *p;
8085 struct ipw_ibss_seq *entry = NULL;
8086 u8 *mac = header->addr2;
8087 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8088
8089 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8090 entry =
8091 list_entry(p, struct ipw_ibss_seq, list);
8092 if (!memcmp(entry->mac, mac, ETH_ALEN))
8093 break;
8094 }
8095 if (p == &priv->ibss_mac_hash[index]) {
8096 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8097 if (!entry) {
8098 IPW_ERROR
8099 ("Cannot malloc new mac entry\n");
8100 return 0;
8101 }
8102 memcpy(entry->mac, mac, ETH_ALEN);
8103 entry->seq_num = seq;
8104 entry->frag_num = frag;
8105 entry->packet_time = jiffies;
8106 list_add(&entry->list,
8107 &priv->ibss_mac_hash[index]);
8108 return 0;
8109 }
8110 last_seq = &entry->seq_num;
8111 last_frag = &entry->frag_num;
8112 last_time = &entry->packet_time;
8113 break;
8114 }
8115 case IW_MODE_INFRA:
8116 last_seq = &priv->last_seq_num;
8117 last_frag = &priv->last_frag_num;
8118 last_time = &priv->last_packet_time;
8119 break;
8120 default:
8121 return 0;
8122 }
8123 if ((*last_seq == seq) &&
8124 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8125 if (*last_frag == frag)
8126 goto drop;
8127 if (*last_frag + 1 != frag)
8128 /* out-of-order fragment */
8129 goto drop;
8130 } else
8131 *last_seq = seq;
8132
8133 *last_frag = frag;
8134 *last_time = jiffies;
8135 return 0;
8136
8137 drop:
8138 /* Comment this line now since we observed the card receives
8139 * duplicate packets but the FCTL_RETRY bit is not set in the
8140 * IBSS mode with fragmentation enabled.
8141 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8142 return 1;
8143 }
8144
8145 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8146 struct ipw_rx_mem_buffer *rxb,
8147 struct ieee80211_rx_stats *stats)
8148 {
8149 struct sk_buff *skb = rxb->skb;
8150 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8151 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8152 (skb->data + IPW_RX_FRAME_SIZE);
8153
8154 ieee80211_rx_mgt(priv->ieee, header, stats);
8155
8156 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8157 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8158 IEEE80211_STYPE_PROBE_RESP) ||
8159 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8160 IEEE80211_STYPE_BEACON))) {
8161 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8162 ipw_add_station(priv, header->addr2);
8163 }
8164
8165 if (priv->config & CFG_NET_STATS) {
8166 IPW_DEBUG_HC("sending stat packet\n");
8167
8168 /* Set the size of the skb to the size of the full
8169 * ipw header and 802.11 frame */
8170 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8171 IPW_RX_FRAME_SIZE);
8172
8173 /* Advance past the ipw packet header to the 802.11 frame */
8174 skb_pull(skb, IPW_RX_FRAME_SIZE);
8175
8176 /* Push the ieee80211_rx_stats before the 802.11 frame */
8177 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8178
8179 skb->dev = priv->ieee->dev;
8180
8181 /* Point raw at the ieee80211_stats */
8182 skb_reset_mac_header(skb);
8183
8184 skb->pkt_type = PACKET_OTHERHOST;
8185 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8186 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8187 netif_rx(skb);
8188 rxb->skb = NULL;
8189 }
8190 }
8191
8192 /*
8193 * Main entry function for recieving a packet with 80211 headers. This
8194 * should be called when ever the FW has notified us that there is a new
8195 * skb in the recieve queue.
8196 */
8197 static void ipw_rx(struct ipw_priv *priv)
8198 {
8199 struct ipw_rx_mem_buffer *rxb;
8200 struct ipw_rx_packet *pkt;
8201 struct ieee80211_hdr_4addr *header;
8202 u32 r, w, i;
8203 u8 network_packet;
8204
8205 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8206 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8207 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8208
8209 while (i != r) {
8210 rxb = priv->rxq->queue[i];
8211 if (unlikely(rxb == NULL)) {
8212 printk(KERN_CRIT "Queue not allocated!\n");
8213 break;
8214 }
8215 priv->rxq->queue[i] = NULL;
8216
8217 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8218 IPW_RX_BUF_SIZE,
8219 PCI_DMA_FROMDEVICE);
8220
8221 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8222 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8223 pkt->header.message_type,
8224 pkt->header.rx_seq_num, pkt->header.control_bits);
8225
8226 switch (pkt->header.message_type) {
8227 case RX_FRAME_TYPE: /* 802.11 frame */ {
8228 struct ieee80211_rx_stats stats = {
8229 .rssi = pkt->u.frame.rssi_dbm -
8230 IPW_RSSI_TO_DBM,
8231 .signal =
8232 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8233 IPW_RSSI_TO_DBM + 0x100,
8234 .noise =
8235 le16_to_cpu(pkt->u.frame.noise),
8236 .rate = pkt->u.frame.rate,
8237 .mac_time = jiffies,
8238 .received_channel =
8239 pkt->u.frame.received_channel,
8240 .freq =
8241 (pkt->u.frame.
8242 control & (1 << 0)) ?
8243 IEEE80211_24GHZ_BAND :
8244 IEEE80211_52GHZ_BAND,
8245 .len = le16_to_cpu(pkt->u.frame.length),
8246 };
8247
8248 if (stats.rssi != 0)
8249 stats.mask |= IEEE80211_STATMASK_RSSI;
8250 if (stats.signal != 0)
8251 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8252 if (stats.noise != 0)
8253 stats.mask |= IEEE80211_STATMASK_NOISE;
8254 if (stats.rate != 0)
8255 stats.mask |= IEEE80211_STATMASK_RATE;
8256
8257 priv->rx_packets++;
8258
8259 #ifdef CONFIG_IPW2200_PROMISCUOUS
8260 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8261 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8262 #endif
8263
8264 #ifdef CONFIG_IPW2200_MONITOR
8265 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8266 #ifdef CONFIG_IPW2200_RADIOTAP
8267
8268 ipw_handle_data_packet_monitor(priv,
8269 rxb,
8270 &stats);
8271 #else
8272 ipw_handle_data_packet(priv, rxb,
8273 &stats);
8274 #endif
8275 break;
8276 }
8277 #endif
8278
8279 header =
8280 (struct ieee80211_hdr_4addr *)(rxb->skb->
8281 data +
8282 IPW_RX_FRAME_SIZE);
8283 /* TODO: Check Ad-Hoc dest/source and make sure
8284 * that we are actually parsing these packets
8285 * correctly -- we should probably use the
8286 * frame control of the packet and disregard
8287 * the current iw_mode */
8288
8289 network_packet =
8290 is_network_packet(priv, header);
8291 if (network_packet && priv->assoc_network) {
8292 priv->assoc_network->stats.rssi =
8293 stats.rssi;
8294 priv->exp_avg_rssi =
8295 exponential_average(priv->exp_avg_rssi,
8296 stats.rssi, DEPTH_RSSI);
8297 }
8298
8299 IPW_DEBUG_RX("Frame: len=%u\n",
8300 le16_to_cpu(pkt->u.frame.length));
8301
8302 if (le16_to_cpu(pkt->u.frame.length) <
8303 ieee80211_get_hdrlen(le16_to_cpu(
8304 header->frame_ctl))) {
8305 IPW_DEBUG_DROP
8306 ("Received packet is too small. "
8307 "Dropping.\n");
8308 priv->ieee->stats.rx_errors++;
8309 priv->wstats.discard.misc++;
8310 break;
8311 }
8312
8313 switch (WLAN_FC_GET_TYPE
8314 (le16_to_cpu(header->frame_ctl))) {
8315
8316 case IEEE80211_FTYPE_MGMT:
8317 ipw_handle_mgmt_packet(priv, rxb,
8318 &stats);
8319 break;
8320
8321 case IEEE80211_FTYPE_CTL:
8322 break;
8323
8324 case IEEE80211_FTYPE_DATA:
8325 if (unlikely(!network_packet ||
8326 is_duplicate_packet(priv,
8327 header)))
8328 {
8329 IPW_DEBUG_DROP("Dropping: "
8330 MAC_FMT ", "
8331 MAC_FMT ", "
8332 MAC_FMT "\n",
8333 MAC_ARG(header->
8334 addr1),
8335 MAC_ARG(header->
8336 addr2),
8337 MAC_ARG(header->
8338 addr3));
8339 break;
8340 }
8341
8342 ipw_handle_data_packet(priv, rxb,
8343 &stats);
8344
8345 break;
8346 }
8347 break;
8348 }
8349
8350 case RX_HOST_NOTIFICATION_TYPE:{
8351 IPW_DEBUG_RX
8352 ("Notification: subtype=%02X flags=%02X size=%d\n",
8353 pkt->u.notification.subtype,
8354 pkt->u.notification.flags,
8355 le16_to_cpu(pkt->u.notification.size));
8356 ipw_rx_notification(priv, &pkt->u.notification);
8357 break;
8358 }
8359
8360 default:
8361 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8362 pkt->header.message_type);
8363 break;
8364 }
8365
8366 /* For now we just don't re-use anything. We can tweak this
8367 * later to try and re-use notification packets and SKBs that
8368 * fail to Rx correctly */
8369 if (rxb->skb != NULL) {
8370 dev_kfree_skb_any(rxb->skb);
8371 rxb->skb = NULL;
8372 }
8373
8374 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8375 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8376 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8377
8378 i = (i + 1) % RX_QUEUE_SIZE;
8379 }
8380
8381 /* Backtrack one entry */
8382 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8383
8384 ipw_rx_queue_restock(priv);
8385 }
8386
8387 #define DEFAULT_RTS_THRESHOLD 2304U
8388 #define MIN_RTS_THRESHOLD 1U
8389 #define MAX_RTS_THRESHOLD 2304U
8390 #define DEFAULT_BEACON_INTERVAL 100U
8391 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8392 #define DEFAULT_LONG_RETRY_LIMIT 4U
8393
8394 /**
8395 * ipw_sw_reset
8396 * @option: options to control different reset behaviour
8397 * 0 = reset everything except the 'disable' module_param
8398 * 1 = reset everything and print out driver info (for probe only)
8399 * 2 = reset everything
8400 */
8401 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8402 {
8403 int band, modulation;
8404 int old_mode = priv->ieee->iw_mode;
8405
8406 /* Initialize module parameter values here */
8407 priv->config = 0;
8408
8409 /* We default to disabling the LED code as right now it causes
8410 * too many systems to lock up... */
8411 if (!led)
8412 priv->config |= CFG_NO_LED;
8413
8414 if (associate)
8415 priv->config |= CFG_ASSOCIATE;
8416 else
8417 IPW_DEBUG_INFO("Auto associate disabled.\n");
8418
8419 if (auto_create)
8420 priv->config |= CFG_ADHOC_CREATE;
8421 else
8422 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8423
8424 priv->config &= ~CFG_STATIC_ESSID;
8425 priv->essid_len = 0;
8426 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8427
8428 if (disable && option) {
8429 priv->status |= STATUS_RF_KILL_SW;
8430 IPW_DEBUG_INFO("Radio disabled.\n");
8431 }
8432
8433 if (channel != 0) {
8434 priv->config |= CFG_STATIC_CHANNEL;
8435 priv->channel = channel;
8436 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8437 /* TODO: Validate that provided channel is in range */
8438 }
8439 #ifdef CONFIG_IPW2200_QOS
8440 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8441 burst_duration_CCK, burst_duration_OFDM);
8442 #endif /* CONFIG_IPW2200_QOS */
8443
8444 switch (mode) {
8445 case 1:
8446 priv->ieee->iw_mode = IW_MODE_ADHOC;
8447 priv->net_dev->type = ARPHRD_ETHER;
8448
8449 break;
8450 #ifdef CONFIG_IPW2200_MONITOR
8451 case 2:
8452 priv->ieee->iw_mode = IW_MODE_MONITOR;
8453 #ifdef CONFIG_IPW2200_RADIOTAP
8454 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8455 #else
8456 priv->net_dev->type = ARPHRD_IEEE80211;
8457 #endif
8458 break;
8459 #endif
8460 default:
8461 case 0:
8462 priv->net_dev->type = ARPHRD_ETHER;
8463 priv->ieee->iw_mode = IW_MODE_INFRA;
8464 break;
8465 }
8466
8467 if (hwcrypto) {
8468 priv->ieee->host_encrypt = 0;
8469 priv->ieee->host_encrypt_msdu = 0;
8470 priv->ieee->host_decrypt = 0;
8471 priv->ieee->host_mc_decrypt = 0;
8472 }
8473 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8474
8475 /* IPW2200/2915 is abled to do hardware fragmentation. */
8476 priv->ieee->host_open_frag = 0;
8477
8478 if ((priv->pci_dev->device == 0x4223) ||
8479 (priv->pci_dev->device == 0x4224)) {
8480 if (option == 1)
8481 printk(KERN_INFO DRV_NAME
8482 ": Detected Intel PRO/Wireless 2915ABG Network "
8483 "Connection\n");
8484 priv->ieee->abg_true = 1;
8485 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8486 modulation = IEEE80211_OFDM_MODULATION |
8487 IEEE80211_CCK_MODULATION;
8488 priv->adapter = IPW_2915ABG;
8489 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8490 } else {
8491 if (option == 1)
8492 printk(KERN_INFO DRV_NAME
8493 ": Detected Intel PRO/Wireless 2200BG Network "
8494 "Connection\n");
8495
8496 priv->ieee->abg_true = 0;
8497 band = IEEE80211_24GHZ_BAND;
8498 modulation = IEEE80211_OFDM_MODULATION |
8499 IEEE80211_CCK_MODULATION;
8500 priv->adapter = IPW_2200BG;
8501 priv->ieee->mode = IEEE_G | IEEE_B;
8502 }
8503
8504 priv->ieee->freq_band = band;
8505 priv->ieee->modulation = modulation;
8506
8507 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8508
8509 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8510 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8511
8512 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8513 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8514 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8515
8516 /* If power management is turned on, default to AC mode */
8517 priv->power_mode = IPW_POWER_AC;
8518 priv->tx_power = IPW_TX_POWER_DEFAULT;
8519
8520 return old_mode == priv->ieee->iw_mode;
8521 }
8522
8523 /*
8524 * This file defines the Wireless Extension handlers. It does not
8525 * define any methods of hardware manipulation and relies on the
8526 * functions defined in ipw_main to provide the HW interaction.
8527 *
8528 * The exception to this is the use of the ipw_get_ordinal()
8529 * function used to poll the hardware vs. making unecessary calls.
8530 *
8531 */
8532
8533 static int ipw_wx_get_name(struct net_device *dev,
8534 struct iw_request_info *info,
8535 union iwreq_data *wrqu, char *extra)
8536 {
8537 struct ipw_priv *priv = ieee80211_priv(dev);
8538 mutex_lock(&priv->mutex);
8539 if (priv->status & STATUS_RF_KILL_MASK)
8540 strcpy(wrqu->name, "radio off");
8541 else if (!(priv->status & STATUS_ASSOCIATED))
8542 strcpy(wrqu->name, "unassociated");
8543 else
8544 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8545 ipw_modes[priv->assoc_request.ieee_mode]);
8546 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8547 mutex_unlock(&priv->mutex);
8548 return 0;
8549 }
8550
8551 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8552 {
8553 if (channel == 0) {
8554 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8555 priv->config &= ~CFG_STATIC_CHANNEL;
8556 IPW_DEBUG_ASSOC("Attempting to associate with new "
8557 "parameters.\n");
8558 ipw_associate(priv);
8559 return 0;
8560 }
8561
8562 priv->config |= CFG_STATIC_CHANNEL;
8563
8564 if (priv->channel == channel) {
8565 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8566 channel);
8567 return 0;
8568 }
8569
8570 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8571 priv->channel = channel;
8572
8573 #ifdef CONFIG_IPW2200_MONITOR
8574 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8575 int i;
8576 if (priv->status & STATUS_SCANNING) {
8577 IPW_DEBUG_SCAN("Scan abort triggered due to "
8578 "channel change.\n");
8579 ipw_abort_scan(priv);
8580 }
8581
8582 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8583 udelay(10);
8584
8585 if (priv->status & STATUS_SCANNING)
8586 IPW_DEBUG_SCAN("Still scanning...\n");
8587 else
8588 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8589 1000 - i);
8590
8591 return 0;
8592 }
8593 #endif /* CONFIG_IPW2200_MONITOR */
8594
8595 /* Network configuration changed -- force [re]association */
8596 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8597 if (!ipw_disassociate(priv))
8598 ipw_associate(priv);
8599
8600 return 0;
8601 }
8602
8603 static int ipw_wx_set_freq(struct net_device *dev,
8604 struct iw_request_info *info,
8605 union iwreq_data *wrqu, char *extra)
8606 {
8607 struct ipw_priv *priv = ieee80211_priv(dev);
8608 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8609 struct iw_freq *fwrq = &wrqu->freq;
8610 int ret = 0, i;
8611 u8 channel, flags;
8612 int band;
8613
8614 if (fwrq->m == 0) {
8615 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8616 mutex_lock(&priv->mutex);
8617 ret = ipw_set_channel(priv, 0);
8618 mutex_unlock(&priv->mutex);
8619 return ret;
8620 }
8621 /* if setting by freq convert to channel */
8622 if (fwrq->e == 1) {
8623 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8624 if (channel == 0)
8625 return -EINVAL;
8626 } else
8627 channel = fwrq->m;
8628
8629 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8630 return -EINVAL;
8631
8632 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8633 i = ieee80211_channel_to_index(priv->ieee, channel);
8634 if (i == -1)
8635 return -EINVAL;
8636
8637 flags = (band == IEEE80211_24GHZ_BAND) ?
8638 geo->bg[i].flags : geo->a[i].flags;
8639 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8640 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8641 return -EINVAL;
8642 }
8643 }
8644
8645 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8646 mutex_lock(&priv->mutex);
8647 ret = ipw_set_channel(priv, channel);
8648 mutex_unlock(&priv->mutex);
8649 return ret;
8650 }
8651
8652 static int ipw_wx_get_freq(struct net_device *dev,
8653 struct iw_request_info *info,
8654 union iwreq_data *wrqu, char *extra)
8655 {
8656 struct ipw_priv *priv = ieee80211_priv(dev);
8657
8658 wrqu->freq.e = 0;
8659
8660 /* If we are associated, trying to associate, or have a statically
8661 * configured CHANNEL then return that; otherwise return ANY */
8662 mutex_lock(&priv->mutex);
8663 if (priv->config & CFG_STATIC_CHANNEL ||
8664 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8665 int i;
8666
8667 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8668 BUG_ON(i == -1);
8669 wrqu->freq.e = 1;
8670
8671 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8672 case IEEE80211_52GHZ_BAND:
8673 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8674 break;
8675
8676 case IEEE80211_24GHZ_BAND:
8677 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8678 break;
8679
8680 default:
8681 BUG();
8682 }
8683 } else
8684 wrqu->freq.m = 0;
8685
8686 mutex_unlock(&priv->mutex);
8687 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8688 return 0;
8689 }
8690
8691 static int ipw_wx_set_mode(struct net_device *dev,
8692 struct iw_request_info *info,
8693 union iwreq_data *wrqu, char *extra)
8694 {
8695 struct ipw_priv *priv = ieee80211_priv(dev);
8696 int err = 0;
8697
8698 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8699
8700 switch (wrqu->mode) {
8701 #ifdef CONFIG_IPW2200_MONITOR
8702 case IW_MODE_MONITOR:
8703 #endif
8704 case IW_MODE_ADHOC:
8705 case IW_MODE_INFRA:
8706 break;
8707 case IW_MODE_AUTO:
8708 wrqu->mode = IW_MODE_INFRA;
8709 break;
8710 default:
8711 return -EINVAL;
8712 }
8713 if (wrqu->mode == priv->ieee->iw_mode)
8714 return 0;
8715
8716 mutex_lock(&priv->mutex);
8717
8718 ipw_sw_reset(priv, 0);
8719
8720 #ifdef CONFIG_IPW2200_MONITOR
8721 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8722 priv->net_dev->type = ARPHRD_ETHER;
8723
8724 if (wrqu->mode == IW_MODE_MONITOR)
8725 #ifdef CONFIG_IPW2200_RADIOTAP
8726 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8727 #else
8728 priv->net_dev->type = ARPHRD_IEEE80211;
8729 #endif
8730 #endif /* CONFIG_IPW2200_MONITOR */
8731
8732 /* Free the existing firmware and reset the fw_loaded
8733 * flag so ipw_load() will bring in the new firmawre */
8734 free_firmware();
8735
8736 priv->ieee->iw_mode = wrqu->mode;
8737
8738 queue_work(priv->workqueue, &priv->adapter_restart);
8739 mutex_unlock(&priv->mutex);
8740 return err;
8741 }
8742
8743 static int ipw_wx_get_mode(struct net_device *dev,
8744 struct iw_request_info *info,
8745 union iwreq_data *wrqu, char *extra)
8746 {
8747 struct ipw_priv *priv = ieee80211_priv(dev);
8748 mutex_lock(&priv->mutex);
8749 wrqu->mode = priv->ieee->iw_mode;
8750 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8751 mutex_unlock(&priv->mutex);
8752 return 0;
8753 }
8754
8755 /* Values are in microsecond */
8756 static const s32 timeout_duration[] = {
8757 350000,
8758 250000,
8759 75000,
8760 37000,
8761 25000,
8762 };
8763
8764 static const s32 period_duration[] = {
8765 400000,
8766 700000,
8767 1000000,
8768 1000000,
8769 1000000
8770 };
8771
8772 static int ipw_wx_get_range(struct net_device *dev,
8773 struct iw_request_info *info,
8774 union iwreq_data *wrqu, char *extra)
8775 {
8776 struct ipw_priv *priv = ieee80211_priv(dev);
8777 struct iw_range *range = (struct iw_range *)extra;
8778 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8779 int i = 0, j;
8780
8781 wrqu->data.length = sizeof(*range);
8782 memset(range, 0, sizeof(*range));
8783
8784 /* 54Mbs == ~27 Mb/s real (802.11g) */
8785 range->throughput = 27 * 1000 * 1000;
8786
8787 range->max_qual.qual = 100;
8788 /* TODO: Find real max RSSI and stick here */
8789 range->max_qual.level = 0;
8790 range->max_qual.noise = 0;
8791 range->max_qual.updated = 7; /* Updated all three */
8792
8793 range->avg_qual.qual = 70;
8794 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8795 range->avg_qual.level = 0; /* FIXME to real average level */
8796 range->avg_qual.noise = 0;
8797 range->avg_qual.updated = 7; /* Updated all three */
8798 mutex_lock(&priv->mutex);
8799 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8800
8801 for (i = 0; i < range->num_bitrates; i++)
8802 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8803 500000;
8804
8805 range->max_rts = DEFAULT_RTS_THRESHOLD;
8806 range->min_frag = MIN_FRAG_THRESHOLD;
8807 range->max_frag = MAX_FRAG_THRESHOLD;
8808
8809 range->encoding_size[0] = 5;
8810 range->encoding_size[1] = 13;
8811 range->num_encoding_sizes = 2;
8812 range->max_encoding_tokens = WEP_KEYS;
8813
8814 /* Set the Wireless Extension versions */
8815 range->we_version_compiled = WIRELESS_EXT;
8816 range->we_version_source = 18;
8817
8818 i = 0;
8819 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8820 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8821 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8822 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8823 continue;
8824
8825 range->freq[i].i = geo->bg[j].channel;
8826 range->freq[i].m = geo->bg[j].freq * 100000;
8827 range->freq[i].e = 1;
8828 i++;
8829 }
8830 }
8831
8832 if (priv->ieee->mode & IEEE_A) {
8833 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8834 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8835 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8836 continue;
8837
8838 range->freq[i].i = geo->a[j].channel;
8839 range->freq[i].m = geo->a[j].freq * 100000;
8840 range->freq[i].e = 1;
8841 i++;
8842 }
8843 }
8844
8845 range->num_channels = i;
8846 range->num_frequency = i;
8847
8848 mutex_unlock(&priv->mutex);
8849
8850 /* Event capability (kernel + driver) */
8851 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8852 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8853 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8854 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8855 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8856
8857 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8858 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8859
8860 IPW_DEBUG_WX("GET Range\n");
8861 return 0;
8862 }
8863
8864 static int ipw_wx_set_wap(struct net_device *dev,
8865 struct iw_request_info *info,
8866 union iwreq_data *wrqu, char *extra)
8867 {
8868 struct ipw_priv *priv = ieee80211_priv(dev);
8869
8870 static const unsigned char any[] = {
8871 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8872 };
8873 static const unsigned char off[] = {
8874 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8875 };
8876
8877 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8878 return -EINVAL;
8879 mutex_lock(&priv->mutex);
8880 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8881 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8882 /* we disable mandatory BSSID association */
8883 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8884 priv->config &= ~CFG_STATIC_BSSID;
8885 IPW_DEBUG_ASSOC("Attempting to associate with new "
8886 "parameters.\n");
8887 ipw_associate(priv);
8888 mutex_unlock(&priv->mutex);
8889 return 0;
8890 }
8891
8892 priv->config |= CFG_STATIC_BSSID;
8893 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8894 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8895 mutex_unlock(&priv->mutex);
8896 return 0;
8897 }
8898
8899 IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8900 MAC_ARG(wrqu->ap_addr.sa_data));
8901
8902 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8903
8904 /* Network configuration changed -- force [re]association */
8905 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8906 if (!ipw_disassociate(priv))
8907 ipw_associate(priv);
8908
8909 mutex_unlock(&priv->mutex);
8910 return 0;
8911 }
8912
8913 static int ipw_wx_get_wap(struct net_device *dev,
8914 struct iw_request_info *info,
8915 union iwreq_data *wrqu, char *extra)
8916 {
8917 struct ipw_priv *priv = ieee80211_priv(dev);
8918 /* If we are associated, trying to associate, or have a statically
8919 * configured BSSID then return that; otherwise return ANY */
8920 mutex_lock(&priv->mutex);
8921 if (priv->config & CFG_STATIC_BSSID ||
8922 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8923 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8924 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8925 } else
8926 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8927
8928 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8929 MAC_ARG(wrqu->ap_addr.sa_data));
8930 mutex_unlock(&priv->mutex);
8931 return 0;
8932 }
8933
8934 static int ipw_wx_set_essid(struct net_device *dev,
8935 struct iw_request_info *info,
8936 union iwreq_data *wrqu, char *extra)
8937 {
8938 struct ipw_priv *priv = ieee80211_priv(dev);
8939 int length;
8940
8941 mutex_lock(&priv->mutex);
8942
8943 if (!wrqu->essid.flags)
8944 {
8945 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8946 ipw_disassociate(priv);
8947 priv->config &= ~CFG_STATIC_ESSID;
8948 ipw_associate(priv);
8949 mutex_unlock(&priv->mutex);
8950 return 0;
8951 }
8952
8953 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8954
8955 priv->config |= CFG_STATIC_ESSID;
8956
8957 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8958 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8959 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8960 mutex_unlock(&priv->mutex);
8961 return 0;
8962 }
8963
8964 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
8965 length);
8966
8967 priv->essid_len = length;
8968 memcpy(priv->essid, extra, priv->essid_len);
8969
8970 /* Network configuration changed -- force [re]association */
8971 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8972 if (!ipw_disassociate(priv))
8973 ipw_associate(priv);
8974
8975 mutex_unlock(&priv->mutex);
8976 return 0;
8977 }
8978
8979 static int ipw_wx_get_essid(struct net_device *dev,
8980 struct iw_request_info *info,
8981 union iwreq_data *wrqu, char *extra)
8982 {
8983 struct ipw_priv *priv = ieee80211_priv(dev);
8984
8985 /* If we are associated, trying to associate, or have a statically
8986 * configured ESSID then return that; otherwise return ANY */
8987 mutex_lock(&priv->mutex);
8988 if (priv->config & CFG_STATIC_ESSID ||
8989 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8990 IPW_DEBUG_WX("Getting essid: '%s'\n",
8991 escape_essid(priv->essid, priv->essid_len));
8992 memcpy(extra, priv->essid, priv->essid_len);
8993 wrqu->essid.length = priv->essid_len;
8994 wrqu->essid.flags = 1; /* active */
8995 } else {
8996 IPW_DEBUG_WX("Getting essid: ANY\n");
8997 wrqu->essid.length = 0;
8998 wrqu->essid.flags = 0; /* active */
8999 }
9000 mutex_unlock(&priv->mutex);
9001 return 0;
9002 }
9003
9004 static int ipw_wx_set_nick(struct net_device *dev,
9005 struct iw_request_info *info,
9006 union iwreq_data *wrqu, char *extra)
9007 {
9008 struct ipw_priv *priv = ieee80211_priv(dev);
9009
9010 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9011 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9012 return -E2BIG;
9013 mutex_lock(&priv->mutex);
9014 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9015 memset(priv->nick, 0, sizeof(priv->nick));
9016 memcpy(priv->nick, extra, wrqu->data.length);
9017 IPW_DEBUG_TRACE("<<\n");
9018 mutex_unlock(&priv->mutex);
9019 return 0;
9020
9021 }
9022
9023 static int ipw_wx_get_nick(struct net_device *dev,
9024 struct iw_request_info *info,
9025 union iwreq_data *wrqu, char *extra)
9026 {
9027 struct ipw_priv *priv = ieee80211_priv(dev);
9028 IPW_DEBUG_WX("Getting nick\n");
9029 mutex_lock(&priv->mutex);
9030 wrqu->data.length = strlen(priv->nick);
9031 memcpy(extra, priv->nick, wrqu->data.length);
9032 wrqu->data.flags = 1; /* active */
9033 mutex_unlock(&priv->mutex);
9034 return 0;
9035 }
9036
9037 static int ipw_wx_set_sens(struct net_device *dev,
9038 struct iw_request_info *info,
9039 union iwreq_data *wrqu, char *extra)
9040 {
9041 struct ipw_priv *priv = ieee80211_priv(dev);
9042 int err = 0;
9043
9044 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9045 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9046 mutex_lock(&priv->mutex);
9047
9048 if (wrqu->sens.fixed == 0)
9049 {
9050 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9051 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9052 goto out;
9053 }
9054 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9055 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9056 err = -EINVAL;
9057 goto out;
9058 }
9059
9060 priv->roaming_threshold = wrqu->sens.value;
9061 priv->disassociate_threshold = 3*wrqu->sens.value;
9062 out:
9063 mutex_unlock(&priv->mutex);
9064 return err;
9065 }
9066
9067 static int ipw_wx_get_sens(struct net_device *dev,
9068 struct iw_request_info *info,
9069 union iwreq_data *wrqu, char *extra)
9070 {
9071 struct ipw_priv *priv = ieee80211_priv(dev);
9072 mutex_lock(&priv->mutex);
9073 wrqu->sens.fixed = 1;
9074 wrqu->sens.value = priv->roaming_threshold;
9075 mutex_unlock(&priv->mutex);
9076
9077 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9078 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9079
9080 return 0;
9081 }
9082
9083 static int ipw_wx_set_rate(struct net_device *dev,
9084 struct iw_request_info *info,
9085 union iwreq_data *wrqu, char *extra)
9086 {
9087 /* TODO: We should use semaphores or locks for access to priv */
9088 struct ipw_priv *priv = ieee80211_priv(dev);
9089 u32 target_rate = wrqu->bitrate.value;
9090 u32 fixed, mask;
9091
9092 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9093 /* value = X, fixed = 1 means only rate X */
9094 /* value = X, fixed = 0 means all rates lower equal X */
9095
9096 if (target_rate == -1) {
9097 fixed = 0;
9098 mask = IEEE80211_DEFAULT_RATES_MASK;
9099 /* Now we should reassociate */
9100 goto apply;
9101 }
9102
9103 mask = 0;
9104 fixed = wrqu->bitrate.fixed;
9105
9106 if (target_rate == 1000000 || !fixed)
9107 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9108 if (target_rate == 1000000)
9109 goto apply;
9110
9111 if (target_rate == 2000000 || !fixed)
9112 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9113 if (target_rate == 2000000)
9114 goto apply;
9115
9116 if (target_rate == 5500000 || !fixed)
9117 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9118 if (target_rate == 5500000)
9119 goto apply;
9120
9121 if (target_rate == 6000000 || !fixed)
9122 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9123 if (target_rate == 6000000)
9124 goto apply;
9125
9126 if (target_rate == 9000000 || !fixed)
9127 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9128 if (target_rate == 9000000)
9129 goto apply;
9130
9131 if (target_rate == 11000000 || !fixed)
9132 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9133 if (target_rate == 11000000)
9134 goto apply;
9135
9136 if (target_rate == 12000000 || !fixed)
9137 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9138 if (target_rate == 12000000)
9139 goto apply;
9140
9141 if (target_rate == 18000000 || !fixed)
9142 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9143 if (target_rate == 18000000)
9144 goto apply;
9145
9146 if (target_rate == 24000000 || !fixed)
9147 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9148 if (target_rate == 24000000)
9149 goto apply;
9150
9151 if (target_rate == 36000000 || !fixed)
9152 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9153 if (target_rate == 36000000)
9154 goto apply;
9155
9156 if (target_rate == 48000000 || !fixed)
9157 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9158 if (target_rate == 48000000)
9159 goto apply;
9160
9161 if (target_rate == 54000000 || !fixed)
9162 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9163 if (target_rate == 54000000)
9164 goto apply;
9165
9166 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9167 return -EINVAL;
9168
9169 apply:
9170 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9171 mask, fixed ? "fixed" : "sub-rates");
9172 mutex_lock(&priv->mutex);
9173 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9174 priv->config &= ~CFG_FIXED_RATE;
9175 ipw_set_fixed_rate(priv, priv->ieee->mode);
9176 } else
9177 priv->config |= CFG_FIXED_RATE;
9178
9179 if (priv->rates_mask == mask) {
9180 IPW_DEBUG_WX("Mask set to current mask.\n");
9181 mutex_unlock(&priv->mutex);
9182 return 0;
9183 }
9184
9185 priv->rates_mask = mask;
9186
9187 /* Network configuration changed -- force [re]association */
9188 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9189 if (!ipw_disassociate(priv))
9190 ipw_associate(priv);
9191
9192 mutex_unlock(&priv->mutex);
9193 return 0;
9194 }
9195
9196 static int ipw_wx_get_rate(struct net_device *dev,
9197 struct iw_request_info *info,
9198 union iwreq_data *wrqu, char *extra)
9199 {
9200 struct ipw_priv *priv = ieee80211_priv(dev);
9201 mutex_lock(&priv->mutex);
9202 wrqu->bitrate.value = priv->last_rate;
9203 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9204 mutex_unlock(&priv->mutex);
9205 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9206 return 0;
9207 }
9208
9209 static int ipw_wx_set_rts(struct net_device *dev,
9210 struct iw_request_info *info,
9211 union iwreq_data *wrqu, char *extra)
9212 {
9213 struct ipw_priv *priv = ieee80211_priv(dev);
9214 mutex_lock(&priv->mutex);
9215 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9216 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9217 else {
9218 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9219 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9220 mutex_unlock(&priv->mutex);
9221 return -EINVAL;
9222 }
9223 priv->rts_threshold = wrqu->rts.value;
9224 }
9225
9226 ipw_send_rts_threshold(priv, priv->rts_threshold);
9227 mutex_unlock(&priv->mutex);
9228 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9229 return 0;
9230 }
9231
9232 static int ipw_wx_get_rts(struct net_device *dev,
9233 struct iw_request_info *info,
9234 union iwreq_data *wrqu, char *extra)
9235 {
9236 struct ipw_priv *priv = ieee80211_priv(dev);
9237 mutex_lock(&priv->mutex);
9238 wrqu->rts.value = priv->rts_threshold;
9239 wrqu->rts.fixed = 0; /* no auto select */
9240 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9241 mutex_unlock(&priv->mutex);
9242 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9243 return 0;
9244 }
9245
9246 static int ipw_wx_set_txpow(struct net_device *dev,
9247 struct iw_request_info *info,
9248 union iwreq_data *wrqu, char *extra)
9249 {
9250 struct ipw_priv *priv = ieee80211_priv(dev);
9251 int err = 0;
9252
9253 mutex_lock(&priv->mutex);
9254 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9255 err = -EINPROGRESS;
9256 goto out;
9257 }
9258
9259 if (!wrqu->power.fixed)
9260 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9261
9262 if (wrqu->power.flags != IW_TXPOW_DBM) {
9263 err = -EINVAL;
9264 goto out;
9265 }
9266
9267 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9268 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9269 err = -EINVAL;
9270 goto out;
9271 }
9272
9273 priv->tx_power = wrqu->power.value;
9274 err = ipw_set_tx_power(priv);
9275 out:
9276 mutex_unlock(&priv->mutex);
9277 return err;
9278 }
9279
9280 static int ipw_wx_get_txpow(struct net_device *dev,
9281 struct iw_request_info *info,
9282 union iwreq_data *wrqu, char *extra)
9283 {
9284 struct ipw_priv *priv = ieee80211_priv(dev);
9285 mutex_lock(&priv->mutex);
9286 wrqu->power.value = priv->tx_power;
9287 wrqu->power.fixed = 1;
9288 wrqu->power.flags = IW_TXPOW_DBM;
9289 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9290 mutex_unlock(&priv->mutex);
9291
9292 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9293 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9294
9295 return 0;
9296 }
9297
9298 static int ipw_wx_set_frag(struct net_device *dev,
9299 struct iw_request_info *info,
9300 union iwreq_data *wrqu, char *extra)
9301 {
9302 struct ipw_priv *priv = ieee80211_priv(dev);
9303 mutex_lock(&priv->mutex);
9304 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9305 priv->ieee->fts = DEFAULT_FTS;
9306 else {
9307 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9308 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9309 mutex_unlock(&priv->mutex);
9310 return -EINVAL;
9311 }
9312
9313 priv->ieee->fts = wrqu->frag.value & ~0x1;
9314 }
9315
9316 ipw_send_frag_threshold(priv, wrqu->frag.value);
9317 mutex_unlock(&priv->mutex);
9318 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9319 return 0;
9320 }
9321
9322 static int ipw_wx_get_frag(struct net_device *dev,
9323 struct iw_request_info *info,
9324 union iwreq_data *wrqu, char *extra)
9325 {
9326 struct ipw_priv *priv = ieee80211_priv(dev);
9327 mutex_lock(&priv->mutex);
9328 wrqu->frag.value = priv->ieee->fts;
9329 wrqu->frag.fixed = 0; /* no auto select */
9330 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9331 mutex_unlock(&priv->mutex);
9332 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9333
9334 return 0;
9335 }
9336
9337 static int ipw_wx_set_retry(struct net_device *dev,
9338 struct iw_request_info *info,
9339 union iwreq_data *wrqu, char *extra)
9340 {
9341 struct ipw_priv *priv = ieee80211_priv(dev);
9342
9343 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9344 return -EINVAL;
9345
9346 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9347 return 0;
9348
9349 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9350 return -EINVAL;
9351
9352 mutex_lock(&priv->mutex);
9353 if (wrqu->retry.flags & IW_RETRY_SHORT)
9354 priv->short_retry_limit = (u8) wrqu->retry.value;
9355 else if (wrqu->retry.flags & IW_RETRY_LONG)
9356 priv->long_retry_limit = (u8) wrqu->retry.value;
9357 else {
9358 priv->short_retry_limit = (u8) wrqu->retry.value;
9359 priv->long_retry_limit = (u8) wrqu->retry.value;
9360 }
9361
9362 ipw_send_retry_limit(priv, priv->short_retry_limit,
9363 priv->long_retry_limit);
9364 mutex_unlock(&priv->mutex);
9365 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9366 priv->short_retry_limit, priv->long_retry_limit);
9367 return 0;
9368 }
9369
9370 static int ipw_wx_get_retry(struct net_device *dev,
9371 struct iw_request_info *info,
9372 union iwreq_data *wrqu, char *extra)
9373 {
9374 struct ipw_priv *priv = ieee80211_priv(dev);
9375
9376 mutex_lock(&priv->mutex);
9377 wrqu->retry.disabled = 0;
9378
9379 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9380 mutex_unlock(&priv->mutex);
9381 return -EINVAL;
9382 }
9383
9384 if (wrqu->retry.flags & IW_RETRY_LONG) {
9385 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9386 wrqu->retry.value = priv->long_retry_limit;
9387 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9388 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9389 wrqu->retry.value = priv->short_retry_limit;
9390 } else {
9391 wrqu->retry.flags = IW_RETRY_LIMIT;
9392 wrqu->retry.value = priv->short_retry_limit;
9393 }
9394 mutex_unlock(&priv->mutex);
9395
9396 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9397
9398 return 0;
9399 }
9400
9401 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9402 int essid_len)
9403 {
9404 struct ipw_scan_request_ext scan;
9405 int err = 0, scan_type;
9406
9407 if (!(priv->status & STATUS_INIT) ||
9408 (priv->status & STATUS_EXIT_PENDING))
9409 return 0;
9410
9411 mutex_lock(&priv->mutex);
9412
9413 if (priv->status & STATUS_RF_KILL_MASK) {
9414 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9415 priv->status |= STATUS_SCAN_PENDING;
9416 goto done;
9417 }
9418
9419 IPW_DEBUG_HC("starting request direct scan!\n");
9420
9421 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9422 /* We should not sleep here; otherwise we will block most
9423 * of the system (for instance, we hold rtnl_lock when we
9424 * get here).
9425 */
9426 err = -EAGAIN;
9427 goto done;
9428 }
9429 memset(&scan, 0, sizeof(scan));
9430
9431 if (priv->config & CFG_SPEED_SCAN)
9432 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9433 cpu_to_le16(30);
9434 else
9435 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9436 cpu_to_le16(20);
9437
9438 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9439 cpu_to_le16(20);
9440 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9441 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9442
9443 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9444
9445 err = ipw_send_ssid(priv, essid, essid_len);
9446 if (err) {
9447 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9448 goto done;
9449 }
9450 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9451
9452 ipw_add_scan_channels(priv, &scan, scan_type);
9453
9454 err = ipw_send_scan_request_ext(priv, &scan);
9455 if (err) {
9456 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9457 goto done;
9458 }
9459
9460 priv->status |= STATUS_SCANNING;
9461
9462 done:
9463 mutex_unlock(&priv->mutex);
9464 return err;
9465 }
9466
9467 static int ipw_wx_set_scan(struct net_device *dev,
9468 struct iw_request_info *info,
9469 union iwreq_data *wrqu, char *extra)
9470 {
9471 struct ipw_priv *priv = ieee80211_priv(dev);
9472 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9473
9474 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9475 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9476 ipw_request_direct_scan(priv, req->essid,
9477 req->essid_len);
9478 return 0;
9479 }
9480 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9481 queue_work(priv->workqueue,
9482 &priv->request_passive_scan);
9483 return 0;
9484 }
9485 }
9486
9487 IPW_DEBUG_WX("Start scan\n");
9488
9489 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9490
9491 return 0;
9492 }
9493
9494 static int ipw_wx_get_scan(struct net_device *dev,
9495 struct iw_request_info *info,
9496 union iwreq_data *wrqu, char *extra)
9497 {
9498 struct ipw_priv *priv = ieee80211_priv(dev);
9499 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9500 }
9501
9502 static int ipw_wx_set_encode(struct net_device *dev,
9503 struct iw_request_info *info,
9504 union iwreq_data *wrqu, char *key)
9505 {
9506 struct ipw_priv *priv = ieee80211_priv(dev);
9507 int ret;
9508 u32 cap = priv->capability;
9509
9510 mutex_lock(&priv->mutex);
9511 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9512
9513 /* In IBSS mode, we need to notify the firmware to update
9514 * the beacon info after we changed the capability. */
9515 if (cap != priv->capability &&
9516 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9517 priv->status & STATUS_ASSOCIATED)
9518 ipw_disassociate(priv);
9519
9520 mutex_unlock(&priv->mutex);
9521 return ret;
9522 }
9523
9524 static int ipw_wx_get_encode(struct net_device *dev,
9525 struct iw_request_info *info,
9526 union iwreq_data *wrqu, char *key)
9527 {
9528 struct ipw_priv *priv = ieee80211_priv(dev);
9529 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9530 }
9531
9532 static int ipw_wx_set_power(struct net_device *dev,
9533 struct iw_request_info *info,
9534 union iwreq_data *wrqu, char *extra)
9535 {
9536 struct ipw_priv *priv = ieee80211_priv(dev);
9537 int err;
9538 mutex_lock(&priv->mutex);
9539 if (wrqu->power.disabled) {
9540 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9541 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9542 if (err) {
9543 IPW_DEBUG_WX("failed setting power mode.\n");
9544 mutex_unlock(&priv->mutex);
9545 return err;
9546 }
9547 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9548 mutex_unlock(&priv->mutex);
9549 return 0;
9550 }
9551
9552 switch (wrqu->power.flags & IW_POWER_MODE) {
9553 case IW_POWER_ON: /* If not specified */
9554 case IW_POWER_MODE: /* If set all mask */
9555 case IW_POWER_ALL_R: /* If explicitely state all */
9556 break;
9557 default: /* Otherwise we don't support it */
9558 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9559 wrqu->power.flags);
9560 mutex_unlock(&priv->mutex);
9561 return -EOPNOTSUPP;
9562 }
9563
9564 /* If the user hasn't specified a power management mode yet, default
9565 * to BATTERY */
9566 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9567 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9568 else
9569 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9570 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9571 if (err) {
9572 IPW_DEBUG_WX("failed setting power mode.\n");
9573 mutex_unlock(&priv->mutex);
9574 return err;
9575 }
9576
9577 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9578 mutex_unlock(&priv->mutex);
9579 return 0;
9580 }
9581
9582 static int ipw_wx_get_power(struct net_device *dev,
9583 struct iw_request_info *info,
9584 union iwreq_data *wrqu, char *extra)
9585 {
9586 struct ipw_priv *priv = ieee80211_priv(dev);
9587 mutex_lock(&priv->mutex);
9588 if (!(priv->power_mode & IPW_POWER_ENABLED))
9589 wrqu->power.disabled = 1;
9590 else
9591 wrqu->power.disabled = 0;
9592
9593 mutex_unlock(&priv->mutex);
9594 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9595
9596 return 0;
9597 }
9598
9599 static int ipw_wx_set_powermode(struct net_device *dev,
9600 struct iw_request_info *info,
9601 union iwreq_data *wrqu, char *extra)
9602 {
9603 struct ipw_priv *priv = ieee80211_priv(dev);
9604 int mode = *(int *)extra;
9605 int err;
9606 mutex_lock(&priv->mutex);
9607 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9608 mode = IPW_POWER_AC;
9609 priv->power_mode = mode;
9610 } else {
9611 priv->power_mode = IPW_POWER_ENABLED | mode;
9612 }
9613
9614 if (priv->power_mode != mode) {
9615 err = ipw_send_power_mode(priv, mode);
9616
9617 if (err) {
9618 IPW_DEBUG_WX("failed setting power mode.\n");
9619 mutex_unlock(&priv->mutex);
9620 return err;
9621 }
9622 }
9623 mutex_unlock(&priv->mutex);
9624 return 0;
9625 }
9626
9627 #define MAX_WX_STRING 80
9628 static int ipw_wx_get_powermode(struct net_device *dev,
9629 struct iw_request_info *info,
9630 union iwreq_data *wrqu, char *extra)
9631 {
9632 struct ipw_priv *priv = ieee80211_priv(dev);
9633 int level = IPW_POWER_LEVEL(priv->power_mode);
9634 char *p = extra;
9635
9636 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9637
9638 switch (level) {
9639 case IPW_POWER_AC:
9640 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9641 break;
9642 case IPW_POWER_BATTERY:
9643 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9644 break;
9645 default:
9646 p += snprintf(p, MAX_WX_STRING - (p - extra),
9647 "(Timeout %dms, Period %dms)",
9648 timeout_duration[level - 1] / 1000,
9649 period_duration[level - 1] / 1000);
9650 }
9651
9652 if (!(priv->power_mode & IPW_POWER_ENABLED))
9653 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9654
9655 wrqu->data.length = p - extra + 1;
9656
9657 return 0;
9658 }
9659
9660 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9661 struct iw_request_info *info,
9662 union iwreq_data *wrqu, char *extra)
9663 {
9664 struct ipw_priv *priv = ieee80211_priv(dev);
9665 int mode = *(int *)extra;
9666 u8 band = 0, modulation = 0;
9667
9668 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9669 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9670 return -EINVAL;
9671 }
9672 mutex_lock(&priv->mutex);
9673 if (priv->adapter == IPW_2915ABG) {
9674 priv->ieee->abg_true = 1;
9675 if (mode & IEEE_A) {
9676 band |= IEEE80211_52GHZ_BAND;
9677 modulation |= IEEE80211_OFDM_MODULATION;
9678 } else
9679 priv->ieee->abg_true = 0;
9680 } else {
9681 if (mode & IEEE_A) {
9682 IPW_WARNING("Attempt to set 2200BG into "
9683 "802.11a mode\n");
9684 mutex_unlock(&priv->mutex);
9685 return -EINVAL;
9686 }
9687
9688 priv->ieee->abg_true = 0;
9689 }
9690
9691 if (mode & IEEE_B) {
9692 band |= IEEE80211_24GHZ_BAND;
9693 modulation |= IEEE80211_CCK_MODULATION;
9694 } else
9695 priv->ieee->abg_true = 0;
9696
9697 if (mode & IEEE_G) {
9698 band |= IEEE80211_24GHZ_BAND;
9699 modulation |= IEEE80211_OFDM_MODULATION;
9700 } else
9701 priv->ieee->abg_true = 0;
9702
9703 priv->ieee->mode = mode;
9704 priv->ieee->freq_band = band;
9705 priv->ieee->modulation = modulation;
9706 init_supported_rates(priv, &priv->rates);
9707
9708 /* Network configuration changed -- force [re]association */
9709 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9710 if (!ipw_disassociate(priv)) {
9711 ipw_send_supported_rates(priv, &priv->rates);
9712 ipw_associate(priv);
9713 }
9714
9715 /* Update the band LEDs */
9716 ipw_led_band_on(priv);
9717
9718 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9719 mode & IEEE_A ? 'a' : '.',
9720 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9721 mutex_unlock(&priv->mutex);
9722 return 0;
9723 }
9724
9725 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9726 struct iw_request_info *info,
9727 union iwreq_data *wrqu, char *extra)
9728 {
9729 struct ipw_priv *priv = ieee80211_priv(dev);
9730 mutex_lock(&priv->mutex);
9731 switch (priv->ieee->mode) {
9732 case IEEE_A:
9733 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9734 break;
9735 case IEEE_B:
9736 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9737 break;
9738 case IEEE_A | IEEE_B:
9739 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9740 break;
9741 case IEEE_G:
9742 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9743 break;
9744 case IEEE_A | IEEE_G:
9745 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9746 break;
9747 case IEEE_B | IEEE_G:
9748 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9749 break;
9750 case IEEE_A | IEEE_B | IEEE_G:
9751 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9752 break;
9753 default:
9754 strncpy(extra, "unknown", MAX_WX_STRING);
9755 break;
9756 }
9757
9758 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9759
9760 wrqu->data.length = strlen(extra) + 1;
9761 mutex_unlock(&priv->mutex);
9762
9763 return 0;
9764 }
9765
9766 static int ipw_wx_set_preamble(struct net_device *dev,
9767 struct iw_request_info *info,
9768 union iwreq_data *wrqu, char *extra)
9769 {
9770 struct ipw_priv *priv = ieee80211_priv(dev);
9771 int mode = *(int *)extra;
9772 mutex_lock(&priv->mutex);
9773 /* Switching from SHORT -> LONG requires a disassociation */
9774 if (mode == 1) {
9775 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9776 priv->config |= CFG_PREAMBLE_LONG;
9777
9778 /* Network configuration changed -- force [re]association */
9779 IPW_DEBUG_ASSOC
9780 ("[re]association triggered due to preamble change.\n");
9781 if (!ipw_disassociate(priv))
9782 ipw_associate(priv);
9783 }
9784 goto done;
9785 }
9786
9787 if (mode == 0) {
9788 priv->config &= ~CFG_PREAMBLE_LONG;
9789 goto done;
9790 }
9791 mutex_unlock(&priv->mutex);
9792 return -EINVAL;
9793
9794 done:
9795 mutex_unlock(&priv->mutex);
9796 return 0;
9797 }
9798
9799 static int ipw_wx_get_preamble(struct net_device *dev,
9800 struct iw_request_info *info,
9801 union iwreq_data *wrqu, char *extra)
9802 {
9803 struct ipw_priv *priv = ieee80211_priv(dev);
9804 mutex_lock(&priv->mutex);
9805 if (priv->config & CFG_PREAMBLE_LONG)
9806 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9807 else
9808 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9809 mutex_unlock(&priv->mutex);
9810 return 0;
9811 }
9812
9813 #ifdef CONFIG_IPW2200_MONITOR
9814 static int ipw_wx_set_monitor(struct net_device *dev,
9815 struct iw_request_info *info,
9816 union iwreq_data *wrqu, char *extra)
9817 {
9818 struct ipw_priv *priv = ieee80211_priv(dev);
9819 int *parms = (int *)extra;
9820 int enable = (parms[0] > 0);
9821 mutex_lock(&priv->mutex);
9822 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9823 if (enable) {
9824 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9825 #ifdef CONFIG_IPW2200_RADIOTAP
9826 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9827 #else
9828 priv->net_dev->type = ARPHRD_IEEE80211;
9829 #endif
9830 queue_work(priv->workqueue, &priv->adapter_restart);
9831 }
9832
9833 ipw_set_channel(priv, parms[1]);
9834 } else {
9835 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9836 mutex_unlock(&priv->mutex);
9837 return 0;
9838 }
9839 priv->net_dev->type = ARPHRD_ETHER;
9840 queue_work(priv->workqueue, &priv->adapter_restart);
9841 }
9842 mutex_unlock(&priv->mutex);
9843 return 0;
9844 }
9845
9846 #endif /* CONFIG_IPW2200_MONITOR */
9847
9848 static int ipw_wx_reset(struct net_device *dev,
9849 struct iw_request_info *info,
9850 union iwreq_data *wrqu, char *extra)
9851 {
9852 struct ipw_priv *priv = ieee80211_priv(dev);
9853 IPW_DEBUG_WX("RESET\n");
9854 queue_work(priv->workqueue, &priv->adapter_restart);
9855 return 0;
9856 }
9857
9858 static int ipw_wx_sw_reset(struct net_device *dev,
9859 struct iw_request_info *info,
9860 union iwreq_data *wrqu, char *extra)
9861 {
9862 struct ipw_priv *priv = ieee80211_priv(dev);
9863 union iwreq_data wrqu_sec = {
9864 .encoding = {
9865 .flags = IW_ENCODE_DISABLED,
9866 },
9867 };
9868 int ret;
9869
9870 IPW_DEBUG_WX("SW_RESET\n");
9871
9872 mutex_lock(&priv->mutex);
9873
9874 ret = ipw_sw_reset(priv, 2);
9875 if (!ret) {
9876 free_firmware();
9877 ipw_adapter_restart(priv);
9878 }
9879
9880 /* The SW reset bit might have been toggled on by the 'disable'
9881 * module parameter, so take appropriate action */
9882 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9883
9884 mutex_unlock(&priv->mutex);
9885 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9886 mutex_lock(&priv->mutex);
9887
9888 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9889 /* Configuration likely changed -- force [re]association */
9890 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9891 "reset.\n");
9892 if (!ipw_disassociate(priv))
9893 ipw_associate(priv);
9894 }
9895
9896 mutex_unlock(&priv->mutex);
9897
9898 return 0;
9899 }
9900
9901 /* Rebase the WE IOCTLs to zero for the handler array */
9902 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9903 static iw_handler ipw_wx_handlers[] = {
9904 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9905 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9906 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9907 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9908 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9909 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9910 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9911 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9912 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9913 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9914 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9915 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9916 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9917 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9918 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9919 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9920 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9921 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9922 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9923 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9924 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9925 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9926 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9927 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9928 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9929 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9930 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9931 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9932 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9933 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9934 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9935 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9936 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9937 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9938 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9939 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9940 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9941 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9942 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9943 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9944 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9945 };
9946
9947 enum {
9948 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9949 IPW_PRIV_GET_POWER,
9950 IPW_PRIV_SET_MODE,
9951 IPW_PRIV_GET_MODE,
9952 IPW_PRIV_SET_PREAMBLE,
9953 IPW_PRIV_GET_PREAMBLE,
9954 IPW_PRIV_RESET,
9955 IPW_PRIV_SW_RESET,
9956 #ifdef CONFIG_IPW2200_MONITOR
9957 IPW_PRIV_SET_MONITOR,
9958 #endif
9959 };
9960
9961 static struct iw_priv_args ipw_priv_args[] = {
9962 {
9963 .cmd = IPW_PRIV_SET_POWER,
9964 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9965 .name = "set_power"},
9966 {
9967 .cmd = IPW_PRIV_GET_POWER,
9968 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9969 .name = "get_power"},
9970 {
9971 .cmd = IPW_PRIV_SET_MODE,
9972 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9973 .name = "set_mode"},
9974 {
9975 .cmd = IPW_PRIV_GET_MODE,
9976 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9977 .name = "get_mode"},
9978 {
9979 .cmd = IPW_PRIV_SET_PREAMBLE,
9980 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9981 .name = "set_preamble"},
9982 {
9983 .cmd = IPW_PRIV_GET_PREAMBLE,
9984 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9985 .name = "get_preamble"},
9986 {
9987 IPW_PRIV_RESET,
9988 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9989 {
9990 IPW_PRIV_SW_RESET,
9991 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9992 #ifdef CONFIG_IPW2200_MONITOR
9993 {
9994 IPW_PRIV_SET_MONITOR,
9995 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9996 #endif /* CONFIG_IPW2200_MONITOR */
9997 };
9998
9999 static iw_handler ipw_priv_handler[] = {
10000 ipw_wx_set_powermode,
10001 ipw_wx_get_powermode,
10002 ipw_wx_set_wireless_mode,
10003 ipw_wx_get_wireless_mode,
10004 ipw_wx_set_preamble,
10005 ipw_wx_get_preamble,
10006 ipw_wx_reset,
10007 ipw_wx_sw_reset,
10008 #ifdef CONFIG_IPW2200_MONITOR
10009 ipw_wx_set_monitor,
10010 #endif
10011 };
10012
10013 static struct iw_handler_def ipw_wx_handler_def = {
10014 .standard = ipw_wx_handlers,
10015 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10016 .num_private = ARRAY_SIZE(ipw_priv_handler),
10017 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10018 .private = ipw_priv_handler,
10019 .private_args = ipw_priv_args,
10020 .get_wireless_stats = ipw_get_wireless_stats,
10021 };
10022
10023 /*
10024 * Get wireless statistics.
10025 * Called by /proc/net/wireless
10026 * Also called by SIOCGIWSTATS
10027 */
10028 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10029 {
10030 struct ipw_priv *priv = ieee80211_priv(dev);
10031 struct iw_statistics *wstats;
10032
10033 wstats = &priv->wstats;
10034
10035 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10036 * netdev->get_wireless_stats seems to be called before fw is
10037 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10038 * and associated; if not associcated, the values are all meaningless
10039 * anyway, so set them all to NULL and INVALID */
10040 if (!(priv->status & STATUS_ASSOCIATED)) {
10041 wstats->miss.beacon = 0;
10042 wstats->discard.retries = 0;
10043 wstats->qual.qual = 0;
10044 wstats->qual.level = 0;
10045 wstats->qual.noise = 0;
10046 wstats->qual.updated = 7;
10047 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10048 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10049 return wstats;
10050 }
10051
10052 wstats->qual.qual = priv->quality;
10053 wstats->qual.level = priv->exp_avg_rssi;
10054 wstats->qual.noise = priv->exp_avg_noise;
10055 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10056 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10057
10058 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10059 wstats->discard.retries = priv->last_tx_failures;
10060 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10061
10062 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10063 goto fail_get_ordinal;
10064 wstats->discard.retries += tx_retry; */
10065
10066 return wstats;
10067 }
10068
10069 /* net device stuff */
10070
10071 static void init_sys_config(struct ipw_sys_config *sys_config)
10072 {
10073 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10074 sys_config->bt_coexistence = 0;
10075 sys_config->answer_broadcast_ssid_probe = 0;
10076 sys_config->accept_all_data_frames = 0;
10077 sys_config->accept_non_directed_frames = 1;
10078 sys_config->exclude_unicast_unencrypted = 0;
10079 sys_config->disable_unicast_decryption = 1;
10080 sys_config->exclude_multicast_unencrypted = 0;
10081 sys_config->disable_multicast_decryption = 1;
10082 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10083 antenna = CFG_SYS_ANTENNA_BOTH;
10084 sys_config->antenna_diversity = antenna;
10085 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10086 sys_config->dot11g_auto_detection = 0;
10087 sys_config->enable_cts_to_self = 0;
10088 sys_config->bt_coexist_collision_thr = 0;
10089 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10090 sys_config->silence_threshold = 0x1e;
10091 }
10092
10093 static int ipw_net_open(struct net_device *dev)
10094 {
10095 struct ipw_priv *priv = ieee80211_priv(dev);
10096 IPW_DEBUG_INFO("dev->open\n");
10097 /* we should be verifying the device is ready to be opened */
10098 mutex_lock(&priv->mutex);
10099 if (!(priv->status & STATUS_RF_KILL_MASK) &&
10100 (priv->status & STATUS_ASSOCIATED))
10101 netif_start_queue(dev);
10102 mutex_unlock(&priv->mutex);
10103 return 0;
10104 }
10105
10106 static int ipw_net_stop(struct net_device *dev)
10107 {
10108 IPW_DEBUG_INFO("dev->close\n");
10109 netif_stop_queue(dev);
10110 return 0;
10111 }
10112
10113 /*
10114 todo:
10115
10116 modify to send one tfd per fragment instead of using chunking. otherwise
10117 we need to heavily modify the ieee80211_skb_to_txb.
10118 */
10119
10120 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10121 int pri)
10122 {
10123 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10124 txb->fragments[0]->data;
10125 int i = 0;
10126 struct tfd_frame *tfd;
10127 #ifdef CONFIG_IPW2200_QOS
10128 int tx_id = ipw_get_tx_queue_number(priv, pri);
10129 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10130 #else
10131 struct clx2_tx_queue *txq = &priv->txq[0];
10132 #endif
10133 struct clx2_queue *q = &txq->q;
10134 u8 id, hdr_len, unicast;
10135 u16 remaining_bytes;
10136 int fc;
10137
10138 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10139 switch (priv->ieee->iw_mode) {
10140 case IW_MODE_ADHOC:
10141 unicast = !is_multicast_ether_addr(hdr->addr1);
10142 id = ipw_find_station(priv, hdr->addr1);
10143 if (id == IPW_INVALID_STATION) {
10144 id = ipw_add_station(priv, hdr->addr1);
10145 if (id == IPW_INVALID_STATION) {
10146 IPW_WARNING("Attempt to send data to "
10147 "invalid cell: " MAC_FMT "\n",
10148 MAC_ARG(hdr->addr1));
10149 goto drop;
10150 }
10151 }
10152 break;
10153
10154 case IW_MODE_INFRA:
10155 default:
10156 unicast = !is_multicast_ether_addr(hdr->addr3);
10157 id = 0;
10158 break;
10159 }
10160
10161 tfd = &txq->bd[q->first_empty];
10162 txq->txb[q->first_empty] = txb;
10163 memset(tfd, 0, sizeof(*tfd));
10164 tfd->u.data.station_number = id;
10165
10166 tfd->control_flags.message_type = TX_FRAME_TYPE;
10167 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10168
10169 tfd->u.data.cmd_id = DINO_CMD_TX;
10170 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10171 remaining_bytes = txb->payload_size;
10172
10173 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10174 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10175 else
10176 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10177
10178 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10179 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10180
10181 fc = le16_to_cpu(hdr->frame_ctl);
10182 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10183
10184 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10185
10186 if (likely(unicast))
10187 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10188
10189 if (txb->encrypted && !priv->ieee->host_encrypt) {
10190 switch (priv->ieee->sec.level) {
10191 case SEC_LEVEL_3:
10192 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10193 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10194 /* XXX: ACK flag must be set for CCMP even if it
10195 * is a multicast/broadcast packet, because CCMP
10196 * group communication encrypted by GTK is
10197 * actually done by the AP. */
10198 if (!unicast)
10199 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10200
10201 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10202 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10203 tfd->u.data.key_index = 0;
10204 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10205 break;
10206 case SEC_LEVEL_2:
10207 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10208 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10209 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10210 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10211 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10212 break;
10213 case SEC_LEVEL_1:
10214 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10215 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10216 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10217 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10218 40)
10219 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10220 else
10221 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10222 break;
10223 case SEC_LEVEL_0:
10224 break;
10225 default:
10226 printk(KERN_ERR "Unknow security level %d\n",
10227 priv->ieee->sec.level);
10228 break;
10229 }
10230 } else
10231 /* No hardware encryption */
10232 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10233
10234 #ifdef CONFIG_IPW2200_QOS
10235 if (fc & IEEE80211_STYPE_QOS_DATA)
10236 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10237 #endif /* CONFIG_IPW2200_QOS */
10238
10239 /* payload */
10240 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10241 txb->nr_frags));
10242 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10243 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10244 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10245 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10246 i, le32_to_cpu(tfd->u.data.num_chunks),
10247 txb->fragments[i]->len - hdr_len);
10248 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10249 i, tfd->u.data.num_chunks,
10250 txb->fragments[i]->len - hdr_len);
10251 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10252 txb->fragments[i]->len - hdr_len);
10253
10254 tfd->u.data.chunk_ptr[i] =
10255 cpu_to_le32(pci_map_single
10256 (priv->pci_dev,
10257 txb->fragments[i]->data + hdr_len,
10258 txb->fragments[i]->len - hdr_len,
10259 PCI_DMA_TODEVICE));
10260 tfd->u.data.chunk_len[i] =
10261 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10262 }
10263
10264 if (i != txb->nr_frags) {
10265 struct sk_buff *skb;
10266 u16 remaining_bytes = 0;
10267 int j;
10268
10269 for (j = i; j < txb->nr_frags; j++)
10270 remaining_bytes += txb->fragments[j]->len - hdr_len;
10271
10272 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10273 remaining_bytes);
10274 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10275 if (skb != NULL) {
10276 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10277 for (j = i; j < txb->nr_frags; j++) {
10278 int size = txb->fragments[j]->len - hdr_len;
10279
10280 printk(KERN_INFO "Adding frag %d %d...\n",
10281 j, size);
10282 memcpy(skb_put(skb, size),
10283 txb->fragments[j]->data + hdr_len, size);
10284 }
10285 dev_kfree_skb_any(txb->fragments[i]);
10286 txb->fragments[i] = skb;
10287 tfd->u.data.chunk_ptr[i] =
10288 cpu_to_le32(pci_map_single
10289 (priv->pci_dev, skb->data,
10290 tfd->u.data.chunk_len[i],
10291 PCI_DMA_TODEVICE));
10292
10293 tfd->u.data.num_chunks =
10294 cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10295 1);
10296 }
10297 }
10298
10299 /* kick DMA */
10300 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10301 ipw_write32(priv, q->reg_w, q->first_empty);
10302
10303 if (ipw_queue_space(q) < q->high_mark)
10304 netif_stop_queue(priv->net_dev);
10305
10306 return NETDEV_TX_OK;
10307
10308 drop:
10309 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10310 ieee80211_txb_free(txb);
10311 return NETDEV_TX_OK;
10312 }
10313
10314 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10315 {
10316 struct ipw_priv *priv = ieee80211_priv(dev);
10317 #ifdef CONFIG_IPW2200_QOS
10318 int tx_id = ipw_get_tx_queue_number(priv, pri);
10319 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10320 #else
10321 struct clx2_tx_queue *txq = &priv->txq[0];
10322 #endif /* CONFIG_IPW2200_QOS */
10323
10324 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10325 return 1;
10326
10327 return 0;
10328 }
10329
10330 #ifdef CONFIG_IPW2200_PROMISCUOUS
10331 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10332 struct ieee80211_txb *txb)
10333 {
10334 struct ieee80211_rx_stats dummystats;
10335 struct ieee80211_hdr *hdr;
10336 u8 n;
10337 u16 filter = priv->prom_priv->filter;
10338 int hdr_only = 0;
10339
10340 if (filter & IPW_PROM_NO_TX)
10341 return;
10342
10343 memset(&dummystats, 0, sizeof(dummystats));
10344
10345 /* Filtering of fragment chains is done agains the first fragment */
10346 hdr = (void *)txb->fragments[0]->data;
10347 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10348 if (filter & IPW_PROM_NO_MGMT)
10349 return;
10350 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10351 hdr_only = 1;
10352 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10353 if (filter & IPW_PROM_NO_CTL)
10354 return;
10355 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10356 hdr_only = 1;
10357 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10358 if (filter & IPW_PROM_NO_DATA)
10359 return;
10360 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10361 hdr_only = 1;
10362 }
10363
10364 for(n=0; n<txb->nr_frags; ++n) {
10365 struct sk_buff *src = txb->fragments[n];
10366 struct sk_buff *dst;
10367 struct ieee80211_radiotap_header *rt_hdr;
10368 int len;
10369
10370 if (hdr_only) {
10371 hdr = (void *)src->data;
10372 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10373 } else
10374 len = src->len;
10375
10376 dst = alloc_skb(
10377 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10378 if (!dst) continue;
10379
10380 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10381
10382 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10383 rt_hdr->it_pad = 0;
10384 rt_hdr->it_present = 0; /* after all, it's just an idea */
10385 rt_hdr->it_present |= (1 << IEEE80211_RADIOTAP_CHANNEL);
10386
10387 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10388 ieee80211chan2mhz(priv->channel));
10389 if (priv->channel > 14) /* 802.11a */
10390 *(u16*)skb_put(dst, sizeof(u16)) =
10391 cpu_to_le16(IEEE80211_CHAN_OFDM |
10392 IEEE80211_CHAN_5GHZ);
10393 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10394 *(u16*)skb_put(dst, sizeof(u16)) =
10395 cpu_to_le16(IEEE80211_CHAN_CCK |
10396 IEEE80211_CHAN_2GHZ);
10397 else /* 802.11g */
10398 *(u16*)skb_put(dst, sizeof(u16)) =
10399 cpu_to_le16(IEEE80211_CHAN_OFDM |
10400 IEEE80211_CHAN_2GHZ);
10401
10402 rt_hdr->it_len = dst->len;
10403
10404 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10405
10406 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10407 dev_kfree_skb_any(dst);
10408 }
10409 }
10410 #endif
10411
10412 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10413 struct net_device *dev, int pri)
10414 {
10415 struct ipw_priv *priv = ieee80211_priv(dev);
10416 unsigned long flags;
10417 int ret;
10418
10419 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10420 spin_lock_irqsave(&priv->lock, flags);
10421
10422 if (!(priv->status & STATUS_ASSOCIATED)) {
10423 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10424 priv->ieee->stats.tx_carrier_errors++;
10425 netif_stop_queue(dev);
10426 goto fail_unlock;
10427 }
10428
10429 #ifdef CONFIG_IPW2200_PROMISCUOUS
10430 if (rtap_iface && netif_running(priv->prom_net_dev))
10431 ipw_handle_promiscuous_tx(priv, txb);
10432 #endif
10433
10434 ret = ipw_tx_skb(priv, txb, pri);
10435 if (ret == NETDEV_TX_OK)
10436 __ipw_led_activity_on(priv);
10437 spin_unlock_irqrestore(&priv->lock, flags);
10438
10439 return ret;
10440
10441 fail_unlock:
10442 spin_unlock_irqrestore(&priv->lock, flags);
10443 return 1;
10444 }
10445
10446 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10447 {
10448 struct ipw_priv *priv = ieee80211_priv(dev);
10449
10450 priv->ieee->stats.tx_packets = priv->tx_packets;
10451 priv->ieee->stats.rx_packets = priv->rx_packets;
10452 return &priv->ieee->stats;
10453 }
10454
10455 static void ipw_net_set_multicast_list(struct net_device *dev)
10456 {
10457
10458 }
10459
10460 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10461 {
10462 struct ipw_priv *priv = ieee80211_priv(dev);
10463 struct sockaddr *addr = p;
10464 if (!is_valid_ether_addr(addr->sa_data))
10465 return -EADDRNOTAVAIL;
10466 mutex_lock(&priv->mutex);
10467 priv->config |= CFG_CUSTOM_MAC;
10468 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10469 printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10470 priv->net_dev->name, MAC_ARG(priv->mac_addr));
10471 queue_work(priv->workqueue, &priv->adapter_restart);
10472 mutex_unlock(&priv->mutex);
10473 return 0;
10474 }
10475
10476 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10477 struct ethtool_drvinfo *info)
10478 {
10479 struct ipw_priv *p = ieee80211_priv(dev);
10480 char vers[64];
10481 char date[32];
10482 u32 len;
10483
10484 strcpy(info->driver, DRV_NAME);
10485 strcpy(info->version, DRV_VERSION);
10486
10487 len = sizeof(vers);
10488 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10489 len = sizeof(date);
10490 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10491
10492 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10493 vers, date);
10494 strcpy(info->bus_info, pci_name(p->pci_dev));
10495 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10496 }
10497
10498 static u32 ipw_ethtool_get_link(struct net_device *dev)
10499 {
10500 struct ipw_priv *priv = ieee80211_priv(dev);
10501 return (priv->status & STATUS_ASSOCIATED) != 0;
10502 }
10503
10504 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10505 {
10506 return IPW_EEPROM_IMAGE_SIZE;
10507 }
10508
10509 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10510 struct ethtool_eeprom *eeprom, u8 * bytes)
10511 {
10512 struct ipw_priv *p = ieee80211_priv(dev);
10513
10514 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10515 return -EINVAL;
10516 mutex_lock(&p->mutex);
10517 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10518 mutex_unlock(&p->mutex);
10519 return 0;
10520 }
10521
10522 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10523 struct ethtool_eeprom *eeprom, u8 * bytes)
10524 {
10525 struct ipw_priv *p = ieee80211_priv(dev);
10526 int i;
10527
10528 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10529 return -EINVAL;
10530 mutex_lock(&p->mutex);
10531 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10532 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10533 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10534 mutex_unlock(&p->mutex);
10535 return 0;
10536 }
10537
10538 static const struct ethtool_ops ipw_ethtool_ops = {
10539 .get_link = ipw_ethtool_get_link,
10540 .get_drvinfo = ipw_ethtool_get_drvinfo,
10541 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10542 .get_eeprom = ipw_ethtool_get_eeprom,
10543 .set_eeprom = ipw_ethtool_set_eeprom,
10544 };
10545
10546 static irqreturn_t ipw_isr(int irq, void *data)
10547 {
10548 struct ipw_priv *priv = data;
10549 u32 inta, inta_mask;
10550
10551 if (!priv)
10552 return IRQ_NONE;
10553
10554 spin_lock(&priv->irq_lock);
10555
10556 if (!(priv->status & STATUS_INT_ENABLED)) {
10557 /* Shared IRQ */
10558 goto none;
10559 }
10560
10561 inta = ipw_read32(priv, IPW_INTA_RW);
10562 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10563
10564 if (inta == 0xFFFFFFFF) {
10565 /* Hardware disappeared */
10566 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10567 goto none;
10568 }
10569
10570 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10571 /* Shared interrupt */
10572 goto none;
10573 }
10574
10575 /* tell the device to stop sending interrupts */
10576 __ipw_disable_interrupts(priv);
10577
10578 /* ack current interrupts */
10579 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10580 ipw_write32(priv, IPW_INTA_RW, inta);
10581
10582 /* Cache INTA value for our tasklet */
10583 priv->isr_inta = inta;
10584
10585 tasklet_schedule(&priv->irq_tasklet);
10586
10587 spin_unlock(&priv->irq_lock);
10588
10589 return IRQ_HANDLED;
10590 none:
10591 spin_unlock(&priv->irq_lock);
10592 return IRQ_NONE;
10593 }
10594
10595 static void ipw_rf_kill(void *adapter)
10596 {
10597 struct ipw_priv *priv = adapter;
10598 unsigned long flags;
10599
10600 spin_lock_irqsave(&priv->lock, flags);
10601
10602 if (rf_kill_active(priv)) {
10603 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10604 if (priv->workqueue)
10605 queue_delayed_work(priv->workqueue,
10606 &priv->rf_kill, 2 * HZ);
10607 goto exit_unlock;
10608 }
10609
10610 /* RF Kill is now disabled, so bring the device back up */
10611
10612 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10613 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10614 "device\n");
10615
10616 /* we can not do an adapter restart while inside an irq lock */
10617 queue_work(priv->workqueue, &priv->adapter_restart);
10618 } else
10619 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10620 "enabled\n");
10621
10622 exit_unlock:
10623 spin_unlock_irqrestore(&priv->lock, flags);
10624 }
10625
10626 static void ipw_bg_rf_kill(struct work_struct *work)
10627 {
10628 struct ipw_priv *priv =
10629 container_of(work, struct ipw_priv, rf_kill.work);
10630 mutex_lock(&priv->mutex);
10631 ipw_rf_kill(priv);
10632 mutex_unlock(&priv->mutex);
10633 }
10634
10635 static void ipw_link_up(struct ipw_priv *priv)
10636 {
10637 priv->last_seq_num = -1;
10638 priv->last_frag_num = -1;
10639 priv->last_packet_time = 0;
10640
10641 netif_carrier_on(priv->net_dev);
10642 if (netif_queue_stopped(priv->net_dev)) {
10643 IPW_DEBUG_NOTIF("waking queue\n");
10644 netif_wake_queue(priv->net_dev);
10645 } else {
10646 IPW_DEBUG_NOTIF("starting queue\n");
10647 netif_start_queue(priv->net_dev);
10648 }
10649
10650 cancel_delayed_work(&priv->request_scan);
10651 ipw_reset_stats(priv);
10652 /* Ensure the rate is updated immediately */
10653 priv->last_rate = ipw_get_current_rate(priv);
10654 ipw_gather_stats(priv);
10655 ipw_led_link_up(priv);
10656 notify_wx_assoc_event(priv);
10657
10658 if (priv->config & CFG_BACKGROUND_SCAN)
10659 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10660 }
10661
10662 static void ipw_bg_link_up(struct work_struct *work)
10663 {
10664 struct ipw_priv *priv =
10665 container_of(work, struct ipw_priv, link_up);
10666 mutex_lock(&priv->mutex);
10667 ipw_link_up(priv);
10668 mutex_unlock(&priv->mutex);
10669 }
10670
10671 static void ipw_link_down(struct ipw_priv *priv)
10672 {
10673 ipw_led_link_down(priv);
10674 netif_carrier_off(priv->net_dev);
10675 netif_stop_queue(priv->net_dev);
10676 notify_wx_assoc_event(priv);
10677
10678 /* Cancel any queued work ... */
10679 cancel_delayed_work(&priv->request_scan);
10680 cancel_delayed_work(&priv->adhoc_check);
10681 cancel_delayed_work(&priv->gather_stats);
10682
10683 ipw_reset_stats(priv);
10684
10685 if (!(priv->status & STATUS_EXIT_PENDING)) {
10686 /* Queue up another scan... */
10687 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10688 }
10689 }
10690
10691 static void ipw_bg_link_down(struct work_struct *work)
10692 {
10693 struct ipw_priv *priv =
10694 container_of(work, struct ipw_priv, link_down);
10695 mutex_lock(&priv->mutex);
10696 ipw_link_down(priv);
10697 mutex_unlock(&priv->mutex);
10698 }
10699
10700 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10701 {
10702 int ret = 0;
10703
10704 priv->workqueue = create_workqueue(DRV_NAME);
10705 init_waitqueue_head(&priv->wait_command_queue);
10706 init_waitqueue_head(&priv->wait_state);
10707
10708 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10709 INIT_WORK(&priv->associate, ipw_bg_associate);
10710 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10711 INIT_WORK(&priv->system_config, ipw_system_config);
10712 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10713 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10714 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10715 INIT_WORK(&priv->up, ipw_bg_up);
10716 INIT_WORK(&priv->down, ipw_bg_down);
10717 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10718 INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10719 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10720 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10721 INIT_WORK(&priv->roam, ipw_bg_roam);
10722 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10723 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10724 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10725 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10726 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10727 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10728 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10729
10730 #ifdef CONFIG_IPW2200_QOS
10731 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10732 #endif /* CONFIG_IPW2200_QOS */
10733
10734 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10735 ipw_irq_tasklet, (unsigned long)priv);
10736
10737 return ret;
10738 }
10739
10740 static void shim__set_security(struct net_device *dev,
10741 struct ieee80211_security *sec)
10742 {
10743 struct ipw_priv *priv = ieee80211_priv(dev);
10744 int i;
10745 for (i = 0; i < 4; i++) {
10746 if (sec->flags & (1 << i)) {
10747 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10748 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10749 if (sec->key_sizes[i] == 0)
10750 priv->ieee->sec.flags &= ~(1 << i);
10751 else {
10752 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10753 sec->key_sizes[i]);
10754 priv->ieee->sec.flags |= (1 << i);
10755 }
10756 priv->status |= STATUS_SECURITY_UPDATED;
10757 } else if (sec->level != SEC_LEVEL_1)
10758 priv->ieee->sec.flags &= ~(1 << i);
10759 }
10760
10761 if (sec->flags & SEC_ACTIVE_KEY) {
10762 if (sec->active_key <= 3) {
10763 priv->ieee->sec.active_key = sec->active_key;
10764 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10765 } else
10766 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10767 priv->status |= STATUS_SECURITY_UPDATED;
10768 } else
10769 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10770
10771 if ((sec->flags & SEC_AUTH_MODE) &&
10772 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10773 priv->ieee->sec.auth_mode = sec->auth_mode;
10774 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10775 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10776 priv->capability |= CAP_SHARED_KEY;
10777 else
10778 priv->capability &= ~CAP_SHARED_KEY;
10779 priv->status |= STATUS_SECURITY_UPDATED;
10780 }
10781
10782 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10783 priv->ieee->sec.flags |= SEC_ENABLED;
10784 priv->ieee->sec.enabled = sec->enabled;
10785 priv->status |= STATUS_SECURITY_UPDATED;
10786 if (sec->enabled)
10787 priv->capability |= CAP_PRIVACY_ON;
10788 else
10789 priv->capability &= ~CAP_PRIVACY_ON;
10790 }
10791
10792 if (sec->flags & SEC_ENCRYPT)
10793 priv->ieee->sec.encrypt = sec->encrypt;
10794
10795 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10796 priv->ieee->sec.level = sec->level;
10797 priv->ieee->sec.flags |= SEC_LEVEL;
10798 priv->status |= STATUS_SECURITY_UPDATED;
10799 }
10800
10801 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10802 ipw_set_hwcrypto_keys(priv);
10803
10804 /* To match current functionality of ipw2100 (which works well w/
10805 * various supplicants, we don't force a disassociate if the
10806 * privacy capability changes ... */
10807 #if 0
10808 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10809 (((priv->assoc_request.capability &
10810 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10811 (!(priv->assoc_request.capability &
10812 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10813 IPW_DEBUG_ASSOC("Disassociating due to capability "
10814 "change.\n");
10815 ipw_disassociate(priv);
10816 }
10817 #endif
10818 }
10819
10820 static int init_supported_rates(struct ipw_priv *priv,
10821 struct ipw_supported_rates *rates)
10822 {
10823 /* TODO: Mask out rates based on priv->rates_mask */
10824
10825 memset(rates, 0, sizeof(*rates));
10826 /* configure supported rates */
10827 switch (priv->ieee->freq_band) {
10828 case IEEE80211_52GHZ_BAND:
10829 rates->ieee_mode = IPW_A_MODE;
10830 rates->purpose = IPW_RATE_CAPABILITIES;
10831 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10832 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10833 break;
10834
10835 default: /* Mixed or 2.4Ghz */
10836 rates->ieee_mode = IPW_G_MODE;
10837 rates->purpose = IPW_RATE_CAPABILITIES;
10838 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10839 IEEE80211_CCK_DEFAULT_RATES_MASK);
10840 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10841 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10842 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10843 }
10844 break;
10845 }
10846
10847 return 0;
10848 }
10849
10850 static int ipw_config(struct ipw_priv *priv)
10851 {
10852 /* This is only called from ipw_up, which resets/reloads the firmware
10853 so, we don't need to first disable the card before we configure
10854 it */
10855 if (ipw_set_tx_power(priv))
10856 goto error;
10857
10858 /* initialize adapter address */
10859 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10860 goto error;
10861
10862 /* set basic system config settings */
10863 init_sys_config(&priv->sys_config);
10864
10865 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10866 * Does not support BT priority yet (don't abort or defer our Tx) */
10867 if (bt_coexist) {
10868 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10869
10870 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10871 priv->sys_config.bt_coexistence
10872 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10873 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10874 priv->sys_config.bt_coexistence
10875 |= CFG_BT_COEXISTENCE_OOB;
10876 }
10877
10878 #ifdef CONFIG_IPW2200_PROMISCUOUS
10879 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10880 priv->sys_config.accept_all_data_frames = 1;
10881 priv->sys_config.accept_non_directed_frames = 1;
10882 priv->sys_config.accept_all_mgmt_bcpr = 1;
10883 priv->sys_config.accept_all_mgmt_frames = 1;
10884 }
10885 #endif
10886
10887 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10888 priv->sys_config.answer_broadcast_ssid_probe = 1;
10889 else
10890 priv->sys_config.answer_broadcast_ssid_probe = 0;
10891
10892 if (ipw_send_system_config(priv))
10893 goto error;
10894
10895 init_supported_rates(priv, &priv->rates);
10896 if (ipw_send_supported_rates(priv, &priv->rates))
10897 goto error;
10898
10899 /* Set request-to-send threshold */
10900 if (priv->rts_threshold) {
10901 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10902 goto error;
10903 }
10904 #ifdef CONFIG_IPW2200_QOS
10905 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10906 ipw_qos_activate(priv, NULL);
10907 #endif /* CONFIG_IPW2200_QOS */
10908
10909 if (ipw_set_random_seed(priv))
10910 goto error;
10911
10912 /* final state transition to the RUN state */
10913 if (ipw_send_host_complete(priv))
10914 goto error;
10915
10916 priv->status |= STATUS_INIT;
10917
10918 ipw_led_init(priv);
10919 ipw_led_radio_on(priv);
10920 priv->notif_missed_beacons = 0;
10921
10922 /* Set hardware WEP key if it is configured. */
10923 if ((priv->capability & CAP_PRIVACY_ON) &&
10924 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10925 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10926 ipw_set_hwcrypto_keys(priv);
10927
10928 return 0;
10929
10930 error:
10931 return -EIO;
10932 }
10933
10934 /*
10935 * NOTE:
10936 *
10937 * These tables have been tested in conjunction with the
10938 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10939 *
10940 * Altering this values, using it on other hardware, or in geographies
10941 * not intended for resale of the above mentioned Intel adapters has
10942 * not been tested.
10943 *
10944 * Remember to update the table in README.ipw2200 when changing this
10945 * table.
10946 *
10947 */
10948 static const struct ieee80211_geo ipw_geos[] = {
10949 { /* Restricted */
10950 "---",
10951 .bg_channels = 11,
10952 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10953 {2427, 4}, {2432, 5}, {2437, 6},
10954 {2442, 7}, {2447, 8}, {2452, 9},
10955 {2457, 10}, {2462, 11}},
10956 },
10957
10958 { /* Custom US/Canada */
10959 "ZZF",
10960 .bg_channels = 11,
10961 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10962 {2427, 4}, {2432, 5}, {2437, 6},
10963 {2442, 7}, {2447, 8}, {2452, 9},
10964 {2457, 10}, {2462, 11}},
10965 .a_channels = 8,
10966 .a = {{5180, 36},
10967 {5200, 40},
10968 {5220, 44},
10969 {5240, 48},
10970 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10971 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10972 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10973 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10974 },
10975
10976 { /* Rest of World */
10977 "ZZD",
10978 .bg_channels = 13,
10979 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10980 {2427, 4}, {2432, 5}, {2437, 6},
10981 {2442, 7}, {2447, 8}, {2452, 9},
10982 {2457, 10}, {2462, 11}, {2467, 12},
10983 {2472, 13}},
10984 },
10985
10986 { /* Custom USA & Europe & High */
10987 "ZZA",
10988 .bg_channels = 11,
10989 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10990 {2427, 4}, {2432, 5}, {2437, 6},
10991 {2442, 7}, {2447, 8}, {2452, 9},
10992 {2457, 10}, {2462, 11}},
10993 .a_channels = 13,
10994 .a = {{5180, 36},
10995 {5200, 40},
10996 {5220, 44},
10997 {5240, 48},
10998 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10999 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11000 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11001 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11002 {5745, 149},
11003 {5765, 153},
11004 {5785, 157},
11005 {5805, 161},
11006 {5825, 165}},
11007 },
11008
11009 { /* Custom NA & Europe */
11010 "ZZB",
11011 .bg_channels = 11,
11012 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11013 {2427, 4}, {2432, 5}, {2437, 6},
11014 {2442, 7}, {2447, 8}, {2452, 9},
11015 {2457, 10}, {2462, 11}},
11016 .a_channels = 13,
11017 .a = {{5180, 36},
11018 {5200, 40},
11019 {5220, 44},
11020 {5240, 48},
11021 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11022 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11023 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11024 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11025 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11026 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11027 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11028 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11029 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11030 },
11031
11032 { /* Custom Japan */
11033 "ZZC",
11034 .bg_channels = 11,
11035 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11036 {2427, 4}, {2432, 5}, {2437, 6},
11037 {2442, 7}, {2447, 8}, {2452, 9},
11038 {2457, 10}, {2462, 11}},
11039 .a_channels = 4,
11040 .a = {{5170, 34}, {5190, 38},
11041 {5210, 42}, {5230, 46}},
11042 },
11043
11044 { /* Custom */
11045 "ZZM",
11046 .bg_channels = 11,
11047 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11048 {2427, 4}, {2432, 5}, {2437, 6},
11049 {2442, 7}, {2447, 8}, {2452, 9},
11050 {2457, 10}, {2462, 11}},
11051 },
11052
11053 { /* Europe */
11054 "ZZE",
11055 .bg_channels = 13,
11056 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11057 {2427, 4}, {2432, 5}, {2437, 6},
11058 {2442, 7}, {2447, 8}, {2452, 9},
11059 {2457, 10}, {2462, 11}, {2467, 12},
11060 {2472, 13}},
11061 .a_channels = 19,
11062 .a = {{5180, 36},
11063 {5200, 40},
11064 {5220, 44},
11065 {5240, 48},
11066 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11067 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11068 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11069 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11070 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11071 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11072 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11073 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11074 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11075 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11076 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11077 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11078 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11079 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11080 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11081 },
11082
11083 { /* Custom Japan */
11084 "ZZJ",
11085 .bg_channels = 14,
11086 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11087 {2427, 4}, {2432, 5}, {2437, 6},
11088 {2442, 7}, {2447, 8}, {2452, 9},
11089 {2457, 10}, {2462, 11}, {2467, 12},
11090 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11091 .a_channels = 4,
11092 .a = {{5170, 34}, {5190, 38},
11093 {5210, 42}, {5230, 46}},
11094 },
11095
11096 { /* Rest of World */
11097 "ZZR",
11098 .bg_channels = 14,
11099 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11100 {2427, 4}, {2432, 5}, {2437, 6},
11101 {2442, 7}, {2447, 8}, {2452, 9},
11102 {2457, 10}, {2462, 11}, {2467, 12},
11103 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11104 IEEE80211_CH_PASSIVE_ONLY}},
11105 },
11106
11107 { /* High Band */
11108 "ZZH",
11109 .bg_channels = 13,
11110 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11111 {2427, 4}, {2432, 5}, {2437, 6},
11112 {2442, 7}, {2447, 8}, {2452, 9},
11113 {2457, 10}, {2462, 11},
11114 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11115 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11116 .a_channels = 4,
11117 .a = {{5745, 149}, {5765, 153},
11118 {5785, 157}, {5805, 161}},
11119 },
11120
11121 { /* Custom Europe */
11122 "ZZG",
11123 .bg_channels = 13,
11124 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11125 {2427, 4}, {2432, 5}, {2437, 6},
11126 {2442, 7}, {2447, 8}, {2452, 9},
11127 {2457, 10}, {2462, 11},
11128 {2467, 12}, {2472, 13}},
11129 .a_channels = 4,
11130 .a = {{5180, 36}, {5200, 40},
11131 {5220, 44}, {5240, 48}},
11132 },
11133
11134 { /* Europe */
11135 "ZZK",
11136 .bg_channels = 13,
11137 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11138 {2427, 4}, {2432, 5}, {2437, 6},
11139 {2442, 7}, {2447, 8}, {2452, 9},
11140 {2457, 10}, {2462, 11},
11141 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11142 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11143 .a_channels = 24,
11144 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11145 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11146 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11147 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11148 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11149 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11150 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11151 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11152 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11153 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11154 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11155 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11156 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11157 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11158 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11159 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11160 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11161 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11162 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11163 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11164 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11165 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11166 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11167 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11168 },
11169
11170 { /* Europe */
11171 "ZZL",
11172 .bg_channels = 11,
11173 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11174 {2427, 4}, {2432, 5}, {2437, 6},
11175 {2442, 7}, {2447, 8}, {2452, 9},
11176 {2457, 10}, {2462, 11}},
11177 .a_channels = 13,
11178 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11179 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11180 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11181 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11182 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11183 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11184 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11185 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11186 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11187 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11188 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11189 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11190 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11191 }
11192 };
11193
11194 #define MAX_HW_RESTARTS 5
11195 static int ipw_up(struct ipw_priv *priv)
11196 {
11197 int rc, i, j;
11198
11199 if (priv->status & STATUS_EXIT_PENDING)
11200 return -EIO;
11201
11202 if (cmdlog && !priv->cmdlog) {
11203 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11204 GFP_KERNEL);
11205 if (priv->cmdlog == NULL) {
11206 IPW_ERROR("Error allocating %d command log entries.\n",
11207 cmdlog);
11208 return -ENOMEM;
11209 } else {
11210 priv->cmdlog_len = cmdlog;
11211 }
11212 }
11213
11214 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11215 /* Load the microcode, firmware, and eeprom.
11216 * Also start the clocks. */
11217 rc = ipw_load(priv);
11218 if (rc) {
11219 IPW_ERROR("Unable to load firmware: %d\n", rc);
11220 return rc;
11221 }
11222
11223 ipw_init_ordinals(priv);
11224 if (!(priv->config & CFG_CUSTOM_MAC))
11225 eeprom_parse_mac(priv, priv->mac_addr);
11226 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11227
11228 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11229 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11230 ipw_geos[j].name, 3))
11231 break;
11232 }
11233 if (j == ARRAY_SIZE(ipw_geos)) {
11234 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11235 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11236 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11237 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11238 j = 0;
11239 }
11240 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11241 IPW_WARNING("Could not set geography.");
11242 return 0;
11243 }
11244
11245 if (priv->status & STATUS_RF_KILL_SW) {
11246 IPW_WARNING("Radio disabled by module parameter.\n");
11247 return 0;
11248 } else if (rf_kill_active(priv)) {
11249 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11250 "Kill switch must be turned off for "
11251 "wireless networking to work.\n");
11252 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11253 2 * HZ);
11254 return 0;
11255 }
11256
11257 rc = ipw_config(priv);
11258 if (!rc) {
11259 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11260
11261 /* If configure to try and auto-associate, kick
11262 * off a scan. */
11263 queue_delayed_work(priv->workqueue,
11264 &priv->request_scan, 0);
11265
11266 return 0;
11267 }
11268
11269 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11270 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11271 i, MAX_HW_RESTARTS);
11272
11273 /* We had an error bringing up the hardware, so take it
11274 * all the way back down so we can try again */
11275 ipw_down(priv);
11276 }
11277
11278 /* tried to restart and config the device for as long as our
11279 * patience could withstand */
11280 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11281
11282 return -EIO;
11283 }
11284
11285 static void ipw_bg_up(struct work_struct *work)
11286 {
11287 struct ipw_priv *priv =
11288 container_of(work, struct ipw_priv, up);
11289 mutex_lock(&priv->mutex);
11290 ipw_up(priv);
11291 mutex_unlock(&priv->mutex);
11292 }
11293
11294 static void ipw_deinit(struct ipw_priv *priv)
11295 {
11296 int i;
11297
11298 if (priv->status & STATUS_SCANNING) {
11299 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11300 ipw_abort_scan(priv);
11301 }
11302
11303 if (priv->status & STATUS_ASSOCIATED) {
11304 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11305 ipw_disassociate(priv);
11306 }
11307
11308 ipw_led_shutdown(priv);
11309
11310 /* Wait up to 1s for status to change to not scanning and not
11311 * associated (disassociation can take a while for a ful 802.11
11312 * exchange */
11313 for (i = 1000; i && (priv->status &
11314 (STATUS_DISASSOCIATING |
11315 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11316 udelay(10);
11317
11318 if (priv->status & (STATUS_DISASSOCIATING |
11319 STATUS_ASSOCIATED | STATUS_SCANNING))
11320 IPW_DEBUG_INFO("Still associated or scanning...\n");
11321 else
11322 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11323
11324 /* Attempt to disable the card */
11325 ipw_send_card_disable(priv, 0);
11326
11327 priv->status &= ~STATUS_INIT;
11328 }
11329
11330 static void ipw_down(struct ipw_priv *priv)
11331 {
11332 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11333
11334 priv->status |= STATUS_EXIT_PENDING;
11335
11336 if (ipw_is_init(priv))
11337 ipw_deinit(priv);
11338
11339 /* Wipe out the EXIT_PENDING status bit if we are not actually
11340 * exiting the module */
11341 if (!exit_pending)
11342 priv->status &= ~STATUS_EXIT_PENDING;
11343
11344 /* tell the device to stop sending interrupts */
11345 ipw_disable_interrupts(priv);
11346
11347 /* Clear all bits but the RF Kill */
11348 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11349 netif_carrier_off(priv->net_dev);
11350 netif_stop_queue(priv->net_dev);
11351
11352 ipw_stop_nic(priv);
11353
11354 ipw_led_radio_off(priv);
11355 }
11356
11357 static void ipw_bg_down(struct work_struct *work)
11358 {
11359 struct ipw_priv *priv =
11360 container_of(work, struct ipw_priv, down);
11361 mutex_lock(&priv->mutex);
11362 ipw_down(priv);
11363 mutex_unlock(&priv->mutex);
11364 }
11365
11366 /* Called by register_netdev() */
11367 static int ipw_net_init(struct net_device *dev)
11368 {
11369 struct ipw_priv *priv = ieee80211_priv(dev);
11370 mutex_lock(&priv->mutex);
11371
11372 if (ipw_up(priv)) {
11373 mutex_unlock(&priv->mutex);
11374 return -EIO;
11375 }
11376
11377 mutex_unlock(&priv->mutex);
11378 return 0;
11379 }
11380
11381 /* PCI driver stuff */
11382 static struct pci_device_id card_ids[] = {
11383 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11384 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11385 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11386 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11387 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11388 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11389 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11390 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11391 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11392 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11393 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11394 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11395 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11396 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11397 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11398 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11399 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11400 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11401 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11402 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11403 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11404 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11405
11406 /* required last entry */
11407 {0,}
11408 };
11409
11410 MODULE_DEVICE_TABLE(pci, card_ids);
11411
11412 static struct attribute *ipw_sysfs_entries[] = {
11413 &dev_attr_rf_kill.attr,
11414 &dev_attr_direct_dword.attr,
11415 &dev_attr_indirect_byte.attr,
11416 &dev_attr_indirect_dword.attr,
11417 &dev_attr_mem_gpio_reg.attr,
11418 &dev_attr_command_event_reg.attr,
11419 &dev_attr_nic_type.attr,
11420 &dev_attr_status.attr,
11421 &dev_attr_cfg.attr,
11422 &dev_attr_error.attr,
11423 &dev_attr_event_log.attr,
11424 &dev_attr_cmd_log.attr,
11425 &dev_attr_eeprom_delay.attr,
11426 &dev_attr_ucode_version.attr,
11427 &dev_attr_rtc.attr,
11428 &dev_attr_scan_age.attr,
11429 &dev_attr_led.attr,
11430 &dev_attr_speed_scan.attr,
11431 &dev_attr_net_stats.attr,
11432 &dev_attr_channels.attr,
11433 #ifdef CONFIG_IPW2200_PROMISCUOUS
11434 &dev_attr_rtap_iface.attr,
11435 &dev_attr_rtap_filter.attr,
11436 #endif
11437 NULL
11438 };
11439
11440 static struct attribute_group ipw_attribute_group = {
11441 .name = NULL, /* put in device directory */
11442 .attrs = ipw_sysfs_entries,
11443 };
11444
11445 #ifdef CONFIG_IPW2200_PROMISCUOUS
11446 static int ipw_prom_open(struct net_device *dev)
11447 {
11448 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11449 struct ipw_priv *priv = prom_priv->priv;
11450
11451 IPW_DEBUG_INFO("prom dev->open\n");
11452 netif_carrier_off(dev);
11453 netif_stop_queue(dev);
11454
11455 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11456 priv->sys_config.accept_all_data_frames = 1;
11457 priv->sys_config.accept_non_directed_frames = 1;
11458 priv->sys_config.accept_all_mgmt_bcpr = 1;
11459 priv->sys_config.accept_all_mgmt_frames = 1;
11460
11461 ipw_send_system_config(priv);
11462 }
11463
11464 return 0;
11465 }
11466
11467 static int ipw_prom_stop(struct net_device *dev)
11468 {
11469 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11470 struct ipw_priv *priv = prom_priv->priv;
11471
11472 IPW_DEBUG_INFO("prom dev->stop\n");
11473
11474 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11475 priv->sys_config.accept_all_data_frames = 0;
11476 priv->sys_config.accept_non_directed_frames = 0;
11477 priv->sys_config.accept_all_mgmt_bcpr = 0;
11478 priv->sys_config.accept_all_mgmt_frames = 0;
11479
11480 ipw_send_system_config(priv);
11481 }
11482
11483 return 0;
11484 }
11485
11486 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11487 {
11488 IPW_DEBUG_INFO("prom dev->xmit\n");
11489 netif_stop_queue(dev);
11490 return -EOPNOTSUPP;
11491 }
11492
11493 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11494 {
11495 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11496 return &prom_priv->ieee->stats;
11497 }
11498
11499 static int ipw_prom_alloc(struct ipw_priv *priv)
11500 {
11501 int rc = 0;
11502
11503 if (priv->prom_net_dev)
11504 return -EPERM;
11505
11506 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11507 if (priv->prom_net_dev == NULL)
11508 return -ENOMEM;
11509
11510 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11511 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11512 priv->prom_priv->priv = priv;
11513
11514 strcpy(priv->prom_net_dev->name, "rtap%d");
11515
11516 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11517 priv->prom_net_dev->open = ipw_prom_open;
11518 priv->prom_net_dev->stop = ipw_prom_stop;
11519 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11520 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11521
11522 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11523
11524 rc = register_netdev(priv->prom_net_dev);
11525 if (rc) {
11526 free_ieee80211(priv->prom_net_dev);
11527 priv->prom_net_dev = NULL;
11528 return rc;
11529 }
11530
11531 return 0;
11532 }
11533
11534 static void ipw_prom_free(struct ipw_priv *priv)
11535 {
11536 if (!priv->prom_net_dev)
11537 return;
11538
11539 unregister_netdev(priv->prom_net_dev);
11540 free_ieee80211(priv->prom_net_dev);
11541
11542 priv->prom_net_dev = NULL;
11543 }
11544
11545 #endif
11546
11547
11548 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11549 {
11550 int err = 0;
11551 struct net_device *net_dev;
11552 void __iomem *base;
11553 u32 length, val;
11554 struct ipw_priv *priv;
11555 int i;
11556
11557 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11558 if (net_dev == NULL) {
11559 err = -ENOMEM;
11560 goto out;
11561 }
11562
11563 priv = ieee80211_priv(net_dev);
11564 priv->ieee = netdev_priv(net_dev);
11565
11566 priv->net_dev = net_dev;
11567 priv->pci_dev = pdev;
11568 ipw_debug_level = debug;
11569 spin_lock_init(&priv->irq_lock);
11570 spin_lock_init(&priv->lock);
11571 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11572 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11573
11574 mutex_init(&priv->mutex);
11575 if (pci_enable_device(pdev)) {
11576 err = -ENODEV;
11577 goto out_free_ieee80211;
11578 }
11579
11580 pci_set_master(pdev);
11581
11582 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11583 if (!err)
11584 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11585 if (err) {
11586 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11587 goto out_pci_disable_device;
11588 }
11589
11590 pci_set_drvdata(pdev, priv);
11591
11592 err = pci_request_regions(pdev, DRV_NAME);
11593 if (err)
11594 goto out_pci_disable_device;
11595
11596 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11597 * PCI Tx retries from interfering with C3 CPU state */
11598 pci_read_config_dword(pdev, 0x40, &val);
11599 if ((val & 0x0000ff00) != 0)
11600 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11601
11602 length = pci_resource_len(pdev, 0);
11603 priv->hw_len = length;
11604
11605 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11606 if (!base) {
11607 err = -ENODEV;
11608 goto out_pci_release_regions;
11609 }
11610
11611 priv->hw_base = base;
11612 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11613 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11614
11615 err = ipw_setup_deferred_work(priv);
11616 if (err) {
11617 IPW_ERROR("Unable to setup deferred work\n");
11618 goto out_iounmap;
11619 }
11620
11621 ipw_sw_reset(priv, 1);
11622
11623 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11624 if (err) {
11625 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11626 goto out_destroy_workqueue;
11627 }
11628
11629 SET_MODULE_OWNER(net_dev);
11630 SET_NETDEV_DEV(net_dev, &pdev->dev);
11631
11632 mutex_lock(&priv->mutex);
11633
11634 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11635 priv->ieee->set_security = shim__set_security;
11636 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11637
11638 #ifdef CONFIG_IPW2200_QOS
11639 priv->ieee->is_qos_active = ipw_is_qos_active;
11640 priv->ieee->handle_probe_response = ipw_handle_beacon;
11641 priv->ieee->handle_beacon = ipw_handle_probe_response;
11642 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11643 #endif /* CONFIG_IPW2200_QOS */
11644
11645 priv->ieee->perfect_rssi = -20;
11646 priv->ieee->worst_rssi = -85;
11647
11648 net_dev->open = ipw_net_open;
11649 net_dev->stop = ipw_net_stop;
11650 net_dev->init = ipw_net_init;
11651 net_dev->get_stats = ipw_net_get_stats;
11652 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11653 net_dev->set_mac_address = ipw_net_set_mac_address;
11654 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11655 net_dev->wireless_data = &priv->wireless_data;
11656 net_dev->wireless_handlers = &ipw_wx_handler_def;
11657 net_dev->ethtool_ops = &ipw_ethtool_ops;
11658 net_dev->irq = pdev->irq;
11659 net_dev->base_addr = (unsigned long)priv->hw_base;
11660 net_dev->mem_start = pci_resource_start(pdev, 0);
11661 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11662
11663 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11664 if (err) {
11665 IPW_ERROR("failed to create sysfs device attributes\n");
11666 mutex_unlock(&priv->mutex);
11667 goto out_release_irq;
11668 }
11669
11670 mutex_unlock(&priv->mutex);
11671 err = register_netdev(net_dev);
11672 if (err) {
11673 IPW_ERROR("failed to register network device\n");
11674 goto out_remove_sysfs;
11675 }
11676
11677 #ifdef CONFIG_IPW2200_PROMISCUOUS
11678 if (rtap_iface) {
11679 err = ipw_prom_alloc(priv);
11680 if (err) {
11681 IPW_ERROR("Failed to register promiscuous network "
11682 "device (error %d).\n", err);
11683 unregister_netdev(priv->net_dev);
11684 goto out_remove_sysfs;
11685 }
11686 }
11687 #endif
11688
11689 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11690 "channels, %d 802.11a channels)\n",
11691 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11692 priv->ieee->geo.a_channels);
11693
11694 return 0;
11695
11696 out_remove_sysfs:
11697 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11698 out_release_irq:
11699 free_irq(pdev->irq, priv);
11700 out_destroy_workqueue:
11701 destroy_workqueue(priv->workqueue);
11702 priv->workqueue = NULL;
11703 out_iounmap:
11704 iounmap(priv->hw_base);
11705 out_pci_release_regions:
11706 pci_release_regions(pdev);
11707 out_pci_disable_device:
11708 pci_disable_device(pdev);
11709 pci_set_drvdata(pdev, NULL);
11710 out_free_ieee80211:
11711 free_ieee80211(priv->net_dev);
11712 out:
11713 return err;
11714 }
11715
11716 static void ipw_pci_remove(struct pci_dev *pdev)
11717 {
11718 struct ipw_priv *priv = pci_get_drvdata(pdev);
11719 struct list_head *p, *q;
11720 int i;
11721
11722 if (!priv)
11723 return;
11724
11725 mutex_lock(&priv->mutex);
11726
11727 priv->status |= STATUS_EXIT_PENDING;
11728 ipw_down(priv);
11729 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11730
11731 mutex_unlock(&priv->mutex);
11732
11733 unregister_netdev(priv->net_dev);
11734
11735 if (priv->rxq) {
11736 ipw_rx_queue_free(priv, priv->rxq);
11737 priv->rxq = NULL;
11738 }
11739 ipw_tx_queue_free(priv);
11740
11741 if (priv->cmdlog) {
11742 kfree(priv->cmdlog);
11743 priv->cmdlog = NULL;
11744 }
11745 /* ipw_down will ensure that there is no more pending work
11746 * in the workqueue's, so we can safely remove them now. */
11747 cancel_delayed_work(&priv->adhoc_check);
11748 cancel_delayed_work(&priv->gather_stats);
11749 cancel_delayed_work(&priv->request_scan);
11750 cancel_delayed_work(&priv->rf_kill);
11751 cancel_delayed_work(&priv->scan_check);
11752 destroy_workqueue(priv->workqueue);
11753 priv->workqueue = NULL;
11754
11755 /* Free MAC hash list for ADHOC */
11756 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11757 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11758 list_del(p);
11759 kfree(list_entry(p, struct ipw_ibss_seq, list));
11760 }
11761 }
11762
11763 kfree(priv->error);
11764 priv->error = NULL;
11765
11766 #ifdef CONFIG_IPW2200_PROMISCUOUS
11767 ipw_prom_free(priv);
11768 #endif
11769
11770 free_irq(pdev->irq, priv);
11771 iounmap(priv->hw_base);
11772 pci_release_regions(pdev);
11773 pci_disable_device(pdev);
11774 pci_set_drvdata(pdev, NULL);
11775 free_ieee80211(priv->net_dev);
11776 free_firmware();
11777 }
11778
11779 #ifdef CONFIG_PM
11780 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11781 {
11782 struct ipw_priv *priv = pci_get_drvdata(pdev);
11783 struct net_device *dev = priv->net_dev;
11784
11785 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11786
11787 /* Take down the device; powers it off, etc. */
11788 ipw_down(priv);
11789
11790 /* Remove the PRESENT state of the device */
11791 netif_device_detach(dev);
11792
11793 pci_save_state(pdev);
11794 pci_disable_device(pdev);
11795 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11796
11797 return 0;
11798 }
11799
11800 static int ipw_pci_resume(struct pci_dev *pdev)
11801 {
11802 struct ipw_priv *priv = pci_get_drvdata(pdev);
11803 struct net_device *dev = priv->net_dev;
11804 int err;
11805 u32 val;
11806
11807 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11808
11809 pci_set_power_state(pdev, PCI_D0);
11810 err = pci_enable_device(pdev);
11811 if (err) {
11812 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11813 dev->name);
11814 return err;
11815 }
11816 pci_restore_state(pdev);
11817
11818 /*
11819 * Suspend/Resume resets the PCI configuration space, so we have to
11820 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11821 * from interfering with C3 CPU state. pci_restore_state won't help
11822 * here since it only restores the first 64 bytes pci config header.
11823 */
11824 pci_read_config_dword(pdev, 0x40, &val);
11825 if ((val & 0x0000ff00) != 0)
11826 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11827
11828 /* Set the device back into the PRESENT state; this will also wake
11829 * the queue of needed */
11830 netif_device_attach(dev);
11831
11832 /* Bring the device back up */
11833 queue_work(priv->workqueue, &priv->up);
11834
11835 return 0;
11836 }
11837 #endif
11838
11839 static void ipw_pci_shutdown(struct pci_dev *pdev)
11840 {
11841 struct ipw_priv *priv = pci_get_drvdata(pdev);
11842
11843 /* Take down the device; powers it off, etc. */
11844 ipw_down(priv);
11845
11846 pci_disable_device(pdev);
11847 }
11848
11849 /* driver initialization stuff */
11850 static struct pci_driver ipw_driver = {
11851 .name = DRV_NAME,
11852 .id_table = card_ids,
11853 .probe = ipw_pci_probe,
11854 .remove = __devexit_p(ipw_pci_remove),
11855 #ifdef CONFIG_PM
11856 .suspend = ipw_pci_suspend,
11857 .resume = ipw_pci_resume,
11858 #endif
11859 .shutdown = ipw_pci_shutdown,
11860 };
11861
11862 static int __init ipw_init(void)
11863 {
11864 int ret;
11865
11866 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11867 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11868
11869 ret = pci_register_driver(&ipw_driver);
11870 if (ret) {
11871 IPW_ERROR("Unable to initialize PCI module\n");
11872 return ret;
11873 }
11874
11875 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11876 if (ret) {
11877 IPW_ERROR("Unable to create driver sysfs file\n");
11878 pci_unregister_driver(&ipw_driver);
11879 return ret;
11880 }
11881
11882 return ret;
11883 }
11884
11885 static void __exit ipw_exit(void)
11886 {
11887 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11888 pci_unregister_driver(&ipw_driver);
11889 }
11890
11891 module_param(disable, int, 0444);
11892 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11893
11894 module_param(associate, int, 0444);
11895 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11896
11897 module_param(auto_create, int, 0444);
11898 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11899
11900 module_param(led, int, 0444);
11901 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11902
11903 module_param(debug, int, 0444);
11904 MODULE_PARM_DESC(debug, "debug output mask");
11905
11906 module_param(channel, int, 0444);
11907 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11908
11909 #ifdef CONFIG_IPW2200_PROMISCUOUS
11910 module_param(rtap_iface, int, 0444);
11911 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11912 #endif
11913
11914 #ifdef CONFIG_IPW2200_QOS
11915 module_param(qos_enable, int, 0444);
11916 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11917
11918 module_param(qos_burst_enable, int, 0444);
11919 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11920
11921 module_param(qos_no_ack_mask, int, 0444);
11922 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11923
11924 module_param(burst_duration_CCK, int, 0444);
11925 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11926
11927 module_param(burst_duration_OFDM, int, 0444);
11928 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11929 #endif /* CONFIG_IPW2200_QOS */
11930
11931 #ifdef CONFIG_IPW2200_MONITOR
11932 module_param(mode, int, 0444);
11933 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11934 #else
11935 module_param(mode, int, 0444);
11936 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11937 #endif
11938
11939 module_param(bt_coexist, int, 0444);
11940 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11941
11942 module_param(hwcrypto, int, 0444);
11943 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11944
11945 module_param(cmdlog, int, 0444);
11946 MODULE_PARM_DESC(cmdlog,
11947 "allocate a ring buffer for logging firmware commands");
11948
11949 module_param(roaming, int, 0444);
11950 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11951
11952 module_param(antenna, int, 0444);
11953 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11954
11955 module_exit(ipw_exit);
11956 module_init(ipw_init);