]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/ipw2200.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99 'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128 QOS_TX3_CW_MIN_CCK},
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130 QOS_TX3_CW_MAX_CCK},
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150 DEF_TX3_CW_MIN_CCK},
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152 DEF_TX3_CW_MAX_CCK},
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169 *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171 *qos_param);
172 #endif /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182 int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
201 {
202 int out, i, j, l;
203 char c;
204
205 out = snprintf(buf, count, "%08X", ofs);
206
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
211 data[(i * 8 + j)]);
212 for (; j < 8; j++)
213 out += snprintf(buf + out, count - out, " ");
214 }
215
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
222 c = '.';
223
224 out += snprintf(buf + out, count - out, "%c", c);
225 }
226
227 for (; j < 8; j++)
228 out += snprintf(buf + out, count - out, " ");
229 }
230
231 return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236 char line[81];
237 u32 ofs = 0;
238 if (!(ipw_debug_level & level))
239 return;
240
241 while (len) {
242 snprint_line(line, sizeof(line), &data[ofs],
243 min(len, 16U), ofs);
244 printk(KERN_DEBUG "%s\n", line);
245 ofs += 16;
246 len -= min(len, 16U);
247 }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252 size_t out = size;
253 u32 ofs = 0;
254 int total = 0;
255
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
259
260 ofs += 16;
261 output += out;
262 size -= out;
263 len -= min_t(size_t, len, 16U);
264 total += out;
265 }
266 return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373 d);
374 _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
400
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430 u32 value;
431
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
444 {
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
448
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451 if (num <= 0) {
452 return;
453 }
454
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
462 }
463
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474 }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
481 {
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
485
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488 if (num <= 0) {
489 return;
490 }
491
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
499 }
500
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511 }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
518 {
519 memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552 unsigned long flags;
553
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561 unsigned long flags;
562
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
603 }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
608 {
609 u32 i;
610
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
615 }
616
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
620
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637 return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642 u32 addr, field_info, field_len, field_count, total_len;
643
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
649 }
650
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
655 }
656
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
659 /*
660 * TABLE 0: Direct access to a table of 32 bit values
661 *
662 * This is a very simple table with the data directly
663 * read from the table
664 */
665
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
674 }
675
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
681 }
682
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
685
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
690
691 case IPW_ORD_TABLE_1_MASK:
692 /*
693 * TABLE 1: Indirect access to a table of 32 bit values
694 *
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
698 */
699
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
707 }
708
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
714 }
715
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
720
721 case IPW_ORD_TABLE_2_MASK:
722 /*
723 * TABLE 2: Indirect access to a table of variable sized values
724 *
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
729 */
730
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
738 }
739
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
749
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
752
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
755
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
761 }
762
763 *len = total_len;
764 if (!total_len)
765 return 0;
766
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
772
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
776
777 }
778
779 return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
789
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
795
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
815 }
816
817 /*
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
824 *
825 */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832 unsigned long flags;
833 u32 led;
834
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
839
840 spin_lock_irqsave(&priv->lock, flags);
841
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
847
848 led = ipw_register_toggle(led);
849
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853 priv->status |= STATUS_LED_LINK_ON;
854
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
860 }
861
862 spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876 unsigned long flags;
877 u32 led;
878
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
883
884 spin_lock_irqsave(&priv->lock, flags);
885
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
890
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894 IPW_DEBUG_LED("Link LED Off\n");
895
896 priv->status &= ~STATUS_LED_LINK_ON;
897
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
904
905 }
906
907 spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921 u32 led;
922
923 if (priv->config & CFG_NO_LED)
924 return;
925
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
928
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
932
933 led = ipw_register_toggle(led);
934
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938 IPW_DEBUG_LED("Activity LED On\n");
939
940 priv->status |= STATUS_LED_ACT_ON;
941
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
950 }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif /* 0 */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965 unsigned long flags;
966 u32 led;
967
968 if (priv->config & CFG_NO_LED)
969 return;
970
971 spin_lock_irqsave(&priv->lock, flags);
972
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
976
977 led = ipw_register_toggle(led);
978
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982 IPW_DEBUG_LED("Activity LED Off\n");
983
984 priv->status &= ~STATUS_LED_ACT_ON;
985 }
986
987 spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001 unsigned long flags;
1002 u32 led;
1003
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1008
1009 spin_lock_irqsave(&priv->lock, flags);
1010
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024 }
1025
1026 led = ipw_register_toggle(led);
1027
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031 spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036 unsigned long flags;
1037 u32 led;
1038
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1042
1043 spin_lock_irqsave(&priv->lock, flags);
1044
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1048
1049 led = ipw_register_toggle(led);
1050
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054 spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059 ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1078
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1108
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1112
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1118
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1124 }
1125
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1131 }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1148 *
1149 * See the level definitions in ipw for details.
1150 */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1158 {
1159 char *p = (char *)buf;
1160 u32 val;
1161
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1174
1175 return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1189 {
1190 u32 base;
1191
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1196 }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1205
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1213 }
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222 ipw_capture_event_log(priv, log_len, error->log);
1223
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1227
1228 return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1233 {
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 u32 log_size;
1237 struct ipw_event *log;
1238 u32 len = 0, i;
1239
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1244 if (!log) {
1245 IPW_ERROR("Unable to allocate memory for log\n");
1246 return 0;
1247 }
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1250
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1254 "\n%08X%08X%08X",
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257 kfree(log);
1258 return len;
1259 }
1260
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1262
1263 static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1265 {
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1267 u32 len = 0, i;
1268 if (!priv->error)
1269 return 0;
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1285
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1290 "\n%08X%08X%08X",
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295 return len;
1296 }
1297
1298 static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1301 {
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1303
1304 kfree(priv->error);
1305 priv->error = NULL;
1306 return count;
1307 }
1308
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1310
1311 static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1313 {
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1315 u32 len = 0, i;
1316 if (!priv->cmdlog)
1317 return 0;
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1321 len +=
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1326 len +=
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1331 }
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333 return len;
1334 }
1335
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1337
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1344 {
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 int rc = 0;
1347
1348 if (count < 1)
1349 return -EINVAL;
1350
1351 switch (buf[0]) {
1352 case '0':
1353 if (!rtap_iface)
1354 return count;
1355
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1358 return count;
1359 }
1360
1361 ipw_prom_free(priv);
1362 rtap_iface = 0;
1363 break;
1364
1365 case '1':
1366 if (rtap_iface)
1367 return count;
1368
1369 rc = ipw_prom_alloc(priv);
1370 if (!rc)
1371 rtap_iface = 1;
1372 break;
1373
1374 default:
1375 return -EINVAL;
1376 }
1377
1378 if (rc) {
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1381 }
1382
1383 return count;
1384 }
1385
1386 static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1388 char *buf)
1389 {
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1391 if (rtap_iface)
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393 else {
1394 buf[0] = '-';
1395 buf[1] = '1';
1396 buf[2] = '\0';
1397 return 3;
1398 }
1399 }
1400
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402 store_rtap_iface);
1403
1404 static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1407 {
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1409
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1413 return -EPERM;
1414 }
1415
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1417
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1420
1421 return count;
1422 }
1423
1424 static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1426 char *buf)
1427 {
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1431 }
1432
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434 store_rtap_filter);
1435 #endif
1436
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438 char *buf)
1439 {
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1442 }
1443
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1446 {
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1450 unsigned long len =
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452 unsigned long val;
1453 char *p = buffer;
1454
1455 IPW_DEBUG_INFO("enter\n");
1456
1457 strncpy(buffer, buf, len);
1458 buffer[len] = 0;
1459
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461 p++;
1462 if (p[0] == 'x' || p[0] == 'X')
1463 p++;
1464 val = simple_strtoul(p, &p, 16);
1465 } else
1466 val = simple_strtoul(p, &p, 10);
1467 if (p == buffer) {
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 } else {
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1472 }
1473
1474 IPW_DEBUG_INFO("exit\n");
1475 return len;
1476 }
1477
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1479
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481 char *buf)
1482 {
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1485 }
1486
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1489 {
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1491
1492 IPW_DEBUG_INFO("enter\n");
1493
1494 if (count == 0)
1495 return 0;
1496
1497 if (*buf == 0) {
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1501 } else {
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1504 ipw_led_init(priv);
1505 }
1506
1507 IPW_DEBUG_INFO("exit\n");
1508 return count;
1509 }
1510
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1512
1513 static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1515 {
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1518 }
1519
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1521
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523 char *buf)
1524 {
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1527 }
1528
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1530
1531 static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1533 {
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1536 }
1537
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1539
1540 static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1542 {
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1545
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 return 0;
1548
1549 return sprintf(buf, "0x%08x\n", tmp);
1550 }
1551
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1553
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555 char *buf)
1556 {
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1559
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 return 0;
1562
1563 return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1567
1568 /*
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1571 */
1572 static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1574 {
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1577 }
1578 static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1581 {
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1585 }
1586
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1589
1590 static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1592 {
1593 u32 reg = 0;
1594 struct ipw_priv *p = d->driver_data;
1595
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1598 }
1599 static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1602 {
1603 u32 reg;
1604 struct ipw_priv *p = d->driver_data;
1605
1606 sscanf(buf, "%x", &reg);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1609 }
1610
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1613
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1616 {
1617 u32 reg = 0;
1618 struct ipw_priv *p = d->driver_data;
1619
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1622 }
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1626 {
1627 u32 reg;
1628 struct ipw_priv *p = d->driver_data;
1629
1630 sscanf(buf, "%x", &reg);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1637
1638 static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1640 {
1641 u32 reg = 0;
1642 struct ipw_priv *priv = d->driver_data;
1643
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646 else
1647 reg = 0;
1648
1649 return sprintf(buf, "0x%08x\n", reg);
1650 }
1651 static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1654 {
1655 struct ipw_priv *priv = d->driver_data;
1656
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1660 }
1661
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1664
1665 static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1667 {
1668 u8 reg = 0;
1669 struct ipw_priv *priv = d->driver_data;
1670
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673 else
1674 reg = 0;
1675
1676 return sprintf(buf, "0x%02x\n", reg);
1677 }
1678 static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1681 {
1682 struct ipw_priv *priv = d->driver_data;
1683
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1687 }
1688
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1691
1692 static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1694 {
1695 u32 reg = 0;
1696 struct ipw_priv *priv = d->driver_data;
1697
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1700 else
1701 reg = 0;
1702
1703 return sprintf(buf, "0x%08x\n", reg);
1704 }
1705 static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1708 {
1709 struct ipw_priv *priv = d->driver_data;
1710
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1714 }
1715
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1718
1719 static int rf_kill_active(struct ipw_priv *priv)
1720 {
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1723 else
1724 priv->status &= ~STATUS_RF_KILL_HW;
1725
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1727 }
1728
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730 char *buf)
1731 {
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1740 }
1741
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1743 {
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746 return 0;
1747
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1750
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1753
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->scan_event);
1757 }
1758 queue_work(priv->workqueue, &priv->down);
1759 } else {
1760 priv->status &= ~STATUS_RF_KILL_SW;
1761 if (rf_kill_active(priv)) {
1762 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1763 "disabled by HW switch\n");
1764 /* Make sure the RF_KILL check timer is running */
1765 cancel_delayed_work(&priv->rf_kill);
1766 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1767 round_jiffies_relative(2 * HZ));
1768 } else
1769 queue_work(priv->workqueue, &priv->up);
1770 }
1771
1772 return 1;
1773 }
1774
1775 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1776 const char *buf, size_t count)
1777 {
1778 struct ipw_priv *priv = d->driver_data;
1779
1780 ipw_radio_kill_sw(priv, buf[0] == '1');
1781
1782 return count;
1783 }
1784
1785 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1786
1787 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1788 char *buf)
1789 {
1790 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1791 int pos = 0, len = 0;
1792 if (priv->config & CFG_SPEED_SCAN) {
1793 while (priv->speed_scan[pos] != 0)
1794 len += sprintf(&buf[len], "%d ",
1795 priv->speed_scan[pos++]);
1796 return len + sprintf(&buf[len], "\n");
1797 }
1798
1799 return sprintf(buf, "0\n");
1800 }
1801
1802 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1803 const char *buf, size_t count)
1804 {
1805 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1806 int channel, pos = 0;
1807 const char *p = buf;
1808
1809 /* list of space separated channels to scan, optionally ending with 0 */
1810 while ((channel = simple_strtol(p, NULL, 0))) {
1811 if (pos == MAX_SPEED_SCAN - 1) {
1812 priv->speed_scan[pos] = 0;
1813 break;
1814 }
1815
1816 if (ieee80211_is_valid_channel(priv->ieee, channel))
1817 priv->speed_scan[pos++] = channel;
1818 else
1819 IPW_WARNING("Skipping invalid channel request: %d\n",
1820 channel);
1821 p = strchr(p, ' ');
1822 if (!p)
1823 break;
1824 while (*p == ' ' || *p == '\t')
1825 p++;
1826 }
1827
1828 if (pos == 0)
1829 priv->config &= ~CFG_SPEED_SCAN;
1830 else {
1831 priv->speed_scan_pos = 0;
1832 priv->config |= CFG_SPEED_SCAN;
1833 }
1834
1835 return count;
1836 }
1837
1838 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1839 store_speed_scan);
1840
1841 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1842 char *buf)
1843 {
1844 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1845 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1846 }
1847
1848 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1849 const char *buf, size_t count)
1850 {
1851 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1852 if (buf[0] == '1')
1853 priv->config |= CFG_NET_STATS;
1854 else
1855 priv->config &= ~CFG_NET_STATS;
1856
1857 return count;
1858 }
1859
1860 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1861 show_net_stats, store_net_stats);
1862
1863 static ssize_t show_channels(struct device *d,
1864 struct device_attribute *attr,
1865 char *buf)
1866 {
1867 struct ipw_priv *priv = dev_get_drvdata(d);
1868 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1869 int len = 0, i;
1870
1871 len = sprintf(&buf[len],
1872 "Displaying %d channels in 2.4Ghz band "
1873 "(802.11bg):\n", geo->bg_channels);
1874
1875 for (i = 0; i < geo->bg_channels; i++) {
1876 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1877 geo->bg[i].channel,
1878 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1879 " (radar spectrum)" : "",
1880 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1881 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1882 ? "" : ", IBSS",
1883 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1884 "passive only" : "active/passive",
1885 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1886 "B" : "B/G");
1887 }
1888
1889 len += sprintf(&buf[len],
1890 "Displaying %d channels in 5.2Ghz band "
1891 "(802.11a):\n", geo->a_channels);
1892 for (i = 0; i < geo->a_channels; i++) {
1893 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1894 geo->a[i].channel,
1895 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896 " (radar spectrum)" : "",
1897 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1898 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1899 ? "" : ", IBSS",
1900 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901 "passive only" : "active/passive");
1902 }
1903
1904 return len;
1905 }
1906
1907 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1908
1909 static void notify_wx_assoc_event(struct ipw_priv *priv)
1910 {
1911 union iwreq_data wrqu;
1912 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1913 if (priv->status & STATUS_ASSOCIATED)
1914 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1915 else
1916 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1917 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1918 }
1919
1920 static void ipw_irq_tasklet(struct ipw_priv *priv)
1921 {
1922 u32 inta, inta_mask, handled = 0;
1923 unsigned long flags;
1924 int rc = 0;
1925
1926 spin_lock_irqsave(&priv->irq_lock, flags);
1927
1928 inta = ipw_read32(priv, IPW_INTA_RW);
1929 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1930 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1931
1932 /* Add any cached INTA values that need to be handled */
1933 inta |= priv->isr_inta;
1934
1935 spin_unlock_irqrestore(&priv->irq_lock, flags);
1936
1937 spin_lock_irqsave(&priv->lock, flags);
1938
1939 /* handle all the justifications for the interrupt */
1940 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1941 ipw_rx(priv);
1942 handled |= IPW_INTA_BIT_RX_TRANSFER;
1943 }
1944
1945 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1946 IPW_DEBUG_HC("Command completed.\n");
1947 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1948 priv->status &= ~STATUS_HCMD_ACTIVE;
1949 wake_up_interruptible(&priv->wait_command_queue);
1950 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1951 }
1952
1953 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1954 IPW_DEBUG_TX("TX_QUEUE_1\n");
1955 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1956 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1957 }
1958
1959 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1960 IPW_DEBUG_TX("TX_QUEUE_2\n");
1961 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1962 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1963 }
1964
1965 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1966 IPW_DEBUG_TX("TX_QUEUE_3\n");
1967 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1968 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1969 }
1970
1971 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1972 IPW_DEBUG_TX("TX_QUEUE_4\n");
1973 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1974 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1975 }
1976
1977 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1978 IPW_WARNING("STATUS_CHANGE\n");
1979 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1980 }
1981
1982 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1983 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1984 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1985 }
1986
1987 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1988 IPW_WARNING("HOST_CMD_DONE\n");
1989 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1990 }
1991
1992 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1993 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1994 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1995 }
1996
1997 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1998 IPW_WARNING("PHY_OFF_DONE\n");
1999 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2000 }
2001
2002 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2003 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2004 priv->status |= STATUS_RF_KILL_HW;
2005 wake_up_interruptible(&priv->wait_command_queue);
2006 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2007 cancel_delayed_work(&priv->request_scan);
2008 cancel_delayed_work(&priv->scan_event);
2009 schedule_work(&priv->link_down);
2010 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2011 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2012 }
2013
2014 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2015 IPW_WARNING("Firmware error detected. Restarting.\n");
2016 if (priv->error) {
2017 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2018 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2019 struct ipw_fw_error *error =
2020 ipw_alloc_error_log(priv);
2021 ipw_dump_error_log(priv, error);
2022 kfree(error);
2023 }
2024 } else {
2025 priv->error = ipw_alloc_error_log(priv);
2026 if (priv->error)
2027 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2028 else
2029 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2030 "log.\n");
2031 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2032 ipw_dump_error_log(priv, priv->error);
2033 }
2034
2035 /* XXX: If hardware encryption is for WPA/WPA2,
2036 * we have to notify the supplicant. */
2037 if (priv->ieee->sec.encrypt) {
2038 priv->status &= ~STATUS_ASSOCIATED;
2039 notify_wx_assoc_event(priv);
2040 }
2041
2042 /* Keep the restart process from trying to send host
2043 * commands by clearing the INIT status bit */
2044 priv->status &= ~STATUS_INIT;
2045
2046 /* Cancel currently queued command. */
2047 priv->status &= ~STATUS_HCMD_ACTIVE;
2048 wake_up_interruptible(&priv->wait_command_queue);
2049
2050 queue_work(priv->workqueue, &priv->adapter_restart);
2051 handled |= IPW_INTA_BIT_FATAL_ERROR;
2052 }
2053
2054 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2055 IPW_ERROR("Parity error\n");
2056 handled |= IPW_INTA_BIT_PARITY_ERROR;
2057 }
2058
2059 if (handled != inta) {
2060 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2061 }
2062
2063 spin_unlock_irqrestore(&priv->lock, flags);
2064
2065 /* enable all interrupts */
2066 ipw_enable_interrupts(priv);
2067 }
2068
2069 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2070 static char *get_cmd_string(u8 cmd)
2071 {
2072 switch (cmd) {
2073 IPW_CMD(HOST_COMPLETE);
2074 IPW_CMD(POWER_DOWN);
2075 IPW_CMD(SYSTEM_CONFIG);
2076 IPW_CMD(MULTICAST_ADDRESS);
2077 IPW_CMD(SSID);
2078 IPW_CMD(ADAPTER_ADDRESS);
2079 IPW_CMD(PORT_TYPE);
2080 IPW_CMD(RTS_THRESHOLD);
2081 IPW_CMD(FRAG_THRESHOLD);
2082 IPW_CMD(POWER_MODE);
2083 IPW_CMD(WEP_KEY);
2084 IPW_CMD(TGI_TX_KEY);
2085 IPW_CMD(SCAN_REQUEST);
2086 IPW_CMD(SCAN_REQUEST_EXT);
2087 IPW_CMD(ASSOCIATE);
2088 IPW_CMD(SUPPORTED_RATES);
2089 IPW_CMD(SCAN_ABORT);
2090 IPW_CMD(TX_FLUSH);
2091 IPW_CMD(QOS_PARAMETERS);
2092 IPW_CMD(DINO_CONFIG);
2093 IPW_CMD(RSN_CAPABILITIES);
2094 IPW_CMD(RX_KEY);
2095 IPW_CMD(CARD_DISABLE);
2096 IPW_CMD(SEED_NUMBER);
2097 IPW_CMD(TX_POWER);
2098 IPW_CMD(COUNTRY_INFO);
2099 IPW_CMD(AIRONET_INFO);
2100 IPW_CMD(AP_TX_POWER);
2101 IPW_CMD(CCKM_INFO);
2102 IPW_CMD(CCX_VER_INFO);
2103 IPW_CMD(SET_CALIBRATION);
2104 IPW_CMD(SENSITIVITY_CALIB);
2105 IPW_CMD(RETRY_LIMIT);
2106 IPW_CMD(IPW_PRE_POWER_DOWN);
2107 IPW_CMD(VAP_BEACON_TEMPLATE);
2108 IPW_CMD(VAP_DTIM_PERIOD);
2109 IPW_CMD(EXT_SUPPORTED_RATES);
2110 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2111 IPW_CMD(VAP_QUIET_INTERVALS);
2112 IPW_CMD(VAP_CHANNEL_SWITCH);
2113 IPW_CMD(VAP_MANDATORY_CHANNELS);
2114 IPW_CMD(VAP_CELL_PWR_LIMIT);
2115 IPW_CMD(VAP_CF_PARAM_SET);
2116 IPW_CMD(VAP_SET_BEACONING_STATE);
2117 IPW_CMD(MEASUREMENT);
2118 IPW_CMD(POWER_CAPABILITY);
2119 IPW_CMD(SUPPORTED_CHANNELS);
2120 IPW_CMD(TPC_REPORT);
2121 IPW_CMD(WME_INFO);
2122 IPW_CMD(PRODUCTION_COMMAND);
2123 default:
2124 return "UNKNOWN";
2125 }
2126 }
2127
2128 #define HOST_COMPLETE_TIMEOUT HZ
2129
2130 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2131 {
2132 int rc = 0;
2133 unsigned long flags;
2134
2135 spin_lock_irqsave(&priv->lock, flags);
2136 if (priv->status & STATUS_HCMD_ACTIVE) {
2137 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2138 get_cmd_string(cmd->cmd));
2139 spin_unlock_irqrestore(&priv->lock, flags);
2140 return -EAGAIN;
2141 }
2142
2143 priv->status |= STATUS_HCMD_ACTIVE;
2144
2145 if (priv->cmdlog) {
2146 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2147 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2148 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2149 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2150 cmd->len);
2151 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2152 }
2153
2154 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2155 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2156 priv->status);
2157
2158 #ifndef DEBUG_CMD_WEP_KEY
2159 if (cmd->cmd == IPW_CMD_WEP_KEY)
2160 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2161 else
2162 #endif
2163 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2164
2165 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2166 if (rc) {
2167 priv->status &= ~STATUS_HCMD_ACTIVE;
2168 IPW_ERROR("Failed to send %s: Reason %d\n",
2169 get_cmd_string(cmd->cmd), rc);
2170 spin_unlock_irqrestore(&priv->lock, flags);
2171 goto exit;
2172 }
2173 spin_unlock_irqrestore(&priv->lock, flags);
2174
2175 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2176 !(priv->
2177 status & STATUS_HCMD_ACTIVE),
2178 HOST_COMPLETE_TIMEOUT);
2179 if (rc == 0) {
2180 spin_lock_irqsave(&priv->lock, flags);
2181 if (priv->status & STATUS_HCMD_ACTIVE) {
2182 IPW_ERROR("Failed to send %s: Command timed out.\n",
2183 get_cmd_string(cmd->cmd));
2184 priv->status &= ~STATUS_HCMD_ACTIVE;
2185 spin_unlock_irqrestore(&priv->lock, flags);
2186 rc = -EIO;
2187 goto exit;
2188 }
2189 spin_unlock_irqrestore(&priv->lock, flags);
2190 } else
2191 rc = 0;
2192
2193 if (priv->status & STATUS_RF_KILL_HW) {
2194 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2195 get_cmd_string(cmd->cmd));
2196 rc = -EIO;
2197 goto exit;
2198 }
2199
2200 exit:
2201 if (priv->cmdlog) {
2202 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2203 priv->cmdlog_pos %= priv->cmdlog_len;
2204 }
2205 return rc;
2206 }
2207
2208 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2209 {
2210 struct host_cmd cmd = {
2211 .cmd = command,
2212 };
2213
2214 return __ipw_send_cmd(priv, &cmd);
2215 }
2216
2217 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2218 void *data)
2219 {
2220 struct host_cmd cmd = {
2221 .cmd = command,
2222 .len = len,
2223 .param = data,
2224 };
2225
2226 return __ipw_send_cmd(priv, &cmd);
2227 }
2228
2229 static int ipw_send_host_complete(struct ipw_priv *priv)
2230 {
2231 if (!priv) {
2232 IPW_ERROR("Invalid args\n");
2233 return -1;
2234 }
2235
2236 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2237 }
2238
2239 static int ipw_send_system_config(struct ipw_priv *priv)
2240 {
2241 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2242 sizeof(priv->sys_config),
2243 &priv->sys_config);
2244 }
2245
2246 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2247 {
2248 if (!priv || !ssid) {
2249 IPW_ERROR("Invalid args\n");
2250 return -1;
2251 }
2252
2253 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2254 ssid);
2255 }
2256
2257 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2258 {
2259 if (!priv || !mac) {
2260 IPW_ERROR("Invalid args\n");
2261 return -1;
2262 }
2263
2264 IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2265 priv->net_dev->name, print_mac(mac, mac));
2266
2267 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2268 }
2269
2270 /*
2271 * NOTE: This must be executed from our workqueue as it results in udelay
2272 * being called which may corrupt the keyboard if executed on default
2273 * workqueue
2274 */
2275 static void ipw_adapter_restart(void *adapter)
2276 {
2277 struct ipw_priv *priv = adapter;
2278
2279 if (priv->status & STATUS_RF_KILL_MASK)
2280 return;
2281
2282 ipw_down(priv);
2283
2284 if (priv->assoc_network &&
2285 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2286 ipw_remove_current_network(priv);
2287
2288 if (ipw_up(priv)) {
2289 IPW_ERROR("Failed to up device\n");
2290 return;
2291 }
2292 }
2293
2294 static void ipw_bg_adapter_restart(struct work_struct *work)
2295 {
2296 struct ipw_priv *priv =
2297 container_of(work, struct ipw_priv, adapter_restart);
2298 mutex_lock(&priv->mutex);
2299 ipw_adapter_restart(priv);
2300 mutex_unlock(&priv->mutex);
2301 }
2302
2303 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2304
2305 static void ipw_scan_check(void *data)
2306 {
2307 struct ipw_priv *priv = data;
2308 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2309 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2310 "adapter after (%dms).\n",
2311 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2312 queue_work(priv->workqueue, &priv->adapter_restart);
2313 }
2314 }
2315
2316 static void ipw_bg_scan_check(struct work_struct *work)
2317 {
2318 struct ipw_priv *priv =
2319 container_of(work, struct ipw_priv, scan_check.work);
2320 mutex_lock(&priv->mutex);
2321 ipw_scan_check(priv);
2322 mutex_unlock(&priv->mutex);
2323 }
2324
2325 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2326 struct ipw_scan_request_ext *request)
2327 {
2328 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2329 sizeof(*request), request);
2330 }
2331
2332 static int ipw_send_scan_abort(struct ipw_priv *priv)
2333 {
2334 if (!priv) {
2335 IPW_ERROR("Invalid args\n");
2336 return -1;
2337 }
2338
2339 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2340 }
2341
2342 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2343 {
2344 struct ipw_sensitivity_calib calib = {
2345 .beacon_rssi_raw = cpu_to_le16(sens),
2346 };
2347
2348 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2349 &calib);
2350 }
2351
2352 static int ipw_send_associate(struct ipw_priv *priv,
2353 struct ipw_associate *associate)
2354 {
2355 struct ipw_associate tmp_associate;
2356
2357 if (!priv || !associate) {
2358 IPW_ERROR("Invalid args\n");
2359 return -1;
2360 }
2361
2362 memcpy(&tmp_associate, associate, sizeof(*associate));
2363 tmp_associate.policy_support =
2364 cpu_to_le16(tmp_associate.policy_support);
2365 tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2366 tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2367 tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2368 tmp_associate.listen_interval =
2369 cpu_to_le16(tmp_associate.listen_interval);
2370 tmp_associate.beacon_interval =
2371 cpu_to_le16(tmp_associate.beacon_interval);
2372 tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2373
2374 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2375 &tmp_associate);
2376 }
2377
2378 static int ipw_send_supported_rates(struct ipw_priv *priv,
2379 struct ipw_supported_rates *rates)
2380 {
2381 if (!priv || !rates) {
2382 IPW_ERROR("Invalid args\n");
2383 return -1;
2384 }
2385
2386 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2387 rates);
2388 }
2389
2390 static int ipw_set_random_seed(struct ipw_priv *priv)
2391 {
2392 u32 val;
2393
2394 if (!priv) {
2395 IPW_ERROR("Invalid args\n");
2396 return -1;
2397 }
2398
2399 get_random_bytes(&val, sizeof(val));
2400
2401 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2402 }
2403
2404 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2405 {
2406 if (!priv) {
2407 IPW_ERROR("Invalid args\n");
2408 return -1;
2409 }
2410
2411 phy_off = cpu_to_le32(phy_off);
2412 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2413 &phy_off);
2414 }
2415
2416 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2417 {
2418 if (!priv || !power) {
2419 IPW_ERROR("Invalid args\n");
2420 return -1;
2421 }
2422
2423 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2424 }
2425
2426 static int ipw_set_tx_power(struct ipw_priv *priv)
2427 {
2428 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2429 struct ipw_tx_power tx_power;
2430 s8 max_power;
2431 int i;
2432
2433 memset(&tx_power, 0, sizeof(tx_power));
2434
2435 /* configure device for 'G' band */
2436 tx_power.ieee_mode = IPW_G_MODE;
2437 tx_power.num_channels = geo->bg_channels;
2438 for (i = 0; i < geo->bg_channels; i++) {
2439 max_power = geo->bg[i].max_power;
2440 tx_power.channels_tx_power[i].channel_number =
2441 geo->bg[i].channel;
2442 tx_power.channels_tx_power[i].tx_power = max_power ?
2443 min(max_power, priv->tx_power) : priv->tx_power;
2444 }
2445 if (ipw_send_tx_power(priv, &tx_power))
2446 return -EIO;
2447
2448 /* configure device to also handle 'B' band */
2449 tx_power.ieee_mode = IPW_B_MODE;
2450 if (ipw_send_tx_power(priv, &tx_power))
2451 return -EIO;
2452
2453 /* configure device to also handle 'A' band */
2454 if (priv->ieee->abg_true) {
2455 tx_power.ieee_mode = IPW_A_MODE;
2456 tx_power.num_channels = geo->a_channels;
2457 for (i = 0; i < tx_power.num_channels; i++) {
2458 max_power = geo->a[i].max_power;
2459 tx_power.channels_tx_power[i].channel_number =
2460 geo->a[i].channel;
2461 tx_power.channels_tx_power[i].tx_power = max_power ?
2462 min(max_power, priv->tx_power) : priv->tx_power;
2463 }
2464 if (ipw_send_tx_power(priv, &tx_power))
2465 return -EIO;
2466 }
2467 return 0;
2468 }
2469
2470 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2471 {
2472 struct ipw_rts_threshold rts_threshold = {
2473 .rts_threshold = cpu_to_le16(rts),
2474 };
2475
2476 if (!priv) {
2477 IPW_ERROR("Invalid args\n");
2478 return -1;
2479 }
2480
2481 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2482 sizeof(rts_threshold), &rts_threshold);
2483 }
2484
2485 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2486 {
2487 struct ipw_frag_threshold frag_threshold = {
2488 .frag_threshold = cpu_to_le16(frag),
2489 };
2490
2491 if (!priv) {
2492 IPW_ERROR("Invalid args\n");
2493 return -1;
2494 }
2495
2496 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2497 sizeof(frag_threshold), &frag_threshold);
2498 }
2499
2500 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2501 {
2502 u32 param;
2503
2504 if (!priv) {
2505 IPW_ERROR("Invalid args\n");
2506 return -1;
2507 }
2508
2509 /* If on battery, set to 3, if AC set to CAM, else user
2510 * level */
2511 switch (mode) {
2512 case IPW_POWER_BATTERY:
2513 param = IPW_POWER_INDEX_3;
2514 break;
2515 case IPW_POWER_AC:
2516 param = IPW_POWER_MODE_CAM;
2517 break;
2518 default:
2519 param = mode;
2520 break;
2521 }
2522
2523 param = cpu_to_le32(param);
2524 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2525 &param);
2526 }
2527
2528 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2529 {
2530 struct ipw_retry_limit retry_limit = {
2531 .short_retry_limit = slimit,
2532 .long_retry_limit = llimit
2533 };
2534
2535 if (!priv) {
2536 IPW_ERROR("Invalid args\n");
2537 return -1;
2538 }
2539
2540 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2541 &retry_limit);
2542 }
2543
2544 /*
2545 * The IPW device contains a Microwire compatible EEPROM that stores
2546 * various data like the MAC address. Usually the firmware has exclusive
2547 * access to the eeprom, but during device initialization (before the
2548 * device driver has sent the HostComplete command to the firmware) the
2549 * device driver has read access to the EEPROM by way of indirect addressing
2550 * through a couple of memory mapped registers.
2551 *
2552 * The following is a simplified implementation for pulling data out of the
2553 * the eeprom, along with some helper functions to find information in
2554 * the per device private data's copy of the eeprom.
2555 *
2556 * NOTE: To better understand how these functions work (i.e what is a chip
2557 * select and why do have to keep driving the eeprom clock?), read
2558 * just about any data sheet for a Microwire compatible EEPROM.
2559 */
2560
2561 /* write a 32 bit value into the indirect accessor register */
2562 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2563 {
2564 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2565
2566 /* the eeprom requires some time to complete the operation */
2567 udelay(p->eeprom_delay);
2568
2569 return;
2570 }
2571
2572 /* perform a chip select operation */
2573 static void eeprom_cs(struct ipw_priv *priv)
2574 {
2575 eeprom_write_reg(priv, 0);
2576 eeprom_write_reg(priv, EEPROM_BIT_CS);
2577 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2578 eeprom_write_reg(priv, EEPROM_BIT_CS);
2579 }
2580
2581 /* perform a chip select operation */
2582 static void eeprom_disable_cs(struct ipw_priv *priv)
2583 {
2584 eeprom_write_reg(priv, EEPROM_BIT_CS);
2585 eeprom_write_reg(priv, 0);
2586 eeprom_write_reg(priv, EEPROM_BIT_SK);
2587 }
2588
2589 /* push a single bit down to the eeprom */
2590 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2591 {
2592 int d = (bit ? EEPROM_BIT_DI : 0);
2593 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2594 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2595 }
2596
2597 /* push an opcode followed by an address down to the eeprom */
2598 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2599 {
2600 int i;
2601
2602 eeprom_cs(priv);
2603 eeprom_write_bit(priv, 1);
2604 eeprom_write_bit(priv, op & 2);
2605 eeprom_write_bit(priv, op & 1);
2606 for (i = 7; i >= 0; i--) {
2607 eeprom_write_bit(priv, addr & (1 << i));
2608 }
2609 }
2610
2611 /* pull 16 bits off the eeprom, one bit at a time */
2612 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2613 {
2614 int i;
2615 u16 r = 0;
2616
2617 /* Send READ Opcode */
2618 eeprom_op(priv, EEPROM_CMD_READ, addr);
2619
2620 /* Send dummy bit */
2621 eeprom_write_reg(priv, EEPROM_BIT_CS);
2622
2623 /* Read the byte off the eeprom one bit at a time */
2624 for (i = 0; i < 16; i++) {
2625 u32 data = 0;
2626 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2627 eeprom_write_reg(priv, EEPROM_BIT_CS);
2628 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2629 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2630 }
2631
2632 /* Send another dummy bit */
2633 eeprom_write_reg(priv, 0);
2634 eeprom_disable_cs(priv);
2635
2636 return r;
2637 }
2638
2639 /* helper function for pulling the mac address out of the private */
2640 /* data's copy of the eeprom data */
2641 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2642 {
2643 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2644 }
2645
2646 /*
2647 * Either the device driver (i.e. the host) or the firmware can
2648 * load eeprom data into the designated region in SRAM. If neither
2649 * happens then the FW will shutdown with a fatal error.
2650 *
2651 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2652 * bit needs region of shared SRAM needs to be non-zero.
2653 */
2654 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2655 {
2656 int i;
2657 u16 *eeprom = (u16 *) priv->eeprom;
2658
2659 IPW_DEBUG_TRACE(">>\n");
2660
2661 /* read entire contents of eeprom into private buffer */
2662 for (i = 0; i < 128; i++)
2663 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2664
2665 /*
2666 If the data looks correct, then copy it to our private
2667 copy. Otherwise let the firmware know to perform the operation
2668 on its own.
2669 */
2670 if (priv->eeprom[EEPROM_VERSION] != 0) {
2671 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2672
2673 /* write the eeprom data to sram */
2674 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2675 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2676
2677 /* Do not load eeprom data on fatal error or suspend */
2678 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2679 } else {
2680 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2681
2682 /* Load eeprom data on fatal error or suspend */
2683 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2684 }
2685
2686 IPW_DEBUG_TRACE("<<\n");
2687 }
2688
2689 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2690 {
2691 count >>= 2;
2692 if (!count)
2693 return;
2694 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2695 while (count--)
2696 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2697 }
2698
2699 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2700 {
2701 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2702 CB_NUMBER_OF_ELEMENTS_SMALL *
2703 sizeof(struct command_block));
2704 }
2705
2706 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2707 { /* start dma engine but no transfers yet */
2708
2709 IPW_DEBUG_FW(">> : \n");
2710
2711 /* Start the dma */
2712 ipw_fw_dma_reset_command_blocks(priv);
2713
2714 /* Write CB base address */
2715 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2716
2717 IPW_DEBUG_FW("<< : \n");
2718 return 0;
2719 }
2720
2721 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2722 {
2723 u32 control = 0;
2724
2725 IPW_DEBUG_FW(">> :\n");
2726
2727 /* set the Stop and Abort bit */
2728 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2729 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2730 priv->sram_desc.last_cb_index = 0;
2731
2732 IPW_DEBUG_FW("<< \n");
2733 }
2734
2735 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2736 struct command_block *cb)
2737 {
2738 u32 address =
2739 IPW_SHARED_SRAM_DMA_CONTROL +
2740 (sizeof(struct command_block) * index);
2741 IPW_DEBUG_FW(">> :\n");
2742
2743 ipw_write_indirect(priv, address, (u8 *) cb,
2744 (int)sizeof(struct command_block));
2745
2746 IPW_DEBUG_FW("<< :\n");
2747 return 0;
2748
2749 }
2750
2751 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2752 {
2753 u32 control = 0;
2754 u32 index = 0;
2755
2756 IPW_DEBUG_FW(">> :\n");
2757
2758 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2759 ipw_fw_dma_write_command_block(priv, index,
2760 &priv->sram_desc.cb_list[index]);
2761
2762 /* Enable the DMA in the CSR register */
2763 ipw_clear_bit(priv, IPW_RESET_REG,
2764 IPW_RESET_REG_MASTER_DISABLED |
2765 IPW_RESET_REG_STOP_MASTER);
2766
2767 /* Set the Start bit. */
2768 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2769 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2770
2771 IPW_DEBUG_FW("<< :\n");
2772 return 0;
2773 }
2774
2775 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2776 {
2777 u32 address;
2778 u32 register_value = 0;
2779 u32 cb_fields_address = 0;
2780
2781 IPW_DEBUG_FW(">> :\n");
2782 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2783 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2784
2785 /* Read the DMA Controlor register */
2786 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2787 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2788
2789 /* Print the CB values */
2790 cb_fields_address = address;
2791 register_value = ipw_read_reg32(priv, cb_fields_address);
2792 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2793
2794 cb_fields_address += sizeof(u32);
2795 register_value = ipw_read_reg32(priv, cb_fields_address);
2796 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2797
2798 cb_fields_address += sizeof(u32);
2799 register_value = ipw_read_reg32(priv, cb_fields_address);
2800 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2801 register_value);
2802
2803 cb_fields_address += sizeof(u32);
2804 register_value = ipw_read_reg32(priv, cb_fields_address);
2805 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2806
2807 IPW_DEBUG_FW(">> :\n");
2808 }
2809
2810 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2811 {
2812 u32 current_cb_address = 0;
2813 u32 current_cb_index = 0;
2814
2815 IPW_DEBUG_FW("<< :\n");
2816 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2817
2818 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2819 sizeof(struct command_block);
2820
2821 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2822 current_cb_index, current_cb_address);
2823
2824 IPW_DEBUG_FW(">> :\n");
2825 return current_cb_index;
2826
2827 }
2828
2829 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2830 u32 src_address,
2831 u32 dest_address,
2832 u32 length,
2833 int interrupt_enabled, int is_last)
2834 {
2835
2836 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2837 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2838 CB_DEST_SIZE_LONG;
2839 struct command_block *cb;
2840 u32 last_cb_element = 0;
2841
2842 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2843 src_address, dest_address, length);
2844
2845 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2846 return -1;
2847
2848 last_cb_element = priv->sram_desc.last_cb_index;
2849 cb = &priv->sram_desc.cb_list[last_cb_element];
2850 priv->sram_desc.last_cb_index++;
2851
2852 /* Calculate the new CB control word */
2853 if (interrupt_enabled)
2854 control |= CB_INT_ENABLED;
2855
2856 if (is_last)
2857 control |= CB_LAST_VALID;
2858
2859 control |= length;
2860
2861 /* Calculate the CB Element's checksum value */
2862 cb->status = control ^ src_address ^ dest_address;
2863
2864 /* Copy the Source and Destination addresses */
2865 cb->dest_addr = dest_address;
2866 cb->source_addr = src_address;
2867
2868 /* Copy the Control Word last */
2869 cb->control = control;
2870
2871 return 0;
2872 }
2873
2874 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2875 u32 src_phys, u32 dest_address, u32 length)
2876 {
2877 u32 bytes_left = length;
2878 u32 src_offset = 0;
2879 u32 dest_offset = 0;
2880 int status = 0;
2881 IPW_DEBUG_FW(">> \n");
2882 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2883 src_phys, dest_address, length);
2884 while (bytes_left > CB_MAX_LENGTH) {
2885 status = ipw_fw_dma_add_command_block(priv,
2886 src_phys + src_offset,
2887 dest_address +
2888 dest_offset,
2889 CB_MAX_LENGTH, 0, 0);
2890 if (status) {
2891 IPW_DEBUG_FW_INFO(": Failed\n");
2892 return -1;
2893 } else
2894 IPW_DEBUG_FW_INFO(": Added new cb\n");
2895
2896 src_offset += CB_MAX_LENGTH;
2897 dest_offset += CB_MAX_LENGTH;
2898 bytes_left -= CB_MAX_LENGTH;
2899 }
2900
2901 /* add the buffer tail */
2902 if (bytes_left > 0) {
2903 status =
2904 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2905 dest_address + dest_offset,
2906 bytes_left, 0, 0);
2907 if (status) {
2908 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2909 return -1;
2910 } else
2911 IPW_DEBUG_FW_INFO
2912 (": Adding new cb - the buffer tail\n");
2913 }
2914
2915 IPW_DEBUG_FW("<< \n");
2916 return 0;
2917 }
2918
2919 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2920 {
2921 u32 current_index = 0, previous_index;
2922 u32 watchdog = 0;
2923
2924 IPW_DEBUG_FW(">> : \n");
2925
2926 current_index = ipw_fw_dma_command_block_index(priv);
2927 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2928 (int)priv->sram_desc.last_cb_index);
2929
2930 while (current_index < priv->sram_desc.last_cb_index) {
2931 udelay(50);
2932 previous_index = current_index;
2933 current_index = ipw_fw_dma_command_block_index(priv);
2934
2935 if (previous_index < current_index) {
2936 watchdog = 0;
2937 continue;
2938 }
2939 if (++watchdog > 400) {
2940 IPW_DEBUG_FW_INFO("Timeout\n");
2941 ipw_fw_dma_dump_command_block(priv);
2942 ipw_fw_dma_abort(priv);
2943 return -1;
2944 }
2945 }
2946
2947 ipw_fw_dma_abort(priv);
2948
2949 /*Disable the DMA in the CSR register */
2950 ipw_set_bit(priv, IPW_RESET_REG,
2951 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2952
2953 IPW_DEBUG_FW("<< dmaWaitSync \n");
2954 return 0;
2955 }
2956
2957 static void ipw_remove_current_network(struct ipw_priv *priv)
2958 {
2959 struct list_head *element, *safe;
2960 struct ieee80211_network *network = NULL;
2961 unsigned long flags;
2962
2963 spin_lock_irqsave(&priv->ieee->lock, flags);
2964 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2965 network = list_entry(element, struct ieee80211_network, list);
2966 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2967 list_del(element);
2968 list_add_tail(&network->list,
2969 &priv->ieee->network_free_list);
2970 }
2971 }
2972 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2973 }
2974
2975 /**
2976 * Check that card is still alive.
2977 * Reads debug register from domain0.
2978 * If card is present, pre-defined value should
2979 * be found there.
2980 *
2981 * @param priv
2982 * @return 1 if card is present, 0 otherwise
2983 */
2984 static inline int ipw_alive(struct ipw_priv *priv)
2985 {
2986 return ipw_read32(priv, 0x90) == 0xd55555d5;
2987 }
2988
2989 /* timeout in msec, attempted in 10-msec quanta */
2990 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2991 int timeout)
2992 {
2993 int i = 0;
2994
2995 do {
2996 if ((ipw_read32(priv, addr) & mask) == mask)
2997 return i;
2998 mdelay(10);
2999 i += 10;
3000 } while (i < timeout);
3001
3002 return -ETIME;
3003 }
3004
3005 /* These functions load the firmware and micro code for the operation of
3006 * the ipw hardware. It assumes the buffer has all the bits for the
3007 * image and the caller is handling the memory allocation and clean up.
3008 */
3009
3010 static int ipw_stop_master(struct ipw_priv *priv)
3011 {
3012 int rc;
3013
3014 IPW_DEBUG_TRACE(">> \n");
3015 /* stop master. typical delay - 0 */
3016 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3017
3018 /* timeout is in msec, polled in 10-msec quanta */
3019 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3020 IPW_RESET_REG_MASTER_DISABLED, 100);
3021 if (rc < 0) {
3022 IPW_ERROR("wait for stop master failed after 100ms\n");
3023 return -1;
3024 }
3025
3026 IPW_DEBUG_INFO("stop master %dms\n", rc);
3027
3028 return rc;
3029 }
3030
3031 static void ipw_arc_release(struct ipw_priv *priv)
3032 {
3033 IPW_DEBUG_TRACE(">> \n");
3034 mdelay(5);
3035
3036 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3037
3038 /* no one knows timing, for safety add some delay */
3039 mdelay(5);
3040 }
3041
3042 struct fw_chunk {
3043 u32 address;
3044 u32 length;
3045 };
3046
3047 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3048 {
3049 int rc = 0, i, addr;
3050 u8 cr = 0;
3051 u16 *image;
3052
3053 image = (u16 *) data;
3054
3055 IPW_DEBUG_TRACE(">> \n");
3056
3057 rc = ipw_stop_master(priv);
3058
3059 if (rc < 0)
3060 return rc;
3061
3062 for (addr = IPW_SHARED_LOWER_BOUND;
3063 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3064 ipw_write32(priv, addr, 0);
3065 }
3066
3067 /* no ucode (yet) */
3068 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3069 /* destroy DMA queues */
3070 /* reset sequence */
3071
3072 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3073 ipw_arc_release(priv);
3074 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3075 mdelay(1);
3076
3077 /* reset PHY */
3078 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3079 mdelay(1);
3080
3081 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3082 mdelay(1);
3083
3084 /* enable ucode store */
3085 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3086 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3087 mdelay(1);
3088
3089 /* write ucode */
3090 /**
3091 * @bug
3092 * Do NOT set indirect address register once and then
3093 * store data to indirect data register in the loop.
3094 * It seems very reasonable, but in this case DINO do not
3095 * accept ucode. It is essential to set address each time.
3096 */
3097 /* load new ipw uCode */
3098 for (i = 0; i < len / 2; i++)
3099 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3100 cpu_to_le16(image[i]));
3101
3102 /* enable DINO */
3103 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3104 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3105
3106 /* this is where the igx / win driver deveates from the VAP driver. */
3107
3108 /* wait for alive response */
3109 for (i = 0; i < 100; i++) {
3110 /* poll for incoming data */
3111 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3112 if (cr & DINO_RXFIFO_DATA)
3113 break;
3114 mdelay(1);
3115 }
3116
3117 if (cr & DINO_RXFIFO_DATA) {
3118 /* alive_command_responce size is NOT multiple of 4 */
3119 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3120
3121 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3122 response_buffer[i] =
3123 le32_to_cpu(ipw_read_reg32(priv,
3124 IPW_BASEBAND_RX_FIFO_READ));
3125 memcpy(&priv->dino_alive, response_buffer,
3126 sizeof(priv->dino_alive));
3127 if (priv->dino_alive.alive_command == 1
3128 && priv->dino_alive.ucode_valid == 1) {
3129 rc = 0;
3130 IPW_DEBUG_INFO
3131 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3132 "of %02d/%02d/%02d %02d:%02d\n",
3133 priv->dino_alive.software_revision,
3134 priv->dino_alive.software_revision,
3135 priv->dino_alive.device_identifier,
3136 priv->dino_alive.device_identifier,
3137 priv->dino_alive.time_stamp[0],
3138 priv->dino_alive.time_stamp[1],
3139 priv->dino_alive.time_stamp[2],
3140 priv->dino_alive.time_stamp[3],
3141 priv->dino_alive.time_stamp[4]);
3142 } else {
3143 IPW_DEBUG_INFO("Microcode is not alive\n");
3144 rc = -EINVAL;
3145 }
3146 } else {
3147 IPW_DEBUG_INFO("No alive response from DINO\n");
3148 rc = -ETIME;
3149 }
3150
3151 /* disable DINO, otherwise for some reason
3152 firmware have problem getting alive resp. */
3153 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3154
3155 return rc;
3156 }
3157
3158 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3159 {
3160 int rc = -1;
3161 int offset = 0;
3162 struct fw_chunk *chunk;
3163 dma_addr_t shared_phys;
3164 u8 *shared_virt;
3165
3166 IPW_DEBUG_TRACE("<< : \n");
3167 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3168
3169 if (!shared_virt)
3170 return -ENOMEM;
3171
3172 memmove(shared_virt, data, len);
3173
3174 /* Start the Dma */
3175 rc = ipw_fw_dma_enable(priv);
3176
3177 if (priv->sram_desc.last_cb_index > 0) {
3178 /* the DMA is already ready this would be a bug. */
3179 BUG();
3180 goto out;
3181 }
3182
3183 do {
3184 chunk = (struct fw_chunk *)(data + offset);
3185 offset += sizeof(struct fw_chunk);
3186 /* build DMA packet and queue up for sending */
3187 /* dma to chunk->address, the chunk->length bytes from data +
3188 * offeset*/
3189 /* Dma loading */
3190 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3191 le32_to_cpu(chunk->address),
3192 le32_to_cpu(chunk->length));
3193 if (rc) {
3194 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3195 goto out;
3196 }
3197
3198 offset += le32_to_cpu(chunk->length);
3199 } while (offset < len);
3200
3201 /* Run the DMA and wait for the answer */
3202 rc = ipw_fw_dma_kick(priv);
3203 if (rc) {
3204 IPW_ERROR("dmaKick Failed\n");
3205 goto out;
3206 }
3207
3208 rc = ipw_fw_dma_wait(priv);
3209 if (rc) {
3210 IPW_ERROR("dmaWaitSync Failed\n");
3211 goto out;
3212 }
3213 out:
3214 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3215 return rc;
3216 }
3217
3218 /* stop nic */
3219 static int ipw_stop_nic(struct ipw_priv *priv)
3220 {
3221 int rc = 0;
3222
3223 /* stop */
3224 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3225
3226 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3227 IPW_RESET_REG_MASTER_DISABLED, 500);
3228 if (rc < 0) {
3229 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3230 return rc;
3231 }
3232
3233 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3234
3235 return rc;
3236 }
3237
3238 static void ipw_start_nic(struct ipw_priv *priv)
3239 {
3240 IPW_DEBUG_TRACE(">>\n");
3241
3242 /* prvHwStartNic release ARC */
3243 ipw_clear_bit(priv, IPW_RESET_REG,
3244 IPW_RESET_REG_MASTER_DISABLED |
3245 IPW_RESET_REG_STOP_MASTER |
3246 CBD_RESET_REG_PRINCETON_RESET);
3247
3248 /* enable power management */
3249 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3250 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3251
3252 IPW_DEBUG_TRACE("<<\n");
3253 }
3254
3255 static int ipw_init_nic(struct ipw_priv *priv)
3256 {
3257 int rc;
3258
3259 IPW_DEBUG_TRACE(">>\n");
3260 /* reset */
3261 /*prvHwInitNic */
3262 /* set "initialization complete" bit to move adapter to D0 state */
3263 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3264
3265 /* low-level PLL activation */
3266 ipw_write32(priv, IPW_READ_INT_REGISTER,
3267 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3268
3269 /* wait for clock stabilization */
3270 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3271 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3272 if (rc < 0)
3273 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3274
3275 /* assert SW reset */
3276 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3277
3278 udelay(10);
3279
3280 /* set "initialization complete" bit to move adapter to D0 state */
3281 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3282
3283 IPW_DEBUG_TRACE(">>\n");
3284 return 0;
3285 }
3286
3287 /* Call this function from process context, it will sleep in request_firmware.
3288 * Probe is an ok place to call this from.
3289 */
3290 static int ipw_reset_nic(struct ipw_priv *priv)
3291 {
3292 int rc = 0;
3293 unsigned long flags;
3294
3295 IPW_DEBUG_TRACE(">>\n");
3296
3297 rc = ipw_init_nic(priv);
3298
3299 spin_lock_irqsave(&priv->lock, flags);
3300 /* Clear the 'host command active' bit... */
3301 priv->status &= ~STATUS_HCMD_ACTIVE;
3302 wake_up_interruptible(&priv->wait_command_queue);
3303 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3304 wake_up_interruptible(&priv->wait_state);
3305 spin_unlock_irqrestore(&priv->lock, flags);
3306
3307 IPW_DEBUG_TRACE("<<\n");
3308 return rc;
3309 }
3310
3311
3312 struct ipw_fw {
3313 __le32 ver;
3314 __le32 boot_size;
3315 __le32 ucode_size;
3316 __le32 fw_size;
3317 u8 data[0];
3318 };
3319
3320 static int ipw_get_fw(struct ipw_priv *priv,
3321 const struct firmware **raw, const char *name)
3322 {
3323 struct ipw_fw *fw;
3324 int rc;
3325
3326 /* ask firmware_class module to get the boot firmware off disk */
3327 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3328 if (rc < 0) {
3329 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3330 return rc;
3331 }
3332
3333 if ((*raw)->size < sizeof(*fw)) {
3334 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3335 return -EINVAL;
3336 }
3337
3338 fw = (void *)(*raw)->data;
3339
3340 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3341 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3342 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3343 name, (*raw)->size);
3344 return -EINVAL;
3345 }
3346
3347 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3348 name,
3349 le32_to_cpu(fw->ver) >> 16,
3350 le32_to_cpu(fw->ver) & 0xff,
3351 (*raw)->size - sizeof(*fw));
3352 return 0;
3353 }
3354
3355 #define IPW_RX_BUF_SIZE (3000)
3356
3357 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3358 struct ipw_rx_queue *rxq)
3359 {
3360 unsigned long flags;
3361 int i;
3362
3363 spin_lock_irqsave(&rxq->lock, flags);
3364
3365 INIT_LIST_HEAD(&rxq->rx_free);
3366 INIT_LIST_HEAD(&rxq->rx_used);
3367
3368 /* Fill the rx_used queue with _all_ of the Rx buffers */
3369 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3370 /* In the reset function, these buffers may have been allocated
3371 * to an SKB, so we need to unmap and free potential storage */
3372 if (rxq->pool[i].skb != NULL) {
3373 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3374 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3375 dev_kfree_skb(rxq->pool[i].skb);
3376 rxq->pool[i].skb = NULL;
3377 }
3378 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3379 }
3380
3381 /* Set us so that we have processed and used all buffers, but have
3382 * not restocked the Rx queue with fresh buffers */
3383 rxq->read = rxq->write = 0;
3384 rxq->processed = RX_QUEUE_SIZE - 1;
3385 rxq->free_count = 0;
3386 spin_unlock_irqrestore(&rxq->lock, flags);
3387 }
3388
3389 #ifdef CONFIG_PM
3390 static int fw_loaded = 0;
3391 static const struct firmware *raw = NULL;
3392
3393 static void free_firmware(void)
3394 {
3395 if (fw_loaded) {
3396 release_firmware(raw);
3397 raw = NULL;
3398 fw_loaded = 0;
3399 }
3400 }
3401 #else
3402 #define free_firmware() do {} while (0)
3403 #endif
3404
3405 static int ipw_load(struct ipw_priv *priv)
3406 {
3407 #ifndef CONFIG_PM
3408 const struct firmware *raw = NULL;
3409 #endif
3410 struct ipw_fw *fw;
3411 u8 *boot_img, *ucode_img, *fw_img;
3412 u8 *name = NULL;
3413 int rc = 0, retries = 3;
3414
3415 switch (priv->ieee->iw_mode) {
3416 case IW_MODE_ADHOC:
3417 name = "ipw2200-ibss.fw";
3418 break;
3419 #ifdef CONFIG_IPW2200_MONITOR
3420 case IW_MODE_MONITOR:
3421 name = "ipw2200-sniffer.fw";
3422 break;
3423 #endif
3424 case IW_MODE_INFRA:
3425 name = "ipw2200-bss.fw";
3426 break;
3427 }
3428
3429 if (!name) {
3430 rc = -EINVAL;
3431 goto error;
3432 }
3433
3434 #ifdef CONFIG_PM
3435 if (!fw_loaded) {
3436 #endif
3437 rc = ipw_get_fw(priv, &raw, name);
3438 if (rc < 0)
3439 goto error;
3440 #ifdef CONFIG_PM
3441 }
3442 #endif
3443
3444 fw = (void *)raw->data;
3445 boot_img = &fw->data[0];
3446 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3447 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3448 le32_to_cpu(fw->ucode_size)];
3449
3450 if (rc < 0)
3451 goto error;
3452
3453 if (!priv->rxq)
3454 priv->rxq = ipw_rx_queue_alloc(priv);
3455 else
3456 ipw_rx_queue_reset(priv, priv->rxq);
3457 if (!priv->rxq) {
3458 IPW_ERROR("Unable to initialize Rx queue\n");
3459 goto error;
3460 }
3461
3462 retry:
3463 /* Ensure interrupts are disabled */
3464 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3465 priv->status &= ~STATUS_INT_ENABLED;
3466
3467 /* ack pending interrupts */
3468 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3469
3470 ipw_stop_nic(priv);
3471
3472 rc = ipw_reset_nic(priv);
3473 if (rc < 0) {
3474 IPW_ERROR("Unable to reset NIC\n");
3475 goto error;
3476 }
3477
3478 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3479 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3480
3481 /* DMA the initial boot firmware into the device */
3482 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3483 if (rc < 0) {
3484 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3485 goto error;
3486 }
3487
3488 /* kick start the device */
3489 ipw_start_nic(priv);
3490
3491 /* wait for the device to finish its initial startup sequence */
3492 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3493 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3494 if (rc < 0) {
3495 IPW_ERROR("device failed to boot initial fw image\n");
3496 goto error;
3497 }
3498 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3499
3500 /* ack fw init done interrupt */
3501 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3502
3503 /* DMA the ucode into the device */
3504 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3505 if (rc < 0) {
3506 IPW_ERROR("Unable to load ucode: %d\n", rc);
3507 goto error;
3508 }
3509
3510 /* stop nic */
3511 ipw_stop_nic(priv);
3512
3513 /* DMA bss firmware into the device */
3514 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3515 if (rc < 0) {
3516 IPW_ERROR("Unable to load firmware: %d\n", rc);
3517 goto error;
3518 }
3519 #ifdef CONFIG_PM
3520 fw_loaded = 1;
3521 #endif
3522
3523 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3524
3525 rc = ipw_queue_reset(priv);
3526 if (rc < 0) {
3527 IPW_ERROR("Unable to initialize queues\n");
3528 goto error;
3529 }
3530
3531 /* Ensure interrupts are disabled */
3532 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3533 /* ack pending interrupts */
3534 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3535
3536 /* kick start the device */
3537 ipw_start_nic(priv);
3538
3539 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3540 if (retries > 0) {
3541 IPW_WARNING("Parity error. Retrying init.\n");
3542 retries--;
3543 goto retry;
3544 }
3545
3546 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3547 rc = -EIO;
3548 goto error;
3549 }
3550
3551 /* wait for the device */
3552 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3553 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3554 if (rc < 0) {
3555 IPW_ERROR("device failed to start within 500ms\n");
3556 goto error;
3557 }
3558 IPW_DEBUG_INFO("device response after %dms\n", rc);
3559
3560 /* ack fw init done interrupt */
3561 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3562
3563 /* read eeprom data and initialize the eeprom region of sram */
3564 priv->eeprom_delay = 1;
3565 ipw_eeprom_init_sram(priv);
3566
3567 /* enable interrupts */
3568 ipw_enable_interrupts(priv);
3569
3570 /* Ensure our queue has valid packets */
3571 ipw_rx_queue_replenish(priv);
3572
3573 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3574
3575 /* ack pending interrupts */
3576 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3577
3578 #ifndef CONFIG_PM
3579 release_firmware(raw);
3580 #endif
3581 return 0;
3582
3583 error:
3584 if (priv->rxq) {
3585 ipw_rx_queue_free(priv, priv->rxq);
3586 priv->rxq = NULL;
3587 }
3588 ipw_tx_queue_free(priv);
3589 if (raw)
3590 release_firmware(raw);
3591 #ifdef CONFIG_PM
3592 fw_loaded = 0;
3593 raw = NULL;
3594 #endif
3595
3596 return rc;
3597 }
3598
3599 /**
3600 * DMA services
3601 *
3602 * Theory of operation
3603 *
3604 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3605 * 2 empty entries always kept in the buffer to protect from overflow.
3606 *
3607 * For Tx queue, there are low mark and high mark limits. If, after queuing
3608 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3609 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3610 * Tx queue resumed.
3611 *
3612 * The IPW operates with six queues, one receive queue in the device's
3613 * sram, one transmit queue for sending commands to the device firmware,
3614 * and four transmit queues for data.
3615 *
3616 * The four transmit queues allow for performing quality of service (qos)
3617 * transmissions as per the 802.11 protocol. Currently Linux does not
3618 * provide a mechanism to the user for utilizing prioritized queues, so
3619 * we only utilize the first data transmit queue (queue1).
3620 */
3621
3622 /**
3623 * Driver allocates buffers of this size for Rx
3624 */
3625
3626 static inline int ipw_queue_space(const struct clx2_queue *q)
3627 {
3628 int s = q->last_used - q->first_empty;
3629 if (s <= 0)
3630 s += q->n_bd;
3631 s -= 2; /* keep some reserve to not confuse empty and full situations */
3632 if (s < 0)
3633 s = 0;
3634 return s;
3635 }
3636
3637 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3638 {
3639 return (++index == n_bd) ? 0 : index;
3640 }
3641
3642 /**
3643 * Initialize common DMA queue structure
3644 *
3645 * @param q queue to init
3646 * @param count Number of BD's to allocate. Should be power of 2
3647 * @param read_register Address for 'read' register
3648 * (not offset within BAR, full address)
3649 * @param write_register Address for 'write' register
3650 * (not offset within BAR, full address)
3651 * @param base_register Address for 'base' register
3652 * (not offset within BAR, full address)
3653 * @param size Address for 'size' register
3654 * (not offset within BAR, full address)
3655 */
3656 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3657 int count, u32 read, u32 write, u32 base, u32 size)
3658 {
3659 q->n_bd = count;
3660
3661 q->low_mark = q->n_bd / 4;
3662 if (q->low_mark < 4)
3663 q->low_mark = 4;
3664
3665 q->high_mark = q->n_bd / 8;
3666 if (q->high_mark < 2)
3667 q->high_mark = 2;
3668
3669 q->first_empty = q->last_used = 0;
3670 q->reg_r = read;
3671 q->reg_w = write;
3672
3673 ipw_write32(priv, base, q->dma_addr);
3674 ipw_write32(priv, size, count);
3675 ipw_write32(priv, read, 0);
3676 ipw_write32(priv, write, 0);
3677
3678 _ipw_read32(priv, 0x90);
3679 }
3680
3681 static int ipw_queue_tx_init(struct ipw_priv *priv,
3682 struct clx2_tx_queue *q,
3683 int count, u32 read, u32 write, u32 base, u32 size)
3684 {
3685 struct pci_dev *dev = priv->pci_dev;
3686
3687 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3688 if (!q->txb) {
3689 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3690 return -ENOMEM;
3691 }
3692
3693 q->bd =
3694 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3695 if (!q->bd) {
3696 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3697 sizeof(q->bd[0]) * count);
3698 kfree(q->txb);
3699 q->txb = NULL;
3700 return -ENOMEM;
3701 }
3702
3703 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3704 return 0;
3705 }
3706
3707 /**
3708 * Free one TFD, those at index [txq->q.last_used].
3709 * Do NOT advance any indexes
3710 *
3711 * @param dev
3712 * @param txq
3713 */
3714 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3715 struct clx2_tx_queue *txq)
3716 {
3717 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3718 struct pci_dev *dev = priv->pci_dev;
3719 int i;
3720
3721 /* classify bd */
3722 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3723 /* nothing to cleanup after for host commands */
3724 return;
3725
3726 /* sanity check */
3727 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3728 IPW_ERROR("Too many chunks: %i\n",
3729 le32_to_cpu(bd->u.data.num_chunks));
3730 /** @todo issue fatal error, it is quite serious situation */
3731 return;
3732 }
3733
3734 /* unmap chunks if any */
3735 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3736 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3737 le16_to_cpu(bd->u.data.chunk_len[i]),
3738 PCI_DMA_TODEVICE);
3739 if (txq->txb[txq->q.last_used]) {
3740 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3741 txq->txb[txq->q.last_used] = NULL;
3742 }
3743 }
3744 }
3745
3746 /**
3747 * Deallocate DMA queue.
3748 *
3749 * Empty queue by removing and destroying all BD's.
3750 * Free all buffers.
3751 *
3752 * @param dev
3753 * @param q
3754 */
3755 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3756 {
3757 struct clx2_queue *q = &txq->q;
3758 struct pci_dev *dev = priv->pci_dev;
3759
3760 if (q->n_bd == 0)
3761 return;
3762
3763 /* first, empty all BD's */
3764 for (; q->first_empty != q->last_used;
3765 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3766 ipw_queue_tx_free_tfd(priv, txq);
3767 }
3768
3769 /* free buffers belonging to queue itself */
3770 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3771 q->dma_addr);
3772 kfree(txq->txb);
3773
3774 /* 0 fill whole structure */
3775 memset(txq, 0, sizeof(*txq));
3776 }
3777
3778 /**
3779 * Destroy all DMA queues and structures
3780 *
3781 * @param priv
3782 */
3783 static void ipw_tx_queue_free(struct ipw_priv *priv)
3784 {
3785 /* Tx CMD queue */
3786 ipw_queue_tx_free(priv, &priv->txq_cmd);
3787
3788 /* Tx queues */
3789 ipw_queue_tx_free(priv, &priv->txq[0]);
3790 ipw_queue_tx_free(priv, &priv->txq[1]);
3791 ipw_queue_tx_free(priv, &priv->txq[2]);
3792 ipw_queue_tx_free(priv, &priv->txq[3]);
3793 }
3794
3795 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3796 {
3797 /* First 3 bytes are manufacturer */
3798 bssid[0] = priv->mac_addr[0];
3799 bssid[1] = priv->mac_addr[1];
3800 bssid[2] = priv->mac_addr[2];
3801
3802 /* Last bytes are random */
3803 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3804
3805 bssid[0] &= 0xfe; /* clear multicast bit */
3806 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3807 }
3808
3809 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3810 {
3811 struct ipw_station_entry entry;
3812 int i;
3813 DECLARE_MAC_BUF(mac);
3814
3815 for (i = 0; i < priv->num_stations; i++) {
3816 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3817 /* Another node is active in network */
3818 priv->missed_adhoc_beacons = 0;
3819 if (!(priv->config & CFG_STATIC_CHANNEL))
3820 /* when other nodes drop out, we drop out */
3821 priv->config &= ~CFG_ADHOC_PERSIST;
3822
3823 return i;
3824 }
3825 }
3826
3827 if (i == MAX_STATIONS)
3828 return IPW_INVALID_STATION;
3829
3830 IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3831
3832 entry.reserved = 0;
3833 entry.support_mode = 0;
3834 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3835 memcpy(priv->stations[i], bssid, ETH_ALEN);
3836 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3837 &entry, sizeof(entry));
3838 priv->num_stations++;
3839
3840 return i;
3841 }
3842
3843 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3844 {
3845 int i;
3846
3847 for (i = 0; i < priv->num_stations; i++)
3848 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3849 return i;
3850
3851 return IPW_INVALID_STATION;
3852 }
3853
3854 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3855 {
3856 int err;
3857 DECLARE_MAC_BUF(mac);
3858
3859 if (priv->status & STATUS_ASSOCIATING) {
3860 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3861 queue_work(priv->workqueue, &priv->disassociate);
3862 return;
3863 }
3864
3865 if (!(priv->status & STATUS_ASSOCIATED)) {
3866 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3867 return;
3868 }
3869
3870 IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3871 "on channel %d.\n",
3872 print_mac(mac, priv->assoc_request.bssid),
3873 priv->assoc_request.channel);
3874
3875 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3876 priv->status |= STATUS_DISASSOCIATING;
3877
3878 if (quiet)
3879 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3880 else
3881 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3882
3883 err = ipw_send_associate(priv, &priv->assoc_request);
3884 if (err) {
3885 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3886 "failed.\n");
3887 return;
3888 }
3889
3890 }
3891
3892 static int ipw_disassociate(void *data)
3893 {
3894 struct ipw_priv *priv = data;
3895 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3896 return 0;
3897 ipw_send_disassociate(data, 0);
3898 return 1;
3899 }
3900
3901 static void ipw_bg_disassociate(struct work_struct *work)
3902 {
3903 struct ipw_priv *priv =
3904 container_of(work, struct ipw_priv, disassociate);
3905 mutex_lock(&priv->mutex);
3906 ipw_disassociate(priv);
3907 mutex_unlock(&priv->mutex);
3908 }
3909
3910 static void ipw_system_config(struct work_struct *work)
3911 {
3912 struct ipw_priv *priv =
3913 container_of(work, struct ipw_priv, system_config);
3914
3915 #ifdef CONFIG_IPW2200_PROMISCUOUS
3916 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3917 priv->sys_config.accept_all_data_frames = 1;
3918 priv->sys_config.accept_non_directed_frames = 1;
3919 priv->sys_config.accept_all_mgmt_bcpr = 1;
3920 priv->sys_config.accept_all_mgmt_frames = 1;
3921 }
3922 #endif
3923
3924 ipw_send_system_config(priv);
3925 }
3926
3927 struct ipw_status_code {
3928 u16 status;
3929 const char *reason;
3930 };
3931
3932 static const struct ipw_status_code ipw_status_codes[] = {
3933 {0x00, "Successful"},
3934 {0x01, "Unspecified failure"},
3935 {0x0A, "Cannot support all requested capabilities in the "
3936 "Capability information field"},
3937 {0x0B, "Reassociation denied due to inability to confirm that "
3938 "association exists"},
3939 {0x0C, "Association denied due to reason outside the scope of this "
3940 "standard"},
3941 {0x0D,
3942 "Responding station does not support the specified authentication "
3943 "algorithm"},
3944 {0x0E,
3945 "Received an Authentication frame with authentication sequence "
3946 "transaction sequence number out of expected sequence"},
3947 {0x0F, "Authentication rejected because of challenge failure"},
3948 {0x10, "Authentication rejected due to timeout waiting for next "
3949 "frame in sequence"},
3950 {0x11, "Association denied because AP is unable to handle additional "
3951 "associated stations"},
3952 {0x12,
3953 "Association denied due to requesting station not supporting all "
3954 "of the datarates in the BSSBasicServiceSet Parameter"},
3955 {0x13,
3956 "Association denied due to requesting station not supporting "
3957 "short preamble operation"},
3958 {0x14,
3959 "Association denied due to requesting station not supporting "
3960 "PBCC encoding"},
3961 {0x15,
3962 "Association denied due to requesting station not supporting "
3963 "channel agility"},
3964 {0x19,
3965 "Association denied due to requesting station not supporting "
3966 "short slot operation"},
3967 {0x1A,
3968 "Association denied due to requesting station not supporting "
3969 "DSSS-OFDM operation"},
3970 {0x28, "Invalid Information Element"},
3971 {0x29, "Group Cipher is not valid"},
3972 {0x2A, "Pairwise Cipher is not valid"},
3973 {0x2B, "AKMP is not valid"},
3974 {0x2C, "Unsupported RSN IE version"},
3975 {0x2D, "Invalid RSN IE Capabilities"},
3976 {0x2E, "Cipher suite is rejected per security policy"},
3977 };
3978
3979 static const char *ipw_get_status_code(u16 status)
3980 {
3981 int i;
3982 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3983 if (ipw_status_codes[i].status == (status & 0xff))
3984 return ipw_status_codes[i].reason;
3985 return "Unknown status value.";
3986 }
3987
3988 static void inline average_init(struct average *avg)
3989 {
3990 memset(avg, 0, sizeof(*avg));
3991 }
3992
3993 #define DEPTH_RSSI 8
3994 #define DEPTH_NOISE 16
3995 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3996 {
3997 return ((depth-1)*prev_avg + val)/depth;
3998 }
3999
4000 static void average_add(struct average *avg, s16 val)
4001 {
4002 avg->sum -= avg->entries[avg->pos];
4003 avg->sum += val;
4004 avg->entries[avg->pos++] = val;
4005 if (unlikely(avg->pos == AVG_ENTRIES)) {
4006 avg->init = 1;
4007 avg->pos = 0;
4008 }
4009 }
4010
4011 static s16 average_value(struct average *avg)
4012 {
4013 if (!unlikely(avg->init)) {
4014 if (avg->pos)
4015 return avg->sum / avg->pos;
4016 return 0;
4017 }
4018
4019 return avg->sum / AVG_ENTRIES;
4020 }
4021
4022 static void ipw_reset_stats(struct ipw_priv *priv)
4023 {
4024 u32 len = sizeof(u32);
4025
4026 priv->quality = 0;
4027
4028 average_init(&priv->average_missed_beacons);
4029 priv->exp_avg_rssi = -60;
4030 priv->exp_avg_noise = -85 + 0x100;
4031
4032 priv->last_rate = 0;
4033 priv->last_missed_beacons = 0;
4034 priv->last_rx_packets = 0;
4035 priv->last_tx_packets = 0;
4036 priv->last_tx_failures = 0;
4037
4038 /* Firmware managed, reset only when NIC is restarted, so we have to
4039 * normalize on the current value */
4040 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4041 &priv->last_rx_err, &len);
4042 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4043 &priv->last_tx_failures, &len);
4044
4045 /* Driver managed, reset with each association */
4046 priv->missed_adhoc_beacons = 0;
4047 priv->missed_beacons = 0;
4048 priv->tx_packets = 0;
4049 priv->rx_packets = 0;
4050
4051 }
4052
4053 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4054 {
4055 u32 i = 0x80000000;
4056 u32 mask = priv->rates_mask;
4057 /* If currently associated in B mode, restrict the maximum
4058 * rate match to B rates */
4059 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4060 mask &= IEEE80211_CCK_RATES_MASK;
4061
4062 /* TODO: Verify that the rate is supported by the current rates
4063 * list. */
4064
4065 while (i && !(mask & i))
4066 i >>= 1;
4067 switch (i) {
4068 case IEEE80211_CCK_RATE_1MB_MASK:
4069 return 1000000;
4070 case IEEE80211_CCK_RATE_2MB_MASK:
4071 return 2000000;
4072 case IEEE80211_CCK_RATE_5MB_MASK:
4073 return 5500000;
4074 case IEEE80211_OFDM_RATE_6MB_MASK:
4075 return 6000000;
4076 case IEEE80211_OFDM_RATE_9MB_MASK:
4077 return 9000000;
4078 case IEEE80211_CCK_RATE_11MB_MASK:
4079 return 11000000;
4080 case IEEE80211_OFDM_RATE_12MB_MASK:
4081 return 12000000;
4082 case IEEE80211_OFDM_RATE_18MB_MASK:
4083 return 18000000;
4084 case IEEE80211_OFDM_RATE_24MB_MASK:
4085 return 24000000;
4086 case IEEE80211_OFDM_RATE_36MB_MASK:
4087 return 36000000;
4088 case IEEE80211_OFDM_RATE_48MB_MASK:
4089 return 48000000;
4090 case IEEE80211_OFDM_RATE_54MB_MASK:
4091 return 54000000;
4092 }
4093
4094 if (priv->ieee->mode == IEEE_B)
4095 return 11000000;
4096 else
4097 return 54000000;
4098 }
4099
4100 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4101 {
4102 u32 rate, len = sizeof(rate);
4103 int err;
4104
4105 if (!(priv->status & STATUS_ASSOCIATED))
4106 return 0;
4107
4108 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4109 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4110 &len);
4111 if (err) {
4112 IPW_DEBUG_INFO("failed querying ordinals.\n");
4113 return 0;
4114 }
4115 } else
4116 return ipw_get_max_rate(priv);
4117
4118 switch (rate) {
4119 case IPW_TX_RATE_1MB:
4120 return 1000000;
4121 case IPW_TX_RATE_2MB:
4122 return 2000000;
4123 case IPW_TX_RATE_5MB:
4124 return 5500000;
4125 case IPW_TX_RATE_6MB:
4126 return 6000000;
4127 case IPW_TX_RATE_9MB:
4128 return 9000000;
4129 case IPW_TX_RATE_11MB:
4130 return 11000000;
4131 case IPW_TX_RATE_12MB:
4132 return 12000000;
4133 case IPW_TX_RATE_18MB:
4134 return 18000000;
4135 case IPW_TX_RATE_24MB:
4136 return 24000000;
4137 case IPW_TX_RATE_36MB:
4138 return 36000000;
4139 case IPW_TX_RATE_48MB:
4140 return 48000000;
4141 case IPW_TX_RATE_54MB:
4142 return 54000000;
4143 }
4144
4145 return 0;
4146 }
4147
4148 #define IPW_STATS_INTERVAL (2 * HZ)
4149 static void ipw_gather_stats(struct ipw_priv *priv)
4150 {
4151 u32 rx_err, rx_err_delta, rx_packets_delta;
4152 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4153 u32 missed_beacons_percent, missed_beacons_delta;
4154 u32 quality = 0;
4155 u32 len = sizeof(u32);
4156 s16 rssi;
4157 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4158 rate_quality;
4159 u32 max_rate;
4160
4161 if (!(priv->status & STATUS_ASSOCIATED)) {
4162 priv->quality = 0;
4163 return;
4164 }
4165
4166 /* Update the statistics */
4167 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4168 &priv->missed_beacons, &len);
4169 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4170 priv->last_missed_beacons = priv->missed_beacons;
4171 if (priv->assoc_request.beacon_interval) {
4172 missed_beacons_percent = missed_beacons_delta *
4173 (HZ * priv->assoc_request.beacon_interval) /
4174 (IPW_STATS_INTERVAL * 10);
4175 } else {
4176 missed_beacons_percent = 0;
4177 }
4178 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4179
4180 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4181 rx_err_delta = rx_err - priv->last_rx_err;
4182 priv->last_rx_err = rx_err;
4183
4184 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4185 tx_failures_delta = tx_failures - priv->last_tx_failures;
4186 priv->last_tx_failures = tx_failures;
4187
4188 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4189 priv->last_rx_packets = priv->rx_packets;
4190
4191 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4192 priv->last_tx_packets = priv->tx_packets;
4193
4194 /* Calculate quality based on the following:
4195 *
4196 * Missed beacon: 100% = 0, 0% = 70% missed
4197 * Rate: 60% = 1Mbs, 100% = Max
4198 * Rx and Tx errors represent a straight % of total Rx/Tx
4199 * RSSI: 100% = > -50, 0% = < -80
4200 * Rx errors: 100% = 0, 0% = 50% missed
4201 *
4202 * The lowest computed quality is used.
4203 *
4204 */
4205 #define BEACON_THRESHOLD 5
4206 beacon_quality = 100 - missed_beacons_percent;
4207 if (beacon_quality < BEACON_THRESHOLD)
4208 beacon_quality = 0;
4209 else
4210 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4211 (100 - BEACON_THRESHOLD);
4212 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4213 beacon_quality, missed_beacons_percent);
4214
4215 priv->last_rate = ipw_get_current_rate(priv);
4216 max_rate = ipw_get_max_rate(priv);
4217 rate_quality = priv->last_rate * 40 / max_rate + 60;
4218 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4219 rate_quality, priv->last_rate / 1000000);
4220
4221 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4222 rx_quality = 100 - (rx_err_delta * 100) /
4223 (rx_packets_delta + rx_err_delta);
4224 else
4225 rx_quality = 100;
4226 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4227 rx_quality, rx_err_delta, rx_packets_delta);
4228
4229 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4230 tx_quality = 100 - (tx_failures_delta * 100) /
4231 (tx_packets_delta + tx_failures_delta);
4232 else
4233 tx_quality = 100;
4234 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4235 tx_quality, tx_failures_delta, tx_packets_delta);
4236
4237 rssi = priv->exp_avg_rssi;
4238 signal_quality =
4239 (100 *
4240 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4241 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4242 (priv->ieee->perfect_rssi - rssi) *
4243 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4244 62 * (priv->ieee->perfect_rssi - rssi))) /
4245 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4246 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4247 if (signal_quality > 100)
4248 signal_quality = 100;
4249 else if (signal_quality < 1)
4250 signal_quality = 0;
4251
4252 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4253 signal_quality, rssi);
4254
4255 quality = min(beacon_quality,
4256 min(rate_quality,
4257 min(tx_quality, min(rx_quality, signal_quality))));
4258 if (quality == beacon_quality)
4259 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4260 quality);
4261 if (quality == rate_quality)
4262 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4263 quality);
4264 if (quality == tx_quality)
4265 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4266 quality);
4267 if (quality == rx_quality)
4268 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4269 quality);
4270 if (quality == signal_quality)
4271 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4272 quality);
4273
4274 priv->quality = quality;
4275
4276 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4277 IPW_STATS_INTERVAL);
4278 }
4279
4280 static void ipw_bg_gather_stats(struct work_struct *work)
4281 {
4282 struct ipw_priv *priv =
4283 container_of(work, struct ipw_priv, gather_stats.work);
4284 mutex_lock(&priv->mutex);
4285 ipw_gather_stats(priv);
4286 mutex_unlock(&priv->mutex);
4287 }
4288
4289 /* Missed beacon behavior:
4290 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4291 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4292 * Above disassociate threshold, give up and stop scanning.
4293 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4294 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4295 int missed_count)
4296 {
4297 priv->notif_missed_beacons = missed_count;
4298
4299 if (missed_count > priv->disassociate_threshold &&
4300 priv->status & STATUS_ASSOCIATED) {
4301 /* If associated and we've hit the missed
4302 * beacon threshold, disassociate, turn
4303 * off roaming, and abort any active scans */
4304 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4305 IPW_DL_STATE | IPW_DL_ASSOC,
4306 "Missed beacon: %d - disassociate\n", missed_count);
4307 priv->status &= ~STATUS_ROAMING;
4308 if (priv->status & STATUS_SCANNING) {
4309 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4310 IPW_DL_STATE,
4311 "Aborting scan with missed beacon.\n");
4312 queue_work(priv->workqueue, &priv->abort_scan);
4313 }
4314
4315 queue_work(priv->workqueue, &priv->disassociate);
4316 return;
4317 }
4318
4319 if (priv->status & STATUS_ROAMING) {
4320 /* If we are currently roaming, then just
4321 * print a debug statement... */
4322 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4323 "Missed beacon: %d - roam in progress\n",
4324 missed_count);
4325 return;
4326 }
4327
4328 if (roaming &&
4329 (missed_count > priv->roaming_threshold &&
4330 missed_count <= priv->disassociate_threshold)) {
4331 /* If we are not already roaming, set the ROAM
4332 * bit in the status and kick off a scan.
4333 * This can happen several times before we reach
4334 * disassociate_threshold. */
4335 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4336 "Missed beacon: %d - initiate "
4337 "roaming\n", missed_count);
4338 if (!(priv->status & STATUS_ROAMING)) {
4339 priv->status |= STATUS_ROAMING;
4340 if (!(priv->status & STATUS_SCANNING))
4341 queue_delayed_work(priv->workqueue,
4342 &priv->request_scan, 0);
4343 }
4344 return;
4345 }
4346
4347 if (priv->status & STATUS_SCANNING) {
4348 /* Stop scan to keep fw from getting
4349 * stuck (only if we aren't roaming --
4350 * otherwise we'll never scan more than 2 or 3
4351 * channels..) */
4352 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4353 "Aborting scan with missed beacon.\n");
4354 queue_work(priv->workqueue, &priv->abort_scan);
4355 }
4356
4357 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4358 }
4359
4360 static void ipw_scan_event(struct work_struct *work)
4361 {
4362 union iwreq_data wrqu;
4363
4364 struct ipw_priv *priv =
4365 container_of(work, struct ipw_priv, scan_event.work);
4366
4367 wrqu.data.length = 0;
4368 wrqu.data.flags = 0;
4369 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4370 }
4371
4372 static void handle_scan_event(struct ipw_priv *priv)
4373 {
4374 /* Only userspace-requested scan completion events go out immediately */
4375 if (!priv->user_requested_scan) {
4376 if (!delayed_work_pending(&priv->scan_event))
4377 queue_delayed_work(priv->workqueue, &priv->scan_event,
4378 round_jiffies_relative(msecs_to_jiffies(4000)));
4379 } else {
4380 union iwreq_data wrqu;
4381
4382 priv->user_requested_scan = 0;
4383 cancel_delayed_work(&priv->scan_event);
4384
4385 wrqu.data.length = 0;
4386 wrqu.data.flags = 0;
4387 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4388 }
4389 }
4390
4391 /**
4392 * Handle host notification packet.
4393 * Called from interrupt routine
4394 */
4395 static void ipw_rx_notification(struct ipw_priv *priv,
4396 struct ipw_rx_notification *notif)
4397 {
4398 DECLARE_MAC_BUF(mac);
4399 notif->size = le16_to_cpu(notif->size);
4400
4401 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4402
4403 switch (notif->subtype) {
4404 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4405 struct notif_association *assoc = &notif->u.assoc;
4406
4407 switch (assoc->state) {
4408 case CMAS_ASSOCIATED:{
4409 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4410 IPW_DL_ASSOC,
4411 "associated: '%s' %s"
4412 " \n",
4413 escape_essid(priv->essid,
4414 priv->essid_len),
4415 print_mac(mac, priv->bssid));
4416
4417 switch (priv->ieee->iw_mode) {
4418 case IW_MODE_INFRA:
4419 memcpy(priv->ieee->bssid,
4420 priv->bssid, ETH_ALEN);
4421 break;
4422
4423 case IW_MODE_ADHOC:
4424 memcpy(priv->ieee->bssid,
4425 priv->bssid, ETH_ALEN);
4426
4427 /* clear out the station table */
4428 priv->num_stations = 0;
4429
4430 IPW_DEBUG_ASSOC
4431 ("queueing adhoc check\n");
4432 queue_delayed_work(priv->
4433 workqueue,
4434 &priv->
4435 adhoc_check,
4436 priv->
4437 assoc_request.
4438 beacon_interval);
4439 break;
4440 }
4441
4442 priv->status &= ~STATUS_ASSOCIATING;
4443 priv->status |= STATUS_ASSOCIATED;
4444 queue_work(priv->workqueue,
4445 &priv->system_config);
4446
4447 #ifdef CONFIG_IPW2200_QOS
4448 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4449 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4450 if ((priv->status & STATUS_AUTH) &&
4451 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4452 == IEEE80211_STYPE_ASSOC_RESP)) {
4453 if ((sizeof
4454 (struct
4455 ieee80211_assoc_response)
4456 <= notif->size)
4457 && (notif->size <= 2314)) {
4458 struct
4459 ieee80211_rx_stats
4460 stats = {
4461 .len =
4462 notif->
4463 size - 1,
4464 };
4465
4466 IPW_DEBUG_QOS
4467 ("QoS Associate "
4468 "size %d\n",
4469 notif->size);
4470 ieee80211_rx_mgt(priv->
4471 ieee,
4472 (struct
4473 ieee80211_hdr_4addr
4474 *)
4475 &notif->u.raw, &stats);
4476 }
4477 }
4478 #endif
4479
4480 schedule_work(&priv->link_up);
4481
4482 break;
4483 }
4484
4485 case CMAS_AUTHENTICATED:{
4486 if (priv->
4487 status & (STATUS_ASSOCIATED |
4488 STATUS_AUTH)) {
4489 struct notif_authenticate *auth
4490 = &notif->u.auth;
4491 IPW_DEBUG(IPW_DL_NOTIF |
4492 IPW_DL_STATE |
4493 IPW_DL_ASSOC,
4494 "deauthenticated: '%s' "
4495 "%s"
4496 ": (0x%04X) - %s \n",
4497 escape_essid(priv->
4498 essid,
4499 priv->
4500 essid_len),
4501 print_mac(mac, priv->bssid),
4502 ntohs(auth->status),
4503 ipw_get_status_code
4504 (ntohs
4505 (auth->status)));
4506
4507 priv->status &=
4508 ~(STATUS_ASSOCIATING |
4509 STATUS_AUTH |
4510 STATUS_ASSOCIATED);
4511
4512 schedule_work(&priv->link_down);
4513 break;
4514 }
4515
4516 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4517 IPW_DL_ASSOC,
4518 "authenticated: '%s' %s"
4519 "\n",
4520 escape_essid(priv->essid,
4521 priv->essid_len),
4522 print_mac(mac, priv->bssid));
4523 break;
4524 }
4525
4526 case CMAS_INIT:{
4527 if (priv->status & STATUS_AUTH) {
4528 struct
4529 ieee80211_assoc_response
4530 *resp;
4531 resp =
4532 (struct
4533 ieee80211_assoc_response
4534 *)&notif->u.raw;
4535 IPW_DEBUG(IPW_DL_NOTIF |
4536 IPW_DL_STATE |
4537 IPW_DL_ASSOC,
4538 "association failed (0x%04X): %s\n",
4539 ntohs(resp->status),
4540 ipw_get_status_code
4541 (ntohs
4542 (resp->status)));
4543 }
4544
4545 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4546 IPW_DL_ASSOC,
4547 "disassociated: '%s' %s"
4548 " \n",
4549 escape_essid(priv->essid,
4550 priv->essid_len),
4551 print_mac(mac, priv->bssid));
4552
4553 priv->status &=
4554 ~(STATUS_DISASSOCIATING |
4555 STATUS_ASSOCIATING |
4556 STATUS_ASSOCIATED | STATUS_AUTH);
4557 if (priv->assoc_network
4558 && (priv->assoc_network->
4559 capability &
4560 WLAN_CAPABILITY_IBSS))
4561 ipw_remove_current_network
4562 (priv);
4563
4564 schedule_work(&priv->link_down);
4565
4566 break;
4567 }
4568
4569 case CMAS_RX_ASSOC_RESP:
4570 break;
4571
4572 default:
4573 IPW_ERROR("assoc: unknown (%d)\n",
4574 assoc->state);
4575 break;
4576 }
4577
4578 break;
4579 }
4580
4581 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4582 struct notif_authenticate *auth = &notif->u.auth;
4583 switch (auth->state) {
4584 case CMAS_AUTHENTICATED:
4585 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4586 "authenticated: '%s' %s \n",
4587 escape_essid(priv->essid,
4588 priv->essid_len),
4589 print_mac(mac, priv->bssid));
4590 priv->status |= STATUS_AUTH;
4591 break;
4592
4593 case CMAS_INIT:
4594 if (priv->status & STATUS_AUTH) {
4595 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4596 IPW_DL_ASSOC,
4597 "authentication failed (0x%04X): %s\n",
4598 ntohs(auth->status),
4599 ipw_get_status_code(ntohs
4600 (auth->
4601 status)));
4602 }
4603 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4604 IPW_DL_ASSOC,
4605 "deauthenticated: '%s' %s\n",
4606 escape_essid(priv->essid,
4607 priv->essid_len),
4608 print_mac(mac, priv->bssid));
4609
4610 priv->status &= ~(STATUS_ASSOCIATING |
4611 STATUS_AUTH |
4612 STATUS_ASSOCIATED);
4613
4614 schedule_work(&priv->link_down);
4615 break;
4616
4617 case CMAS_TX_AUTH_SEQ_1:
4618 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4620 break;
4621 case CMAS_RX_AUTH_SEQ_2:
4622 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4624 break;
4625 case CMAS_AUTH_SEQ_1_PASS:
4626 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4628 break;
4629 case CMAS_AUTH_SEQ_1_FAIL:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4632 break;
4633 case CMAS_TX_AUTH_SEQ_3:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4636 break;
4637 case CMAS_RX_AUTH_SEQ_4:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4640 break;
4641 case CMAS_AUTH_SEQ_2_PASS:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4644 break;
4645 case CMAS_AUTH_SEQ_2_FAIL:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4648 break;
4649 case CMAS_TX_ASSOC:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "TX_ASSOC\n");
4652 break;
4653 case CMAS_RX_ASSOC_RESP:
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4656
4657 break;
4658 case CMAS_ASSOCIATED:
4659 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660 IPW_DL_ASSOC, "ASSOCIATED\n");
4661 break;
4662 default:
4663 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4664 auth->state);
4665 break;
4666 }
4667 break;
4668 }
4669
4670 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4671 struct notif_channel_result *x =
4672 &notif->u.channel_result;
4673
4674 if (notif->size == sizeof(*x)) {
4675 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4676 x->channel_num);
4677 } else {
4678 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4679 "(should be %zd)\n",
4680 notif->size, sizeof(*x));
4681 }
4682 break;
4683 }
4684
4685 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4686 struct notif_scan_complete *x = &notif->u.scan_complete;
4687 if (notif->size == sizeof(*x)) {
4688 IPW_DEBUG_SCAN
4689 ("Scan completed: type %d, %d channels, "
4690 "%d status\n", x->scan_type,
4691 x->num_channels, x->status);
4692 } else {
4693 IPW_ERROR("Scan completed of wrong size %d "
4694 "(should be %zd)\n",
4695 notif->size, sizeof(*x));
4696 }
4697
4698 priv->status &=
4699 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4700
4701 wake_up_interruptible(&priv->wait_state);
4702 cancel_delayed_work(&priv->scan_check);
4703
4704 if (priv->status & STATUS_EXIT_PENDING)
4705 break;
4706
4707 priv->ieee->scans++;
4708
4709 #ifdef CONFIG_IPW2200_MONITOR
4710 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4711 priv->status |= STATUS_SCAN_FORCED;
4712 queue_delayed_work(priv->workqueue,
4713 &priv->request_scan, 0);
4714 break;
4715 }
4716 priv->status &= ~STATUS_SCAN_FORCED;
4717 #endif /* CONFIG_IPW2200_MONITOR */
4718
4719 if (!(priv->status & (STATUS_ASSOCIATED |
4720 STATUS_ASSOCIATING |
4721 STATUS_ROAMING |
4722 STATUS_DISASSOCIATING)))
4723 queue_work(priv->workqueue, &priv->associate);
4724 else if (priv->status & STATUS_ROAMING) {
4725 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4726 /* If a scan completed and we are in roam mode, then
4727 * the scan that completed was the one requested as a
4728 * result of entering roam... so, schedule the
4729 * roam work */
4730 queue_work(priv->workqueue,
4731 &priv->roam);
4732 else
4733 /* Don't schedule if we aborted the scan */
4734 priv->status &= ~STATUS_ROAMING;
4735 } else if (priv->status & STATUS_SCAN_PENDING)
4736 queue_delayed_work(priv->workqueue,
4737 &priv->request_scan, 0);
4738 else if (priv->config & CFG_BACKGROUND_SCAN
4739 && priv->status & STATUS_ASSOCIATED)
4740 queue_delayed_work(priv->workqueue,
4741 &priv->request_scan,
4742 round_jiffies_relative(HZ));
4743
4744 /* Send an empty event to user space.
4745 * We don't send the received data on the event because
4746 * it would require us to do complex transcoding, and
4747 * we want to minimise the work done in the irq handler
4748 * Use a request to extract the data.
4749 * Also, we generate this even for any scan, regardless
4750 * on how the scan was initiated. User space can just
4751 * sync on periodic scan to get fresh data...
4752 * Jean II */
4753 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4754 handle_scan_event(priv);
4755 break;
4756 }
4757
4758 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4759 struct notif_frag_length *x = &notif->u.frag_len;
4760
4761 if (notif->size == sizeof(*x))
4762 IPW_ERROR("Frag length: %d\n",
4763 le16_to_cpu(x->frag_length));
4764 else
4765 IPW_ERROR("Frag length of wrong size %d "
4766 "(should be %zd)\n",
4767 notif->size, sizeof(*x));
4768 break;
4769 }
4770
4771 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4772 struct notif_link_deterioration *x =
4773 &notif->u.link_deterioration;
4774
4775 if (notif->size == sizeof(*x)) {
4776 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4777 "link deterioration: type %d, cnt %d\n",
4778 x->silence_notification_type,
4779 x->silence_count);
4780 memcpy(&priv->last_link_deterioration, x,
4781 sizeof(*x));
4782 } else {
4783 IPW_ERROR("Link Deterioration of wrong size %d "
4784 "(should be %zd)\n",
4785 notif->size, sizeof(*x));
4786 }
4787 break;
4788 }
4789
4790 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4791 IPW_ERROR("Dino config\n");
4792 if (priv->hcmd
4793 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4794 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4795
4796 break;
4797 }
4798
4799 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4800 struct notif_beacon_state *x = &notif->u.beacon_state;
4801 if (notif->size != sizeof(*x)) {
4802 IPW_ERROR
4803 ("Beacon state of wrong size %d (should "
4804 "be %zd)\n", notif->size, sizeof(*x));
4805 break;
4806 }
4807
4808 if (le32_to_cpu(x->state) ==
4809 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4810 ipw_handle_missed_beacon(priv,
4811 le32_to_cpu(x->
4812 number));
4813
4814 break;
4815 }
4816
4817 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4818 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4819 if (notif->size == sizeof(*x)) {
4820 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4821 "0x%02x station %d\n",
4822 x->key_state, x->security_type,
4823 x->station_index);
4824 break;
4825 }
4826
4827 IPW_ERROR
4828 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4829 notif->size, sizeof(*x));
4830 break;
4831 }
4832
4833 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4834 struct notif_calibration *x = &notif->u.calibration;
4835
4836 if (notif->size == sizeof(*x)) {
4837 memcpy(&priv->calib, x, sizeof(*x));
4838 IPW_DEBUG_INFO("TODO: Calibration\n");
4839 break;
4840 }
4841
4842 IPW_ERROR
4843 ("Calibration of wrong size %d (should be %zd)\n",
4844 notif->size, sizeof(*x));
4845 break;
4846 }
4847
4848 case HOST_NOTIFICATION_NOISE_STATS:{
4849 if (notif->size == sizeof(u32)) {
4850 priv->exp_avg_noise =
4851 exponential_average(priv->exp_avg_noise,
4852 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4853 DEPTH_NOISE);
4854 break;
4855 }
4856
4857 IPW_ERROR
4858 ("Noise stat is wrong size %d (should be %zd)\n",
4859 notif->size, sizeof(u32));
4860 break;
4861 }
4862
4863 default:
4864 IPW_DEBUG_NOTIF("Unknown notification: "
4865 "subtype=%d,flags=0x%2x,size=%d\n",
4866 notif->subtype, notif->flags, notif->size);
4867 }
4868 }
4869
4870 /**
4871 * Destroys all DMA structures and initialise them again
4872 *
4873 * @param priv
4874 * @return error code
4875 */
4876 static int ipw_queue_reset(struct ipw_priv *priv)
4877 {
4878 int rc = 0;
4879 /** @todo customize queue sizes */
4880 int nTx = 64, nTxCmd = 8;
4881 ipw_tx_queue_free(priv);
4882 /* Tx CMD queue */
4883 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4884 IPW_TX_CMD_QUEUE_READ_INDEX,
4885 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4886 IPW_TX_CMD_QUEUE_BD_BASE,
4887 IPW_TX_CMD_QUEUE_BD_SIZE);
4888 if (rc) {
4889 IPW_ERROR("Tx Cmd queue init failed\n");
4890 goto error;
4891 }
4892 /* Tx queue(s) */
4893 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4894 IPW_TX_QUEUE_0_READ_INDEX,
4895 IPW_TX_QUEUE_0_WRITE_INDEX,
4896 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4897 if (rc) {
4898 IPW_ERROR("Tx 0 queue init failed\n");
4899 goto error;
4900 }
4901 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4902 IPW_TX_QUEUE_1_READ_INDEX,
4903 IPW_TX_QUEUE_1_WRITE_INDEX,
4904 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4905 if (rc) {
4906 IPW_ERROR("Tx 1 queue init failed\n");
4907 goto error;
4908 }
4909 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4910 IPW_TX_QUEUE_2_READ_INDEX,
4911 IPW_TX_QUEUE_2_WRITE_INDEX,
4912 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4913 if (rc) {
4914 IPW_ERROR("Tx 2 queue init failed\n");
4915 goto error;
4916 }
4917 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4918 IPW_TX_QUEUE_3_READ_INDEX,
4919 IPW_TX_QUEUE_3_WRITE_INDEX,
4920 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4921 if (rc) {
4922 IPW_ERROR("Tx 3 queue init failed\n");
4923 goto error;
4924 }
4925 /* statistics */
4926 priv->rx_bufs_min = 0;
4927 priv->rx_pend_max = 0;
4928 return rc;
4929
4930 error:
4931 ipw_tx_queue_free(priv);
4932 return rc;
4933 }
4934
4935 /**
4936 * Reclaim Tx queue entries no more used by NIC.
4937 *
4938 * When FW advances 'R' index, all entries between old and
4939 * new 'R' index need to be reclaimed. As result, some free space
4940 * forms. If there is enough free space (> low mark), wake Tx queue.
4941 *
4942 * @note Need to protect against garbage in 'R' index
4943 * @param priv
4944 * @param txq
4945 * @param qindex
4946 * @return Number of used entries remains in the queue
4947 */
4948 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4949 struct clx2_tx_queue *txq, int qindex)
4950 {
4951 u32 hw_tail;
4952 int used;
4953 struct clx2_queue *q = &txq->q;
4954
4955 hw_tail = ipw_read32(priv, q->reg_r);
4956 if (hw_tail >= q->n_bd) {
4957 IPW_ERROR
4958 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4959 hw_tail, q->n_bd);
4960 goto done;
4961 }
4962 for (; q->last_used != hw_tail;
4963 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4964 ipw_queue_tx_free_tfd(priv, txq);
4965 priv->tx_packets++;
4966 }
4967 done:
4968 if ((ipw_queue_space(q) > q->low_mark) &&
4969 (qindex >= 0) &&
4970 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4971 netif_wake_queue(priv->net_dev);
4972 used = q->first_empty - q->last_used;
4973 if (used < 0)
4974 used += q->n_bd;
4975
4976 return used;
4977 }
4978
4979 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4980 int len, int sync)
4981 {
4982 struct clx2_tx_queue *txq = &priv->txq_cmd;
4983 struct clx2_queue *q = &txq->q;
4984 struct tfd_frame *tfd;
4985
4986 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4987 IPW_ERROR("No space for Tx\n");
4988 return -EBUSY;
4989 }
4990
4991 tfd = &txq->bd[q->first_empty];
4992 txq->txb[q->first_empty] = NULL;
4993
4994 memset(tfd, 0, sizeof(*tfd));
4995 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4996 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4997 priv->hcmd_seq++;
4998 tfd->u.cmd.index = hcmd;
4999 tfd->u.cmd.length = len;
5000 memcpy(tfd->u.cmd.payload, buf, len);
5001 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5002 ipw_write32(priv, q->reg_w, q->first_empty);
5003 _ipw_read32(priv, 0x90);
5004
5005 return 0;
5006 }
5007
5008 /*
5009 * Rx theory of operation
5010 *
5011 * The host allocates 32 DMA target addresses and passes the host address
5012 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5013 * 0 to 31
5014 *
5015 * Rx Queue Indexes
5016 * The host/firmware share two index registers for managing the Rx buffers.
5017 *
5018 * The READ index maps to the first position that the firmware may be writing
5019 * to -- the driver can read up to (but not including) this position and get
5020 * good data.
5021 * The READ index is managed by the firmware once the card is enabled.
5022 *
5023 * The WRITE index maps to the last position the driver has read from -- the
5024 * position preceding WRITE is the last slot the firmware can place a packet.
5025 *
5026 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5027 * WRITE = READ.
5028 *
5029 * During initialization the host sets up the READ queue position to the first
5030 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5031 *
5032 * When the firmware places a packet in a buffer it will advance the READ index
5033 * and fire the RX interrupt. The driver can then query the READ index and
5034 * process as many packets as possible, moving the WRITE index forward as it
5035 * resets the Rx queue buffers with new memory.
5036 *
5037 * The management in the driver is as follows:
5038 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5039 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5040 * to replensish the ipw->rxq->rx_free.
5041 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5042 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5043 * 'processed' and 'read' driver indexes as well)
5044 * + A received packet is processed and handed to the kernel network stack,
5045 * detached from the ipw->rxq. The driver 'processed' index is updated.
5046 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5047 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5048 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5049 * were enough free buffers and RX_STALLED is set it is cleared.
5050 *
5051 *
5052 * Driver sequence:
5053 *
5054 * ipw_rx_queue_alloc() Allocates rx_free
5055 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5056 * ipw_rx_queue_restock
5057 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5058 * queue, updates firmware pointers, and updates
5059 * the WRITE index. If insufficient rx_free buffers
5060 * are available, schedules ipw_rx_queue_replenish
5061 *
5062 * -- enable interrupts --
5063 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5064 * READ INDEX, detaching the SKB from the pool.
5065 * Moves the packet buffer from queue to rx_used.
5066 * Calls ipw_rx_queue_restock to refill any empty
5067 * slots.
5068 * ...
5069 *
5070 */
5071
5072 /*
5073 * If there are slots in the RX queue that need to be restocked,
5074 * and we have free pre-allocated buffers, fill the ranks as much
5075 * as we can pulling from rx_free.
5076 *
5077 * This moves the 'write' index forward to catch up with 'processed', and
5078 * also updates the memory address in the firmware to reference the new
5079 * target buffer.
5080 */
5081 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5082 {
5083 struct ipw_rx_queue *rxq = priv->rxq;
5084 struct list_head *element;
5085 struct ipw_rx_mem_buffer *rxb;
5086 unsigned long flags;
5087 int write;
5088
5089 spin_lock_irqsave(&rxq->lock, flags);
5090 write = rxq->write;
5091 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5092 element = rxq->rx_free.next;
5093 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5094 list_del(element);
5095
5096 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5097 rxb->dma_addr);
5098 rxq->queue[rxq->write] = rxb;
5099 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5100 rxq->free_count--;
5101 }
5102 spin_unlock_irqrestore(&rxq->lock, flags);
5103
5104 /* If the pre-allocated buffer pool is dropping low, schedule to
5105 * refill it */
5106 if (rxq->free_count <= RX_LOW_WATERMARK)
5107 queue_work(priv->workqueue, &priv->rx_replenish);
5108
5109 /* If we've added more space for the firmware to place data, tell it */
5110 if (write != rxq->write)
5111 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5112 }
5113
5114 /*
5115 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5116 * Also restock the Rx queue via ipw_rx_queue_restock.
5117 *
5118 * This is called as a scheduled work item (except for during intialization)
5119 */
5120 static void ipw_rx_queue_replenish(void *data)
5121 {
5122 struct ipw_priv *priv = data;
5123 struct ipw_rx_queue *rxq = priv->rxq;
5124 struct list_head *element;
5125 struct ipw_rx_mem_buffer *rxb;
5126 unsigned long flags;
5127
5128 spin_lock_irqsave(&rxq->lock, flags);
5129 while (!list_empty(&rxq->rx_used)) {
5130 element = rxq->rx_used.next;
5131 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5132 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5133 if (!rxb->skb) {
5134 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5135 priv->net_dev->name);
5136 /* We don't reschedule replenish work here -- we will
5137 * call the restock method and if it still needs
5138 * more buffers it will schedule replenish */
5139 break;
5140 }
5141 list_del(element);
5142
5143 rxb->dma_addr =
5144 pci_map_single(priv->pci_dev, rxb->skb->data,
5145 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5146
5147 list_add_tail(&rxb->list, &rxq->rx_free);
5148 rxq->free_count++;
5149 }
5150 spin_unlock_irqrestore(&rxq->lock, flags);
5151
5152 ipw_rx_queue_restock(priv);
5153 }
5154
5155 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5156 {
5157 struct ipw_priv *priv =
5158 container_of(work, struct ipw_priv, rx_replenish);
5159 mutex_lock(&priv->mutex);
5160 ipw_rx_queue_replenish(priv);
5161 mutex_unlock(&priv->mutex);
5162 }
5163
5164 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5165 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5166 * This free routine walks the list of POOL entries and if SKB is set to
5167 * non NULL it is unmapped and freed
5168 */
5169 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5170 {
5171 int i;
5172
5173 if (!rxq)
5174 return;
5175
5176 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5177 if (rxq->pool[i].skb != NULL) {
5178 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5179 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5180 dev_kfree_skb(rxq->pool[i].skb);
5181 }
5182 }
5183
5184 kfree(rxq);
5185 }
5186
5187 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5188 {
5189 struct ipw_rx_queue *rxq;
5190 int i;
5191
5192 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5193 if (unlikely(!rxq)) {
5194 IPW_ERROR("memory allocation failed\n");
5195 return NULL;
5196 }
5197 spin_lock_init(&rxq->lock);
5198 INIT_LIST_HEAD(&rxq->rx_free);
5199 INIT_LIST_HEAD(&rxq->rx_used);
5200
5201 /* Fill the rx_used queue with _all_ of the Rx buffers */
5202 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5203 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5204
5205 /* Set us so that we have processed and used all buffers, but have
5206 * not restocked the Rx queue with fresh buffers */
5207 rxq->read = rxq->write = 0;
5208 rxq->processed = RX_QUEUE_SIZE - 1;
5209 rxq->free_count = 0;
5210
5211 return rxq;
5212 }
5213
5214 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5215 {
5216 rate &= ~IEEE80211_BASIC_RATE_MASK;
5217 if (ieee_mode == IEEE_A) {
5218 switch (rate) {
5219 case IEEE80211_OFDM_RATE_6MB:
5220 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5221 1 : 0;
5222 case IEEE80211_OFDM_RATE_9MB:
5223 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5224 1 : 0;
5225 case IEEE80211_OFDM_RATE_12MB:
5226 return priv->
5227 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5228 case IEEE80211_OFDM_RATE_18MB:
5229 return priv->
5230 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5231 case IEEE80211_OFDM_RATE_24MB:
5232 return priv->
5233 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5234 case IEEE80211_OFDM_RATE_36MB:
5235 return priv->
5236 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5237 case IEEE80211_OFDM_RATE_48MB:
5238 return priv->
5239 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5240 case IEEE80211_OFDM_RATE_54MB:
5241 return priv->
5242 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5243 default:
5244 return 0;
5245 }
5246 }
5247
5248 /* B and G mixed */
5249 switch (rate) {
5250 case IEEE80211_CCK_RATE_1MB:
5251 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5252 case IEEE80211_CCK_RATE_2MB:
5253 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5254 case IEEE80211_CCK_RATE_5MB:
5255 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5256 case IEEE80211_CCK_RATE_11MB:
5257 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5258 }
5259
5260 /* If we are limited to B modulations, bail at this point */
5261 if (ieee_mode == IEEE_B)
5262 return 0;
5263
5264 /* G */
5265 switch (rate) {
5266 case IEEE80211_OFDM_RATE_6MB:
5267 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5268 case IEEE80211_OFDM_RATE_9MB:
5269 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5270 case IEEE80211_OFDM_RATE_12MB:
5271 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5272 case IEEE80211_OFDM_RATE_18MB:
5273 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5274 case IEEE80211_OFDM_RATE_24MB:
5275 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5276 case IEEE80211_OFDM_RATE_36MB:
5277 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5278 case IEEE80211_OFDM_RATE_48MB:
5279 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5280 case IEEE80211_OFDM_RATE_54MB:
5281 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5282 }
5283
5284 return 0;
5285 }
5286
5287 static int ipw_compatible_rates(struct ipw_priv *priv,
5288 const struct ieee80211_network *network,
5289 struct ipw_supported_rates *rates)
5290 {
5291 int num_rates, i;
5292
5293 memset(rates, 0, sizeof(*rates));
5294 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5295 rates->num_rates = 0;
5296 for (i = 0; i < num_rates; i++) {
5297 if (!ipw_is_rate_in_mask(priv, network->mode,
5298 network->rates[i])) {
5299
5300 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5301 IPW_DEBUG_SCAN("Adding masked mandatory "
5302 "rate %02X\n",
5303 network->rates[i]);
5304 rates->supported_rates[rates->num_rates++] =
5305 network->rates[i];
5306 continue;
5307 }
5308
5309 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5310 network->rates[i], priv->rates_mask);
5311 continue;
5312 }
5313
5314 rates->supported_rates[rates->num_rates++] = network->rates[i];
5315 }
5316
5317 num_rates = min(network->rates_ex_len,
5318 (u8) (IPW_MAX_RATES - num_rates));
5319 for (i = 0; i < num_rates; i++) {
5320 if (!ipw_is_rate_in_mask(priv, network->mode,
5321 network->rates_ex[i])) {
5322 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5323 IPW_DEBUG_SCAN("Adding masked mandatory "
5324 "rate %02X\n",
5325 network->rates_ex[i]);
5326 rates->supported_rates[rates->num_rates++] =
5327 network->rates[i];
5328 continue;
5329 }
5330
5331 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5332 network->rates_ex[i], priv->rates_mask);
5333 continue;
5334 }
5335
5336 rates->supported_rates[rates->num_rates++] =
5337 network->rates_ex[i];
5338 }
5339
5340 return 1;
5341 }
5342
5343 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5344 const struct ipw_supported_rates *src)
5345 {
5346 u8 i;
5347 for (i = 0; i < src->num_rates; i++)
5348 dest->supported_rates[i] = src->supported_rates[i];
5349 dest->num_rates = src->num_rates;
5350 }
5351
5352 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5353 * mask should ever be used -- right now all callers to add the scan rates are
5354 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5355 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5356 u8 modulation, u32 rate_mask)
5357 {
5358 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5359 IEEE80211_BASIC_RATE_MASK : 0;
5360
5361 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5362 rates->supported_rates[rates->num_rates++] =
5363 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5364
5365 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5366 rates->supported_rates[rates->num_rates++] =
5367 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5368
5369 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5370 rates->supported_rates[rates->num_rates++] = basic_mask |
5371 IEEE80211_CCK_RATE_5MB;
5372
5373 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5374 rates->supported_rates[rates->num_rates++] = basic_mask |
5375 IEEE80211_CCK_RATE_11MB;
5376 }
5377
5378 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5379 u8 modulation, u32 rate_mask)
5380 {
5381 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5382 IEEE80211_BASIC_RATE_MASK : 0;
5383
5384 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5385 rates->supported_rates[rates->num_rates++] = basic_mask |
5386 IEEE80211_OFDM_RATE_6MB;
5387
5388 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5389 rates->supported_rates[rates->num_rates++] =
5390 IEEE80211_OFDM_RATE_9MB;
5391
5392 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5393 rates->supported_rates[rates->num_rates++] = basic_mask |
5394 IEEE80211_OFDM_RATE_12MB;
5395
5396 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5397 rates->supported_rates[rates->num_rates++] =
5398 IEEE80211_OFDM_RATE_18MB;
5399
5400 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5401 rates->supported_rates[rates->num_rates++] = basic_mask |
5402 IEEE80211_OFDM_RATE_24MB;
5403
5404 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5405 rates->supported_rates[rates->num_rates++] =
5406 IEEE80211_OFDM_RATE_36MB;
5407
5408 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5409 rates->supported_rates[rates->num_rates++] =
5410 IEEE80211_OFDM_RATE_48MB;
5411
5412 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5413 rates->supported_rates[rates->num_rates++] =
5414 IEEE80211_OFDM_RATE_54MB;
5415 }
5416
5417 struct ipw_network_match {
5418 struct ieee80211_network *network;
5419 struct ipw_supported_rates rates;
5420 };
5421
5422 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5423 struct ipw_network_match *match,
5424 struct ieee80211_network *network,
5425 int roaming)
5426 {
5427 struct ipw_supported_rates rates;
5428 DECLARE_MAC_BUF(mac);
5429 DECLARE_MAC_BUF(mac2);
5430
5431 /* Verify that this network's capability is compatible with the
5432 * current mode (AdHoc or Infrastructure) */
5433 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5434 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5435 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5436 "capability mismatch.\n",
5437 escape_essid(network->ssid, network->ssid_len),
5438 print_mac(mac, network->bssid));
5439 return 0;
5440 }
5441
5442 /* If we do not have an ESSID for this AP, we can not associate with
5443 * it */
5444 if (network->flags & NETWORK_EMPTY_ESSID) {
5445 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5446 "because of hidden ESSID.\n",
5447 escape_essid(network->ssid, network->ssid_len),
5448 print_mac(mac, network->bssid));
5449 return 0;
5450 }
5451
5452 if (unlikely(roaming)) {
5453 /* If we are roaming, then ensure check if this is a valid
5454 * network to try and roam to */
5455 if ((network->ssid_len != match->network->ssid_len) ||
5456 memcmp(network->ssid, match->network->ssid,
5457 network->ssid_len)) {
5458 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5459 "because of non-network ESSID.\n",
5460 escape_essid(network->ssid,
5461 network->ssid_len),
5462 print_mac(mac, network->bssid));
5463 return 0;
5464 }
5465 } else {
5466 /* If an ESSID has been configured then compare the broadcast
5467 * ESSID to ours */
5468 if ((priv->config & CFG_STATIC_ESSID) &&
5469 ((network->ssid_len != priv->essid_len) ||
5470 memcmp(network->ssid, priv->essid,
5471 min(network->ssid_len, priv->essid_len)))) {
5472 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5473
5474 strncpy(escaped,
5475 escape_essid(network->ssid, network->ssid_len),
5476 sizeof(escaped));
5477 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5478 "because of ESSID mismatch: '%s'.\n",
5479 escaped, print_mac(mac, network->bssid),
5480 escape_essid(priv->essid,
5481 priv->essid_len));
5482 return 0;
5483 }
5484 }
5485
5486 /* If the old network rate is better than this one, don't bother
5487 * testing everything else. */
5488
5489 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5490 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5491 "current network.\n",
5492 escape_essid(match->network->ssid,
5493 match->network->ssid_len));
5494 return 0;
5495 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5496 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5497 "current network.\n",
5498 escape_essid(match->network->ssid,
5499 match->network->ssid_len));
5500 return 0;
5501 }
5502
5503 /* Now go through and see if the requested network is valid... */
5504 if (priv->ieee->scan_age != 0 &&
5505 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5506 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5507 "because of age: %ums.\n",
5508 escape_essid(network->ssid, network->ssid_len),
5509 print_mac(mac, network->bssid),
5510 jiffies_to_msecs(jiffies -
5511 network->last_scanned));
5512 return 0;
5513 }
5514
5515 if ((priv->config & CFG_STATIC_CHANNEL) &&
5516 (network->channel != priv->channel)) {
5517 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5518 "because of channel mismatch: %d != %d.\n",
5519 escape_essid(network->ssid, network->ssid_len),
5520 print_mac(mac, network->bssid),
5521 network->channel, priv->channel);
5522 return 0;
5523 }
5524
5525 /* Verify privacy compatability */
5526 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5527 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5528 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5529 "because of privacy mismatch: %s != %s.\n",
5530 escape_essid(network->ssid, network->ssid_len),
5531 print_mac(mac, network->bssid),
5532 priv->
5533 capability & CAP_PRIVACY_ON ? "on" : "off",
5534 network->
5535 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5536 "off");
5537 return 0;
5538 }
5539
5540 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5541 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5542 "because of the same BSSID match: %s"
5543 ".\n", escape_essid(network->ssid,
5544 network->ssid_len),
5545 print_mac(mac, network->bssid),
5546 print_mac(mac2, priv->bssid));
5547 return 0;
5548 }
5549
5550 /* Filter out any incompatible freq / mode combinations */
5551 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5552 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5553 "because of invalid frequency/mode "
5554 "combination.\n",
5555 escape_essid(network->ssid, network->ssid_len),
5556 print_mac(mac, network->bssid));
5557 return 0;
5558 }
5559
5560 /* Ensure that the rates supported by the driver are compatible with
5561 * this AP, including verification of basic rates (mandatory) */
5562 if (!ipw_compatible_rates(priv, network, &rates)) {
5563 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5564 "because configured rate mask excludes "
5565 "AP mandatory rate.\n",
5566 escape_essid(network->ssid, network->ssid_len),
5567 print_mac(mac, network->bssid));
5568 return 0;
5569 }
5570
5571 if (rates.num_rates == 0) {
5572 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5573 "because of no compatible rates.\n",
5574 escape_essid(network->ssid, network->ssid_len),
5575 print_mac(mac, network->bssid));
5576 return 0;
5577 }
5578
5579 /* TODO: Perform any further minimal comparititive tests. We do not
5580 * want to put too much policy logic here; intelligent scan selection
5581 * should occur within a generic IEEE 802.11 user space tool. */
5582
5583 /* Set up 'new' AP to this network */
5584 ipw_copy_rates(&match->rates, &rates);
5585 match->network = network;
5586 IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5587 escape_essid(network->ssid, network->ssid_len),
5588 print_mac(mac, network->bssid));
5589
5590 return 1;
5591 }
5592
5593 static void ipw_merge_adhoc_network(struct work_struct *work)
5594 {
5595 struct ipw_priv *priv =
5596 container_of(work, struct ipw_priv, merge_networks);
5597 struct ieee80211_network *network = NULL;
5598 struct ipw_network_match match = {
5599 .network = priv->assoc_network
5600 };
5601
5602 if ((priv->status & STATUS_ASSOCIATED) &&
5603 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5604 /* First pass through ROAM process -- look for a better
5605 * network */
5606 unsigned long flags;
5607
5608 spin_lock_irqsave(&priv->ieee->lock, flags);
5609 list_for_each_entry(network, &priv->ieee->network_list, list) {
5610 if (network != priv->assoc_network)
5611 ipw_find_adhoc_network(priv, &match, network,
5612 1);
5613 }
5614 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5615
5616 if (match.network == priv->assoc_network) {
5617 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5618 "merge to.\n");
5619 return;
5620 }
5621
5622 mutex_lock(&priv->mutex);
5623 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5624 IPW_DEBUG_MERGE("remove network %s\n",
5625 escape_essid(priv->essid,
5626 priv->essid_len));
5627 ipw_remove_current_network(priv);
5628 }
5629
5630 ipw_disassociate(priv);
5631 priv->assoc_network = match.network;
5632 mutex_unlock(&priv->mutex);
5633 return;
5634 }
5635 }
5636
5637 static int ipw_best_network(struct ipw_priv *priv,
5638 struct ipw_network_match *match,
5639 struct ieee80211_network *network, int roaming)
5640 {
5641 struct ipw_supported_rates rates;
5642 DECLARE_MAC_BUF(mac);
5643
5644 /* Verify that this network's capability is compatible with the
5645 * current mode (AdHoc or Infrastructure) */
5646 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5647 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5648 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5649 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5650 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5651 "capability mismatch.\n",
5652 escape_essid(network->ssid, network->ssid_len),
5653 print_mac(mac, network->bssid));
5654 return 0;
5655 }
5656
5657 /* If we do not have an ESSID for this AP, we can not associate with
5658 * it */
5659 if (network->flags & NETWORK_EMPTY_ESSID) {
5660 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5661 "because of hidden ESSID.\n",
5662 escape_essid(network->ssid, network->ssid_len),
5663 print_mac(mac, network->bssid));
5664 return 0;
5665 }
5666
5667 if (unlikely(roaming)) {
5668 /* If we are roaming, then ensure check if this is a valid
5669 * network to try and roam to */
5670 if ((network->ssid_len != match->network->ssid_len) ||
5671 memcmp(network->ssid, match->network->ssid,
5672 network->ssid_len)) {
5673 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5674 "because of non-network ESSID.\n",
5675 escape_essid(network->ssid,
5676 network->ssid_len),
5677 print_mac(mac, network->bssid));
5678 return 0;
5679 }
5680 } else {
5681 /* If an ESSID has been configured then compare the broadcast
5682 * ESSID to ours */
5683 if ((priv->config & CFG_STATIC_ESSID) &&
5684 ((network->ssid_len != priv->essid_len) ||
5685 memcmp(network->ssid, priv->essid,
5686 min(network->ssid_len, priv->essid_len)))) {
5687 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5688 strncpy(escaped,
5689 escape_essid(network->ssid, network->ssid_len),
5690 sizeof(escaped));
5691 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5692 "because of ESSID mismatch: '%s'.\n",
5693 escaped, print_mac(mac, network->bssid),
5694 escape_essid(priv->essid,
5695 priv->essid_len));
5696 return 0;
5697 }
5698 }
5699
5700 /* If the old network rate is better than this one, don't bother
5701 * testing everything else. */
5702 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5703 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5704 strncpy(escaped,
5705 escape_essid(network->ssid, network->ssid_len),
5706 sizeof(escaped));
5707 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5708 "'%s (%s)' has a stronger signal.\n",
5709 escaped, print_mac(mac, network->bssid),
5710 escape_essid(match->network->ssid,
5711 match->network->ssid_len),
5712 print_mac(mac, match->network->bssid));
5713 return 0;
5714 }
5715
5716 /* If this network has already had an association attempt within the
5717 * last 3 seconds, do not try and associate again... */
5718 if (network->last_associate &&
5719 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5720 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5721 "because of storming (%ums since last "
5722 "assoc attempt).\n",
5723 escape_essid(network->ssid, network->ssid_len),
5724 print_mac(mac, network->bssid),
5725 jiffies_to_msecs(jiffies -
5726 network->last_associate));
5727 return 0;
5728 }
5729
5730 /* Now go through and see if the requested network is valid... */
5731 if (priv->ieee->scan_age != 0 &&
5732 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5733 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5734 "because of age: %ums.\n",
5735 escape_essid(network->ssid, network->ssid_len),
5736 print_mac(mac, network->bssid),
5737 jiffies_to_msecs(jiffies -
5738 network->last_scanned));
5739 return 0;
5740 }
5741
5742 if ((priv->config & CFG_STATIC_CHANNEL) &&
5743 (network->channel != priv->channel)) {
5744 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5745 "because of channel mismatch: %d != %d.\n",
5746 escape_essid(network->ssid, network->ssid_len),
5747 print_mac(mac, network->bssid),
5748 network->channel, priv->channel);
5749 return 0;
5750 }
5751
5752 /* Verify privacy compatability */
5753 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5754 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5755 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5756 "because of privacy mismatch: %s != %s.\n",
5757 escape_essid(network->ssid, network->ssid_len),
5758 print_mac(mac, network->bssid),
5759 priv->capability & CAP_PRIVACY_ON ? "on" :
5760 "off",
5761 network->capability &
5762 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5763 return 0;
5764 }
5765
5766 if ((priv->config & CFG_STATIC_BSSID) &&
5767 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5768 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5769 "because of BSSID mismatch: %s.\n",
5770 escape_essid(network->ssid, network->ssid_len),
5771 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5772 return 0;
5773 }
5774
5775 /* Filter out any incompatible freq / mode combinations */
5776 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5777 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5778 "because of invalid frequency/mode "
5779 "combination.\n",
5780 escape_essid(network->ssid, network->ssid_len),
5781 print_mac(mac, network->bssid));
5782 return 0;
5783 }
5784
5785 /* Filter out invalid channel in current GEO */
5786 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5787 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5788 "because of invalid channel in current GEO\n",
5789 escape_essid(network->ssid, network->ssid_len),
5790 print_mac(mac, network->bssid));
5791 return 0;
5792 }
5793
5794 /* Ensure that the rates supported by the driver are compatible with
5795 * this AP, including verification of basic rates (mandatory) */
5796 if (!ipw_compatible_rates(priv, network, &rates)) {
5797 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5798 "because configured rate mask excludes "
5799 "AP mandatory rate.\n",
5800 escape_essid(network->ssid, network->ssid_len),
5801 print_mac(mac, network->bssid));
5802 return 0;
5803 }
5804
5805 if (rates.num_rates == 0) {
5806 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5807 "because of no compatible rates.\n",
5808 escape_essid(network->ssid, network->ssid_len),
5809 print_mac(mac, network->bssid));
5810 return 0;
5811 }
5812
5813 /* TODO: Perform any further minimal comparititive tests. We do not
5814 * want to put too much policy logic here; intelligent scan selection
5815 * should occur within a generic IEEE 802.11 user space tool. */
5816
5817 /* Set up 'new' AP to this network */
5818 ipw_copy_rates(&match->rates, &rates);
5819 match->network = network;
5820
5821 IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5822 escape_essid(network->ssid, network->ssid_len),
5823 print_mac(mac, network->bssid));
5824
5825 return 1;
5826 }
5827
5828 static void ipw_adhoc_create(struct ipw_priv *priv,
5829 struct ieee80211_network *network)
5830 {
5831 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5832 int i;
5833
5834 /*
5835 * For the purposes of scanning, we can set our wireless mode
5836 * to trigger scans across combinations of bands, but when it
5837 * comes to creating a new ad-hoc network, we have tell the FW
5838 * exactly which band to use.
5839 *
5840 * We also have the possibility of an invalid channel for the
5841 * chossen band. Attempting to create a new ad-hoc network
5842 * with an invalid channel for wireless mode will trigger a
5843 * FW fatal error.
5844 *
5845 */
5846 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5847 case IEEE80211_52GHZ_BAND:
5848 network->mode = IEEE_A;
5849 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5850 BUG_ON(i == -1);
5851 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5852 IPW_WARNING("Overriding invalid channel\n");
5853 priv->channel = geo->a[0].channel;
5854 }
5855 break;
5856
5857 case IEEE80211_24GHZ_BAND:
5858 if (priv->ieee->mode & IEEE_G)
5859 network->mode = IEEE_G;
5860 else
5861 network->mode = IEEE_B;
5862 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5863 BUG_ON(i == -1);
5864 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5865 IPW_WARNING("Overriding invalid channel\n");
5866 priv->channel = geo->bg[0].channel;
5867 }
5868 break;
5869
5870 default:
5871 IPW_WARNING("Overriding invalid channel\n");
5872 if (priv->ieee->mode & IEEE_A) {
5873 network->mode = IEEE_A;
5874 priv->channel = geo->a[0].channel;
5875 } else if (priv->ieee->mode & IEEE_G) {
5876 network->mode = IEEE_G;
5877 priv->channel = geo->bg[0].channel;
5878 } else {
5879 network->mode = IEEE_B;
5880 priv->channel = geo->bg[0].channel;
5881 }
5882 break;
5883 }
5884
5885 network->channel = priv->channel;
5886 priv->config |= CFG_ADHOC_PERSIST;
5887 ipw_create_bssid(priv, network->bssid);
5888 network->ssid_len = priv->essid_len;
5889 memcpy(network->ssid, priv->essid, priv->essid_len);
5890 memset(&network->stats, 0, sizeof(network->stats));
5891 network->capability = WLAN_CAPABILITY_IBSS;
5892 if (!(priv->config & CFG_PREAMBLE_LONG))
5893 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5894 if (priv->capability & CAP_PRIVACY_ON)
5895 network->capability |= WLAN_CAPABILITY_PRIVACY;
5896 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5897 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5898 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5899 memcpy(network->rates_ex,
5900 &priv->rates.supported_rates[network->rates_len],
5901 network->rates_ex_len);
5902 network->last_scanned = 0;
5903 network->flags = 0;
5904 network->last_associate = 0;
5905 network->time_stamp[0] = 0;
5906 network->time_stamp[1] = 0;
5907 network->beacon_interval = 100; /* Default */
5908 network->listen_interval = 10; /* Default */
5909 network->atim_window = 0; /* Default */
5910 network->wpa_ie_len = 0;
5911 network->rsn_ie_len = 0;
5912 }
5913
5914 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5915 {
5916 struct ipw_tgi_tx_key key;
5917
5918 if (!(priv->ieee->sec.flags & (1 << index)))
5919 return;
5920
5921 key.key_id = index;
5922 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5923 key.security_type = type;
5924 key.station_index = 0; /* always 0 for BSS */
5925 key.flags = 0;
5926 /* 0 for new key; previous value of counter (after fatal error) */
5927 key.tx_counter[0] = cpu_to_le32(0);
5928 key.tx_counter[1] = cpu_to_le32(0);
5929
5930 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5931 }
5932
5933 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5934 {
5935 struct ipw_wep_key key;
5936 int i;
5937
5938 key.cmd_id = DINO_CMD_WEP_KEY;
5939 key.seq_num = 0;
5940
5941 /* Note: AES keys cannot be set for multiple times.
5942 * Only set it at the first time. */
5943 for (i = 0; i < 4; i++) {
5944 key.key_index = i | type;
5945 if (!(priv->ieee->sec.flags & (1 << i))) {
5946 key.key_size = 0;
5947 continue;
5948 }
5949
5950 key.key_size = priv->ieee->sec.key_sizes[i];
5951 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5952
5953 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5954 }
5955 }
5956
5957 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5958 {
5959 if (priv->ieee->host_encrypt)
5960 return;
5961
5962 switch (level) {
5963 case SEC_LEVEL_3:
5964 priv->sys_config.disable_unicast_decryption = 0;
5965 priv->ieee->host_decrypt = 0;
5966 break;
5967 case SEC_LEVEL_2:
5968 priv->sys_config.disable_unicast_decryption = 1;
5969 priv->ieee->host_decrypt = 1;
5970 break;
5971 case SEC_LEVEL_1:
5972 priv->sys_config.disable_unicast_decryption = 0;
5973 priv->ieee->host_decrypt = 0;
5974 break;
5975 case SEC_LEVEL_0:
5976 priv->sys_config.disable_unicast_decryption = 1;
5977 break;
5978 default:
5979 break;
5980 }
5981 }
5982
5983 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5984 {
5985 if (priv->ieee->host_encrypt)
5986 return;
5987
5988 switch (level) {
5989 case SEC_LEVEL_3:
5990 priv->sys_config.disable_multicast_decryption = 0;
5991 break;
5992 case SEC_LEVEL_2:
5993 priv->sys_config.disable_multicast_decryption = 1;
5994 break;
5995 case SEC_LEVEL_1:
5996 priv->sys_config.disable_multicast_decryption = 0;
5997 break;
5998 case SEC_LEVEL_0:
5999 priv->sys_config.disable_multicast_decryption = 1;
6000 break;
6001 default:
6002 break;
6003 }
6004 }
6005
6006 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6007 {
6008 switch (priv->ieee->sec.level) {
6009 case SEC_LEVEL_3:
6010 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6011 ipw_send_tgi_tx_key(priv,
6012 DCT_FLAG_EXT_SECURITY_CCM,
6013 priv->ieee->sec.active_key);
6014
6015 if (!priv->ieee->host_mc_decrypt)
6016 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6017 break;
6018 case SEC_LEVEL_2:
6019 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6020 ipw_send_tgi_tx_key(priv,
6021 DCT_FLAG_EXT_SECURITY_TKIP,
6022 priv->ieee->sec.active_key);
6023 break;
6024 case SEC_LEVEL_1:
6025 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6026 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6027 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6028 break;
6029 case SEC_LEVEL_0:
6030 default:
6031 break;
6032 }
6033 }
6034
6035 static void ipw_adhoc_check(void *data)
6036 {
6037 struct ipw_priv *priv = data;
6038
6039 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6040 !(priv->config & CFG_ADHOC_PERSIST)) {
6041 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6042 IPW_DL_STATE | IPW_DL_ASSOC,
6043 "Missed beacon: %d - disassociate\n",
6044 priv->missed_adhoc_beacons);
6045 ipw_remove_current_network(priv);
6046 ipw_disassociate(priv);
6047 return;
6048 }
6049
6050 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6051 priv->assoc_request.beacon_interval);
6052 }
6053
6054 static void ipw_bg_adhoc_check(struct work_struct *work)
6055 {
6056 struct ipw_priv *priv =
6057 container_of(work, struct ipw_priv, adhoc_check.work);
6058 mutex_lock(&priv->mutex);
6059 ipw_adhoc_check(priv);
6060 mutex_unlock(&priv->mutex);
6061 }
6062
6063 static void ipw_debug_config(struct ipw_priv *priv)
6064 {
6065 DECLARE_MAC_BUF(mac);
6066 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6067 "[CFG 0x%08X]\n", priv->config);
6068 if (priv->config & CFG_STATIC_CHANNEL)
6069 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6070 else
6071 IPW_DEBUG_INFO("Channel unlocked.\n");
6072 if (priv->config & CFG_STATIC_ESSID)
6073 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6074 escape_essid(priv->essid, priv->essid_len));
6075 else
6076 IPW_DEBUG_INFO("ESSID unlocked.\n");
6077 if (priv->config & CFG_STATIC_BSSID)
6078 IPW_DEBUG_INFO("BSSID locked to %s\n",
6079 print_mac(mac, priv->bssid));
6080 else
6081 IPW_DEBUG_INFO("BSSID unlocked.\n");
6082 if (priv->capability & CAP_PRIVACY_ON)
6083 IPW_DEBUG_INFO("PRIVACY on\n");
6084 else
6085 IPW_DEBUG_INFO("PRIVACY off\n");
6086 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6087 }
6088
6089 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6090 {
6091 /* TODO: Verify that this works... */
6092 struct ipw_fixed_rate fr = {
6093 .tx_rates = priv->rates_mask
6094 };
6095 u32 reg;
6096 u16 mask = 0;
6097
6098 /* Identify 'current FW band' and match it with the fixed
6099 * Tx rates */
6100
6101 switch (priv->ieee->freq_band) {
6102 case IEEE80211_52GHZ_BAND: /* A only */
6103 /* IEEE_A */
6104 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6105 /* Invalid fixed rate mask */
6106 IPW_DEBUG_WX
6107 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6108 fr.tx_rates = 0;
6109 break;
6110 }
6111
6112 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6113 break;
6114
6115 default: /* 2.4Ghz or Mixed */
6116 /* IEEE_B */
6117 if (mode == IEEE_B) {
6118 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6119 /* Invalid fixed rate mask */
6120 IPW_DEBUG_WX
6121 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6122 fr.tx_rates = 0;
6123 }
6124 break;
6125 }
6126
6127 /* IEEE_G */
6128 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6129 IEEE80211_OFDM_RATES_MASK)) {
6130 /* Invalid fixed rate mask */
6131 IPW_DEBUG_WX
6132 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6133 fr.tx_rates = 0;
6134 break;
6135 }
6136
6137 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6138 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6139 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6140 }
6141
6142 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6143 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6144 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6145 }
6146
6147 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6148 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6149 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6150 }
6151
6152 fr.tx_rates |= mask;
6153 break;
6154 }
6155
6156 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6157 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6158 }
6159
6160 static void ipw_abort_scan(struct ipw_priv *priv)
6161 {
6162 int err;
6163
6164 if (priv->status & STATUS_SCAN_ABORTING) {
6165 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6166 return;
6167 }
6168 priv->status |= STATUS_SCAN_ABORTING;
6169
6170 err = ipw_send_scan_abort(priv);
6171 if (err)
6172 IPW_DEBUG_HC("Request to abort scan failed.\n");
6173 }
6174
6175 static void ipw_add_scan_channels(struct ipw_priv *priv,
6176 struct ipw_scan_request_ext *scan,
6177 int scan_type)
6178 {
6179 int channel_index = 0;
6180 const struct ieee80211_geo *geo;
6181 int i;
6182
6183 geo = ieee80211_get_geo(priv->ieee);
6184
6185 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6186 int start = channel_index;
6187 for (i = 0; i < geo->a_channels; i++) {
6188 if ((priv->status & STATUS_ASSOCIATED) &&
6189 geo->a[i].channel == priv->channel)
6190 continue;
6191 channel_index++;
6192 scan->channels_list[channel_index] = geo->a[i].channel;
6193 ipw_set_scan_type(scan, channel_index,
6194 geo->a[i].
6195 flags & IEEE80211_CH_PASSIVE_ONLY ?
6196 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6197 scan_type);
6198 }
6199
6200 if (start != channel_index) {
6201 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6202 (channel_index - start);
6203 channel_index++;
6204 }
6205 }
6206
6207 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6208 int start = channel_index;
6209 if (priv->config & CFG_SPEED_SCAN) {
6210 int index;
6211 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6212 /* nop out the list */
6213 [0] = 0
6214 };
6215
6216 u8 channel;
6217 while (channel_index < IPW_SCAN_CHANNELS) {
6218 channel =
6219 priv->speed_scan[priv->speed_scan_pos];
6220 if (channel == 0) {
6221 priv->speed_scan_pos = 0;
6222 channel = priv->speed_scan[0];
6223 }
6224 if ((priv->status & STATUS_ASSOCIATED) &&
6225 channel == priv->channel) {
6226 priv->speed_scan_pos++;
6227 continue;
6228 }
6229
6230 /* If this channel has already been
6231 * added in scan, break from loop
6232 * and this will be the first channel
6233 * in the next scan.
6234 */
6235 if (channels[channel - 1] != 0)
6236 break;
6237
6238 channels[channel - 1] = 1;
6239 priv->speed_scan_pos++;
6240 channel_index++;
6241 scan->channels_list[channel_index] = channel;
6242 index =
6243 ieee80211_channel_to_index(priv->ieee, channel);
6244 ipw_set_scan_type(scan, channel_index,
6245 geo->bg[index].
6246 flags &
6247 IEEE80211_CH_PASSIVE_ONLY ?
6248 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6249 : scan_type);
6250 }
6251 } else {
6252 for (i = 0; i < geo->bg_channels; i++) {
6253 if ((priv->status & STATUS_ASSOCIATED) &&
6254 geo->bg[i].channel == priv->channel)
6255 continue;
6256 channel_index++;
6257 scan->channels_list[channel_index] =
6258 geo->bg[i].channel;
6259 ipw_set_scan_type(scan, channel_index,
6260 geo->bg[i].
6261 flags &
6262 IEEE80211_CH_PASSIVE_ONLY ?
6263 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6264 : scan_type);
6265 }
6266 }
6267
6268 if (start != channel_index) {
6269 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6270 (channel_index - start);
6271 }
6272 }
6273 }
6274
6275 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6276 {
6277 struct ipw_scan_request_ext scan;
6278 int err = 0, scan_type;
6279
6280 if (!(priv->status & STATUS_INIT) ||
6281 (priv->status & STATUS_EXIT_PENDING))
6282 return 0;
6283
6284 mutex_lock(&priv->mutex);
6285
6286 if (priv->status & STATUS_SCANNING) {
6287 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6288 priv->status |= STATUS_SCAN_PENDING;
6289 goto done;
6290 }
6291
6292 if (!(priv->status & STATUS_SCAN_FORCED) &&
6293 priv->status & STATUS_SCAN_ABORTING) {
6294 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6295 priv->status |= STATUS_SCAN_PENDING;
6296 goto done;
6297 }
6298
6299 if (priv->status & STATUS_RF_KILL_MASK) {
6300 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6301 priv->status |= STATUS_SCAN_PENDING;
6302 goto done;
6303 }
6304
6305 memset(&scan, 0, sizeof(scan));
6306 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6307
6308 if (type == IW_SCAN_TYPE_PASSIVE) {
6309 IPW_DEBUG_WX("use passive scanning\n");
6310 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6311 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6312 cpu_to_le16(120);
6313 ipw_add_scan_channels(priv, &scan, scan_type);
6314 goto send_request;
6315 }
6316
6317 /* Use active scan by default. */
6318 if (priv->config & CFG_SPEED_SCAN)
6319 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6320 cpu_to_le16(30);
6321 else
6322 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6323 cpu_to_le16(20);
6324
6325 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6326 cpu_to_le16(20);
6327
6328 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6329
6330 #ifdef CONFIG_IPW2200_MONITOR
6331 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6332 u8 channel;
6333 u8 band = 0;
6334
6335 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6336 case IEEE80211_52GHZ_BAND:
6337 band = (u8) (IPW_A_MODE << 6) | 1;
6338 channel = priv->channel;
6339 break;
6340
6341 case IEEE80211_24GHZ_BAND:
6342 band = (u8) (IPW_B_MODE << 6) | 1;
6343 channel = priv->channel;
6344 break;
6345
6346 default:
6347 band = (u8) (IPW_B_MODE << 6) | 1;
6348 channel = 9;
6349 break;
6350 }
6351
6352 scan.channels_list[0] = band;
6353 scan.channels_list[1] = channel;
6354 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6355
6356 /* NOTE: The card will sit on this channel for this time
6357 * period. Scan aborts are timing sensitive and frequently
6358 * result in firmware restarts. As such, it is best to
6359 * set a small dwell_time here and just keep re-issuing
6360 * scans. Otherwise fast channel hopping will not actually
6361 * hop channels.
6362 *
6363 * TODO: Move SPEED SCAN support to all modes and bands */
6364 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6365 cpu_to_le16(2000);
6366 } else {
6367 #endif /* CONFIG_IPW2200_MONITOR */
6368 /* If we are roaming, then make this a directed scan for the
6369 * current network. Otherwise, ensure that every other scan
6370 * is a fast channel hop scan */
6371 if ((priv->status & STATUS_ROAMING)
6372 || (!(priv->status & STATUS_ASSOCIATED)
6373 && (priv->config & CFG_STATIC_ESSID)
6374 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6375 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6376 if (err) {
6377 IPW_DEBUG_HC("Attempt to send SSID command "
6378 "failed.\n");
6379 goto done;
6380 }
6381
6382 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6383 } else
6384 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6385
6386 ipw_add_scan_channels(priv, &scan, scan_type);
6387 #ifdef CONFIG_IPW2200_MONITOR
6388 }
6389 #endif
6390
6391 send_request:
6392 err = ipw_send_scan_request_ext(priv, &scan);
6393 if (err) {
6394 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6395 goto done;
6396 }
6397
6398 priv->status |= STATUS_SCANNING;
6399 priv->status &= ~STATUS_SCAN_PENDING;
6400 queue_delayed_work(priv->workqueue, &priv->scan_check,
6401 IPW_SCAN_CHECK_WATCHDOG);
6402 done:
6403 mutex_unlock(&priv->mutex);
6404 return err;
6405 }
6406
6407 static void ipw_request_passive_scan(struct work_struct *work)
6408 {
6409 struct ipw_priv *priv =
6410 container_of(work, struct ipw_priv, request_passive_scan);
6411 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6412 }
6413
6414 static void ipw_request_scan(struct work_struct *work)
6415 {
6416 struct ipw_priv *priv =
6417 container_of(work, struct ipw_priv, request_scan.work);
6418 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6419 }
6420
6421 static void ipw_bg_abort_scan(struct work_struct *work)
6422 {
6423 struct ipw_priv *priv =
6424 container_of(work, struct ipw_priv, abort_scan);
6425 mutex_lock(&priv->mutex);
6426 ipw_abort_scan(priv);
6427 mutex_unlock(&priv->mutex);
6428 }
6429
6430 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6431 {
6432 /* This is called when wpa_supplicant loads and closes the driver
6433 * interface. */
6434 priv->ieee->wpa_enabled = value;
6435 return 0;
6436 }
6437
6438 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6439 {
6440 struct ieee80211_device *ieee = priv->ieee;
6441 struct ieee80211_security sec = {
6442 .flags = SEC_AUTH_MODE,
6443 };
6444 int ret = 0;
6445
6446 if (value & IW_AUTH_ALG_SHARED_KEY) {
6447 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6448 ieee->open_wep = 0;
6449 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6450 sec.auth_mode = WLAN_AUTH_OPEN;
6451 ieee->open_wep = 1;
6452 } else if (value & IW_AUTH_ALG_LEAP) {
6453 sec.auth_mode = WLAN_AUTH_LEAP;
6454 ieee->open_wep = 1;
6455 } else
6456 return -EINVAL;
6457
6458 if (ieee->set_security)
6459 ieee->set_security(ieee->dev, &sec);
6460 else
6461 ret = -EOPNOTSUPP;
6462
6463 return ret;
6464 }
6465
6466 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6467 int wpa_ie_len)
6468 {
6469 /* make sure WPA is enabled */
6470 ipw_wpa_enable(priv, 1);
6471 }
6472
6473 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6474 char *capabilities, int length)
6475 {
6476 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6477
6478 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6479 capabilities);
6480 }
6481
6482 /*
6483 * WE-18 support
6484 */
6485
6486 /* SIOCSIWGENIE */
6487 static int ipw_wx_set_genie(struct net_device *dev,
6488 struct iw_request_info *info,
6489 union iwreq_data *wrqu, char *extra)
6490 {
6491 struct ipw_priv *priv = ieee80211_priv(dev);
6492 struct ieee80211_device *ieee = priv->ieee;
6493 u8 *buf;
6494 int err = 0;
6495
6496 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6497 (wrqu->data.length && extra == NULL))
6498 return -EINVAL;
6499
6500 if (wrqu->data.length) {
6501 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6502 if (buf == NULL) {
6503 err = -ENOMEM;
6504 goto out;
6505 }
6506
6507 memcpy(buf, extra, wrqu->data.length);
6508 kfree(ieee->wpa_ie);
6509 ieee->wpa_ie = buf;
6510 ieee->wpa_ie_len = wrqu->data.length;
6511 } else {
6512 kfree(ieee->wpa_ie);
6513 ieee->wpa_ie = NULL;
6514 ieee->wpa_ie_len = 0;
6515 }
6516
6517 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6518 out:
6519 return err;
6520 }
6521
6522 /* SIOCGIWGENIE */
6523 static int ipw_wx_get_genie(struct net_device *dev,
6524 struct iw_request_info *info,
6525 union iwreq_data *wrqu, char *extra)
6526 {
6527 struct ipw_priv *priv = ieee80211_priv(dev);
6528 struct ieee80211_device *ieee = priv->ieee;
6529 int err = 0;
6530
6531 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6532 wrqu->data.length = 0;
6533 goto out;
6534 }
6535
6536 if (wrqu->data.length < ieee->wpa_ie_len) {
6537 err = -E2BIG;
6538 goto out;
6539 }
6540
6541 wrqu->data.length = ieee->wpa_ie_len;
6542 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6543
6544 out:
6545 return err;
6546 }
6547
6548 static int wext_cipher2level(int cipher)
6549 {
6550 switch (cipher) {
6551 case IW_AUTH_CIPHER_NONE:
6552 return SEC_LEVEL_0;
6553 case IW_AUTH_CIPHER_WEP40:
6554 case IW_AUTH_CIPHER_WEP104:
6555 return SEC_LEVEL_1;
6556 case IW_AUTH_CIPHER_TKIP:
6557 return SEC_LEVEL_2;
6558 case IW_AUTH_CIPHER_CCMP:
6559 return SEC_LEVEL_3;
6560 default:
6561 return -1;
6562 }
6563 }
6564
6565 /* SIOCSIWAUTH */
6566 static int ipw_wx_set_auth(struct net_device *dev,
6567 struct iw_request_info *info,
6568 union iwreq_data *wrqu, char *extra)
6569 {
6570 struct ipw_priv *priv = ieee80211_priv(dev);
6571 struct ieee80211_device *ieee = priv->ieee;
6572 struct iw_param *param = &wrqu->param;
6573 struct ieee80211_crypt_data *crypt;
6574 unsigned long flags;
6575 int ret = 0;
6576
6577 switch (param->flags & IW_AUTH_INDEX) {
6578 case IW_AUTH_WPA_VERSION:
6579 break;
6580 case IW_AUTH_CIPHER_PAIRWISE:
6581 ipw_set_hw_decrypt_unicast(priv,
6582 wext_cipher2level(param->value));
6583 break;
6584 case IW_AUTH_CIPHER_GROUP:
6585 ipw_set_hw_decrypt_multicast(priv,
6586 wext_cipher2level(param->value));
6587 break;
6588 case IW_AUTH_KEY_MGMT:
6589 /*
6590 * ipw2200 does not use these parameters
6591 */
6592 break;
6593
6594 case IW_AUTH_TKIP_COUNTERMEASURES:
6595 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6596 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6597 break;
6598
6599 flags = crypt->ops->get_flags(crypt->priv);
6600
6601 if (param->value)
6602 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6603 else
6604 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6605
6606 crypt->ops->set_flags(flags, crypt->priv);
6607
6608 break;
6609
6610 case IW_AUTH_DROP_UNENCRYPTED:{
6611 /* HACK:
6612 *
6613 * wpa_supplicant calls set_wpa_enabled when the driver
6614 * is loaded and unloaded, regardless of if WPA is being
6615 * used. No other calls are made which can be used to
6616 * determine if encryption will be used or not prior to
6617 * association being expected. If encryption is not being
6618 * used, drop_unencrypted is set to false, else true -- we
6619 * can use this to determine if the CAP_PRIVACY_ON bit should
6620 * be set.
6621 */
6622 struct ieee80211_security sec = {
6623 .flags = SEC_ENABLED,
6624 .enabled = param->value,
6625 };
6626 priv->ieee->drop_unencrypted = param->value;
6627 /* We only change SEC_LEVEL for open mode. Others
6628 * are set by ipw_wpa_set_encryption.
6629 */
6630 if (!param->value) {
6631 sec.flags |= SEC_LEVEL;
6632 sec.level = SEC_LEVEL_0;
6633 } else {
6634 sec.flags |= SEC_LEVEL;
6635 sec.level = SEC_LEVEL_1;
6636 }
6637 if (priv->ieee->set_security)
6638 priv->ieee->set_security(priv->ieee->dev, &sec);
6639 break;
6640 }
6641
6642 case IW_AUTH_80211_AUTH_ALG:
6643 ret = ipw_wpa_set_auth_algs(priv, param->value);
6644 break;
6645
6646 case IW_AUTH_WPA_ENABLED:
6647 ret = ipw_wpa_enable(priv, param->value);
6648 ipw_disassociate(priv);
6649 break;
6650
6651 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6652 ieee->ieee802_1x = param->value;
6653 break;
6654
6655 case IW_AUTH_PRIVACY_INVOKED:
6656 ieee->privacy_invoked = param->value;
6657 break;
6658
6659 default:
6660 return -EOPNOTSUPP;
6661 }
6662 return ret;
6663 }
6664
6665 /* SIOCGIWAUTH */
6666 static int ipw_wx_get_auth(struct net_device *dev,
6667 struct iw_request_info *info,
6668 union iwreq_data *wrqu, char *extra)
6669 {
6670 struct ipw_priv *priv = ieee80211_priv(dev);
6671 struct ieee80211_device *ieee = priv->ieee;
6672 struct ieee80211_crypt_data *crypt;
6673 struct iw_param *param = &wrqu->param;
6674 int ret = 0;
6675
6676 switch (param->flags & IW_AUTH_INDEX) {
6677 case IW_AUTH_WPA_VERSION:
6678 case IW_AUTH_CIPHER_PAIRWISE:
6679 case IW_AUTH_CIPHER_GROUP:
6680 case IW_AUTH_KEY_MGMT:
6681 /*
6682 * wpa_supplicant will control these internally
6683 */
6684 ret = -EOPNOTSUPP;
6685 break;
6686
6687 case IW_AUTH_TKIP_COUNTERMEASURES:
6688 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6689 if (!crypt || !crypt->ops->get_flags)
6690 break;
6691
6692 param->value = (crypt->ops->get_flags(crypt->priv) &
6693 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6694
6695 break;
6696
6697 case IW_AUTH_DROP_UNENCRYPTED:
6698 param->value = ieee->drop_unencrypted;
6699 break;
6700
6701 case IW_AUTH_80211_AUTH_ALG:
6702 param->value = ieee->sec.auth_mode;
6703 break;
6704
6705 case IW_AUTH_WPA_ENABLED:
6706 param->value = ieee->wpa_enabled;
6707 break;
6708
6709 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6710 param->value = ieee->ieee802_1x;
6711 break;
6712
6713 case IW_AUTH_ROAMING_CONTROL:
6714 case IW_AUTH_PRIVACY_INVOKED:
6715 param->value = ieee->privacy_invoked;
6716 break;
6717
6718 default:
6719 return -EOPNOTSUPP;
6720 }
6721 return 0;
6722 }
6723
6724 /* SIOCSIWENCODEEXT */
6725 static int ipw_wx_set_encodeext(struct net_device *dev,
6726 struct iw_request_info *info,
6727 union iwreq_data *wrqu, char *extra)
6728 {
6729 struct ipw_priv *priv = ieee80211_priv(dev);
6730 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6731
6732 if (hwcrypto) {
6733 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6734 /* IPW HW can't build TKIP MIC,
6735 host decryption still needed */
6736 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6737 priv->ieee->host_mc_decrypt = 1;
6738 else {
6739 priv->ieee->host_encrypt = 0;
6740 priv->ieee->host_encrypt_msdu = 1;
6741 priv->ieee->host_decrypt = 1;
6742 }
6743 } else {
6744 priv->ieee->host_encrypt = 0;
6745 priv->ieee->host_encrypt_msdu = 0;
6746 priv->ieee->host_decrypt = 0;
6747 priv->ieee->host_mc_decrypt = 0;
6748 }
6749 }
6750
6751 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6752 }
6753
6754 /* SIOCGIWENCODEEXT */
6755 static int ipw_wx_get_encodeext(struct net_device *dev,
6756 struct iw_request_info *info,
6757 union iwreq_data *wrqu, char *extra)
6758 {
6759 struct ipw_priv *priv = ieee80211_priv(dev);
6760 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6761 }
6762
6763 /* SIOCSIWMLME */
6764 static int ipw_wx_set_mlme(struct net_device *dev,
6765 struct iw_request_info *info,
6766 union iwreq_data *wrqu, char *extra)
6767 {
6768 struct ipw_priv *priv = ieee80211_priv(dev);
6769 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6770 u16 reason;
6771
6772 reason = cpu_to_le16(mlme->reason_code);
6773
6774 switch (mlme->cmd) {
6775 case IW_MLME_DEAUTH:
6776 /* silently ignore */
6777 break;
6778
6779 case IW_MLME_DISASSOC:
6780 ipw_disassociate(priv);
6781 break;
6782
6783 default:
6784 return -EOPNOTSUPP;
6785 }
6786 return 0;
6787 }
6788
6789 #ifdef CONFIG_IPW2200_QOS
6790
6791 /* QoS */
6792 /*
6793 * get the modulation type of the current network or
6794 * the card current mode
6795 */
6796 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6797 {
6798 u8 mode = 0;
6799
6800 if (priv->status & STATUS_ASSOCIATED) {
6801 unsigned long flags;
6802
6803 spin_lock_irqsave(&priv->ieee->lock, flags);
6804 mode = priv->assoc_network->mode;
6805 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6806 } else {
6807 mode = priv->ieee->mode;
6808 }
6809 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6810 return mode;
6811 }
6812
6813 /*
6814 * Handle management frame beacon and probe response
6815 */
6816 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6817 int active_network,
6818 struct ieee80211_network *network)
6819 {
6820 u32 size = sizeof(struct ieee80211_qos_parameters);
6821
6822 if (network->capability & WLAN_CAPABILITY_IBSS)
6823 network->qos_data.active = network->qos_data.supported;
6824
6825 if (network->flags & NETWORK_HAS_QOS_MASK) {
6826 if (active_network &&
6827 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6828 network->qos_data.active = network->qos_data.supported;
6829
6830 if ((network->qos_data.active == 1) && (active_network == 1) &&
6831 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6832 (network->qos_data.old_param_count !=
6833 network->qos_data.param_count)) {
6834 network->qos_data.old_param_count =
6835 network->qos_data.param_count;
6836 schedule_work(&priv->qos_activate);
6837 IPW_DEBUG_QOS("QoS parameters change call "
6838 "qos_activate\n");
6839 }
6840 } else {
6841 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6842 memcpy(&network->qos_data.parameters,
6843 &def_parameters_CCK, size);
6844 else
6845 memcpy(&network->qos_data.parameters,
6846 &def_parameters_OFDM, size);
6847
6848 if ((network->qos_data.active == 1) && (active_network == 1)) {
6849 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6850 schedule_work(&priv->qos_activate);
6851 }
6852
6853 network->qos_data.active = 0;
6854 network->qos_data.supported = 0;
6855 }
6856 if ((priv->status & STATUS_ASSOCIATED) &&
6857 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6858 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6859 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6860 !(network->flags & NETWORK_EMPTY_ESSID))
6861 if ((network->ssid_len ==
6862 priv->assoc_network->ssid_len) &&
6863 !memcmp(network->ssid,
6864 priv->assoc_network->ssid,
6865 network->ssid_len)) {
6866 queue_work(priv->workqueue,
6867 &priv->merge_networks);
6868 }
6869 }
6870
6871 return 0;
6872 }
6873
6874 /*
6875 * This function set up the firmware to support QoS. It sends
6876 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6877 */
6878 static int ipw_qos_activate(struct ipw_priv *priv,
6879 struct ieee80211_qos_data *qos_network_data)
6880 {
6881 int err;
6882 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6883 struct ieee80211_qos_parameters *active_one = NULL;
6884 u32 size = sizeof(struct ieee80211_qos_parameters);
6885 u32 burst_duration;
6886 int i;
6887 u8 type;
6888
6889 type = ipw_qos_current_mode(priv);
6890
6891 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6892 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6893 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6894 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6895
6896 if (qos_network_data == NULL) {
6897 if (type == IEEE_B) {
6898 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6899 active_one = &def_parameters_CCK;
6900 } else
6901 active_one = &def_parameters_OFDM;
6902
6903 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6904 burst_duration = ipw_qos_get_burst_duration(priv);
6905 for (i = 0; i < QOS_QUEUE_NUM; i++)
6906 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6907 (u16)burst_duration;
6908 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6909 if (type == IEEE_B) {
6910 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6911 type);
6912 if (priv->qos_data.qos_enable == 0)
6913 active_one = &def_parameters_CCK;
6914 else
6915 active_one = priv->qos_data.def_qos_parm_CCK;
6916 } else {
6917 if (priv->qos_data.qos_enable == 0)
6918 active_one = &def_parameters_OFDM;
6919 else
6920 active_one = priv->qos_data.def_qos_parm_OFDM;
6921 }
6922 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6923 } else {
6924 unsigned long flags;
6925 int active;
6926
6927 spin_lock_irqsave(&priv->ieee->lock, flags);
6928 active_one = &(qos_network_data->parameters);
6929 qos_network_data->old_param_count =
6930 qos_network_data->param_count;
6931 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6932 active = qos_network_data->supported;
6933 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6934
6935 if (active == 0) {
6936 burst_duration = ipw_qos_get_burst_duration(priv);
6937 for (i = 0; i < QOS_QUEUE_NUM; i++)
6938 qos_parameters[QOS_PARAM_SET_ACTIVE].
6939 tx_op_limit[i] = (u16)burst_duration;
6940 }
6941 }
6942
6943 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6944 for (i = 0; i < 3; i++) {
6945 int j;
6946 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6947 qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6948 qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6949 qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6950 }
6951 }
6952
6953 err = ipw_send_qos_params_command(priv,
6954 (struct ieee80211_qos_parameters *)
6955 &(qos_parameters[0]));
6956 if (err)
6957 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6958
6959 return err;
6960 }
6961
6962 /*
6963 * send IPW_CMD_WME_INFO to the firmware
6964 */
6965 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6966 {
6967 int ret = 0;
6968 struct ieee80211_qos_information_element qos_info;
6969
6970 if (priv == NULL)
6971 return -1;
6972
6973 qos_info.elementID = QOS_ELEMENT_ID;
6974 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6975
6976 qos_info.version = QOS_VERSION_1;
6977 qos_info.ac_info = 0;
6978
6979 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6980 qos_info.qui_type = QOS_OUI_TYPE;
6981 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6982
6983 ret = ipw_send_qos_info_command(priv, &qos_info);
6984 if (ret != 0) {
6985 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6986 }
6987 return ret;
6988 }
6989
6990 /*
6991 * Set the QoS parameter with the association request structure
6992 */
6993 static int ipw_qos_association(struct ipw_priv *priv,
6994 struct ieee80211_network *network)
6995 {
6996 int err = 0;
6997 struct ieee80211_qos_data *qos_data = NULL;
6998 struct ieee80211_qos_data ibss_data = {
6999 .supported = 1,
7000 .active = 1,
7001 };
7002
7003 switch (priv->ieee->iw_mode) {
7004 case IW_MODE_ADHOC:
7005 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7006
7007 qos_data = &ibss_data;
7008 break;
7009
7010 case IW_MODE_INFRA:
7011 qos_data = &network->qos_data;
7012 break;
7013
7014 default:
7015 BUG();
7016 break;
7017 }
7018
7019 err = ipw_qos_activate(priv, qos_data);
7020 if (err) {
7021 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7022 return err;
7023 }
7024
7025 if (priv->qos_data.qos_enable && qos_data->supported) {
7026 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7027 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7028 return ipw_qos_set_info_element(priv);
7029 }
7030
7031 return 0;
7032 }
7033
7034 /*
7035 * handling the beaconing responses. if we get different QoS setting
7036 * off the network from the associated setting, adjust the QoS
7037 * setting
7038 */
7039 static int ipw_qos_association_resp(struct ipw_priv *priv,
7040 struct ieee80211_network *network)
7041 {
7042 int ret = 0;
7043 unsigned long flags;
7044 u32 size = sizeof(struct ieee80211_qos_parameters);
7045 int set_qos_param = 0;
7046
7047 if ((priv == NULL) || (network == NULL) ||
7048 (priv->assoc_network == NULL))
7049 return ret;
7050
7051 if (!(priv->status & STATUS_ASSOCIATED))
7052 return ret;
7053
7054 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7055 return ret;
7056
7057 spin_lock_irqsave(&priv->ieee->lock, flags);
7058 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7059 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7060 sizeof(struct ieee80211_qos_data));
7061 priv->assoc_network->qos_data.active = 1;
7062 if ((network->qos_data.old_param_count !=
7063 network->qos_data.param_count)) {
7064 set_qos_param = 1;
7065 network->qos_data.old_param_count =
7066 network->qos_data.param_count;
7067 }
7068
7069 } else {
7070 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7071 memcpy(&priv->assoc_network->qos_data.parameters,
7072 &def_parameters_CCK, size);
7073 else
7074 memcpy(&priv->assoc_network->qos_data.parameters,
7075 &def_parameters_OFDM, size);
7076 priv->assoc_network->qos_data.active = 0;
7077 priv->assoc_network->qos_data.supported = 0;
7078 set_qos_param = 1;
7079 }
7080
7081 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7082
7083 if (set_qos_param == 1)
7084 schedule_work(&priv->qos_activate);
7085
7086 return ret;
7087 }
7088
7089 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7090 {
7091 u32 ret = 0;
7092
7093 if ((priv == NULL))
7094 return 0;
7095
7096 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7097 ret = priv->qos_data.burst_duration_CCK;
7098 else
7099 ret = priv->qos_data.burst_duration_OFDM;
7100
7101 return ret;
7102 }
7103
7104 /*
7105 * Initialize the setting of QoS global
7106 */
7107 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7108 int burst_enable, u32 burst_duration_CCK,
7109 u32 burst_duration_OFDM)
7110 {
7111 priv->qos_data.qos_enable = enable;
7112
7113 if (priv->qos_data.qos_enable) {
7114 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7115 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7116 IPW_DEBUG_QOS("QoS is enabled\n");
7117 } else {
7118 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7119 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7120 IPW_DEBUG_QOS("QoS is not enabled\n");
7121 }
7122
7123 priv->qos_data.burst_enable = burst_enable;
7124
7125 if (burst_enable) {
7126 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7127 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7128 } else {
7129 priv->qos_data.burst_duration_CCK = 0;
7130 priv->qos_data.burst_duration_OFDM = 0;
7131 }
7132 }
7133
7134 /*
7135 * map the packet priority to the right TX Queue
7136 */
7137 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7138 {
7139 if (priority > 7 || !priv->qos_data.qos_enable)
7140 priority = 0;
7141
7142 return from_priority_to_tx_queue[priority] - 1;
7143 }
7144
7145 static int ipw_is_qos_active(struct net_device *dev,
7146 struct sk_buff *skb)
7147 {
7148 struct ipw_priv *priv = ieee80211_priv(dev);
7149 struct ieee80211_qos_data *qos_data = NULL;
7150 int active, supported;
7151 u8 *daddr = skb->data + ETH_ALEN;
7152 int unicast = !is_multicast_ether_addr(daddr);
7153
7154 if (!(priv->status & STATUS_ASSOCIATED))
7155 return 0;
7156
7157 qos_data = &priv->assoc_network->qos_data;
7158
7159 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7160 if (unicast == 0)
7161 qos_data->active = 0;
7162 else
7163 qos_data->active = qos_data->supported;
7164 }
7165 active = qos_data->active;
7166 supported = qos_data->supported;
7167 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7168 "unicast %d\n",
7169 priv->qos_data.qos_enable, active, supported, unicast);
7170 if (active && priv->qos_data.qos_enable)
7171 return 1;
7172
7173 return 0;
7174
7175 }
7176 /*
7177 * add QoS parameter to the TX command
7178 */
7179 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7180 u16 priority,
7181 struct tfd_data *tfd)
7182 {
7183 int tx_queue_id = 0;
7184
7185
7186 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7187 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7188
7189 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7190 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7191 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7192 }
7193 return 0;
7194 }
7195
7196 /*
7197 * background support to run QoS activate functionality
7198 */
7199 static void ipw_bg_qos_activate(struct work_struct *work)
7200 {
7201 struct ipw_priv *priv =
7202 container_of(work, struct ipw_priv, qos_activate);
7203
7204 if (priv == NULL)
7205 return;
7206
7207 mutex_lock(&priv->mutex);
7208
7209 if (priv->status & STATUS_ASSOCIATED)
7210 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7211
7212 mutex_unlock(&priv->mutex);
7213 }
7214
7215 static int ipw_handle_probe_response(struct net_device *dev,
7216 struct ieee80211_probe_response *resp,
7217 struct ieee80211_network *network)
7218 {
7219 struct ipw_priv *priv = ieee80211_priv(dev);
7220 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7221 (network == priv->assoc_network));
7222
7223 ipw_qos_handle_probe_response(priv, active_network, network);
7224
7225 return 0;
7226 }
7227
7228 static int ipw_handle_beacon(struct net_device *dev,
7229 struct ieee80211_beacon *resp,
7230 struct ieee80211_network *network)
7231 {
7232 struct ipw_priv *priv = ieee80211_priv(dev);
7233 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7234 (network == priv->assoc_network));
7235
7236 ipw_qos_handle_probe_response(priv, active_network, network);
7237
7238 return 0;
7239 }
7240
7241 static int ipw_handle_assoc_response(struct net_device *dev,
7242 struct ieee80211_assoc_response *resp,
7243 struct ieee80211_network *network)
7244 {
7245 struct ipw_priv *priv = ieee80211_priv(dev);
7246 ipw_qos_association_resp(priv, network);
7247 return 0;
7248 }
7249
7250 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7251 *qos_param)
7252 {
7253 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7254 sizeof(*qos_param) * 3, qos_param);
7255 }
7256
7257 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7258 *qos_param)
7259 {
7260 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7261 qos_param);
7262 }
7263
7264 #endif /* CONFIG_IPW2200_QOS */
7265
7266 static int ipw_associate_network(struct ipw_priv *priv,
7267 struct ieee80211_network *network,
7268 struct ipw_supported_rates *rates, int roaming)
7269 {
7270 int err;
7271 DECLARE_MAC_BUF(mac);
7272
7273 if (priv->config & CFG_FIXED_RATE)
7274 ipw_set_fixed_rate(priv, network->mode);
7275
7276 if (!(priv->config & CFG_STATIC_ESSID)) {
7277 priv->essid_len = min(network->ssid_len,
7278 (u8) IW_ESSID_MAX_SIZE);
7279 memcpy(priv->essid, network->ssid, priv->essid_len);
7280 }
7281
7282 network->last_associate = jiffies;
7283
7284 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7285 priv->assoc_request.channel = network->channel;
7286 priv->assoc_request.auth_key = 0;
7287
7288 if ((priv->capability & CAP_PRIVACY_ON) &&
7289 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7290 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7291 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7292
7293 if (priv->ieee->sec.level == SEC_LEVEL_1)
7294 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7295
7296 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7297 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7298 priv->assoc_request.auth_type = AUTH_LEAP;
7299 else
7300 priv->assoc_request.auth_type = AUTH_OPEN;
7301
7302 if (priv->ieee->wpa_ie_len) {
7303 priv->assoc_request.policy_support = 0x02; /* RSN active */
7304 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7305 priv->ieee->wpa_ie_len);
7306 }
7307
7308 /*
7309 * It is valid for our ieee device to support multiple modes, but
7310 * when it comes to associating to a given network we have to choose
7311 * just one mode.
7312 */
7313 if (network->mode & priv->ieee->mode & IEEE_A)
7314 priv->assoc_request.ieee_mode = IPW_A_MODE;
7315 else if (network->mode & priv->ieee->mode & IEEE_G)
7316 priv->assoc_request.ieee_mode = IPW_G_MODE;
7317 else if (network->mode & priv->ieee->mode & IEEE_B)
7318 priv->assoc_request.ieee_mode = IPW_B_MODE;
7319
7320 priv->assoc_request.capability = network->capability;
7321 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7322 && !(priv->config & CFG_PREAMBLE_LONG)) {
7323 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7324 } else {
7325 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7326
7327 /* Clear the short preamble if we won't be supporting it */
7328 priv->assoc_request.capability &=
7329 ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7330 }
7331
7332 /* Clear capability bits that aren't used in Ad Hoc */
7333 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7334 priv->assoc_request.capability &=
7335 ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7336
7337 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7338 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7339 roaming ? "Rea" : "A",
7340 escape_essid(priv->essid, priv->essid_len),
7341 network->channel,
7342 ipw_modes[priv->assoc_request.ieee_mode],
7343 rates->num_rates,
7344 (priv->assoc_request.preamble_length ==
7345 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7346 network->capability &
7347 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7348 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7349 priv->capability & CAP_PRIVACY_ON ?
7350 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7351 "(open)") : "",
7352 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7353 priv->capability & CAP_PRIVACY_ON ?
7354 '1' + priv->ieee->sec.active_key : '.',
7355 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7356
7357 priv->assoc_request.beacon_interval = network->beacon_interval;
7358 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7359 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7360 priv->assoc_request.assoc_type = HC_IBSS_START;
7361 priv->assoc_request.assoc_tsf_msw = 0;
7362 priv->assoc_request.assoc_tsf_lsw = 0;
7363 } else {
7364 if (unlikely(roaming))
7365 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7366 else
7367 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7368 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7369 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7370 }
7371
7372 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7373
7374 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7375 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7376 priv->assoc_request.atim_window = network->atim_window;
7377 } else {
7378 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7379 priv->assoc_request.atim_window = 0;
7380 }
7381
7382 priv->assoc_request.listen_interval = network->listen_interval;
7383
7384 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7385 if (err) {
7386 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7387 return err;
7388 }
7389
7390 rates->ieee_mode = priv->assoc_request.ieee_mode;
7391 rates->purpose = IPW_RATE_CONNECT;
7392 ipw_send_supported_rates(priv, rates);
7393
7394 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7395 priv->sys_config.dot11g_auto_detection = 1;
7396 else
7397 priv->sys_config.dot11g_auto_detection = 0;
7398
7399 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7400 priv->sys_config.answer_broadcast_ssid_probe = 1;
7401 else
7402 priv->sys_config.answer_broadcast_ssid_probe = 0;
7403
7404 err = ipw_send_system_config(priv);
7405 if (err) {
7406 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7407 return err;
7408 }
7409
7410 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7411 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7412 if (err) {
7413 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7414 return err;
7415 }
7416
7417 /*
7418 * If preemption is enabled, it is possible for the association
7419 * to complete before we return from ipw_send_associate. Therefore
7420 * we have to be sure and update our priviate data first.
7421 */
7422 priv->channel = network->channel;
7423 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7424 priv->status |= STATUS_ASSOCIATING;
7425 priv->status &= ~STATUS_SECURITY_UPDATED;
7426
7427 priv->assoc_network = network;
7428
7429 #ifdef CONFIG_IPW2200_QOS
7430 ipw_qos_association(priv, network);
7431 #endif
7432
7433 err = ipw_send_associate(priv, &priv->assoc_request);
7434 if (err) {
7435 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7436 return err;
7437 }
7438
7439 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7440 escape_essid(priv->essid, priv->essid_len),
7441 print_mac(mac, priv->bssid));
7442
7443 return 0;
7444 }
7445
7446 static void ipw_roam(void *data)
7447 {
7448 struct ipw_priv *priv = data;
7449 struct ieee80211_network *network = NULL;
7450 struct ipw_network_match match = {
7451 .network = priv->assoc_network
7452 };
7453
7454 /* The roaming process is as follows:
7455 *
7456 * 1. Missed beacon threshold triggers the roaming process by
7457 * setting the status ROAM bit and requesting a scan.
7458 * 2. When the scan completes, it schedules the ROAM work
7459 * 3. The ROAM work looks at all of the known networks for one that
7460 * is a better network than the currently associated. If none
7461 * found, the ROAM process is over (ROAM bit cleared)
7462 * 4. If a better network is found, a disassociation request is
7463 * sent.
7464 * 5. When the disassociation completes, the roam work is again
7465 * scheduled. The second time through, the driver is no longer
7466 * associated, and the newly selected network is sent an
7467 * association request.
7468 * 6. At this point ,the roaming process is complete and the ROAM
7469 * status bit is cleared.
7470 */
7471
7472 /* If we are no longer associated, and the roaming bit is no longer
7473 * set, then we are not actively roaming, so just return */
7474 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7475 return;
7476
7477 if (priv->status & STATUS_ASSOCIATED) {
7478 /* First pass through ROAM process -- look for a better
7479 * network */
7480 unsigned long flags;
7481 u8 rssi = priv->assoc_network->stats.rssi;
7482 priv->assoc_network->stats.rssi = -128;
7483 spin_lock_irqsave(&priv->ieee->lock, flags);
7484 list_for_each_entry(network, &priv->ieee->network_list, list) {
7485 if (network != priv->assoc_network)
7486 ipw_best_network(priv, &match, network, 1);
7487 }
7488 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7489 priv->assoc_network->stats.rssi = rssi;
7490
7491 if (match.network == priv->assoc_network) {
7492 IPW_DEBUG_ASSOC("No better APs in this network to "
7493 "roam to.\n");
7494 priv->status &= ~STATUS_ROAMING;
7495 ipw_debug_config(priv);
7496 return;
7497 }
7498
7499 ipw_send_disassociate(priv, 1);
7500 priv->assoc_network = match.network;
7501
7502 return;
7503 }
7504
7505 /* Second pass through ROAM process -- request association */
7506 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7507 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7508 priv->status &= ~STATUS_ROAMING;
7509 }
7510
7511 static void ipw_bg_roam(struct work_struct *work)
7512 {
7513 struct ipw_priv *priv =
7514 container_of(work, struct ipw_priv, roam);
7515 mutex_lock(&priv->mutex);
7516 ipw_roam(priv);
7517 mutex_unlock(&priv->mutex);
7518 }
7519
7520 static int ipw_associate(void *data)
7521 {
7522 struct ipw_priv *priv = data;
7523
7524 struct ieee80211_network *network = NULL;
7525 struct ipw_network_match match = {
7526 .network = NULL
7527 };
7528 struct ipw_supported_rates *rates;
7529 struct list_head *element;
7530 unsigned long flags;
7531
7532 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7533 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7534 return 0;
7535 }
7536
7537 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7538 IPW_DEBUG_ASSOC("Not attempting association (already in "
7539 "progress)\n");
7540 return 0;
7541 }
7542
7543 if (priv->status & STATUS_DISASSOCIATING) {
7544 IPW_DEBUG_ASSOC("Not attempting association (in "
7545 "disassociating)\n ");
7546 queue_work(priv->workqueue, &priv->associate);
7547 return 0;
7548 }
7549
7550 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7551 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7552 "initialized)\n");
7553 return 0;
7554 }
7555
7556 if (!(priv->config & CFG_ASSOCIATE) &&
7557 !(priv->config & (CFG_STATIC_ESSID |
7558 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7559 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7560 return 0;
7561 }
7562
7563 /* Protect our use of the network_list */
7564 spin_lock_irqsave(&priv->ieee->lock, flags);
7565 list_for_each_entry(network, &priv->ieee->network_list, list)
7566 ipw_best_network(priv, &match, network, 0);
7567
7568 network = match.network;
7569 rates = &match.rates;
7570
7571 if (network == NULL &&
7572 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7573 priv->config & CFG_ADHOC_CREATE &&
7574 priv->config & CFG_STATIC_ESSID &&
7575 priv->config & CFG_STATIC_CHANNEL &&
7576 !list_empty(&priv->ieee->network_free_list)) {
7577 element = priv->ieee->network_free_list.next;
7578 network = list_entry(element, struct ieee80211_network, list);
7579 ipw_adhoc_create(priv, network);
7580 rates = &priv->rates;
7581 list_del(element);
7582 list_add_tail(&network->list, &priv->ieee->network_list);
7583 }
7584 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7585
7586 /* If we reached the end of the list, then we don't have any valid
7587 * matching APs */
7588 if (!network) {
7589 ipw_debug_config(priv);
7590
7591 if (!(priv->status & STATUS_SCANNING)) {
7592 if (!(priv->config & CFG_SPEED_SCAN))
7593 queue_delayed_work(priv->workqueue,
7594 &priv->request_scan,
7595 SCAN_INTERVAL);
7596 else
7597 queue_delayed_work(priv->workqueue,
7598 &priv->request_scan, 0);
7599 }
7600
7601 return 0;
7602 }
7603
7604 ipw_associate_network(priv, network, rates, 0);
7605
7606 return 1;
7607 }
7608
7609 static void ipw_bg_associate(struct work_struct *work)
7610 {
7611 struct ipw_priv *priv =
7612 container_of(work, struct ipw_priv, associate);
7613 mutex_lock(&priv->mutex);
7614 ipw_associate(priv);
7615 mutex_unlock(&priv->mutex);
7616 }
7617
7618 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7619 struct sk_buff *skb)
7620 {
7621 struct ieee80211_hdr *hdr;
7622 u16 fc;
7623
7624 hdr = (struct ieee80211_hdr *)skb->data;
7625 fc = le16_to_cpu(hdr->frame_ctl);
7626 if (!(fc & IEEE80211_FCTL_PROTECTED))
7627 return;
7628
7629 fc &= ~IEEE80211_FCTL_PROTECTED;
7630 hdr->frame_ctl = cpu_to_le16(fc);
7631 switch (priv->ieee->sec.level) {
7632 case SEC_LEVEL_3:
7633 /* Remove CCMP HDR */
7634 memmove(skb->data + IEEE80211_3ADDR_LEN,
7635 skb->data + IEEE80211_3ADDR_LEN + 8,
7636 skb->len - IEEE80211_3ADDR_LEN - 8);
7637 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7638 break;
7639 case SEC_LEVEL_2:
7640 break;
7641 case SEC_LEVEL_1:
7642 /* Remove IV */
7643 memmove(skb->data + IEEE80211_3ADDR_LEN,
7644 skb->data + IEEE80211_3ADDR_LEN + 4,
7645 skb->len - IEEE80211_3ADDR_LEN - 4);
7646 skb_trim(skb, skb->len - 8); /* IV + ICV */
7647 break;
7648 case SEC_LEVEL_0:
7649 break;
7650 default:
7651 printk(KERN_ERR "Unknow security level %d\n",
7652 priv->ieee->sec.level);
7653 break;
7654 }
7655 }
7656
7657 static void ipw_handle_data_packet(struct ipw_priv *priv,
7658 struct ipw_rx_mem_buffer *rxb,
7659 struct ieee80211_rx_stats *stats)
7660 {
7661 struct ieee80211_hdr_4addr *hdr;
7662 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7663
7664 /* We received data from the HW, so stop the watchdog */
7665 priv->net_dev->trans_start = jiffies;
7666
7667 /* We only process data packets if the
7668 * interface is open */
7669 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7670 skb_tailroom(rxb->skb))) {
7671 priv->ieee->stats.rx_errors++;
7672 priv->wstats.discard.misc++;
7673 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7674 return;
7675 } else if (unlikely(!netif_running(priv->net_dev))) {
7676 priv->ieee->stats.rx_dropped++;
7677 priv->wstats.discard.misc++;
7678 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7679 return;
7680 }
7681
7682 /* Advance skb->data to the start of the actual payload */
7683 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7684
7685 /* Set the size of the skb to the size of the frame */
7686 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7687
7688 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7689
7690 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7691 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7692 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7693 (is_multicast_ether_addr(hdr->addr1) ?
7694 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7695 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7696
7697 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7698 priv->ieee->stats.rx_errors++;
7699 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7700 rxb->skb = NULL;
7701 __ipw_led_activity_on(priv);
7702 }
7703 }
7704
7705 #ifdef CONFIG_IPW2200_RADIOTAP
7706 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7707 struct ipw_rx_mem_buffer *rxb,
7708 struct ieee80211_rx_stats *stats)
7709 {
7710 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7711 struct ipw_rx_frame *frame = &pkt->u.frame;
7712
7713 /* initial pull of some data */
7714 u16 received_channel = frame->received_channel;
7715 u8 antennaAndPhy = frame->antennaAndPhy;
7716 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7717 u16 pktrate = frame->rate;
7718
7719 /* Magic struct that slots into the radiotap header -- no reason
7720 * to build this manually element by element, we can write it much
7721 * more efficiently than we can parse it. ORDER MATTERS HERE */
7722 struct ipw_rt_hdr *ipw_rt;
7723
7724 short len = le16_to_cpu(pkt->u.frame.length);
7725
7726 /* We received data from the HW, so stop the watchdog */
7727 priv->net_dev->trans_start = jiffies;
7728
7729 /* We only process data packets if the
7730 * interface is open */
7731 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7732 skb_tailroom(rxb->skb))) {
7733 priv->ieee->stats.rx_errors++;
7734 priv->wstats.discard.misc++;
7735 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7736 return;
7737 } else if (unlikely(!netif_running(priv->net_dev))) {
7738 priv->ieee->stats.rx_dropped++;
7739 priv->wstats.discard.misc++;
7740 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7741 return;
7742 }
7743
7744 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7745 * that now */
7746 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7747 /* FIXME: Should alloc bigger skb instead */
7748 priv->ieee->stats.rx_dropped++;
7749 priv->wstats.discard.misc++;
7750 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7751 return;
7752 }
7753
7754 /* copy the frame itself */
7755 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7756 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7757
7758 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7759 * part of our real header, saves a little time.
7760 *
7761 * No longer necessary since we fill in all our data. Purge before merging
7762 * patch officially.
7763 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7764 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7765 */
7766
7767 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7768
7769 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7770 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7771 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total header+data */
7772
7773 /* Big bitfield of all the fields we provide in radiotap */
7774 ipw_rt->rt_hdr.it_present =
7775 ((1 << IEEE80211_RADIOTAP_TSFT) |
7776 (1 << IEEE80211_RADIOTAP_FLAGS) |
7777 (1 << IEEE80211_RADIOTAP_RATE) |
7778 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7779 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7780 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7781 (1 << IEEE80211_RADIOTAP_ANTENNA));
7782
7783 /* Zero the flags, we'll add to them as we go */
7784 ipw_rt->rt_flags = 0;
7785 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7786 frame->parent_tsf[2] << 16 |
7787 frame->parent_tsf[1] << 8 |
7788 frame->parent_tsf[0]);
7789
7790 /* Convert signal to DBM */
7791 ipw_rt->rt_dbmsignal = antsignal;
7792 ipw_rt->rt_dbmnoise = frame->noise;
7793
7794 /* Convert the channel data and set the flags */
7795 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7796 if (received_channel > 14) { /* 802.11a */
7797 ipw_rt->rt_chbitmask =
7798 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7799 } else if (antennaAndPhy & 32) { /* 802.11b */
7800 ipw_rt->rt_chbitmask =
7801 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7802 } else { /* 802.11g */
7803 ipw_rt->rt_chbitmask =
7804 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7805 }
7806
7807 /* set the rate in multiples of 500k/s */
7808 switch (pktrate) {
7809 case IPW_TX_RATE_1MB:
7810 ipw_rt->rt_rate = 2;
7811 break;
7812 case IPW_TX_RATE_2MB:
7813 ipw_rt->rt_rate = 4;
7814 break;
7815 case IPW_TX_RATE_5MB:
7816 ipw_rt->rt_rate = 10;
7817 break;
7818 case IPW_TX_RATE_6MB:
7819 ipw_rt->rt_rate = 12;
7820 break;
7821 case IPW_TX_RATE_9MB:
7822 ipw_rt->rt_rate = 18;
7823 break;
7824 case IPW_TX_RATE_11MB:
7825 ipw_rt->rt_rate = 22;
7826 break;
7827 case IPW_TX_RATE_12MB:
7828 ipw_rt->rt_rate = 24;
7829 break;
7830 case IPW_TX_RATE_18MB:
7831 ipw_rt->rt_rate = 36;
7832 break;
7833 case IPW_TX_RATE_24MB:
7834 ipw_rt->rt_rate = 48;
7835 break;
7836 case IPW_TX_RATE_36MB:
7837 ipw_rt->rt_rate = 72;
7838 break;
7839 case IPW_TX_RATE_48MB:
7840 ipw_rt->rt_rate = 96;
7841 break;
7842 case IPW_TX_RATE_54MB:
7843 ipw_rt->rt_rate = 108;
7844 break;
7845 default:
7846 ipw_rt->rt_rate = 0;
7847 break;
7848 }
7849
7850 /* antenna number */
7851 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7852
7853 /* set the preamble flag if we have it */
7854 if ((antennaAndPhy & 64))
7855 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7856
7857 /* Set the size of the skb to the size of the frame */
7858 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7859
7860 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7861
7862 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7863 priv->ieee->stats.rx_errors++;
7864 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7865 rxb->skb = NULL;
7866 /* no LED during capture */
7867 }
7868 }
7869 #endif
7870
7871 #ifdef CONFIG_IPW2200_PROMISCUOUS
7872 #define ieee80211_is_probe_response(fc) \
7873 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7874 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7875
7876 #define ieee80211_is_management(fc) \
7877 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7878
7879 #define ieee80211_is_control(fc) \
7880 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7881
7882 #define ieee80211_is_data(fc) \
7883 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7884
7885 #define ieee80211_is_assoc_request(fc) \
7886 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7887
7888 #define ieee80211_is_reassoc_request(fc) \
7889 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7890
7891 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7892 struct ipw_rx_mem_buffer *rxb,
7893 struct ieee80211_rx_stats *stats)
7894 {
7895 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7896 struct ipw_rx_frame *frame = &pkt->u.frame;
7897 struct ipw_rt_hdr *ipw_rt;
7898
7899 /* First cache any information we need before we overwrite
7900 * the information provided in the skb from the hardware */
7901 struct ieee80211_hdr *hdr;
7902 u16 channel = frame->received_channel;
7903 u8 phy_flags = frame->antennaAndPhy;
7904 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7905 s8 noise = frame->noise;
7906 u8 rate = frame->rate;
7907 short len = le16_to_cpu(pkt->u.frame.length);
7908 struct sk_buff *skb;
7909 int hdr_only = 0;
7910 u16 filter = priv->prom_priv->filter;
7911
7912 /* If the filter is set to not include Rx frames then return */
7913 if (filter & IPW_PROM_NO_RX)
7914 return;
7915
7916 /* We received data from the HW, so stop the watchdog */
7917 priv->prom_net_dev->trans_start = jiffies;
7918
7919 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7920 priv->prom_priv->ieee->stats.rx_errors++;
7921 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7922 return;
7923 }
7924
7925 /* We only process data packets if the interface is open */
7926 if (unlikely(!netif_running(priv->prom_net_dev))) {
7927 priv->prom_priv->ieee->stats.rx_dropped++;
7928 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7929 return;
7930 }
7931
7932 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7933 * that now */
7934 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7935 /* FIXME: Should alloc bigger skb instead */
7936 priv->prom_priv->ieee->stats.rx_dropped++;
7937 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7938 return;
7939 }
7940
7941 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7942 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7943 if (filter & IPW_PROM_NO_MGMT)
7944 return;
7945 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7946 hdr_only = 1;
7947 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7948 if (filter & IPW_PROM_NO_CTL)
7949 return;
7950 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7951 hdr_only = 1;
7952 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7953 if (filter & IPW_PROM_NO_DATA)
7954 return;
7955 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7956 hdr_only = 1;
7957 }
7958
7959 /* Copy the SKB since this is for the promiscuous side */
7960 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7961 if (skb == NULL) {
7962 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7963 return;
7964 }
7965
7966 /* copy the frame data to write after where the radiotap header goes */
7967 ipw_rt = (void *)skb->data;
7968
7969 if (hdr_only)
7970 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7971
7972 memcpy(ipw_rt->payload, hdr, len);
7973
7974 /* Zero the radiotap static buffer ... We only need to zero the bytes
7975 * NOT part of our real header, saves a little time.
7976 *
7977 * No longer necessary since we fill in all our data. Purge before
7978 * merging patch officially.
7979 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7980 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7981 */
7982
7983 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7984 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7985 ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt); /* total header+data */
7986
7987 /* Set the size of the skb to the size of the frame */
7988 skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7989
7990 /* Big bitfield of all the fields we provide in radiotap */
7991 ipw_rt->rt_hdr.it_present =
7992 ((1 << IEEE80211_RADIOTAP_TSFT) |
7993 (1 << IEEE80211_RADIOTAP_FLAGS) |
7994 (1 << IEEE80211_RADIOTAP_RATE) |
7995 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7996 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7997 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7998 (1 << IEEE80211_RADIOTAP_ANTENNA));
7999
8000 /* Zero the flags, we'll add to them as we go */
8001 ipw_rt->rt_flags = 0;
8002 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8003 frame->parent_tsf[2] << 16 |
8004 frame->parent_tsf[1] << 8 |
8005 frame->parent_tsf[0]);
8006
8007 /* Convert to DBM */
8008 ipw_rt->rt_dbmsignal = signal;
8009 ipw_rt->rt_dbmnoise = noise;
8010
8011 /* Convert the channel data and set the flags */
8012 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8013 if (channel > 14) { /* 802.11a */
8014 ipw_rt->rt_chbitmask =
8015 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8016 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8017 ipw_rt->rt_chbitmask =
8018 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8019 } else { /* 802.11g */
8020 ipw_rt->rt_chbitmask =
8021 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8022 }
8023
8024 /* set the rate in multiples of 500k/s */
8025 switch (rate) {
8026 case IPW_TX_RATE_1MB:
8027 ipw_rt->rt_rate = 2;
8028 break;
8029 case IPW_TX_RATE_2MB:
8030 ipw_rt->rt_rate = 4;
8031 break;
8032 case IPW_TX_RATE_5MB:
8033 ipw_rt->rt_rate = 10;
8034 break;
8035 case IPW_TX_RATE_6MB:
8036 ipw_rt->rt_rate = 12;
8037 break;
8038 case IPW_TX_RATE_9MB:
8039 ipw_rt->rt_rate = 18;
8040 break;
8041 case IPW_TX_RATE_11MB:
8042 ipw_rt->rt_rate = 22;
8043 break;
8044 case IPW_TX_RATE_12MB:
8045 ipw_rt->rt_rate = 24;
8046 break;
8047 case IPW_TX_RATE_18MB:
8048 ipw_rt->rt_rate = 36;
8049 break;
8050 case IPW_TX_RATE_24MB:
8051 ipw_rt->rt_rate = 48;
8052 break;
8053 case IPW_TX_RATE_36MB:
8054 ipw_rt->rt_rate = 72;
8055 break;
8056 case IPW_TX_RATE_48MB:
8057 ipw_rt->rt_rate = 96;
8058 break;
8059 case IPW_TX_RATE_54MB:
8060 ipw_rt->rt_rate = 108;
8061 break;
8062 default:
8063 ipw_rt->rt_rate = 0;
8064 break;
8065 }
8066
8067 /* antenna number */
8068 ipw_rt->rt_antenna = (phy_flags & 3);
8069
8070 /* set the preamble flag if we have it */
8071 if (phy_flags & (1 << 6))
8072 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8073
8074 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8075
8076 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8077 priv->prom_priv->ieee->stats.rx_errors++;
8078 dev_kfree_skb_any(skb);
8079 }
8080 }
8081 #endif
8082
8083 static int is_network_packet(struct ipw_priv *priv,
8084 struct ieee80211_hdr_4addr *header)
8085 {
8086 /* Filter incoming packets to determine if they are targetted toward
8087 * this network, discarding packets coming from ourselves */
8088 switch (priv->ieee->iw_mode) {
8089 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8090 /* packets from our adapter are dropped (echo) */
8091 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8092 return 0;
8093
8094 /* {broad,multi}cast packets to our BSSID go through */
8095 if (is_multicast_ether_addr(header->addr1))
8096 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8097
8098 /* packets to our adapter go through */
8099 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8100 ETH_ALEN);
8101
8102 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8103 /* packets from our adapter are dropped (echo) */
8104 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8105 return 0;
8106
8107 /* {broad,multi}cast packets to our BSS go through */
8108 if (is_multicast_ether_addr(header->addr1))
8109 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8110
8111 /* packets to our adapter go through */
8112 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8113 ETH_ALEN);
8114 }
8115
8116 return 1;
8117 }
8118
8119 #define IPW_PACKET_RETRY_TIME HZ
8120
8121 static int is_duplicate_packet(struct ipw_priv *priv,
8122 struct ieee80211_hdr_4addr *header)
8123 {
8124 u16 sc = le16_to_cpu(header->seq_ctl);
8125 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8126 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8127 u16 *last_seq, *last_frag;
8128 unsigned long *last_time;
8129
8130 switch (priv->ieee->iw_mode) {
8131 case IW_MODE_ADHOC:
8132 {
8133 struct list_head *p;
8134 struct ipw_ibss_seq *entry = NULL;
8135 u8 *mac = header->addr2;
8136 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8137
8138 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8139 entry =
8140 list_entry(p, struct ipw_ibss_seq, list);
8141 if (!memcmp(entry->mac, mac, ETH_ALEN))
8142 break;
8143 }
8144 if (p == &priv->ibss_mac_hash[index]) {
8145 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8146 if (!entry) {
8147 IPW_ERROR
8148 ("Cannot malloc new mac entry\n");
8149 return 0;
8150 }
8151 memcpy(entry->mac, mac, ETH_ALEN);
8152 entry->seq_num = seq;
8153 entry->frag_num = frag;
8154 entry->packet_time = jiffies;
8155 list_add(&entry->list,
8156 &priv->ibss_mac_hash[index]);
8157 return 0;
8158 }
8159 last_seq = &entry->seq_num;
8160 last_frag = &entry->frag_num;
8161 last_time = &entry->packet_time;
8162 break;
8163 }
8164 case IW_MODE_INFRA:
8165 last_seq = &priv->last_seq_num;
8166 last_frag = &priv->last_frag_num;
8167 last_time = &priv->last_packet_time;
8168 break;
8169 default:
8170 return 0;
8171 }
8172 if ((*last_seq == seq) &&
8173 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8174 if (*last_frag == frag)
8175 goto drop;
8176 if (*last_frag + 1 != frag)
8177 /* out-of-order fragment */
8178 goto drop;
8179 } else
8180 *last_seq = seq;
8181
8182 *last_frag = frag;
8183 *last_time = jiffies;
8184 return 0;
8185
8186 drop:
8187 /* Comment this line now since we observed the card receives
8188 * duplicate packets but the FCTL_RETRY bit is not set in the
8189 * IBSS mode with fragmentation enabled.
8190 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8191 return 1;
8192 }
8193
8194 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8195 struct ipw_rx_mem_buffer *rxb,
8196 struct ieee80211_rx_stats *stats)
8197 {
8198 struct sk_buff *skb = rxb->skb;
8199 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8200 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8201 (skb->data + IPW_RX_FRAME_SIZE);
8202
8203 ieee80211_rx_mgt(priv->ieee, header, stats);
8204
8205 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8206 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8207 IEEE80211_STYPE_PROBE_RESP) ||
8208 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8209 IEEE80211_STYPE_BEACON))) {
8210 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8211 ipw_add_station(priv, header->addr2);
8212 }
8213
8214 if (priv->config & CFG_NET_STATS) {
8215 IPW_DEBUG_HC("sending stat packet\n");
8216
8217 /* Set the size of the skb to the size of the full
8218 * ipw header and 802.11 frame */
8219 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8220 IPW_RX_FRAME_SIZE);
8221
8222 /* Advance past the ipw packet header to the 802.11 frame */
8223 skb_pull(skb, IPW_RX_FRAME_SIZE);
8224
8225 /* Push the ieee80211_rx_stats before the 802.11 frame */
8226 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8227
8228 skb->dev = priv->ieee->dev;
8229
8230 /* Point raw at the ieee80211_stats */
8231 skb_reset_mac_header(skb);
8232
8233 skb->pkt_type = PACKET_OTHERHOST;
8234 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8235 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8236 netif_rx(skb);
8237 rxb->skb = NULL;
8238 }
8239 }
8240
8241 /*
8242 * Main entry function for recieving a packet with 80211 headers. This
8243 * should be called when ever the FW has notified us that there is a new
8244 * skb in the recieve queue.
8245 */
8246 static void ipw_rx(struct ipw_priv *priv)
8247 {
8248 struct ipw_rx_mem_buffer *rxb;
8249 struct ipw_rx_packet *pkt;
8250 struct ieee80211_hdr_4addr *header;
8251 u32 r, w, i;
8252 u8 network_packet;
8253 DECLARE_MAC_BUF(mac);
8254 DECLARE_MAC_BUF(mac2);
8255 DECLARE_MAC_BUF(mac3);
8256
8257 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8258 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8259 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8260
8261 while (i != r) {
8262 rxb = priv->rxq->queue[i];
8263 if (unlikely(rxb == NULL)) {
8264 printk(KERN_CRIT "Queue not allocated!\n");
8265 break;
8266 }
8267 priv->rxq->queue[i] = NULL;
8268
8269 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8270 IPW_RX_BUF_SIZE,
8271 PCI_DMA_FROMDEVICE);
8272
8273 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8274 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8275 pkt->header.message_type,
8276 pkt->header.rx_seq_num, pkt->header.control_bits);
8277
8278 switch (pkt->header.message_type) {
8279 case RX_FRAME_TYPE: /* 802.11 frame */ {
8280 struct ieee80211_rx_stats stats = {
8281 .rssi = pkt->u.frame.rssi_dbm -
8282 IPW_RSSI_TO_DBM,
8283 .signal =
8284 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8285 IPW_RSSI_TO_DBM + 0x100,
8286 .noise =
8287 le16_to_cpu(pkt->u.frame.noise),
8288 .rate = pkt->u.frame.rate,
8289 .mac_time = jiffies,
8290 .received_channel =
8291 pkt->u.frame.received_channel,
8292 .freq =
8293 (pkt->u.frame.
8294 control & (1 << 0)) ?
8295 IEEE80211_24GHZ_BAND :
8296 IEEE80211_52GHZ_BAND,
8297 .len = le16_to_cpu(pkt->u.frame.length),
8298 };
8299
8300 if (stats.rssi != 0)
8301 stats.mask |= IEEE80211_STATMASK_RSSI;
8302 if (stats.signal != 0)
8303 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8304 if (stats.noise != 0)
8305 stats.mask |= IEEE80211_STATMASK_NOISE;
8306 if (stats.rate != 0)
8307 stats.mask |= IEEE80211_STATMASK_RATE;
8308
8309 priv->rx_packets++;
8310
8311 #ifdef CONFIG_IPW2200_PROMISCUOUS
8312 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8313 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8314 #endif
8315
8316 #ifdef CONFIG_IPW2200_MONITOR
8317 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8318 #ifdef CONFIG_IPW2200_RADIOTAP
8319
8320 ipw_handle_data_packet_monitor(priv,
8321 rxb,
8322 &stats);
8323 #else
8324 ipw_handle_data_packet(priv, rxb,
8325 &stats);
8326 #endif
8327 break;
8328 }
8329 #endif
8330
8331 header =
8332 (struct ieee80211_hdr_4addr *)(rxb->skb->
8333 data +
8334 IPW_RX_FRAME_SIZE);
8335 /* TODO: Check Ad-Hoc dest/source and make sure
8336 * that we are actually parsing these packets
8337 * correctly -- we should probably use the
8338 * frame control of the packet and disregard
8339 * the current iw_mode */
8340
8341 network_packet =
8342 is_network_packet(priv, header);
8343 if (network_packet && priv->assoc_network) {
8344 priv->assoc_network->stats.rssi =
8345 stats.rssi;
8346 priv->exp_avg_rssi =
8347 exponential_average(priv->exp_avg_rssi,
8348 stats.rssi, DEPTH_RSSI);
8349 }
8350
8351 IPW_DEBUG_RX("Frame: len=%u\n",
8352 le16_to_cpu(pkt->u.frame.length));
8353
8354 if (le16_to_cpu(pkt->u.frame.length) <
8355 ieee80211_get_hdrlen(le16_to_cpu(
8356 header->frame_ctl))) {
8357 IPW_DEBUG_DROP
8358 ("Received packet is too small. "
8359 "Dropping.\n");
8360 priv->ieee->stats.rx_errors++;
8361 priv->wstats.discard.misc++;
8362 break;
8363 }
8364
8365 switch (WLAN_FC_GET_TYPE
8366 (le16_to_cpu(header->frame_ctl))) {
8367
8368 case IEEE80211_FTYPE_MGMT:
8369 ipw_handle_mgmt_packet(priv, rxb,
8370 &stats);
8371 break;
8372
8373 case IEEE80211_FTYPE_CTL:
8374 break;
8375
8376 case IEEE80211_FTYPE_DATA:
8377 if (unlikely(!network_packet ||
8378 is_duplicate_packet(priv,
8379 header)))
8380 {
8381 IPW_DEBUG_DROP("Dropping: "
8382 "%s, "
8383 "%s, "
8384 "%s\n",
8385 print_mac(mac,
8386 header->
8387 addr1),
8388 print_mac(mac2,
8389 header->
8390 addr2),
8391 print_mac(mac3,
8392 header->
8393 addr3));
8394 break;
8395 }
8396
8397 ipw_handle_data_packet(priv, rxb,
8398 &stats);
8399
8400 break;
8401 }
8402 break;
8403 }
8404
8405 case RX_HOST_NOTIFICATION_TYPE:{
8406 IPW_DEBUG_RX
8407 ("Notification: subtype=%02X flags=%02X size=%d\n",
8408 pkt->u.notification.subtype,
8409 pkt->u.notification.flags,
8410 le16_to_cpu(pkt->u.notification.size));
8411 ipw_rx_notification(priv, &pkt->u.notification);
8412 break;
8413 }
8414
8415 default:
8416 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8417 pkt->header.message_type);
8418 break;
8419 }
8420
8421 /* For now we just don't re-use anything. We can tweak this
8422 * later to try and re-use notification packets and SKBs that
8423 * fail to Rx correctly */
8424 if (rxb->skb != NULL) {
8425 dev_kfree_skb_any(rxb->skb);
8426 rxb->skb = NULL;
8427 }
8428
8429 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8430 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8431 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8432
8433 i = (i + 1) % RX_QUEUE_SIZE;
8434 }
8435
8436 /* Backtrack one entry */
8437 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8438
8439 ipw_rx_queue_restock(priv);
8440 }
8441
8442 #define DEFAULT_RTS_THRESHOLD 2304U
8443 #define MIN_RTS_THRESHOLD 1U
8444 #define MAX_RTS_THRESHOLD 2304U
8445 #define DEFAULT_BEACON_INTERVAL 100U
8446 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8447 #define DEFAULT_LONG_RETRY_LIMIT 4U
8448
8449 /**
8450 * ipw_sw_reset
8451 * @option: options to control different reset behaviour
8452 * 0 = reset everything except the 'disable' module_param
8453 * 1 = reset everything and print out driver info (for probe only)
8454 * 2 = reset everything
8455 */
8456 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8457 {
8458 int band, modulation;
8459 int old_mode = priv->ieee->iw_mode;
8460
8461 /* Initialize module parameter values here */
8462 priv->config = 0;
8463
8464 /* We default to disabling the LED code as right now it causes
8465 * too many systems to lock up... */
8466 if (!led)
8467 priv->config |= CFG_NO_LED;
8468
8469 if (associate)
8470 priv->config |= CFG_ASSOCIATE;
8471 else
8472 IPW_DEBUG_INFO("Auto associate disabled.\n");
8473
8474 if (auto_create)
8475 priv->config |= CFG_ADHOC_CREATE;
8476 else
8477 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8478
8479 priv->config &= ~CFG_STATIC_ESSID;
8480 priv->essid_len = 0;
8481 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8482
8483 if (disable && option) {
8484 priv->status |= STATUS_RF_KILL_SW;
8485 IPW_DEBUG_INFO("Radio disabled.\n");
8486 }
8487
8488 if (channel != 0) {
8489 priv->config |= CFG_STATIC_CHANNEL;
8490 priv->channel = channel;
8491 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8492 /* TODO: Validate that provided channel is in range */
8493 }
8494 #ifdef CONFIG_IPW2200_QOS
8495 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8496 burst_duration_CCK, burst_duration_OFDM);
8497 #endif /* CONFIG_IPW2200_QOS */
8498
8499 switch (mode) {
8500 case 1:
8501 priv->ieee->iw_mode = IW_MODE_ADHOC;
8502 priv->net_dev->type = ARPHRD_ETHER;
8503
8504 break;
8505 #ifdef CONFIG_IPW2200_MONITOR
8506 case 2:
8507 priv->ieee->iw_mode = IW_MODE_MONITOR;
8508 #ifdef CONFIG_IPW2200_RADIOTAP
8509 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8510 #else
8511 priv->net_dev->type = ARPHRD_IEEE80211;
8512 #endif
8513 break;
8514 #endif
8515 default:
8516 case 0:
8517 priv->net_dev->type = ARPHRD_ETHER;
8518 priv->ieee->iw_mode = IW_MODE_INFRA;
8519 break;
8520 }
8521
8522 if (hwcrypto) {
8523 priv->ieee->host_encrypt = 0;
8524 priv->ieee->host_encrypt_msdu = 0;
8525 priv->ieee->host_decrypt = 0;
8526 priv->ieee->host_mc_decrypt = 0;
8527 }
8528 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8529
8530 /* IPW2200/2915 is abled to do hardware fragmentation. */
8531 priv->ieee->host_open_frag = 0;
8532
8533 if ((priv->pci_dev->device == 0x4223) ||
8534 (priv->pci_dev->device == 0x4224)) {
8535 if (option == 1)
8536 printk(KERN_INFO DRV_NAME
8537 ": Detected Intel PRO/Wireless 2915ABG Network "
8538 "Connection\n");
8539 priv->ieee->abg_true = 1;
8540 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8541 modulation = IEEE80211_OFDM_MODULATION |
8542 IEEE80211_CCK_MODULATION;
8543 priv->adapter = IPW_2915ABG;
8544 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8545 } else {
8546 if (option == 1)
8547 printk(KERN_INFO DRV_NAME
8548 ": Detected Intel PRO/Wireless 2200BG Network "
8549 "Connection\n");
8550
8551 priv->ieee->abg_true = 0;
8552 band = IEEE80211_24GHZ_BAND;
8553 modulation = IEEE80211_OFDM_MODULATION |
8554 IEEE80211_CCK_MODULATION;
8555 priv->adapter = IPW_2200BG;
8556 priv->ieee->mode = IEEE_G | IEEE_B;
8557 }
8558
8559 priv->ieee->freq_band = band;
8560 priv->ieee->modulation = modulation;
8561
8562 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8563
8564 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8565 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8566
8567 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8568 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8569 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8570
8571 /* If power management is turned on, default to AC mode */
8572 priv->power_mode = IPW_POWER_AC;
8573 priv->tx_power = IPW_TX_POWER_DEFAULT;
8574
8575 return old_mode == priv->ieee->iw_mode;
8576 }
8577
8578 /*
8579 * This file defines the Wireless Extension handlers. It does not
8580 * define any methods of hardware manipulation and relies on the
8581 * functions defined in ipw_main to provide the HW interaction.
8582 *
8583 * The exception to this is the use of the ipw_get_ordinal()
8584 * function used to poll the hardware vs. making unecessary calls.
8585 *
8586 */
8587
8588 static int ipw_wx_get_name(struct net_device *dev,
8589 struct iw_request_info *info,
8590 union iwreq_data *wrqu, char *extra)
8591 {
8592 struct ipw_priv *priv = ieee80211_priv(dev);
8593 mutex_lock(&priv->mutex);
8594 if (priv->status & STATUS_RF_KILL_MASK)
8595 strcpy(wrqu->name, "radio off");
8596 else if (!(priv->status & STATUS_ASSOCIATED))
8597 strcpy(wrqu->name, "unassociated");
8598 else
8599 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8600 ipw_modes[priv->assoc_request.ieee_mode]);
8601 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8602 mutex_unlock(&priv->mutex);
8603 return 0;
8604 }
8605
8606 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8607 {
8608 if (channel == 0) {
8609 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8610 priv->config &= ~CFG_STATIC_CHANNEL;
8611 IPW_DEBUG_ASSOC("Attempting to associate with new "
8612 "parameters.\n");
8613 ipw_associate(priv);
8614 return 0;
8615 }
8616
8617 priv->config |= CFG_STATIC_CHANNEL;
8618
8619 if (priv->channel == channel) {
8620 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8621 channel);
8622 return 0;
8623 }
8624
8625 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8626 priv->channel = channel;
8627
8628 #ifdef CONFIG_IPW2200_MONITOR
8629 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8630 int i;
8631 if (priv->status & STATUS_SCANNING) {
8632 IPW_DEBUG_SCAN("Scan abort triggered due to "
8633 "channel change.\n");
8634 ipw_abort_scan(priv);
8635 }
8636
8637 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8638 udelay(10);
8639
8640 if (priv->status & STATUS_SCANNING)
8641 IPW_DEBUG_SCAN("Still scanning...\n");
8642 else
8643 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8644 1000 - i);
8645
8646 return 0;
8647 }
8648 #endif /* CONFIG_IPW2200_MONITOR */
8649
8650 /* Network configuration changed -- force [re]association */
8651 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8652 if (!ipw_disassociate(priv))
8653 ipw_associate(priv);
8654
8655 return 0;
8656 }
8657
8658 static int ipw_wx_set_freq(struct net_device *dev,
8659 struct iw_request_info *info,
8660 union iwreq_data *wrqu, char *extra)
8661 {
8662 struct ipw_priv *priv = ieee80211_priv(dev);
8663 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8664 struct iw_freq *fwrq = &wrqu->freq;
8665 int ret = 0, i;
8666 u8 channel, flags;
8667 int band;
8668
8669 if (fwrq->m == 0) {
8670 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8671 mutex_lock(&priv->mutex);
8672 ret = ipw_set_channel(priv, 0);
8673 mutex_unlock(&priv->mutex);
8674 return ret;
8675 }
8676 /* if setting by freq convert to channel */
8677 if (fwrq->e == 1) {
8678 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8679 if (channel == 0)
8680 return -EINVAL;
8681 } else
8682 channel = fwrq->m;
8683
8684 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8685 return -EINVAL;
8686
8687 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8688 i = ieee80211_channel_to_index(priv->ieee, channel);
8689 if (i == -1)
8690 return -EINVAL;
8691
8692 flags = (band == IEEE80211_24GHZ_BAND) ?
8693 geo->bg[i].flags : geo->a[i].flags;
8694 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8695 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8696 return -EINVAL;
8697 }
8698 }
8699
8700 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8701 mutex_lock(&priv->mutex);
8702 ret = ipw_set_channel(priv, channel);
8703 mutex_unlock(&priv->mutex);
8704 return ret;
8705 }
8706
8707 static int ipw_wx_get_freq(struct net_device *dev,
8708 struct iw_request_info *info,
8709 union iwreq_data *wrqu, char *extra)
8710 {
8711 struct ipw_priv *priv = ieee80211_priv(dev);
8712
8713 wrqu->freq.e = 0;
8714
8715 /* If we are associated, trying to associate, or have a statically
8716 * configured CHANNEL then return that; otherwise return ANY */
8717 mutex_lock(&priv->mutex);
8718 if (priv->config & CFG_STATIC_CHANNEL ||
8719 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8720 int i;
8721
8722 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8723 BUG_ON(i == -1);
8724 wrqu->freq.e = 1;
8725
8726 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8727 case IEEE80211_52GHZ_BAND:
8728 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8729 break;
8730
8731 case IEEE80211_24GHZ_BAND:
8732 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8733 break;
8734
8735 default:
8736 BUG();
8737 }
8738 } else
8739 wrqu->freq.m = 0;
8740
8741 mutex_unlock(&priv->mutex);
8742 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8743 return 0;
8744 }
8745
8746 static int ipw_wx_set_mode(struct net_device *dev,
8747 struct iw_request_info *info,
8748 union iwreq_data *wrqu, char *extra)
8749 {
8750 struct ipw_priv *priv = ieee80211_priv(dev);
8751 int err = 0;
8752
8753 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8754
8755 switch (wrqu->mode) {
8756 #ifdef CONFIG_IPW2200_MONITOR
8757 case IW_MODE_MONITOR:
8758 #endif
8759 case IW_MODE_ADHOC:
8760 case IW_MODE_INFRA:
8761 break;
8762 case IW_MODE_AUTO:
8763 wrqu->mode = IW_MODE_INFRA;
8764 break;
8765 default:
8766 return -EINVAL;
8767 }
8768 if (wrqu->mode == priv->ieee->iw_mode)
8769 return 0;
8770
8771 mutex_lock(&priv->mutex);
8772
8773 ipw_sw_reset(priv, 0);
8774
8775 #ifdef CONFIG_IPW2200_MONITOR
8776 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8777 priv->net_dev->type = ARPHRD_ETHER;
8778
8779 if (wrqu->mode == IW_MODE_MONITOR)
8780 #ifdef CONFIG_IPW2200_RADIOTAP
8781 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8782 #else
8783 priv->net_dev->type = ARPHRD_IEEE80211;
8784 #endif
8785 #endif /* CONFIG_IPW2200_MONITOR */
8786
8787 /* Free the existing firmware and reset the fw_loaded
8788 * flag so ipw_load() will bring in the new firmawre */
8789 free_firmware();
8790
8791 priv->ieee->iw_mode = wrqu->mode;
8792
8793 queue_work(priv->workqueue, &priv->adapter_restart);
8794 mutex_unlock(&priv->mutex);
8795 return err;
8796 }
8797
8798 static int ipw_wx_get_mode(struct net_device *dev,
8799 struct iw_request_info *info,
8800 union iwreq_data *wrqu, char *extra)
8801 {
8802 struct ipw_priv *priv = ieee80211_priv(dev);
8803 mutex_lock(&priv->mutex);
8804 wrqu->mode = priv->ieee->iw_mode;
8805 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8806 mutex_unlock(&priv->mutex);
8807 return 0;
8808 }
8809
8810 /* Values are in microsecond */
8811 static const s32 timeout_duration[] = {
8812 350000,
8813 250000,
8814 75000,
8815 37000,
8816 25000,
8817 };
8818
8819 static const s32 period_duration[] = {
8820 400000,
8821 700000,
8822 1000000,
8823 1000000,
8824 1000000
8825 };
8826
8827 static int ipw_wx_get_range(struct net_device *dev,
8828 struct iw_request_info *info,
8829 union iwreq_data *wrqu, char *extra)
8830 {
8831 struct ipw_priv *priv = ieee80211_priv(dev);
8832 struct iw_range *range = (struct iw_range *)extra;
8833 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8834 int i = 0, j;
8835
8836 wrqu->data.length = sizeof(*range);
8837 memset(range, 0, sizeof(*range));
8838
8839 /* 54Mbs == ~27 Mb/s real (802.11g) */
8840 range->throughput = 27 * 1000 * 1000;
8841
8842 range->max_qual.qual = 100;
8843 /* TODO: Find real max RSSI and stick here */
8844 range->max_qual.level = 0;
8845 range->max_qual.noise = 0;
8846 range->max_qual.updated = 7; /* Updated all three */
8847
8848 range->avg_qual.qual = 70;
8849 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8850 range->avg_qual.level = 0; /* FIXME to real average level */
8851 range->avg_qual.noise = 0;
8852 range->avg_qual.updated = 7; /* Updated all three */
8853 mutex_lock(&priv->mutex);
8854 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8855
8856 for (i = 0; i < range->num_bitrates; i++)
8857 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8858 500000;
8859
8860 range->max_rts = DEFAULT_RTS_THRESHOLD;
8861 range->min_frag = MIN_FRAG_THRESHOLD;
8862 range->max_frag = MAX_FRAG_THRESHOLD;
8863
8864 range->encoding_size[0] = 5;
8865 range->encoding_size[1] = 13;
8866 range->num_encoding_sizes = 2;
8867 range->max_encoding_tokens = WEP_KEYS;
8868
8869 /* Set the Wireless Extension versions */
8870 range->we_version_compiled = WIRELESS_EXT;
8871 range->we_version_source = 18;
8872
8873 i = 0;
8874 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8875 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8876 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8877 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8878 continue;
8879
8880 range->freq[i].i = geo->bg[j].channel;
8881 range->freq[i].m = geo->bg[j].freq * 100000;
8882 range->freq[i].e = 1;
8883 i++;
8884 }
8885 }
8886
8887 if (priv->ieee->mode & IEEE_A) {
8888 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8889 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8890 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8891 continue;
8892
8893 range->freq[i].i = geo->a[j].channel;
8894 range->freq[i].m = geo->a[j].freq * 100000;
8895 range->freq[i].e = 1;
8896 i++;
8897 }
8898 }
8899
8900 range->num_channels = i;
8901 range->num_frequency = i;
8902
8903 mutex_unlock(&priv->mutex);
8904
8905 /* Event capability (kernel + driver) */
8906 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8907 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8908 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8909 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8910 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8911
8912 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8913 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8914
8915 IPW_DEBUG_WX("GET Range\n");
8916 return 0;
8917 }
8918
8919 static int ipw_wx_set_wap(struct net_device *dev,
8920 struct iw_request_info *info,
8921 union iwreq_data *wrqu, char *extra)
8922 {
8923 struct ipw_priv *priv = ieee80211_priv(dev);
8924 DECLARE_MAC_BUF(mac);
8925
8926 static const unsigned char any[] = {
8927 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8928 };
8929 static const unsigned char off[] = {
8930 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8931 };
8932
8933 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8934 return -EINVAL;
8935 mutex_lock(&priv->mutex);
8936 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8937 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8938 /* we disable mandatory BSSID association */
8939 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8940 priv->config &= ~CFG_STATIC_BSSID;
8941 IPW_DEBUG_ASSOC("Attempting to associate with new "
8942 "parameters.\n");
8943 ipw_associate(priv);
8944 mutex_unlock(&priv->mutex);
8945 return 0;
8946 }
8947
8948 priv->config |= CFG_STATIC_BSSID;
8949 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8950 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8951 mutex_unlock(&priv->mutex);
8952 return 0;
8953 }
8954
8955 IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
8956 print_mac(mac, wrqu->ap_addr.sa_data));
8957
8958 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8959
8960 /* Network configuration changed -- force [re]association */
8961 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8962 if (!ipw_disassociate(priv))
8963 ipw_associate(priv);
8964
8965 mutex_unlock(&priv->mutex);
8966 return 0;
8967 }
8968
8969 static int ipw_wx_get_wap(struct net_device *dev,
8970 struct iw_request_info *info,
8971 union iwreq_data *wrqu, char *extra)
8972 {
8973 struct ipw_priv *priv = ieee80211_priv(dev);
8974 DECLARE_MAC_BUF(mac);
8975
8976 /* If we are associated, trying to associate, or have a statically
8977 * configured BSSID then return that; otherwise return ANY */
8978 mutex_lock(&priv->mutex);
8979 if (priv->config & CFG_STATIC_BSSID ||
8980 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8981 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8982 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8983 } else
8984 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8985
8986 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
8987 print_mac(mac, wrqu->ap_addr.sa_data));
8988 mutex_unlock(&priv->mutex);
8989 return 0;
8990 }
8991
8992 static int ipw_wx_set_essid(struct net_device *dev,
8993 struct iw_request_info *info,
8994 union iwreq_data *wrqu, char *extra)
8995 {
8996 struct ipw_priv *priv = ieee80211_priv(dev);
8997 int length;
8998
8999 mutex_lock(&priv->mutex);
9000
9001 if (!wrqu->essid.flags)
9002 {
9003 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9004 ipw_disassociate(priv);
9005 priv->config &= ~CFG_STATIC_ESSID;
9006 ipw_associate(priv);
9007 mutex_unlock(&priv->mutex);
9008 return 0;
9009 }
9010
9011 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9012
9013 priv->config |= CFG_STATIC_ESSID;
9014
9015 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9016 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9017 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9018 mutex_unlock(&priv->mutex);
9019 return 0;
9020 }
9021
9022 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9023 length);
9024
9025 priv->essid_len = length;
9026 memcpy(priv->essid, extra, priv->essid_len);
9027
9028 /* Network configuration changed -- force [re]association */
9029 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9030 if (!ipw_disassociate(priv))
9031 ipw_associate(priv);
9032
9033 mutex_unlock(&priv->mutex);
9034 return 0;
9035 }
9036
9037 static int ipw_wx_get_essid(struct net_device *dev,
9038 struct iw_request_info *info,
9039 union iwreq_data *wrqu, char *extra)
9040 {
9041 struct ipw_priv *priv = ieee80211_priv(dev);
9042
9043 /* If we are associated, trying to associate, or have a statically
9044 * configured ESSID then return that; otherwise return ANY */
9045 mutex_lock(&priv->mutex);
9046 if (priv->config & CFG_STATIC_ESSID ||
9047 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9048 IPW_DEBUG_WX("Getting essid: '%s'\n",
9049 escape_essid(priv->essid, priv->essid_len));
9050 memcpy(extra, priv->essid, priv->essid_len);
9051 wrqu->essid.length = priv->essid_len;
9052 wrqu->essid.flags = 1; /* active */
9053 } else {
9054 IPW_DEBUG_WX("Getting essid: ANY\n");
9055 wrqu->essid.length = 0;
9056 wrqu->essid.flags = 0; /* active */
9057 }
9058 mutex_unlock(&priv->mutex);
9059 return 0;
9060 }
9061
9062 static int ipw_wx_set_nick(struct net_device *dev,
9063 struct iw_request_info *info,
9064 union iwreq_data *wrqu, char *extra)
9065 {
9066 struct ipw_priv *priv = ieee80211_priv(dev);
9067
9068 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9069 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9070 return -E2BIG;
9071 mutex_lock(&priv->mutex);
9072 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9073 memset(priv->nick, 0, sizeof(priv->nick));
9074 memcpy(priv->nick, extra, wrqu->data.length);
9075 IPW_DEBUG_TRACE("<<\n");
9076 mutex_unlock(&priv->mutex);
9077 return 0;
9078
9079 }
9080
9081 static int ipw_wx_get_nick(struct net_device *dev,
9082 struct iw_request_info *info,
9083 union iwreq_data *wrqu, char *extra)
9084 {
9085 struct ipw_priv *priv = ieee80211_priv(dev);
9086 IPW_DEBUG_WX("Getting nick\n");
9087 mutex_lock(&priv->mutex);
9088 wrqu->data.length = strlen(priv->nick);
9089 memcpy(extra, priv->nick, wrqu->data.length);
9090 wrqu->data.flags = 1; /* active */
9091 mutex_unlock(&priv->mutex);
9092 return 0;
9093 }
9094
9095 static int ipw_wx_set_sens(struct net_device *dev,
9096 struct iw_request_info *info,
9097 union iwreq_data *wrqu, char *extra)
9098 {
9099 struct ipw_priv *priv = ieee80211_priv(dev);
9100 int err = 0;
9101
9102 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9103 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9104 mutex_lock(&priv->mutex);
9105
9106 if (wrqu->sens.fixed == 0)
9107 {
9108 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9109 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9110 goto out;
9111 }
9112 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9113 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9114 err = -EINVAL;
9115 goto out;
9116 }
9117
9118 priv->roaming_threshold = wrqu->sens.value;
9119 priv->disassociate_threshold = 3*wrqu->sens.value;
9120 out:
9121 mutex_unlock(&priv->mutex);
9122 return err;
9123 }
9124
9125 static int ipw_wx_get_sens(struct net_device *dev,
9126 struct iw_request_info *info,
9127 union iwreq_data *wrqu, char *extra)
9128 {
9129 struct ipw_priv *priv = ieee80211_priv(dev);
9130 mutex_lock(&priv->mutex);
9131 wrqu->sens.fixed = 1;
9132 wrqu->sens.value = priv->roaming_threshold;
9133 mutex_unlock(&priv->mutex);
9134
9135 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9136 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9137
9138 return 0;
9139 }
9140
9141 static int ipw_wx_set_rate(struct net_device *dev,
9142 struct iw_request_info *info,
9143 union iwreq_data *wrqu, char *extra)
9144 {
9145 /* TODO: We should use semaphores or locks for access to priv */
9146 struct ipw_priv *priv = ieee80211_priv(dev);
9147 u32 target_rate = wrqu->bitrate.value;
9148 u32 fixed, mask;
9149
9150 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9151 /* value = X, fixed = 1 means only rate X */
9152 /* value = X, fixed = 0 means all rates lower equal X */
9153
9154 if (target_rate == -1) {
9155 fixed = 0;
9156 mask = IEEE80211_DEFAULT_RATES_MASK;
9157 /* Now we should reassociate */
9158 goto apply;
9159 }
9160
9161 mask = 0;
9162 fixed = wrqu->bitrate.fixed;
9163
9164 if (target_rate == 1000000 || !fixed)
9165 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9166 if (target_rate == 1000000)
9167 goto apply;
9168
9169 if (target_rate == 2000000 || !fixed)
9170 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9171 if (target_rate == 2000000)
9172 goto apply;
9173
9174 if (target_rate == 5500000 || !fixed)
9175 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9176 if (target_rate == 5500000)
9177 goto apply;
9178
9179 if (target_rate == 6000000 || !fixed)
9180 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9181 if (target_rate == 6000000)
9182 goto apply;
9183
9184 if (target_rate == 9000000 || !fixed)
9185 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9186 if (target_rate == 9000000)
9187 goto apply;
9188
9189 if (target_rate == 11000000 || !fixed)
9190 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9191 if (target_rate == 11000000)
9192 goto apply;
9193
9194 if (target_rate == 12000000 || !fixed)
9195 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9196 if (target_rate == 12000000)
9197 goto apply;
9198
9199 if (target_rate == 18000000 || !fixed)
9200 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9201 if (target_rate == 18000000)
9202 goto apply;
9203
9204 if (target_rate == 24000000 || !fixed)
9205 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9206 if (target_rate == 24000000)
9207 goto apply;
9208
9209 if (target_rate == 36000000 || !fixed)
9210 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9211 if (target_rate == 36000000)
9212 goto apply;
9213
9214 if (target_rate == 48000000 || !fixed)
9215 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9216 if (target_rate == 48000000)
9217 goto apply;
9218
9219 if (target_rate == 54000000 || !fixed)
9220 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9221 if (target_rate == 54000000)
9222 goto apply;
9223
9224 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9225 return -EINVAL;
9226
9227 apply:
9228 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9229 mask, fixed ? "fixed" : "sub-rates");
9230 mutex_lock(&priv->mutex);
9231 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9232 priv->config &= ~CFG_FIXED_RATE;
9233 ipw_set_fixed_rate(priv, priv->ieee->mode);
9234 } else
9235 priv->config |= CFG_FIXED_RATE;
9236
9237 if (priv->rates_mask == mask) {
9238 IPW_DEBUG_WX("Mask set to current mask.\n");
9239 mutex_unlock(&priv->mutex);
9240 return 0;
9241 }
9242
9243 priv->rates_mask = mask;
9244
9245 /* Network configuration changed -- force [re]association */
9246 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9247 if (!ipw_disassociate(priv))
9248 ipw_associate(priv);
9249
9250 mutex_unlock(&priv->mutex);
9251 return 0;
9252 }
9253
9254 static int ipw_wx_get_rate(struct net_device *dev,
9255 struct iw_request_info *info,
9256 union iwreq_data *wrqu, char *extra)
9257 {
9258 struct ipw_priv *priv = ieee80211_priv(dev);
9259 mutex_lock(&priv->mutex);
9260 wrqu->bitrate.value = priv->last_rate;
9261 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9262 mutex_unlock(&priv->mutex);
9263 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9264 return 0;
9265 }
9266
9267 static int ipw_wx_set_rts(struct net_device *dev,
9268 struct iw_request_info *info,
9269 union iwreq_data *wrqu, char *extra)
9270 {
9271 struct ipw_priv *priv = ieee80211_priv(dev);
9272 mutex_lock(&priv->mutex);
9273 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9274 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9275 else {
9276 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9277 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9278 mutex_unlock(&priv->mutex);
9279 return -EINVAL;
9280 }
9281 priv->rts_threshold = wrqu->rts.value;
9282 }
9283
9284 ipw_send_rts_threshold(priv, priv->rts_threshold);
9285 mutex_unlock(&priv->mutex);
9286 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9287 return 0;
9288 }
9289
9290 static int ipw_wx_get_rts(struct net_device *dev,
9291 struct iw_request_info *info,
9292 union iwreq_data *wrqu, char *extra)
9293 {
9294 struct ipw_priv *priv = ieee80211_priv(dev);
9295 mutex_lock(&priv->mutex);
9296 wrqu->rts.value = priv->rts_threshold;
9297 wrqu->rts.fixed = 0; /* no auto select */
9298 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9299 mutex_unlock(&priv->mutex);
9300 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9301 return 0;
9302 }
9303
9304 static int ipw_wx_set_txpow(struct net_device *dev,
9305 struct iw_request_info *info,
9306 union iwreq_data *wrqu, char *extra)
9307 {
9308 struct ipw_priv *priv = ieee80211_priv(dev);
9309 int err = 0;
9310
9311 mutex_lock(&priv->mutex);
9312 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9313 err = -EINPROGRESS;
9314 goto out;
9315 }
9316
9317 if (!wrqu->power.fixed)
9318 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9319
9320 if (wrqu->power.flags != IW_TXPOW_DBM) {
9321 err = -EINVAL;
9322 goto out;
9323 }
9324
9325 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9326 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9327 err = -EINVAL;
9328 goto out;
9329 }
9330
9331 priv->tx_power = wrqu->power.value;
9332 err = ipw_set_tx_power(priv);
9333 out:
9334 mutex_unlock(&priv->mutex);
9335 return err;
9336 }
9337
9338 static int ipw_wx_get_txpow(struct net_device *dev,
9339 struct iw_request_info *info,
9340 union iwreq_data *wrqu, char *extra)
9341 {
9342 struct ipw_priv *priv = ieee80211_priv(dev);
9343 mutex_lock(&priv->mutex);
9344 wrqu->power.value = priv->tx_power;
9345 wrqu->power.fixed = 1;
9346 wrqu->power.flags = IW_TXPOW_DBM;
9347 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9348 mutex_unlock(&priv->mutex);
9349
9350 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9351 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9352
9353 return 0;
9354 }
9355
9356 static int ipw_wx_set_frag(struct net_device *dev,
9357 struct iw_request_info *info,
9358 union iwreq_data *wrqu, char *extra)
9359 {
9360 struct ipw_priv *priv = ieee80211_priv(dev);
9361 mutex_lock(&priv->mutex);
9362 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9363 priv->ieee->fts = DEFAULT_FTS;
9364 else {
9365 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9366 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9367 mutex_unlock(&priv->mutex);
9368 return -EINVAL;
9369 }
9370
9371 priv->ieee->fts = wrqu->frag.value & ~0x1;
9372 }
9373
9374 ipw_send_frag_threshold(priv, wrqu->frag.value);
9375 mutex_unlock(&priv->mutex);
9376 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9377 return 0;
9378 }
9379
9380 static int ipw_wx_get_frag(struct net_device *dev,
9381 struct iw_request_info *info,
9382 union iwreq_data *wrqu, char *extra)
9383 {
9384 struct ipw_priv *priv = ieee80211_priv(dev);
9385 mutex_lock(&priv->mutex);
9386 wrqu->frag.value = priv->ieee->fts;
9387 wrqu->frag.fixed = 0; /* no auto select */
9388 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9389 mutex_unlock(&priv->mutex);
9390 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9391
9392 return 0;
9393 }
9394
9395 static int ipw_wx_set_retry(struct net_device *dev,
9396 struct iw_request_info *info,
9397 union iwreq_data *wrqu, char *extra)
9398 {
9399 struct ipw_priv *priv = ieee80211_priv(dev);
9400
9401 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9402 return -EINVAL;
9403
9404 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9405 return 0;
9406
9407 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9408 return -EINVAL;
9409
9410 mutex_lock(&priv->mutex);
9411 if (wrqu->retry.flags & IW_RETRY_SHORT)
9412 priv->short_retry_limit = (u8) wrqu->retry.value;
9413 else if (wrqu->retry.flags & IW_RETRY_LONG)
9414 priv->long_retry_limit = (u8) wrqu->retry.value;
9415 else {
9416 priv->short_retry_limit = (u8) wrqu->retry.value;
9417 priv->long_retry_limit = (u8) wrqu->retry.value;
9418 }
9419
9420 ipw_send_retry_limit(priv, priv->short_retry_limit,
9421 priv->long_retry_limit);
9422 mutex_unlock(&priv->mutex);
9423 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9424 priv->short_retry_limit, priv->long_retry_limit);
9425 return 0;
9426 }
9427
9428 static int ipw_wx_get_retry(struct net_device *dev,
9429 struct iw_request_info *info,
9430 union iwreq_data *wrqu, char *extra)
9431 {
9432 struct ipw_priv *priv = ieee80211_priv(dev);
9433
9434 mutex_lock(&priv->mutex);
9435 wrqu->retry.disabled = 0;
9436
9437 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9438 mutex_unlock(&priv->mutex);
9439 return -EINVAL;
9440 }
9441
9442 if (wrqu->retry.flags & IW_RETRY_LONG) {
9443 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9444 wrqu->retry.value = priv->long_retry_limit;
9445 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9446 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9447 wrqu->retry.value = priv->short_retry_limit;
9448 } else {
9449 wrqu->retry.flags = IW_RETRY_LIMIT;
9450 wrqu->retry.value = priv->short_retry_limit;
9451 }
9452 mutex_unlock(&priv->mutex);
9453
9454 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9455
9456 return 0;
9457 }
9458
9459 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9460 int essid_len)
9461 {
9462 struct ipw_scan_request_ext scan;
9463 int err = 0, scan_type;
9464
9465 if (!(priv->status & STATUS_INIT) ||
9466 (priv->status & STATUS_EXIT_PENDING))
9467 return 0;
9468
9469 mutex_lock(&priv->mutex);
9470
9471 if (priv->status & STATUS_RF_KILL_MASK) {
9472 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9473 priv->status |= STATUS_SCAN_PENDING;
9474 goto done;
9475 }
9476
9477 IPW_DEBUG_HC("starting request direct scan!\n");
9478
9479 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9480 /* We should not sleep here; otherwise we will block most
9481 * of the system (for instance, we hold rtnl_lock when we
9482 * get here).
9483 */
9484 err = -EAGAIN;
9485 goto done;
9486 }
9487 memset(&scan, 0, sizeof(scan));
9488
9489 if (priv->config & CFG_SPEED_SCAN)
9490 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9491 cpu_to_le16(30);
9492 else
9493 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9494 cpu_to_le16(20);
9495
9496 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9497 cpu_to_le16(20);
9498 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9499 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9500
9501 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9502
9503 err = ipw_send_ssid(priv, essid, essid_len);
9504 if (err) {
9505 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9506 goto done;
9507 }
9508 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9509
9510 ipw_add_scan_channels(priv, &scan, scan_type);
9511
9512 err = ipw_send_scan_request_ext(priv, &scan);
9513 if (err) {
9514 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9515 goto done;
9516 }
9517
9518 priv->status |= STATUS_SCANNING;
9519
9520 done:
9521 mutex_unlock(&priv->mutex);
9522 return err;
9523 }
9524
9525 static int ipw_wx_set_scan(struct net_device *dev,
9526 struct iw_request_info *info,
9527 union iwreq_data *wrqu, char *extra)
9528 {
9529 struct ipw_priv *priv = ieee80211_priv(dev);
9530 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9531
9532 mutex_lock(&priv->mutex);
9533 priv->user_requested_scan = 1;
9534 mutex_unlock(&priv->mutex);
9535
9536 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9537 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9538 ipw_request_direct_scan(priv, req->essid,
9539 req->essid_len);
9540 return 0;
9541 }
9542 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9543 queue_work(priv->workqueue,
9544 &priv->request_passive_scan);
9545 return 0;
9546 }
9547 }
9548
9549 IPW_DEBUG_WX("Start scan\n");
9550
9551 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9552
9553 return 0;
9554 }
9555
9556 static int ipw_wx_get_scan(struct net_device *dev,
9557 struct iw_request_info *info,
9558 union iwreq_data *wrqu, char *extra)
9559 {
9560 struct ipw_priv *priv = ieee80211_priv(dev);
9561 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9562 }
9563
9564 static int ipw_wx_set_encode(struct net_device *dev,
9565 struct iw_request_info *info,
9566 union iwreq_data *wrqu, char *key)
9567 {
9568 struct ipw_priv *priv = ieee80211_priv(dev);
9569 int ret;
9570 u32 cap = priv->capability;
9571
9572 mutex_lock(&priv->mutex);
9573 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9574
9575 /* In IBSS mode, we need to notify the firmware to update
9576 * the beacon info after we changed the capability. */
9577 if (cap != priv->capability &&
9578 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9579 priv->status & STATUS_ASSOCIATED)
9580 ipw_disassociate(priv);
9581
9582 mutex_unlock(&priv->mutex);
9583 return ret;
9584 }
9585
9586 static int ipw_wx_get_encode(struct net_device *dev,
9587 struct iw_request_info *info,
9588 union iwreq_data *wrqu, char *key)
9589 {
9590 struct ipw_priv *priv = ieee80211_priv(dev);
9591 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9592 }
9593
9594 static int ipw_wx_set_power(struct net_device *dev,
9595 struct iw_request_info *info,
9596 union iwreq_data *wrqu, char *extra)
9597 {
9598 struct ipw_priv *priv = ieee80211_priv(dev);
9599 int err;
9600 mutex_lock(&priv->mutex);
9601 if (wrqu->power.disabled) {
9602 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9603 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9604 if (err) {
9605 IPW_DEBUG_WX("failed setting power mode.\n");
9606 mutex_unlock(&priv->mutex);
9607 return err;
9608 }
9609 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9610 mutex_unlock(&priv->mutex);
9611 return 0;
9612 }
9613
9614 switch (wrqu->power.flags & IW_POWER_MODE) {
9615 case IW_POWER_ON: /* If not specified */
9616 case IW_POWER_MODE: /* If set all mask */
9617 case IW_POWER_ALL_R: /* If explicitly state all */
9618 break;
9619 default: /* Otherwise we don't support it */
9620 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9621 wrqu->power.flags);
9622 mutex_unlock(&priv->mutex);
9623 return -EOPNOTSUPP;
9624 }
9625
9626 /* If the user hasn't specified a power management mode yet, default
9627 * to BATTERY */
9628 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9629 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9630 else
9631 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9632
9633 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9634 if (err) {
9635 IPW_DEBUG_WX("failed setting power mode.\n");
9636 mutex_unlock(&priv->mutex);
9637 return err;
9638 }
9639
9640 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9641 mutex_unlock(&priv->mutex);
9642 return 0;
9643 }
9644
9645 static int ipw_wx_get_power(struct net_device *dev,
9646 struct iw_request_info *info,
9647 union iwreq_data *wrqu, char *extra)
9648 {
9649 struct ipw_priv *priv = ieee80211_priv(dev);
9650 mutex_lock(&priv->mutex);
9651 if (!(priv->power_mode & IPW_POWER_ENABLED))
9652 wrqu->power.disabled = 1;
9653 else
9654 wrqu->power.disabled = 0;
9655
9656 mutex_unlock(&priv->mutex);
9657 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9658
9659 return 0;
9660 }
9661
9662 static int ipw_wx_set_powermode(struct net_device *dev,
9663 struct iw_request_info *info,
9664 union iwreq_data *wrqu, char *extra)
9665 {
9666 struct ipw_priv *priv = ieee80211_priv(dev);
9667 int mode = *(int *)extra;
9668 int err;
9669
9670 mutex_lock(&priv->mutex);
9671 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9672 mode = IPW_POWER_AC;
9673
9674 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9675 err = ipw_send_power_mode(priv, mode);
9676 if (err) {
9677 IPW_DEBUG_WX("failed setting power mode.\n");
9678 mutex_unlock(&priv->mutex);
9679 return err;
9680 }
9681 priv->power_mode = IPW_POWER_ENABLED | mode;
9682 }
9683 mutex_unlock(&priv->mutex);
9684 return 0;
9685 }
9686
9687 #define MAX_WX_STRING 80
9688 static int ipw_wx_get_powermode(struct net_device *dev,
9689 struct iw_request_info *info,
9690 union iwreq_data *wrqu, char *extra)
9691 {
9692 struct ipw_priv *priv = ieee80211_priv(dev);
9693 int level = IPW_POWER_LEVEL(priv->power_mode);
9694 char *p = extra;
9695
9696 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9697
9698 switch (level) {
9699 case IPW_POWER_AC:
9700 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9701 break;
9702 case IPW_POWER_BATTERY:
9703 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9704 break;
9705 default:
9706 p += snprintf(p, MAX_WX_STRING - (p - extra),
9707 "(Timeout %dms, Period %dms)",
9708 timeout_duration[level - 1] / 1000,
9709 period_duration[level - 1] / 1000);
9710 }
9711
9712 if (!(priv->power_mode & IPW_POWER_ENABLED))
9713 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9714
9715 wrqu->data.length = p - extra + 1;
9716
9717 return 0;
9718 }
9719
9720 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9721 struct iw_request_info *info,
9722 union iwreq_data *wrqu, char *extra)
9723 {
9724 struct ipw_priv *priv = ieee80211_priv(dev);
9725 int mode = *(int *)extra;
9726 u8 band = 0, modulation = 0;
9727
9728 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9729 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9730 return -EINVAL;
9731 }
9732 mutex_lock(&priv->mutex);
9733 if (priv->adapter == IPW_2915ABG) {
9734 priv->ieee->abg_true = 1;
9735 if (mode & IEEE_A) {
9736 band |= IEEE80211_52GHZ_BAND;
9737 modulation |= IEEE80211_OFDM_MODULATION;
9738 } else
9739 priv->ieee->abg_true = 0;
9740 } else {
9741 if (mode & IEEE_A) {
9742 IPW_WARNING("Attempt to set 2200BG into "
9743 "802.11a mode\n");
9744 mutex_unlock(&priv->mutex);
9745 return -EINVAL;
9746 }
9747
9748 priv->ieee->abg_true = 0;
9749 }
9750
9751 if (mode & IEEE_B) {
9752 band |= IEEE80211_24GHZ_BAND;
9753 modulation |= IEEE80211_CCK_MODULATION;
9754 } else
9755 priv->ieee->abg_true = 0;
9756
9757 if (mode & IEEE_G) {
9758 band |= IEEE80211_24GHZ_BAND;
9759 modulation |= IEEE80211_OFDM_MODULATION;
9760 } else
9761 priv->ieee->abg_true = 0;
9762
9763 priv->ieee->mode = mode;
9764 priv->ieee->freq_band = band;
9765 priv->ieee->modulation = modulation;
9766 init_supported_rates(priv, &priv->rates);
9767
9768 /* Network configuration changed -- force [re]association */
9769 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9770 if (!ipw_disassociate(priv)) {
9771 ipw_send_supported_rates(priv, &priv->rates);
9772 ipw_associate(priv);
9773 }
9774
9775 /* Update the band LEDs */
9776 ipw_led_band_on(priv);
9777
9778 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9779 mode & IEEE_A ? 'a' : '.',
9780 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9781 mutex_unlock(&priv->mutex);
9782 return 0;
9783 }
9784
9785 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9786 struct iw_request_info *info,
9787 union iwreq_data *wrqu, char *extra)
9788 {
9789 struct ipw_priv *priv = ieee80211_priv(dev);
9790 mutex_lock(&priv->mutex);
9791 switch (priv->ieee->mode) {
9792 case IEEE_A:
9793 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9794 break;
9795 case IEEE_B:
9796 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9797 break;
9798 case IEEE_A | IEEE_B:
9799 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9800 break;
9801 case IEEE_G:
9802 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9803 break;
9804 case IEEE_A | IEEE_G:
9805 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9806 break;
9807 case IEEE_B | IEEE_G:
9808 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9809 break;
9810 case IEEE_A | IEEE_B | IEEE_G:
9811 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9812 break;
9813 default:
9814 strncpy(extra, "unknown", MAX_WX_STRING);
9815 break;
9816 }
9817
9818 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9819
9820 wrqu->data.length = strlen(extra) + 1;
9821 mutex_unlock(&priv->mutex);
9822
9823 return 0;
9824 }
9825
9826 static int ipw_wx_set_preamble(struct net_device *dev,
9827 struct iw_request_info *info,
9828 union iwreq_data *wrqu, char *extra)
9829 {
9830 struct ipw_priv *priv = ieee80211_priv(dev);
9831 int mode = *(int *)extra;
9832 mutex_lock(&priv->mutex);
9833 /* Switching from SHORT -> LONG requires a disassociation */
9834 if (mode == 1) {
9835 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9836 priv->config |= CFG_PREAMBLE_LONG;
9837
9838 /* Network configuration changed -- force [re]association */
9839 IPW_DEBUG_ASSOC
9840 ("[re]association triggered due to preamble change.\n");
9841 if (!ipw_disassociate(priv))
9842 ipw_associate(priv);
9843 }
9844 goto done;
9845 }
9846
9847 if (mode == 0) {
9848 priv->config &= ~CFG_PREAMBLE_LONG;
9849 goto done;
9850 }
9851 mutex_unlock(&priv->mutex);
9852 return -EINVAL;
9853
9854 done:
9855 mutex_unlock(&priv->mutex);
9856 return 0;
9857 }
9858
9859 static int ipw_wx_get_preamble(struct net_device *dev,
9860 struct iw_request_info *info,
9861 union iwreq_data *wrqu, char *extra)
9862 {
9863 struct ipw_priv *priv = ieee80211_priv(dev);
9864 mutex_lock(&priv->mutex);
9865 if (priv->config & CFG_PREAMBLE_LONG)
9866 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9867 else
9868 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9869 mutex_unlock(&priv->mutex);
9870 return 0;
9871 }
9872
9873 #ifdef CONFIG_IPW2200_MONITOR
9874 static int ipw_wx_set_monitor(struct net_device *dev,
9875 struct iw_request_info *info,
9876 union iwreq_data *wrqu, char *extra)
9877 {
9878 struct ipw_priv *priv = ieee80211_priv(dev);
9879 int *parms = (int *)extra;
9880 int enable = (parms[0] > 0);
9881 mutex_lock(&priv->mutex);
9882 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9883 if (enable) {
9884 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9885 #ifdef CONFIG_IPW2200_RADIOTAP
9886 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9887 #else
9888 priv->net_dev->type = ARPHRD_IEEE80211;
9889 #endif
9890 queue_work(priv->workqueue, &priv->adapter_restart);
9891 }
9892
9893 ipw_set_channel(priv, parms[1]);
9894 } else {
9895 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9896 mutex_unlock(&priv->mutex);
9897 return 0;
9898 }
9899 priv->net_dev->type = ARPHRD_ETHER;
9900 queue_work(priv->workqueue, &priv->adapter_restart);
9901 }
9902 mutex_unlock(&priv->mutex);
9903 return 0;
9904 }
9905
9906 #endif /* CONFIG_IPW2200_MONITOR */
9907
9908 static int ipw_wx_reset(struct net_device *dev,
9909 struct iw_request_info *info,
9910 union iwreq_data *wrqu, char *extra)
9911 {
9912 struct ipw_priv *priv = ieee80211_priv(dev);
9913 IPW_DEBUG_WX("RESET\n");
9914 queue_work(priv->workqueue, &priv->adapter_restart);
9915 return 0;
9916 }
9917
9918 static int ipw_wx_sw_reset(struct net_device *dev,
9919 struct iw_request_info *info,
9920 union iwreq_data *wrqu, char *extra)
9921 {
9922 struct ipw_priv *priv = ieee80211_priv(dev);
9923 union iwreq_data wrqu_sec = {
9924 .encoding = {
9925 .flags = IW_ENCODE_DISABLED,
9926 },
9927 };
9928 int ret;
9929
9930 IPW_DEBUG_WX("SW_RESET\n");
9931
9932 mutex_lock(&priv->mutex);
9933
9934 ret = ipw_sw_reset(priv, 2);
9935 if (!ret) {
9936 free_firmware();
9937 ipw_adapter_restart(priv);
9938 }
9939
9940 /* The SW reset bit might have been toggled on by the 'disable'
9941 * module parameter, so take appropriate action */
9942 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9943
9944 mutex_unlock(&priv->mutex);
9945 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9946 mutex_lock(&priv->mutex);
9947
9948 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9949 /* Configuration likely changed -- force [re]association */
9950 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9951 "reset.\n");
9952 if (!ipw_disassociate(priv))
9953 ipw_associate(priv);
9954 }
9955
9956 mutex_unlock(&priv->mutex);
9957
9958 return 0;
9959 }
9960
9961 /* Rebase the WE IOCTLs to zero for the handler array */
9962 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9963 static iw_handler ipw_wx_handlers[] = {
9964 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9965 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9966 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9967 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9968 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9969 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9970 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9971 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9972 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9973 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9974 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9975 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9976 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9977 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9978 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9979 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9980 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9981 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9982 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9983 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9984 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9985 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9986 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9987 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9988 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9989 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9990 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9991 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9992 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9993 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9994 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9995 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9996 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9997 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9998 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9999 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10000 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10001 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10002 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10003 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10004 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10005 };
10006
10007 enum {
10008 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10009 IPW_PRIV_GET_POWER,
10010 IPW_PRIV_SET_MODE,
10011 IPW_PRIV_GET_MODE,
10012 IPW_PRIV_SET_PREAMBLE,
10013 IPW_PRIV_GET_PREAMBLE,
10014 IPW_PRIV_RESET,
10015 IPW_PRIV_SW_RESET,
10016 #ifdef CONFIG_IPW2200_MONITOR
10017 IPW_PRIV_SET_MONITOR,
10018 #endif
10019 };
10020
10021 static struct iw_priv_args ipw_priv_args[] = {
10022 {
10023 .cmd = IPW_PRIV_SET_POWER,
10024 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10025 .name = "set_power"},
10026 {
10027 .cmd = IPW_PRIV_GET_POWER,
10028 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10029 .name = "get_power"},
10030 {
10031 .cmd = IPW_PRIV_SET_MODE,
10032 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10033 .name = "set_mode"},
10034 {
10035 .cmd = IPW_PRIV_GET_MODE,
10036 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10037 .name = "get_mode"},
10038 {
10039 .cmd = IPW_PRIV_SET_PREAMBLE,
10040 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10041 .name = "set_preamble"},
10042 {
10043 .cmd = IPW_PRIV_GET_PREAMBLE,
10044 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10045 .name = "get_preamble"},
10046 {
10047 IPW_PRIV_RESET,
10048 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10049 {
10050 IPW_PRIV_SW_RESET,
10051 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10052 #ifdef CONFIG_IPW2200_MONITOR
10053 {
10054 IPW_PRIV_SET_MONITOR,
10055 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10056 #endif /* CONFIG_IPW2200_MONITOR */
10057 };
10058
10059 static iw_handler ipw_priv_handler[] = {
10060 ipw_wx_set_powermode,
10061 ipw_wx_get_powermode,
10062 ipw_wx_set_wireless_mode,
10063 ipw_wx_get_wireless_mode,
10064 ipw_wx_set_preamble,
10065 ipw_wx_get_preamble,
10066 ipw_wx_reset,
10067 ipw_wx_sw_reset,
10068 #ifdef CONFIG_IPW2200_MONITOR
10069 ipw_wx_set_monitor,
10070 #endif
10071 };
10072
10073 static struct iw_handler_def ipw_wx_handler_def = {
10074 .standard = ipw_wx_handlers,
10075 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10076 .num_private = ARRAY_SIZE(ipw_priv_handler),
10077 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10078 .private = ipw_priv_handler,
10079 .private_args = ipw_priv_args,
10080 .get_wireless_stats = ipw_get_wireless_stats,
10081 };
10082
10083 /*
10084 * Get wireless statistics.
10085 * Called by /proc/net/wireless
10086 * Also called by SIOCGIWSTATS
10087 */
10088 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10089 {
10090 struct ipw_priv *priv = ieee80211_priv(dev);
10091 struct iw_statistics *wstats;
10092
10093 wstats = &priv->wstats;
10094
10095 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10096 * netdev->get_wireless_stats seems to be called before fw is
10097 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10098 * and associated; if not associcated, the values are all meaningless
10099 * anyway, so set them all to NULL and INVALID */
10100 if (!(priv->status & STATUS_ASSOCIATED)) {
10101 wstats->miss.beacon = 0;
10102 wstats->discard.retries = 0;
10103 wstats->qual.qual = 0;
10104 wstats->qual.level = 0;
10105 wstats->qual.noise = 0;
10106 wstats->qual.updated = 7;
10107 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10108 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10109 return wstats;
10110 }
10111
10112 wstats->qual.qual = priv->quality;
10113 wstats->qual.level = priv->exp_avg_rssi;
10114 wstats->qual.noise = priv->exp_avg_noise;
10115 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10116 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10117
10118 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10119 wstats->discard.retries = priv->last_tx_failures;
10120 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10121
10122 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10123 goto fail_get_ordinal;
10124 wstats->discard.retries += tx_retry; */
10125
10126 return wstats;
10127 }
10128
10129 /* net device stuff */
10130
10131 static void init_sys_config(struct ipw_sys_config *sys_config)
10132 {
10133 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10134 sys_config->bt_coexistence = 0;
10135 sys_config->answer_broadcast_ssid_probe = 0;
10136 sys_config->accept_all_data_frames = 0;
10137 sys_config->accept_non_directed_frames = 1;
10138 sys_config->exclude_unicast_unencrypted = 0;
10139 sys_config->disable_unicast_decryption = 1;
10140 sys_config->exclude_multicast_unencrypted = 0;
10141 sys_config->disable_multicast_decryption = 1;
10142 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10143 antenna = CFG_SYS_ANTENNA_BOTH;
10144 sys_config->antenna_diversity = antenna;
10145 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10146 sys_config->dot11g_auto_detection = 0;
10147 sys_config->enable_cts_to_self = 0;
10148 sys_config->bt_coexist_collision_thr = 0;
10149 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10150 sys_config->silence_threshold = 0x1e;
10151 }
10152
10153 static int ipw_net_open(struct net_device *dev)
10154 {
10155 struct ipw_priv *priv = ieee80211_priv(dev);
10156 IPW_DEBUG_INFO("dev->open\n");
10157 /* we should be verifying the device is ready to be opened */
10158 mutex_lock(&priv->mutex);
10159 if (!(priv->status & STATUS_RF_KILL_MASK) &&
10160 (priv->status & STATUS_ASSOCIATED))
10161 netif_start_queue(dev);
10162 mutex_unlock(&priv->mutex);
10163 return 0;
10164 }
10165
10166 static int ipw_net_stop(struct net_device *dev)
10167 {
10168 IPW_DEBUG_INFO("dev->close\n");
10169 netif_stop_queue(dev);
10170 return 0;
10171 }
10172
10173 /*
10174 todo:
10175
10176 modify to send one tfd per fragment instead of using chunking. otherwise
10177 we need to heavily modify the ieee80211_skb_to_txb.
10178 */
10179
10180 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10181 int pri)
10182 {
10183 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10184 txb->fragments[0]->data;
10185 int i = 0;
10186 struct tfd_frame *tfd;
10187 #ifdef CONFIG_IPW2200_QOS
10188 int tx_id = ipw_get_tx_queue_number(priv, pri);
10189 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10190 #else
10191 struct clx2_tx_queue *txq = &priv->txq[0];
10192 #endif
10193 struct clx2_queue *q = &txq->q;
10194 u8 id, hdr_len, unicast;
10195 u16 remaining_bytes;
10196 int fc;
10197 DECLARE_MAC_BUF(mac);
10198
10199 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10200 switch (priv->ieee->iw_mode) {
10201 case IW_MODE_ADHOC:
10202 unicast = !is_multicast_ether_addr(hdr->addr1);
10203 id = ipw_find_station(priv, hdr->addr1);
10204 if (id == IPW_INVALID_STATION) {
10205 id = ipw_add_station(priv, hdr->addr1);
10206 if (id == IPW_INVALID_STATION) {
10207 IPW_WARNING("Attempt to send data to "
10208 "invalid cell: %s\n",
10209 print_mac(mac, hdr->addr1));
10210 goto drop;
10211 }
10212 }
10213 break;
10214
10215 case IW_MODE_INFRA:
10216 default:
10217 unicast = !is_multicast_ether_addr(hdr->addr3);
10218 id = 0;
10219 break;
10220 }
10221
10222 tfd = &txq->bd[q->first_empty];
10223 txq->txb[q->first_empty] = txb;
10224 memset(tfd, 0, sizeof(*tfd));
10225 tfd->u.data.station_number = id;
10226
10227 tfd->control_flags.message_type = TX_FRAME_TYPE;
10228 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10229
10230 tfd->u.data.cmd_id = DINO_CMD_TX;
10231 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10232 remaining_bytes = txb->payload_size;
10233
10234 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10235 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10236 else
10237 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10238
10239 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10240 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10241
10242 fc = le16_to_cpu(hdr->frame_ctl);
10243 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10244
10245 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10246
10247 if (likely(unicast))
10248 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10249
10250 if (txb->encrypted && !priv->ieee->host_encrypt) {
10251 switch (priv->ieee->sec.level) {
10252 case SEC_LEVEL_3:
10253 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10254 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10255 /* XXX: ACK flag must be set for CCMP even if it
10256 * is a multicast/broadcast packet, because CCMP
10257 * group communication encrypted by GTK is
10258 * actually done by the AP. */
10259 if (!unicast)
10260 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10261
10262 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10263 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10264 tfd->u.data.key_index = 0;
10265 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10266 break;
10267 case SEC_LEVEL_2:
10268 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10269 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10270 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10271 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10272 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10273 break;
10274 case SEC_LEVEL_1:
10275 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10276 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10277 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10278 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10279 40)
10280 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10281 else
10282 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10283 break;
10284 case SEC_LEVEL_0:
10285 break;
10286 default:
10287 printk(KERN_ERR "Unknow security level %d\n",
10288 priv->ieee->sec.level);
10289 break;
10290 }
10291 } else
10292 /* No hardware encryption */
10293 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10294
10295 #ifdef CONFIG_IPW2200_QOS
10296 if (fc & IEEE80211_STYPE_QOS_DATA)
10297 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10298 #endif /* CONFIG_IPW2200_QOS */
10299
10300 /* payload */
10301 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10302 txb->nr_frags));
10303 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10304 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10305 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10306 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10307 i, le32_to_cpu(tfd->u.data.num_chunks),
10308 txb->fragments[i]->len - hdr_len);
10309 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10310 i, tfd->u.data.num_chunks,
10311 txb->fragments[i]->len - hdr_len);
10312 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10313 txb->fragments[i]->len - hdr_len);
10314
10315 tfd->u.data.chunk_ptr[i] =
10316 cpu_to_le32(pci_map_single
10317 (priv->pci_dev,
10318 txb->fragments[i]->data + hdr_len,
10319 txb->fragments[i]->len - hdr_len,
10320 PCI_DMA_TODEVICE));
10321 tfd->u.data.chunk_len[i] =
10322 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10323 }
10324
10325 if (i != txb->nr_frags) {
10326 struct sk_buff *skb;
10327 u16 remaining_bytes = 0;
10328 int j;
10329
10330 for (j = i; j < txb->nr_frags; j++)
10331 remaining_bytes += txb->fragments[j]->len - hdr_len;
10332
10333 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10334 remaining_bytes);
10335 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10336 if (skb != NULL) {
10337 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10338 for (j = i; j < txb->nr_frags; j++) {
10339 int size = txb->fragments[j]->len - hdr_len;
10340
10341 printk(KERN_INFO "Adding frag %d %d...\n",
10342 j, size);
10343 memcpy(skb_put(skb, size),
10344 txb->fragments[j]->data + hdr_len, size);
10345 }
10346 dev_kfree_skb_any(txb->fragments[i]);
10347 txb->fragments[i] = skb;
10348 tfd->u.data.chunk_ptr[i] =
10349 cpu_to_le32(pci_map_single
10350 (priv->pci_dev, skb->data,
10351 tfd->u.data.chunk_len[i],
10352 PCI_DMA_TODEVICE));
10353
10354 tfd->u.data.num_chunks =
10355 cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10356 1);
10357 }
10358 }
10359
10360 /* kick DMA */
10361 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10362 ipw_write32(priv, q->reg_w, q->first_empty);
10363
10364 if (ipw_queue_space(q) < q->high_mark)
10365 netif_stop_queue(priv->net_dev);
10366
10367 return NETDEV_TX_OK;
10368
10369 drop:
10370 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10371 ieee80211_txb_free(txb);
10372 return NETDEV_TX_OK;
10373 }
10374
10375 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10376 {
10377 struct ipw_priv *priv = ieee80211_priv(dev);
10378 #ifdef CONFIG_IPW2200_QOS
10379 int tx_id = ipw_get_tx_queue_number(priv, pri);
10380 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10381 #else
10382 struct clx2_tx_queue *txq = &priv->txq[0];
10383 #endif /* CONFIG_IPW2200_QOS */
10384
10385 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10386 return 1;
10387
10388 return 0;
10389 }
10390
10391 #ifdef CONFIG_IPW2200_PROMISCUOUS
10392 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10393 struct ieee80211_txb *txb)
10394 {
10395 struct ieee80211_rx_stats dummystats;
10396 struct ieee80211_hdr *hdr;
10397 u8 n;
10398 u16 filter = priv->prom_priv->filter;
10399 int hdr_only = 0;
10400
10401 if (filter & IPW_PROM_NO_TX)
10402 return;
10403
10404 memset(&dummystats, 0, sizeof(dummystats));
10405
10406 /* Filtering of fragment chains is done agains the first fragment */
10407 hdr = (void *)txb->fragments[0]->data;
10408 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10409 if (filter & IPW_PROM_NO_MGMT)
10410 return;
10411 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10412 hdr_only = 1;
10413 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10414 if (filter & IPW_PROM_NO_CTL)
10415 return;
10416 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10417 hdr_only = 1;
10418 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10419 if (filter & IPW_PROM_NO_DATA)
10420 return;
10421 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10422 hdr_only = 1;
10423 }
10424
10425 for(n=0; n<txb->nr_frags; ++n) {
10426 struct sk_buff *src = txb->fragments[n];
10427 struct sk_buff *dst;
10428 struct ieee80211_radiotap_header *rt_hdr;
10429 int len;
10430
10431 if (hdr_only) {
10432 hdr = (void *)src->data;
10433 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10434 } else
10435 len = src->len;
10436
10437 dst = alloc_skb(
10438 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10439 if (!dst) continue;
10440
10441 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10442
10443 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10444 rt_hdr->it_pad = 0;
10445 rt_hdr->it_present = 0; /* after all, it's just an idea */
10446 rt_hdr->it_present |= (1 << IEEE80211_RADIOTAP_CHANNEL);
10447
10448 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10449 ieee80211chan2mhz(priv->channel));
10450 if (priv->channel > 14) /* 802.11a */
10451 *(u16*)skb_put(dst, sizeof(u16)) =
10452 cpu_to_le16(IEEE80211_CHAN_OFDM |
10453 IEEE80211_CHAN_5GHZ);
10454 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10455 *(u16*)skb_put(dst, sizeof(u16)) =
10456 cpu_to_le16(IEEE80211_CHAN_CCK |
10457 IEEE80211_CHAN_2GHZ);
10458 else /* 802.11g */
10459 *(u16*)skb_put(dst, sizeof(u16)) =
10460 cpu_to_le16(IEEE80211_CHAN_OFDM |
10461 IEEE80211_CHAN_2GHZ);
10462
10463 rt_hdr->it_len = dst->len;
10464
10465 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10466
10467 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10468 dev_kfree_skb_any(dst);
10469 }
10470 }
10471 #endif
10472
10473 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10474 struct net_device *dev, int pri)
10475 {
10476 struct ipw_priv *priv = ieee80211_priv(dev);
10477 unsigned long flags;
10478 int ret;
10479
10480 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10481 spin_lock_irqsave(&priv->lock, flags);
10482
10483 if (!(priv->status & STATUS_ASSOCIATED)) {
10484 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10485 priv->ieee->stats.tx_carrier_errors++;
10486 netif_stop_queue(dev);
10487 goto fail_unlock;
10488 }
10489
10490 #ifdef CONFIG_IPW2200_PROMISCUOUS
10491 if (rtap_iface && netif_running(priv->prom_net_dev))
10492 ipw_handle_promiscuous_tx(priv, txb);
10493 #endif
10494
10495 ret = ipw_tx_skb(priv, txb, pri);
10496 if (ret == NETDEV_TX_OK)
10497 __ipw_led_activity_on(priv);
10498 spin_unlock_irqrestore(&priv->lock, flags);
10499
10500 return ret;
10501
10502 fail_unlock:
10503 spin_unlock_irqrestore(&priv->lock, flags);
10504 return 1;
10505 }
10506
10507 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10508 {
10509 struct ipw_priv *priv = ieee80211_priv(dev);
10510
10511 priv->ieee->stats.tx_packets = priv->tx_packets;
10512 priv->ieee->stats.rx_packets = priv->rx_packets;
10513 return &priv->ieee->stats;
10514 }
10515
10516 static void ipw_net_set_multicast_list(struct net_device *dev)
10517 {
10518
10519 }
10520
10521 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10522 {
10523 struct ipw_priv *priv = ieee80211_priv(dev);
10524 struct sockaddr *addr = p;
10525 DECLARE_MAC_BUF(mac);
10526
10527 if (!is_valid_ether_addr(addr->sa_data))
10528 return -EADDRNOTAVAIL;
10529 mutex_lock(&priv->mutex);
10530 priv->config |= CFG_CUSTOM_MAC;
10531 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10532 printk(KERN_INFO "%s: Setting MAC to %s\n",
10533 priv->net_dev->name, print_mac(mac, priv->mac_addr));
10534 queue_work(priv->workqueue, &priv->adapter_restart);
10535 mutex_unlock(&priv->mutex);
10536 return 0;
10537 }
10538
10539 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10540 struct ethtool_drvinfo *info)
10541 {
10542 struct ipw_priv *p = ieee80211_priv(dev);
10543 char vers[64];
10544 char date[32];
10545 u32 len;
10546
10547 strcpy(info->driver, DRV_NAME);
10548 strcpy(info->version, DRV_VERSION);
10549
10550 len = sizeof(vers);
10551 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10552 len = sizeof(date);
10553 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10554
10555 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10556 vers, date);
10557 strcpy(info->bus_info, pci_name(p->pci_dev));
10558 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10559 }
10560
10561 static u32 ipw_ethtool_get_link(struct net_device *dev)
10562 {
10563 struct ipw_priv *priv = ieee80211_priv(dev);
10564 return (priv->status & STATUS_ASSOCIATED) != 0;
10565 }
10566
10567 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10568 {
10569 return IPW_EEPROM_IMAGE_SIZE;
10570 }
10571
10572 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10573 struct ethtool_eeprom *eeprom, u8 * bytes)
10574 {
10575 struct ipw_priv *p = ieee80211_priv(dev);
10576
10577 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10578 return -EINVAL;
10579 mutex_lock(&p->mutex);
10580 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10581 mutex_unlock(&p->mutex);
10582 return 0;
10583 }
10584
10585 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10586 struct ethtool_eeprom *eeprom, u8 * bytes)
10587 {
10588 struct ipw_priv *p = ieee80211_priv(dev);
10589 int i;
10590
10591 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10592 return -EINVAL;
10593 mutex_lock(&p->mutex);
10594 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10595 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10596 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10597 mutex_unlock(&p->mutex);
10598 return 0;
10599 }
10600
10601 static const struct ethtool_ops ipw_ethtool_ops = {
10602 .get_link = ipw_ethtool_get_link,
10603 .get_drvinfo = ipw_ethtool_get_drvinfo,
10604 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10605 .get_eeprom = ipw_ethtool_get_eeprom,
10606 .set_eeprom = ipw_ethtool_set_eeprom,
10607 };
10608
10609 static irqreturn_t ipw_isr(int irq, void *data)
10610 {
10611 struct ipw_priv *priv = data;
10612 u32 inta, inta_mask;
10613
10614 if (!priv)
10615 return IRQ_NONE;
10616
10617 spin_lock(&priv->irq_lock);
10618
10619 if (!(priv->status & STATUS_INT_ENABLED)) {
10620 /* IRQ is disabled */
10621 goto none;
10622 }
10623
10624 inta = ipw_read32(priv, IPW_INTA_RW);
10625 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10626
10627 if (inta == 0xFFFFFFFF) {
10628 /* Hardware disappeared */
10629 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10630 goto none;
10631 }
10632
10633 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10634 /* Shared interrupt */
10635 goto none;
10636 }
10637
10638 /* tell the device to stop sending interrupts */
10639 __ipw_disable_interrupts(priv);
10640
10641 /* ack current interrupts */
10642 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10643 ipw_write32(priv, IPW_INTA_RW, inta);
10644
10645 /* Cache INTA value for our tasklet */
10646 priv->isr_inta = inta;
10647
10648 tasklet_schedule(&priv->irq_tasklet);
10649
10650 spin_unlock(&priv->irq_lock);
10651
10652 return IRQ_HANDLED;
10653 none:
10654 spin_unlock(&priv->irq_lock);
10655 return IRQ_NONE;
10656 }
10657
10658 static void ipw_rf_kill(void *adapter)
10659 {
10660 struct ipw_priv *priv = adapter;
10661 unsigned long flags;
10662
10663 spin_lock_irqsave(&priv->lock, flags);
10664
10665 if (rf_kill_active(priv)) {
10666 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10667 if (priv->workqueue)
10668 queue_delayed_work(priv->workqueue,
10669 &priv->rf_kill, 2 * HZ);
10670 goto exit_unlock;
10671 }
10672
10673 /* RF Kill is now disabled, so bring the device back up */
10674
10675 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10676 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10677 "device\n");
10678
10679 /* we can not do an adapter restart while inside an irq lock */
10680 queue_work(priv->workqueue, &priv->adapter_restart);
10681 } else
10682 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10683 "enabled\n");
10684
10685 exit_unlock:
10686 spin_unlock_irqrestore(&priv->lock, flags);
10687 }
10688
10689 static void ipw_bg_rf_kill(struct work_struct *work)
10690 {
10691 struct ipw_priv *priv =
10692 container_of(work, struct ipw_priv, rf_kill.work);
10693 mutex_lock(&priv->mutex);
10694 ipw_rf_kill(priv);
10695 mutex_unlock(&priv->mutex);
10696 }
10697
10698 static void ipw_link_up(struct ipw_priv *priv)
10699 {
10700 priv->last_seq_num = -1;
10701 priv->last_frag_num = -1;
10702 priv->last_packet_time = 0;
10703
10704 netif_carrier_on(priv->net_dev);
10705 if (netif_queue_stopped(priv->net_dev)) {
10706 IPW_DEBUG_NOTIF("waking queue\n");
10707 netif_wake_queue(priv->net_dev);
10708 } else {
10709 IPW_DEBUG_NOTIF("starting queue\n");
10710 netif_start_queue(priv->net_dev);
10711 }
10712
10713 cancel_delayed_work(&priv->request_scan);
10714 cancel_delayed_work(&priv->scan_event);
10715 ipw_reset_stats(priv);
10716 /* Ensure the rate is updated immediately */
10717 priv->last_rate = ipw_get_current_rate(priv);
10718 ipw_gather_stats(priv);
10719 ipw_led_link_up(priv);
10720 notify_wx_assoc_event(priv);
10721
10722 if (priv->config & CFG_BACKGROUND_SCAN)
10723 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10724 }
10725
10726 static void ipw_bg_link_up(struct work_struct *work)
10727 {
10728 struct ipw_priv *priv =
10729 container_of(work, struct ipw_priv, link_up);
10730 mutex_lock(&priv->mutex);
10731 ipw_link_up(priv);
10732 mutex_unlock(&priv->mutex);
10733 }
10734
10735 static void ipw_link_down(struct ipw_priv *priv)
10736 {
10737 ipw_led_link_down(priv);
10738 netif_carrier_off(priv->net_dev);
10739 netif_stop_queue(priv->net_dev);
10740 notify_wx_assoc_event(priv);
10741
10742 /* Cancel any queued work ... */
10743 cancel_delayed_work(&priv->request_scan);
10744 cancel_delayed_work(&priv->adhoc_check);
10745 cancel_delayed_work(&priv->gather_stats);
10746
10747 ipw_reset_stats(priv);
10748
10749 if (!(priv->status & STATUS_EXIT_PENDING)) {
10750 /* Queue up another scan... */
10751 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10752 } else
10753 cancel_delayed_work(&priv->scan_event);
10754 }
10755
10756 static void ipw_bg_link_down(struct work_struct *work)
10757 {
10758 struct ipw_priv *priv =
10759 container_of(work, struct ipw_priv, link_down);
10760 mutex_lock(&priv->mutex);
10761 ipw_link_down(priv);
10762 mutex_unlock(&priv->mutex);
10763 }
10764
10765 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10766 {
10767 int ret = 0;
10768
10769 priv->workqueue = create_workqueue(DRV_NAME);
10770 init_waitqueue_head(&priv->wait_command_queue);
10771 init_waitqueue_head(&priv->wait_state);
10772
10773 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10774 INIT_WORK(&priv->associate, ipw_bg_associate);
10775 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10776 INIT_WORK(&priv->system_config, ipw_system_config);
10777 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10778 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10779 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10780 INIT_WORK(&priv->up, ipw_bg_up);
10781 INIT_WORK(&priv->down, ipw_bg_down);
10782 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10783 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10784 INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10785 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10786 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10787 INIT_WORK(&priv->roam, ipw_bg_roam);
10788 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10789 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10790 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10791 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10792 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10793 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10794 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10795
10796 #ifdef CONFIG_IPW2200_QOS
10797 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10798 #endif /* CONFIG_IPW2200_QOS */
10799
10800 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10801 ipw_irq_tasklet, (unsigned long)priv);
10802
10803 return ret;
10804 }
10805
10806 static void shim__set_security(struct net_device *dev,
10807 struct ieee80211_security *sec)
10808 {
10809 struct ipw_priv *priv = ieee80211_priv(dev);
10810 int i;
10811 for (i = 0; i < 4; i++) {
10812 if (sec->flags & (1 << i)) {
10813 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10814 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10815 if (sec->key_sizes[i] == 0)
10816 priv->ieee->sec.flags &= ~(1 << i);
10817 else {
10818 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10819 sec->key_sizes[i]);
10820 priv->ieee->sec.flags |= (1 << i);
10821 }
10822 priv->status |= STATUS_SECURITY_UPDATED;
10823 } else if (sec->level != SEC_LEVEL_1)
10824 priv->ieee->sec.flags &= ~(1 << i);
10825 }
10826
10827 if (sec->flags & SEC_ACTIVE_KEY) {
10828 if (sec->active_key <= 3) {
10829 priv->ieee->sec.active_key = sec->active_key;
10830 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10831 } else
10832 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10833 priv->status |= STATUS_SECURITY_UPDATED;
10834 } else
10835 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10836
10837 if ((sec->flags & SEC_AUTH_MODE) &&
10838 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10839 priv->ieee->sec.auth_mode = sec->auth_mode;
10840 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10841 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10842 priv->capability |= CAP_SHARED_KEY;
10843 else
10844 priv->capability &= ~CAP_SHARED_KEY;
10845 priv->status |= STATUS_SECURITY_UPDATED;
10846 }
10847
10848 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10849 priv->ieee->sec.flags |= SEC_ENABLED;
10850 priv->ieee->sec.enabled = sec->enabled;
10851 priv->status |= STATUS_SECURITY_UPDATED;
10852 if (sec->enabled)
10853 priv->capability |= CAP_PRIVACY_ON;
10854 else
10855 priv->capability &= ~CAP_PRIVACY_ON;
10856 }
10857
10858 if (sec->flags & SEC_ENCRYPT)
10859 priv->ieee->sec.encrypt = sec->encrypt;
10860
10861 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10862 priv->ieee->sec.level = sec->level;
10863 priv->ieee->sec.flags |= SEC_LEVEL;
10864 priv->status |= STATUS_SECURITY_UPDATED;
10865 }
10866
10867 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10868 ipw_set_hwcrypto_keys(priv);
10869
10870 /* To match current functionality of ipw2100 (which works well w/
10871 * various supplicants, we don't force a disassociate if the
10872 * privacy capability changes ... */
10873 #if 0
10874 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10875 (((priv->assoc_request.capability &
10876 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10877 (!(priv->assoc_request.capability &
10878 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10879 IPW_DEBUG_ASSOC("Disassociating due to capability "
10880 "change.\n");
10881 ipw_disassociate(priv);
10882 }
10883 #endif
10884 }
10885
10886 static int init_supported_rates(struct ipw_priv *priv,
10887 struct ipw_supported_rates *rates)
10888 {
10889 /* TODO: Mask out rates based on priv->rates_mask */
10890
10891 memset(rates, 0, sizeof(*rates));
10892 /* configure supported rates */
10893 switch (priv->ieee->freq_band) {
10894 case IEEE80211_52GHZ_BAND:
10895 rates->ieee_mode = IPW_A_MODE;
10896 rates->purpose = IPW_RATE_CAPABILITIES;
10897 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10898 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10899 break;
10900
10901 default: /* Mixed or 2.4Ghz */
10902 rates->ieee_mode = IPW_G_MODE;
10903 rates->purpose = IPW_RATE_CAPABILITIES;
10904 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10905 IEEE80211_CCK_DEFAULT_RATES_MASK);
10906 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10907 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10908 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10909 }
10910 break;
10911 }
10912
10913 return 0;
10914 }
10915
10916 static int ipw_config(struct ipw_priv *priv)
10917 {
10918 /* This is only called from ipw_up, which resets/reloads the firmware
10919 so, we don't need to first disable the card before we configure
10920 it */
10921 if (ipw_set_tx_power(priv))
10922 goto error;
10923
10924 /* initialize adapter address */
10925 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10926 goto error;
10927
10928 /* set basic system config settings */
10929 init_sys_config(&priv->sys_config);
10930
10931 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10932 * Does not support BT priority yet (don't abort or defer our Tx) */
10933 if (bt_coexist) {
10934 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10935
10936 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10937 priv->sys_config.bt_coexistence
10938 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10939 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10940 priv->sys_config.bt_coexistence
10941 |= CFG_BT_COEXISTENCE_OOB;
10942 }
10943
10944 #ifdef CONFIG_IPW2200_PROMISCUOUS
10945 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10946 priv->sys_config.accept_all_data_frames = 1;
10947 priv->sys_config.accept_non_directed_frames = 1;
10948 priv->sys_config.accept_all_mgmt_bcpr = 1;
10949 priv->sys_config.accept_all_mgmt_frames = 1;
10950 }
10951 #endif
10952
10953 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10954 priv->sys_config.answer_broadcast_ssid_probe = 1;
10955 else
10956 priv->sys_config.answer_broadcast_ssid_probe = 0;
10957
10958 if (ipw_send_system_config(priv))
10959 goto error;
10960
10961 init_supported_rates(priv, &priv->rates);
10962 if (ipw_send_supported_rates(priv, &priv->rates))
10963 goto error;
10964
10965 /* Set request-to-send threshold */
10966 if (priv->rts_threshold) {
10967 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10968 goto error;
10969 }
10970 #ifdef CONFIG_IPW2200_QOS
10971 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10972 ipw_qos_activate(priv, NULL);
10973 #endif /* CONFIG_IPW2200_QOS */
10974
10975 if (ipw_set_random_seed(priv))
10976 goto error;
10977
10978 /* final state transition to the RUN state */
10979 if (ipw_send_host_complete(priv))
10980 goto error;
10981
10982 priv->status |= STATUS_INIT;
10983
10984 ipw_led_init(priv);
10985 ipw_led_radio_on(priv);
10986 priv->notif_missed_beacons = 0;
10987
10988 /* Set hardware WEP key if it is configured. */
10989 if ((priv->capability & CAP_PRIVACY_ON) &&
10990 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10991 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10992 ipw_set_hwcrypto_keys(priv);
10993
10994 return 0;
10995
10996 error:
10997 return -EIO;
10998 }
10999
11000 /*
11001 * NOTE:
11002 *
11003 * These tables have been tested in conjunction with the
11004 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11005 *
11006 * Altering this values, using it on other hardware, or in geographies
11007 * not intended for resale of the above mentioned Intel adapters has
11008 * not been tested.
11009 *
11010 * Remember to update the table in README.ipw2200 when changing this
11011 * table.
11012 *
11013 */
11014 static const struct ieee80211_geo ipw_geos[] = {
11015 { /* Restricted */
11016 "---",
11017 .bg_channels = 11,
11018 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11019 {2427, 4}, {2432, 5}, {2437, 6},
11020 {2442, 7}, {2447, 8}, {2452, 9},
11021 {2457, 10}, {2462, 11}},
11022 },
11023
11024 { /* Custom US/Canada */
11025 "ZZF",
11026 .bg_channels = 11,
11027 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11028 {2427, 4}, {2432, 5}, {2437, 6},
11029 {2442, 7}, {2447, 8}, {2452, 9},
11030 {2457, 10}, {2462, 11}},
11031 .a_channels = 8,
11032 .a = {{5180, 36},
11033 {5200, 40},
11034 {5220, 44},
11035 {5240, 48},
11036 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11037 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11038 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11039 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11040 },
11041
11042 { /* Rest of World */
11043 "ZZD",
11044 .bg_channels = 13,
11045 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11046 {2427, 4}, {2432, 5}, {2437, 6},
11047 {2442, 7}, {2447, 8}, {2452, 9},
11048 {2457, 10}, {2462, 11}, {2467, 12},
11049 {2472, 13}},
11050 },
11051
11052 { /* Custom USA & Europe & High */
11053 "ZZA",
11054 .bg_channels = 11,
11055 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11056 {2427, 4}, {2432, 5}, {2437, 6},
11057 {2442, 7}, {2447, 8}, {2452, 9},
11058 {2457, 10}, {2462, 11}},
11059 .a_channels = 13,
11060 .a = {{5180, 36},
11061 {5200, 40},
11062 {5220, 44},
11063 {5240, 48},
11064 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11065 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11066 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11067 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11068 {5745, 149},
11069 {5765, 153},
11070 {5785, 157},
11071 {5805, 161},
11072 {5825, 165}},
11073 },
11074
11075 { /* Custom NA & Europe */
11076 "ZZB",
11077 .bg_channels = 11,
11078 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11079 {2427, 4}, {2432, 5}, {2437, 6},
11080 {2442, 7}, {2447, 8}, {2452, 9},
11081 {2457, 10}, {2462, 11}},
11082 .a_channels = 13,
11083 .a = {{5180, 36},
11084 {5200, 40},
11085 {5220, 44},
11086 {5240, 48},
11087 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11088 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11089 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11090 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11091 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11092 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11093 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11094 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11095 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11096 },
11097
11098 { /* Custom Japan */
11099 "ZZC",
11100 .bg_channels = 11,
11101 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11102 {2427, 4}, {2432, 5}, {2437, 6},
11103 {2442, 7}, {2447, 8}, {2452, 9},
11104 {2457, 10}, {2462, 11}},
11105 .a_channels = 4,
11106 .a = {{5170, 34}, {5190, 38},
11107 {5210, 42}, {5230, 46}},
11108 },
11109
11110 { /* Custom */
11111 "ZZM",
11112 .bg_channels = 11,
11113 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11114 {2427, 4}, {2432, 5}, {2437, 6},
11115 {2442, 7}, {2447, 8}, {2452, 9},
11116 {2457, 10}, {2462, 11}},
11117 },
11118
11119 { /* Europe */
11120 "ZZE",
11121 .bg_channels = 13,
11122 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11123 {2427, 4}, {2432, 5}, {2437, 6},
11124 {2442, 7}, {2447, 8}, {2452, 9},
11125 {2457, 10}, {2462, 11}, {2467, 12},
11126 {2472, 13}},
11127 .a_channels = 19,
11128 .a = {{5180, 36},
11129 {5200, 40},
11130 {5220, 44},
11131 {5240, 48},
11132 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11133 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11134 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11135 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11136 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11137 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11138 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11139 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11140 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11141 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11142 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11143 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11144 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11145 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11146 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11147 },
11148
11149 { /* Custom Japan */
11150 "ZZJ",
11151 .bg_channels = 14,
11152 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11153 {2427, 4}, {2432, 5}, {2437, 6},
11154 {2442, 7}, {2447, 8}, {2452, 9},
11155 {2457, 10}, {2462, 11}, {2467, 12},
11156 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11157 .a_channels = 4,
11158 .a = {{5170, 34}, {5190, 38},
11159 {5210, 42}, {5230, 46}},
11160 },
11161
11162 { /* Rest of World */
11163 "ZZR",
11164 .bg_channels = 14,
11165 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11166 {2427, 4}, {2432, 5}, {2437, 6},
11167 {2442, 7}, {2447, 8}, {2452, 9},
11168 {2457, 10}, {2462, 11}, {2467, 12},
11169 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11170 IEEE80211_CH_PASSIVE_ONLY}},
11171 },
11172
11173 { /* High Band */
11174 "ZZH",
11175 .bg_channels = 13,
11176 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11177 {2427, 4}, {2432, 5}, {2437, 6},
11178 {2442, 7}, {2447, 8}, {2452, 9},
11179 {2457, 10}, {2462, 11},
11180 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11181 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11182 .a_channels = 4,
11183 .a = {{5745, 149}, {5765, 153},
11184 {5785, 157}, {5805, 161}},
11185 },
11186
11187 { /* Custom Europe */
11188 "ZZG",
11189 .bg_channels = 13,
11190 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11191 {2427, 4}, {2432, 5}, {2437, 6},
11192 {2442, 7}, {2447, 8}, {2452, 9},
11193 {2457, 10}, {2462, 11},
11194 {2467, 12}, {2472, 13}},
11195 .a_channels = 4,
11196 .a = {{5180, 36}, {5200, 40},
11197 {5220, 44}, {5240, 48}},
11198 },
11199
11200 { /* Europe */
11201 "ZZK",
11202 .bg_channels = 13,
11203 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11204 {2427, 4}, {2432, 5}, {2437, 6},
11205 {2442, 7}, {2447, 8}, {2452, 9},
11206 {2457, 10}, {2462, 11},
11207 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11208 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11209 .a_channels = 24,
11210 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11211 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11212 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11213 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11214 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11215 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11216 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11217 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11218 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11219 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11220 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11221 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11222 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11223 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11224 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11225 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11226 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11227 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11228 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11229 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11230 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11231 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11232 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11233 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11234 },
11235
11236 { /* Europe */
11237 "ZZL",
11238 .bg_channels = 11,
11239 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11240 {2427, 4}, {2432, 5}, {2437, 6},
11241 {2442, 7}, {2447, 8}, {2452, 9},
11242 {2457, 10}, {2462, 11}},
11243 .a_channels = 13,
11244 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11245 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11246 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11247 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11248 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11249 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11250 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11251 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11252 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11253 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11254 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11255 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11256 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11257 }
11258 };
11259
11260 #define MAX_HW_RESTARTS 5
11261 static int ipw_up(struct ipw_priv *priv)
11262 {
11263 int rc, i, j;
11264
11265 if (priv->status & STATUS_EXIT_PENDING)
11266 return -EIO;
11267
11268 if (cmdlog && !priv->cmdlog) {
11269 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11270 GFP_KERNEL);
11271 if (priv->cmdlog == NULL) {
11272 IPW_ERROR("Error allocating %d command log entries.\n",
11273 cmdlog);
11274 return -ENOMEM;
11275 } else {
11276 priv->cmdlog_len = cmdlog;
11277 }
11278 }
11279
11280 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11281 /* Load the microcode, firmware, and eeprom.
11282 * Also start the clocks. */
11283 rc = ipw_load(priv);
11284 if (rc) {
11285 IPW_ERROR("Unable to load firmware: %d\n", rc);
11286 return rc;
11287 }
11288
11289 ipw_init_ordinals(priv);
11290 if (!(priv->config & CFG_CUSTOM_MAC))
11291 eeprom_parse_mac(priv, priv->mac_addr);
11292 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11293
11294 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11295 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11296 ipw_geos[j].name, 3))
11297 break;
11298 }
11299 if (j == ARRAY_SIZE(ipw_geos)) {
11300 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11301 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11302 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11303 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11304 j = 0;
11305 }
11306 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11307 IPW_WARNING("Could not set geography.");
11308 return 0;
11309 }
11310
11311 if (priv->status & STATUS_RF_KILL_SW) {
11312 IPW_WARNING("Radio disabled by module parameter.\n");
11313 return 0;
11314 } else if (rf_kill_active(priv)) {
11315 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11316 "Kill switch must be turned off for "
11317 "wireless networking to work.\n");
11318 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11319 2 * HZ);
11320 return 0;
11321 }
11322
11323 rc = ipw_config(priv);
11324 if (!rc) {
11325 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11326
11327 /* If configure to try and auto-associate, kick
11328 * off a scan. */
11329 queue_delayed_work(priv->workqueue,
11330 &priv->request_scan, 0);
11331
11332 return 0;
11333 }
11334
11335 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11336 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11337 i, MAX_HW_RESTARTS);
11338
11339 /* We had an error bringing up the hardware, so take it
11340 * all the way back down so we can try again */
11341 ipw_down(priv);
11342 }
11343
11344 /* tried to restart and config the device for as long as our
11345 * patience could withstand */
11346 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11347
11348 return -EIO;
11349 }
11350
11351 static void ipw_bg_up(struct work_struct *work)
11352 {
11353 struct ipw_priv *priv =
11354 container_of(work, struct ipw_priv, up);
11355 mutex_lock(&priv->mutex);
11356 ipw_up(priv);
11357 mutex_unlock(&priv->mutex);
11358 }
11359
11360 static void ipw_deinit(struct ipw_priv *priv)
11361 {
11362 int i;
11363
11364 if (priv->status & STATUS_SCANNING) {
11365 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11366 ipw_abort_scan(priv);
11367 }
11368
11369 if (priv->status & STATUS_ASSOCIATED) {
11370 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11371 ipw_disassociate(priv);
11372 }
11373
11374 ipw_led_shutdown(priv);
11375
11376 /* Wait up to 1s for status to change to not scanning and not
11377 * associated (disassociation can take a while for a ful 802.11
11378 * exchange */
11379 for (i = 1000; i && (priv->status &
11380 (STATUS_DISASSOCIATING |
11381 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11382 udelay(10);
11383
11384 if (priv->status & (STATUS_DISASSOCIATING |
11385 STATUS_ASSOCIATED | STATUS_SCANNING))
11386 IPW_DEBUG_INFO("Still associated or scanning...\n");
11387 else
11388 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11389
11390 /* Attempt to disable the card */
11391 ipw_send_card_disable(priv, 0);
11392
11393 priv->status &= ~STATUS_INIT;
11394 }
11395
11396 static void ipw_down(struct ipw_priv *priv)
11397 {
11398 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11399
11400 priv->status |= STATUS_EXIT_PENDING;
11401
11402 if (ipw_is_init(priv))
11403 ipw_deinit(priv);
11404
11405 /* Wipe out the EXIT_PENDING status bit if we are not actually
11406 * exiting the module */
11407 if (!exit_pending)
11408 priv->status &= ~STATUS_EXIT_PENDING;
11409
11410 /* tell the device to stop sending interrupts */
11411 ipw_disable_interrupts(priv);
11412
11413 /* Clear all bits but the RF Kill */
11414 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11415 netif_carrier_off(priv->net_dev);
11416 netif_stop_queue(priv->net_dev);
11417
11418 ipw_stop_nic(priv);
11419
11420 ipw_led_radio_off(priv);
11421 }
11422
11423 static void ipw_bg_down(struct work_struct *work)
11424 {
11425 struct ipw_priv *priv =
11426 container_of(work, struct ipw_priv, down);
11427 mutex_lock(&priv->mutex);
11428 ipw_down(priv);
11429 mutex_unlock(&priv->mutex);
11430 }
11431
11432 /* Called by register_netdev() */
11433 static int ipw_net_init(struct net_device *dev)
11434 {
11435 struct ipw_priv *priv = ieee80211_priv(dev);
11436 mutex_lock(&priv->mutex);
11437
11438 if (ipw_up(priv)) {
11439 mutex_unlock(&priv->mutex);
11440 return -EIO;
11441 }
11442
11443 mutex_unlock(&priv->mutex);
11444 return 0;
11445 }
11446
11447 /* PCI driver stuff */
11448 static struct pci_device_id card_ids[] = {
11449 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11450 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11451 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11452 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11453 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11454 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11455 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11456 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11457 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11458 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11459 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11460 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11461 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11462 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11463 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11464 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11465 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11466 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11467 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11468 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11469 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11470 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11471
11472 /* required last entry */
11473 {0,}
11474 };
11475
11476 MODULE_DEVICE_TABLE(pci, card_ids);
11477
11478 static struct attribute *ipw_sysfs_entries[] = {
11479 &dev_attr_rf_kill.attr,
11480 &dev_attr_direct_dword.attr,
11481 &dev_attr_indirect_byte.attr,
11482 &dev_attr_indirect_dword.attr,
11483 &dev_attr_mem_gpio_reg.attr,
11484 &dev_attr_command_event_reg.attr,
11485 &dev_attr_nic_type.attr,
11486 &dev_attr_status.attr,
11487 &dev_attr_cfg.attr,
11488 &dev_attr_error.attr,
11489 &dev_attr_event_log.attr,
11490 &dev_attr_cmd_log.attr,
11491 &dev_attr_eeprom_delay.attr,
11492 &dev_attr_ucode_version.attr,
11493 &dev_attr_rtc.attr,
11494 &dev_attr_scan_age.attr,
11495 &dev_attr_led.attr,
11496 &dev_attr_speed_scan.attr,
11497 &dev_attr_net_stats.attr,
11498 &dev_attr_channels.attr,
11499 #ifdef CONFIG_IPW2200_PROMISCUOUS
11500 &dev_attr_rtap_iface.attr,
11501 &dev_attr_rtap_filter.attr,
11502 #endif
11503 NULL
11504 };
11505
11506 static struct attribute_group ipw_attribute_group = {
11507 .name = NULL, /* put in device directory */
11508 .attrs = ipw_sysfs_entries,
11509 };
11510
11511 #ifdef CONFIG_IPW2200_PROMISCUOUS
11512 static int ipw_prom_open(struct net_device *dev)
11513 {
11514 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11515 struct ipw_priv *priv = prom_priv->priv;
11516
11517 IPW_DEBUG_INFO("prom dev->open\n");
11518 netif_carrier_off(dev);
11519 netif_stop_queue(dev);
11520
11521 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11522 priv->sys_config.accept_all_data_frames = 1;
11523 priv->sys_config.accept_non_directed_frames = 1;
11524 priv->sys_config.accept_all_mgmt_bcpr = 1;
11525 priv->sys_config.accept_all_mgmt_frames = 1;
11526
11527 ipw_send_system_config(priv);
11528 }
11529
11530 return 0;
11531 }
11532
11533 static int ipw_prom_stop(struct net_device *dev)
11534 {
11535 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11536 struct ipw_priv *priv = prom_priv->priv;
11537
11538 IPW_DEBUG_INFO("prom dev->stop\n");
11539
11540 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11541 priv->sys_config.accept_all_data_frames = 0;
11542 priv->sys_config.accept_non_directed_frames = 0;
11543 priv->sys_config.accept_all_mgmt_bcpr = 0;
11544 priv->sys_config.accept_all_mgmt_frames = 0;
11545
11546 ipw_send_system_config(priv);
11547 }
11548
11549 return 0;
11550 }
11551
11552 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11553 {
11554 IPW_DEBUG_INFO("prom dev->xmit\n");
11555 netif_stop_queue(dev);
11556 return -EOPNOTSUPP;
11557 }
11558
11559 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11560 {
11561 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11562 return &prom_priv->ieee->stats;
11563 }
11564
11565 static int ipw_prom_alloc(struct ipw_priv *priv)
11566 {
11567 int rc = 0;
11568
11569 if (priv->prom_net_dev)
11570 return -EPERM;
11571
11572 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11573 if (priv->prom_net_dev == NULL)
11574 return -ENOMEM;
11575
11576 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11577 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11578 priv->prom_priv->priv = priv;
11579
11580 strcpy(priv->prom_net_dev->name, "rtap%d");
11581
11582 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11583 priv->prom_net_dev->open = ipw_prom_open;
11584 priv->prom_net_dev->stop = ipw_prom_stop;
11585 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11586 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11587
11588 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11589
11590 rc = register_netdev(priv->prom_net_dev);
11591 if (rc) {
11592 free_ieee80211(priv->prom_net_dev);
11593 priv->prom_net_dev = NULL;
11594 return rc;
11595 }
11596
11597 return 0;
11598 }
11599
11600 static void ipw_prom_free(struct ipw_priv *priv)
11601 {
11602 if (!priv->prom_net_dev)
11603 return;
11604
11605 unregister_netdev(priv->prom_net_dev);
11606 free_ieee80211(priv->prom_net_dev);
11607
11608 priv->prom_net_dev = NULL;
11609 }
11610
11611 #endif
11612
11613
11614 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11615 const struct pci_device_id *ent)
11616 {
11617 int err = 0;
11618 struct net_device *net_dev;
11619 void __iomem *base;
11620 u32 length, val;
11621 struct ipw_priv *priv;
11622 int i;
11623
11624 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11625 if (net_dev == NULL) {
11626 err = -ENOMEM;
11627 goto out;
11628 }
11629
11630 priv = ieee80211_priv(net_dev);
11631 priv->ieee = netdev_priv(net_dev);
11632
11633 priv->net_dev = net_dev;
11634 priv->pci_dev = pdev;
11635 ipw_debug_level = debug;
11636 spin_lock_init(&priv->irq_lock);
11637 spin_lock_init(&priv->lock);
11638 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11639 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11640
11641 mutex_init(&priv->mutex);
11642 if (pci_enable_device(pdev)) {
11643 err = -ENODEV;
11644 goto out_free_ieee80211;
11645 }
11646
11647 pci_set_master(pdev);
11648
11649 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11650 if (!err)
11651 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11652 if (err) {
11653 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11654 goto out_pci_disable_device;
11655 }
11656
11657 pci_set_drvdata(pdev, priv);
11658
11659 err = pci_request_regions(pdev, DRV_NAME);
11660 if (err)
11661 goto out_pci_disable_device;
11662
11663 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11664 * PCI Tx retries from interfering with C3 CPU state */
11665 pci_read_config_dword(pdev, 0x40, &val);
11666 if ((val & 0x0000ff00) != 0)
11667 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11668
11669 length = pci_resource_len(pdev, 0);
11670 priv->hw_len = length;
11671
11672 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11673 if (!base) {
11674 err = -ENODEV;
11675 goto out_pci_release_regions;
11676 }
11677
11678 priv->hw_base = base;
11679 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11680 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11681
11682 err = ipw_setup_deferred_work(priv);
11683 if (err) {
11684 IPW_ERROR("Unable to setup deferred work\n");
11685 goto out_iounmap;
11686 }
11687
11688 ipw_sw_reset(priv, 1);
11689
11690 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11691 if (err) {
11692 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11693 goto out_destroy_workqueue;
11694 }
11695
11696 SET_NETDEV_DEV(net_dev, &pdev->dev);
11697
11698 mutex_lock(&priv->mutex);
11699
11700 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11701 priv->ieee->set_security = shim__set_security;
11702 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11703
11704 #ifdef CONFIG_IPW2200_QOS
11705 priv->ieee->is_qos_active = ipw_is_qos_active;
11706 priv->ieee->handle_probe_response = ipw_handle_beacon;
11707 priv->ieee->handle_beacon = ipw_handle_probe_response;
11708 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11709 #endif /* CONFIG_IPW2200_QOS */
11710
11711 priv->ieee->perfect_rssi = -20;
11712 priv->ieee->worst_rssi = -85;
11713
11714 net_dev->open = ipw_net_open;
11715 net_dev->stop = ipw_net_stop;
11716 net_dev->init = ipw_net_init;
11717 net_dev->get_stats = ipw_net_get_stats;
11718 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11719 net_dev->set_mac_address = ipw_net_set_mac_address;
11720 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11721 net_dev->wireless_data = &priv->wireless_data;
11722 net_dev->wireless_handlers = &ipw_wx_handler_def;
11723 net_dev->ethtool_ops = &ipw_ethtool_ops;
11724 net_dev->irq = pdev->irq;
11725 net_dev->base_addr = (unsigned long)priv->hw_base;
11726 net_dev->mem_start = pci_resource_start(pdev, 0);
11727 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11728
11729 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11730 if (err) {
11731 IPW_ERROR("failed to create sysfs device attributes\n");
11732 mutex_unlock(&priv->mutex);
11733 goto out_release_irq;
11734 }
11735
11736 mutex_unlock(&priv->mutex);
11737 err = register_netdev(net_dev);
11738 if (err) {
11739 IPW_ERROR("failed to register network device\n");
11740 goto out_remove_sysfs;
11741 }
11742
11743 #ifdef CONFIG_IPW2200_PROMISCUOUS
11744 if (rtap_iface) {
11745 err = ipw_prom_alloc(priv);
11746 if (err) {
11747 IPW_ERROR("Failed to register promiscuous network "
11748 "device (error %d).\n", err);
11749 unregister_netdev(priv->net_dev);
11750 goto out_remove_sysfs;
11751 }
11752 }
11753 #endif
11754
11755 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11756 "channels, %d 802.11a channels)\n",
11757 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11758 priv->ieee->geo.a_channels);
11759
11760 return 0;
11761
11762 out_remove_sysfs:
11763 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11764 out_release_irq:
11765 free_irq(pdev->irq, priv);
11766 out_destroy_workqueue:
11767 destroy_workqueue(priv->workqueue);
11768 priv->workqueue = NULL;
11769 out_iounmap:
11770 iounmap(priv->hw_base);
11771 out_pci_release_regions:
11772 pci_release_regions(pdev);
11773 out_pci_disable_device:
11774 pci_disable_device(pdev);
11775 pci_set_drvdata(pdev, NULL);
11776 out_free_ieee80211:
11777 free_ieee80211(priv->net_dev);
11778 out:
11779 return err;
11780 }
11781
11782 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11783 {
11784 struct ipw_priv *priv = pci_get_drvdata(pdev);
11785 struct list_head *p, *q;
11786 int i;
11787
11788 if (!priv)
11789 return;
11790
11791 mutex_lock(&priv->mutex);
11792
11793 priv->status |= STATUS_EXIT_PENDING;
11794 ipw_down(priv);
11795 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11796
11797 mutex_unlock(&priv->mutex);
11798
11799 unregister_netdev(priv->net_dev);
11800
11801 if (priv->rxq) {
11802 ipw_rx_queue_free(priv, priv->rxq);
11803 priv->rxq = NULL;
11804 }
11805 ipw_tx_queue_free(priv);
11806
11807 if (priv->cmdlog) {
11808 kfree(priv->cmdlog);
11809 priv->cmdlog = NULL;
11810 }
11811 /* ipw_down will ensure that there is no more pending work
11812 * in the workqueue's, so we can safely remove them now. */
11813 cancel_delayed_work(&priv->adhoc_check);
11814 cancel_delayed_work(&priv->gather_stats);
11815 cancel_delayed_work(&priv->request_scan);
11816 cancel_delayed_work(&priv->scan_event);
11817 cancel_delayed_work(&priv->rf_kill);
11818 cancel_delayed_work(&priv->scan_check);
11819 destroy_workqueue(priv->workqueue);
11820 priv->workqueue = NULL;
11821
11822 /* Free MAC hash list for ADHOC */
11823 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11824 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11825 list_del(p);
11826 kfree(list_entry(p, struct ipw_ibss_seq, list));
11827 }
11828 }
11829
11830 kfree(priv->error);
11831 priv->error = NULL;
11832
11833 #ifdef CONFIG_IPW2200_PROMISCUOUS
11834 ipw_prom_free(priv);
11835 #endif
11836
11837 free_irq(pdev->irq, priv);
11838 iounmap(priv->hw_base);
11839 pci_release_regions(pdev);
11840 pci_disable_device(pdev);
11841 pci_set_drvdata(pdev, NULL);
11842 free_ieee80211(priv->net_dev);
11843 free_firmware();
11844 }
11845
11846 #ifdef CONFIG_PM
11847 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11848 {
11849 struct ipw_priv *priv = pci_get_drvdata(pdev);
11850 struct net_device *dev = priv->net_dev;
11851
11852 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11853
11854 /* Take down the device; powers it off, etc. */
11855 ipw_down(priv);
11856
11857 /* Remove the PRESENT state of the device */
11858 netif_device_detach(dev);
11859
11860 pci_save_state(pdev);
11861 pci_disable_device(pdev);
11862 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11863
11864 return 0;
11865 }
11866
11867 static int ipw_pci_resume(struct pci_dev *pdev)
11868 {
11869 struct ipw_priv *priv = pci_get_drvdata(pdev);
11870 struct net_device *dev = priv->net_dev;
11871 int err;
11872 u32 val;
11873
11874 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11875
11876 pci_set_power_state(pdev, PCI_D0);
11877 err = pci_enable_device(pdev);
11878 if (err) {
11879 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11880 dev->name);
11881 return err;
11882 }
11883 pci_restore_state(pdev);
11884
11885 /*
11886 * Suspend/Resume resets the PCI configuration space, so we have to
11887 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11888 * from interfering with C3 CPU state. pci_restore_state won't help
11889 * here since it only restores the first 64 bytes pci config header.
11890 */
11891 pci_read_config_dword(pdev, 0x40, &val);
11892 if ((val & 0x0000ff00) != 0)
11893 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11894
11895 /* Set the device back into the PRESENT state; this will also wake
11896 * the queue of needed */
11897 netif_device_attach(dev);
11898
11899 /* Bring the device back up */
11900 queue_work(priv->workqueue, &priv->up);
11901
11902 return 0;
11903 }
11904 #endif
11905
11906 static void ipw_pci_shutdown(struct pci_dev *pdev)
11907 {
11908 struct ipw_priv *priv = pci_get_drvdata(pdev);
11909
11910 /* Take down the device; powers it off, etc. */
11911 ipw_down(priv);
11912
11913 pci_disable_device(pdev);
11914 }
11915
11916 /* driver initialization stuff */
11917 static struct pci_driver ipw_driver = {
11918 .name = DRV_NAME,
11919 .id_table = card_ids,
11920 .probe = ipw_pci_probe,
11921 .remove = __devexit_p(ipw_pci_remove),
11922 #ifdef CONFIG_PM
11923 .suspend = ipw_pci_suspend,
11924 .resume = ipw_pci_resume,
11925 #endif
11926 .shutdown = ipw_pci_shutdown,
11927 };
11928
11929 static int __init ipw_init(void)
11930 {
11931 int ret;
11932
11933 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11934 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11935
11936 ret = pci_register_driver(&ipw_driver);
11937 if (ret) {
11938 IPW_ERROR("Unable to initialize PCI module\n");
11939 return ret;
11940 }
11941
11942 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11943 if (ret) {
11944 IPW_ERROR("Unable to create driver sysfs file\n");
11945 pci_unregister_driver(&ipw_driver);
11946 return ret;
11947 }
11948
11949 return ret;
11950 }
11951
11952 static void __exit ipw_exit(void)
11953 {
11954 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11955 pci_unregister_driver(&ipw_driver);
11956 }
11957
11958 module_param(disable, int, 0444);
11959 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11960
11961 module_param(associate, int, 0444);
11962 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11963
11964 module_param(auto_create, int, 0444);
11965 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11966
11967 module_param(led, int, 0444);
11968 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11969
11970 module_param(debug, int, 0444);
11971 MODULE_PARM_DESC(debug, "debug output mask");
11972
11973 module_param(channel, int, 0444);
11974 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11975
11976 #ifdef CONFIG_IPW2200_PROMISCUOUS
11977 module_param(rtap_iface, int, 0444);
11978 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11979 #endif
11980
11981 #ifdef CONFIG_IPW2200_QOS
11982 module_param(qos_enable, int, 0444);
11983 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11984
11985 module_param(qos_burst_enable, int, 0444);
11986 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11987
11988 module_param(qos_no_ack_mask, int, 0444);
11989 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11990
11991 module_param(burst_duration_CCK, int, 0444);
11992 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11993
11994 module_param(burst_duration_OFDM, int, 0444);
11995 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11996 #endif /* CONFIG_IPW2200_QOS */
11997
11998 #ifdef CONFIG_IPW2200_MONITOR
11999 module_param(mode, int, 0444);
12000 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12001 #else
12002 module_param(mode, int, 0444);
12003 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12004 #endif
12005
12006 module_param(bt_coexist, int, 0444);
12007 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12008
12009 module_param(hwcrypto, int, 0444);
12010 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12011
12012 module_param(cmdlog, int, 0444);
12013 MODULE_PARM_DESC(cmdlog,
12014 "allocate a ring buffer for logging firmware commands");
12015
12016 module_param(roaming, int, 0444);
12017 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12018
12019 module_param(antenna, int, 0444);
12020 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12021
12022 module_exit(ipw_exit);
12023 module_init(ipw_init);