]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/ipw2x00/ipw2100.c
drivers/net: Convert unbounded kzalloc calls to kcalloc
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176
177 static struct pm_qos_request_list ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216 if (ipw2100_debug_level & (level)) { \
217 printk(KERN_DEBUG "ipw2100: %c %s ", \
218 in_interrupt() ? 'I' : 'U', __func__); \
219 printk(message); \
220 } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228 "undefined",
229 "unused", /* HOST_ATTENTION */
230 "HOST_COMPLETE",
231 "unused", /* SLEEP */
232 "unused", /* HOST_POWER_DOWN */
233 "unused",
234 "SYSTEM_CONFIG",
235 "unused", /* SET_IMR */
236 "SSID",
237 "MANDATORY_BSSID",
238 "AUTHENTICATION_TYPE",
239 "ADAPTER_ADDRESS",
240 "PORT_TYPE",
241 "INTERNATIONAL_MODE",
242 "CHANNEL",
243 "RTS_THRESHOLD",
244 "FRAG_THRESHOLD",
245 "POWER_MODE",
246 "TX_RATES",
247 "BASIC_TX_RATES",
248 "WEP_KEY_INFO",
249 "unused",
250 "unused",
251 "unused",
252 "unused",
253 "WEP_KEY_INDEX",
254 "WEP_FLAGS",
255 "ADD_MULTICAST",
256 "CLEAR_ALL_MULTICAST",
257 "BEACON_INTERVAL",
258 "ATIM_WINDOW",
259 "CLEAR_STATISTICS",
260 "undefined",
261 "undefined",
262 "undefined",
263 "undefined",
264 "TX_POWER_INDEX",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "BROADCAST_SCAN",
272 "CARD_DISABLE",
273 "PREFERRED_BSSID",
274 "SET_SCAN_OPTIONS",
275 "SCAN_DWELL_TIME",
276 "SWEEP_TABLE",
277 "AP_OR_STATION_TABLE",
278 "GROUP_ORDINALS",
279 "SHORT_RETRY_LIMIT",
280 "LONG_RETRY_LIMIT",
281 "unused", /* SAVE_CALIBRATION */
282 "unused", /* RESTORE_CALIBRATION */
283 "undefined",
284 "undefined",
285 "undefined",
286 "HOST_PRE_POWER_DOWN",
287 "unused", /* HOST_INTERRUPT_COALESCING */
288 "undefined",
289 "CARD_DISABLE_PHY_OFF",
290 "MSDU_TX_RATES" "undefined",
291 "undefined",
292 "SET_STATION_STAT_BITS",
293 "CLEAR_STATIONS_STAT_BITS",
294 "LEAP_ROGUE_MODE",
295 "SET_SECURITY_INFORMATION",
296 "DISASSOCIATION_BSSID",
297 "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304 2412, 2417, 2422, 2427,
305 2432, 2437, 2442, 2447,
306 2452, 2457, 2462, 2467,
307 2472, 2484
308 };
309
310 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
311
312 static const long ipw2100_rates_11b[] = {
313 1000000,
314 2000000,
315 5500000,
316 11000000
317 };
318
319 static struct ieee80211_rate ipw2100_bg_rates[] = {
320 { .bitrate = 10 },
321 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
323 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
324 };
325
326 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
327
328 /* Pre-decl until we get the code solid and then we can clean it up */
329 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
330 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
331 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
332
333 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
334 static void ipw2100_queues_free(struct ipw2100_priv *priv);
335 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
336
337 static int ipw2100_fw_download(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
342 size_t max);
343 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
344 size_t max);
345 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
346 struct ipw2100_fw *fw);
347 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
348 struct ipw2100_fw *fw);
349 static void ipw2100_wx_event_work(struct work_struct *work);
350 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
351 static struct iw_handler_def ipw2100_wx_handler_def;
352
353 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
354 {
355 *val = readl((void __iomem *)(dev->base_addr + reg));
356 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
357 }
358
359 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
360 {
361 writel(val, (void __iomem *)(dev->base_addr + reg));
362 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
363 }
364
365 static inline void read_register_word(struct net_device *dev, u32 reg,
366 u16 * val)
367 {
368 *val = readw((void __iomem *)(dev->base_addr + reg));
369 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 }
371
372 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
373 {
374 *val = readb((void __iomem *)(dev->base_addr + reg));
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 writew(val, (void __iomem *)(dev->base_addr + reg));
381 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
382 }
383
384 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
385 {
386 writeb(val, (void __iomem *)(dev->base_addr + reg));
387 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
388 }
389
390 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
391 {
392 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393 addr & IPW_REG_INDIRECT_ADDR_MASK);
394 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
397 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
398 {
399 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400 addr & IPW_REG_INDIRECT_ADDR_MASK);
401 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
404 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
405 {
406 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
411 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
412 {
413 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414 addr & IPW_REG_INDIRECT_ADDR_MASK);
415 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
418 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
419 {
420 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421 addr & IPW_REG_INDIRECT_ADDR_MASK);
422 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
425 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
426 {
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 addr & IPW_REG_INDIRECT_ADDR_MASK);
429 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
430 }
431
432 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
433 {
434 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
435 addr & IPW_REG_INDIRECT_ADDR_MASK);
436 }
437
438 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
439 {
440 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
441 }
442
443 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
444 const u8 * buf)
445 {
446 u32 aligned_addr;
447 u32 aligned_len;
448 u32 dif_len;
449 u32 i;
450
451 /* read first nibble byte by byte */
452 aligned_addr = addr & (~0x3);
453 dif_len = addr - aligned_addr;
454 if (dif_len) {
455 /* Start reading at aligned_addr + dif_len */
456 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
457 aligned_addr);
458 for (i = dif_len; i < 4; i++, buf++)
459 write_register_byte(dev,
460 IPW_REG_INDIRECT_ACCESS_DATA + i,
461 *buf);
462
463 len -= dif_len;
464 aligned_addr += 4;
465 }
466
467 /* read DWs through autoincrement registers */
468 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
469 aligned_len = len & (~0x3);
470 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
471 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
472
473 /* copy the last nibble */
474 dif_len = len - aligned_len;
475 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
476 for (i = 0; i < dif_len; i++, buf++)
477 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
478 *buf);
479 }
480
481 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
482 u8 * buf)
483 {
484 u32 aligned_addr;
485 u32 aligned_len;
486 u32 dif_len;
487 u32 i;
488
489 /* read first nibble byte by byte */
490 aligned_addr = addr & (~0x3);
491 dif_len = addr - aligned_addr;
492 if (dif_len) {
493 /* Start reading at aligned_addr + dif_len */
494 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
495 aligned_addr);
496 for (i = dif_len; i < 4; i++, buf++)
497 read_register_byte(dev,
498 IPW_REG_INDIRECT_ACCESS_DATA + i,
499 buf);
500
501 len -= dif_len;
502 aligned_addr += 4;
503 }
504
505 /* read DWs through autoincrement registers */
506 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
507 aligned_len = len & (~0x3);
508 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
509 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
510
511 /* copy the last nibble */
512 dif_len = len - aligned_len;
513 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
514 for (i = 0; i < dif_len; i++, buf++)
515 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
516 }
517
518 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
519 {
520 return (dev->base_addr &&
521 (readl
522 ((void __iomem *)(dev->base_addr +
523 IPW_REG_DOA_DEBUG_AREA_START))
524 == IPW_DATA_DOA_DEBUG_VALUE));
525 }
526
527 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
528 void *val, u32 * len)
529 {
530 struct ipw2100_ordinals *ordinals = &priv->ordinals;
531 u32 addr;
532 u32 field_info;
533 u16 field_len;
534 u16 field_count;
535 u32 total_length;
536
537 if (ordinals->table1_addr == 0) {
538 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
539 "before they have been loaded.\n");
540 return -EINVAL;
541 }
542
543 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
544 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
545 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
546
547 printk(KERN_WARNING DRV_NAME
548 ": ordinal buffer length too small, need %zd\n",
549 IPW_ORD_TAB_1_ENTRY_SIZE);
550
551 return -EINVAL;
552 }
553
554 read_nic_dword(priv->net_dev,
555 ordinals->table1_addr + (ord << 2), &addr);
556 read_nic_dword(priv->net_dev, addr, val);
557
558 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
559
560 return 0;
561 }
562
563 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
564
565 ord -= IPW_START_ORD_TAB_2;
566
567 /* get the address of statistic */
568 read_nic_dword(priv->net_dev,
569 ordinals->table2_addr + (ord << 3), &addr);
570
571 /* get the second DW of statistics ;
572 * two 16-bit words - first is length, second is count */
573 read_nic_dword(priv->net_dev,
574 ordinals->table2_addr + (ord << 3) + sizeof(u32),
575 &field_info);
576
577 /* get each entry length */
578 field_len = *((u16 *) & field_info);
579
580 /* get number of entries */
581 field_count = *(((u16 *) & field_info) + 1);
582
583 /* abort if no enough memory */
584 total_length = field_len * field_count;
585 if (total_length > *len) {
586 *len = total_length;
587 return -EINVAL;
588 }
589
590 *len = total_length;
591 if (!total_length)
592 return 0;
593
594 /* read the ordinal data from the SRAM */
595 read_nic_memory(priv->net_dev, addr, total_length, val);
596
597 return 0;
598 }
599
600 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
601 "in table 2\n", ord);
602
603 return -EINVAL;
604 }
605
606 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
607 u32 * len)
608 {
609 struct ipw2100_ordinals *ordinals = &priv->ordinals;
610 u32 addr;
611
612 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
613 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
614 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
615 IPW_DEBUG_INFO("wrong size\n");
616 return -EINVAL;
617 }
618
619 read_nic_dword(priv->net_dev,
620 ordinals->table1_addr + (ord << 2), &addr);
621
622 write_nic_dword(priv->net_dev, addr, *val);
623
624 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
625
626 return 0;
627 }
628
629 IPW_DEBUG_INFO("wrong table\n");
630 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
631 return -EINVAL;
632
633 return -EINVAL;
634 }
635
636 static char *snprint_line(char *buf, size_t count,
637 const u8 * data, u32 len, u32 ofs)
638 {
639 int out, i, j, l;
640 char c;
641
642 out = snprintf(buf, count, "%08X", ofs);
643
644 for (l = 0, i = 0; i < 2; i++) {
645 out += snprintf(buf + out, count - out, " ");
646 for (j = 0; j < 8 && l < len; j++, l++)
647 out += snprintf(buf + out, count - out, "%02X ",
648 data[(i * 8 + j)]);
649 for (; j < 8; j++)
650 out += snprintf(buf + out, count - out, " ");
651 }
652
653 out += snprintf(buf + out, count - out, " ");
654 for (l = 0, i = 0; i < 2; i++) {
655 out += snprintf(buf + out, count - out, " ");
656 for (j = 0; j < 8 && l < len; j++, l++) {
657 c = data[(i * 8 + j)];
658 if (!isascii(c) || !isprint(c))
659 c = '.';
660
661 out += snprintf(buf + out, count - out, "%c", c);
662 }
663
664 for (; j < 8; j++)
665 out += snprintf(buf + out, count - out, " ");
666 }
667
668 return buf;
669 }
670
671 static void printk_buf(int level, const u8 * data, u32 len)
672 {
673 char line[81];
674 u32 ofs = 0;
675 if (!(ipw2100_debug_level & level))
676 return;
677
678 while (len) {
679 printk(KERN_DEBUG "%s\n",
680 snprint_line(line, sizeof(line), &data[ofs],
681 min(len, 16U), ofs));
682 ofs += 16;
683 len -= min(len, 16U);
684 }
685 }
686
687 #define MAX_RESET_BACKOFF 10
688
689 static void schedule_reset(struct ipw2100_priv *priv)
690 {
691 unsigned long now = get_seconds();
692
693 /* If we haven't received a reset request within the backoff period,
694 * then we can reset the backoff interval so this reset occurs
695 * immediately */
696 if (priv->reset_backoff &&
697 (now - priv->last_reset > priv->reset_backoff))
698 priv->reset_backoff = 0;
699
700 priv->last_reset = get_seconds();
701
702 if (!(priv->status & STATUS_RESET_PENDING)) {
703 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
704 priv->net_dev->name, priv->reset_backoff);
705 netif_carrier_off(priv->net_dev);
706 netif_stop_queue(priv->net_dev);
707 priv->status |= STATUS_RESET_PENDING;
708 if (priv->reset_backoff)
709 queue_delayed_work(priv->workqueue, &priv->reset_work,
710 priv->reset_backoff * HZ);
711 else
712 queue_delayed_work(priv->workqueue, &priv->reset_work,
713 0);
714
715 if (priv->reset_backoff < MAX_RESET_BACKOFF)
716 priv->reset_backoff++;
717
718 wake_up_interruptible(&priv->wait_command_queue);
719 } else
720 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
721 priv->net_dev->name);
722
723 }
724
725 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
726 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
727 struct host_command *cmd)
728 {
729 struct list_head *element;
730 struct ipw2100_tx_packet *packet;
731 unsigned long flags;
732 int err = 0;
733
734 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
735 command_types[cmd->host_command], cmd->host_command,
736 cmd->host_command_length);
737 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
738 cmd->host_command_length);
739
740 spin_lock_irqsave(&priv->low_lock, flags);
741
742 if (priv->fatal_error) {
743 IPW_DEBUG_INFO
744 ("Attempt to send command while hardware in fatal error condition.\n");
745 err = -EIO;
746 goto fail_unlock;
747 }
748
749 if (!(priv->status & STATUS_RUNNING)) {
750 IPW_DEBUG_INFO
751 ("Attempt to send command while hardware is not running.\n");
752 err = -EIO;
753 goto fail_unlock;
754 }
755
756 if (priv->status & STATUS_CMD_ACTIVE) {
757 IPW_DEBUG_INFO
758 ("Attempt to send command while another command is pending.\n");
759 err = -EBUSY;
760 goto fail_unlock;
761 }
762
763 if (list_empty(&priv->msg_free_list)) {
764 IPW_DEBUG_INFO("no available msg buffers\n");
765 goto fail_unlock;
766 }
767
768 priv->status |= STATUS_CMD_ACTIVE;
769 priv->messages_sent++;
770
771 element = priv->msg_free_list.next;
772
773 packet = list_entry(element, struct ipw2100_tx_packet, list);
774 packet->jiffy_start = jiffies;
775
776 /* initialize the firmware command packet */
777 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
778 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
779 packet->info.c_struct.cmd->host_command_len_reg =
780 cmd->host_command_length;
781 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
782
783 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
784 cmd->host_command_parameters,
785 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
786
787 list_del(element);
788 DEC_STAT(&priv->msg_free_stat);
789
790 list_add_tail(element, &priv->msg_pend_list);
791 INC_STAT(&priv->msg_pend_stat);
792
793 ipw2100_tx_send_commands(priv);
794 ipw2100_tx_send_data(priv);
795
796 spin_unlock_irqrestore(&priv->low_lock, flags);
797
798 /*
799 * We must wait for this command to complete before another
800 * command can be sent... but if we wait more than 3 seconds
801 * then there is a problem.
802 */
803
804 err =
805 wait_event_interruptible_timeout(priv->wait_command_queue,
806 !(priv->
807 status & STATUS_CMD_ACTIVE),
808 HOST_COMPLETE_TIMEOUT);
809
810 if (err == 0) {
811 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
812 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
813 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
814 priv->status &= ~STATUS_CMD_ACTIVE;
815 schedule_reset(priv);
816 return -EIO;
817 }
818
819 if (priv->fatal_error) {
820 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
821 priv->net_dev->name);
822 return -EIO;
823 }
824
825 /* !!!!! HACK TEST !!!!!
826 * When lots of debug trace statements are enabled, the driver
827 * doesn't seem to have as many firmware restart cycles...
828 *
829 * As a test, we're sticking in a 1/100s delay here */
830 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
831
832 return 0;
833
834 fail_unlock:
835 spin_unlock_irqrestore(&priv->low_lock, flags);
836
837 return err;
838 }
839
840 /*
841 * Verify the values and data access of the hardware
842 * No locks needed or used. No functions called.
843 */
844 static int ipw2100_verify(struct ipw2100_priv *priv)
845 {
846 u32 data1, data2;
847 u32 address;
848
849 u32 val1 = 0x76543210;
850 u32 val2 = 0xFEDCBA98;
851
852 /* Domain 0 check - all values should be DOA_DEBUG */
853 for (address = IPW_REG_DOA_DEBUG_AREA_START;
854 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
855 read_register(priv->net_dev, address, &data1);
856 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
857 return -EIO;
858 }
859
860 /* Domain 1 check - use arbitrary read/write compare */
861 for (address = 0; address < 5; address++) {
862 /* The memory area is not used now */
863 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
864 val1);
865 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
866 val2);
867 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
868 &data1);
869 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
870 &data2);
871 if (val1 == data1 && val2 == data2)
872 return 0;
873 }
874
875 return -EIO;
876 }
877
878 /*
879 *
880 * Loop until the CARD_DISABLED bit is the same value as the
881 * supplied parameter
882 *
883 * TODO: See if it would be more efficient to do a wait/wake
884 * cycle and have the completion event trigger the wakeup
885 *
886 */
887 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
888 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
889 {
890 int i;
891 u32 card_state;
892 u32 len = sizeof(card_state);
893 int err;
894
895 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
896 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
897 &card_state, &len);
898 if (err) {
899 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
900 "failed.\n");
901 return 0;
902 }
903
904 /* We'll break out if either the HW state says it is
905 * in the state we want, or if HOST_COMPLETE command
906 * finishes */
907 if ((card_state == state) ||
908 ((priv->status & STATUS_ENABLED) ?
909 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
910 if (state == IPW_HW_STATE_ENABLED)
911 priv->status |= STATUS_ENABLED;
912 else
913 priv->status &= ~STATUS_ENABLED;
914
915 return 0;
916 }
917
918 udelay(50);
919 }
920
921 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
922 state ? "DISABLED" : "ENABLED");
923 return -EIO;
924 }
925
926 /*********************************************************************
927 Procedure : sw_reset_and_clock
928 Purpose : Asserts s/w reset, asserts clock initialization
929 and waits for clock stabilization
930 ********************************************************************/
931 static int sw_reset_and_clock(struct ipw2100_priv *priv)
932 {
933 int i;
934 u32 r;
935
936 // assert s/w reset
937 write_register(priv->net_dev, IPW_REG_RESET_REG,
938 IPW_AUX_HOST_RESET_REG_SW_RESET);
939
940 // wait for clock stabilization
941 for (i = 0; i < 1000; i++) {
942 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
943
944 // check clock ready bit
945 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
946 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
947 break;
948 }
949
950 if (i == 1000)
951 return -EIO; // TODO: better error value
952
953 /* set "initialization complete" bit to move adapter to
954 * D0 state */
955 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
956 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
957
958 /* wait for clock stabilization */
959 for (i = 0; i < 10000; i++) {
960 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
961
962 /* check clock ready bit */
963 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
964 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
965 break;
966 }
967
968 if (i == 10000)
969 return -EIO; /* TODO: better error value */
970
971 /* set D0 standby bit */
972 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
973 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
974 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
975
976 return 0;
977 }
978
979 /*********************************************************************
980 Procedure : ipw2100_download_firmware
981 Purpose : Initiaze adapter after power on.
982 The sequence is:
983 1. assert s/w reset first!
984 2. awake clocks & wait for clock stabilization
985 3. hold ARC (don't ask me why...)
986 4. load Dino ucode and reset/clock init again
987 5. zero-out shared mem
988 6. download f/w
989 *******************************************************************/
990 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
991 {
992 u32 address;
993 int err;
994
995 #ifndef CONFIG_PM
996 /* Fetch the firmware and microcode */
997 struct ipw2100_fw ipw2100_firmware;
998 #endif
999
1000 if (priv->fatal_error) {
1001 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1002 "fatal error %d. Interface must be brought down.\n",
1003 priv->net_dev->name, priv->fatal_error);
1004 return -EINVAL;
1005 }
1006 #ifdef CONFIG_PM
1007 if (!ipw2100_firmware.version) {
1008 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1009 if (err) {
1010 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1011 priv->net_dev->name, err);
1012 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1013 goto fail;
1014 }
1015 }
1016 #else
1017 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1018 if (err) {
1019 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1020 priv->net_dev->name, err);
1021 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1022 goto fail;
1023 }
1024 #endif
1025 priv->firmware_version = ipw2100_firmware.version;
1026
1027 /* s/w reset and clock stabilization */
1028 err = sw_reset_and_clock(priv);
1029 if (err) {
1030 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1031 priv->net_dev->name, err);
1032 goto fail;
1033 }
1034
1035 err = ipw2100_verify(priv);
1036 if (err) {
1037 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1038 priv->net_dev->name, err);
1039 goto fail;
1040 }
1041
1042 /* Hold ARC */
1043 write_nic_dword(priv->net_dev,
1044 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1045
1046 /* allow ARC to run */
1047 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1048
1049 /* load microcode */
1050 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1051 if (err) {
1052 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1053 priv->net_dev->name, err);
1054 goto fail;
1055 }
1056
1057 /* release ARC */
1058 write_nic_dword(priv->net_dev,
1059 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1060
1061 /* s/w reset and clock stabilization (again!!!) */
1062 err = sw_reset_and_clock(priv);
1063 if (err) {
1064 printk(KERN_ERR DRV_NAME
1065 ": %s: sw_reset_and_clock failed: %d\n",
1066 priv->net_dev->name, err);
1067 goto fail;
1068 }
1069
1070 /* load f/w */
1071 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1072 if (err) {
1073 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1074 priv->net_dev->name, err);
1075 goto fail;
1076 }
1077 #ifndef CONFIG_PM
1078 /*
1079 * When the .resume method of the driver is called, the other
1080 * part of the system, i.e. the ide driver could still stay in
1081 * the suspend stage. This prevents us from loading the firmware
1082 * from the disk. --YZ
1083 */
1084
1085 /* free any storage allocated for firmware image */
1086 ipw2100_release_firmware(priv, &ipw2100_firmware);
1087 #endif
1088
1089 /* zero out Domain 1 area indirectly (Si requirement) */
1090 for (address = IPW_HOST_FW_SHARED_AREA0;
1091 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1092 write_nic_dword(priv->net_dev, address, 0);
1093 for (address = IPW_HOST_FW_SHARED_AREA1;
1094 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA2;
1097 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA3;
1100 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1103 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105
1106 return 0;
1107
1108 fail:
1109 ipw2100_release_firmware(priv, &ipw2100_firmware);
1110 return err;
1111 }
1112
1113 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1114 {
1115 if (priv->status & STATUS_INT_ENABLED)
1116 return;
1117 priv->status |= STATUS_INT_ENABLED;
1118 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1119 }
1120
1121 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1122 {
1123 if (!(priv->status & STATUS_INT_ENABLED))
1124 return;
1125 priv->status &= ~STATUS_INT_ENABLED;
1126 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1127 }
1128
1129 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1130 {
1131 struct ipw2100_ordinals *ord = &priv->ordinals;
1132
1133 IPW_DEBUG_INFO("enter\n");
1134
1135 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1136 &ord->table1_addr);
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1139 &ord->table2_addr);
1140
1141 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1142 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1143
1144 ord->table2_size &= 0x0000FFFF;
1145
1146 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1147 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1148 IPW_DEBUG_INFO("exit\n");
1149 }
1150
1151 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1152 {
1153 u32 reg = 0;
1154 /*
1155 * Set GPIO 3 writable by FW; GPIO 1 writable
1156 * by driver and enable clock
1157 */
1158 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1159 IPW_BIT_GPIO_LED_OFF);
1160 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1161 }
1162
1163 static int rf_kill_active(struct ipw2100_priv *priv)
1164 {
1165 #define MAX_RF_KILL_CHECKS 5
1166 #define RF_KILL_CHECK_DELAY 40
1167
1168 unsigned short value = 0;
1169 u32 reg = 0;
1170 int i;
1171
1172 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1173 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1174 priv->status &= ~STATUS_RF_KILL_HW;
1175 return 0;
1176 }
1177
1178 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1179 udelay(RF_KILL_CHECK_DELAY);
1180 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1181 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1182 }
1183
1184 if (value == 0) {
1185 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1186 priv->status |= STATUS_RF_KILL_HW;
1187 } else {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1189 priv->status &= ~STATUS_RF_KILL_HW;
1190 }
1191
1192 return (value == 0);
1193 }
1194
1195 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1196 {
1197 u32 addr, len;
1198 u32 val;
1199
1200 /*
1201 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1202 */
1203 len = sizeof(addr);
1204 if (ipw2100_get_ordinal
1205 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1206 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1207 __LINE__);
1208 return -EIO;
1209 }
1210
1211 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1212
1213 /*
1214 * EEPROM version is the byte at offset 0xfd in firmware
1215 * We read 4 bytes, then shift out the byte we actually want */
1216 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1217 priv->eeprom_version = (val >> 24) & 0xFF;
1218 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1219
1220 /*
1221 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1222 *
1223 * notice that the EEPROM bit is reverse polarity, i.e.
1224 * bit = 0 signifies HW RF kill switch is supported
1225 * bit = 1 signifies HW RF kill switch is NOT supported
1226 */
1227 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1228 if (!((val >> 24) & 0x01))
1229 priv->hw_features |= HW_FEATURE_RFKILL;
1230
1231 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1232 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1233
1234 return 0;
1235 }
1236
1237 /*
1238 * Start firmware execution after power on and intialization
1239 * The sequence is:
1240 * 1. Release ARC
1241 * 2. Wait for f/w initialization completes;
1242 */
1243 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1244 {
1245 int i;
1246 u32 inta, inta_mask, gpio;
1247
1248 IPW_DEBUG_INFO("enter\n");
1249
1250 if (priv->status & STATUS_RUNNING)
1251 return 0;
1252
1253 /*
1254 * Initialize the hw - drive adapter to DO state by setting
1255 * init_done bit. Wait for clk_ready bit and Download
1256 * fw & dino ucode
1257 */
1258 if (ipw2100_download_firmware(priv)) {
1259 printk(KERN_ERR DRV_NAME
1260 ": %s: Failed to power on the adapter.\n",
1261 priv->net_dev->name);
1262 return -EIO;
1263 }
1264
1265 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1266 * in the firmware RBD and TBD ring queue */
1267 ipw2100_queues_initialize(priv);
1268
1269 ipw2100_hw_set_gpio(priv);
1270
1271 /* TODO -- Look at disabling interrupts here to make sure none
1272 * get fired during FW initialization */
1273
1274 /* Release ARC - clear reset bit */
1275 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1276
1277 /* wait for f/w intialization complete */
1278 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1279 i = 5000;
1280 do {
1281 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1282 /* Todo... wait for sync command ... */
1283
1284 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1285
1286 /* check "init done" bit */
1287 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1288 /* reset "init done" bit */
1289 write_register(priv->net_dev, IPW_REG_INTA,
1290 IPW2100_INTA_FW_INIT_DONE);
1291 break;
1292 }
1293
1294 /* check error conditions : we check these after the firmware
1295 * check so that if there is an error, the interrupt handler
1296 * will see it and the adapter will be reset */
1297 if (inta &
1298 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1299 /* clear error conditions */
1300 write_register(priv->net_dev, IPW_REG_INTA,
1301 IPW2100_INTA_FATAL_ERROR |
1302 IPW2100_INTA_PARITY_ERROR);
1303 }
1304 } while (--i);
1305
1306 /* Clear out any pending INTAs since we aren't supposed to have
1307 * interrupts enabled at this point... */
1308 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1309 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1310 inta &= IPW_INTERRUPT_MASK;
1311 /* Clear out any pending interrupts */
1312 if (inta & inta_mask)
1313 write_register(priv->net_dev, IPW_REG_INTA, inta);
1314
1315 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1316 i ? "SUCCESS" : "FAILED");
1317
1318 if (!i) {
1319 printk(KERN_WARNING DRV_NAME
1320 ": %s: Firmware did not initialize.\n",
1321 priv->net_dev->name);
1322 return -EIO;
1323 }
1324
1325 /* allow firmware to write to GPIO1 & GPIO3 */
1326 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1327
1328 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1329
1330 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1331
1332 /* Ready to receive commands */
1333 priv->status |= STATUS_RUNNING;
1334
1335 /* The adapter has been reset; we are not associated */
1336 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1337
1338 IPW_DEBUG_INFO("exit\n");
1339
1340 return 0;
1341 }
1342
1343 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1344 {
1345 if (!priv->fatal_error)
1346 return;
1347
1348 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1349 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1350 priv->fatal_error = 0;
1351 }
1352
1353 /* NOTE: Our interrupt is disabled when this method is called */
1354 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1355 {
1356 u32 reg;
1357 int i;
1358
1359 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1360
1361 ipw2100_hw_set_gpio(priv);
1362
1363 /* Step 1. Stop Master Assert */
1364 write_register(priv->net_dev, IPW_REG_RESET_REG,
1365 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1366
1367 /* Step 2. Wait for stop Master Assert
1368 * (not more than 50us, otherwise ret error */
1369 i = 5;
1370 do {
1371 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1372 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1373
1374 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1375 break;
1376 } while (--i);
1377
1378 priv->status &= ~STATUS_RESET_PENDING;
1379
1380 if (!i) {
1381 IPW_DEBUG_INFO
1382 ("exit - waited too long for master assert stop\n");
1383 return -EIO;
1384 }
1385
1386 write_register(priv->net_dev, IPW_REG_RESET_REG,
1387 IPW_AUX_HOST_RESET_REG_SW_RESET);
1388
1389 /* Reset any fatal_error conditions */
1390 ipw2100_reset_fatalerror(priv);
1391
1392 /* At this point, the adapter is now stopped and disabled */
1393 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1394 STATUS_ASSOCIATED | STATUS_ENABLED);
1395
1396 return 0;
1397 }
1398
1399 /*
1400 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1401 *
1402 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1403 *
1404 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1405 * if STATUS_ASSN_LOST is sent.
1406 */
1407 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1408 {
1409
1410 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1411
1412 struct host_command cmd = {
1413 .host_command = CARD_DISABLE_PHY_OFF,
1414 .host_command_sequence = 0,
1415 .host_command_length = 0,
1416 };
1417 int err, i;
1418 u32 val1, val2;
1419
1420 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1421
1422 /* Turn off the radio */
1423 err = ipw2100_hw_send_command(priv, &cmd);
1424 if (err)
1425 return err;
1426
1427 for (i = 0; i < 2500; i++) {
1428 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1429 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1430
1431 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1432 (val2 & IPW2100_COMMAND_PHY_OFF))
1433 return 0;
1434
1435 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1436 }
1437
1438 return -EIO;
1439 }
1440
1441 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1442 {
1443 struct host_command cmd = {
1444 .host_command = HOST_COMPLETE,
1445 .host_command_sequence = 0,
1446 .host_command_length = 0
1447 };
1448 int err = 0;
1449
1450 IPW_DEBUG_HC("HOST_COMPLETE\n");
1451
1452 if (priv->status & STATUS_ENABLED)
1453 return 0;
1454
1455 mutex_lock(&priv->adapter_mutex);
1456
1457 if (rf_kill_active(priv)) {
1458 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1459 goto fail_up;
1460 }
1461
1462 err = ipw2100_hw_send_command(priv, &cmd);
1463 if (err) {
1464 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1465 goto fail_up;
1466 }
1467
1468 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1469 if (err) {
1470 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1471 priv->net_dev->name);
1472 goto fail_up;
1473 }
1474
1475 if (priv->stop_hang_check) {
1476 priv->stop_hang_check = 0;
1477 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1478 }
1479
1480 fail_up:
1481 mutex_unlock(&priv->adapter_mutex);
1482 return err;
1483 }
1484
1485 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1486 {
1487 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1488
1489 struct host_command cmd = {
1490 .host_command = HOST_PRE_POWER_DOWN,
1491 .host_command_sequence = 0,
1492 .host_command_length = 0,
1493 };
1494 int err, i;
1495 u32 reg;
1496
1497 if (!(priv->status & STATUS_RUNNING))
1498 return 0;
1499
1500 priv->status |= STATUS_STOPPING;
1501
1502 /* We can only shut down the card if the firmware is operational. So,
1503 * if we haven't reset since a fatal_error, then we can not send the
1504 * shutdown commands. */
1505 if (!priv->fatal_error) {
1506 /* First, make sure the adapter is enabled so that the PHY_OFF
1507 * command can shut it down */
1508 ipw2100_enable_adapter(priv);
1509
1510 err = ipw2100_hw_phy_off(priv);
1511 if (err)
1512 printk(KERN_WARNING DRV_NAME
1513 ": Error disabling radio %d\n", err);
1514
1515 /*
1516 * If in D0-standby mode going directly to D3 may cause a
1517 * PCI bus violation. Therefore we must change out of the D0
1518 * state.
1519 *
1520 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1521 * hardware from going into standby mode and will transition
1522 * out of D0-standby if it is already in that state.
1523 *
1524 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1525 * driver upon completion. Once received, the driver can
1526 * proceed to the D3 state.
1527 *
1528 * Prepare for power down command to fw. This command would
1529 * take HW out of D0-standby and prepare it for D3 state.
1530 *
1531 * Currently FW does not support event notification for this
1532 * event. Therefore, skip waiting for it. Just wait a fixed
1533 * 100ms
1534 */
1535 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1536
1537 err = ipw2100_hw_send_command(priv, &cmd);
1538 if (err)
1539 printk(KERN_WARNING DRV_NAME ": "
1540 "%s: Power down command failed: Error %d\n",
1541 priv->net_dev->name, err);
1542 else
1543 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1544 }
1545
1546 priv->status &= ~STATUS_ENABLED;
1547
1548 /*
1549 * Set GPIO 3 writable by FW; GPIO 1 writable
1550 * by driver and enable clock
1551 */
1552 ipw2100_hw_set_gpio(priv);
1553
1554 /*
1555 * Power down adapter. Sequence:
1556 * 1. Stop master assert (RESET_REG[9]=1)
1557 * 2. Wait for stop master (RESET_REG[8]==1)
1558 * 3. S/w reset assert (RESET_REG[7] = 1)
1559 */
1560
1561 /* Stop master assert */
1562 write_register(priv->net_dev, IPW_REG_RESET_REG,
1563 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1564
1565 /* wait stop master not more than 50 usec.
1566 * Otherwise return error. */
1567 for (i = 5; i > 0; i--) {
1568 udelay(10);
1569
1570 /* Check master stop bit */
1571 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1572
1573 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1574 break;
1575 }
1576
1577 if (i == 0)
1578 printk(KERN_WARNING DRV_NAME
1579 ": %s: Could now power down adapter.\n",
1580 priv->net_dev->name);
1581
1582 /* assert s/w reset */
1583 write_register(priv->net_dev, IPW_REG_RESET_REG,
1584 IPW_AUX_HOST_RESET_REG_SW_RESET);
1585
1586 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1587
1588 return 0;
1589 }
1590
1591 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1592 {
1593 struct host_command cmd = {
1594 .host_command = CARD_DISABLE,
1595 .host_command_sequence = 0,
1596 .host_command_length = 0
1597 };
1598 int err = 0;
1599
1600 IPW_DEBUG_HC("CARD_DISABLE\n");
1601
1602 if (!(priv->status & STATUS_ENABLED))
1603 return 0;
1604
1605 /* Make sure we clear the associated state */
1606 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1607
1608 if (!priv->stop_hang_check) {
1609 priv->stop_hang_check = 1;
1610 cancel_delayed_work(&priv->hang_check);
1611 }
1612
1613 mutex_lock(&priv->adapter_mutex);
1614
1615 err = ipw2100_hw_send_command(priv, &cmd);
1616 if (err) {
1617 printk(KERN_WARNING DRV_NAME
1618 ": exit - failed to send CARD_DISABLE command\n");
1619 goto fail_up;
1620 }
1621
1622 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1623 if (err) {
1624 printk(KERN_WARNING DRV_NAME
1625 ": exit - card failed to change to DISABLED\n");
1626 goto fail_up;
1627 }
1628
1629 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1630
1631 fail_up:
1632 mutex_unlock(&priv->adapter_mutex);
1633 return err;
1634 }
1635
1636 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1637 {
1638 struct host_command cmd = {
1639 .host_command = SET_SCAN_OPTIONS,
1640 .host_command_sequence = 0,
1641 .host_command_length = 8
1642 };
1643 int err;
1644
1645 IPW_DEBUG_INFO("enter\n");
1646
1647 IPW_DEBUG_SCAN("setting scan options\n");
1648
1649 cmd.host_command_parameters[0] = 0;
1650
1651 if (!(priv->config & CFG_ASSOCIATE))
1652 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1653 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1654 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1655 if (priv->config & CFG_PASSIVE_SCAN)
1656 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1657
1658 cmd.host_command_parameters[1] = priv->channel_mask;
1659
1660 err = ipw2100_hw_send_command(priv, &cmd);
1661
1662 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1663 cmd.host_command_parameters[0]);
1664
1665 return err;
1666 }
1667
1668 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1669 {
1670 struct host_command cmd = {
1671 .host_command = BROADCAST_SCAN,
1672 .host_command_sequence = 0,
1673 .host_command_length = 4
1674 };
1675 int err;
1676
1677 IPW_DEBUG_HC("START_SCAN\n");
1678
1679 cmd.host_command_parameters[0] = 0;
1680
1681 /* No scanning if in monitor mode */
1682 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1683 return 1;
1684
1685 if (priv->status & STATUS_SCANNING) {
1686 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1687 return 0;
1688 }
1689
1690 IPW_DEBUG_INFO("enter\n");
1691
1692 /* Not clearing here; doing so makes iwlist always return nothing...
1693 *
1694 * We should modify the table logic to use aging tables vs. clearing
1695 * the table on each scan start.
1696 */
1697 IPW_DEBUG_SCAN("starting scan\n");
1698
1699 priv->status |= STATUS_SCANNING;
1700 err = ipw2100_hw_send_command(priv, &cmd);
1701 if (err)
1702 priv->status &= ~STATUS_SCANNING;
1703
1704 IPW_DEBUG_INFO("exit\n");
1705
1706 return err;
1707 }
1708
1709 static const struct libipw_geo ipw_geos[] = {
1710 { /* Restricted */
1711 "---",
1712 .bg_channels = 14,
1713 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1714 {2427, 4}, {2432, 5}, {2437, 6},
1715 {2442, 7}, {2447, 8}, {2452, 9},
1716 {2457, 10}, {2462, 11}, {2467, 12},
1717 {2472, 13}, {2484, 14}},
1718 },
1719 };
1720
1721 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1722 {
1723 unsigned long flags;
1724 int rc = 0;
1725 u32 lock;
1726 u32 ord_len = sizeof(lock);
1727
1728 /* Age scan list entries found before suspend */
1729 if (priv->suspend_time) {
1730 libipw_networks_age(priv->ieee, priv->suspend_time);
1731 priv->suspend_time = 0;
1732 }
1733
1734 /* Quiet if manually disabled. */
1735 if (priv->status & STATUS_RF_KILL_SW) {
1736 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1737 "switch\n", priv->net_dev->name);
1738 return 0;
1739 }
1740
1741 /* the ipw2100 hardware really doesn't want power management delays
1742 * longer than 175usec
1743 */
1744 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1745
1746 /* If the interrupt is enabled, turn it off... */
1747 spin_lock_irqsave(&priv->low_lock, flags);
1748 ipw2100_disable_interrupts(priv);
1749
1750 /* Reset any fatal_error conditions */
1751 ipw2100_reset_fatalerror(priv);
1752 spin_unlock_irqrestore(&priv->low_lock, flags);
1753
1754 if (priv->status & STATUS_POWERED ||
1755 (priv->status & STATUS_RESET_PENDING)) {
1756 /* Power cycle the card ... */
1757 if (ipw2100_power_cycle_adapter(priv)) {
1758 printk(KERN_WARNING DRV_NAME
1759 ": %s: Could not cycle adapter.\n",
1760 priv->net_dev->name);
1761 rc = 1;
1762 goto exit;
1763 }
1764 } else
1765 priv->status |= STATUS_POWERED;
1766
1767 /* Load the firmware, start the clocks, etc. */
1768 if (ipw2100_start_adapter(priv)) {
1769 printk(KERN_ERR DRV_NAME
1770 ": %s: Failed to start the firmware.\n",
1771 priv->net_dev->name);
1772 rc = 1;
1773 goto exit;
1774 }
1775
1776 ipw2100_initialize_ordinals(priv);
1777
1778 /* Determine capabilities of this particular HW configuration */
1779 if (ipw2100_get_hw_features(priv)) {
1780 printk(KERN_ERR DRV_NAME
1781 ": %s: Failed to determine HW features.\n",
1782 priv->net_dev->name);
1783 rc = 1;
1784 goto exit;
1785 }
1786
1787 /* Initialize the geo */
1788 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1789 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1790 return 0;
1791 }
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794 lock = LOCK_NONE;
1795 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 printk(KERN_ERR DRV_NAME
1797 ": %s: Failed to clear ordinal lock.\n",
1798 priv->net_dev->name);
1799 rc = 1;
1800 goto exit;
1801 }
1802
1803 priv->status &= ~STATUS_SCANNING;
1804
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1808
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1812 round_jiffies_relative(HZ));
1813 }
1814
1815 deferred = 1;
1816 }
1817
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1820
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 if (ipw2100_adapter_setup(priv)) {
1824 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 priv->net_dev->name);
1826 rc = 1;
1827 goto exit;
1828 }
1829
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 if (ipw2100_enable_adapter(priv)) {
1833 printk(KERN_ERR DRV_NAME ": "
1834 "%s: failed in call to enable adapter.\n",
1835 priv->net_dev->name);
1836 ipw2100_hw_stop_adapter(priv);
1837 rc = 1;
1838 goto exit;
1839 }
1840
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1844 }
1845
1846 exit:
1847 return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1856 };
1857 int associated = priv->status & STATUS_ASSOCIATED;
1858
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1863 }
1864
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1869 }
1870
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1874
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1884
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1901 }
1902
1903 /* Called by register_netdev() */
1904 static int ipw2100_net_init(struct net_device *dev)
1905 {
1906 struct ipw2100_priv *priv = libipw_priv(dev);
1907 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1908 struct wireless_dev *wdev = &priv->ieee->wdev;
1909 int ret;
1910 int i;
1911
1912 ret = ipw2100_up(priv, 1);
1913 if (ret)
1914 return ret;
1915
1916 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1917
1918 /* fill-out priv->ieee->bg_band */
1919 if (geo->bg_channels) {
1920 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1921
1922 bg_band->band = IEEE80211_BAND_2GHZ;
1923 bg_band->n_channels = geo->bg_channels;
1924 bg_band->channels = kcalloc(geo->bg_channels,
1925 sizeof(struct ieee80211_channel),
1926 GFP_KERNEL);
1927 if (!bg_band->channels) {
1928 ipw2100_down(priv);
1929 return -ENOMEM;
1930 }
1931 /* translate geo->bg to bg_band.channels */
1932 for (i = 0; i < geo->bg_channels; i++) {
1933 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1934 bg_band->channels[i].center_freq = geo->bg[i].freq;
1935 bg_band->channels[i].hw_value = geo->bg[i].channel;
1936 bg_band->channels[i].max_power = geo->bg[i].max_power;
1937 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_PASSIVE_SCAN;
1940 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1941 bg_band->channels[i].flags |=
1942 IEEE80211_CHAN_NO_IBSS;
1943 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1944 bg_band->channels[i].flags |=
1945 IEEE80211_CHAN_RADAR;
1946 /* No equivalent for LIBIPW_CH_80211H_RULES,
1947 LIBIPW_CH_UNIFORM_SPREADING, or
1948 LIBIPW_CH_B_ONLY... */
1949 }
1950 /* point at bitrate info */
1951 bg_band->bitrates = ipw2100_bg_rates;
1952 bg_band->n_bitrates = RATE_COUNT;
1953
1954 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1955 }
1956
1957 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1958 if (wiphy_register(wdev->wiphy)) {
1959 ipw2100_down(priv);
1960 return -EIO;
1961 }
1962 return 0;
1963 }
1964
1965 static void ipw2100_reset_adapter(struct work_struct *work)
1966 {
1967 struct ipw2100_priv *priv =
1968 container_of(work, struct ipw2100_priv, reset_work.work);
1969 unsigned long flags;
1970 union iwreq_data wrqu = {
1971 .ap_addr = {
1972 .sa_family = ARPHRD_ETHER}
1973 };
1974 int associated = priv->status & STATUS_ASSOCIATED;
1975
1976 spin_lock_irqsave(&priv->low_lock, flags);
1977 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1978 priv->resets++;
1979 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1980 priv->status |= STATUS_SECURITY_UPDATED;
1981
1982 /* Force a power cycle even if interface hasn't been opened
1983 * yet */
1984 cancel_delayed_work(&priv->reset_work);
1985 priv->status |= STATUS_RESET_PENDING;
1986 spin_unlock_irqrestore(&priv->low_lock, flags);
1987
1988 mutex_lock(&priv->action_mutex);
1989 /* stop timed checks so that they don't interfere with reset */
1990 priv->stop_hang_check = 1;
1991 cancel_delayed_work(&priv->hang_check);
1992
1993 /* We have to signal any supplicant if we are disassociating */
1994 if (associated)
1995 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1996
1997 ipw2100_up(priv, 0);
1998 mutex_unlock(&priv->action_mutex);
1999
2000 }
2001
2002 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2003 {
2004
2005 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2006 int ret;
2007 unsigned int len, essid_len;
2008 char essid[IW_ESSID_MAX_SIZE];
2009 u32 txrate;
2010 u32 chan;
2011 char *txratename;
2012 u8 bssid[ETH_ALEN];
2013 DECLARE_SSID_BUF(ssid);
2014
2015 /*
2016 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2017 * an actual MAC of the AP. Seems like FW sets this
2018 * address too late. Read it later and expose through
2019 * /proc or schedule a later task to query and update
2020 */
2021
2022 essid_len = IW_ESSID_MAX_SIZE;
2023 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2024 essid, &essid_len);
2025 if (ret) {
2026 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2027 __LINE__);
2028 return;
2029 }
2030
2031 len = sizeof(u32);
2032 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2033 if (ret) {
2034 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2035 __LINE__);
2036 return;
2037 }
2038
2039 len = sizeof(u32);
2040 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2041 if (ret) {
2042 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2043 __LINE__);
2044 return;
2045 }
2046 len = ETH_ALEN;
2047 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2048 if (ret) {
2049 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2050 __LINE__);
2051 return;
2052 }
2053 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2054
2055 switch (txrate) {
2056 case TX_RATE_1_MBIT:
2057 txratename = "1Mbps";
2058 break;
2059 case TX_RATE_2_MBIT:
2060 txratename = "2Mbsp";
2061 break;
2062 case TX_RATE_5_5_MBIT:
2063 txratename = "5.5Mbps";
2064 break;
2065 case TX_RATE_11_MBIT:
2066 txratename = "11Mbps";
2067 break;
2068 default:
2069 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2070 txratename = "unknown rate";
2071 break;
2072 }
2073
2074 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2075 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2076 txratename, chan, bssid);
2077
2078 /* now we copy read ssid into dev */
2079 if (!(priv->config & CFG_STATIC_ESSID)) {
2080 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2081 memcpy(priv->essid, essid, priv->essid_len);
2082 }
2083 priv->channel = chan;
2084 memcpy(priv->bssid, bssid, ETH_ALEN);
2085
2086 priv->status |= STATUS_ASSOCIATING;
2087 priv->connect_start = get_seconds();
2088
2089 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2090 }
2091
2092 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2093 int length, int batch_mode)
2094 {
2095 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2096 struct host_command cmd = {
2097 .host_command = SSID,
2098 .host_command_sequence = 0,
2099 .host_command_length = ssid_len
2100 };
2101 int err;
2102 DECLARE_SSID_BUF(ssid);
2103
2104 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2105
2106 if (ssid_len)
2107 memcpy(cmd.host_command_parameters, essid, ssid_len);
2108
2109 if (!batch_mode) {
2110 err = ipw2100_disable_adapter(priv);
2111 if (err)
2112 return err;
2113 }
2114
2115 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2116 * disable auto association -- so we cheat by setting a bogus SSID */
2117 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2118 int i;
2119 u8 *bogus = (u8 *) cmd.host_command_parameters;
2120 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2121 bogus[i] = 0x18 + i;
2122 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2123 }
2124
2125 /* NOTE: We always send the SSID command even if the provided ESSID is
2126 * the same as what we currently think is set. */
2127
2128 err = ipw2100_hw_send_command(priv, &cmd);
2129 if (!err) {
2130 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2131 memcpy(priv->essid, essid, ssid_len);
2132 priv->essid_len = ssid_len;
2133 }
2134
2135 if (!batch_mode) {
2136 if (ipw2100_enable_adapter(priv))
2137 err = -EIO;
2138 }
2139
2140 return err;
2141 }
2142
2143 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2144 {
2145 DECLARE_SSID_BUF(ssid);
2146
2147 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2148 "disassociated: '%s' %pM\n",
2149 print_ssid(ssid, priv->essid, priv->essid_len),
2150 priv->bssid);
2151
2152 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2153
2154 if (priv->status & STATUS_STOPPING) {
2155 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2156 return;
2157 }
2158
2159 memset(priv->bssid, 0, ETH_ALEN);
2160 memset(priv->ieee->bssid, 0, ETH_ALEN);
2161
2162 netif_carrier_off(priv->net_dev);
2163 netif_stop_queue(priv->net_dev);
2164
2165 if (!(priv->status & STATUS_RUNNING))
2166 return;
2167
2168 if (priv->status & STATUS_SECURITY_UPDATED)
2169 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2170
2171 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2172 }
2173
2174 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2175 {
2176 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2177 priv->net_dev->name);
2178
2179 /* RF_KILL is now enabled (else we wouldn't be here) */
2180 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2181 priv->status |= STATUS_RF_KILL_HW;
2182
2183 /* Make sure the RF Kill check timer is running */
2184 priv->stop_rf_kill = 0;
2185 cancel_delayed_work(&priv->rf_kill);
2186 queue_delayed_work(priv->workqueue, &priv->rf_kill,
2187 round_jiffies_relative(HZ));
2188 }
2189
2190 static void send_scan_event(void *data)
2191 {
2192 struct ipw2100_priv *priv = data;
2193 union iwreq_data wrqu;
2194
2195 wrqu.data.length = 0;
2196 wrqu.data.flags = 0;
2197 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2198 }
2199
2200 static void ipw2100_scan_event_later(struct work_struct *work)
2201 {
2202 send_scan_event(container_of(work, struct ipw2100_priv,
2203 scan_event_later.work));
2204 }
2205
2206 static void ipw2100_scan_event_now(struct work_struct *work)
2207 {
2208 send_scan_event(container_of(work, struct ipw2100_priv,
2209 scan_event_now));
2210 }
2211
2212 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2213 {
2214 IPW_DEBUG_SCAN("scan complete\n");
2215 /* Age the scan results... */
2216 priv->ieee->scans++;
2217 priv->status &= ~STATUS_SCANNING;
2218
2219 /* Only userspace-requested scan completion events go out immediately */
2220 if (!priv->user_requested_scan) {
2221 if (!delayed_work_pending(&priv->scan_event_later))
2222 queue_delayed_work(priv->workqueue,
2223 &priv->scan_event_later,
2224 round_jiffies_relative(msecs_to_jiffies(4000)));
2225 } else {
2226 priv->user_requested_scan = 0;
2227 cancel_delayed_work(&priv->scan_event_later);
2228 queue_work(priv->workqueue, &priv->scan_event_now);
2229 }
2230 }
2231
2232 #ifdef CONFIG_IPW2100_DEBUG
2233 #define IPW2100_HANDLER(v, f) { v, f, # v }
2234 struct ipw2100_status_indicator {
2235 int status;
2236 void (*cb) (struct ipw2100_priv * priv, u32 status);
2237 char *name;
2238 };
2239 #else
2240 #define IPW2100_HANDLER(v, f) { v, f }
2241 struct ipw2100_status_indicator {
2242 int status;
2243 void (*cb) (struct ipw2100_priv * priv, u32 status);
2244 };
2245 #endif /* CONFIG_IPW2100_DEBUG */
2246
2247 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2248 {
2249 IPW_DEBUG_SCAN("Scanning...\n");
2250 priv->status |= STATUS_SCANNING;
2251 }
2252
2253 static const struct ipw2100_status_indicator status_handlers[] = {
2254 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2255 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2256 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2257 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2258 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2259 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2260 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2261 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2262 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2263 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2264 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2265 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2266 IPW2100_HANDLER(-1, NULL)
2267 };
2268
2269 static void isr_status_change(struct ipw2100_priv *priv, int status)
2270 {
2271 int i;
2272
2273 if (status == IPW_STATE_SCANNING &&
2274 priv->status & STATUS_ASSOCIATED &&
2275 !(priv->status & STATUS_SCANNING)) {
2276 IPW_DEBUG_INFO("Scan detected while associated, with "
2277 "no scan request. Restarting firmware.\n");
2278
2279 /* Wake up any sleeping jobs */
2280 schedule_reset(priv);
2281 }
2282
2283 for (i = 0; status_handlers[i].status != -1; i++) {
2284 if (status == status_handlers[i].status) {
2285 IPW_DEBUG_NOTIF("Status change: %s\n",
2286 status_handlers[i].name);
2287 if (status_handlers[i].cb)
2288 status_handlers[i].cb(priv, status);
2289 priv->wstats.status = status;
2290 return;
2291 }
2292 }
2293
2294 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2295 }
2296
2297 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2298 struct ipw2100_cmd_header *cmd)
2299 {
2300 #ifdef CONFIG_IPW2100_DEBUG
2301 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2302 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2303 command_types[cmd->host_command_reg],
2304 cmd->host_command_reg);
2305 }
2306 #endif
2307 if (cmd->host_command_reg == HOST_COMPLETE)
2308 priv->status |= STATUS_ENABLED;
2309
2310 if (cmd->host_command_reg == CARD_DISABLE)
2311 priv->status &= ~STATUS_ENABLED;
2312
2313 priv->status &= ~STATUS_CMD_ACTIVE;
2314
2315 wake_up_interruptible(&priv->wait_command_queue);
2316 }
2317
2318 #ifdef CONFIG_IPW2100_DEBUG
2319 static const char *frame_types[] = {
2320 "COMMAND_STATUS_VAL",
2321 "STATUS_CHANGE_VAL",
2322 "P80211_DATA_VAL",
2323 "P8023_DATA_VAL",
2324 "HOST_NOTIFICATION_VAL"
2325 };
2326 #endif
2327
2328 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2329 struct ipw2100_rx_packet *packet)
2330 {
2331 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2332 if (!packet->skb)
2333 return -ENOMEM;
2334
2335 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2336 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2337 sizeof(struct ipw2100_rx),
2338 PCI_DMA_FROMDEVICE);
2339 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2340 * dma_addr */
2341
2342 return 0;
2343 }
2344
2345 #define SEARCH_ERROR 0xffffffff
2346 #define SEARCH_FAIL 0xfffffffe
2347 #define SEARCH_SUCCESS 0xfffffff0
2348 #define SEARCH_DISCARD 0
2349 #define SEARCH_SNAPSHOT 1
2350
2351 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2352 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2353 {
2354 int i;
2355 if (!priv->snapshot[0])
2356 return;
2357 for (i = 0; i < 0x30; i++)
2358 kfree(priv->snapshot[i]);
2359 priv->snapshot[0] = NULL;
2360 }
2361
2362 #ifdef IPW2100_DEBUG_C3
2363 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2364 {
2365 int i;
2366 if (priv->snapshot[0])
2367 return 1;
2368 for (i = 0; i < 0x30; i++) {
2369 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2370 if (!priv->snapshot[i]) {
2371 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2372 "buffer %d\n", priv->net_dev->name, i);
2373 while (i > 0)
2374 kfree(priv->snapshot[--i]);
2375 priv->snapshot[0] = NULL;
2376 return 0;
2377 }
2378 }
2379
2380 return 1;
2381 }
2382
2383 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2384 size_t len, int mode)
2385 {
2386 u32 i, j;
2387 u32 tmp;
2388 u8 *s, *d;
2389 u32 ret;
2390
2391 s = in_buf;
2392 if (mode == SEARCH_SNAPSHOT) {
2393 if (!ipw2100_snapshot_alloc(priv))
2394 mode = SEARCH_DISCARD;
2395 }
2396
2397 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2398 read_nic_dword(priv->net_dev, i, &tmp);
2399 if (mode == SEARCH_SNAPSHOT)
2400 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2401 if (ret == SEARCH_FAIL) {
2402 d = (u8 *) & tmp;
2403 for (j = 0; j < 4; j++) {
2404 if (*s != *d) {
2405 s = in_buf;
2406 continue;
2407 }
2408
2409 s++;
2410 d++;
2411
2412 if ((s - in_buf) == len)
2413 ret = (i + j) - len + 1;
2414 }
2415 } else if (mode == SEARCH_DISCARD)
2416 return ret;
2417 }
2418
2419 return ret;
2420 }
2421 #endif
2422
2423 /*
2424 *
2425 * 0) Disconnect the SKB from the firmware (just unmap)
2426 * 1) Pack the ETH header into the SKB
2427 * 2) Pass the SKB to the network stack
2428 *
2429 * When packet is provided by the firmware, it contains the following:
2430 *
2431 * . libipw_hdr
2432 * . libipw_snap_hdr
2433 *
2434 * The size of the constructed ethernet
2435 *
2436 */
2437 #ifdef IPW2100_RX_DEBUG
2438 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2439 #endif
2440
2441 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2442 {
2443 #ifdef IPW2100_DEBUG_C3
2444 struct ipw2100_status *status = &priv->status_queue.drv[i];
2445 u32 match, reg;
2446 int j;
2447 #endif
2448
2449 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2450 i * sizeof(struct ipw2100_status));
2451
2452 #ifdef IPW2100_DEBUG_C3
2453 /* Halt the firmware so we can get a good image */
2454 write_register(priv->net_dev, IPW_REG_RESET_REG,
2455 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2456 j = 5;
2457 do {
2458 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2459 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2460
2461 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2462 break;
2463 } while (j--);
2464
2465 match = ipw2100_match_buf(priv, (u8 *) status,
2466 sizeof(struct ipw2100_status),
2467 SEARCH_SNAPSHOT);
2468 if (match < SEARCH_SUCCESS)
2469 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2470 "offset 0x%06X, length %d:\n",
2471 priv->net_dev->name, match,
2472 sizeof(struct ipw2100_status));
2473 else
2474 IPW_DEBUG_INFO("%s: No DMA status match in "
2475 "Firmware.\n", priv->net_dev->name);
2476
2477 printk_buf((u8 *) priv->status_queue.drv,
2478 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2479 #endif
2480
2481 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2482 priv->net_dev->stats.rx_errors++;
2483 schedule_reset(priv);
2484 }
2485
2486 static void isr_rx(struct ipw2100_priv *priv, int i,
2487 struct libipw_rx_stats *stats)
2488 {
2489 struct net_device *dev = priv->net_dev;
2490 struct ipw2100_status *status = &priv->status_queue.drv[i];
2491 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2492
2493 IPW_DEBUG_RX("Handler...\n");
2494
2495 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2496 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2497 " Dropping.\n",
2498 dev->name,
2499 status->frame_size, skb_tailroom(packet->skb));
2500 dev->stats.rx_errors++;
2501 return;
2502 }
2503
2504 if (unlikely(!netif_running(dev))) {
2505 dev->stats.rx_errors++;
2506 priv->wstats.discard.misc++;
2507 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2508 return;
2509 }
2510
2511 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2512 !(priv->status & STATUS_ASSOCIATED))) {
2513 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2514 priv->wstats.discard.misc++;
2515 return;
2516 }
2517
2518 pci_unmap_single(priv->pci_dev,
2519 packet->dma_addr,
2520 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2521
2522 skb_put(packet->skb, status->frame_size);
2523
2524 #ifdef IPW2100_RX_DEBUG
2525 /* Make a copy of the frame so we can dump it to the logs if
2526 * libipw_rx fails */
2527 skb_copy_from_linear_data(packet->skb, packet_data,
2528 min_t(u32, status->frame_size,
2529 IPW_RX_NIC_BUFFER_LENGTH));
2530 #endif
2531
2532 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2533 #ifdef IPW2100_RX_DEBUG
2534 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2535 dev->name);
2536 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2537 #endif
2538 dev->stats.rx_errors++;
2539
2540 /* libipw_rx failed, so it didn't free the SKB */
2541 dev_kfree_skb_any(packet->skb);
2542 packet->skb = NULL;
2543 }
2544
2545 /* We need to allocate a new SKB and attach it to the RDB. */
2546 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2547 printk(KERN_WARNING DRV_NAME ": "
2548 "%s: Unable to allocate SKB onto RBD ring - disabling "
2549 "adapter.\n", dev->name);
2550 /* TODO: schedule adapter shutdown */
2551 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2552 }
2553
2554 /* Update the RDB entry */
2555 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2556 }
2557
2558 #ifdef CONFIG_IPW2100_MONITOR
2559
2560 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2561 struct libipw_rx_stats *stats)
2562 {
2563 struct net_device *dev = priv->net_dev;
2564 struct ipw2100_status *status = &priv->status_queue.drv[i];
2565 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2566
2567 /* Magic struct that slots into the radiotap header -- no reason
2568 * to build this manually element by element, we can write it much
2569 * more efficiently than we can parse it. ORDER MATTERS HERE */
2570 struct ipw_rt_hdr {
2571 struct ieee80211_radiotap_header rt_hdr;
2572 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2573 } *ipw_rt;
2574
2575 IPW_DEBUG_RX("Handler...\n");
2576
2577 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2578 sizeof(struct ipw_rt_hdr))) {
2579 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2580 " Dropping.\n",
2581 dev->name,
2582 status->frame_size,
2583 skb_tailroom(packet->skb));
2584 dev->stats.rx_errors++;
2585 return;
2586 }
2587
2588 if (unlikely(!netif_running(dev))) {
2589 dev->stats.rx_errors++;
2590 priv->wstats.discard.misc++;
2591 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2592 return;
2593 }
2594
2595 if (unlikely(priv->config & CFG_CRC_CHECK &&
2596 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2597 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2598 dev->stats.rx_errors++;
2599 return;
2600 }
2601
2602 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2603 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2604 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2605 packet->skb->data, status->frame_size);
2606
2607 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2608
2609 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2610 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2611 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2612
2613 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2614
2615 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2616
2617 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2618
2619 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2620 dev->stats.rx_errors++;
2621
2622 /* libipw_rx failed, so it didn't free the SKB */
2623 dev_kfree_skb_any(packet->skb);
2624 packet->skb = NULL;
2625 }
2626
2627 /* We need to allocate a new SKB and attach it to the RDB. */
2628 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2629 IPW_DEBUG_WARNING(
2630 "%s: Unable to allocate SKB onto RBD ring - disabling "
2631 "adapter.\n", dev->name);
2632 /* TODO: schedule adapter shutdown */
2633 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2634 }
2635
2636 /* Update the RDB entry */
2637 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2638 }
2639
2640 #endif
2641
2642 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2643 {
2644 struct ipw2100_status *status = &priv->status_queue.drv[i];
2645 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2646 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2647
2648 switch (frame_type) {
2649 case COMMAND_STATUS_VAL:
2650 return (status->frame_size != sizeof(u->rx_data.command));
2651 case STATUS_CHANGE_VAL:
2652 return (status->frame_size != sizeof(u->rx_data.status));
2653 case HOST_NOTIFICATION_VAL:
2654 return (status->frame_size < sizeof(u->rx_data.notification));
2655 case P80211_DATA_VAL:
2656 case P8023_DATA_VAL:
2657 #ifdef CONFIG_IPW2100_MONITOR
2658 return 0;
2659 #else
2660 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2661 case IEEE80211_FTYPE_MGMT:
2662 case IEEE80211_FTYPE_CTL:
2663 return 0;
2664 case IEEE80211_FTYPE_DATA:
2665 return (status->frame_size >
2666 IPW_MAX_802_11_PAYLOAD_LENGTH);
2667 }
2668 #endif
2669 }
2670
2671 return 1;
2672 }
2673
2674 /*
2675 * ipw2100 interrupts are disabled at this point, and the ISR
2676 * is the only code that calls this method. So, we do not need
2677 * to play with any locks.
2678 *
2679 * RX Queue works as follows:
2680 *
2681 * Read index - firmware places packet in entry identified by the
2682 * Read index and advances Read index. In this manner,
2683 * Read index will always point to the next packet to
2684 * be filled--but not yet valid.
2685 *
2686 * Write index - driver fills this entry with an unused RBD entry.
2687 * This entry has not filled by the firmware yet.
2688 *
2689 * In between the W and R indexes are the RBDs that have been received
2690 * but not yet processed.
2691 *
2692 * The process of handling packets will start at WRITE + 1 and advance
2693 * until it reaches the READ index.
2694 *
2695 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2696 *
2697 */
2698 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2699 {
2700 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2701 struct ipw2100_status_queue *sq = &priv->status_queue;
2702 struct ipw2100_rx_packet *packet;
2703 u16 frame_type;
2704 u32 r, w, i, s;
2705 struct ipw2100_rx *u;
2706 struct libipw_rx_stats stats = {
2707 .mac_time = jiffies,
2708 };
2709
2710 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2711 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2712
2713 if (r >= rxq->entries) {
2714 IPW_DEBUG_RX("exit - bad read index\n");
2715 return;
2716 }
2717
2718 i = (rxq->next + 1) % rxq->entries;
2719 s = i;
2720 while (i != r) {
2721 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2722 r, rxq->next, i); */
2723
2724 packet = &priv->rx_buffers[i];
2725
2726 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2727 * the correct values */
2728 pci_dma_sync_single_for_cpu(priv->pci_dev,
2729 sq->nic +
2730 sizeof(struct ipw2100_status) * i,
2731 sizeof(struct ipw2100_status),
2732 PCI_DMA_FROMDEVICE);
2733
2734 /* Sync the DMA for the RX buffer so CPU is sure to get
2735 * the correct values */
2736 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2737 sizeof(struct ipw2100_rx),
2738 PCI_DMA_FROMDEVICE);
2739
2740 if (unlikely(ipw2100_corruption_check(priv, i))) {
2741 ipw2100_corruption_detected(priv, i);
2742 goto increment;
2743 }
2744
2745 u = packet->rxp;
2746 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2747 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2748 stats.len = sq->drv[i].frame_size;
2749
2750 stats.mask = 0;
2751 if (stats.rssi != 0)
2752 stats.mask |= LIBIPW_STATMASK_RSSI;
2753 stats.freq = LIBIPW_24GHZ_BAND;
2754
2755 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2756 priv->net_dev->name, frame_types[frame_type],
2757 stats.len);
2758
2759 switch (frame_type) {
2760 case COMMAND_STATUS_VAL:
2761 /* Reset Rx watchdog */
2762 isr_rx_complete_command(priv, &u->rx_data.command);
2763 break;
2764
2765 case STATUS_CHANGE_VAL:
2766 isr_status_change(priv, u->rx_data.status);
2767 break;
2768
2769 case P80211_DATA_VAL:
2770 case P8023_DATA_VAL:
2771 #ifdef CONFIG_IPW2100_MONITOR
2772 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2773 isr_rx_monitor(priv, i, &stats);
2774 break;
2775 }
2776 #endif
2777 if (stats.len < sizeof(struct libipw_hdr_3addr))
2778 break;
2779 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2780 case IEEE80211_FTYPE_MGMT:
2781 libipw_rx_mgt(priv->ieee,
2782 &u->rx_data.header, &stats);
2783 break;
2784
2785 case IEEE80211_FTYPE_CTL:
2786 break;
2787
2788 case IEEE80211_FTYPE_DATA:
2789 isr_rx(priv, i, &stats);
2790 break;
2791
2792 }
2793 break;
2794 }
2795
2796 increment:
2797 /* clear status field associated with this RBD */
2798 rxq->drv[i].status.info.field = 0;
2799
2800 i = (i + 1) % rxq->entries;
2801 }
2802
2803 if (i != s) {
2804 /* backtrack one entry, wrapping to end if at 0 */
2805 rxq->next = (i ? i : rxq->entries) - 1;
2806
2807 write_register(priv->net_dev,
2808 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2809 }
2810 }
2811
2812 /*
2813 * __ipw2100_tx_process
2814 *
2815 * This routine will determine whether the next packet on
2816 * the fw_pend_list has been processed by the firmware yet.
2817 *
2818 * If not, then it does nothing and returns.
2819 *
2820 * If so, then it removes the item from the fw_pend_list, frees
2821 * any associated storage, and places the item back on the
2822 * free list of its source (either msg_free_list or tx_free_list)
2823 *
2824 * TX Queue works as follows:
2825 *
2826 * Read index - points to the next TBD that the firmware will
2827 * process. The firmware will read the data, and once
2828 * done processing, it will advance the Read index.
2829 *
2830 * Write index - driver fills this entry with an constructed TBD
2831 * entry. The Write index is not advanced until the
2832 * packet has been configured.
2833 *
2834 * In between the W and R indexes are the TBDs that have NOT been
2835 * processed. Lagging behind the R index are packets that have
2836 * been processed but have not been freed by the driver.
2837 *
2838 * In order to free old storage, an internal index will be maintained
2839 * that points to the next packet to be freed. When all used
2840 * packets have been freed, the oldest index will be the same as the
2841 * firmware's read index.
2842 *
2843 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2844 *
2845 * Because the TBD structure can not contain arbitrary data, the
2846 * driver must keep an internal queue of cached allocations such that
2847 * it can put that data back into the tx_free_list and msg_free_list
2848 * for use by future command and data packets.
2849 *
2850 */
2851 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2852 {
2853 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2854 struct ipw2100_bd *tbd;
2855 struct list_head *element;
2856 struct ipw2100_tx_packet *packet;
2857 int descriptors_used;
2858 int e, i;
2859 u32 r, w, frag_num = 0;
2860
2861 if (list_empty(&priv->fw_pend_list))
2862 return 0;
2863
2864 element = priv->fw_pend_list.next;
2865
2866 packet = list_entry(element, struct ipw2100_tx_packet, list);
2867 tbd = &txq->drv[packet->index];
2868
2869 /* Determine how many TBD entries must be finished... */
2870 switch (packet->type) {
2871 case COMMAND:
2872 /* COMMAND uses only one slot; don't advance */
2873 descriptors_used = 1;
2874 e = txq->oldest;
2875 break;
2876
2877 case DATA:
2878 /* DATA uses two slots; advance and loop position. */
2879 descriptors_used = tbd->num_fragments;
2880 frag_num = tbd->num_fragments - 1;
2881 e = txq->oldest + frag_num;
2882 e %= txq->entries;
2883 break;
2884
2885 default:
2886 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2887 priv->net_dev->name);
2888 return 0;
2889 }
2890
2891 /* if the last TBD is not done by NIC yet, then packet is
2892 * not ready to be released.
2893 *
2894 */
2895 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2896 &r);
2897 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2898 &w);
2899 if (w != txq->next)
2900 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2901 priv->net_dev->name);
2902
2903 /*
2904 * txq->next is the index of the last packet written txq->oldest is
2905 * the index of the r is the index of the next packet to be read by
2906 * firmware
2907 */
2908
2909 /*
2910 * Quick graphic to help you visualize the following
2911 * if / else statement
2912 *
2913 * ===>| s---->|===============
2914 * e>|
2915 * | a | b | c | d | e | f | g | h | i | j | k | l
2916 * r---->|
2917 * w
2918 *
2919 * w - updated by driver
2920 * r - updated by firmware
2921 * s - start of oldest BD entry (txq->oldest)
2922 * e - end of oldest BD entry
2923 *
2924 */
2925 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2926 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2927 return 0;
2928 }
2929
2930 list_del(element);
2931 DEC_STAT(&priv->fw_pend_stat);
2932
2933 #ifdef CONFIG_IPW2100_DEBUG
2934 {
2935 i = txq->oldest;
2936 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2937 &txq->drv[i],
2938 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2939 txq->drv[i].host_addr, txq->drv[i].buf_length);
2940
2941 if (packet->type == DATA) {
2942 i = (i + 1) % txq->entries;
2943
2944 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2945 &txq->drv[i],
2946 (u32) (txq->nic + i *
2947 sizeof(struct ipw2100_bd)),
2948 (u32) txq->drv[i].host_addr,
2949 txq->drv[i].buf_length);
2950 }
2951 }
2952 #endif
2953
2954 switch (packet->type) {
2955 case DATA:
2956 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2957 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2958 "Expecting DATA TBD but pulled "
2959 "something else: ids %d=%d.\n",
2960 priv->net_dev->name, txq->oldest, packet->index);
2961
2962 /* DATA packet; we have to unmap and free the SKB */
2963 for (i = 0; i < frag_num; i++) {
2964 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2965
2966 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2967 (packet->index + 1 + i) % txq->entries,
2968 tbd->host_addr, tbd->buf_length);
2969
2970 pci_unmap_single(priv->pci_dev,
2971 tbd->host_addr,
2972 tbd->buf_length, PCI_DMA_TODEVICE);
2973 }
2974
2975 libipw_txb_free(packet->info.d_struct.txb);
2976 packet->info.d_struct.txb = NULL;
2977
2978 list_add_tail(element, &priv->tx_free_list);
2979 INC_STAT(&priv->tx_free_stat);
2980
2981 /* We have a free slot in the Tx queue, so wake up the
2982 * transmit layer if it is stopped. */
2983 if (priv->status & STATUS_ASSOCIATED)
2984 netif_wake_queue(priv->net_dev);
2985
2986 /* A packet was processed by the hardware, so update the
2987 * watchdog */
2988 priv->net_dev->trans_start = jiffies;
2989
2990 break;
2991
2992 case COMMAND:
2993 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2994 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2995 "Expecting COMMAND TBD but pulled "
2996 "something else: ids %d=%d.\n",
2997 priv->net_dev->name, txq->oldest, packet->index);
2998
2999 #ifdef CONFIG_IPW2100_DEBUG
3000 if (packet->info.c_struct.cmd->host_command_reg <
3001 ARRAY_SIZE(command_types))
3002 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
3003 command_types[packet->info.c_struct.cmd->
3004 host_command_reg],
3005 packet->info.c_struct.cmd->
3006 host_command_reg,
3007 packet->info.c_struct.cmd->cmd_status_reg);
3008 #endif
3009
3010 list_add_tail(element, &priv->msg_free_list);
3011 INC_STAT(&priv->msg_free_stat);
3012 break;
3013 }
3014
3015 /* advance oldest used TBD pointer to start of next entry */
3016 txq->oldest = (e + 1) % txq->entries;
3017 /* increase available TBDs number */
3018 txq->available += descriptors_used;
3019 SET_STAT(&priv->txq_stat, txq->available);
3020
3021 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
3022 jiffies - packet->jiffy_start);
3023
3024 return (!list_empty(&priv->fw_pend_list));
3025 }
3026
3027 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3028 {
3029 int i = 0;
3030
3031 while (__ipw2100_tx_process(priv) && i < 200)
3032 i++;
3033
3034 if (i == 200) {
3035 printk(KERN_WARNING DRV_NAME ": "
3036 "%s: Driver is running slow (%d iters).\n",
3037 priv->net_dev->name, i);
3038 }
3039 }
3040
3041 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3042 {
3043 struct list_head *element;
3044 struct ipw2100_tx_packet *packet;
3045 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3046 struct ipw2100_bd *tbd;
3047 int next = txq->next;
3048
3049 while (!list_empty(&priv->msg_pend_list)) {
3050 /* if there isn't enough space in TBD queue, then
3051 * don't stuff a new one in.
3052 * NOTE: 3 are needed as a command will take one,
3053 * and there is a minimum of 2 that must be
3054 * maintained between the r and w indexes
3055 */
3056 if (txq->available <= 3) {
3057 IPW_DEBUG_TX("no room in tx_queue\n");
3058 break;
3059 }
3060
3061 element = priv->msg_pend_list.next;
3062 list_del(element);
3063 DEC_STAT(&priv->msg_pend_stat);
3064
3065 packet = list_entry(element, struct ipw2100_tx_packet, list);
3066
3067 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
3068 &txq->drv[txq->next],
3069 (void *)(txq->nic + txq->next *
3070 sizeof(struct ipw2100_bd)));
3071
3072 packet->index = txq->next;
3073
3074 tbd = &txq->drv[txq->next];
3075
3076 /* initialize TBD */
3077 tbd->host_addr = packet->info.c_struct.cmd_phys;
3078 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3079 /* not marking number of fragments causes problems
3080 * with f/w debug version */
3081 tbd->num_fragments = 1;
3082 tbd->status.info.field =
3083 IPW_BD_STATUS_TX_FRAME_COMMAND |
3084 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3085
3086 /* update TBD queue counters */
3087 txq->next++;
3088 txq->next %= txq->entries;
3089 txq->available--;
3090 DEC_STAT(&priv->txq_stat);
3091
3092 list_add_tail(element, &priv->fw_pend_list);
3093 INC_STAT(&priv->fw_pend_stat);
3094 }
3095
3096 if (txq->next != next) {
3097 /* kick off the DMA by notifying firmware the
3098 * write index has moved; make sure TBD stores are sync'd */
3099 wmb();
3100 write_register(priv->net_dev,
3101 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3102 txq->next);
3103 }
3104 }
3105
3106 /*
3107 * ipw2100_tx_send_data
3108 *
3109 */
3110 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3111 {
3112 struct list_head *element;
3113 struct ipw2100_tx_packet *packet;
3114 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3115 struct ipw2100_bd *tbd;
3116 int next = txq->next;
3117 int i = 0;
3118 struct ipw2100_data_header *ipw_hdr;
3119 struct libipw_hdr_3addr *hdr;
3120
3121 while (!list_empty(&priv->tx_pend_list)) {
3122 /* if there isn't enough space in TBD queue, then
3123 * don't stuff a new one in.
3124 * NOTE: 4 are needed as a data will take two,
3125 * and there is a minimum of 2 that must be
3126 * maintained between the r and w indexes
3127 */
3128 element = priv->tx_pend_list.next;
3129 packet = list_entry(element, struct ipw2100_tx_packet, list);
3130
3131 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3132 IPW_MAX_BDS)) {
3133 /* TODO: Support merging buffers if more than
3134 * IPW_MAX_BDS are used */
3135 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3136 "Increase fragmentation level.\n",
3137 priv->net_dev->name);
3138 }
3139
3140 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3141 IPW_DEBUG_TX("no room in tx_queue\n");
3142 break;
3143 }
3144
3145 list_del(element);
3146 DEC_STAT(&priv->tx_pend_stat);
3147
3148 tbd = &txq->drv[txq->next];
3149
3150 packet->index = txq->next;
3151
3152 ipw_hdr = packet->info.d_struct.data;
3153 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3154 fragments[0]->data;
3155
3156 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3157 /* To DS: Addr1 = BSSID, Addr2 = SA,
3158 Addr3 = DA */
3159 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3160 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3161 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3162 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3163 Addr3 = BSSID */
3164 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3165 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3166 }
3167
3168 ipw_hdr->host_command_reg = SEND;
3169 ipw_hdr->host_command_reg1 = 0;
3170
3171 /* For now we only support host based encryption */
3172 ipw_hdr->needs_encryption = 0;
3173 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3174 if (packet->info.d_struct.txb->nr_frags > 1)
3175 ipw_hdr->fragment_size =
3176 packet->info.d_struct.txb->frag_size -
3177 LIBIPW_3ADDR_LEN;
3178 else
3179 ipw_hdr->fragment_size = 0;
3180
3181 tbd->host_addr = packet->info.d_struct.data_phys;
3182 tbd->buf_length = sizeof(struct ipw2100_data_header);
3183 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3184 tbd->status.info.field =
3185 IPW_BD_STATUS_TX_FRAME_802_3 |
3186 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3187 txq->next++;
3188 txq->next %= txq->entries;
3189
3190 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3191 packet->index, tbd->host_addr, tbd->buf_length);
3192 #ifdef CONFIG_IPW2100_DEBUG
3193 if (packet->info.d_struct.txb->nr_frags > 1)
3194 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3195 packet->info.d_struct.txb->nr_frags);
3196 #endif
3197
3198 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3199 tbd = &txq->drv[txq->next];
3200 if (i == packet->info.d_struct.txb->nr_frags - 1)
3201 tbd->status.info.field =
3202 IPW_BD_STATUS_TX_FRAME_802_3 |
3203 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3204 else
3205 tbd->status.info.field =
3206 IPW_BD_STATUS_TX_FRAME_802_3 |
3207 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3208
3209 tbd->buf_length = packet->info.d_struct.txb->
3210 fragments[i]->len - LIBIPW_3ADDR_LEN;
3211
3212 tbd->host_addr = pci_map_single(priv->pci_dev,
3213 packet->info.d_struct.
3214 txb->fragments[i]->
3215 data +
3216 LIBIPW_3ADDR_LEN,
3217 tbd->buf_length,
3218 PCI_DMA_TODEVICE);
3219
3220 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3221 txq->next, tbd->host_addr,
3222 tbd->buf_length);
3223
3224 pci_dma_sync_single_for_device(priv->pci_dev,
3225 tbd->host_addr,
3226 tbd->buf_length,
3227 PCI_DMA_TODEVICE);
3228
3229 txq->next++;
3230 txq->next %= txq->entries;
3231 }
3232
3233 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3234 SET_STAT(&priv->txq_stat, txq->available);
3235
3236 list_add_tail(element, &priv->fw_pend_list);
3237 INC_STAT(&priv->fw_pend_stat);
3238 }
3239
3240 if (txq->next != next) {
3241 /* kick off the DMA by notifying firmware the
3242 * write index has moved; make sure TBD stores are sync'd */
3243 write_register(priv->net_dev,
3244 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3245 txq->next);
3246 }
3247 }
3248
3249 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3250 {
3251 struct net_device *dev = priv->net_dev;
3252 unsigned long flags;
3253 u32 inta, tmp;
3254
3255 spin_lock_irqsave(&priv->low_lock, flags);
3256 ipw2100_disable_interrupts(priv);
3257
3258 read_register(dev, IPW_REG_INTA, &inta);
3259
3260 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3261 (unsigned long)inta & IPW_INTERRUPT_MASK);
3262
3263 priv->in_isr++;
3264 priv->interrupts++;
3265
3266 /* We do not loop and keep polling for more interrupts as this
3267 * is frowned upon and doesn't play nicely with other potentially
3268 * chained IRQs */
3269 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3270 (unsigned long)inta & IPW_INTERRUPT_MASK);
3271
3272 if (inta & IPW2100_INTA_FATAL_ERROR) {
3273 printk(KERN_WARNING DRV_NAME
3274 ": Fatal interrupt. Scheduling firmware restart.\n");
3275 priv->inta_other++;
3276 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3277
3278 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3279 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3280 priv->net_dev->name, priv->fatal_error);
3281
3282 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3283 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3284 priv->net_dev->name, tmp);
3285
3286 /* Wake up any sleeping jobs */
3287 schedule_reset(priv);
3288 }
3289
3290 if (inta & IPW2100_INTA_PARITY_ERROR) {
3291 printk(KERN_ERR DRV_NAME
3292 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3293 priv->inta_other++;
3294 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3295 }
3296
3297 if (inta & IPW2100_INTA_RX_TRANSFER) {
3298 IPW_DEBUG_ISR("RX interrupt\n");
3299
3300 priv->rx_interrupts++;
3301
3302 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3303
3304 __ipw2100_rx_process(priv);
3305 __ipw2100_tx_complete(priv);
3306 }
3307
3308 if (inta & IPW2100_INTA_TX_TRANSFER) {
3309 IPW_DEBUG_ISR("TX interrupt\n");
3310
3311 priv->tx_interrupts++;
3312
3313 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3314
3315 __ipw2100_tx_complete(priv);
3316 ipw2100_tx_send_commands(priv);
3317 ipw2100_tx_send_data(priv);
3318 }
3319
3320 if (inta & IPW2100_INTA_TX_COMPLETE) {
3321 IPW_DEBUG_ISR("TX complete\n");
3322 priv->inta_other++;
3323 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3324
3325 __ipw2100_tx_complete(priv);
3326 }
3327
3328 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3329 /* ipw2100_handle_event(dev); */
3330 priv->inta_other++;
3331 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3332 }
3333
3334 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3335 IPW_DEBUG_ISR("FW init done interrupt\n");
3336 priv->inta_other++;
3337
3338 read_register(dev, IPW_REG_INTA, &tmp);
3339 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3340 IPW2100_INTA_PARITY_ERROR)) {
3341 write_register(dev, IPW_REG_INTA,
3342 IPW2100_INTA_FATAL_ERROR |
3343 IPW2100_INTA_PARITY_ERROR);
3344 }
3345
3346 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3347 }
3348
3349 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3350 IPW_DEBUG_ISR("Status change interrupt\n");
3351 priv->inta_other++;
3352 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3353 }
3354
3355 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3356 IPW_DEBUG_ISR("slave host mode interrupt\n");
3357 priv->inta_other++;
3358 write_register(dev, IPW_REG_INTA,
3359 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3360 }
3361
3362 priv->in_isr--;
3363 ipw2100_enable_interrupts(priv);
3364
3365 spin_unlock_irqrestore(&priv->low_lock, flags);
3366
3367 IPW_DEBUG_ISR("exit\n");
3368 }
3369
3370 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3371 {
3372 struct ipw2100_priv *priv = data;
3373 u32 inta, inta_mask;
3374
3375 if (!data)
3376 return IRQ_NONE;
3377
3378 spin_lock(&priv->low_lock);
3379
3380 /* We check to see if we should be ignoring interrupts before
3381 * we touch the hardware. During ucode load if we try and handle
3382 * an interrupt we can cause keyboard problems as well as cause
3383 * the ucode to fail to initialize */
3384 if (!(priv->status & STATUS_INT_ENABLED)) {
3385 /* Shared IRQ */
3386 goto none;
3387 }
3388
3389 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3390 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3391
3392 if (inta == 0xFFFFFFFF) {
3393 /* Hardware disappeared */
3394 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3395 goto none;
3396 }
3397
3398 inta &= IPW_INTERRUPT_MASK;
3399
3400 if (!(inta & inta_mask)) {
3401 /* Shared interrupt */
3402 goto none;
3403 }
3404
3405 /* We disable the hardware interrupt here just to prevent unneeded
3406 * calls to be made. We disable this again within the actual
3407 * work tasklet, so if another part of the code re-enables the
3408 * interrupt, that is fine */
3409 ipw2100_disable_interrupts(priv);
3410
3411 tasklet_schedule(&priv->irq_tasklet);
3412 spin_unlock(&priv->low_lock);
3413
3414 return IRQ_HANDLED;
3415 none:
3416 spin_unlock(&priv->low_lock);
3417 return IRQ_NONE;
3418 }
3419
3420 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3421 struct net_device *dev, int pri)
3422 {
3423 struct ipw2100_priv *priv = libipw_priv(dev);
3424 struct list_head *element;
3425 struct ipw2100_tx_packet *packet;
3426 unsigned long flags;
3427
3428 spin_lock_irqsave(&priv->low_lock, flags);
3429
3430 if (!(priv->status & STATUS_ASSOCIATED)) {
3431 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3432 priv->net_dev->stats.tx_carrier_errors++;
3433 netif_stop_queue(dev);
3434 goto fail_unlock;
3435 }
3436
3437 if (list_empty(&priv->tx_free_list))
3438 goto fail_unlock;
3439
3440 element = priv->tx_free_list.next;
3441 packet = list_entry(element, struct ipw2100_tx_packet, list);
3442
3443 packet->info.d_struct.txb = txb;
3444
3445 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3446 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3447
3448 packet->jiffy_start = jiffies;
3449
3450 list_del(element);
3451 DEC_STAT(&priv->tx_free_stat);
3452
3453 list_add_tail(element, &priv->tx_pend_list);
3454 INC_STAT(&priv->tx_pend_stat);
3455
3456 ipw2100_tx_send_data(priv);
3457
3458 spin_unlock_irqrestore(&priv->low_lock, flags);
3459 return NETDEV_TX_OK;
3460
3461 fail_unlock:
3462 netif_stop_queue(dev);
3463 spin_unlock_irqrestore(&priv->low_lock, flags);
3464 return NETDEV_TX_BUSY;
3465 }
3466
3467 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3468 {
3469 int i, j, err = -EINVAL;
3470 void *v;
3471 dma_addr_t p;
3472
3473 priv->msg_buffers =
3474 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3475 GFP_KERNEL);
3476 if (!priv->msg_buffers) {
3477 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3478 "buffers.\n", priv->net_dev->name);
3479 return -ENOMEM;
3480 }
3481
3482 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3483 v = pci_alloc_consistent(priv->pci_dev,
3484 sizeof(struct ipw2100_cmd_header), &p);
3485 if (!v) {
3486 printk(KERN_ERR DRV_NAME ": "
3487 "%s: PCI alloc failed for msg "
3488 "buffers.\n", priv->net_dev->name);
3489 err = -ENOMEM;
3490 break;
3491 }
3492
3493 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3494
3495 priv->msg_buffers[i].type = COMMAND;
3496 priv->msg_buffers[i].info.c_struct.cmd =
3497 (struct ipw2100_cmd_header *)v;
3498 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3499 }
3500
3501 if (i == IPW_COMMAND_POOL_SIZE)
3502 return 0;
3503
3504 for (j = 0; j < i; j++) {
3505 pci_free_consistent(priv->pci_dev,
3506 sizeof(struct ipw2100_cmd_header),
3507 priv->msg_buffers[j].info.c_struct.cmd,
3508 priv->msg_buffers[j].info.c_struct.
3509 cmd_phys);
3510 }
3511
3512 kfree(priv->msg_buffers);
3513 priv->msg_buffers = NULL;
3514
3515 return err;
3516 }
3517
3518 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3519 {
3520 int i;
3521
3522 INIT_LIST_HEAD(&priv->msg_free_list);
3523 INIT_LIST_HEAD(&priv->msg_pend_list);
3524
3525 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3526 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3527 SET_STAT(&priv->msg_free_stat, i);
3528
3529 return 0;
3530 }
3531
3532 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3533 {
3534 int i;
3535
3536 if (!priv->msg_buffers)
3537 return;
3538
3539 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3540 pci_free_consistent(priv->pci_dev,
3541 sizeof(struct ipw2100_cmd_header),
3542 priv->msg_buffers[i].info.c_struct.cmd,
3543 priv->msg_buffers[i].info.c_struct.
3544 cmd_phys);
3545 }
3546
3547 kfree(priv->msg_buffers);
3548 priv->msg_buffers = NULL;
3549 }
3550
3551 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3552 char *buf)
3553 {
3554 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3555 char *out = buf;
3556 int i, j;
3557 u32 val;
3558
3559 for (i = 0; i < 16; i++) {
3560 out += sprintf(out, "[%08X] ", i * 16);
3561 for (j = 0; j < 16; j += 4) {
3562 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3563 out += sprintf(out, "%08X ", val);
3564 }
3565 out += sprintf(out, "\n");
3566 }
3567
3568 return out - buf;
3569 }
3570
3571 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3572
3573 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3574 char *buf)
3575 {
3576 struct ipw2100_priv *p = dev_get_drvdata(d);
3577 return sprintf(buf, "0x%08x\n", (int)p->config);
3578 }
3579
3580 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3581
3582 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3583 char *buf)
3584 {
3585 struct ipw2100_priv *p = dev_get_drvdata(d);
3586 return sprintf(buf, "0x%08x\n", (int)p->status);
3587 }
3588
3589 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3590
3591 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3592 char *buf)
3593 {
3594 struct ipw2100_priv *p = dev_get_drvdata(d);
3595 return sprintf(buf, "0x%08x\n", (int)p->capability);
3596 }
3597
3598 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3599
3600 #define IPW2100_REG(x) { IPW_ ##x, #x }
3601 static const struct {
3602 u32 addr;
3603 const char *name;
3604 } hw_data[] = {
3605 IPW2100_REG(REG_GP_CNTRL),
3606 IPW2100_REG(REG_GPIO),
3607 IPW2100_REG(REG_INTA),
3608 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3609 #define IPW2100_NIC(x, s) { x, #x, s }
3610 static const struct {
3611 u32 addr;
3612 const char *name;
3613 size_t size;
3614 } nic_data[] = {
3615 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3616 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3617 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3618 static const struct {
3619 u8 index;
3620 const char *name;
3621 const char *desc;
3622 } ord_data[] = {
3623 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3624 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3625 "successful Host Tx's (MSDU)"),
3626 IPW2100_ORD(STAT_TX_DIR_DATA,
3627 "successful Directed Tx's (MSDU)"),
3628 IPW2100_ORD(STAT_TX_DIR_DATA1,
3629 "successful Directed Tx's (MSDU) @ 1MB"),
3630 IPW2100_ORD(STAT_TX_DIR_DATA2,
3631 "successful Directed Tx's (MSDU) @ 2MB"),
3632 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3633 "successful Directed Tx's (MSDU) @ 5_5MB"),
3634 IPW2100_ORD(STAT_TX_DIR_DATA11,
3635 "successful Directed Tx's (MSDU) @ 11MB"),
3636 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3637 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3638 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3639 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3640 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3641 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3642 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3643 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3644 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3645 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3646 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3647 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3648 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3649 IPW2100_ORD(STAT_TX_ASSN_RESP,
3650 "successful Association response Tx's"),
3651 IPW2100_ORD(STAT_TX_REASSN,
3652 "successful Reassociation Tx's"),
3653 IPW2100_ORD(STAT_TX_REASSN_RESP,
3654 "successful Reassociation response Tx's"),
3655 IPW2100_ORD(STAT_TX_PROBE,
3656 "probes successfully transmitted"),
3657 IPW2100_ORD(STAT_TX_PROBE_RESP,
3658 "probe responses successfully transmitted"),
3659 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3660 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3661 IPW2100_ORD(STAT_TX_DISASSN,
3662 "successful Disassociation TX"),
3663 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3664 IPW2100_ORD(STAT_TX_DEAUTH,
3665 "successful Deauthentication TX"),
3666 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3667 "Total successful Tx data bytes"),
3668 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3669 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3670 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3671 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3672 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3673 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3674 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3675 "times max tries in a hop failed"),
3676 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3677 "times disassociation failed"),
3678 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3679 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3680 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3681 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3682 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3683 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3684 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3685 "directed packets at 5.5MB"),
3686 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3687 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3688 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3689 "nondirected packets at 1MB"),
3690 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3691 "nondirected packets at 2MB"),
3692 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3693 "nondirected packets at 5.5MB"),
3694 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3695 "nondirected packets at 11MB"),
3696 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3697 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3698 "Rx CTS"),
3699 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3700 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3701 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3702 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3703 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3704 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3705 IPW2100_ORD(STAT_RX_REASSN_RESP,
3706 "Reassociation response Rx's"),
3707 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3708 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3709 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3710 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3711 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3712 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3713 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3714 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3715 "Total rx data bytes received"),
3716 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3717 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3718 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3719 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3720 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3721 IPW2100_ORD(STAT_RX_DUPLICATE1,
3722 "duplicate rx packets at 1MB"),
3723 IPW2100_ORD(STAT_RX_DUPLICATE2,
3724 "duplicate rx packets at 2MB"),
3725 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3726 "duplicate rx packets at 5.5MB"),
3727 IPW2100_ORD(STAT_RX_DUPLICATE11,
3728 "duplicate rx packets at 11MB"),
3729 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3730 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3731 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3732 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3733 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3734 "rx frames with invalid protocol"),
3735 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3736 IPW2100_ORD(STAT_RX_NO_BUFFER,
3737 "rx frames rejected due to no buffer"),
3738 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3739 "rx frames dropped due to missing fragment"),
3740 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3741 "rx frames dropped due to non-sequential fragment"),
3742 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3743 "rx frames dropped due to unmatched 1st frame"),
3744 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3745 "rx frames dropped due to uncompleted frame"),
3746 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3747 "ICV errors during decryption"),
3748 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3749 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3750 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3751 "poll response timeouts"),
3752 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3753 "timeouts waiting for last {broad,multi}cast pkt"),
3754 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3755 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3756 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3757 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3758 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3759 "current calculation of % missed beacons"),
3760 IPW2100_ORD(STAT_PERCENT_RETRIES,
3761 "current calculation of % missed tx retries"),
3762 IPW2100_ORD(ASSOCIATED_AP_PTR,
3763 "0 if not associated, else pointer to AP table entry"),
3764 IPW2100_ORD(AVAILABLE_AP_CNT,
3765 "AP's decsribed in the AP table"),
3766 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3767 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3768 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3769 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3770 "failures due to response fail"),
3771 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3772 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3773 IPW2100_ORD(STAT_ROAM_INHIBIT,
3774 "times roaming was inhibited due to activity"),
3775 IPW2100_ORD(RSSI_AT_ASSN,
3776 "RSSI of associated AP at time of association"),
3777 IPW2100_ORD(STAT_ASSN_CAUSE1,
3778 "reassociation: no probe response or TX on hop"),
3779 IPW2100_ORD(STAT_ASSN_CAUSE2,
3780 "reassociation: poor tx/rx quality"),
3781 IPW2100_ORD(STAT_ASSN_CAUSE3,
3782 "reassociation: tx/rx quality (excessive AP load"),
3783 IPW2100_ORD(STAT_ASSN_CAUSE4,
3784 "reassociation: AP RSSI level"),
3785 IPW2100_ORD(STAT_ASSN_CAUSE5,
3786 "reassociations due to load leveling"),
3787 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3788 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3789 "times authentication response failed"),
3790 IPW2100_ORD(STATION_TABLE_CNT,
3791 "entries in association table"),
3792 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3793 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3794 IPW2100_ORD(COUNTRY_CODE,
3795 "IEEE country code as recv'd from beacon"),
3796 IPW2100_ORD(COUNTRY_CHANNELS,
3797 "channels suported by country"),
3798 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3799 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3800 IPW2100_ORD(ANTENNA_DIVERSITY,
3801 "TRUE if antenna diversity is disabled"),
3802 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3803 IPW2100_ORD(OUR_FREQ,
3804 "current radio freq lower digits - channel ID"),
3805 IPW2100_ORD(RTC_TIME, "current RTC time"),
3806 IPW2100_ORD(PORT_TYPE, "operating mode"),
3807 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3808 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3809 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3810 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3811 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3812 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3813 IPW2100_ORD(CAPABILITIES,
3814 "Management frame capability field"),
3815 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3816 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3817 IPW2100_ORD(RTS_THRESHOLD,
3818 "Min packet length for RTS handshaking"),
3819 IPW2100_ORD(INT_MODE, "International mode"),
3820 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3821 "protocol frag threshold"),
3822 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3823 "EEPROM offset in SRAM"),
3824 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3825 "EEPROM size in SRAM"),
3826 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3827 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3828 "EEPROM IBSS 11b channel set"),
3829 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3830 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3831 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3832 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3833 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3834
3835 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3836 char *buf)
3837 {
3838 int i;
3839 struct ipw2100_priv *priv = dev_get_drvdata(d);
3840 struct net_device *dev = priv->net_dev;
3841 char *out = buf;
3842 u32 val = 0;
3843
3844 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3845
3846 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3847 read_register(dev, hw_data[i].addr, &val);
3848 out += sprintf(out, "%30s [%08X] : %08X\n",
3849 hw_data[i].name, hw_data[i].addr, val);
3850 }
3851
3852 return out - buf;
3853 }
3854
3855 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3856
3857 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3858 char *buf)
3859 {
3860 struct ipw2100_priv *priv = dev_get_drvdata(d);
3861 struct net_device *dev = priv->net_dev;
3862 char *out = buf;
3863 int i;
3864
3865 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3866
3867 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3868 u8 tmp8;
3869 u16 tmp16;
3870 u32 tmp32;
3871
3872 switch (nic_data[i].size) {
3873 case 1:
3874 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3875 out += sprintf(out, "%30s [%08X] : %02X\n",
3876 nic_data[i].name, nic_data[i].addr,
3877 tmp8);
3878 break;
3879 case 2:
3880 read_nic_word(dev, nic_data[i].addr, &tmp16);
3881 out += sprintf(out, "%30s [%08X] : %04X\n",
3882 nic_data[i].name, nic_data[i].addr,
3883 tmp16);
3884 break;
3885 case 4:
3886 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3887 out += sprintf(out, "%30s [%08X] : %08X\n",
3888 nic_data[i].name, nic_data[i].addr,
3889 tmp32);
3890 break;
3891 }
3892 }
3893 return out - buf;
3894 }
3895
3896 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3897
3898 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3899 char *buf)
3900 {
3901 struct ipw2100_priv *priv = dev_get_drvdata(d);
3902 struct net_device *dev = priv->net_dev;
3903 static unsigned long loop = 0;
3904 int len = 0;
3905 u32 buffer[4];
3906 int i;
3907 char line[81];
3908
3909 if (loop >= 0x30000)
3910 loop = 0;
3911
3912 /* sysfs provides us PAGE_SIZE buffer */
3913 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3914
3915 if (priv->snapshot[0])
3916 for (i = 0; i < 4; i++)
3917 buffer[i] =
3918 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3919 else
3920 for (i = 0; i < 4; i++)
3921 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3922
3923 if (priv->dump_raw)
3924 len += sprintf(buf + len,
3925 "%c%c%c%c"
3926 "%c%c%c%c"
3927 "%c%c%c%c"
3928 "%c%c%c%c",
3929 ((u8 *) buffer)[0x0],
3930 ((u8 *) buffer)[0x1],
3931 ((u8 *) buffer)[0x2],
3932 ((u8 *) buffer)[0x3],
3933 ((u8 *) buffer)[0x4],
3934 ((u8 *) buffer)[0x5],
3935 ((u8 *) buffer)[0x6],
3936 ((u8 *) buffer)[0x7],
3937 ((u8 *) buffer)[0x8],
3938 ((u8 *) buffer)[0x9],
3939 ((u8 *) buffer)[0xa],
3940 ((u8 *) buffer)[0xb],
3941 ((u8 *) buffer)[0xc],
3942 ((u8 *) buffer)[0xd],
3943 ((u8 *) buffer)[0xe],
3944 ((u8 *) buffer)[0xf]);
3945 else
3946 len += sprintf(buf + len, "%s\n",
3947 snprint_line(line, sizeof(line),
3948 (u8 *) buffer, 16, loop));
3949 loop += 16;
3950 }
3951
3952 return len;
3953 }
3954
3955 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3956 const char *buf, size_t count)
3957 {
3958 struct ipw2100_priv *priv = dev_get_drvdata(d);
3959 struct net_device *dev = priv->net_dev;
3960 const char *p = buf;
3961
3962 (void)dev; /* kill unused-var warning for debug-only code */
3963
3964 if (count < 1)
3965 return count;
3966
3967 if (p[0] == '1' ||
3968 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3969 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3970 dev->name);
3971 priv->dump_raw = 1;
3972
3973 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3974 tolower(p[1]) == 'f')) {
3975 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3976 dev->name);
3977 priv->dump_raw = 0;
3978
3979 } else if (tolower(p[0]) == 'r') {
3980 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3981 ipw2100_snapshot_free(priv);
3982
3983 } else
3984 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3985 "reset = clear memory snapshot\n", dev->name);
3986
3987 return count;
3988 }
3989
3990 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3991
3992 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3993 char *buf)
3994 {
3995 struct ipw2100_priv *priv = dev_get_drvdata(d);
3996 u32 val = 0;
3997 int len = 0;
3998 u32 val_len;
3999 static int loop = 0;
4000
4001 if (priv->status & STATUS_RF_KILL_MASK)
4002 return 0;
4003
4004 if (loop >= ARRAY_SIZE(ord_data))
4005 loop = 0;
4006
4007 /* sysfs provides us PAGE_SIZE buffer */
4008 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4009 val_len = sizeof(u32);
4010
4011 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4012 &val_len))
4013 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
4014 ord_data[loop].index,
4015 ord_data[loop].desc);
4016 else
4017 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4018 ord_data[loop].index, val,
4019 ord_data[loop].desc);
4020 loop++;
4021 }
4022
4023 return len;
4024 }
4025
4026 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4027
4028 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4029 char *buf)
4030 {
4031 struct ipw2100_priv *priv = dev_get_drvdata(d);
4032 char *out = buf;
4033
4034 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4035 priv->interrupts, priv->tx_interrupts,
4036 priv->rx_interrupts, priv->inta_other);
4037 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4038 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4039 #ifdef CONFIG_IPW2100_DEBUG
4040 out += sprintf(out, "packet mismatch image: %s\n",
4041 priv->snapshot[0] ? "YES" : "NO");
4042 #endif
4043
4044 return out - buf;
4045 }
4046
4047 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4048
4049 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4050 {
4051 int err;
4052
4053 if (mode == priv->ieee->iw_mode)
4054 return 0;
4055
4056 err = ipw2100_disable_adapter(priv);
4057 if (err) {
4058 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4059 priv->net_dev->name, err);
4060 return err;
4061 }
4062
4063 switch (mode) {
4064 case IW_MODE_INFRA:
4065 priv->net_dev->type = ARPHRD_ETHER;
4066 break;
4067 case IW_MODE_ADHOC:
4068 priv->net_dev->type = ARPHRD_ETHER;
4069 break;
4070 #ifdef CONFIG_IPW2100_MONITOR
4071 case IW_MODE_MONITOR:
4072 priv->last_mode = priv->ieee->iw_mode;
4073 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4074 break;
4075 #endif /* CONFIG_IPW2100_MONITOR */
4076 }
4077
4078 priv->ieee->iw_mode = mode;
4079
4080 #ifdef CONFIG_PM
4081 /* Indicate ipw2100_download_firmware download firmware
4082 * from disk instead of memory. */
4083 ipw2100_firmware.version = 0;
4084 #endif
4085
4086 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4087 priv->reset_backoff = 0;
4088 schedule_reset(priv);
4089
4090 return 0;
4091 }
4092
4093 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4094 char *buf)
4095 {
4096 struct ipw2100_priv *priv = dev_get_drvdata(d);
4097 int len = 0;
4098
4099 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4100
4101 if (priv->status & STATUS_ASSOCIATED)
4102 len += sprintf(buf + len, "connected: %lu\n",
4103 get_seconds() - priv->connect_start);
4104 else
4105 len += sprintf(buf + len, "not connected\n");
4106
4107 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4108 DUMP_VAR(status, "08lx");
4109 DUMP_VAR(config, "08lx");
4110 DUMP_VAR(capability, "08lx");
4111
4112 len +=
4113 sprintf(buf + len, "last_rtc: %lu\n",
4114 (unsigned long)priv->last_rtc);
4115
4116 DUMP_VAR(fatal_error, "d");
4117 DUMP_VAR(stop_hang_check, "d");
4118 DUMP_VAR(stop_rf_kill, "d");
4119 DUMP_VAR(messages_sent, "d");
4120
4121 DUMP_VAR(tx_pend_stat.value, "d");
4122 DUMP_VAR(tx_pend_stat.hi, "d");
4123
4124 DUMP_VAR(tx_free_stat.value, "d");
4125 DUMP_VAR(tx_free_stat.lo, "d");
4126
4127 DUMP_VAR(msg_free_stat.value, "d");
4128 DUMP_VAR(msg_free_stat.lo, "d");
4129
4130 DUMP_VAR(msg_pend_stat.value, "d");
4131 DUMP_VAR(msg_pend_stat.hi, "d");
4132
4133 DUMP_VAR(fw_pend_stat.value, "d");
4134 DUMP_VAR(fw_pend_stat.hi, "d");
4135
4136 DUMP_VAR(txq_stat.value, "d");
4137 DUMP_VAR(txq_stat.lo, "d");
4138
4139 DUMP_VAR(ieee->scans, "d");
4140 DUMP_VAR(reset_backoff, "d");
4141
4142 return len;
4143 }
4144
4145 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4146
4147 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4148 char *buf)
4149 {
4150 struct ipw2100_priv *priv = dev_get_drvdata(d);
4151 char essid[IW_ESSID_MAX_SIZE + 1];
4152 u8 bssid[ETH_ALEN];
4153 u32 chan = 0;
4154 char *out = buf;
4155 unsigned int length;
4156 int ret;
4157
4158 if (priv->status & STATUS_RF_KILL_MASK)
4159 return 0;
4160
4161 memset(essid, 0, sizeof(essid));
4162 memset(bssid, 0, sizeof(bssid));
4163
4164 length = IW_ESSID_MAX_SIZE;
4165 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4166 if (ret)
4167 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4168 __LINE__);
4169
4170 length = sizeof(bssid);
4171 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4172 bssid, &length);
4173 if (ret)
4174 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4175 __LINE__);
4176
4177 length = sizeof(u32);
4178 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4179 if (ret)
4180 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4181 __LINE__);
4182
4183 out += sprintf(out, "ESSID: %s\n", essid);
4184 out += sprintf(out, "BSSID: %pM\n", bssid);
4185 out += sprintf(out, "Channel: %d\n", chan);
4186
4187 return out - buf;
4188 }
4189
4190 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4191
4192 #ifdef CONFIG_IPW2100_DEBUG
4193 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4194 {
4195 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4196 }
4197
4198 static ssize_t store_debug_level(struct device_driver *d,
4199 const char *buf, size_t count)
4200 {
4201 char *p = (char *)buf;
4202 u32 val;
4203
4204 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4205 p++;
4206 if (p[0] == 'x' || p[0] == 'X')
4207 p++;
4208 val = simple_strtoul(p, &p, 16);
4209 } else
4210 val = simple_strtoul(p, &p, 10);
4211 if (p == buf)
4212 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4213 else
4214 ipw2100_debug_level = val;
4215
4216 return strnlen(buf, count);
4217 }
4218
4219 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4220 store_debug_level);
4221 #endif /* CONFIG_IPW2100_DEBUG */
4222
4223 static ssize_t show_fatal_error(struct device *d,
4224 struct device_attribute *attr, char *buf)
4225 {
4226 struct ipw2100_priv *priv = dev_get_drvdata(d);
4227 char *out = buf;
4228 int i;
4229
4230 if (priv->fatal_error)
4231 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4232 else
4233 out += sprintf(out, "0\n");
4234
4235 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4236 if (!priv->fatal_errors[(priv->fatal_index - i) %
4237 IPW2100_ERROR_QUEUE])
4238 continue;
4239
4240 out += sprintf(out, "%d. 0x%08X\n", i,
4241 priv->fatal_errors[(priv->fatal_index - i) %
4242 IPW2100_ERROR_QUEUE]);
4243 }
4244
4245 return out - buf;
4246 }
4247
4248 static ssize_t store_fatal_error(struct device *d,
4249 struct device_attribute *attr, const char *buf,
4250 size_t count)
4251 {
4252 struct ipw2100_priv *priv = dev_get_drvdata(d);
4253 schedule_reset(priv);
4254 return count;
4255 }
4256
4257 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4258 store_fatal_error);
4259
4260 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4261 char *buf)
4262 {
4263 struct ipw2100_priv *priv = dev_get_drvdata(d);
4264 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4265 }
4266
4267 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4268 const char *buf, size_t count)
4269 {
4270 struct ipw2100_priv *priv = dev_get_drvdata(d);
4271 struct net_device *dev = priv->net_dev;
4272 char buffer[] = "00000000";
4273 unsigned long len =
4274 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4275 unsigned long val;
4276 char *p = buffer;
4277
4278 (void)dev; /* kill unused-var warning for debug-only code */
4279
4280 IPW_DEBUG_INFO("enter\n");
4281
4282 strncpy(buffer, buf, len);
4283 buffer[len] = 0;
4284
4285 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4286 p++;
4287 if (p[0] == 'x' || p[0] == 'X')
4288 p++;
4289 val = simple_strtoul(p, &p, 16);
4290 } else
4291 val = simple_strtoul(p, &p, 10);
4292 if (p == buffer) {
4293 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4294 } else {
4295 priv->ieee->scan_age = val;
4296 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4297 }
4298
4299 IPW_DEBUG_INFO("exit\n");
4300 return len;
4301 }
4302
4303 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4304
4305 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4306 char *buf)
4307 {
4308 /* 0 - RF kill not enabled
4309 1 - SW based RF kill active (sysfs)
4310 2 - HW based RF kill active
4311 3 - Both HW and SW baed RF kill active */
4312 struct ipw2100_priv *priv = dev_get_drvdata(d);
4313 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4314 (rf_kill_active(priv) ? 0x2 : 0x0);
4315 return sprintf(buf, "%i\n", val);
4316 }
4317
4318 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4319 {
4320 if ((disable_radio ? 1 : 0) ==
4321 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4322 return 0;
4323
4324 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4325 disable_radio ? "OFF" : "ON");
4326
4327 mutex_lock(&priv->action_mutex);
4328
4329 if (disable_radio) {
4330 priv->status |= STATUS_RF_KILL_SW;
4331 ipw2100_down(priv);
4332 } else {
4333 priv->status &= ~STATUS_RF_KILL_SW;
4334 if (rf_kill_active(priv)) {
4335 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4336 "disabled by HW switch\n");
4337 /* Make sure the RF_KILL check timer is running */
4338 priv->stop_rf_kill = 0;
4339 cancel_delayed_work(&priv->rf_kill);
4340 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4341 round_jiffies_relative(HZ));
4342 } else
4343 schedule_reset(priv);
4344 }
4345
4346 mutex_unlock(&priv->action_mutex);
4347 return 1;
4348 }
4349
4350 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4351 const char *buf, size_t count)
4352 {
4353 struct ipw2100_priv *priv = dev_get_drvdata(d);
4354 ipw_radio_kill_sw(priv, buf[0] == '1');
4355 return count;
4356 }
4357
4358 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4359
4360 static struct attribute *ipw2100_sysfs_entries[] = {
4361 &dev_attr_hardware.attr,
4362 &dev_attr_registers.attr,
4363 &dev_attr_ordinals.attr,
4364 &dev_attr_pci.attr,
4365 &dev_attr_stats.attr,
4366 &dev_attr_internals.attr,
4367 &dev_attr_bssinfo.attr,
4368 &dev_attr_memory.attr,
4369 &dev_attr_scan_age.attr,
4370 &dev_attr_fatal_error.attr,
4371 &dev_attr_rf_kill.attr,
4372 &dev_attr_cfg.attr,
4373 &dev_attr_status.attr,
4374 &dev_attr_capability.attr,
4375 NULL,
4376 };
4377
4378 static struct attribute_group ipw2100_attribute_group = {
4379 .attrs = ipw2100_sysfs_entries,
4380 };
4381
4382 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4383 {
4384 struct ipw2100_status_queue *q = &priv->status_queue;
4385
4386 IPW_DEBUG_INFO("enter\n");
4387
4388 q->size = entries * sizeof(struct ipw2100_status);
4389 q->drv =
4390 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4391 q->size, &q->nic);
4392 if (!q->drv) {
4393 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4394 return -ENOMEM;
4395 }
4396
4397 memset(q->drv, 0, q->size);
4398
4399 IPW_DEBUG_INFO("exit\n");
4400
4401 return 0;
4402 }
4403
4404 static void status_queue_free(struct ipw2100_priv *priv)
4405 {
4406 IPW_DEBUG_INFO("enter\n");
4407
4408 if (priv->status_queue.drv) {
4409 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4410 priv->status_queue.drv,
4411 priv->status_queue.nic);
4412 priv->status_queue.drv = NULL;
4413 }
4414
4415 IPW_DEBUG_INFO("exit\n");
4416 }
4417
4418 static int bd_queue_allocate(struct ipw2100_priv *priv,
4419 struct ipw2100_bd_queue *q, int entries)
4420 {
4421 IPW_DEBUG_INFO("enter\n");
4422
4423 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4424
4425 q->entries = entries;
4426 q->size = entries * sizeof(struct ipw2100_bd);
4427 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4428 if (!q->drv) {
4429 IPW_DEBUG_INFO
4430 ("can't allocate shared memory for buffer descriptors\n");
4431 return -ENOMEM;
4432 }
4433 memset(q->drv, 0, q->size);
4434
4435 IPW_DEBUG_INFO("exit\n");
4436
4437 return 0;
4438 }
4439
4440 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4441 {
4442 IPW_DEBUG_INFO("enter\n");
4443
4444 if (!q)
4445 return;
4446
4447 if (q->drv) {
4448 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4449 q->drv = NULL;
4450 }
4451
4452 IPW_DEBUG_INFO("exit\n");
4453 }
4454
4455 static void bd_queue_initialize(struct ipw2100_priv *priv,
4456 struct ipw2100_bd_queue *q, u32 base, u32 size,
4457 u32 r, u32 w)
4458 {
4459 IPW_DEBUG_INFO("enter\n");
4460
4461 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4462 (u32) q->nic);
4463
4464 write_register(priv->net_dev, base, q->nic);
4465 write_register(priv->net_dev, size, q->entries);
4466 write_register(priv->net_dev, r, q->oldest);
4467 write_register(priv->net_dev, w, q->next);
4468
4469 IPW_DEBUG_INFO("exit\n");
4470 }
4471
4472 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4473 {
4474 if (priv->workqueue) {
4475 priv->stop_rf_kill = 1;
4476 priv->stop_hang_check = 1;
4477 cancel_delayed_work(&priv->reset_work);
4478 cancel_delayed_work(&priv->security_work);
4479 cancel_delayed_work(&priv->wx_event_work);
4480 cancel_delayed_work(&priv->hang_check);
4481 cancel_delayed_work(&priv->rf_kill);
4482 cancel_delayed_work(&priv->scan_event_later);
4483 destroy_workqueue(priv->workqueue);
4484 priv->workqueue = NULL;
4485 }
4486 }
4487
4488 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4489 {
4490 int i, j, err = -EINVAL;
4491 void *v;
4492 dma_addr_t p;
4493
4494 IPW_DEBUG_INFO("enter\n");
4495
4496 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4497 if (err) {
4498 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4499 priv->net_dev->name);
4500 return err;
4501 }
4502
4503 priv->tx_buffers =
4504 kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4505 GFP_ATOMIC);
4506 if (!priv->tx_buffers) {
4507 printk(KERN_ERR DRV_NAME
4508 ": %s: alloc failed form tx buffers.\n",
4509 priv->net_dev->name);
4510 bd_queue_free(priv, &priv->tx_queue);
4511 return -ENOMEM;
4512 }
4513
4514 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4515 v = pci_alloc_consistent(priv->pci_dev,
4516 sizeof(struct ipw2100_data_header),
4517 &p);
4518 if (!v) {
4519 printk(KERN_ERR DRV_NAME
4520 ": %s: PCI alloc failed for tx " "buffers.\n",
4521 priv->net_dev->name);
4522 err = -ENOMEM;
4523 break;
4524 }
4525
4526 priv->tx_buffers[i].type = DATA;
4527 priv->tx_buffers[i].info.d_struct.data =
4528 (struct ipw2100_data_header *)v;
4529 priv->tx_buffers[i].info.d_struct.data_phys = p;
4530 priv->tx_buffers[i].info.d_struct.txb = NULL;
4531 }
4532
4533 if (i == TX_PENDED_QUEUE_LENGTH)
4534 return 0;
4535
4536 for (j = 0; j < i; j++) {
4537 pci_free_consistent(priv->pci_dev,
4538 sizeof(struct ipw2100_data_header),
4539 priv->tx_buffers[j].info.d_struct.data,
4540 priv->tx_buffers[j].info.d_struct.
4541 data_phys);
4542 }
4543
4544 kfree(priv->tx_buffers);
4545 priv->tx_buffers = NULL;
4546
4547 return err;
4548 }
4549
4550 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4551 {
4552 int i;
4553
4554 IPW_DEBUG_INFO("enter\n");
4555
4556 /*
4557 * reinitialize packet info lists
4558 */
4559 INIT_LIST_HEAD(&priv->fw_pend_list);
4560 INIT_STAT(&priv->fw_pend_stat);
4561
4562 /*
4563 * reinitialize lists
4564 */
4565 INIT_LIST_HEAD(&priv->tx_pend_list);
4566 INIT_LIST_HEAD(&priv->tx_free_list);
4567 INIT_STAT(&priv->tx_pend_stat);
4568 INIT_STAT(&priv->tx_free_stat);
4569
4570 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4571 /* We simply drop any SKBs that have been queued for
4572 * transmit */
4573 if (priv->tx_buffers[i].info.d_struct.txb) {
4574 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4575 txb);
4576 priv->tx_buffers[i].info.d_struct.txb = NULL;
4577 }
4578
4579 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4580 }
4581
4582 SET_STAT(&priv->tx_free_stat, i);
4583
4584 priv->tx_queue.oldest = 0;
4585 priv->tx_queue.available = priv->tx_queue.entries;
4586 priv->tx_queue.next = 0;
4587 INIT_STAT(&priv->txq_stat);
4588 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4589
4590 bd_queue_initialize(priv, &priv->tx_queue,
4591 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4592 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4593 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4594 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4595
4596 IPW_DEBUG_INFO("exit\n");
4597
4598 }
4599
4600 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4601 {
4602 int i;
4603
4604 IPW_DEBUG_INFO("enter\n");
4605
4606 bd_queue_free(priv, &priv->tx_queue);
4607
4608 if (!priv->tx_buffers)
4609 return;
4610
4611 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4612 if (priv->tx_buffers[i].info.d_struct.txb) {
4613 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4614 txb);
4615 priv->tx_buffers[i].info.d_struct.txb = NULL;
4616 }
4617 if (priv->tx_buffers[i].info.d_struct.data)
4618 pci_free_consistent(priv->pci_dev,
4619 sizeof(struct ipw2100_data_header),
4620 priv->tx_buffers[i].info.d_struct.
4621 data,
4622 priv->tx_buffers[i].info.d_struct.
4623 data_phys);
4624 }
4625
4626 kfree(priv->tx_buffers);
4627 priv->tx_buffers = NULL;
4628
4629 IPW_DEBUG_INFO("exit\n");
4630 }
4631
4632 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4633 {
4634 int i, j, err = -EINVAL;
4635
4636 IPW_DEBUG_INFO("enter\n");
4637
4638 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4639 if (err) {
4640 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4641 return err;
4642 }
4643
4644 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4645 if (err) {
4646 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4647 bd_queue_free(priv, &priv->rx_queue);
4648 return err;
4649 }
4650
4651 /*
4652 * allocate packets
4653 */
4654 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4655 sizeof(struct ipw2100_rx_packet),
4656 GFP_KERNEL);
4657 if (!priv->rx_buffers) {
4658 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4659
4660 bd_queue_free(priv, &priv->rx_queue);
4661
4662 status_queue_free(priv);
4663
4664 return -ENOMEM;
4665 }
4666
4667 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4668 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4669
4670 err = ipw2100_alloc_skb(priv, packet);
4671 if (unlikely(err)) {
4672 err = -ENOMEM;
4673 break;
4674 }
4675
4676 /* The BD holds the cache aligned address */
4677 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4678 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4679 priv->status_queue.drv[i].status_fields = 0;
4680 }
4681
4682 if (i == RX_QUEUE_LENGTH)
4683 return 0;
4684
4685 for (j = 0; j < i; j++) {
4686 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4687 sizeof(struct ipw2100_rx_packet),
4688 PCI_DMA_FROMDEVICE);
4689 dev_kfree_skb(priv->rx_buffers[j].skb);
4690 }
4691
4692 kfree(priv->rx_buffers);
4693 priv->rx_buffers = NULL;
4694
4695 bd_queue_free(priv, &priv->rx_queue);
4696
4697 status_queue_free(priv);
4698
4699 return err;
4700 }
4701
4702 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4703 {
4704 IPW_DEBUG_INFO("enter\n");
4705
4706 priv->rx_queue.oldest = 0;
4707 priv->rx_queue.available = priv->rx_queue.entries - 1;
4708 priv->rx_queue.next = priv->rx_queue.entries - 1;
4709
4710 INIT_STAT(&priv->rxq_stat);
4711 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4712
4713 bd_queue_initialize(priv, &priv->rx_queue,
4714 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4715 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4716 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4717 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4718
4719 /* set up the status queue */
4720 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4721 priv->status_queue.nic);
4722
4723 IPW_DEBUG_INFO("exit\n");
4724 }
4725
4726 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4727 {
4728 int i;
4729
4730 IPW_DEBUG_INFO("enter\n");
4731
4732 bd_queue_free(priv, &priv->rx_queue);
4733 status_queue_free(priv);
4734
4735 if (!priv->rx_buffers)
4736 return;
4737
4738 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4739 if (priv->rx_buffers[i].rxp) {
4740 pci_unmap_single(priv->pci_dev,
4741 priv->rx_buffers[i].dma_addr,
4742 sizeof(struct ipw2100_rx),
4743 PCI_DMA_FROMDEVICE);
4744 dev_kfree_skb(priv->rx_buffers[i].skb);
4745 }
4746 }
4747
4748 kfree(priv->rx_buffers);
4749 priv->rx_buffers = NULL;
4750
4751 IPW_DEBUG_INFO("exit\n");
4752 }
4753
4754 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4755 {
4756 u32 length = ETH_ALEN;
4757 u8 addr[ETH_ALEN];
4758
4759 int err;
4760
4761 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4762 if (err) {
4763 IPW_DEBUG_INFO("MAC address read failed\n");
4764 return -EIO;
4765 }
4766
4767 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4768 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4769
4770 return 0;
4771 }
4772
4773 /********************************************************************
4774 *
4775 * Firmware Commands
4776 *
4777 ********************************************************************/
4778
4779 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4780 {
4781 struct host_command cmd = {
4782 .host_command = ADAPTER_ADDRESS,
4783 .host_command_sequence = 0,
4784 .host_command_length = ETH_ALEN
4785 };
4786 int err;
4787
4788 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4789
4790 IPW_DEBUG_INFO("enter\n");
4791
4792 if (priv->config & CFG_CUSTOM_MAC) {
4793 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4794 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4795 } else
4796 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4797 ETH_ALEN);
4798
4799 err = ipw2100_hw_send_command(priv, &cmd);
4800
4801 IPW_DEBUG_INFO("exit\n");
4802 return err;
4803 }
4804
4805 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4806 int batch_mode)
4807 {
4808 struct host_command cmd = {
4809 .host_command = PORT_TYPE,
4810 .host_command_sequence = 0,
4811 .host_command_length = sizeof(u32)
4812 };
4813 int err;
4814
4815 switch (port_type) {
4816 case IW_MODE_INFRA:
4817 cmd.host_command_parameters[0] = IPW_BSS;
4818 break;
4819 case IW_MODE_ADHOC:
4820 cmd.host_command_parameters[0] = IPW_IBSS;
4821 break;
4822 }
4823
4824 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4825 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4826
4827 if (!batch_mode) {
4828 err = ipw2100_disable_adapter(priv);
4829 if (err) {
4830 printk(KERN_ERR DRV_NAME
4831 ": %s: Could not disable adapter %d\n",
4832 priv->net_dev->name, err);
4833 return err;
4834 }
4835 }
4836
4837 /* send cmd to firmware */
4838 err = ipw2100_hw_send_command(priv, &cmd);
4839
4840 if (!batch_mode)
4841 ipw2100_enable_adapter(priv);
4842
4843 return err;
4844 }
4845
4846 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4847 int batch_mode)
4848 {
4849 struct host_command cmd = {
4850 .host_command = CHANNEL,
4851 .host_command_sequence = 0,
4852 .host_command_length = sizeof(u32)
4853 };
4854 int err;
4855
4856 cmd.host_command_parameters[0] = channel;
4857
4858 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4859
4860 /* If BSS then we don't support channel selection */
4861 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4862 return 0;
4863
4864 if ((channel != 0) &&
4865 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4866 return -EINVAL;
4867
4868 if (!batch_mode) {
4869 err = ipw2100_disable_adapter(priv);
4870 if (err)
4871 return err;
4872 }
4873
4874 err = ipw2100_hw_send_command(priv, &cmd);
4875 if (err) {
4876 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4877 return err;
4878 }
4879
4880 if (channel)
4881 priv->config |= CFG_STATIC_CHANNEL;
4882 else
4883 priv->config &= ~CFG_STATIC_CHANNEL;
4884
4885 priv->channel = channel;
4886
4887 if (!batch_mode) {
4888 err = ipw2100_enable_adapter(priv);
4889 if (err)
4890 return err;
4891 }
4892
4893 return 0;
4894 }
4895
4896 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4897 {
4898 struct host_command cmd = {
4899 .host_command = SYSTEM_CONFIG,
4900 .host_command_sequence = 0,
4901 .host_command_length = 12,
4902 };
4903 u32 ibss_mask, len = sizeof(u32);
4904 int err;
4905
4906 /* Set system configuration */
4907
4908 if (!batch_mode) {
4909 err = ipw2100_disable_adapter(priv);
4910 if (err)
4911 return err;
4912 }
4913
4914 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4915 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4916
4917 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4918 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4919
4920 if (!(priv->config & CFG_LONG_PREAMBLE))
4921 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4922
4923 err = ipw2100_get_ordinal(priv,
4924 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4925 &ibss_mask, &len);
4926 if (err)
4927 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4928
4929 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4930 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4931
4932 /* 11b only */
4933 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4934
4935 err = ipw2100_hw_send_command(priv, &cmd);
4936 if (err)
4937 return err;
4938
4939 /* If IPv6 is configured in the kernel then we don't want to filter out all
4940 * of the multicast packets as IPv6 needs some. */
4941 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4942 cmd.host_command = ADD_MULTICAST;
4943 cmd.host_command_sequence = 0;
4944 cmd.host_command_length = 0;
4945
4946 ipw2100_hw_send_command(priv, &cmd);
4947 #endif
4948 if (!batch_mode) {
4949 err = ipw2100_enable_adapter(priv);
4950 if (err)
4951 return err;
4952 }
4953
4954 return 0;
4955 }
4956
4957 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4958 int batch_mode)
4959 {
4960 struct host_command cmd = {
4961 .host_command = BASIC_TX_RATES,
4962 .host_command_sequence = 0,
4963 .host_command_length = 4
4964 };
4965 int err;
4966
4967 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4968
4969 if (!batch_mode) {
4970 err = ipw2100_disable_adapter(priv);
4971 if (err)
4972 return err;
4973 }
4974
4975 /* Set BASIC TX Rate first */
4976 ipw2100_hw_send_command(priv, &cmd);
4977
4978 /* Set TX Rate */
4979 cmd.host_command = TX_RATES;
4980 ipw2100_hw_send_command(priv, &cmd);
4981
4982 /* Set MSDU TX Rate */
4983 cmd.host_command = MSDU_TX_RATES;
4984 ipw2100_hw_send_command(priv, &cmd);
4985
4986 if (!batch_mode) {
4987 err = ipw2100_enable_adapter(priv);
4988 if (err)
4989 return err;
4990 }
4991
4992 priv->tx_rates = rate;
4993
4994 return 0;
4995 }
4996
4997 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4998 {
4999 struct host_command cmd = {
5000 .host_command = POWER_MODE,
5001 .host_command_sequence = 0,
5002 .host_command_length = 4
5003 };
5004 int err;
5005
5006 cmd.host_command_parameters[0] = power_level;
5007
5008 err = ipw2100_hw_send_command(priv, &cmd);
5009 if (err)
5010 return err;
5011
5012 if (power_level == IPW_POWER_MODE_CAM)
5013 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5014 else
5015 priv->power_mode = IPW_POWER_ENABLED | power_level;
5016
5017 #ifdef IPW2100_TX_POWER
5018 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5019 /* Set beacon interval */
5020 cmd.host_command = TX_POWER_INDEX;
5021 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5022
5023 err = ipw2100_hw_send_command(priv, &cmd);
5024 if (err)
5025 return err;
5026 }
5027 #endif
5028
5029 return 0;
5030 }
5031
5032 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5033 {
5034 struct host_command cmd = {
5035 .host_command = RTS_THRESHOLD,
5036 .host_command_sequence = 0,
5037 .host_command_length = 4
5038 };
5039 int err;
5040
5041 if (threshold & RTS_DISABLED)
5042 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5043 else
5044 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5045
5046 err = ipw2100_hw_send_command(priv, &cmd);
5047 if (err)
5048 return err;
5049
5050 priv->rts_threshold = threshold;
5051
5052 return 0;
5053 }
5054
5055 #if 0
5056 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5057 u32 threshold, int batch_mode)
5058 {
5059 struct host_command cmd = {
5060 .host_command = FRAG_THRESHOLD,
5061 .host_command_sequence = 0,
5062 .host_command_length = 4,
5063 .host_command_parameters[0] = 0,
5064 };
5065 int err;
5066
5067 if (!batch_mode) {
5068 err = ipw2100_disable_adapter(priv);
5069 if (err)
5070 return err;
5071 }
5072
5073 if (threshold == 0)
5074 threshold = DEFAULT_FRAG_THRESHOLD;
5075 else {
5076 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5077 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5078 }
5079
5080 cmd.host_command_parameters[0] = threshold;
5081
5082 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5083
5084 err = ipw2100_hw_send_command(priv, &cmd);
5085
5086 if (!batch_mode)
5087 ipw2100_enable_adapter(priv);
5088
5089 if (!err)
5090 priv->frag_threshold = threshold;
5091
5092 return err;
5093 }
5094 #endif
5095
5096 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5097 {
5098 struct host_command cmd = {
5099 .host_command = SHORT_RETRY_LIMIT,
5100 .host_command_sequence = 0,
5101 .host_command_length = 4
5102 };
5103 int err;
5104
5105 cmd.host_command_parameters[0] = retry;
5106
5107 err = ipw2100_hw_send_command(priv, &cmd);
5108 if (err)
5109 return err;
5110
5111 priv->short_retry_limit = retry;
5112
5113 return 0;
5114 }
5115
5116 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5117 {
5118 struct host_command cmd = {
5119 .host_command = LONG_RETRY_LIMIT,
5120 .host_command_sequence = 0,
5121 .host_command_length = 4
5122 };
5123 int err;
5124
5125 cmd.host_command_parameters[0] = retry;
5126
5127 err = ipw2100_hw_send_command(priv, &cmd);
5128 if (err)
5129 return err;
5130
5131 priv->long_retry_limit = retry;
5132
5133 return 0;
5134 }
5135
5136 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5137 int batch_mode)
5138 {
5139 struct host_command cmd = {
5140 .host_command = MANDATORY_BSSID,
5141 .host_command_sequence = 0,
5142 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5143 };
5144 int err;
5145
5146 #ifdef CONFIG_IPW2100_DEBUG
5147 if (bssid != NULL)
5148 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5149 else
5150 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5151 #endif
5152 /* if BSSID is empty then we disable mandatory bssid mode */
5153 if (bssid != NULL)
5154 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5155
5156 if (!batch_mode) {
5157 err = ipw2100_disable_adapter(priv);
5158 if (err)
5159 return err;
5160 }
5161
5162 err = ipw2100_hw_send_command(priv, &cmd);
5163
5164 if (!batch_mode)
5165 ipw2100_enable_adapter(priv);
5166
5167 return err;
5168 }
5169
5170 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5171 {
5172 struct host_command cmd = {
5173 .host_command = DISASSOCIATION_BSSID,
5174 .host_command_sequence = 0,
5175 .host_command_length = ETH_ALEN
5176 };
5177 int err;
5178 int len;
5179
5180 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5181
5182 len = ETH_ALEN;
5183 /* The Firmware currently ignores the BSSID and just disassociates from
5184 * the currently associated AP -- but in the off chance that a future
5185 * firmware does use the BSSID provided here, we go ahead and try and
5186 * set it to the currently associated AP's BSSID */
5187 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5188
5189 err = ipw2100_hw_send_command(priv, &cmd);
5190
5191 return err;
5192 }
5193
5194 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5195 struct ipw2100_wpa_assoc_frame *, int)
5196 __attribute__ ((unused));
5197
5198 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5199 struct ipw2100_wpa_assoc_frame *wpa_frame,
5200 int batch_mode)
5201 {
5202 struct host_command cmd = {
5203 .host_command = SET_WPA_IE,
5204 .host_command_sequence = 0,
5205 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5206 };
5207 int err;
5208
5209 IPW_DEBUG_HC("SET_WPA_IE\n");
5210
5211 if (!batch_mode) {
5212 err = ipw2100_disable_adapter(priv);
5213 if (err)
5214 return err;
5215 }
5216
5217 memcpy(cmd.host_command_parameters, wpa_frame,
5218 sizeof(struct ipw2100_wpa_assoc_frame));
5219
5220 err = ipw2100_hw_send_command(priv, &cmd);
5221
5222 if (!batch_mode) {
5223 if (ipw2100_enable_adapter(priv))
5224 err = -EIO;
5225 }
5226
5227 return err;
5228 }
5229
5230 struct security_info_params {
5231 u32 allowed_ciphers;
5232 u16 version;
5233 u8 auth_mode;
5234 u8 replay_counters_number;
5235 u8 unicast_using_group;
5236 } __packed;
5237
5238 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5239 int auth_mode,
5240 int security_level,
5241 int unicast_using_group,
5242 int batch_mode)
5243 {
5244 struct host_command cmd = {
5245 .host_command = SET_SECURITY_INFORMATION,
5246 .host_command_sequence = 0,
5247 .host_command_length = sizeof(struct security_info_params)
5248 };
5249 struct security_info_params *security =
5250 (struct security_info_params *)&cmd.host_command_parameters;
5251 int err;
5252 memset(security, 0, sizeof(*security));
5253
5254 /* If shared key AP authentication is turned on, then we need to
5255 * configure the firmware to try and use it.
5256 *
5257 * Actual data encryption/decryption is handled by the host. */
5258 security->auth_mode = auth_mode;
5259 security->unicast_using_group = unicast_using_group;
5260
5261 switch (security_level) {
5262 default:
5263 case SEC_LEVEL_0:
5264 security->allowed_ciphers = IPW_NONE_CIPHER;
5265 break;
5266 case SEC_LEVEL_1:
5267 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268 IPW_WEP104_CIPHER;
5269 break;
5270 case SEC_LEVEL_2:
5271 security->allowed_ciphers = IPW_WEP40_CIPHER |
5272 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5273 break;
5274 case SEC_LEVEL_2_CKIP:
5275 security->allowed_ciphers = IPW_WEP40_CIPHER |
5276 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5277 break;
5278 case SEC_LEVEL_3:
5279 security->allowed_ciphers = IPW_WEP40_CIPHER |
5280 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5281 break;
5282 }
5283
5284 IPW_DEBUG_HC
5285 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5286 security->auth_mode, security->allowed_ciphers, security_level);
5287
5288 security->replay_counters_number = 0;
5289
5290 if (!batch_mode) {
5291 err = ipw2100_disable_adapter(priv);
5292 if (err)
5293 return err;
5294 }
5295
5296 err = ipw2100_hw_send_command(priv, &cmd);
5297
5298 if (!batch_mode)
5299 ipw2100_enable_adapter(priv);
5300
5301 return err;
5302 }
5303
5304 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5305 {
5306 struct host_command cmd = {
5307 .host_command = TX_POWER_INDEX,
5308 .host_command_sequence = 0,
5309 .host_command_length = 4
5310 };
5311 int err = 0;
5312 u32 tmp = tx_power;
5313
5314 if (tx_power != IPW_TX_POWER_DEFAULT)
5315 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5316 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5317
5318 cmd.host_command_parameters[0] = tmp;
5319
5320 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5321 err = ipw2100_hw_send_command(priv, &cmd);
5322 if (!err)
5323 priv->tx_power = tx_power;
5324
5325 return 0;
5326 }
5327
5328 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5329 u32 interval, int batch_mode)
5330 {
5331 struct host_command cmd = {
5332 .host_command = BEACON_INTERVAL,
5333 .host_command_sequence = 0,
5334 .host_command_length = 4
5335 };
5336 int err;
5337
5338 cmd.host_command_parameters[0] = interval;
5339
5340 IPW_DEBUG_INFO("enter\n");
5341
5342 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5343 if (!batch_mode) {
5344 err = ipw2100_disable_adapter(priv);
5345 if (err)
5346 return err;
5347 }
5348
5349 ipw2100_hw_send_command(priv, &cmd);
5350
5351 if (!batch_mode) {
5352 err = ipw2100_enable_adapter(priv);
5353 if (err)
5354 return err;
5355 }
5356 }
5357
5358 IPW_DEBUG_INFO("exit\n");
5359
5360 return 0;
5361 }
5362
5363 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5364 {
5365 ipw2100_tx_initialize(priv);
5366 ipw2100_rx_initialize(priv);
5367 ipw2100_msg_initialize(priv);
5368 }
5369
5370 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5371 {
5372 ipw2100_tx_free(priv);
5373 ipw2100_rx_free(priv);
5374 ipw2100_msg_free(priv);
5375 }
5376
5377 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5378 {
5379 if (ipw2100_tx_allocate(priv) ||
5380 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5381 goto fail;
5382
5383 return 0;
5384
5385 fail:
5386 ipw2100_tx_free(priv);
5387 ipw2100_rx_free(priv);
5388 ipw2100_msg_free(priv);
5389 return -ENOMEM;
5390 }
5391
5392 #define IPW_PRIVACY_CAPABLE 0x0008
5393
5394 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5395 int batch_mode)
5396 {
5397 struct host_command cmd = {
5398 .host_command = WEP_FLAGS,
5399 .host_command_sequence = 0,
5400 .host_command_length = 4
5401 };
5402 int err;
5403
5404 cmd.host_command_parameters[0] = flags;
5405
5406 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5407
5408 if (!batch_mode) {
5409 err = ipw2100_disable_adapter(priv);
5410 if (err) {
5411 printk(KERN_ERR DRV_NAME
5412 ": %s: Could not disable adapter %d\n",
5413 priv->net_dev->name, err);
5414 return err;
5415 }
5416 }
5417
5418 /* send cmd to firmware */
5419 err = ipw2100_hw_send_command(priv, &cmd);
5420
5421 if (!batch_mode)
5422 ipw2100_enable_adapter(priv);
5423
5424 return err;
5425 }
5426
5427 struct ipw2100_wep_key {
5428 u8 idx;
5429 u8 len;
5430 u8 key[13];
5431 };
5432
5433 /* Macros to ease up priting WEP keys */
5434 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5435 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5436 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5437 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5438
5439 /**
5440 * Set a the wep key
5441 *
5442 * @priv: struct to work on
5443 * @idx: index of the key we want to set
5444 * @key: ptr to the key data to set
5445 * @len: length of the buffer at @key
5446 * @batch_mode: FIXME perform the operation in batch mode, not
5447 * disabling the device.
5448 *
5449 * @returns 0 if OK, < 0 errno code on error.
5450 *
5451 * Fill out a command structure with the new wep key, length an
5452 * index and send it down the wire.
5453 */
5454 static int ipw2100_set_key(struct ipw2100_priv *priv,
5455 int idx, char *key, int len, int batch_mode)
5456 {
5457 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5458 struct host_command cmd = {
5459 .host_command = WEP_KEY_INFO,
5460 .host_command_sequence = 0,
5461 .host_command_length = sizeof(struct ipw2100_wep_key),
5462 };
5463 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5464 int err;
5465
5466 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5467 idx, keylen, len);
5468
5469 /* NOTE: We don't check cached values in case the firmware was reset
5470 * or some other problem is occurring. If the user is setting the key,
5471 * then we push the change */
5472
5473 wep_key->idx = idx;
5474 wep_key->len = keylen;
5475
5476 if (keylen) {
5477 memcpy(wep_key->key, key, len);
5478 memset(wep_key->key + len, 0, keylen - len);
5479 }
5480
5481 /* Will be optimized out on debug not being configured in */
5482 if (keylen == 0)
5483 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5484 priv->net_dev->name, wep_key->idx);
5485 else if (keylen == 5)
5486 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5487 priv->net_dev->name, wep_key->idx, wep_key->len,
5488 WEP_STR_64(wep_key->key));
5489 else
5490 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5491 "\n",
5492 priv->net_dev->name, wep_key->idx, wep_key->len,
5493 WEP_STR_128(wep_key->key));
5494
5495 if (!batch_mode) {
5496 err = ipw2100_disable_adapter(priv);
5497 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5498 if (err) {
5499 printk(KERN_ERR DRV_NAME
5500 ": %s: Could not disable adapter %d\n",
5501 priv->net_dev->name, err);
5502 return err;
5503 }
5504 }
5505
5506 /* send cmd to firmware */
5507 err = ipw2100_hw_send_command(priv, &cmd);
5508
5509 if (!batch_mode) {
5510 int err2 = ipw2100_enable_adapter(priv);
5511 if (err == 0)
5512 err = err2;
5513 }
5514 return err;
5515 }
5516
5517 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5518 int idx, int batch_mode)
5519 {
5520 struct host_command cmd = {
5521 .host_command = WEP_KEY_INDEX,
5522 .host_command_sequence = 0,
5523 .host_command_length = 4,
5524 .host_command_parameters = {idx},
5525 };
5526 int err;
5527
5528 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5529
5530 if (idx < 0 || idx > 3)
5531 return -EINVAL;
5532
5533 if (!batch_mode) {
5534 err = ipw2100_disable_adapter(priv);
5535 if (err) {
5536 printk(KERN_ERR DRV_NAME
5537 ": %s: Could not disable adapter %d\n",
5538 priv->net_dev->name, err);
5539 return err;
5540 }
5541 }
5542
5543 /* send cmd to firmware */
5544 err = ipw2100_hw_send_command(priv, &cmd);
5545
5546 if (!batch_mode)
5547 ipw2100_enable_adapter(priv);
5548
5549 return err;
5550 }
5551
5552 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5553 {
5554 int i, err, auth_mode, sec_level, use_group;
5555
5556 if (!(priv->status & STATUS_RUNNING))
5557 return 0;
5558
5559 if (!batch_mode) {
5560 err = ipw2100_disable_adapter(priv);
5561 if (err)
5562 return err;
5563 }
5564
5565 if (!priv->ieee->sec.enabled) {
5566 err =
5567 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5568 SEC_LEVEL_0, 0, 1);
5569 } else {
5570 auth_mode = IPW_AUTH_OPEN;
5571 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5572 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5573 auth_mode = IPW_AUTH_SHARED;
5574 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5575 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5576 }
5577
5578 sec_level = SEC_LEVEL_0;
5579 if (priv->ieee->sec.flags & SEC_LEVEL)
5580 sec_level = priv->ieee->sec.level;
5581
5582 use_group = 0;
5583 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5584 use_group = priv->ieee->sec.unicast_uses_group;
5585
5586 err =
5587 ipw2100_set_security_information(priv, auth_mode, sec_level,
5588 use_group, 1);
5589 }
5590
5591 if (err)
5592 goto exit;
5593
5594 if (priv->ieee->sec.enabled) {
5595 for (i = 0; i < 4; i++) {
5596 if (!(priv->ieee->sec.flags & (1 << i))) {
5597 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5598 priv->ieee->sec.key_sizes[i] = 0;
5599 } else {
5600 err = ipw2100_set_key(priv, i,
5601 priv->ieee->sec.keys[i],
5602 priv->ieee->sec.
5603 key_sizes[i], 1);
5604 if (err)
5605 goto exit;
5606 }
5607 }
5608
5609 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5610 }
5611
5612 /* Always enable privacy so the Host can filter WEP packets if
5613 * encrypted data is sent up */
5614 err =
5615 ipw2100_set_wep_flags(priv,
5616 priv->ieee->sec.
5617 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5618 if (err)
5619 goto exit;
5620
5621 priv->status &= ~STATUS_SECURITY_UPDATED;
5622
5623 exit:
5624 if (!batch_mode)
5625 ipw2100_enable_adapter(priv);
5626
5627 return err;
5628 }
5629
5630 static void ipw2100_security_work(struct work_struct *work)
5631 {
5632 struct ipw2100_priv *priv =
5633 container_of(work, struct ipw2100_priv, security_work.work);
5634
5635 /* If we happen to have reconnected before we get a chance to
5636 * process this, then update the security settings--which causes
5637 * a disassociation to occur */
5638 if (!(priv->status & STATUS_ASSOCIATED) &&
5639 priv->status & STATUS_SECURITY_UPDATED)
5640 ipw2100_configure_security(priv, 0);
5641 }
5642
5643 static void shim__set_security(struct net_device *dev,
5644 struct libipw_security *sec)
5645 {
5646 struct ipw2100_priv *priv = libipw_priv(dev);
5647 int i, force_update = 0;
5648
5649 mutex_lock(&priv->action_mutex);
5650 if (!(priv->status & STATUS_INITIALIZED))
5651 goto done;
5652
5653 for (i = 0; i < 4; i++) {
5654 if (sec->flags & (1 << i)) {
5655 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5656 if (sec->key_sizes[i] == 0)
5657 priv->ieee->sec.flags &= ~(1 << i);
5658 else
5659 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5660 sec->key_sizes[i]);
5661 if (sec->level == SEC_LEVEL_1) {
5662 priv->ieee->sec.flags |= (1 << i);
5663 priv->status |= STATUS_SECURITY_UPDATED;
5664 } else
5665 priv->ieee->sec.flags &= ~(1 << i);
5666 }
5667 }
5668
5669 if ((sec->flags & SEC_ACTIVE_KEY) &&
5670 priv->ieee->sec.active_key != sec->active_key) {
5671 if (sec->active_key <= 3) {
5672 priv->ieee->sec.active_key = sec->active_key;
5673 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5674 } else
5675 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5676
5677 priv->status |= STATUS_SECURITY_UPDATED;
5678 }
5679
5680 if ((sec->flags & SEC_AUTH_MODE) &&
5681 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5682 priv->ieee->sec.auth_mode = sec->auth_mode;
5683 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5684 priv->status |= STATUS_SECURITY_UPDATED;
5685 }
5686
5687 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5688 priv->ieee->sec.flags |= SEC_ENABLED;
5689 priv->ieee->sec.enabled = sec->enabled;
5690 priv->status |= STATUS_SECURITY_UPDATED;
5691 force_update = 1;
5692 }
5693
5694 if (sec->flags & SEC_ENCRYPT)
5695 priv->ieee->sec.encrypt = sec->encrypt;
5696
5697 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5698 priv->ieee->sec.level = sec->level;
5699 priv->ieee->sec.flags |= SEC_LEVEL;
5700 priv->status |= STATUS_SECURITY_UPDATED;
5701 }
5702
5703 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5704 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5705 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5706 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5707 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5708 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5709 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5710 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5711 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5712 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5713
5714 /* As a temporary work around to enable WPA until we figure out why
5715 * wpa_supplicant toggles the security capability of the driver, which
5716 * forces a disassocation with force_update...
5717 *
5718 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5719 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5720 ipw2100_configure_security(priv, 0);
5721 done:
5722 mutex_unlock(&priv->action_mutex);
5723 }
5724
5725 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5726 {
5727 int err;
5728 int batch_mode = 1;
5729 u8 *bssid;
5730
5731 IPW_DEBUG_INFO("enter\n");
5732
5733 err = ipw2100_disable_adapter(priv);
5734 if (err)
5735 return err;
5736 #ifdef CONFIG_IPW2100_MONITOR
5737 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5738 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5739 if (err)
5740 return err;
5741
5742 IPW_DEBUG_INFO("exit\n");
5743
5744 return 0;
5745 }
5746 #endif /* CONFIG_IPW2100_MONITOR */
5747
5748 err = ipw2100_read_mac_address(priv);
5749 if (err)
5750 return -EIO;
5751
5752 err = ipw2100_set_mac_address(priv, batch_mode);
5753 if (err)
5754 return err;
5755
5756 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5757 if (err)
5758 return err;
5759
5760 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5761 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5762 if (err)
5763 return err;
5764 }
5765
5766 err = ipw2100_system_config(priv, batch_mode);
5767 if (err)
5768 return err;
5769
5770 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5771 if (err)
5772 return err;
5773
5774 /* Default to power mode OFF */
5775 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5776 if (err)
5777 return err;
5778
5779 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5780 if (err)
5781 return err;
5782
5783 if (priv->config & CFG_STATIC_BSSID)
5784 bssid = priv->bssid;
5785 else
5786 bssid = NULL;
5787 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5788 if (err)
5789 return err;
5790
5791 if (priv->config & CFG_STATIC_ESSID)
5792 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5793 batch_mode);
5794 else
5795 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5796 if (err)
5797 return err;
5798
5799 err = ipw2100_configure_security(priv, batch_mode);
5800 if (err)
5801 return err;
5802
5803 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5804 err =
5805 ipw2100_set_ibss_beacon_interval(priv,
5806 priv->beacon_interval,
5807 batch_mode);
5808 if (err)
5809 return err;
5810
5811 err = ipw2100_set_tx_power(priv, priv->tx_power);
5812 if (err)
5813 return err;
5814 }
5815
5816 /*
5817 err = ipw2100_set_fragmentation_threshold(
5818 priv, priv->frag_threshold, batch_mode);
5819 if (err)
5820 return err;
5821 */
5822
5823 IPW_DEBUG_INFO("exit\n");
5824
5825 return 0;
5826 }
5827
5828 /*************************************************************************
5829 *
5830 * EXTERNALLY CALLED METHODS
5831 *
5832 *************************************************************************/
5833
5834 /* This method is called by the network layer -- not to be confused with
5835 * ipw2100_set_mac_address() declared above called by this driver (and this
5836 * method as well) to talk to the firmware */
5837 static int ipw2100_set_address(struct net_device *dev, void *p)
5838 {
5839 struct ipw2100_priv *priv = libipw_priv(dev);
5840 struct sockaddr *addr = p;
5841 int err = 0;
5842
5843 if (!is_valid_ether_addr(addr->sa_data))
5844 return -EADDRNOTAVAIL;
5845
5846 mutex_lock(&priv->action_mutex);
5847
5848 priv->config |= CFG_CUSTOM_MAC;
5849 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5850
5851 err = ipw2100_set_mac_address(priv, 0);
5852 if (err)
5853 goto done;
5854
5855 priv->reset_backoff = 0;
5856 mutex_unlock(&priv->action_mutex);
5857 ipw2100_reset_adapter(&priv->reset_work.work);
5858 return 0;
5859
5860 done:
5861 mutex_unlock(&priv->action_mutex);
5862 return err;
5863 }
5864
5865 static int ipw2100_open(struct net_device *dev)
5866 {
5867 struct ipw2100_priv *priv = libipw_priv(dev);
5868 unsigned long flags;
5869 IPW_DEBUG_INFO("dev->open\n");
5870
5871 spin_lock_irqsave(&priv->low_lock, flags);
5872 if (priv->status & STATUS_ASSOCIATED) {
5873 netif_carrier_on(dev);
5874 netif_start_queue(dev);
5875 }
5876 spin_unlock_irqrestore(&priv->low_lock, flags);
5877
5878 return 0;
5879 }
5880
5881 static int ipw2100_close(struct net_device *dev)
5882 {
5883 struct ipw2100_priv *priv = libipw_priv(dev);
5884 unsigned long flags;
5885 struct list_head *element;
5886 struct ipw2100_tx_packet *packet;
5887
5888 IPW_DEBUG_INFO("enter\n");
5889
5890 spin_lock_irqsave(&priv->low_lock, flags);
5891
5892 if (priv->status & STATUS_ASSOCIATED)
5893 netif_carrier_off(dev);
5894 netif_stop_queue(dev);
5895
5896 /* Flush the TX queue ... */
5897 while (!list_empty(&priv->tx_pend_list)) {
5898 element = priv->tx_pend_list.next;
5899 packet = list_entry(element, struct ipw2100_tx_packet, list);
5900
5901 list_del(element);
5902 DEC_STAT(&priv->tx_pend_stat);
5903
5904 libipw_txb_free(packet->info.d_struct.txb);
5905 packet->info.d_struct.txb = NULL;
5906
5907 list_add_tail(element, &priv->tx_free_list);
5908 INC_STAT(&priv->tx_free_stat);
5909 }
5910 spin_unlock_irqrestore(&priv->low_lock, flags);
5911
5912 IPW_DEBUG_INFO("exit\n");
5913
5914 return 0;
5915 }
5916
5917 /*
5918 * TODO: Fix this function... its just wrong
5919 */
5920 static void ipw2100_tx_timeout(struct net_device *dev)
5921 {
5922 struct ipw2100_priv *priv = libipw_priv(dev);
5923
5924 dev->stats.tx_errors++;
5925
5926 #ifdef CONFIG_IPW2100_MONITOR
5927 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5928 return;
5929 #endif
5930
5931 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5932 dev->name);
5933 schedule_reset(priv);
5934 }
5935
5936 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5937 {
5938 /* This is called when wpa_supplicant loads and closes the driver
5939 * interface. */
5940 priv->ieee->wpa_enabled = value;
5941 return 0;
5942 }
5943
5944 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5945 {
5946
5947 struct libipw_device *ieee = priv->ieee;
5948 struct libipw_security sec = {
5949 .flags = SEC_AUTH_MODE,
5950 };
5951 int ret = 0;
5952
5953 if (value & IW_AUTH_ALG_SHARED_KEY) {
5954 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5955 ieee->open_wep = 0;
5956 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5957 sec.auth_mode = WLAN_AUTH_OPEN;
5958 ieee->open_wep = 1;
5959 } else if (value & IW_AUTH_ALG_LEAP) {
5960 sec.auth_mode = WLAN_AUTH_LEAP;
5961 ieee->open_wep = 1;
5962 } else
5963 return -EINVAL;
5964
5965 if (ieee->set_security)
5966 ieee->set_security(ieee->dev, &sec);
5967 else
5968 ret = -EOPNOTSUPP;
5969
5970 return ret;
5971 }
5972
5973 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5974 char *wpa_ie, int wpa_ie_len)
5975 {
5976
5977 struct ipw2100_wpa_assoc_frame frame;
5978
5979 frame.fixed_ie_mask = 0;
5980
5981 /* copy WPA IE */
5982 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5983 frame.var_ie_len = wpa_ie_len;
5984
5985 /* make sure WPA is enabled */
5986 ipw2100_wpa_enable(priv, 1);
5987 ipw2100_set_wpa_ie(priv, &frame, 0);
5988 }
5989
5990 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5991 struct ethtool_drvinfo *info)
5992 {
5993 struct ipw2100_priv *priv = libipw_priv(dev);
5994 char fw_ver[64], ucode_ver[64];
5995
5996 strcpy(info->driver, DRV_NAME);
5997 strcpy(info->version, DRV_VERSION);
5998
5999 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
6000 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
6001
6002 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
6003 fw_ver, priv->eeprom_version, ucode_ver);
6004
6005 strcpy(info->bus_info, pci_name(priv->pci_dev));
6006 }
6007
6008 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6009 {
6010 struct ipw2100_priv *priv = libipw_priv(dev);
6011 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6012 }
6013
6014 static const struct ethtool_ops ipw2100_ethtool_ops = {
6015 .get_link = ipw2100_ethtool_get_link,
6016 .get_drvinfo = ipw_ethtool_get_drvinfo,
6017 };
6018
6019 static void ipw2100_hang_check(struct work_struct *work)
6020 {
6021 struct ipw2100_priv *priv =
6022 container_of(work, struct ipw2100_priv, hang_check.work);
6023 unsigned long flags;
6024 u32 rtc = 0xa5a5a5a5;
6025 u32 len = sizeof(rtc);
6026 int restart = 0;
6027
6028 spin_lock_irqsave(&priv->low_lock, flags);
6029
6030 if (priv->fatal_error != 0) {
6031 /* If fatal_error is set then we need to restart */
6032 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6033 priv->net_dev->name);
6034
6035 restart = 1;
6036 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6037 (rtc == priv->last_rtc)) {
6038 /* Check if firmware is hung */
6039 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6040 priv->net_dev->name);
6041
6042 restart = 1;
6043 }
6044
6045 if (restart) {
6046 /* Kill timer */
6047 priv->stop_hang_check = 1;
6048 priv->hangs++;
6049
6050 /* Restart the NIC */
6051 schedule_reset(priv);
6052 }
6053
6054 priv->last_rtc = rtc;
6055
6056 if (!priv->stop_hang_check)
6057 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6058
6059 spin_unlock_irqrestore(&priv->low_lock, flags);
6060 }
6061
6062 static void ipw2100_rf_kill(struct work_struct *work)
6063 {
6064 struct ipw2100_priv *priv =
6065 container_of(work, struct ipw2100_priv, rf_kill.work);
6066 unsigned long flags;
6067
6068 spin_lock_irqsave(&priv->low_lock, flags);
6069
6070 if (rf_kill_active(priv)) {
6071 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6072 if (!priv->stop_rf_kill)
6073 queue_delayed_work(priv->workqueue, &priv->rf_kill,
6074 round_jiffies_relative(HZ));
6075 goto exit_unlock;
6076 }
6077
6078 /* RF Kill is now disabled, so bring the device back up */
6079
6080 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6081 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6082 "device\n");
6083 schedule_reset(priv);
6084 } else
6085 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6086 "enabled\n");
6087
6088 exit_unlock:
6089 spin_unlock_irqrestore(&priv->low_lock, flags);
6090 }
6091
6092 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6093
6094 static const struct net_device_ops ipw2100_netdev_ops = {
6095 .ndo_open = ipw2100_open,
6096 .ndo_stop = ipw2100_close,
6097 .ndo_start_xmit = libipw_xmit,
6098 .ndo_change_mtu = libipw_change_mtu,
6099 .ndo_init = ipw2100_net_init,
6100 .ndo_tx_timeout = ipw2100_tx_timeout,
6101 .ndo_set_mac_address = ipw2100_set_address,
6102 .ndo_validate_addr = eth_validate_addr,
6103 };
6104
6105 /* Look into using netdev destructor to shutdown libipw? */
6106
6107 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6108 void __iomem * base_addr,
6109 unsigned long mem_start,
6110 unsigned long mem_len)
6111 {
6112 struct ipw2100_priv *priv;
6113 struct net_device *dev;
6114
6115 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6116 if (!dev)
6117 return NULL;
6118 priv = libipw_priv(dev);
6119 priv->ieee = netdev_priv(dev);
6120 priv->pci_dev = pci_dev;
6121 priv->net_dev = dev;
6122
6123 priv->ieee->hard_start_xmit = ipw2100_tx;
6124 priv->ieee->set_security = shim__set_security;
6125
6126 priv->ieee->perfect_rssi = -20;
6127 priv->ieee->worst_rssi = -85;
6128
6129 dev->netdev_ops = &ipw2100_netdev_ops;
6130 dev->ethtool_ops = &ipw2100_ethtool_ops;
6131 dev->wireless_handlers = &ipw2100_wx_handler_def;
6132 priv->wireless_data.libipw = priv->ieee;
6133 dev->wireless_data = &priv->wireless_data;
6134 dev->watchdog_timeo = 3 * HZ;
6135 dev->irq = 0;
6136
6137 dev->base_addr = (unsigned long)base_addr;
6138 dev->mem_start = mem_start;
6139 dev->mem_end = dev->mem_start + mem_len - 1;
6140
6141 /* NOTE: We don't use the wireless_handlers hook
6142 * in dev as the system will start throwing WX requests
6143 * to us before we're actually initialized and it just
6144 * ends up causing problems. So, we just handle
6145 * the WX extensions through the ipw2100_ioctl interface */
6146
6147 /* memset() puts everything to 0, so we only have explicitly set
6148 * those values that need to be something else */
6149
6150 /* If power management is turned on, default to AUTO mode */
6151 priv->power_mode = IPW_POWER_AUTO;
6152
6153 #ifdef CONFIG_IPW2100_MONITOR
6154 priv->config |= CFG_CRC_CHECK;
6155 #endif
6156 priv->ieee->wpa_enabled = 0;
6157 priv->ieee->drop_unencrypted = 0;
6158 priv->ieee->privacy_invoked = 0;
6159 priv->ieee->ieee802_1x = 1;
6160
6161 /* Set module parameters */
6162 switch (network_mode) {
6163 case 1:
6164 priv->ieee->iw_mode = IW_MODE_ADHOC;
6165 break;
6166 #ifdef CONFIG_IPW2100_MONITOR
6167 case 2:
6168 priv->ieee->iw_mode = IW_MODE_MONITOR;
6169 break;
6170 #endif
6171 default:
6172 case 0:
6173 priv->ieee->iw_mode = IW_MODE_INFRA;
6174 break;
6175 }
6176
6177 if (disable == 1)
6178 priv->status |= STATUS_RF_KILL_SW;
6179
6180 if (channel != 0 &&
6181 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6182 priv->config |= CFG_STATIC_CHANNEL;
6183 priv->channel = channel;
6184 }
6185
6186 if (associate)
6187 priv->config |= CFG_ASSOCIATE;
6188
6189 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6190 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6191 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6192 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6193 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6194 priv->tx_power = IPW_TX_POWER_DEFAULT;
6195 priv->tx_rates = DEFAULT_TX_RATES;
6196
6197 strcpy(priv->nick, "ipw2100");
6198
6199 spin_lock_init(&priv->low_lock);
6200 mutex_init(&priv->action_mutex);
6201 mutex_init(&priv->adapter_mutex);
6202
6203 init_waitqueue_head(&priv->wait_command_queue);
6204
6205 netif_carrier_off(dev);
6206
6207 INIT_LIST_HEAD(&priv->msg_free_list);
6208 INIT_LIST_HEAD(&priv->msg_pend_list);
6209 INIT_STAT(&priv->msg_free_stat);
6210 INIT_STAT(&priv->msg_pend_stat);
6211
6212 INIT_LIST_HEAD(&priv->tx_free_list);
6213 INIT_LIST_HEAD(&priv->tx_pend_list);
6214 INIT_STAT(&priv->tx_free_stat);
6215 INIT_STAT(&priv->tx_pend_stat);
6216
6217 INIT_LIST_HEAD(&priv->fw_pend_list);
6218 INIT_STAT(&priv->fw_pend_stat);
6219
6220 priv->workqueue = create_workqueue(DRV_NAME);
6221
6222 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6223 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6224 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6225 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6226 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6227 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6228 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6229
6230 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6231 ipw2100_irq_tasklet, (unsigned long)priv);
6232
6233 /* NOTE: We do not start the deferred work for status checks yet */
6234 priv->stop_rf_kill = 1;
6235 priv->stop_hang_check = 1;
6236
6237 return dev;
6238 }
6239
6240 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6241 const struct pci_device_id *ent)
6242 {
6243 unsigned long mem_start, mem_len, mem_flags;
6244 void __iomem *base_addr = NULL;
6245 struct net_device *dev = NULL;
6246 struct ipw2100_priv *priv = NULL;
6247 int err = 0;
6248 int registered = 0;
6249 u32 val;
6250
6251 IPW_DEBUG_INFO("enter\n");
6252
6253 mem_start = pci_resource_start(pci_dev, 0);
6254 mem_len = pci_resource_len(pci_dev, 0);
6255 mem_flags = pci_resource_flags(pci_dev, 0);
6256
6257 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6258 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6259 err = -ENODEV;
6260 goto fail;
6261 }
6262
6263 base_addr = ioremap_nocache(mem_start, mem_len);
6264 if (!base_addr) {
6265 printk(KERN_WARNING DRV_NAME
6266 "Error calling ioremap_nocache.\n");
6267 err = -EIO;
6268 goto fail;
6269 }
6270
6271 /* allocate and initialize our net_device */
6272 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6273 if (!dev) {
6274 printk(KERN_WARNING DRV_NAME
6275 "Error calling ipw2100_alloc_device.\n");
6276 err = -ENOMEM;
6277 goto fail;
6278 }
6279
6280 /* set up PCI mappings for device */
6281 err = pci_enable_device(pci_dev);
6282 if (err) {
6283 printk(KERN_WARNING DRV_NAME
6284 "Error calling pci_enable_device.\n");
6285 return err;
6286 }
6287
6288 priv = libipw_priv(dev);
6289
6290 pci_set_master(pci_dev);
6291 pci_set_drvdata(pci_dev, priv);
6292
6293 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6294 if (err) {
6295 printk(KERN_WARNING DRV_NAME
6296 "Error calling pci_set_dma_mask.\n");
6297 pci_disable_device(pci_dev);
6298 return err;
6299 }
6300
6301 err = pci_request_regions(pci_dev, DRV_NAME);
6302 if (err) {
6303 printk(KERN_WARNING DRV_NAME
6304 "Error calling pci_request_regions.\n");
6305 pci_disable_device(pci_dev);
6306 return err;
6307 }
6308
6309 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6310 * PCI Tx retries from interfering with C3 CPU state */
6311 pci_read_config_dword(pci_dev, 0x40, &val);
6312 if ((val & 0x0000ff00) != 0)
6313 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6314
6315 pci_set_power_state(pci_dev, PCI_D0);
6316
6317 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6318 printk(KERN_WARNING DRV_NAME
6319 "Device not found via register read.\n");
6320 err = -ENODEV;
6321 goto fail;
6322 }
6323
6324 SET_NETDEV_DEV(dev, &pci_dev->dev);
6325
6326 /* Force interrupts to be shut off on the device */
6327 priv->status |= STATUS_INT_ENABLED;
6328 ipw2100_disable_interrupts(priv);
6329
6330 /* Allocate and initialize the Tx/Rx queues and lists */
6331 if (ipw2100_queues_allocate(priv)) {
6332 printk(KERN_WARNING DRV_NAME
6333 "Error calling ipw2100_queues_allocate.\n");
6334 err = -ENOMEM;
6335 goto fail;
6336 }
6337 ipw2100_queues_initialize(priv);
6338
6339 err = request_irq(pci_dev->irq,
6340 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6341 if (err) {
6342 printk(KERN_WARNING DRV_NAME
6343 "Error calling request_irq: %d.\n", pci_dev->irq);
6344 goto fail;
6345 }
6346 dev->irq = pci_dev->irq;
6347
6348 IPW_DEBUG_INFO("Attempting to register device...\n");
6349
6350 printk(KERN_INFO DRV_NAME
6351 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6352
6353 /* Bring up the interface. Pre 0.46, after we registered the
6354 * network device we would call ipw2100_up. This introduced a race
6355 * condition with newer hotplug configurations (network was coming
6356 * up and making calls before the device was initialized).
6357 *
6358 * If we called ipw2100_up before we registered the device, then the
6359 * device name wasn't registered. So, we instead use the net_dev->init
6360 * member to call a function that then just turns and calls ipw2100_up.
6361 * net_dev->init is called after name allocation but before the
6362 * notifier chain is called */
6363 err = register_netdev(dev);
6364 if (err) {
6365 printk(KERN_WARNING DRV_NAME
6366 "Error calling register_netdev.\n");
6367 goto fail;
6368 }
6369
6370 mutex_lock(&priv->action_mutex);
6371 registered = 1;
6372
6373 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6374
6375 /* perform this after register_netdev so that dev->name is set */
6376 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6377 if (err)
6378 goto fail_unlock;
6379
6380 /* If the RF Kill switch is disabled, go ahead and complete the
6381 * startup sequence */
6382 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6383 /* Enable the adapter - sends HOST_COMPLETE */
6384 if (ipw2100_enable_adapter(priv)) {
6385 printk(KERN_WARNING DRV_NAME
6386 ": %s: failed in call to enable adapter.\n",
6387 priv->net_dev->name);
6388 ipw2100_hw_stop_adapter(priv);
6389 err = -EIO;
6390 goto fail_unlock;
6391 }
6392
6393 /* Start a scan . . . */
6394 ipw2100_set_scan_options(priv);
6395 ipw2100_start_scan(priv);
6396 }
6397
6398 IPW_DEBUG_INFO("exit\n");
6399
6400 priv->status |= STATUS_INITIALIZED;
6401
6402 mutex_unlock(&priv->action_mutex);
6403
6404 return 0;
6405
6406 fail_unlock:
6407 mutex_unlock(&priv->action_mutex);
6408
6409 fail:
6410 if (dev) {
6411 if (registered)
6412 unregister_netdev(dev);
6413
6414 ipw2100_hw_stop_adapter(priv);
6415
6416 ipw2100_disable_interrupts(priv);
6417
6418 if (dev->irq)
6419 free_irq(dev->irq, priv);
6420
6421 ipw2100_kill_workqueue(priv);
6422
6423 /* These are safe to call even if they weren't allocated */
6424 ipw2100_queues_free(priv);
6425 sysfs_remove_group(&pci_dev->dev.kobj,
6426 &ipw2100_attribute_group);
6427
6428 free_libipw(dev, 0);
6429 pci_set_drvdata(pci_dev, NULL);
6430 }
6431
6432 if (base_addr)
6433 iounmap(base_addr);
6434
6435 pci_release_regions(pci_dev);
6436 pci_disable_device(pci_dev);
6437
6438 return err;
6439 }
6440
6441 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6442 {
6443 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6444 struct net_device *dev;
6445
6446 if (priv) {
6447 mutex_lock(&priv->action_mutex);
6448
6449 priv->status &= ~STATUS_INITIALIZED;
6450
6451 dev = priv->net_dev;
6452 sysfs_remove_group(&pci_dev->dev.kobj,
6453 &ipw2100_attribute_group);
6454
6455 #ifdef CONFIG_PM
6456 if (ipw2100_firmware.version)
6457 ipw2100_release_firmware(priv, &ipw2100_firmware);
6458 #endif
6459 /* Take down the hardware */
6460 ipw2100_down(priv);
6461
6462 /* Release the mutex so that the network subsystem can
6463 * complete any needed calls into the driver... */
6464 mutex_unlock(&priv->action_mutex);
6465
6466 /* Unregister the device first - this results in close()
6467 * being called if the device is open. If we free storage
6468 * first, then close() will crash. */
6469 unregister_netdev(dev);
6470
6471 /* ipw2100_down will ensure that there is no more pending work
6472 * in the workqueue's, so we can safely remove them now. */
6473 ipw2100_kill_workqueue(priv);
6474
6475 ipw2100_queues_free(priv);
6476
6477 /* Free potential debugging firmware snapshot */
6478 ipw2100_snapshot_free(priv);
6479
6480 if (dev->irq)
6481 free_irq(dev->irq, priv);
6482
6483 if (dev->base_addr)
6484 iounmap((void __iomem *)dev->base_addr);
6485
6486 /* wiphy_unregister needs to be here, before free_libipw */
6487 wiphy_unregister(priv->ieee->wdev.wiphy);
6488 kfree(priv->ieee->bg_band.channels);
6489 free_libipw(dev, 0);
6490 }
6491
6492 pci_release_regions(pci_dev);
6493 pci_disable_device(pci_dev);
6494
6495 IPW_DEBUG_INFO("exit\n");
6496 }
6497
6498 #ifdef CONFIG_PM
6499 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6500 {
6501 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6502 struct net_device *dev = priv->net_dev;
6503
6504 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6505
6506 mutex_lock(&priv->action_mutex);
6507 if (priv->status & STATUS_INITIALIZED) {
6508 /* Take down the device; powers it off, etc. */
6509 ipw2100_down(priv);
6510 }
6511
6512 /* Remove the PRESENT state of the device */
6513 netif_device_detach(dev);
6514
6515 pci_save_state(pci_dev);
6516 pci_disable_device(pci_dev);
6517 pci_set_power_state(pci_dev, PCI_D3hot);
6518
6519 priv->suspend_at = get_seconds();
6520
6521 mutex_unlock(&priv->action_mutex);
6522
6523 return 0;
6524 }
6525
6526 static int ipw2100_resume(struct pci_dev *pci_dev)
6527 {
6528 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6529 struct net_device *dev = priv->net_dev;
6530 int err;
6531 u32 val;
6532
6533 if (IPW2100_PM_DISABLED)
6534 return 0;
6535
6536 mutex_lock(&priv->action_mutex);
6537
6538 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6539
6540 pci_set_power_state(pci_dev, PCI_D0);
6541 err = pci_enable_device(pci_dev);
6542 if (err) {
6543 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6544 dev->name);
6545 mutex_unlock(&priv->action_mutex);
6546 return err;
6547 }
6548 pci_restore_state(pci_dev);
6549
6550 /*
6551 * Suspend/Resume resets the PCI configuration space, so we have to
6552 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6553 * from interfering with C3 CPU state. pci_restore_state won't help
6554 * here since it only restores the first 64 bytes pci config header.
6555 */
6556 pci_read_config_dword(pci_dev, 0x40, &val);
6557 if ((val & 0x0000ff00) != 0)
6558 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6559
6560 /* Set the device back into the PRESENT state; this will also wake
6561 * the queue of needed */
6562 netif_device_attach(dev);
6563
6564 priv->suspend_time = get_seconds() - priv->suspend_at;
6565
6566 /* Bring the device back up */
6567 if (!(priv->status & STATUS_RF_KILL_SW))
6568 ipw2100_up(priv, 0);
6569
6570 mutex_unlock(&priv->action_mutex);
6571
6572 return 0;
6573 }
6574 #endif
6575
6576 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6577 {
6578 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6579
6580 /* Take down the device; powers it off, etc. */
6581 ipw2100_down(priv);
6582
6583 pci_disable_device(pci_dev);
6584 }
6585
6586 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6587
6588 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6589 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6590 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6591 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6592 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6593 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6594 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6595 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6596 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6597 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6598 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6599 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6600 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6601 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6602
6603 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6604 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6605 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6606 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6607 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6608
6609 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6610 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6611 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6612 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6613 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6614 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6615 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6616
6617 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6618
6619 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6620 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6621 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6622 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6623 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6624 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6625 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6626
6627 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6628 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6629 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6630 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6631 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6632 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6633
6634 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6635 {0,},
6636 };
6637
6638 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6639
6640 static struct pci_driver ipw2100_pci_driver = {
6641 .name = DRV_NAME,
6642 .id_table = ipw2100_pci_id_table,
6643 .probe = ipw2100_pci_init_one,
6644 .remove = __devexit_p(ipw2100_pci_remove_one),
6645 #ifdef CONFIG_PM
6646 .suspend = ipw2100_suspend,
6647 .resume = ipw2100_resume,
6648 #endif
6649 .shutdown = ipw2100_shutdown,
6650 };
6651
6652 /**
6653 * Initialize the ipw2100 driver/module
6654 *
6655 * @returns 0 if ok, < 0 errno node con error.
6656 *
6657 * Note: we cannot init the /proc stuff until the PCI driver is there,
6658 * or we risk an unlikely race condition on someone accessing
6659 * uninitialized data in the PCI dev struct through /proc.
6660 */
6661 static int __init ipw2100_init(void)
6662 {
6663 int ret;
6664
6665 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6666 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6667
6668 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6669 PM_QOS_DEFAULT_VALUE);
6670
6671 ret = pci_register_driver(&ipw2100_pci_driver);
6672 if (ret)
6673 goto out;
6674
6675 #ifdef CONFIG_IPW2100_DEBUG
6676 ipw2100_debug_level = debug;
6677 ret = driver_create_file(&ipw2100_pci_driver.driver,
6678 &driver_attr_debug_level);
6679 #endif
6680
6681 out:
6682 return ret;
6683 }
6684
6685 /**
6686 * Cleanup ipw2100 driver registration
6687 */
6688 static void __exit ipw2100_exit(void)
6689 {
6690 /* FIXME: IPG: check that we have no instances of the devices open */
6691 #ifdef CONFIG_IPW2100_DEBUG
6692 driver_remove_file(&ipw2100_pci_driver.driver,
6693 &driver_attr_debug_level);
6694 #endif
6695 pci_unregister_driver(&ipw2100_pci_driver);
6696 pm_qos_remove_request(&ipw2100_pm_qos_req);
6697 }
6698
6699 module_init(ipw2100_init);
6700 module_exit(ipw2100_exit);
6701
6702 static int ipw2100_wx_get_name(struct net_device *dev,
6703 struct iw_request_info *info,
6704 union iwreq_data *wrqu, char *extra)
6705 {
6706 /*
6707 * This can be called at any time. No action lock required
6708 */
6709
6710 struct ipw2100_priv *priv = libipw_priv(dev);
6711 if (!(priv->status & STATUS_ASSOCIATED))
6712 strcpy(wrqu->name, "unassociated");
6713 else
6714 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6715
6716 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6717 return 0;
6718 }
6719
6720 static int ipw2100_wx_set_freq(struct net_device *dev,
6721 struct iw_request_info *info,
6722 union iwreq_data *wrqu, char *extra)
6723 {
6724 struct ipw2100_priv *priv = libipw_priv(dev);
6725 struct iw_freq *fwrq = &wrqu->freq;
6726 int err = 0;
6727
6728 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6729 return -EOPNOTSUPP;
6730
6731 mutex_lock(&priv->action_mutex);
6732 if (!(priv->status & STATUS_INITIALIZED)) {
6733 err = -EIO;
6734 goto done;
6735 }
6736
6737 /* if setting by freq convert to channel */
6738 if (fwrq->e == 1) {
6739 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6740 int f = fwrq->m / 100000;
6741 int c = 0;
6742
6743 while ((c < REG_MAX_CHANNEL) &&
6744 (f != ipw2100_frequencies[c]))
6745 c++;
6746
6747 /* hack to fall through */
6748 fwrq->e = 0;
6749 fwrq->m = c + 1;
6750 }
6751 }
6752
6753 if (fwrq->e > 0 || fwrq->m > 1000) {
6754 err = -EOPNOTSUPP;
6755 goto done;
6756 } else { /* Set the channel */
6757 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6758 err = ipw2100_set_channel(priv, fwrq->m, 0);
6759 }
6760
6761 done:
6762 mutex_unlock(&priv->action_mutex);
6763 return err;
6764 }
6765
6766 static int ipw2100_wx_get_freq(struct net_device *dev,
6767 struct iw_request_info *info,
6768 union iwreq_data *wrqu, char *extra)
6769 {
6770 /*
6771 * This can be called at any time. No action lock required
6772 */
6773
6774 struct ipw2100_priv *priv = libipw_priv(dev);
6775
6776 wrqu->freq.e = 0;
6777
6778 /* If we are associated, trying to associate, or have a statically
6779 * configured CHANNEL then return that; otherwise return ANY */
6780 if (priv->config & CFG_STATIC_CHANNEL ||
6781 priv->status & STATUS_ASSOCIATED)
6782 wrqu->freq.m = priv->channel;
6783 else
6784 wrqu->freq.m = 0;
6785
6786 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6787 return 0;
6788
6789 }
6790
6791 static int ipw2100_wx_set_mode(struct net_device *dev,
6792 struct iw_request_info *info,
6793 union iwreq_data *wrqu, char *extra)
6794 {
6795 struct ipw2100_priv *priv = libipw_priv(dev);
6796 int err = 0;
6797
6798 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6799
6800 if (wrqu->mode == priv->ieee->iw_mode)
6801 return 0;
6802
6803 mutex_lock(&priv->action_mutex);
6804 if (!(priv->status & STATUS_INITIALIZED)) {
6805 err = -EIO;
6806 goto done;
6807 }
6808
6809 switch (wrqu->mode) {
6810 #ifdef CONFIG_IPW2100_MONITOR
6811 case IW_MODE_MONITOR:
6812 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6813 break;
6814 #endif /* CONFIG_IPW2100_MONITOR */
6815 case IW_MODE_ADHOC:
6816 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6817 break;
6818 case IW_MODE_INFRA:
6819 case IW_MODE_AUTO:
6820 default:
6821 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6822 break;
6823 }
6824
6825 done:
6826 mutex_unlock(&priv->action_mutex);
6827 return err;
6828 }
6829
6830 static int ipw2100_wx_get_mode(struct net_device *dev,
6831 struct iw_request_info *info,
6832 union iwreq_data *wrqu, char *extra)
6833 {
6834 /*
6835 * This can be called at any time. No action lock required
6836 */
6837
6838 struct ipw2100_priv *priv = libipw_priv(dev);
6839
6840 wrqu->mode = priv->ieee->iw_mode;
6841 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6842
6843 return 0;
6844 }
6845
6846 #define POWER_MODES 5
6847
6848 /* Values are in microsecond */
6849 static const s32 timeout_duration[POWER_MODES] = {
6850 350000,
6851 250000,
6852 75000,
6853 37000,
6854 25000,
6855 };
6856
6857 static const s32 period_duration[POWER_MODES] = {
6858 400000,
6859 700000,
6860 1000000,
6861 1000000,
6862 1000000
6863 };
6864
6865 static int ipw2100_wx_get_range(struct net_device *dev,
6866 struct iw_request_info *info,
6867 union iwreq_data *wrqu, char *extra)
6868 {
6869 /*
6870 * This can be called at any time. No action lock required
6871 */
6872
6873 struct ipw2100_priv *priv = libipw_priv(dev);
6874 struct iw_range *range = (struct iw_range *)extra;
6875 u16 val;
6876 int i, level;
6877
6878 wrqu->data.length = sizeof(*range);
6879 memset(range, 0, sizeof(*range));
6880
6881 /* Let's try to keep this struct in the same order as in
6882 * linux/include/wireless.h
6883 */
6884
6885 /* TODO: See what values we can set, and remove the ones we can't
6886 * set, or fill them with some default data.
6887 */
6888
6889 /* ~5 Mb/s real (802.11b) */
6890 range->throughput = 5 * 1000 * 1000;
6891
6892 // range->sensitivity; /* signal level threshold range */
6893
6894 range->max_qual.qual = 100;
6895 /* TODO: Find real max RSSI and stick here */
6896 range->max_qual.level = 0;
6897 range->max_qual.noise = 0;
6898 range->max_qual.updated = 7; /* Updated all three */
6899
6900 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6901 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6902 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6903 range->avg_qual.noise = 0;
6904 range->avg_qual.updated = 7; /* Updated all three */
6905
6906 range->num_bitrates = RATE_COUNT;
6907
6908 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6909 range->bitrate[i] = ipw2100_rates_11b[i];
6910 }
6911
6912 range->min_rts = MIN_RTS_THRESHOLD;
6913 range->max_rts = MAX_RTS_THRESHOLD;
6914 range->min_frag = MIN_FRAG_THRESHOLD;
6915 range->max_frag = MAX_FRAG_THRESHOLD;
6916
6917 range->min_pmp = period_duration[0]; /* Minimal PM period */
6918 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6919 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6920 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6921
6922 /* How to decode max/min PM period */
6923 range->pmp_flags = IW_POWER_PERIOD;
6924 /* How to decode max/min PM period */
6925 range->pmt_flags = IW_POWER_TIMEOUT;
6926 /* What PM options are supported */
6927 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6928
6929 range->encoding_size[0] = 5;
6930 range->encoding_size[1] = 13; /* Different token sizes */
6931 range->num_encoding_sizes = 2; /* Number of entry in the list */
6932 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6933 // range->encoding_login_index; /* token index for login token */
6934
6935 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6936 range->txpower_capa = IW_TXPOW_DBM;
6937 range->num_txpower = IW_MAX_TXPOWER;
6938 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6939 i < IW_MAX_TXPOWER;
6940 i++, level -=
6941 ((IPW_TX_POWER_MAX_DBM -
6942 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6943 range->txpower[i] = level / 16;
6944 } else {
6945 range->txpower_capa = 0;
6946 range->num_txpower = 0;
6947 }
6948
6949 /* Set the Wireless Extension versions */
6950 range->we_version_compiled = WIRELESS_EXT;
6951 range->we_version_source = 18;
6952
6953 // range->retry_capa; /* What retry options are supported */
6954 // range->retry_flags; /* How to decode max/min retry limit */
6955 // range->r_time_flags; /* How to decode max/min retry life */
6956 // range->min_retry; /* Minimal number of retries */
6957 // range->max_retry; /* Maximal number of retries */
6958 // range->min_r_time; /* Minimal retry lifetime */
6959 // range->max_r_time; /* Maximal retry lifetime */
6960
6961 range->num_channels = FREQ_COUNT;
6962
6963 val = 0;
6964 for (i = 0; i < FREQ_COUNT; i++) {
6965 // TODO: Include only legal frequencies for some countries
6966 // if (local->channel_mask & (1 << i)) {
6967 range->freq[val].i = i + 1;
6968 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6969 range->freq[val].e = 1;
6970 val++;
6971 // }
6972 if (val == IW_MAX_FREQUENCIES)
6973 break;
6974 }
6975 range->num_frequency = val;
6976
6977 /* Event capability (kernel + driver) */
6978 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6979 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6980 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6981
6982 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6983 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6984
6985 IPW_DEBUG_WX("GET Range\n");
6986
6987 return 0;
6988 }
6989
6990 static int ipw2100_wx_set_wap(struct net_device *dev,
6991 struct iw_request_info *info,
6992 union iwreq_data *wrqu, char *extra)
6993 {
6994 struct ipw2100_priv *priv = libipw_priv(dev);
6995 int err = 0;
6996
6997 static const unsigned char any[] = {
6998 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6999 };
7000 static const unsigned char off[] = {
7001 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
7002 };
7003
7004 // sanity checks
7005 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
7006 return -EINVAL;
7007
7008 mutex_lock(&priv->action_mutex);
7009 if (!(priv->status & STATUS_INITIALIZED)) {
7010 err = -EIO;
7011 goto done;
7012 }
7013
7014 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7015 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7016 /* we disable mandatory BSSID association */
7017 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7018 priv->config &= ~CFG_STATIC_BSSID;
7019 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7020 goto done;
7021 }
7022
7023 priv->config |= CFG_STATIC_BSSID;
7024 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7025
7026 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7027
7028 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7029
7030 done:
7031 mutex_unlock(&priv->action_mutex);
7032 return err;
7033 }
7034
7035 static int ipw2100_wx_get_wap(struct net_device *dev,
7036 struct iw_request_info *info,
7037 union iwreq_data *wrqu, char *extra)
7038 {
7039 /*
7040 * This can be called at any time. No action lock required
7041 */
7042
7043 struct ipw2100_priv *priv = libipw_priv(dev);
7044
7045 /* If we are associated, trying to associate, or have a statically
7046 * configured BSSID then return that; otherwise return ANY */
7047 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7048 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7049 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7050 } else
7051 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7052
7053 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7054 return 0;
7055 }
7056
7057 static int ipw2100_wx_set_essid(struct net_device *dev,
7058 struct iw_request_info *info,
7059 union iwreq_data *wrqu, char *extra)
7060 {
7061 struct ipw2100_priv *priv = libipw_priv(dev);
7062 char *essid = ""; /* ANY */
7063 int length = 0;
7064 int err = 0;
7065 DECLARE_SSID_BUF(ssid);
7066
7067 mutex_lock(&priv->action_mutex);
7068 if (!(priv->status & STATUS_INITIALIZED)) {
7069 err = -EIO;
7070 goto done;
7071 }
7072
7073 if (wrqu->essid.flags && wrqu->essid.length) {
7074 length = wrqu->essid.length;
7075 essid = extra;
7076 }
7077
7078 if (length == 0) {
7079 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7080 priv->config &= ~CFG_STATIC_ESSID;
7081 err = ipw2100_set_essid(priv, NULL, 0, 0);
7082 goto done;
7083 }
7084
7085 length = min(length, IW_ESSID_MAX_SIZE);
7086
7087 priv->config |= CFG_STATIC_ESSID;
7088
7089 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7090 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7091 err = 0;
7092 goto done;
7093 }
7094
7095 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7096 print_ssid(ssid, essid, length), length);
7097
7098 priv->essid_len = length;
7099 memcpy(priv->essid, essid, priv->essid_len);
7100
7101 err = ipw2100_set_essid(priv, essid, length, 0);
7102
7103 done:
7104 mutex_unlock(&priv->action_mutex);
7105 return err;
7106 }
7107
7108 static int ipw2100_wx_get_essid(struct net_device *dev,
7109 struct iw_request_info *info,
7110 union iwreq_data *wrqu, char *extra)
7111 {
7112 /*
7113 * This can be called at any time. No action lock required
7114 */
7115
7116 struct ipw2100_priv *priv = libipw_priv(dev);
7117 DECLARE_SSID_BUF(ssid);
7118
7119 /* If we are associated, trying to associate, or have a statically
7120 * configured ESSID then return that; otherwise return ANY */
7121 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7122 IPW_DEBUG_WX("Getting essid: '%s'\n",
7123 print_ssid(ssid, priv->essid, priv->essid_len));
7124 memcpy(extra, priv->essid, priv->essid_len);
7125 wrqu->essid.length = priv->essid_len;
7126 wrqu->essid.flags = 1; /* active */
7127 } else {
7128 IPW_DEBUG_WX("Getting essid: ANY\n");
7129 wrqu->essid.length = 0;
7130 wrqu->essid.flags = 0; /* active */
7131 }
7132
7133 return 0;
7134 }
7135
7136 static int ipw2100_wx_set_nick(struct net_device *dev,
7137 struct iw_request_info *info,
7138 union iwreq_data *wrqu, char *extra)
7139 {
7140 /*
7141 * This can be called at any time. No action lock required
7142 */
7143
7144 struct ipw2100_priv *priv = libipw_priv(dev);
7145
7146 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7147 return -E2BIG;
7148
7149 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7150 memset(priv->nick, 0, sizeof(priv->nick));
7151 memcpy(priv->nick, extra, wrqu->data.length);
7152
7153 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7154
7155 return 0;
7156 }
7157
7158 static int ipw2100_wx_get_nick(struct net_device *dev,
7159 struct iw_request_info *info,
7160 union iwreq_data *wrqu, char *extra)
7161 {
7162 /*
7163 * This can be called at any time. No action lock required
7164 */
7165
7166 struct ipw2100_priv *priv = libipw_priv(dev);
7167
7168 wrqu->data.length = strlen(priv->nick);
7169 memcpy(extra, priv->nick, wrqu->data.length);
7170 wrqu->data.flags = 1; /* active */
7171
7172 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7173
7174 return 0;
7175 }
7176
7177 static int ipw2100_wx_set_rate(struct net_device *dev,
7178 struct iw_request_info *info,
7179 union iwreq_data *wrqu, char *extra)
7180 {
7181 struct ipw2100_priv *priv = libipw_priv(dev);
7182 u32 target_rate = wrqu->bitrate.value;
7183 u32 rate;
7184 int err = 0;
7185
7186 mutex_lock(&priv->action_mutex);
7187 if (!(priv->status & STATUS_INITIALIZED)) {
7188 err = -EIO;
7189 goto done;
7190 }
7191
7192 rate = 0;
7193
7194 if (target_rate == 1000000 ||
7195 (!wrqu->bitrate.fixed && target_rate > 1000000))
7196 rate |= TX_RATE_1_MBIT;
7197 if (target_rate == 2000000 ||
7198 (!wrqu->bitrate.fixed && target_rate > 2000000))
7199 rate |= TX_RATE_2_MBIT;
7200 if (target_rate == 5500000 ||
7201 (!wrqu->bitrate.fixed && target_rate > 5500000))
7202 rate |= TX_RATE_5_5_MBIT;
7203 if (target_rate == 11000000 ||
7204 (!wrqu->bitrate.fixed && target_rate > 11000000))
7205 rate |= TX_RATE_11_MBIT;
7206 if (rate == 0)
7207 rate = DEFAULT_TX_RATES;
7208
7209 err = ipw2100_set_tx_rates(priv, rate, 0);
7210
7211 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7212 done:
7213 mutex_unlock(&priv->action_mutex);
7214 return err;
7215 }
7216
7217 static int ipw2100_wx_get_rate(struct net_device *dev,
7218 struct iw_request_info *info,
7219 union iwreq_data *wrqu, char *extra)
7220 {
7221 struct ipw2100_priv *priv = libipw_priv(dev);
7222 int val;
7223 unsigned int len = sizeof(val);
7224 int err = 0;
7225
7226 if (!(priv->status & STATUS_ENABLED) ||
7227 priv->status & STATUS_RF_KILL_MASK ||
7228 !(priv->status & STATUS_ASSOCIATED)) {
7229 wrqu->bitrate.value = 0;
7230 return 0;
7231 }
7232
7233 mutex_lock(&priv->action_mutex);
7234 if (!(priv->status & STATUS_INITIALIZED)) {
7235 err = -EIO;
7236 goto done;
7237 }
7238
7239 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7240 if (err) {
7241 IPW_DEBUG_WX("failed querying ordinals.\n");
7242 goto done;
7243 }
7244
7245 switch (val & TX_RATE_MASK) {
7246 case TX_RATE_1_MBIT:
7247 wrqu->bitrate.value = 1000000;
7248 break;
7249 case TX_RATE_2_MBIT:
7250 wrqu->bitrate.value = 2000000;
7251 break;
7252 case TX_RATE_5_5_MBIT:
7253 wrqu->bitrate.value = 5500000;
7254 break;
7255 case TX_RATE_11_MBIT:
7256 wrqu->bitrate.value = 11000000;
7257 break;
7258 default:
7259 wrqu->bitrate.value = 0;
7260 }
7261
7262 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7263
7264 done:
7265 mutex_unlock(&priv->action_mutex);
7266 return err;
7267 }
7268
7269 static int ipw2100_wx_set_rts(struct net_device *dev,
7270 struct iw_request_info *info,
7271 union iwreq_data *wrqu, char *extra)
7272 {
7273 struct ipw2100_priv *priv = libipw_priv(dev);
7274 int value, err;
7275
7276 /* Auto RTS not yet supported */
7277 if (wrqu->rts.fixed == 0)
7278 return -EINVAL;
7279
7280 mutex_lock(&priv->action_mutex);
7281 if (!(priv->status & STATUS_INITIALIZED)) {
7282 err = -EIO;
7283 goto done;
7284 }
7285
7286 if (wrqu->rts.disabled)
7287 value = priv->rts_threshold | RTS_DISABLED;
7288 else {
7289 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7290 err = -EINVAL;
7291 goto done;
7292 }
7293 value = wrqu->rts.value;
7294 }
7295
7296 err = ipw2100_set_rts_threshold(priv, value);
7297
7298 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7299 done:
7300 mutex_unlock(&priv->action_mutex);
7301 return err;
7302 }
7303
7304 static int ipw2100_wx_get_rts(struct net_device *dev,
7305 struct iw_request_info *info,
7306 union iwreq_data *wrqu, char *extra)
7307 {
7308 /*
7309 * This can be called at any time. No action lock required
7310 */
7311
7312 struct ipw2100_priv *priv = libipw_priv(dev);
7313
7314 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7315 wrqu->rts.fixed = 1; /* no auto select */
7316
7317 /* If RTS is set to the default value, then it is disabled */
7318 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7319
7320 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7321
7322 return 0;
7323 }
7324
7325 static int ipw2100_wx_set_txpow(struct net_device *dev,
7326 struct iw_request_info *info,
7327 union iwreq_data *wrqu, char *extra)
7328 {
7329 struct ipw2100_priv *priv = libipw_priv(dev);
7330 int err = 0, value;
7331
7332 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7333 return -EINPROGRESS;
7334
7335 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7336 return 0;
7337
7338 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7339 return -EINVAL;
7340
7341 if (wrqu->txpower.fixed == 0)
7342 value = IPW_TX_POWER_DEFAULT;
7343 else {
7344 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7345 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7346 return -EINVAL;
7347
7348 value = wrqu->txpower.value;
7349 }
7350
7351 mutex_lock(&priv->action_mutex);
7352 if (!(priv->status & STATUS_INITIALIZED)) {
7353 err = -EIO;
7354 goto done;
7355 }
7356
7357 err = ipw2100_set_tx_power(priv, value);
7358
7359 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7360
7361 done:
7362 mutex_unlock(&priv->action_mutex);
7363 return err;
7364 }
7365
7366 static int ipw2100_wx_get_txpow(struct net_device *dev,
7367 struct iw_request_info *info,
7368 union iwreq_data *wrqu, char *extra)
7369 {
7370 /*
7371 * This can be called at any time. No action lock required
7372 */
7373
7374 struct ipw2100_priv *priv = libipw_priv(dev);
7375
7376 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7377
7378 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7379 wrqu->txpower.fixed = 0;
7380 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7381 } else {
7382 wrqu->txpower.fixed = 1;
7383 wrqu->txpower.value = priv->tx_power;
7384 }
7385
7386 wrqu->txpower.flags = IW_TXPOW_DBM;
7387
7388 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7389
7390 return 0;
7391 }
7392
7393 static int ipw2100_wx_set_frag(struct net_device *dev,
7394 struct iw_request_info *info,
7395 union iwreq_data *wrqu, char *extra)
7396 {
7397 /*
7398 * This can be called at any time. No action lock required
7399 */
7400
7401 struct ipw2100_priv *priv = libipw_priv(dev);
7402
7403 if (!wrqu->frag.fixed)
7404 return -EINVAL;
7405
7406 if (wrqu->frag.disabled) {
7407 priv->frag_threshold |= FRAG_DISABLED;
7408 priv->ieee->fts = DEFAULT_FTS;
7409 } else {
7410 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7411 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7412 return -EINVAL;
7413
7414 priv->ieee->fts = wrqu->frag.value & ~0x1;
7415 priv->frag_threshold = priv->ieee->fts;
7416 }
7417
7418 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7419
7420 return 0;
7421 }
7422
7423 static int ipw2100_wx_get_frag(struct net_device *dev,
7424 struct iw_request_info *info,
7425 union iwreq_data *wrqu, char *extra)
7426 {
7427 /*
7428 * This can be called at any time. No action lock required
7429 */
7430
7431 struct ipw2100_priv *priv = libipw_priv(dev);
7432 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7433 wrqu->frag.fixed = 0; /* no auto select */
7434 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7435
7436 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7437
7438 return 0;
7439 }
7440
7441 static int ipw2100_wx_set_retry(struct net_device *dev,
7442 struct iw_request_info *info,
7443 union iwreq_data *wrqu, char *extra)
7444 {
7445 struct ipw2100_priv *priv = libipw_priv(dev);
7446 int err = 0;
7447
7448 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7449 return -EINVAL;
7450
7451 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7452 return 0;
7453
7454 mutex_lock(&priv->action_mutex);
7455 if (!(priv->status & STATUS_INITIALIZED)) {
7456 err = -EIO;
7457 goto done;
7458 }
7459
7460 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7461 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7462 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7463 wrqu->retry.value);
7464 goto done;
7465 }
7466
7467 if (wrqu->retry.flags & IW_RETRY_LONG) {
7468 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7469 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7470 wrqu->retry.value);
7471 goto done;
7472 }
7473
7474 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7475 if (!err)
7476 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7477
7478 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7479
7480 done:
7481 mutex_unlock(&priv->action_mutex);
7482 return err;
7483 }
7484
7485 static int ipw2100_wx_get_retry(struct net_device *dev,
7486 struct iw_request_info *info,
7487 union iwreq_data *wrqu, char *extra)
7488 {
7489 /*
7490 * This can be called at any time. No action lock required
7491 */
7492
7493 struct ipw2100_priv *priv = libipw_priv(dev);
7494
7495 wrqu->retry.disabled = 0; /* can't be disabled */
7496
7497 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7498 return -EINVAL;
7499
7500 if (wrqu->retry.flags & IW_RETRY_LONG) {
7501 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7502 wrqu->retry.value = priv->long_retry_limit;
7503 } else {
7504 wrqu->retry.flags =
7505 (priv->short_retry_limit !=
7506 priv->long_retry_limit) ?
7507 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7508
7509 wrqu->retry.value = priv->short_retry_limit;
7510 }
7511
7512 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7513
7514 return 0;
7515 }
7516
7517 static int ipw2100_wx_set_scan(struct net_device *dev,
7518 struct iw_request_info *info,
7519 union iwreq_data *wrqu, char *extra)
7520 {
7521 struct ipw2100_priv *priv = libipw_priv(dev);
7522 int err = 0;
7523
7524 mutex_lock(&priv->action_mutex);
7525 if (!(priv->status & STATUS_INITIALIZED)) {
7526 err = -EIO;
7527 goto done;
7528 }
7529
7530 IPW_DEBUG_WX("Initiating scan...\n");
7531
7532 priv->user_requested_scan = 1;
7533 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7534 IPW_DEBUG_WX("Start scan failed.\n");
7535
7536 /* TODO: Mark a scan as pending so when hardware initialized
7537 * a scan starts */
7538 }
7539
7540 done:
7541 mutex_unlock(&priv->action_mutex);
7542 return err;
7543 }
7544
7545 static int ipw2100_wx_get_scan(struct net_device *dev,
7546 struct iw_request_info *info,
7547 union iwreq_data *wrqu, char *extra)
7548 {
7549 /*
7550 * This can be called at any time. No action lock required
7551 */
7552
7553 struct ipw2100_priv *priv = libipw_priv(dev);
7554 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7555 }
7556
7557 /*
7558 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7559 */
7560 static int ipw2100_wx_set_encode(struct net_device *dev,
7561 struct iw_request_info *info,
7562 union iwreq_data *wrqu, char *key)
7563 {
7564 /*
7565 * No check of STATUS_INITIALIZED required
7566 */
7567
7568 struct ipw2100_priv *priv = libipw_priv(dev);
7569 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7570 }
7571
7572 static int ipw2100_wx_get_encode(struct net_device *dev,
7573 struct iw_request_info *info,
7574 union iwreq_data *wrqu, char *key)
7575 {
7576 /*
7577 * This can be called at any time. No action lock required
7578 */
7579
7580 struct ipw2100_priv *priv = libipw_priv(dev);
7581 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7582 }
7583
7584 static int ipw2100_wx_set_power(struct net_device *dev,
7585 struct iw_request_info *info,
7586 union iwreq_data *wrqu, char *extra)
7587 {
7588 struct ipw2100_priv *priv = libipw_priv(dev);
7589 int err = 0;
7590
7591 mutex_lock(&priv->action_mutex);
7592 if (!(priv->status & STATUS_INITIALIZED)) {
7593 err = -EIO;
7594 goto done;
7595 }
7596
7597 if (wrqu->power.disabled) {
7598 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7599 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7600 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7601 goto done;
7602 }
7603
7604 switch (wrqu->power.flags & IW_POWER_MODE) {
7605 case IW_POWER_ON: /* If not specified */
7606 case IW_POWER_MODE: /* If set all mask */
7607 case IW_POWER_ALL_R: /* If explicitly state all */
7608 break;
7609 default: /* Otherwise we don't support it */
7610 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7611 wrqu->power.flags);
7612 err = -EOPNOTSUPP;
7613 goto done;
7614 }
7615
7616 /* If the user hasn't specified a power management mode yet, default
7617 * to BATTERY */
7618 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7619 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7620
7621 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7622
7623 done:
7624 mutex_unlock(&priv->action_mutex);
7625 return err;
7626
7627 }
7628
7629 static int ipw2100_wx_get_power(struct net_device *dev,
7630 struct iw_request_info *info,
7631 union iwreq_data *wrqu, char *extra)
7632 {
7633 /*
7634 * This can be called at any time. No action lock required
7635 */
7636
7637 struct ipw2100_priv *priv = libipw_priv(dev);
7638
7639 if (!(priv->power_mode & IPW_POWER_ENABLED))
7640 wrqu->power.disabled = 1;
7641 else {
7642 wrqu->power.disabled = 0;
7643 wrqu->power.flags = 0;
7644 }
7645
7646 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7647
7648 return 0;
7649 }
7650
7651 /*
7652 * WE-18 WPA support
7653 */
7654
7655 /* SIOCSIWGENIE */
7656 static int ipw2100_wx_set_genie(struct net_device *dev,
7657 struct iw_request_info *info,
7658 union iwreq_data *wrqu, char *extra)
7659 {
7660
7661 struct ipw2100_priv *priv = libipw_priv(dev);
7662 struct libipw_device *ieee = priv->ieee;
7663 u8 *buf;
7664
7665 if (!ieee->wpa_enabled)
7666 return -EOPNOTSUPP;
7667
7668 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7669 (wrqu->data.length && extra == NULL))
7670 return -EINVAL;
7671
7672 if (wrqu->data.length) {
7673 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7674 if (buf == NULL)
7675 return -ENOMEM;
7676
7677 kfree(ieee->wpa_ie);
7678 ieee->wpa_ie = buf;
7679 ieee->wpa_ie_len = wrqu->data.length;
7680 } else {
7681 kfree(ieee->wpa_ie);
7682 ieee->wpa_ie = NULL;
7683 ieee->wpa_ie_len = 0;
7684 }
7685
7686 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7687
7688 return 0;
7689 }
7690
7691 /* SIOCGIWGENIE */
7692 static int ipw2100_wx_get_genie(struct net_device *dev,
7693 struct iw_request_info *info,
7694 union iwreq_data *wrqu, char *extra)
7695 {
7696 struct ipw2100_priv *priv = libipw_priv(dev);
7697 struct libipw_device *ieee = priv->ieee;
7698
7699 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7700 wrqu->data.length = 0;
7701 return 0;
7702 }
7703
7704 if (wrqu->data.length < ieee->wpa_ie_len)
7705 return -E2BIG;
7706
7707 wrqu->data.length = ieee->wpa_ie_len;
7708 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7709
7710 return 0;
7711 }
7712
7713 /* SIOCSIWAUTH */
7714 static int ipw2100_wx_set_auth(struct net_device *dev,
7715 struct iw_request_info *info,
7716 union iwreq_data *wrqu, char *extra)
7717 {
7718 struct ipw2100_priv *priv = libipw_priv(dev);
7719 struct libipw_device *ieee = priv->ieee;
7720 struct iw_param *param = &wrqu->param;
7721 struct lib80211_crypt_data *crypt;
7722 unsigned long flags;
7723 int ret = 0;
7724
7725 switch (param->flags & IW_AUTH_INDEX) {
7726 case IW_AUTH_WPA_VERSION:
7727 case IW_AUTH_CIPHER_PAIRWISE:
7728 case IW_AUTH_CIPHER_GROUP:
7729 case IW_AUTH_KEY_MGMT:
7730 /*
7731 * ipw2200 does not use these parameters
7732 */
7733 break;
7734
7735 case IW_AUTH_TKIP_COUNTERMEASURES:
7736 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7737 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7738 break;
7739
7740 flags = crypt->ops->get_flags(crypt->priv);
7741
7742 if (param->value)
7743 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7744 else
7745 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7746
7747 crypt->ops->set_flags(flags, crypt->priv);
7748
7749 break;
7750
7751 case IW_AUTH_DROP_UNENCRYPTED:{
7752 /* HACK:
7753 *
7754 * wpa_supplicant calls set_wpa_enabled when the driver
7755 * is loaded and unloaded, regardless of if WPA is being
7756 * used. No other calls are made which can be used to
7757 * determine if encryption will be used or not prior to
7758 * association being expected. If encryption is not being
7759 * used, drop_unencrypted is set to false, else true -- we
7760 * can use this to determine if the CAP_PRIVACY_ON bit should
7761 * be set.
7762 */
7763 struct libipw_security sec = {
7764 .flags = SEC_ENABLED,
7765 .enabled = param->value,
7766 };
7767 priv->ieee->drop_unencrypted = param->value;
7768 /* We only change SEC_LEVEL for open mode. Others
7769 * are set by ipw_wpa_set_encryption.
7770 */
7771 if (!param->value) {
7772 sec.flags |= SEC_LEVEL;
7773 sec.level = SEC_LEVEL_0;
7774 } else {
7775 sec.flags |= SEC_LEVEL;
7776 sec.level = SEC_LEVEL_1;
7777 }
7778 if (priv->ieee->set_security)
7779 priv->ieee->set_security(priv->ieee->dev, &sec);
7780 break;
7781 }
7782
7783 case IW_AUTH_80211_AUTH_ALG:
7784 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7785 break;
7786
7787 case IW_AUTH_WPA_ENABLED:
7788 ret = ipw2100_wpa_enable(priv, param->value);
7789 break;
7790
7791 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7792 ieee->ieee802_1x = param->value;
7793 break;
7794
7795 //case IW_AUTH_ROAMING_CONTROL:
7796 case IW_AUTH_PRIVACY_INVOKED:
7797 ieee->privacy_invoked = param->value;
7798 break;
7799
7800 default:
7801 return -EOPNOTSUPP;
7802 }
7803 return ret;
7804 }
7805
7806 /* SIOCGIWAUTH */
7807 static int ipw2100_wx_get_auth(struct net_device *dev,
7808 struct iw_request_info *info,
7809 union iwreq_data *wrqu, char *extra)
7810 {
7811 struct ipw2100_priv *priv = libipw_priv(dev);
7812 struct libipw_device *ieee = priv->ieee;
7813 struct lib80211_crypt_data *crypt;
7814 struct iw_param *param = &wrqu->param;
7815 int ret = 0;
7816
7817 switch (param->flags & IW_AUTH_INDEX) {
7818 case IW_AUTH_WPA_VERSION:
7819 case IW_AUTH_CIPHER_PAIRWISE:
7820 case IW_AUTH_CIPHER_GROUP:
7821 case IW_AUTH_KEY_MGMT:
7822 /*
7823 * wpa_supplicant will control these internally
7824 */
7825 ret = -EOPNOTSUPP;
7826 break;
7827
7828 case IW_AUTH_TKIP_COUNTERMEASURES:
7829 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7830 if (!crypt || !crypt->ops->get_flags) {
7831 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7832 "crypt not set!\n");
7833 break;
7834 }
7835
7836 param->value = (crypt->ops->get_flags(crypt->priv) &
7837 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7838
7839 break;
7840
7841 case IW_AUTH_DROP_UNENCRYPTED:
7842 param->value = ieee->drop_unencrypted;
7843 break;
7844
7845 case IW_AUTH_80211_AUTH_ALG:
7846 param->value = priv->ieee->sec.auth_mode;
7847 break;
7848
7849 case IW_AUTH_WPA_ENABLED:
7850 param->value = ieee->wpa_enabled;
7851 break;
7852
7853 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7854 param->value = ieee->ieee802_1x;
7855 break;
7856
7857 case IW_AUTH_ROAMING_CONTROL:
7858 case IW_AUTH_PRIVACY_INVOKED:
7859 param->value = ieee->privacy_invoked;
7860 break;
7861
7862 default:
7863 return -EOPNOTSUPP;
7864 }
7865 return 0;
7866 }
7867
7868 /* SIOCSIWENCODEEXT */
7869 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7870 struct iw_request_info *info,
7871 union iwreq_data *wrqu, char *extra)
7872 {
7873 struct ipw2100_priv *priv = libipw_priv(dev);
7874 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7875 }
7876
7877 /* SIOCGIWENCODEEXT */
7878 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7879 struct iw_request_info *info,
7880 union iwreq_data *wrqu, char *extra)
7881 {
7882 struct ipw2100_priv *priv = libipw_priv(dev);
7883 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7884 }
7885
7886 /* SIOCSIWMLME */
7887 static int ipw2100_wx_set_mlme(struct net_device *dev,
7888 struct iw_request_info *info,
7889 union iwreq_data *wrqu, char *extra)
7890 {
7891 struct ipw2100_priv *priv = libipw_priv(dev);
7892 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7893 __le16 reason;
7894
7895 reason = cpu_to_le16(mlme->reason_code);
7896
7897 switch (mlme->cmd) {
7898 case IW_MLME_DEAUTH:
7899 // silently ignore
7900 break;
7901
7902 case IW_MLME_DISASSOC:
7903 ipw2100_disassociate_bssid(priv);
7904 break;
7905
7906 default:
7907 return -EOPNOTSUPP;
7908 }
7909 return 0;
7910 }
7911
7912 /*
7913 *
7914 * IWPRIV handlers
7915 *
7916 */
7917 #ifdef CONFIG_IPW2100_MONITOR
7918 static int ipw2100_wx_set_promisc(struct net_device *dev,
7919 struct iw_request_info *info,
7920 union iwreq_data *wrqu, char *extra)
7921 {
7922 struct ipw2100_priv *priv = libipw_priv(dev);
7923 int *parms = (int *)extra;
7924 int enable = (parms[0] > 0);
7925 int err = 0;
7926
7927 mutex_lock(&priv->action_mutex);
7928 if (!(priv->status & STATUS_INITIALIZED)) {
7929 err = -EIO;
7930 goto done;
7931 }
7932
7933 if (enable) {
7934 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7935 err = ipw2100_set_channel(priv, parms[1], 0);
7936 goto done;
7937 }
7938 priv->channel = parms[1];
7939 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7940 } else {
7941 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7942 err = ipw2100_switch_mode(priv, priv->last_mode);
7943 }
7944 done:
7945 mutex_unlock(&priv->action_mutex);
7946 return err;
7947 }
7948
7949 static int ipw2100_wx_reset(struct net_device *dev,
7950 struct iw_request_info *info,
7951 union iwreq_data *wrqu, char *extra)
7952 {
7953 struct ipw2100_priv *priv = libipw_priv(dev);
7954 if (priv->status & STATUS_INITIALIZED)
7955 schedule_reset(priv);
7956 return 0;
7957 }
7958
7959 #endif
7960
7961 static int ipw2100_wx_set_powermode(struct net_device *dev,
7962 struct iw_request_info *info,
7963 union iwreq_data *wrqu, char *extra)
7964 {
7965 struct ipw2100_priv *priv = libipw_priv(dev);
7966 int err = 0, mode = *(int *)extra;
7967
7968 mutex_lock(&priv->action_mutex);
7969 if (!(priv->status & STATUS_INITIALIZED)) {
7970 err = -EIO;
7971 goto done;
7972 }
7973
7974 if ((mode < 0) || (mode > POWER_MODES))
7975 mode = IPW_POWER_AUTO;
7976
7977 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7978 err = ipw2100_set_power_mode(priv, mode);
7979 done:
7980 mutex_unlock(&priv->action_mutex);
7981 return err;
7982 }
7983
7984 #define MAX_POWER_STRING 80
7985 static int ipw2100_wx_get_powermode(struct net_device *dev,
7986 struct iw_request_info *info,
7987 union iwreq_data *wrqu, char *extra)
7988 {
7989 /*
7990 * This can be called at any time. No action lock required
7991 */
7992
7993 struct ipw2100_priv *priv = libipw_priv(dev);
7994 int level = IPW_POWER_LEVEL(priv->power_mode);
7995 s32 timeout, period;
7996
7997 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7998 snprintf(extra, MAX_POWER_STRING,
7999 "Power save level: %d (Off)", level);
8000 } else {
8001 switch (level) {
8002 case IPW_POWER_MODE_CAM:
8003 snprintf(extra, MAX_POWER_STRING,
8004 "Power save level: %d (None)", level);
8005 break;
8006 case IPW_POWER_AUTO:
8007 snprintf(extra, MAX_POWER_STRING,
8008 "Power save level: %d (Auto)", level);
8009 break;
8010 default:
8011 timeout = timeout_duration[level - 1] / 1000;
8012 period = period_duration[level - 1] / 1000;
8013 snprintf(extra, MAX_POWER_STRING,
8014 "Power save level: %d "
8015 "(Timeout %dms, Period %dms)",
8016 level, timeout, period);
8017 }
8018 }
8019
8020 wrqu->data.length = strlen(extra) + 1;
8021
8022 return 0;
8023 }
8024
8025 static int ipw2100_wx_set_preamble(struct net_device *dev,
8026 struct iw_request_info *info,
8027 union iwreq_data *wrqu, char *extra)
8028 {
8029 struct ipw2100_priv *priv = libipw_priv(dev);
8030 int err, mode = *(int *)extra;
8031
8032 mutex_lock(&priv->action_mutex);
8033 if (!(priv->status & STATUS_INITIALIZED)) {
8034 err = -EIO;
8035 goto done;
8036 }
8037
8038 if (mode == 1)
8039 priv->config |= CFG_LONG_PREAMBLE;
8040 else if (mode == 0)
8041 priv->config &= ~CFG_LONG_PREAMBLE;
8042 else {
8043 err = -EINVAL;
8044 goto done;
8045 }
8046
8047 err = ipw2100_system_config(priv, 0);
8048
8049 done:
8050 mutex_unlock(&priv->action_mutex);
8051 return err;
8052 }
8053
8054 static int ipw2100_wx_get_preamble(struct net_device *dev,
8055 struct iw_request_info *info,
8056 union iwreq_data *wrqu, char *extra)
8057 {
8058 /*
8059 * This can be called at any time. No action lock required
8060 */
8061
8062 struct ipw2100_priv *priv = libipw_priv(dev);
8063
8064 if (priv->config & CFG_LONG_PREAMBLE)
8065 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8066 else
8067 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8068
8069 return 0;
8070 }
8071
8072 #ifdef CONFIG_IPW2100_MONITOR
8073 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8074 struct iw_request_info *info,
8075 union iwreq_data *wrqu, char *extra)
8076 {
8077 struct ipw2100_priv *priv = libipw_priv(dev);
8078 int err, mode = *(int *)extra;
8079
8080 mutex_lock(&priv->action_mutex);
8081 if (!(priv->status & STATUS_INITIALIZED)) {
8082 err = -EIO;
8083 goto done;
8084 }
8085
8086 if (mode == 1)
8087 priv->config |= CFG_CRC_CHECK;
8088 else if (mode == 0)
8089 priv->config &= ~CFG_CRC_CHECK;
8090 else {
8091 err = -EINVAL;
8092 goto done;
8093 }
8094 err = 0;
8095
8096 done:
8097 mutex_unlock(&priv->action_mutex);
8098 return err;
8099 }
8100
8101 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8102 struct iw_request_info *info,
8103 union iwreq_data *wrqu, char *extra)
8104 {
8105 /*
8106 * This can be called at any time. No action lock required
8107 */
8108
8109 struct ipw2100_priv *priv = libipw_priv(dev);
8110
8111 if (priv->config & CFG_CRC_CHECK)
8112 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8113 else
8114 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8115
8116 return 0;
8117 }
8118 #endif /* CONFIG_IPW2100_MONITOR */
8119
8120 static iw_handler ipw2100_wx_handlers[] = {
8121 NULL, /* SIOCSIWCOMMIT */
8122 ipw2100_wx_get_name, /* SIOCGIWNAME */
8123 NULL, /* SIOCSIWNWID */
8124 NULL, /* SIOCGIWNWID */
8125 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8126 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8127 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8128 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8129 NULL, /* SIOCSIWSENS */
8130 NULL, /* SIOCGIWSENS */
8131 NULL, /* SIOCSIWRANGE */
8132 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8133 NULL, /* SIOCSIWPRIV */
8134 NULL, /* SIOCGIWPRIV */
8135 NULL, /* SIOCSIWSTATS */
8136 NULL, /* SIOCGIWSTATS */
8137 NULL, /* SIOCSIWSPY */
8138 NULL, /* SIOCGIWSPY */
8139 NULL, /* SIOCGIWTHRSPY */
8140 NULL, /* SIOCWIWTHRSPY */
8141 ipw2100_wx_set_wap, /* SIOCSIWAP */
8142 ipw2100_wx_get_wap, /* SIOCGIWAP */
8143 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8144 NULL, /* SIOCGIWAPLIST -- deprecated */
8145 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8146 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8147 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8148 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8149 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8150 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8151 NULL, /* -- hole -- */
8152 NULL, /* -- hole -- */
8153 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8154 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8155 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8156 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8157 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8158 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8159 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8160 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8161 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8162 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8163 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8164 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8165 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8166 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8167 NULL, /* -- hole -- */
8168 NULL, /* -- hole -- */
8169 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8170 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8171 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8172 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8173 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8174 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8175 NULL, /* SIOCSIWPMKSA */
8176 };
8177
8178 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8179 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8180 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8181 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8182 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8183 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8184 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8185 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8186
8187 static const struct iw_priv_args ipw2100_private_args[] = {
8188
8189 #ifdef CONFIG_IPW2100_MONITOR
8190 {
8191 IPW2100_PRIV_SET_MONITOR,
8192 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8193 {
8194 IPW2100_PRIV_RESET,
8195 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8196 #endif /* CONFIG_IPW2100_MONITOR */
8197
8198 {
8199 IPW2100_PRIV_SET_POWER,
8200 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8201 {
8202 IPW2100_PRIV_GET_POWER,
8203 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8204 "get_power"},
8205 {
8206 IPW2100_PRIV_SET_LONGPREAMBLE,
8207 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8208 {
8209 IPW2100_PRIV_GET_LONGPREAMBLE,
8210 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8211 #ifdef CONFIG_IPW2100_MONITOR
8212 {
8213 IPW2100_PRIV_SET_CRC_CHECK,
8214 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8215 {
8216 IPW2100_PRIV_GET_CRC_CHECK,
8217 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8218 #endif /* CONFIG_IPW2100_MONITOR */
8219 };
8220
8221 static iw_handler ipw2100_private_handler[] = {
8222 #ifdef CONFIG_IPW2100_MONITOR
8223 ipw2100_wx_set_promisc,
8224 ipw2100_wx_reset,
8225 #else /* CONFIG_IPW2100_MONITOR */
8226 NULL,
8227 NULL,
8228 #endif /* CONFIG_IPW2100_MONITOR */
8229 ipw2100_wx_set_powermode,
8230 ipw2100_wx_get_powermode,
8231 ipw2100_wx_set_preamble,
8232 ipw2100_wx_get_preamble,
8233 #ifdef CONFIG_IPW2100_MONITOR
8234 ipw2100_wx_set_crc_check,
8235 ipw2100_wx_get_crc_check,
8236 #else /* CONFIG_IPW2100_MONITOR */
8237 NULL,
8238 NULL,
8239 #endif /* CONFIG_IPW2100_MONITOR */
8240 };
8241
8242 /*
8243 * Get wireless statistics.
8244 * Called by /proc/net/wireless
8245 * Also called by SIOCGIWSTATS
8246 */
8247 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8248 {
8249 enum {
8250 POOR = 30,
8251 FAIR = 60,
8252 GOOD = 80,
8253 VERY_GOOD = 90,
8254 EXCELLENT = 95,
8255 PERFECT = 100
8256 };
8257 int rssi_qual;
8258 int tx_qual;
8259 int beacon_qual;
8260 int quality;
8261
8262 struct ipw2100_priv *priv = libipw_priv(dev);
8263 struct iw_statistics *wstats;
8264 u32 rssi, tx_retries, missed_beacons, tx_failures;
8265 u32 ord_len = sizeof(u32);
8266
8267 if (!priv)
8268 return (struct iw_statistics *)NULL;
8269
8270 wstats = &priv->wstats;
8271
8272 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8273 * ipw2100_wx_wireless_stats seems to be called before fw is
8274 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8275 * and associated; if not associcated, the values are all meaningless
8276 * anyway, so set them all to NULL and INVALID */
8277 if (!(priv->status & STATUS_ASSOCIATED)) {
8278 wstats->miss.beacon = 0;
8279 wstats->discard.retries = 0;
8280 wstats->qual.qual = 0;
8281 wstats->qual.level = 0;
8282 wstats->qual.noise = 0;
8283 wstats->qual.updated = 7;
8284 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8285 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8286 return wstats;
8287 }
8288
8289 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8290 &missed_beacons, &ord_len))
8291 goto fail_get_ordinal;
8292
8293 /* If we don't have a connection the quality and level is 0 */
8294 if (!(priv->status & STATUS_ASSOCIATED)) {
8295 wstats->qual.qual = 0;
8296 wstats->qual.level = 0;
8297 } else {
8298 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8299 &rssi, &ord_len))
8300 goto fail_get_ordinal;
8301 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8302 if (rssi < 10)
8303 rssi_qual = rssi * POOR / 10;
8304 else if (rssi < 15)
8305 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8306 else if (rssi < 20)
8307 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8308 else if (rssi < 30)
8309 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8310 10 + GOOD;
8311 else
8312 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8313 10 + VERY_GOOD;
8314
8315 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8316 &tx_retries, &ord_len))
8317 goto fail_get_ordinal;
8318
8319 if (tx_retries > 75)
8320 tx_qual = (90 - tx_retries) * POOR / 15;
8321 else if (tx_retries > 70)
8322 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8323 else if (tx_retries > 65)
8324 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8325 else if (tx_retries > 50)
8326 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8327 15 + GOOD;
8328 else
8329 tx_qual = (50 - tx_retries) *
8330 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8331
8332 if (missed_beacons > 50)
8333 beacon_qual = (60 - missed_beacons) * POOR / 10;
8334 else if (missed_beacons > 40)
8335 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8336 10 + POOR;
8337 else if (missed_beacons > 32)
8338 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8339 18 + FAIR;
8340 else if (missed_beacons > 20)
8341 beacon_qual = (32 - missed_beacons) *
8342 (VERY_GOOD - GOOD) / 20 + GOOD;
8343 else
8344 beacon_qual = (20 - missed_beacons) *
8345 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8346
8347 quality = min(tx_qual, rssi_qual);
8348 quality = min(beacon_qual, quality);
8349
8350 #ifdef CONFIG_IPW2100_DEBUG
8351 if (beacon_qual == quality)
8352 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8353 else if (tx_qual == quality)
8354 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8355 else if (quality != 100)
8356 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8357 else
8358 IPW_DEBUG_WX("Quality not clamped.\n");
8359 #endif
8360
8361 wstats->qual.qual = quality;
8362 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8363 }
8364
8365 wstats->qual.noise = 0;
8366 wstats->qual.updated = 7;
8367 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8368
8369 /* FIXME: this is percent and not a # */
8370 wstats->miss.beacon = missed_beacons;
8371
8372 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8373 &tx_failures, &ord_len))
8374 goto fail_get_ordinal;
8375 wstats->discard.retries = tx_failures;
8376
8377 return wstats;
8378
8379 fail_get_ordinal:
8380 IPW_DEBUG_WX("failed querying ordinals.\n");
8381
8382 return (struct iw_statistics *)NULL;
8383 }
8384
8385 static struct iw_handler_def ipw2100_wx_handler_def = {
8386 .standard = ipw2100_wx_handlers,
8387 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8388 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8389 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8390 .private = (iw_handler *) ipw2100_private_handler,
8391 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8392 .get_wireless_stats = ipw2100_wx_wireless_stats,
8393 };
8394
8395 static void ipw2100_wx_event_work(struct work_struct *work)
8396 {
8397 struct ipw2100_priv *priv =
8398 container_of(work, struct ipw2100_priv, wx_event_work.work);
8399 union iwreq_data wrqu;
8400 unsigned int len = ETH_ALEN;
8401
8402 if (priv->status & STATUS_STOPPING)
8403 return;
8404
8405 mutex_lock(&priv->action_mutex);
8406
8407 IPW_DEBUG_WX("enter\n");
8408
8409 mutex_unlock(&priv->action_mutex);
8410
8411 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8412
8413 /* Fetch BSSID from the hardware */
8414 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8415 priv->status & STATUS_RF_KILL_MASK ||
8416 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8417 &priv->bssid, &len)) {
8418 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8419 } else {
8420 /* We now have the BSSID, so can finish setting to the full
8421 * associated state */
8422 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8423 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8424 priv->status &= ~STATUS_ASSOCIATING;
8425 priv->status |= STATUS_ASSOCIATED;
8426 netif_carrier_on(priv->net_dev);
8427 netif_wake_queue(priv->net_dev);
8428 }
8429
8430 if (!(priv->status & STATUS_ASSOCIATED)) {
8431 IPW_DEBUG_WX("Configuring ESSID\n");
8432 mutex_lock(&priv->action_mutex);
8433 /* This is a disassociation event, so kick the firmware to
8434 * look for another AP */
8435 if (priv->config & CFG_STATIC_ESSID)
8436 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8437 0);
8438 else
8439 ipw2100_set_essid(priv, NULL, 0, 0);
8440 mutex_unlock(&priv->action_mutex);
8441 }
8442
8443 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8444 }
8445
8446 #define IPW2100_FW_MAJOR_VERSION 1
8447 #define IPW2100_FW_MINOR_VERSION 3
8448
8449 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8450 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8451
8452 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8453 IPW2100_FW_MAJOR_VERSION)
8454
8455 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8456 "." __stringify(IPW2100_FW_MINOR_VERSION)
8457
8458 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8459
8460 /*
8461
8462 BINARY FIRMWARE HEADER FORMAT
8463
8464 offset length desc
8465 0 2 version
8466 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8467 4 4 fw_len
8468 8 4 uc_len
8469 C fw_len firmware data
8470 12 + fw_len uc_len microcode data
8471
8472 */
8473
8474 struct ipw2100_fw_header {
8475 short version;
8476 short mode;
8477 unsigned int fw_size;
8478 unsigned int uc_size;
8479 } __packed;
8480
8481 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8482 {
8483 struct ipw2100_fw_header *h =
8484 (struct ipw2100_fw_header *)fw->fw_entry->data;
8485
8486 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8487 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8488 "(detected version id of %u). "
8489 "See Documentation/networking/README.ipw2100\n",
8490 h->version);
8491 return 1;
8492 }
8493
8494 fw->version = h->version;
8495 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8496 fw->fw.size = h->fw_size;
8497 fw->uc.data = fw->fw.data + h->fw_size;
8498 fw->uc.size = h->uc_size;
8499
8500 return 0;
8501 }
8502
8503 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8504 struct ipw2100_fw *fw)
8505 {
8506 char *fw_name;
8507 int rc;
8508
8509 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8510 priv->net_dev->name);
8511
8512 switch (priv->ieee->iw_mode) {
8513 case IW_MODE_ADHOC:
8514 fw_name = IPW2100_FW_NAME("-i");
8515 break;
8516 #ifdef CONFIG_IPW2100_MONITOR
8517 case IW_MODE_MONITOR:
8518 fw_name = IPW2100_FW_NAME("-p");
8519 break;
8520 #endif
8521 case IW_MODE_INFRA:
8522 default:
8523 fw_name = IPW2100_FW_NAME("");
8524 break;
8525 }
8526
8527 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8528
8529 if (rc < 0) {
8530 printk(KERN_ERR DRV_NAME ": "
8531 "%s: Firmware '%s' not available or load failed.\n",
8532 priv->net_dev->name, fw_name);
8533 return rc;
8534 }
8535 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8536 fw->fw_entry->size);
8537
8538 ipw2100_mod_firmware_load(fw);
8539
8540 return 0;
8541 }
8542
8543 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8544 #ifdef CONFIG_IPW2100_MONITOR
8545 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8546 #endif
8547 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8548
8549 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8550 struct ipw2100_fw *fw)
8551 {
8552 fw->version = 0;
8553 if (fw->fw_entry)
8554 release_firmware(fw->fw_entry);
8555 fw->fw_entry = NULL;
8556 }
8557
8558 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8559 size_t max)
8560 {
8561 char ver[MAX_FW_VERSION_LEN];
8562 u32 len = MAX_FW_VERSION_LEN;
8563 u32 tmp;
8564 int i;
8565 /* firmware version is an ascii string (max len of 14) */
8566 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8567 return -EIO;
8568 tmp = max;
8569 if (len >= max)
8570 len = max - 1;
8571 for (i = 0; i < len; i++)
8572 buf[i] = ver[i];
8573 buf[i] = '\0';
8574 return tmp;
8575 }
8576
8577 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8578 size_t max)
8579 {
8580 u32 ver;
8581 u32 len = sizeof(ver);
8582 /* microcode version is a 32 bit integer */
8583 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8584 return -EIO;
8585 return snprintf(buf, max, "%08X", ver);
8586 }
8587
8588 /*
8589 * On exit, the firmware will have been freed from the fw list
8590 */
8591 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8592 {
8593 /* firmware is constructed of N contiguous entries, each entry is
8594 * structured as:
8595 *
8596 * offset sie desc
8597 * 0 4 address to write to
8598 * 4 2 length of data run
8599 * 6 length data
8600 */
8601 unsigned int addr;
8602 unsigned short len;
8603
8604 const unsigned char *firmware_data = fw->fw.data;
8605 unsigned int firmware_data_left = fw->fw.size;
8606
8607 while (firmware_data_left > 0) {
8608 addr = *(u32 *) (firmware_data);
8609 firmware_data += 4;
8610 firmware_data_left -= 4;
8611
8612 len = *(u16 *) (firmware_data);
8613 firmware_data += 2;
8614 firmware_data_left -= 2;
8615
8616 if (len > 32) {
8617 printk(KERN_ERR DRV_NAME ": "
8618 "Invalid firmware run-length of %d bytes\n",
8619 len);
8620 return -EINVAL;
8621 }
8622
8623 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8624 firmware_data += len;
8625 firmware_data_left -= len;
8626 }
8627
8628 return 0;
8629 }
8630
8631 struct symbol_alive_response {
8632 u8 cmd_id;
8633 u8 seq_num;
8634 u8 ucode_rev;
8635 u8 eeprom_valid;
8636 u16 valid_flags;
8637 u8 IEEE_addr[6];
8638 u16 flags;
8639 u16 pcb_rev;
8640 u16 clock_settle_time; // 1us LSB
8641 u16 powerup_settle_time; // 1us LSB
8642 u16 hop_settle_time; // 1us LSB
8643 u8 date[3]; // month, day, year
8644 u8 time[2]; // hours, minutes
8645 u8 ucode_valid;
8646 };
8647
8648 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8649 struct ipw2100_fw *fw)
8650 {
8651 struct net_device *dev = priv->net_dev;
8652 const unsigned char *microcode_data = fw->uc.data;
8653 unsigned int microcode_data_left = fw->uc.size;
8654 void __iomem *reg = (void __iomem *)dev->base_addr;
8655
8656 struct symbol_alive_response response;
8657 int i, j;
8658 u8 data;
8659
8660 /* Symbol control */
8661 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8662 readl(reg);
8663 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8664 readl(reg);
8665
8666 /* HW config */
8667 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8668 readl(reg);
8669 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8670 readl(reg);
8671
8672 /* EN_CS_ACCESS bit to reset control store pointer */
8673 write_nic_byte(dev, 0x210000, 0x40);
8674 readl(reg);
8675 write_nic_byte(dev, 0x210000, 0x0);
8676 readl(reg);
8677 write_nic_byte(dev, 0x210000, 0x40);
8678 readl(reg);
8679
8680 /* copy microcode from buffer into Symbol */
8681
8682 while (microcode_data_left > 0) {
8683 write_nic_byte(dev, 0x210010, *microcode_data++);
8684 write_nic_byte(dev, 0x210010, *microcode_data++);
8685 microcode_data_left -= 2;
8686 }
8687
8688 /* EN_CS_ACCESS bit to reset the control store pointer */
8689 write_nic_byte(dev, 0x210000, 0x0);
8690 readl(reg);
8691
8692 /* Enable System (Reg 0)
8693 * first enable causes garbage in RX FIFO */
8694 write_nic_byte(dev, 0x210000, 0x0);
8695 readl(reg);
8696 write_nic_byte(dev, 0x210000, 0x80);
8697 readl(reg);
8698
8699 /* Reset External Baseband Reg */
8700 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8701 readl(reg);
8702 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8703 readl(reg);
8704
8705 /* HW Config (Reg 5) */
8706 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8707 readl(reg);
8708 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8709 readl(reg);
8710
8711 /* Enable System (Reg 0)
8712 * second enable should be OK */
8713 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8714 readl(reg);
8715 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8716
8717 /* check Symbol is enabled - upped this from 5 as it wasn't always
8718 * catching the update */
8719 for (i = 0; i < 10; i++) {
8720 udelay(10);
8721
8722 /* check Dino is enabled bit */
8723 read_nic_byte(dev, 0x210000, &data);
8724 if (data & 0x1)
8725 break;
8726 }
8727
8728 if (i == 10) {
8729 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8730 dev->name);
8731 return -EIO;
8732 }
8733
8734 /* Get Symbol alive response */
8735 for (i = 0; i < 30; i++) {
8736 /* Read alive response structure */
8737 for (j = 0;
8738 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8739 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8740
8741 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8742 break;
8743 udelay(10);
8744 }
8745
8746 if (i == 30) {
8747 printk(KERN_ERR DRV_NAME
8748 ": %s: No response from Symbol - hw not alive\n",
8749 dev->name);
8750 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8751 return -EIO;
8752 }
8753
8754 return 0;
8755 }