]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ipw2x00/ipw2100.c
PCI: Remove DEFINE_PCI_DEVICE_TABLE macro use
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 unsigned long now = get_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = get_seconds();
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794 lock = LOCK_NONE;
1795 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 printk(KERN_ERR DRV_NAME
1797 ": %s: Failed to clear ordinal lock.\n",
1798 priv->net_dev->name);
1799 rc = 1;
1800 goto exit;
1801 }
1802
1803 priv->status &= ~STATUS_SCANNING;
1804
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1808
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 schedule_delayed_work(&priv->rf_kill,
1812 round_jiffies_relative(HZ));
1813 }
1814
1815 deferred = 1;
1816 }
1817
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1820
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 if (ipw2100_adapter_setup(priv)) {
1824 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 priv->net_dev->name);
1826 rc = 1;
1827 goto exit;
1828 }
1829
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 if (ipw2100_enable_adapter(priv)) {
1833 printk(KERN_ERR DRV_NAME ": "
1834 "%s: failed in call to enable adapter.\n",
1835 priv->net_dev->name);
1836 ipw2100_hw_stop_adapter(priv);
1837 rc = 1;
1838 goto exit;
1839 }
1840
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1844 }
1845
1846 exit:
1847 return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1856 };
1857 int associated = priv->status & STATUS_ASSOCIATED;
1858
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1863 }
1864
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1869 }
1870
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1874
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1884
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905 struct ipw2100_priv *priv = libipw_priv(dev);
1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 struct wireless_dev *wdev = &priv->ieee->wdev;
1908 int i;
1909
1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912 /* fill-out priv->ieee->bg_band */
1913 if (geo->bg_channels) {
1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916 bg_band->band = IEEE80211_BAND_2GHZ;
1917 bg_band->n_channels = geo->bg_channels;
1918 bg_band->channels = kcalloc(geo->bg_channels,
1919 sizeof(struct ieee80211_channel),
1920 GFP_KERNEL);
1921 if (!bg_band->channels) {
1922 ipw2100_down(priv);
1923 return -ENOMEM;
1924 }
1925 /* translate geo->bg to bg_band.channels */
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928 bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 bg_band->channels[i].flags |=
1933 IEEE80211_CHAN_NO_IR;
1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_NO_IR;
1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_RADAR;
1940 /* No equivalent for LIBIPW_CH_80211H_RULES,
1941 LIBIPW_CH_UNIFORM_SPREADING, or
1942 LIBIPW_CH_B_ONLY... */
1943 }
1944 /* point at bitrate info */
1945 bg_band->bitrates = ipw2100_bg_rates;
1946 bg_band->n_bitrates = RATE_COUNT;
1947
1948 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949 }
1950
1951 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 if (wiphy_register(wdev->wiphy))
1956 return -EIO;
1957 return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962 struct ipw2100_priv *priv =
1963 container_of(work, struct ipw2100_priv, reset_work.work);
1964 unsigned long flags;
1965 union iwreq_data wrqu = {
1966 .ap_addr = {
1967 .sa_family = ARPHRD_ETHER}
1968 };
1969 int associated = priv->status & STATUS_ASSOCIATED;
1970
1971 spin_lock_irqsave(&priv->low_lock, flags);
1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 priv->resets++;
1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 priv->status |= STATUS_SECURITY_UPDATED;
1976
1977 /* Force a power cycle even if interface hasn't been opened
1978 * yet */
1979 cancel_delayed_work(&priv->reset_work);
1980 priv->status |= STATUS_RESET_PENDING;
1981 spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983 mutex_lock(&priv->action_mutex);
1984 /* stop timed checks so that they don't interfere with reset */
1985 priv->stop_hang_check = 1;
1986 cancel_delayed_work(&priv->hang_check);
1987
1988 /* We have to signal any supplicant if we are disassociating */
1989 if (associated)
1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992 ipw2100_up(priv, 0);
1993 mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 int ret;
2002 unsigned int len, essid_len;
2003 char essid[IW_ESSID_MAX_SIZE];
2004 u32 txrate;
2005 u32 chan;
2006 char *txratename;
2007 u8 bssid[ETH_ALEN];
2008 DECLARE_SSID_BUF(ssid);
2009
2010 /*
2011 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2012 * an actual MAC of the AP. Seems like FW sets this
2013 * address too late. Read it later and expose through
2014 * /proc or schedule a later task to query and update
2015 */
2016
2017 essid_len = IW_ESSID_MAX_SIZE;
2018 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2019 essid, &essid_len);
2020 if (ret) {
2021 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2022 __LINE__);
2023 return;
2024 }
2025
2026 len = sizeof(u32);
2027 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2028 if (ret) {
2029 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2030 __LINE__);
2031 return;
2032 }
2033
2034 len = sizeof(u32);
2035 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2036 if (ret) {
2037 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2038 __LINE__);
2039 return;
2040 }
2041 len = ETH_ALEN;
2042 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2043 &len);
2044 if (ret) {
2045 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046 __LINE__);
2047 return;
2048 }
2049 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051 switch (txrate) {
2052 case TX_RATE_1_MBIT:
2053 txratename = "1Mbps";
2054 break;
2055 case TX_RATE_2_MBIT:
2056 txratename = "2Mbsp";
2057 break;
2058 case TX_RATE_5_5_MBIT:
2059 txratename = "5.5Mbps";
2060 break;
2061 case TX_RATE_11_MBIT:
2062 txratename = "11Mbps";
2063 break;
2064 default:
2065 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066 txratename = "unknown rate";
2067 break;
2068 }
2069
2070 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072 txratename, chan, bssid);
2073
2074 /* now we copy read ssid into dev */
2075 if (!(priv->config & CFG_STATIC_ESSID)) {
2076 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077 memcpy(priv->essid, essid, priv->essid_len);
2078 }
2079 priv->channel = chan;
2080 memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082 priv->status |= STATUS_ASSOCIATING;
2083 priv->connect_start = get_seconds();
2084
2085 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089 int length, int batch_mode)
2090 {
2091 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092 struct host_command cmd = {
2093 .host_command = SSID,
2094 .host_command_sequence = 0,
2095 .host_command_length = ssid_len
2096 };
2097 int err;
2098 DECLARE_SSID_BUF(ssid);
2099
2100 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102 if (ssid_len)
2103 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105 if (!batch_mode) {
2106 err = ipw2100_disable_adapter(priv);
2107 if (err)
2108 return err;
2109 }
2110
2111 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112 * disable auto association -- so we cheat by setting a bogus SSID */
2113 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114 int i;
2115 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117 bogus[i] = 0x18 + i;
2118 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119 }
2120
2121 /* NOTE: We always send the SSID command even if the provided ESSID is
2122 * the same as what we currently think is set. */
2123
2124 err = ipw2100_hw_send_command(priv, &cmd);
2125 if (!err) {
2126 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127 memcpy(priv->essid, essid, ssid_len);
2128 priv->essid_len = ssid_len;
2129 }
2130
2131 if (!batch_mode) {
2132 if (ipw2100_enable_adapter(priv))
2133 err = -EIO;
2134 }
2135
2136 return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141 DECLARE_SSID_BUF(ssid);
2142
2143 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144 "disassociated: '%s' %pM\n",
2145 print_ssid(ssid, priv->essid, priv->essid_len),
2146 priv->bssid);
2147
2148 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150 if (priv->status & STATUS_STOPPING) {
2151 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152 return;
2153 }
2154
2155 memset(priv->bssid, 0, ETH_ALEN);
2156 memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158 netif_carrier_off(priv->net_dev);
2159 netif_stop_queue(priv->net_dev);
2160
2161 if (!(priv->status & STATUS_RUNNING))
2162 return;
2163
2164 if (priv->status & STATUS_SECURITY_UPDATED)
2165 schedule_delayed_work(&priv->security_work, 0);
2166
2167 schedule_delayed_work(&priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173 priv->net_dev->name);
2174
2175 /* RF_KILL is now enabled (else we wouldn't be here) */
2176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177 priv->status |= STATUS_RF_KILL_HW;
2178
2179 /* Make sure the RF Kill check timer is running */
2180 priv->stop_rf_kill = 0;
2181 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2182 }
2183
2184 static void ipw2100_scan_event(struct work_struct *work)
2185 {
2186 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2187 scan_event.work);
2188 union iwreq_data wrqu;
2189
2190 wrqu.data.length = 0;
2191 wrqu.data.flags = 0;
2192 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2193 }
2194
2195 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2196 {
2197 IPW_DEBUG_SCAN("scan complete\n");
2198 /* Age the scan results... */
2199 priv->ieee->scans++;
2200 priv->status &= ~STATUS_SCANNING;
2201
2202 /* Only userspace-requested scan completion events go out immediately */
2203 if (!priv->user_requested_scan) {
2204 schedule_delayed_work(&priv->scan_event,
2205 round_jiffies_relative(msecs_to_jiffies(4000)));
2206 } else {
2207 priv->user_requested_scan = 0;
2208 mod_delayed_work(system_wq, &priv->scan_event, 0);
2209 }
2210 }
2211
2212 #ifdef CONFIG_IPW2100_DEBUG
2213 #define IPW2100_HANDLER(v, f) { v, f, # v }
2214 struct ipw2100_status_indicator {
2215 int status;
2216 void (*cb) (struct ipw2100_priv * priv, u32 status);
2217 char *name;
2218 };
2219 #else
2220 #define IPW2100_HANDLER(v, f) { v, f }
2221 struct ipw2100_status_indicator {
2222 int status;
2223 void (*cb) (struct ipw2100_priv * priv, u32 status);
2224 };
2225 #endif /* CONFIG_IPW2100_DEBUG */
2226
2227 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2228 {
2229 IPW_DEBUG_SCAN("Scanning...\n");
2230 priv->status |= STATUS_SCANNING;
2231 }
2232
2233 static const struct ipw2100_status_indicator status_handlers[] = {
2234 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2235 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2236 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2237 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2238 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2239 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2240 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2241 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2242 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2243 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2244 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2245 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2246 IPW2100_HANDLER(-1, NULL)
2247 };
2248
2249 static void isr_status_change(struct ipw2100_priv *priv, int status)
2250 {
2251 int i;
2252
2253 if (status == IPW_STATE_SCANNING &&
2254 priv->status & STATUS_ASSOCIATED &&
2255 !(priv->status & STATUS_SCANNING)) {
2256 IPW_DEBUG_INFO("Scan detected while associated, with "
2257 "no scan request. Restarting firmware.\n");
2258
2259 /* Wake up any sleeping jobs */
2260 schedule_reset(priv);
2261 }
2262
2263 for (i = 0; status_handlers[i].status != -1; i++) {
2264 if (status == status_handlers[i].status) {
2265 IPW_DEBUG_NOTIF("Status change: %s\n",
2266 status_handlers[i].name);
2267 if (status_handlers[i].cb)
2268 status_handlers[i].cb(priv, status);
2269 priv->wstats.status = status;
2270 return;
2271 }
2272 }
2273
2274 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2275 }
2276
2277 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2278 struct ipw2100_cmd_header *cmd)
2279 {
2280 #ifdef CONFIG_IPW2100_DEBUG
2281 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2282 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2283 command_types[cmd->host_command_reg],
2284 cmd->host_command_reg);
2285 }
2286 #endif
2287 if (cmd->host_command_reg == HOST_COMPLETE)
2288 priv->status |= STATUS_ENABLED;
2289
2290 if (cmd->host_command_reg == CARD_DISABLE)
2291 priv->status &= ~STATUS_ENABLED;
2292
2293 priv->status &= ~STATUS_CMD_ACTIVE;
2294
2295 wake_up_interruptible(&priv->wait_command_queue);
2296 }
2297
2298 #ifdef CONFIG_IPW2100_DEBUG
2299 static const char *frame_types[] = {
2300 "COMMAND_STATUS_VAL",
2301 "STATUS_CHANGE_VAL",
2302 "P80211_DATA_VAL",
2303 "P8023_DATA_VAL",
2304 "HOST_NOTIFICATION_VAL"
2305 };
2306 #endif
2307
2308 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2309 struct ipw2100_rx_packet *packet)
2310 {
2311 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2312 if (!packet->skb)
2313 return -ENOMEM;
2314
2315 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2316 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2317 sizeof(struct ipw2100_rx),
2318 PCI_DMA_FROMDEVICE);
2319 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2320 * dma_addr */
2321
2322 return 0;
2323 }
2324
2325 #define SEARCH_ERROR 0xffffffff
2326 #define SEARCH_FAIL 0xfffffffe
2327 #define SEARCH_SUCCESS 0xfffffff0
2328 #define SEARCH_DISCARD 0
2329 #define SEARCH_SNAPSHOT 1
2330
2331 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2332 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2333 {
2334 int i;
2335 if (!priv->snapshot[0])
2336 return;
2337 for (i = 0; i < 0x30; i++)
2338 kfree(priv->snapshot[i]);
2339 priv->snapshot[0] = NULL;
2340 }
2341
2342 #ifdef IPW2100_DEBUG_C3
2343 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2344 {
2345 int i;
2346 if (priv->snapshot[0])
2347 return 1;
2348 for (i = 0; i < 0x30; i++) {
2349 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2350 if (!priv->snapshot[i]) {
2351 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2352 "buffer %d\n", priv->net_dev->name, i);
2353 while (i > 0)
2354 kfree(priv->snapshot[--i]);
2355 priv->snapshot[0] = NULL;
2356 return 0;
2357 }
2358 }
2359
2360 return 1;
2361 }
2362
2363 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2364 size_t len, int mode)
2365 {
2366 u32 i, j;
2367 u32 tmp;
2368 u8 *s, *d;
2369 u32 ret;
2370
2371 s = in_buf;
2372 if (mode == SEARCH_SNAPSHOT) {
2373 if (!ipw2100_snapshot_alloc(priv))
2374 mode = SEARCH_DISCARD;
2375 }
2376
2377 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2378 read_nic_dword(priv->net_dev, i, &tmp);
2379 if (mode == SEARCH_SNAPSHOT)
2380 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2381 if (ret == SEARCH_FAIL) {
2382 d = (u8 *) & tmp;
2383 for (j = 0; j < 4; j++) {
2384 if (*s != *d) {
2385 s = in_buf;
2386 continue;
2387 }
2388
2389 s++;
2390 d++;
2391
2392 if ((s - in_buf) == len)
2393 ret = (i + j) - len + 1;
2394 }
2395 } else if (mode == SEARCH_DISCARD)
2396 return ret;
2397 }
2398
2399 return ret;
2400 }
2401 #endif
2402
2403 /*
2404 *
2405 * 0) Disconnect the SKB from the firmware (just unmap)
2406 * 1) Pack the ETH header into the SKB
2407 * 2) Pass the SKB to the network stack
2408 *
2409 * When packet is provided by the firmware, it contains the following:
2410 *
2411 * . libipw_hdr
2412 * . libipw_snap_hdr
2413 *
2414 * The size of the constructed ethernet
2415 *
2416 */
2417 #ifdef IPW2100_RX_DEBUG
2418 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2419 #endif
2420
2421 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2422 {
2423 #ifdef IPW2100_DEBUG_C3
2424 struct ipw2100_status *status = &priv->status_queue.drv[i];
2425 u32 match, reg;
2426 int j;
2427 #endif
2428
2429 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2430 i * sizeof(struct ipw2100_status));
2431
2432 #ifdef IPW2100_DEBUG_C3
2433 /* Halt the firmware so we can get a good image */
2434 write_register(priv->net_dev, IPW_REG_RESET_REG,
2435 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2436 j = 5;
2437 do {
2438 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2439 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2440
2441 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2442 break;
2443 } while (j--);
2444
2445 match = ipw2100_match_buf(priv, (u8 *) status,
2446 sizeof(struct ipw2100_status),
2447 SEARCH_SNAPSHOT);
2448 if (match < SEARCH_SUCCESS)
2449 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2450 "offset 0x%06X, length %d:\n",
2451 priv->net_dev->name, match,
2452 sizeof(struct ipw2100_status));
2453 else
2454 IPW_DEBUG_INFO("%s: No DMA status match in "
2455 "Firmware.\n", priv->net_dev->name);
2456
2457 printk_buf((u8 *) priv->status_queue.drv,
2458 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2459 #endif
2460
2461 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2462 priv->net_dev->stats.rx_errors++;
2463 schedule_reset(priv);
2464 }
2465
2466 static void isr_rx(struct ipw2100_priv *priv, int i,
2467 struct libipw_rx_stats *stats)
2468 {
2469 struct net_device *dev = priv->net_dev;
2470 struct ipw2100_status *status = &priv->status_queue.drv[i];
2471 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2472
2473 IPW_DEBUG_RX("Handler...\n");
2474
2475 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2476 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2477 " Dropping.\n",
2478 dev->name,
2479 status->frame_size, skb_tailroom(packet->skb));
2480 dev->stats.rx_errors++;
2481 return;
2482 }
2483
2484 if (unlikely(!netif_running(dev))) {
2485 dev->stats.rx_errors++;
2486 priv->wstats.discard.misc++;
2487 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2488 return;
2489 }
2490
2491 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2492 !(priv->status & STATUS_ASSOCIATED))) {
2493 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2494 priv->wstats.discard.misc++;
2495 return;
2496 }
2497
2498 pci_unmap_single(priv->pci_dev,
2499 packet->dma_addr,
2500 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2501
2502 skb_put(packet->skb, status->frame_size);
2503
2504 #ifdef IPW2100_RX_DEBUG
2505 /* Make a copy of the frame so we can dump it to the logs if
2506 * libipw_rx fails */
2507 skb_copy_from_linear_data(packet->skb, packet_data,
2508 min_t(u32, status->frame_size,
2509 IPW_RX_NIC_BUFFER_LENGTH));
2510 #endif
2511
2512 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2513 #ifdef IPW2100_RX_DEBUG
2514 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2515 dev->name);
2516 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2517 #endif
2518 dev->stats.rx_errors++;
2519
2520 /* libipw_rx failed, so it didn't free the SKB */
2521 dev_kfree_skb_any(packet->skb);
2522 packet->skb = NULL;
2523 }
2524
2525 /* We need to allocate a new SKB and attach it to the RDB. */
2526 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2527 printk(KERN_WARNING DRV_NAME ": "
2528 "%s: Unable to allocate SKB onto RBD ring - disabling "
2529 "adapter.\n", dev->name);
2530 /* TODO: schedule adapter shutdown */
2531 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2532 }
2533
2534 /* Update the RDB entry */
2535 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2536 }
2537
2538 #ifdef CONFIG_IPW2100_MONITOR
2539
2540 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2541 struct libipw_rx_stats *stats)
2542 {
2543 struct net_device *dev = priv->net_dev;
2544 struct ipw2100_status *status = &priv->status_queue.drv[i];
2545 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2546
2547 /* Magic struct that slots into the radiotap header -- no reason
2548 * to build this manually element by element, we can write it much
2549 * more efficiently than we can parse it. ORDER MATTERS HERE */
2550 struct ipw_rt_hdr {
2551 struct ieee80211_radiotap_header rt_hdr;
2552 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2553 } *ipw_rt;
2554
2555 IPW_DEBUG_RX("Handler...\n");
2556
2557 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2558 sizeof(struct ipw_rt_hdr))) {
2559 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2560 " Dropping.\n",
2561 dev->name,
2562 status->frame_size,
2563 skb_tailroom(packet->skb));
2564 dev->stats.rx_errors++;
2565 return;
2566 }
2567
2568 if (unlikely(!netif_running(dev))) {
2569 dev->stats.rx_errors++;
2570 priv->wstats.discard.misc++;
2571 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2572 return;
2573 }
2574
2575 if (unlikely(priv->config & CFG_CRC_CHECK &&
2576 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2577 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2578 dev->stats.rx_errors++;
2579 return;
2580 }
2581
2582 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2583 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2584 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2585 packet->skb->data, status->frame_size);
2586
2587 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2588
2589 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2590 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2591 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2592
2593 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2594
2595 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2596
2597 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2598
2599 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2600 dev->stats.rx_errors++;
2601
2602 /* libipw_rx failed, so it didn't free the SKB */
2603 dev_kfree_skb_any(packet->skb);
2604 packet->skb = NULL;
2605 }
2606
2607 /* We need to allocate a new SKB and attach it to the RDB. */
2608 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2609 IPW_DEBUG_WARNING(
2610 "%s: Unable to allocate SKB onto RBD ring - disabling "
2611 "adapter.\n", dev->name);
2612 /* TODO: schedule adapter shutdown */
2613 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2614 }
2615
2616 /* Update the RDB entry */
2617 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2618 }
2619
2620 #endif
2621
2622 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2623 {
2624 struct ipw2100_status *status = &priv->status_queue.drv[i];
2625 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2626 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2627
2628 switch (frame_type) {
2629 case COMMAND_STATUS_VAL:
2630 return (status->frame_size != sizeof(u->rx_data.command));
2631 case STATUS_CHANGE_VAL:
2632 return (status->frame_size != sizeof(u->rx_data.status));
2633 case HOST_NOTIFICATION_VAL:
2634 return (status->frame_size < sizeof(u->rx_data.notification));
2635 case P80211_DATA_VAL:
2636 case P8023_DATA_VAL:
2637 #ifdef CONFIG_IPW2100_MONITOR
2638 return 0;
2639 #else
2640 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2641 case IEEE80211_FTYPE_MGMT:
2642 case IEEE80211_FTYPE_CTL:
2643 return 0;
2644 case IEEE80211_FTYPE_DATA:
2645 return (status->frame_size >
2646 IPW_MAX_802_11_PAYLOAD_LENGTH);
2647 }
2648 #endif
2649 }
2650
2651 return 1;
2652 }
2653
2654 /*
2655 * ipw2100 interrupts are disabled at this point, and the ISR
2656 * is the only code that calls this method. So, we do not need
2657 * to play with any locks.
2658 *
2659 * RX Queue works as follows:
2660 *
2661 * Read index - firmware places packet in entry identified by the
2662 * Read index and advances Read index. In this manner,
2663 * Read index will always point to the next packet to
2664 * be filled--but not yet valid.
2665 *
2666 * Write index - driver fills this entry with an unused RBD entry.
2667 * This entry has not filled by the firmware yet.
2668 *
2669 * In between the W and R indexes are the RBDs that have been received
2670 * but not yet processed.
2671 *
2672 * The process of handling packets will start at WRITE + 1 and advance
2673 * until it reaches the READ index.
2674 *
2675 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2676 *
2677 */
2678 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2679 {
2680 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2681 struct ipw2100_status_queue *sq = &priv->status_queue;
2682 struct ipw2100_rx_packet *packet;
2683 u16 frame_type;
2684 u32 r, w, i, s;
2685 struct ipw2100_rx *u;
2686 struct libipw_rx_stats stats = {
2687 .mac_time = jiffies,
2688 };
2689
2690 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2691 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2692
2693 if (r >= rxq->entries) {
2694 IPW_DEBUG_RX("exit - bad read index\n");
2695 return;
2696 }
2697
2698 i = (rxq->next + 1) % rxq->entries;
2699 s = i;
2700 while (i != r) {
2701 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2702 r, rxq->next, i); */
2703
2704 packet = &priv->rx_buffers[i];
2705
2706 /* Sync the DMA for the RX buffer so CPU is sure to get
2707 * the correct values */
2708 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2709 sizeof(struct ipw2100_rx),
2710 PCI_DMA_FROMDEVICE);
2711
2712 if (unlikely(ipw2100_corruption_check(priv, i))) {
2713 ipw2100_corruption_detected(priv, i);
2714 goto increment;
2715 }
2716
2717 u = packet->rxp;
2718 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2719 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2720 stats.len = sq->drv[i].frame_size;
2721
2722 stats.mask = 0;
2723 if (stats.rssi != 0)
2724 stats.mask |= LIBIPW_STATMASK_RSSI;
2725 stats.freq = LIBIPW_24GHZ_BAND;
2726
2727 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2728 priv->net_dev->name, frame_types[frame_type],
2729 stats.len);
2730
2731 switch (frame_type) {
2732 case COMMAND_STATUS_VAL:
2733 /* Reset Rx watchdog */
2734 isr_rx_complete_command(priv, &u->rx_data.command);
2735 break;
2736
2737 case STATUS_CHANGE_VAL:
2738 isr_status_change(priv, u->rx_data.status);
2739 break;
2740
2741 case P80211_DATA_VAL:
2742 case P8023_DATA_VAL:
2743 #ifdef CONFIG_IPW2100_MONITOR
2744 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2745 isr_rx_monitor(priv, i, &stats);
2746 break;
2747 }
2748 #endif
2749 if (stats.len < sizeof(struct libipw_hdr_3addr))
2750 break;
2751 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2752 case IEEE80211_FTYPE_MGMT:
2753 libipw_rx_mgt(priv->ieee,
2754 &u->rx_data.header, &stats);
2755 break;
2756
2757 case IEEE80211_FTYPE_CTL:
2758 break;
2759
2760 case IEEE80211_FTYPE_DATA:
2761 isr_rx(priv, i, &stats);
2762 break;
2763
2764 }
2765 break;
2766 }
2767
2768 increment:
2769 /* clear status field associated with this RBD */
2770 rxq->drv[i].status.info.field = 0;
2771
2772 i = (i + 1) % rxq->entries;
2773 }
2774
2775 if (i != s) {
2776 /* backtrack one entry, wrapping to end if at 0 */
2777 rxq->next = (i ? i : rxq->entries) - 1;
2778
2779 write_register(priv->net_dev,
2780 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2781 }
2782 }
2783
2784 /*
2785 * __ipw2100_tx_process
2786 *
2787 * This routine will determine whether the next packet on
2788 * the fw_pend_list has been processed by the firmware yet.
2789 *
2790 * If not, then it does nothing and returns.
2791 *
2792 * If so, then it removes the item from the fw_pend_list, frees
2793 * any associated storage, and places the item back on the
2794 * free list of its source (either msg_free_list or tx_free_list)
2795 *
2796 * TX Queue works as follows:
2797 *
2798 * Read index - points to the next TBD that the firmware will
2799 * process. The firmware will read the data, and once
2800 * done processing, it will advance the Read index.
2801 *
2802 * Write index - driver fills this entry with an constructed TBD
2803 * entry. The Write index is not advanced until the
2804 * packet has been configured.
2805 *
2806 * In between the W and R indexes are the TBDs that have NOT been
2807 * processed. Lagging behind the R index are packets that have
2808 * been processed but have not been freed by the driver.
2809 *
2810 * In order to free old storage, an internal index will be maintained
2811 * that points to the next packet to be freed. When all used
2812 * packets have been freed, the oldest index will be the same as the
2813 * firmware's read index.
2814 *
2815 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2816 *
2817 * Because the TBD structure can not contain arbitrary data, the
2818 * driver must keep an internal queue of cached allocations such that
2819 * it can put that data back into the tx_free_list and msg_free_list
2820 * for use by future command and data packets.
2821 *
2822 */
2823 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2824 {
2825 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2826 struct ipw2100_bd *tbd;
2827 struct list_head *element;
2828 struct ipw2100_tx_packet *packet;
2829 int descriptors_used;
2830 int e, i;
2831 u32 r, w, frag_num = 0;
2832
2833 if (list_empty(&priv->fw_pend_list))
2834 return 0;
2835
2836 element = priv->fw_pend_list.next;
2837
2838 packet = list_entry(element, struct ipw2100_tx_packet, list);
2839 tbd = &txq->drv[packet->index];
2840
2841 /* Determine how many TBD entries must be finished... */
2842 switch (packet->type) {
2843 case COMMAND:
2844 /* COMMAND uses only one slot; don't advance */
2845 descriptors_used = 1;
2846 e = txq->oldest;
2847 break;
2848
2849 case DATA:
2850 /* DATA uses two slots; advance and loop position. */
2851 descriptors_used = tbd->num_fragments;
2852 frag_num = tbd->num_fragments - 1;
2853 e = txq->oldest + frag_num;
2854 e %= txq->entries;
2855 break;
2856
2857 default:
2858 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2859 priv->net_dev->name);
2860 return 0;
2861 }
2862
2863 /* if the last TBD is not done by NIC yet, then packet is
2864 * not ready to be released.
2865 *
2866 */
2867 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2868 &r);
2869 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2870 &w);
2871 if (w != txq->next)
2872 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2873 priv->net_dev->name);
2874
2875 /*
2876 * txq->next is the index of the last packet written txq->oldest is
2877 * the index of the r is the index of the next packet to be read by
2878 * firmware
2879 */
2880
2881 /*
2882 * Quick graphic to help you visualize the following
2883 * if / else statement
2884 *
2885 * ===>| s---->|===============
2886 * e>|
2887 * | a | b | c | d | e | f | g | h | i | j | k | l
2888 * r---->|
2889 * w
2890 *
2891 * w - updated by driver
2892 * r - updated by firmware
2893 * s - start of oldest BD entry (txq->oldest)
2894 * e - end of oldest BD entry
2895 *
2896 */
2897 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2898 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2899 return 0;
2900 }
2901
2902 list_del(element);
2903 DEC_STAT(&priv->fw_pend_stat);
2904
2905 #ifdef CONFIG_IPW2100_DEBUG
2906 {
2907 i = txq->oldest;
2908 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2909 &txq->drv[i],
2910 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2911 txq->drv[i].host_addr, txq->drv[i].buf_length);
2912
2913 if (packet->type == DATA) {
2914 i = (i + 1) % txq->entries;
2915
2916 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2917 &txq->drv[i],
2918 (u32) (txq->nic + i *
2919 sizeof(struct ipw2100_bd)),
2920 (u32) txq->drv[i].host_addr,
2921 txq->drv[i].buf_length);
2922 }
2923 }
2924 #endif
2925
2926 switch (packet->type) {
2927 case DATA:
2928 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2929 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2930 "Expecting DATA TBD but pulled "
2931 "something else: ids %d=%d.\n",
2932 priv->net_dev->name, txq->oldest, packet->index);
2933
2934 /* DATA packet; we have to unmap and free the SKB */
2935 for (i = 0; i < frag_num; i++) {
2936 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2937
2938 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2939 (packet->index + 1 + i) % txq->entries,
2940 tbd->host_addr, tbd->buf_length);
2941
2942 pci_unmap_single(priv->pci_dev,
2943 tbd->host_addr,
2944 tbd->buf_length, PCI_DMA_TODEVICE);
2945 }
2946
2947 libipw_txb_free(packet->info.d_struct.txb);
2948 packet->info.d_struct.txb = NULL;
2949
2950 list_add_tail(element, &priv->tx_free_list);
2951 INC_STAT(&priv->tx_free_stat);
2952
2953 /* We have a free slot in the Tx queue, so wake up the
2954 * transmit layer if it is stopped. */
2955 if (priv->status & STATUS_ASSOCIATED)
2956 netif_wake_queue(priv->net_dev);
2957
2958 /* A packet was processed by the hardware, so update the
2959 * watchdog */
2960 priv->net_dev->trans_start = jiffies;
2961
2962 break;
2963
2964 case COMMAND:
2965 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2966 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2967 "Expecting COMMAND TBD but pulled "
2968 "something else: ids %d=%d.\n",
2969 priv->net_dev->name, txq->oldest, packet->index);
2970
2971 #ifdef CONFIG_IPW2100_DEBUG
2972 if (packet->info.c_struct.cmd->host_command_reg <
2973 ARRAY_SIZE(command_types))
2974 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2975 command_types[packet->info.c_struct.cmd->
2976 host_command_reg],
2977 packet->info.c_struct.cmd->
2978 host_command_reg,
2979 packet->info.c_struct.cmd->cmd_status_reg);
2980 #endif
2981
2982 list_add_tail(element, &priv->msg_free_list);
2983 INC_STAT(&priv->msg_free_stat);
2984 break;
2985 }
2986
2987 /* advance oldest used TBD pointer to start of next entry */
2988 txq->oldest = (e + 1) % txq->entries;
2989 /* increase available TBDs number */
2990 txq->available += descriptors_used;
2991 SET_STAT(&priv->txq_stat, txq->available);
2992
2993 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2994 jiffies - packet->jiffy_start);
2995
2996 return (!list_empty(&priv->fw_pend_list));
2997 }
2998
2999 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3000 {
3001 int i = 0;
3002
3003 while (__ipw2100_tx_process(priv) && i < 200)
3004 i++;
3005
3006 if (i == 200) {
3007 printk(KERN_WARNING DRV_NAME ": "
3008 "%s: Driver is running slow (%d iters).\n",
3009 priv->net_dev->name, i);
3010 }
3011 }
3012
3013 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3014 {
3015 struct list_head *element;
3016 struct ipw2100_tx_packet *packet;
3017 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3018 struct ipw2100_bd *tbd;
3019 int next = txq->next;
3020
3021 while (!list_empty(&priv->msg_pend_list)) {
3022 /* if there isn't enough space in TBD queue, then
3023 * don't stuff a new one in.
3024 * NOTE: 3 are needed as a command will take one,
3025 * and there is a minimum of 2 that must be
3026 * maintained between the r and w indexes
3027 */
3028 if (txq->available <= 3) {
3029 IPW_DEBUG_TX("no room in tx_queue\n");
3030 break;
3031 }
3032
3033 element = priv->msg_pend_list.next;
3034 list_del(element);
3035 DEC_STAT(&priv->msg_pend_stat);
3036
3037 packet = list_entry(element, struct ipw2100_tx_packet, list);
3038
3039 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3040 &txq->drv[txq->next],
3041 (u32) (txq->nic + txq->next *
3042 sizeof(struct ipw2100_bd)));
3043
3044 packet->index = txq->next;
3045
3046 tbd = &txq->drv[txq->next];
3047
3048 /* initialize TBD */
3049 tbd->host_addr = packet->info.c_struct.cmd_phys;
3050 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3051 /* not marking number of fragments causes problems
3052 * with f/w debug version */
3053 tbd->num_fragments = 1;
3054 tbd->status.info.field =
3055 IPW_BD_STATUS_TX_FRAME_COMMAND |
3056 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3057
3058 /* update TBD queue counters */
3059 txq->next++;
3060 txq->next %= txq->entries;
3061 txq->available--;
3062 DEC_STAT(&priv->txq_stat);
3063
3064 list_add_tail(element, &priv->fw_pend_list);
3065 INC_STAT(&priv->fw_pend_stat);
3066 }
3067
3068 if (txq->next != next) {
3069 /* kick off the DMA by notifying firmware the
3070 * write index has moved; make sure TBD stores are sync'd */
3071 wmb();
3072 write_register(priv->net_dev,
3073 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3074 txq->next);
3075 }
3076 }
3077
3078 /*
3079 * ipw2100_tx_send_data
3080 *
3081 */
3082 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3083 {
3084 struct list_head *element;
3085 struct ipw2100_tx_packet *packet;
3086 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3087 struct ipw2100_bd *tbd;
3088 int next = txq->next;
3089 int i = 0;
3090 struct ipw2100_data_header *ipw_hdr;
3091 struct libipw_hdr_3addr *hdr;
3092
3093 while (!list_empty(&priv->tx_pend_list)) {
3094 /* if there isn't enough space in TBD queue, then
3095 * don't stuff a new one in.
3096 * NOTE: 4 are needed as a data will take two,
3097 * and there is a minimum of 2 that must be
3098 * maintained between the r and w indexes
3099 */
3100 element = priv->tx_pend_list.next;
3101 packet = list_entry(element, struct ipw2100_tx_packet, list);
3102
3103 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3104 IPW_MAX_BDS)) {
3105 /* TODO: Support merging buffers if more than
3106 * IPW_MAX_BDS are used */
3107 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3108 "Increase fragmentation level.\n",
3109 priv->net_dev->name);
3110 }
3111
3112 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3113 IPW_DEBUG_TX("no room in tx_queue\n");
3114 break;
3115 }
3116
3117 list_del(element);
3118 DEC_STAT(&priv->tx_pend_stat);
3119
3120 tbd = &txq->drv[txq->next];
3121
3122 packet->index = txq->next;
3123
3124 ipw_hdr = packet->info.d_struct.data;
3125 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3126 fragments[0]->data;
3127
3128 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3129 /* To DS: Addr1 = BSSID, Addr2 = SA,
3130 Addr3 = DA */
3131 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3133 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3134 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3135 Addr3 = BSSID */
3136 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3137 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3138 }
3139
3140 ipw_hdr->host_command_reg = SEND;
3141 ipw_hdr->host_command_reg1 = 0;
3142
3143 /* For now we only support host based encryption */
3144 ipw_hdr->needs_encryption = 0;
3145 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3146 if (packet->info.d_struct.txb->nr_frags > 1)
3147 ipw_hdr->fragment_size =
3148 packet->info.d_struct.txb->frag_size -
3149 LIBIPW_3ADDR_LEN;
3150 else
3151 ipw_hdr->fragment_size = 0;
3152
3153 tbd->host_addr = packet->info.d_struct.data_phys;
3154 tbd->buf_length = sizeof(struct ipw2100_data_header);
3155 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3156 tbd->status.info.field =
3157 IPW_BD_STATUS_TX_FRAME_802_3 |
3158 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3159 txq->next++;
3160 txq->next %= txq->entries;
3161
3162 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3163 packet->index, tbd->host_addr, tbd->buf_length);
3164 #ifdef CONFIG_IPW2100_DEBUG
3165 if (packet->info.d_struct.txb->nr_frags > 1)
3166 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3167 packet->info.d_struct.txb->nr_frags);
3168 #endif
3169
3170 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3171 tbd = &txq->drv[txq->next];
3172 if (i == packet->info.d_struct.txb->nr_frags - 1)
3173 tbd->status.info.field =
3174 IPW_BD_STATUS_TX_FRAME_802_3 |
3175 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3176 else
3177 tbd->status.info.field =
3178 IPW_BD_STATUS_TX_FRAME_802_3 |
3179 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3180
3181 tbd->buf_length = packet->info.d_struct.txb->
3182 fragments[i]->len - LIBIPW_3ADDR_LEN;
3183
3184 tbd->host_addr = pci_map_single(priv->pci_dev,
3185 packet->info.d_struct.
3186 txb->fragments[i]->
3187 data +
3188 LIBIPW_3ADDR_LEN,
3189 tbd->buf_length,
3190 PCI_DMA_TODEVICE);
3191
3192 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3193 txq->next, tbd->host_addr,
3194 tbd->buf_length);
3195
3196 pci_dma_sync_single_for_device(priv->pci_dev,
3197 tbd->host_addr,
3198 tbd->buf_length,
3199 PCI_DMA_TODEVICE);
3200
3201 txq->next++;
3202 txq->next %= txq->entries;
3203 }
3204
3205 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3206 SET_STAT(&priv->txq_stat, txq->available);
3207
3208 list_add_tail(element, &priv->fw_pend_list);
3209 INC_STAT(&priv->fw_pend_stat);
3210 }
3211
3212 if (txq->next != next) {
3213 /* kick off the DMA by notifying firmware the
3214 * write index has moved; make sure TBD stores are sync'd */
3215 write_register(priv->net_dev,
3216 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3217 txq->next);
3218 }
3219 }
3220
3221 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3222 {
3223 struct net_device *dev = priv->net_dev;
3224 unsigned long flags;
3225 u32 inta, tmp;
3226
3227 spin_lock_irqsave(&priv->low_lock, flags);
3228 ipw2100_disable_interrupts(priv);
3229
3230 read_register(dev, IPW_REG_INTA, &inta);
3231
3232 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3233 (unsigned long)inta & IPW_INTERRUPT_MASK);
3234
3235 priv->in_isr++;
3236 priv->interrupts++;
3237
3238 /* We do not loop and keep polling for more interrupts as this
3239 * is frowned upon and doesn't play nicely with other potentially
3240 * chained IRQs */
3241 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3242 (unsigned long)inta & IPW_INTERRUPT_MASK);
3243
3244 if (inta & IPW2100_INTA_FATAL_ERROR) {
3245 printk(KERN_WARNING DRV_NAME
3246 ": Fatal interrupt. Scheduling firmware restart.\n");
3247 priv->inta_other++;
3248 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3249
3250 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3251 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3252 priv->net_dev->name, priv->fatal_error);
3253
3254 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3255 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3256 priv->net_dev->name, tmp);
3257
3258 /* Wake up any sleeping jobs */
3259 schedule_reset(priv);
3260 }
3261
3262 if (inta & IPW2100_INTA_PARITY_ERROR) {
3263 printk(KERN_ERR DRV_NAME
3264 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3265 priv->inta_other++;
3266 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3267 }
3268
3269 if (inta & IPW2100_INTA_RX_TRANSFER) {
3270 IPW_DEBUG_ISR("RX interrupt\n");
3271
3272 priv->rx_interrupts++;
3273
3274 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3275
3276 __ipw2100_rx_process(priv);
3277 __ipw2100_tx_complete(priv);
3278 }
3279
3280 if (inta & IPW2100_INTA_TX_TRANSFER) {
3281 IPW_DEBUG_ISR("TX interrupt\n");
3282
3283 priv->tx_interrupts++;
3284
3285 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3286
3287 __ipw2100_tx_complete(priv);
3288 ipw2100_tx_send_commands(priv);
3289 ipw2100_tx_send_data(priv);
3290 }
3291
3292 if (inta & IPW2100_INTA_TX_COMPLETE) {
3293 IPW_DEBUG_ISR("TX complete\n");
3294 priv->inta_other++;
3295 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3296
3297 __ipw2100_tx_complete(priv);
3298 }
3299
3300 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3301 /* ipw2100_handle_event(dev); */
3302 priv->inta_other++;
3303 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3304 }
3305
3306 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3307 IPW_DEBUG_ISR("FW init done interrupt\n");
3308 priv->inta_other++;
3309
3310 read_register(dev, IPW_REG_INTA, &tmp);
3311 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3312 IPW2100_INTA_PARITY_ERROR)) {
3313 write_register(dev, IPW_REG_INTA,
3314 IPW2100_INTA_FATAL_ERROR |
3315 IPW2100_INTA_PARITY_ERROR);
3316 }
3317
3318 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3319 }
3320
3321 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3322 IPW_DEBUG_ISR("Status change interrupt\n");
3323 priv->inta_other++;
3324 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3325 }
3326
3327 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3328 IPW_DEBUG_ISR("slave host mode interrupt\n");
3329 priv->inta_other++;
3330 write_register(dev, IPW_REG_INTA,
3331 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3332 }
3333
3334 priv->in_isr--;
3335 ipw2100_enable_interrupts(priv);
3336
3337 spin_unlock_irqrestore(&priv->low_lock, flags);
3338
3339 IPW_DEBUG_ISR("exit\n");
3340 }
3341
3342 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3343 {
3344 struct ipw2100_priv *priv = data;
3345 u32 inta, inta_mask;
3346
3347 if (!data)
3348 return IRQ_NONE;
3349
3350 spin_lock(&priv->low_lock);
3351
3352 /* We check to see if we should be ignoring interrupts before
3353 * we touch the hardware. During ucode load if we try and handle
3354 * an interrupt we can cause keyboard problems as well as cause
3355 * the ucode to fail to initialize */
3356 if (!(priv->status & STATUS_INT_ENABLED)) {
3357 /* Shared IRQ */
3358 goto none;
3359 }
3360
3361 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3362 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3363
3364 if (inta == 0xFFFFFFFF) {
3365 /* Hardware disappeared */
3366 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3367 goto none;
3368 }
3369
3370 inta &= IPW_INTERRUPT_MASK;
3371
3372 if (!(inta & inta_mask)) {
3373 /* Shared interrupt */
3374 goto none;
3375 }
3376
3377 /* We disable the hardware interrupt here just to prevent unneeded
3378 * calls to be made. We disable this again within the actual
3379 * work tasklet, so if another part of the code re-enables the
3380 * interrupt, that is fine */
3381 ipw2100_disable_interrupts(priv);
3382
3383 tasklet_schedule(&priv->irq_tasklet);
3384 spin_unlock(&priv->low_lock);
3385
3386 return IRQ_HANDLED;
3387 none:
3388 spin_unlock(&priv->low_lock);
3389 return IRQ_NONE;
3390 }
3391
3392 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3393 struct net_device *dev, int pri)
3394 {
3395 struct ipw2100_priv *priv = libipw_priv(dev);
3396 struct list_head *element;
3397 struct ipw2100_tx_packet *packet;
3398 unsigned long flags;
3399
3400 spin_lock_irqsave(&priv->low_lock, flags);
3401
3402 if (!(priv->status & STATUS_ASSOCIATED)) {
3403 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3404 priv->net_dev->stats.tx_carrier_errors++;
3405 netif_stop_queue(dev);
3406 goto fail_unlock;
3407 }
3408
3409 if (list_empty(&priv->tx_free_list))
3410 goto fail_unlock;
3411
3412 element = priv->tx_free_list.next;
3413 packet = list_entry(element, struct ipw2100_tx_packet, list);
3414
3415 packet->info.d_struct.txb = txb;
3416
3417 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3418 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3419
3420 packet->jiffy_start = jiffies;
3421
3422 list_del(element);
3423 DEC_STAT(&priv->tx_free_stat);
3424
3425 list_add_tail(element, &priv->tx_pend_list);
3426 INC_STAT(&priv->tx_pend_stat);
3427
3428 ipw2100_tx_send_data(priv);
3429
3430 spin_unlock_irqrestore(&priv->low_lock, flags);
3431 return NETDEV_TX_OK;
3432
3433 fail_unlock:
3434 netif_stop_queue(dev);
3435 spin_unlock_irqrestore(&priv->low_lock, flags);
3436 return NETDEV_TX_BUSY;
3437 }
3438
3439 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3440 {
3441 int i, j, err = -EINVAL;
3442 void *v;
3443 dma_addr_t p;
3444
3445 priv->msg_buffers =
3446 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3447 GFP_KERNEL);
3448 if (!priv->msg_buffers)
3449 return -ENOMEM;
3450
3451 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3452 v = pci_zalloc_consistent(priv->pci_dev,
3453 sizeof(struct ipw2100_cmd_header),
3454 &p);
3455 if (!v) {
3456 printk(KERN_ERR DRV_NAME ": "
3457 "%s: PCI alloc failed for msg "
3458 "buffers.\n", priv->net_dev->name);
3459 err = -ENOMEM;
3460 break;
3461 }
3462
3463 priv->msg_buffers[i].type = COMMAND;
3464 priv->msg_buffers[i].info.c_struct.cmd =
3465 (struct ipw2100_cmd_header *)v;
3466 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3467 }
3468
3469 if (i == IPW_COMMAND_POOL_SIZE)
3470 return 0;
3471
3472 for (j = 0; j < i; j++) {
3473 pci_free_consistent(priv->pci_dev,
3474 sizeof(struct ipw2100_cmd_header),
3475 priv->msg_buffers[j].info.c_struct.cmd,
3476 priv->msg_buffers[j].info.c_struct.
3477 cmd_phys);
3478 }
3479
3480 kfree(priv->msg_buffers);
3481 priv->msg_buffers = NULL;
3482
3483 return err;
3484 }
3485
3486 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3487 {
3488 int i;
3489
3490 INIT_LIST_HEAD(&priv->msg_free_list);
3491 INIT_LIST_HEAD(&priv->msg_pend_list);
3492
3493 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3494 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3495 SET_STAT(&priv->msg_free_stat, i);
3496
3497 return 0;
3498 }
3499
3500 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3501 {
3502 int i;
3503
3504 if (!priv->msg_buffers)
3505 return;
3506
3507 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3508 pci_free_consistent(priv->pci_dev,
3509 sizeof(struct ipw2100_cmd_header),
3510 priv->msg_buffers[i].info.c_struct.cmd,
3511 priv->msg_buffers[i].info.c_struct.
3512 cmd_phys);
3513 }
3514
3515 kfree(priv->msg_buffers);
3516 priv->msg_buffers = NULL;
3517 }
3518
3519 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3520 char *buf)
3521 {
3522 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3523 char *out = buf;
3524 int i, j;
3525 u32 val;
3526
3527 for (i = 0; i < 16; i++) {
3528 out += sprintf(out, "[%08X] ", i * 16);
3529 for (j = 0; j < 16; j += 4) {
3530 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3531 out += sprintf(out, "%08X ", val);
3532 }
3533 out += sprintf(out, "\n");
3534 }
3535
3536 return out - buf;
3537 }
3538
3539 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3540
3541 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3542 char *buf)
3543 {
3544 struct ipw2100_priv *p = dev_get_drvdata(d);
3545 return sprintf(buf, "0x%08x\n", (int)p->config);
3546 }
3547
3548 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3549
3550 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3551 char *buf)
3552 {
3553 struct ipw2100_priv *p = dev_get_drvdata(d);
3554 return sprintf(buf, "0x%08x\n", (int)p->status);
3555 }
3556
3557 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3558
3559 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3560 char *buf)
3561 {
3562 struct ipw2100_priv *p = dev_get_drvdata(d);
3563 return sprintf(buf, "0x%08x\n", (int)p->capability);
3564 }
3565
3566 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3567
3568 #define IPW2100_REG(x) { IPW_ ##x, #x }
3569 static const struct {
3570 u32 addr;
3571 const char *name;
3572 } hw_data[] = {
3573 IPW2100_REG(REG_GP_CNTRL),
3574 IPW2100_REG(REG_GPIO),
3575 IPW2100_REG(REG_INTA),
3576 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3577 #define IPW2100_NIC(x, s) { x, #x, s }
3578 static const struct {
3579 u32 addr;
3580 const char *name;
3581 size_t size;
3582 } nic_data[] = {
3583 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3584 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3585 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3586 static const struct {
3587 u8 index;
3588 const char *name;
3589 const char *desc;
3590 } ord_data[] = {
3591 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3592 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3593 "successful Host Tx's (MSDU)"),
3594 IPW2100_ORD(STAT_TX_DIR_DATA,
3595 "successful Directed Tx's (MSDU)"),
3596 IPW2100_ORD(STAT_TX_DIR_DATA1,
3597 "successful Directed Tx's (MSDU) @ 1MB"),
3598 IPW2100_ORD(STAT_TX_DIR_DATA2,
3599 "successful Directed Tx's (MSDU) @ 2MB"),
3600 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3601 "successful Directed Tx's (MSDU) @ 5_5MB"),
3602 IPW2100_ORD(STAT_TX_DIR_DATA11,
3603 "successful Directed Tx's (MSDU) @ 11MB"),
3604 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3605 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3606 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3607 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3608 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3609 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3610 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3611 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3612 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3613 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3614 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3615 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3616 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3617 IPW2100_ORD(STAT_TX_ASSN_RESP,
3618 "successful Association response Tx's"),
3619 IPW2100_ORD(STAT_TX_REASSN,
3620 "successful Reassociation Tx's"),
3621 IPW2100_ORD(STAT_TX_REASSN_RESP,
3622 "successful Reassociation response Tx's"),
3623 IPW2100_ORD(STAT_TX_PROBE,
3624 "probes successfully transmitted"),
3625 IPW2100_ORD(STAT_TX_PROBE_RESP,
3626 "probe responses successfully transmitted"),
3627 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3628 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3629 IPW2100_ORD(STAT_TX_DISASSN,
3630 "successful Disassociation TX"),
3631 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3632 IPW2100_ORD(STAT_TX_DEAUTH,
3633 "successful Deauthentication TX"),
3634 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3635 "Total successful Tx data bytes"),
3636 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3637 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3638 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3639 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3640 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3641 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3642 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3643 "times max tries in a hop failed"),
3644 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3645 "times disassociation failed"),
3646 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3647 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3648 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3649 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3650 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3651 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3652 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3653 "directed packets at 5.5MB"),
3654 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3655 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3656 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3657 "nondirected packets at 1MB"),
3658 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3659 "nondirected packets at 2MB"),
3660 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3661 "nondirected packets at 5.5MB"),
3662 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3663 "nondirected packets at 11MB"),
3664 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3665 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3666 "Rx CTS"),
3667 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3668 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3669 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3670 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3671 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3672 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3673 IPW2100_ORD(STAT_RX_REASSN_RESP,
3674 "Reassociation response Rx's"),
3675 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3676 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3677 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3678 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3679 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3680 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3681 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3682 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3683 "Total rx data bytes received"),
3684 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3685 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3686 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3687 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3688 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3689 IPW2100_ORD(STAT_RX_DUPLICATE1,
3690 "duplicate rx packets at 1MB"),
3691 IPW2100_ORD(STAT_RX_DUPLICATE2,
3692 "duplicate rx packets at 2MB"),
3693 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3694 "duplicate rx packets at 5.5MB"),
3695 IPW2100_ORD(STAT_RX_DUPLICATE11,
3696 "duplicate rx packets at 11MB"),
3697 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3698 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3699 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3700 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3701 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3702 "rx frames with invalid protocol"),
3703 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3704 IPW2100_ORD(STAT_RX_NO_BUFFER,
3705 "rx frames rejected due to no buffer"),
3706 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3707 "rx frames dropped due to missing fragment"),
3708 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3709 "rx frames dropped due to non-sequential fragment"),
3710 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3711 "rx frames dropped due to unmatched 1st frame"),
3712 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3713 "rx frames dropped due to uncompleted frame"),
3714 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3715 "ICV errors during decryption"),
3716 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3717 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3718 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3719 "poll response timeouts"),
3720 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3721 "timeouts waiting for last {broad,multi}cast pkt"),
3722 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3723 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3724 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3725 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3726 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3727 "current calculation of % missed beacons"),
3728 IPW2100_ORD(STAT_PERCENT_RETRIES,
3729 "current calculation of % missed tx retries"),
3730 IPW2100_ORD(ASSOCIATED_AP_PTR,
3731 "0 if not associated, else pointer to AP table entry"),
3732 IPW2100_ORD(AVAILABLE_AP_CNT,
3733 "AP's decsribed in the AP table"),
3734 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3735 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3736 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3737 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3738 "failures due to response fail"),
3739 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3740 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3741 IPW2100_ORD(STAT_ROAM_INHIBIT,
3742 "times roaming was inhibited due to activity"),
3743 IPW2100_ORD(RSSI_AT_ASSN,
3744 "RSSI of associated AP at time of association"),
3745 IPW2100_ORD(STAT_ASSN_CAUSE1,
3746 "reassociation: no probe response or TX on hop"),
3747 IPW2100_ORD(STAT_ASSN_CAUSE2,
3748 "reassociation: poor tx/rx quality"),
3749 IPW2100_ORD(STAT_ASSN_CAUSE3,
3750 "reassociation: tx/rx quality (excessive AP load"),
3751 IPW2100_ORD(STAT_ASSN_CAUSE4,
3752 "reassociation: AP RSSI level"),
3753 IPW2100_ORD(STAT_ASSN_CAUSE5,
3754 "reassociations due to load leveling"),
3755 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3756 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3757 "times authentication response failed"),
3758 IPW2100_ORD(STATION_TABLE_CNT,
3759 "entries in association table"),
3760 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3761 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3762 IPW2100_ORD(COUNTRY_CODE,
3763 "IEEE country code as recv'd from beacon"),
3764 IPW2100_ORD(COUNTRY_CHANNELS,
3765 "channels supported by country"),
3766 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3767 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3768 IPW2100_ORD(ANTENNA_DIVERSITY,
3769 "TRUE if antenna diversity is disabled"),
3770 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3771 IPW2100_ORD(OUR_FREQ,
3772 "current radio freq lower digits - channel ID"),
3773 IPW2100_ORD(RTC_TIME, "current RTC time"),
3774 IPW2100_ORD(PORT_TYPE, "operating mode"),
3775 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3776 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3777 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3778 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3779 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3780 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3781 IPW2100_ORD(CAPABILITIES,
3782 "Management frame capability field"),
3783 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3784 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3785 IPW2100_ORD(RTS_THRESHOLD,
3786 "Min packet length for RTS handshaking"),
3787 IPW2100_ORD(INT_MODE, "International mode"),
3788 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3789 "protocol frag threshold"),
3790 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3791 "EEPROM offset in SRAM"),
3792 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3793 "EEPROM size in SRAM"),
3794 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3795 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3796 "EEPROM IBSS 11b channel set"),
3797 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3798 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3799 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3800 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3801 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3802
3803 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3804 char *buf)
3805 {
3806 int i;
3807 struct ipw2100_priv *priv = dev_get_drvdata(d);
3808 struct net_device *dev = priv->net_dev;
3809 char *out = buf;
3810 u32 val = 0;
3811
3812 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3813
3814 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3815 read_register(dev, hw_data[i].addr, &val);
3816 out += sprintf(out, "%30s [%08X] : %08X\n",
3817 hw_data[i].name, hw_data[i].addr, val);
3818 }
3819
3820 return out - buf;
3821 }
3822
3823 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3824
3825 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3826 char *buf)
3827 {
3828 struct ipw2100_priv *priv = dev_get_drvdata(d);
3829 struct net_device *dev = priv->net_dev;
3830 char *out = buf;
3831 int i;
3832
3833 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3834
3835 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3836 u8 tmp8;
3837 u16 tmp16;
3838 u32 tmp32;
3839
3840 switch (nic_data[i].size) {
3841 case 1:
3842 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3843 out += sprintf(out, "%30s [%08X] : %02X\n",
3844 nic_data[i].name, nic_data[i].addr,
3845 tmp8);
3846 break;
3847 case 2:
3848 read_nic_word(dev, nic_data[i].addr, &tmp16);
3849 out += sprintf(out, "%30s [%08X] : %04X\n",
3850 nic_data[i].name, nic_data[i].addr,
3851 tmp16);
3852 break;
3853 case 4:
3854 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3855 out += sprintf(out, "%30s [%08X] : %08X\n",
3856 nic_data[i].name, nic_data[i].addr,
3857 tmp32);
3858 break;
3859 }
3860 }
3861 return out - buf;
3862 }
3863
3864 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3865
3866 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3867 char *buf)
3868 {
3869 struct ipw2100_priv *priv = dev_get_drvdata(d);
3870 struct net_device *dev = priv->net_dev;
3871 static unsigned long loop = 0;
3872 int len = 0;
3873 u32 buffer[4];
3874 int i;
3875 char line[81];
3876
3877 if (loop >= 0x30000)
3878 loop = 0;
3879
3880 /* sysfs provides us PAGE_SIZE buffer */
3881 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3882
3883 if (priv->snapshot[0])
3884 for (i = 0; i < 4; i++)
3885 buffer[i] =
3886 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3887 else
3888 for (i = 0; i < 4; i++)
3889 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3890
3891 if (priv->dump_raw)
3892 len += sprintf(buf + len,
3893 "%c%c%c%c"
3894 "%c%c%c%c"
3895 "%c%c%c%c"
3896 "%c%c%c%c",
3897 ((u8 *) buffer)[0x0],
3898 ((u8 *) buffer)[0x1],
3899 ((u8 *) buffer)[0x2],
3900 ((u8 *) buffer)[0x3],
3901 ((u8 *) buffer)[0x4],
3902 ((u8 *) buffer)[0x5],
3903 ((u8 *) buffer)[0x6],
3904 ((u8 *) buffer)[0x7],
3905 ((u8 *) buffer)[0x8],
3906 ((u8 *) buffer)[0x9],
3907 ((u8 *) buffer)[0xa],
3908 ((u8 *) buffer)[0xb],
3909 ((u8 *) buffer)[0xc],
3910 ((u8 *) buffer)[0xd],
3911 ((u8 *) buffer)[0xe],
3912 ((u8 *) buffer)[0xf]);
3913 else
3914 len += sprintf(buf + len, "%s\n",
3915 snprint_line(line, sizeof(line),
3916 (u8 *) buffer, 16, loop));
3917 loop += 16;
3918 }
3919
3920 return len;
3921 }
3922
3923 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3924 const char *buf, size_t count)
3925 {
3926 struct ipw2100_priv *priv = dev_get_drvdata(d);
3927 struct net_device *dev = priv->net_dev;
3928 const char *p = buf;
3929
3930 (void)dev; /* kill unused-var warning for debug-only code */
3931
3932 if (count < 1)
3933 return count;
3934
3935 if (p[0] == '1' ||
3936 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3937 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3938 dev->name);
3939 priv->dump_raw = 1;
3940
3941 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3942 tolower(p[1]) == 'f')) {
3943 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3944 dev->name);
3945 priv->dump_raw = 0;
3946
3947 } else if (tolower(p[0]) == 'r') {
3948 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3949 ipw2100_snapshot_free(priv);
3950
3951 } else
3952 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3953 "reset = clear memory snapshot\n", dev->name);
3954
3955 return count;
3956 }
3957
3958 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3959
3960 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3961 char *buf)
3962 {
3963 struct ipw2100_priv *priv = dev_get_drvdata(d);
3964 u32 val = 0;
3965 int len = 0;
3966 u32 val_len;
3967 static int loop = 0;
3968
3969 if (priv->status & STATUS_RF_KILL_MASK)
3970 return 0;
3971
3972 if (loop >= ARRAY_SIZE(ord_data))
3973 loop = 0;
3974
3975 /* sysfs provides us PAGE_SIZE buffer */
3976 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3977 val_len = sizeof(u32);
3978
3979 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3980 &val_len))
3981 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3982 ord_data[loop].index,
3983 ord_data[loop].desc);
3984 else
3985 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3986 ord_data[loop].index, val,
3987 ord_data[loop].desc);
3988 loop++;
3989 }
3990
3991 return len;
3992 }
3993
3994 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3995
3996 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3997 char *buf)
3998 {
3999 struct ipw2100_priv *priv = dev_get_drvdata(d);
4000 char *out = buf;
4001
4002 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4003 priv->interrupts, priv->tx_interrupts,
4004 priv->rx_interrupts, priv->inta_other);
4005 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4006 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4007 #ifdef CONFIG_IPW2100_DEBUG
4008 out += sprintf(out, "packet mismatch image: %s\n",
4009 priv->snapshot[0] ? "YES" : "NO");
4010 #endif
4011
4012 return out - buf;
4013 }
4014
4015 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4016
4017 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4018 {
4019 int err;
4020
4021 if (mode == priv->ieee->iw_mode)
4022 return 0;
4023
4024 err = ipw2100_disable_adapter(priv);
4025 if (err) {
4026 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4027 priv->net_dev->name, err);
4028 return err;
4029 }
4030
4031 switch (mode) {
4032 case IW_MODE_INFRA:
4033 priv->net_dev->type = ARPHRD_ETHER;
4034 break;
4035 case IW_MODE_ADHOC:
4036 priv->net_dev->type = ARPHRD_ETHER;
4037 break;
4038 #ifdef CONFIG_IPW2100_MONITOR
4039 case IW_MODE_MONITOR:
4040 priv->last_mode = priv->ieee->iw_mode;
4041 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4042 break;
4043 #endif /* CONFIG_IPW2100_MONITOR */
4044 }
4045
4046 priv->ieee->iw_mode = mode;
4047
4048 #ifdef CONFIG_PM
4049 /* Indicate ipw2100_download_firmware download firmware
4050 * from disk instead of memory. */
4051 ipw2100_firmware.version = 0;
4052 #endif
4053
4054 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4055 priv->reset_backoff = 0;
4056 schedule_reset(priv);
4057
4058 return 0;
4059 }
4060
4061 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4062 char *buf)
4063 {
4064 struct ipw2100_priv *priv = dev_get_drvdata(d);
4065 int len = 0;
4066
4067 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4068
4069 if (priv->status & STATUS_ASSOCIATED)
4070 len += sprintf(buf + len, "connected: %lu\n",
4071 get_seconds() - priv->connect_start);
4072 else
4073 len += sprintf(buf + len, "not connected\n");
4074
4075 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4076 DUMP_VAR(status, "08lx");
4077 DUMP_VAR(config, "08lx");
4078 DUMP_VAR(capability, "08lx");
4079
4080 len +=
4081 sprintf(buf + len, "last_rtc: %lu\n",
4082 (unsigned long)priv->last_rtc);
4083
4084 DUMP_VAR(fatal_error, "d");
4085 DUMP_VAR(stop_hang_check, "d");
4086 DUMP_VAR(stop_rf_kill, "d");
4087 DUMP_VAR(messages_sent, "d");
4088
4089 DUMP_VAR(tx_pend_stat.value, "d");
4090 DUMP_VAR(tx_pend_stat.hi, "d");
4091
4092 DUMP_VAR(tx_free_stat.value, "d");
4093 DUMP_VAR(tx_free_stat.lo, "d");
4094
4095 DUMP_VAR(msg_free_stat.value, "d");
4096 DUMP_VAR(msg_free_stat.lo, "d");
4097
4098 DUMP_VAR(msg_pend_stat.value, "d");
4099 DUMP_VAR(msg_pend_stat.hi, "d");
4100
4101 DUMP_VAR(fw_pend_stat.value, "d");
4102 DUMP_VAR(fw_pend_stat.hi, "d");
4103
4104 DUMP_VAR(txq_stat.value, "d");
4105 DUMP_VAR(txq_stat.lo, "d");
4106
4107 DUMP_VAR(ieee->scans, "d");
4108 DUMP_VAR(reset_backoff, "d");
4109
4110 return len;
4111 }
4112
4113 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4114
4115 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4116 char *buf)
4117 {
4118 struct ipw2100_priv *priv = dev_get_drvdata(d);
4119 char essid[IW_ESSID_MAX_SIZE + 1];
4120 u8 bssid[ETH_ALEN];
4121 u32 chan = 0;
4122 char *out = buf;
4123 unsigned int length;
4124 int ret;
4125
4126 if (priv->status & STATUS_RF_KILL_MASK)
4127 return 0;
4128
4129 memset(essid, 0, sizeof(essid));
4130 memset(bssid, 0, sizeof(bssid));
4131
4132 length = IW_ESSID_MAX_SIZE;
4133 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4134 if (ret)
4135 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4136 __LINE__);
4137
4138 length = sizeof(bssid);
4139 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4140 bssid, &length);
4141 if (ret)
4142 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4143 __LINE__);
4144
4145 length = sizeof(u32);
4146 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4147 if (ret)
4148 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4149 __LINE__);
4150
4151 out += sprintf(out, "ESSID: %s\n", essid);
4152 out += sprintf(out, "BSSID: %pM\n", bssid);
4153 out += sprintf(out, "Channel: %d\n", chan);
4154
4155 return out - buf;
4156 }
4157
4158 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4159
4160 #ifdef CONFIG_IPW2100_DEBUG
4161 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4162 {
4163 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4164 }
4165
4166 static ssize_t store_debug_level(struct device_driver *d,
4167 const char *buf, size_t count)
4168 {
4169 u32 val;
4170 int ret;
4171
4172 ret = kstrtou32(buf, 0, &val);
4173 if (ret)
4174 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4175 else
4176 ipw2100_debug_level = val;
4177
4178 return strnlen(buf, count);
4179 }
4180
4181 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4182 store_debug_level);
4183 #endif /* CONFIG_IPW2100_DEBUG */
4184
4185 static ssize_t show_fatal_error(struct device *d,
4186 struct device_attribute *attr, char *buf)
4187 {
4188 struct ipw2100_priv *priv = dev_get_drvdata(d);
4189 char *out = buf;
4190 int i;
4191
4192 if (priv->fatal_error)
4193 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4194 else
4195 out += sprintf(out, "0\n");
4196
4197 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4198 if (!priv->fatal_errors[(priv->fatal_index - i) %
4199 IPW2100_ERROR_QUEUE])
4200 continue;
4201
4202 out += sprintf(out, "%d. 0x%08X\n", i,
4203 priv->fatal_errors[(priv->fatal_index - i) %
4204 IPW2100_ERROR_QUEUE]);
4205 }
4206
4207 return out - buf;
4208 }
4209
4210 static ssize_t store_fatal_error(struct device *d,
4211 struct device_attribute *attr, const char *buf,
4212 size_t count)
4213 {
4214 struct ipw2100_priv *priv = dev_get_drvdata(d);
4215 schedule_reset(priv);
4216 return count;
4217 }
4218
4219 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4220 store_fatal_error);
4221
4222 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4223 char *buf)
4224 {
4225 struct ipw2100_priv *priv = dev_get_drvdata(d);
4226 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4227 }
4228
4229 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4230 const char *buf, size_t count)
4231 {
4232 struct ipw2100_priv *priv = dev_get_drvdata(d);
4233 struct net_device *dev = priv->net_dev;
4234 unsigned long val;
4235 int ret;
4236
4237 (void)dev; /* kill unused-var warning for debug-only code */
4238
4239 IPW_DEBUG_INFO("enter\n");
4240
4241 ret = kstrtoul(buf, 0, &val);
4242 if (ret) {
4243 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4244 } else {
4245 priv->ieee->scan_age = val;
4246 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4247 }
4248
4249 IPW_DEBUG_INFO("exit\n");
4250 return strnlen(buf, count);
4251 }
4252
4253 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4254
4255 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4256 char *buf)
4257 {
4258 /* 0 - RF kill not enabled
4259 1 - SW based RF kill active (sysfs)
4260 2 - HW based RF kill active
4261 3 - Both HW and SW baed RF kill active */
4262 struct ipw2100_priv *priv = dev_get_drvdata(d);
4263 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4264 (rf_kill_active(priv) ? 0x2 : 0x0);
4265 return sprintf(buf, "%i\n", val);
4266 }
4267
4268 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4269 {
4270 if ((disable_radio ? 1 : 0) ==
4271 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4272 return 0;
4273
4274 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4275 disable_radio ? "OFF" : "ON");
4276
4277 mutex_lock(&priv->action_mutex);
4278
4279 if (disable_radio) {
4280 priv->status |= STATUS_RF_KILL_SW;
4281 ipw2100_down(priv);
4282 } else {
4283 priv->status &= ~STATUS_RF_KILL_SW;
4284 if (rf_kill_active(priv)) {
4285 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4286 "disabled by HW switch\n");
4287 /* Make sure the RF_KILL check timer is running */
4288 priv->stop_rf_kill = 0;
4289 mod_delayed_work(system_wq, &priv->rf_kill,
4290 round_jiffies_relative(HZ));
4291 } else
4292 schedule_reset(priv);
4293 }
4294
4295 mutex_unlock(&priv->action_mutex);
4296 return 1;
4297 }
4298
4299 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4300 const char *buf, size_t count)
4301 {
4302 struct ipw2100_priv *priv = dev_get_drvdata(d);
4303 ipw_radio_kill_sw(priv, buf[0] == '1');
4304 return count;
4305 }
4306
4307 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4308
4309 static struct attribute *ipw2100_sysfs_entries[] = {
4310 &dev_attr_hardware.attr,
4311 &dev_attr_registers.attr,
4312 &dev_attr_ordinals.attr,
4313 &dev_attr_pci.attr,
4314 &dev_attr_stats.attr,
4315 &dev_attr_internals.attr,
4316 &dev_attr_bssinfo.attr,
4317 &dev_attr_memory.attr,
4318 &dev_attr_scan_age.attr,
4319 &dev_attr_fatal_error.attr,
4320 &dev_attr_rf_kill.attr,
4321 &dev_attr_cfg.attr,
4322 &dev_attr_status.attr,
4323 &dev_attr_capability.attr,
4324 NULL,
4325 };
4326
4327 static struct attribute_group ipw2100_attribute_group = {
4328 .attrs = ipw2100_sysfs_entries,
4329 };
4330
4331 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4332 {
4333 struct ipw2100_status_queue *q = &priv->status_queue;
4334
4335 IPW_DEBUG_INFO("enter\n");
4336
4337 q->size = entries * sizeof(struct ipw2100_status);
4338 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4339 if (!q->drv) {
4340 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4341 return -ENOMEM;
4342 }
4343
4344 IPW_DEBUG_INFO("exit\n");
4345
4346 return 0;
4347 }
4348
4349 static void status_queue_free(struct ipw2100_priv *priv)
4350 {
4351 IPW_DEBUG_INFO("enter\n");
4352
4353 if (priv->status_queue.drv) {
4354 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4355 priv->status_queue.drv,
4356 priv->status_queue.nic);
4357 priv->status_queue.drv = NULL;
4358 }
4359
4360 IPW_DEBUG_INFO("exit\n");
4361 }
4362
4363 static int bd_queue_allocate(struct ipw2100_priv *priv,
4364 struct ipw2100_bd_queue *q, int entries)
4365 {
4366 IPW_DEBUG_INFO("enter\n");
4367
4368 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4369
4370 q->entries = entries;
4371 q->size = entries * sizeof(struct ipw2100_bd);
4372 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4373 if (!q->drv) {
4374 IPW_DEBUG_INFO
4375 ("can't allocate shared memory for buffer descriptors\n");
4376 return -ENOMEM;
4377 }
4378
4379 IPW_DEBUG_INFO("exit\n");
4380
4381 return 0;
4382 }
4383
4384 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4385 {
4386 IPW_DEBUG_INFO("enter\n");
4387
4388 if (!q)
4389 return;
4390
4391 if (q->drv) {
4392 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4393 q->drv = NULL;
4394 }
4395
4396 IPW_DEBUG_INFO("exit\n");
4397 }
4398
4399 static void bd_queue_initialize(struct ipw2100_priv *priv,
4400 struct ipw2100_bd_queue *q, u32 base, u32 size,
4401 u32 r, u32 w)
4402 {
4403 IPW_DEBUG_INFO("enter\n");
4404
4405 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4406 (u32) q->nic);
4407
4408 write_register(priv->net_dev, base, q->nic);
4409 write_register(priv->net_dev, size, q->entries);
4410 write_register(priv->net_dev, r, q->oldest);
4411 write_register(priv->net_dev, w, q->next);
4412
4413 IPW_DEBUG_INFO("exit\n");
4414 }
4415
4416 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4417 {
4418 priv->stop_rf_kill = 1;
4419 priv->stop_hang_check = 1;
4420 cancel_delayed_work_sync(&priv->reset_work);
4421 cancel_delayed_work_sync(&priv->security_work);
4422 cancel_delayed_work_sync(&priv->wx_event_work);
4423 cancel_delayed_work_sync(&priv->hang_check);
4424 cancel_delayed_work_sync(&priv->rf_kill);
4425 cancel_delayed_work_sync(&priv->scan_event);
4426 }
4427
4428 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4429 {
4430 int i, j, err = -EINVAL;
4431 void *v;
4432 dma_addr_t p;
4433
4434 IPW_DEBUG_INFO("enter\n");
4435
4436 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4437 if (err) {
4438 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4439 priv->net_dev->name);
4440 return err;
4441 }
4442
4443 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4444 sizeof(struct ipw2100_tx_packet),
4445 GFP_ATOMIC);
4446 if (!priv->tx_buffers) {
4447 bd_queue_free(priv, &priv->tx_queue);
4448 return -ENOMEM;
4449 }
4450
4451 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4452 v = pci_alloc_consistent(priv->pci_dev,
4453 sizeof(struct ipw2100_data_header),
4454 &p);
4455 if (!v) {
4456 printk(KERN_ERR DRV_NAME
4457 ": %s: PCI alloc failed for tx " "buffers.\n",
4458 priv->net_dev->name);
4459 err = -ENOMEM;
4460 break;
4461 }
4462
4463 priv->tx_buffers[i].type = DATA;
4464 priv->tx_buffers[i].info.d_struct.data =
4465 (struct ipw2100_data_header *)v;
4466 priv->tx_buffers[i].info.d_struct.data_phys = p;
4467 priv->tx_buffers[i].info.d_struct.txb = NULL;
4468 }
4469
4470 if (i == TX_PENDED_QUEUE_LENGTH)
4471 return 0;
4472
4473 for (j = 0; j < i; j++) {
4474 pci_free_consistent(priv->pci_dev,
4475 sizeof(struct ipw2100_data_header),
4476 priv->tx_buffers[j].info.d_struct.data,
4477 priv->tx_buffers[j].info.d_struct.
4478 data_phys);
4479 }
4480
4481 kfree(priv->tx_buffers);
4482 priv->tx_buffers = NULL;
4483
4484 return err;
4485 }
4486
4487 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4488 {
4489 int i;
4490
4491 IPW_DEBUG_INFO("enter\n");
4492
4493 /*
4494 * reinitialize packet info lists
4495 */
4496 INIT_LIST_HEAD(&priv->fw_pend_list);
4497 INIT_STAT(&priv->fw_pend_stat);
4498
4499 /*
4500 * reinitialize lists
4501 */
4502 INIT_LIST_HEAD(&priv->tx_pend_list);
4503 INIT_LIST_HEAD(&priv->tx_free_list);
4504 INIT_STAT(&priv->tx_pend_stat);
4505 INIT_STAT(&priv->tx_free_stat);
4506
4507 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4508 /* We simply drop any SKBs that have been queued for
4509 * transmit */
4510 if (priv->tx_buffers[i].info.d_struct.txb) {
4511 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4512 txb);
4513 priv->tx_buffers[i].info.d_struct.txb = NULL;
4514 }
4515
4516 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4517 }
4518
4519 SET_STAT(&priv->tx_free_stat, i);
4520
4521 priv->tx_queue.oldest = 0;
4522 priv->tx_queue.available = priv->tx_queue.entries;
4523 priv->tx_queue.next = 0;
4524 INIT_STAT(&priv->txq_stat);
4525 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4526
4527 bd_queue_initialize(priv, &priv->tx_queue,
4528 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4529 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4530 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4531 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4532
4533 IPW_DEBUG_INFO("exit\n");
4534
4535 }
4536
4537 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4538 {
4539 int i;
4540
4541 IPW_DEBUG_INFO("enter\n");
4542
4543 bd_queue_free(priv, &priv->tx_queue);
4544
4545 if (!priv->tx_buffers)
4546 return;
4547
4548 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4549 if (priv->tx_buffers[i].info.d_struct.txb) {
4550 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4551 txb);
4552 priv->tx_buffers[i].info.d_struct.txb = NULL;
4553 }
4554 if (priv->tx_buffers[i].info.d_struct.data)
4555 pci_free_consistent(priv->pci_dev,
4556 sizeof(struct ipw2100_data_header),
4557 priv->tx_buffers[i].info.d_struct.
4558 data,
4559 priv->tx_buffers[i].info.d_struct.
4560 data_phys);
4561 }
4562
4563 kfree(priv->tx_buffers);
4564 priv->tx_buffers = NULL;
4565
4566 IPW_DEBUG_INFO("exit\n");
4567 }
4568
4569 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4570 {
4571 int i, j, err = -EINVAL;
4572
4573 IPW_DEBUG_INFO("enter\n");
4574
4575 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4576 if (err) {
4577 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4578 return err;
4579 }
4580
4581 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4582 if (err) {
4583 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4584 bd_queue_free(priv, &priv->rx_queue);
4585 return err;
4586 }
4587
4588 /*
4589 * allocate packets
4590 */
4591 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4592 sizeof(struct ipw2100_rx_packet),
4593 GFP_KERNEL);
4594 if (!priv->rx_buffers) {
4595 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4596
4597 bd_queue_free(priv, &priv->rx_queue);
4598
4599 status_queue_free(priv);
4600
4601 return -ENOMEM;
4602 }
4603
4604 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4605 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4606
4607 err = ipw2100_alloc_skb(priv, packet);
4608 if (unlikely(err)) {
4609 err = -ENOMEM;
4610 break;
4611 }
4612
4613 /* The BD holds the cache aligned address */
4614 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4615 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4616 priv->status_queue.drv[i].status_fields = 0;
4617 }
4618
4619 if (i == RX_QUEUE_LENGTH)
4620 return 0;
4621
4622 for (j = 0; j < i; j++) {
4623 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4624 sizeof(struct ipw2100_rx_packet),
4625 PCI_DMA_FROMDEVICE);
4626 dev_kfree_skb(priv->rx_buffers[j].skb);
4627 }
4628
4629 kfree(priv->rx_buffers);
4630 priv->rx_buffers = NULL;
4631
4632 bd_queue_free(priv, &priv->rx_queue);
4633
4634 status_queue_free(priv);
4635
4636 return err;
4637 }
4638
4639 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4640 {
4641 IPW_DEBUG_INFO("enter\n");
4642
4643 priv->rx_queue.oldest = 0;
4644 priv->rx_queue.available = priv->rx_queue.entries - 1;
4645 priv->rx_queue.next = priv->rx_queue.entries - 1;
4646
4647 INIT_STAT(&priv->rxq_stat);
4648 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4649
4650 bd_queue_initialize(priv, &priv->rx_queue,
4651 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4652 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4653 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4654 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4655
4656 /* set up the status queue */
4657 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4658 priv->status_queue.nic);
4659
4660 IPW_DEBUG_INFO("exit\n");
4661 }
4662
4663 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4664 {
4665 int i;
4666
4667 IPW_DEBUG_INFO("enter\n");
4668
4669 bd_queue_free(priv, &priv->rx_queue);
4670 status_queue_free(priv);
4671
4672 if (!priv->rx_buffers)
4673 return;
4674
4675 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4676 if (priv->rx_buffers[i].rxp) {
4677 pci_unmap_single(priv->pci_dev,
4678 priv->rx_buffers[i].dma_addr,
4679 sizeof(struct ipw2100_rx),
4680 PCI_DMA_FROMDEVICE);
4681 dev_kfree_skb(priv->rx_buffers[i].skb);
4682 }
4683 }
4684
4685 kfree(priv->rx_buffers);
4686 priv->rx_buffers = NULL;
4687
4688 IPW_DEBUG_INFO("exit\n");
4689 }
4690
4691 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4692 {
4693 u32 length = ETH_ALEN;
4694 u8 addr[ETH_ALEN];
4695
4696 int err;
4697
4698 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4699 if (err) {
4700 IPW_DEBUG_INFO("MAC address read failed\n");
4701 return -EIO;
4702 }
4703
4704 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4705 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4706
4707 return 0;
4708 }
4709
4710 /********************************************************************
4711 *
4712 * Firmware Commands
4713 *
4714 ********************************************************************/
4715
4716 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4717 {
4718 struct host_command cmd = {
4719 .host_command = ADAPTER_ADDRESS,
4720 .host_command_sequence = 0,
4721 .host_command_length = ETH_ALEN
4722 };
4723 int err;
4724
4725 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4726
4727 IPW_DEBUG_INFO("enter\n");
4728
4729 if (priv->config & CFG_CUSTOM_MAC) {
4730 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4731 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4732 } else
4733 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4734 ETH_ALEN);
4735
4736 err = ipw2100_hw_send_command(priv, &cmd);
4737
4738 IPW_DEBUG_INFO("exit\n");
4739 return err;
4740 }
4741
4742 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4743 int batch_mode)
4744 {
4745 struct host_command cmd = {
4746 .host_command = PORT_TYPE,
4747 .host_command_sequence = 0,
4748 .host_command_length = sizeof(u32)
4749 };
4750 int err;
4751
4752 switch (port_type) {
4753 case IW_MODE_INFRA:
4754 cmd.host_command_parameters[0] = IPW_BSS;
4755 break;
4756 case IW_MODE_ADHOC:
4757 cmd.host_command_parameters[0] = IPW_IBSS;
4758 break;
4759 }
4760
4761 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4762 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4763
4764 if (!batch_mode) {
4765 err = ipw2100_disable_adapter(priv);
4766 if (err) {
4767 printk(KERN_ERR DRV_NAME
4768 ": %s: Could not disable adapter %d\n",
4769 priv->net_dev->name, err);
4770 return err;
4771 }
4772 }
4773
4774 /* send cmd to firmware */
4775 err = ipw2100_hw_send_command(priv, &cmd);
4776
4777 if (!batch_mode)
4778 ipw2100_enable_adapter(priv);
4779
4780 return err;
4781 }
4782
4783 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4784 int batch_mode)
4785 {
4786 struct host_command cmd = {
4787 .host_command = CHANNEL,
4788 .host_command_sequence = 0,
4789 .host_command_length = sizeof(u32)
4790 };
4791 int err;
4792
4793 cmd.host_command_parameters[0] = channel;
4794
4795 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4796
4797 /* If BSS then we don't support channel selection */
4798 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4799 return 0;
4800
4801 if ((channel != 0) &&
4802 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4803 return -EINVAL;
4804
4805 if (!batch_mode) {
4806 err = ipw2100_disable_adapter(priv);
4807 if (err)
4808 return err;
4809 }
4810
4811 err = ipw2100_hw_send_command(priv, &cmd);
4812 if (err) {
4813 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4814 return err;
4815 }
4816
4817 if (channel)
4818 priv->config |= CFG_STATIC_CHANNEL;
4819 else
4820 priv->config &= ~CFG_STATIC_CHANNEL;
4821
4822 priv->channel = channel;
4823
4824 if (!batch_mode) {
4825 err = ipw2100_enable_adapter(priv);
4826 if (err)
4827 return err;
4828 }
4829
4830 return 0;
4831 }
4832
4833 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4834 {
4835 struct host_command cmd = {
4836 .host_command = SYSTEM_CONFIG,
4837 .host_command_sequence = 0,
4838 .host_command_length = 12,
4839 };
4840 u32 ibss_mask, len = sizeof(u32);
4841 int err;
4842
4843 /* Set system configuration */
4844
4845 if (!batch_mode) {
4846 err = ipw2100_disable_adapter(priv);
4847 if (err)
4848 return err;
4849 }
4850
4851 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4852 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4853
4854 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4855 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4856
4857 if (!(priv->config & CFG_LONG_PREAMBLE))
4858 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4859
4860 err = ipw2100_get_ordinal(priv,
4861 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4862 &ibss_mask, &len);
4863 if (err)
4864 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4865
4866 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4867 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4868
4869 /* 11b only */
4870 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4871
4872 err = ipw2100_hw_send_command(priv, &cmd);
4873 if (err)
4874 return err;
4875
4876 /* If IPv6 is configured in the kernel then we don't want to filter out all
4877 * of the multicast packets as IPv6 needs some. */
4878 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4879 cmd.host_command = ADD_MULTICAST;
4880 cmd.host_command_sequence = 0;
4881 cmd.host_command_length = 0;
4882
4883 ipw2100_hw_send_command(priv, &cmd);
4884 #endif
4885 if (!batch_mode) {
4886 err = ipw2100_enable_adapter(priv);
4887 if (err)
4888 return err;
4889 }
4890
4891 return 0;
4892 }
4893
4894 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4895 int batch_mode)
4896 {
4897 struct host_command cmd = {
4898 .host_command = BASIC_TX_RATES,
4899 .host_command_sequence = 0,
4900 .host_command_length = 4
4901 };
4902 int err;
4903
4904 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4905
4906 if (!batch_mode) {
4907 err = ipw2100_disable_adapter(priv);
4908 if (err)
4909 return err;
4910 }
4911
4912 /* Set BASIC TX Rate first */
4913 ipw2100_hw_send_command(priv, &cmd);
4914
4915 /* Set TX Rate */
4916 cmd.host_command = TX_RATES;
4917 ipw2100_hw_send_command(priv, &cmd);
4918
4919 /* Set MSDU TX Rate */
4920 cmd.host_command = MSDU_TX_RATES;
4921 ipw2100_hw_send_command(priv, &cmd);
4922
4923 if (!batch_mode) {
4924 err = ipw2100_enable_adapter(priv);
4925 if (err)
4926 return err;
4927 }
4928
4929 priv->tx_rates = rate;
4930
4931 return 0;
4932 }
4933
4934 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4935 {
4936 struct host_command cmd = {
4937 .host_command = POWER_MODE,
4938 .host_command_sequence = 0,
4939 .host_command_length = 4
4940 };
4941 int err;
4942
4943 cmd.host_command_parameters[0] = power_level;
4944
4945 err = ipw2100_hw_send_command(priv, &cmd);
4946 if (err)
4947 return err;
4948
4949 if (power_level == IPW_POWER_MODE_CAM)
4950 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4951 else
4952 priv->power_mode = IPW_POWER_ENABLED | power_level;
4953
4954 #ifdef IPW2100_TX_POWER
4955 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4956 /* Set beacon interval */
4957 cmd.host_command = TX_POWER_INDEX;
4958 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4959
4960 err = ipw2100_hw_send_command(priv, &cmd);
4961 if (err)
4962 return err;
4963 }
4964 #endif
4965
4966 return 0;
4967 }
4968
4969 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4970 {
4971 struct host_command cmd = {
4972 .host_command = RTS_THRESHOLD,
4973 .host_command_sequence = 0,
4974 .host_command_length = 4
4975 };
4976 int err;
4977
4978 if (threshold & RTS_DISABLED)
4979 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4980 else
4981 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4982
4983 err = ipw2100_hw_send_command(priv, &cmd);
4984 if (err)
4985 return err;
4986
4987 priv->rts_threshold = threshold;
4988
4989 return 0;
4990 }
4991
4992 #if 0
4993 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4994 u32 threshold, int batch_mode)
4995 {
4996 struct host_command cmd = {
4997 .host_command = FRAG_THRESHOLD,
4998 .host_command_sequence = 0,
4999 .host_command_length = 4,
5000 .host_command_parameters[0] = 0,
5001 };
5002 int err;
5003
5004 if (!batch_mode) {
5005 err = ipw2100_disable_adapter(priv);
5006 if (err)
5007 return err;
5008 }
5009
5010 if (threshold == 0)
5011 threshold = DEFAULT_FRAG_THRESHOLD;
5012 else {
5013 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5014 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5015 }
5016
5017 cmd.host_command_parameters[0] = threshold;
5018
5019 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5020
5021 err = ipw2100_hw_send_command(priv, &cmd);
5022
5023 if (!batch_mode)
5024 ipw2100_enable_adapter(priv);
5025
5026 if (!err)
5027 priv->frag_threshold = threshold;
5028
5029 return err;
5030 }
5031 #endif
5032
5033 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5034 {
5035 struct host_command cmd = {
5036 .host_command = SHORT_RETRY_LIMIT,
5037 .host_command_sequence = 0,
5038 .host_command_length = 4
5039 };
5040 int err;
5041
5042 cmd.host_command_parameters[0] = retry;
5043
5044 err = ipw2100_hw_send_command(priv, &cmd);
5045 if (err)
5046 return err;
5047
5048 priv->short_retry_limit = retry;
5049
5050 return 0;
5051 }
5052
5053 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5054 {
5055 struct host_command cmd = {
5056 .host_command = LONG_RETRY_LIMIT,
5057 .host_command_sequence = 0,
5058 .host_command_length = 4
5059 };
5060 int err;
5061
5062 cmd.host_command_parameters[0] = retry;
5063
5064 err = ipw2100_hw_send_command(priv, &cmd);
5065 if (err)
5066 return err;
5067
5068 priv->long_retry_limit = retry;
5069
5070 return 0;
5071 }
5072
5073 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5074 int batch_mode)
5075 {
5076 struct host_command cmd = {
5077 .host_command = MANDATORY_BSSID,
5078 .host_command_sequence = 0,
5079 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5080 };
5081 int err;
5082
5083 #ifdef CONFIG_IPW2100_DEBUG
5084 if (bssid != NULL)
5085 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5086 else
5087 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5088 #endif
5089 /* if BSSID is empty then we disable mandatory bssid mode */
5090 if (bssid != NULL)
5091 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5092
5093 if (!batch_mode) {
5094 err = ipw2100_disable_adapter(priv);
5095 if (err)
5096 return err;
5097 }
5098
5099 err = ipw2100_hw_send_command(priv, &cmd);
5100
5101 if (!batch_mode)
5102 ipw2100_enable_adapter(priv);
5103
5104 return err;
5105 }
5106
5107 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5108 {
5109 struct host_command cmd = {
5110 .host_command = DISASSOCIATION_BSSID,
5111 .host_command_sequence = 0,
5112 .host_command_length = ETH_ALEN
5113 };
5114 int err;
5115 int len;
5116
5117 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5118
5119 len = ETH_ALEN;
5120 /* The Firmware currently ignores the BSSID and just disassociates from
5121 * the currently associated AP -- but in the off chance that a future
5122 * firmware does use the BSSID provided here, we go ahead and try and
5123 * set it to the currently associated AP's BSSID */
5124 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5125
5126 err = ipw2100_hw_send_command(priv, &cmd);
5127
5128 return err;
5129 }
5130
5131 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5132 struct ipw2100_wpa_assoc_frame *, int)
5133 __attribute__ ((unused));
5134
5135 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5136 struct ipw2100_wpa_assoc_frame *wpa_frame,
5137 int batch_mode)
5138 {
5139 struct host_command cmd = {
5140 .host_command = SET_WPA_IE,
5141 .host_command_sequence = 0,
5142 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5143 };
5144 int err;
5145
5146 IPW_DEBUG_HC("SET_WPA_IE\n");
5147
5148 if (!batch_mode) {
5149 err = ipw2100_disable_adapter(priv);
5150 if (err)
5151 return err;
5152 }
5153
5154 memcpy(cmd.host_command_parameters, wpa_frame,
5155 sizeof(struct ipw2100_wpa_assoc_frame));
5156
5157 err = ipw2100_hw_send_command(priv, &cmd);
5158
5159 if (!batch_mode) {
5160 if (ipw2100_enable_adapter(priv))
5161 err = -EIO;
5162 }
5163
5164 return err;
5165 }
5166
5167 struct security_info_params {
5168 u32 allowed_ciphers;
5169 u16 version;
5170 u8 auth_mode;
5171 u8 replay_counters_number;
5172 u8 unicast_using_group;
5173 } __packed;
5174
5175 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5176 int auth_mode,
5177 int security_level,
5178 int unicast_using_group,
5179 int batch_mode)
5180 {
5181 struct host_command cmd = {
5182 .host_command = SET_SECURITY_INFORMATION,
5183 .host_command_sequence = 0,
5184 .host_command_length = sizeof(struct security_info_params)
5185 };
5186 struct security_info_params *security =
5187 (struct security_info_params *)&cmd.host_command_parameters;
5188 int err;
5189 memset(security, 0, sizeof(*security));
5190
5191 /* If shared key AP authentication is turned on, then we need to
5192 * configure the firmware to try and use it.
5193 *
5194 * Actual data encryption/decryption is handled by the host. */
5195 security->auth_mode = auth_mode;
5196 security->unicast_using_group = unicast_using_group;
5197
5198 switch (security_level) {
5199 default:
5200 case SEC_LEVEL_0:
5201 security->allowed_ciphers = IPW_NONE_CIPHER;
5202 break;
5203 case SEC_LEVEL_1:
5204 security->allowed_ciphers = IPW_WEP40_CIPHER |
5205 IPW_WEP104_CIPHER;
5206 break;
5207 case SEC_LEVEL_2:
5208 security->allowed_ciphers = IPW_WEP40_CIPHER |
5209 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5210 break;
5211 case SEC_LEVEL_2_CKIP:
5212 security->allowed_ciphers = IPW_WEP40_CIPHER |
5213 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5214 break;
5215 case SEC_LEVEL_3:
5216 security->allowed_ciphers = IPW_WEP40_CIPHER |
5217 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5218 break;
5219 }
5220
5221 IPW_DEBUG_HC
5222 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5223 security->auth_mode, security->allowed_ciphers, security_level);
5224
5225 security->replay_counters_number = 0;
5226
5227 if (!batch_mode) {
5228 err = ipw2100_disable_adapter(priv);
5229 if (err)
5230 return err;
5231 }
5232
5233 err = ipw2100_hw_send_command(priv, &cmd);
5234
5235 if (!batch_mode)
5236 ipw2100_enable_adapter(priv);
5237
5238 return err;
5239 }
5240
5241 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5242 {
5243 struct host_command cmd = {
5244 .host_command = TX_POWER_INDEX,
5245 .host_command_sequence = 0,
5246 .host_command_length = 4
5247 };
5248 int err = 0;
5249 u32 tmp = tx_power;
5250
5251 if (tx_power != IPW_TX_POWER_DEFAULT)
5252 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5253 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5254
5255 cmd.host_command_parameters[0] = tmp;
5256
5257 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5258 err = ipw2100_hw_send_command(priv, &cmd);
5259 if (!err)
5260 priv->tx_power = tx_power;
5261
5262 return 0;
5263 }
5264
5265 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5266 u32 interval, int batch_mode)
5267 {
5268 struct host_command cmd = {
5269 .host_command = BEACON_INTERVAL,
5270 .host_command_sequence = 0,
5271 .host_command_length = 4
5272 };
5273 int err;
5274
5275 cmd.host_command_parameters[0] = interval;
5276
5277 IPW_DEBUG_INFO("enter\n");
5278
5279 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5280 if (!batch_mode) {
5281 err = ipw2100_disable_adapter(priv);
5282 if (err)
5283 return err;
5284 }
5285
5286 ipw2100_hw_send_command(priv, &cmd);
5287
5288 if (!batch_mode) {
5289 err = ipw2100_enable_adapter(priv);
5290 if (err)
5291 return err;
5292 }
5293 }
5294
5295 IPW_DEBUG_INFO("exit\n");
5296
5297 return 0;
5298 }
5299
5300 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5301 {
5302 ipw2100_tx_initialize(priv);
5303 ipw2100_rx_initialize(priv);
5304 ipw2100_msg_initialize(priv);
5305 }
5306
5307 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5308 {
5309 ipw2100_tx_free(priv);
5310 ipw2100_rx_free(priv);
5311 ipw2100_msg_free(priv);
5312 }
5313
5314 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5315 {
5316 if (ipw2100_tx_allocate(priv) ||
5317 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5318 goto fail;
5319
5320 return 0;
5321
5322 fail:
5323 ipw2100_tx_free(priv);
5324 ipw2100_rx_free(priv);
5325 ipw2100_msg_free(priv);
5326 return -ENOMEM;
5327 }
5328
5329 #define IPW_PRIVACY_CAPABLE 0x0008
5330
5331 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5332 int batch_mode)
5333 {
5334 struct host_command cmd = {
5335 .host_command = WEP_FLAGS,
5336 .host_command_sequence = 0,
5337 .host_command_length = 4
5338 };
5339 int err;
5340
5341 cmd.host_command_parameters[0] = flags;
5342
5343 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5344
5345 if (!batch_mode) {
5346 err = ipw2100_disable_adapter(priv);
5347 if (err) {
5348 printk(KERN_ERR DRV_NAME
5349 ": %s: Could not disable adapter %d\n",
5350 priv->net_dev->name, err);
5351 return err;
5352 }
5353 }
5354
5355 /* send cmd to firmware */
5356 err = ipw2100_hw_send_command(priv, &cmd);
5357
5358 if (!batch_mode)
5359 ipw2100_enable_adapter(priv);
5360
5361 return err;
5362 }
5363
5364 struct ipw2100_wep_key {
5365 u8 idx;
5366 u8 len;
5367 u8 key[13];
5368 };
5369
5370 /* Macros to ease up priting WEP keys */
5371 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5372 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5373 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5374 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5375
5376 /**
5377 * Set a the wep key
5378 *
5379 * @priv: struct to work on
5380 * @idx: index of the key we want to set
5381 * @key: ptr to the key data to set
5382 * @len: length of the buffer at @key
5383 * @batch_mode: FIXME perform the operation in batch mode, not
5384 * disabling the device.
5385 *
5386 * @returns 0 if OK, < 0 errno code on error.
5387 *
5388 * Fill out a command structure with the new wep key, length an
5389 * index and send it down the wire.
5390 */
5391 static int ipw2100_set_key(struct ipw2100_priv *priv,
5392 int idx, char *key, int len, int batch_mode)
5393 {
5394 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5395 struct host_command cmd = {
5396 .host_command = WEP_KEY_INFO,
5397 .host_command_sequence = 0,
5398 .host_command_length = sizeof(struct ipw2100_wep_key),
5399 };
5400 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5401 int err;
5402
5403 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5404 idx, keylen, len);
5405
5406 /* NOTE: We don't check cached values in case the firmware was reset
5407 * or some other problem is occurring. If the user is setting the key,
5408 * then we push the change */
5409
5410 wep_key->idx = idx;
5411 wep_key->len = keylen;
5412
5413 if (keylen) {
5414 memcpy(wep_key->key, key, len);
5415 memset(wep_key->key + len, 0, keylen - len);
5416 }
5417
5418 /* Will be optimized out on debug not being configured in */
5419 if (keylen == 0)
5420 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5421 priv->net_dev->name, wep_key->idx);
5422 else if (keylen == 5)
5423 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5424 priv->net_dev->name, wep_key->idx, wep_key->len,
5425 WEP_STR_64(wep_key->key));
5426 else
5427 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5428 "\n",
5429 priv->net_dev->name, wep_key->idx, wep_key->len,
5430 WEP_STR_128(wep_key->key));
5431
5432 if (!batch_mode) {
5433 err = ipw2100_disable_adapter(priv);
5434 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5435 if (err) {
5436 printk(KERN_ERR DRV_NAME
5437 ": %s: Could not disable adapter %d\n",
5438 priv->net_dev->name, err);
5439 return err;
5440 }
5441 }
5442
5443 /* send cmd to firmware */
5444 err = ipw2100_hw_send_command(priv, &cmd);
5445
5446 if (!batch_mode) {
5447 int err2 = ipw2100_enable_adapter(priv);
5448 if (err == 0)
5449 err = err2;
5450 }
5451 return err;
5452 }
5453
5454 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5455 int idx, int batch_mode)
5456 {
5457 struct host_command cmd = {
5458 .host_command = WEP_KEY_INDEX,
5459 .host_command_sequence = 0,
5460 .host_command_length = 4,
5461 .host_command_parameters = {idx},
5462 };
5463 int err;
5464
5465 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5466
5467 if (idx < 0 || idx > 3)
5468 return -EINVAL;
5469
5470 if (!batch_mode) {
5471 err = ipw2100_disable_adapter(priv);
5472 if (err) {
5473 printk(KERN_ERR DRV_NAME
5474 ": %s: Could not disable adapter %d\n",
5475 priv->net_dev->name, err);
5476 return err;
5477 }
5478 }
5479
5480 /* send cmd to firmware */
5481 err = ipw2100_hw_send_command(priv, &cmd);
5482
5483 if (!batch_mode)
5484 ipw2100_enable_adapter(priv);
5485
5486 return err;
5487 }
5488
5489 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5490 {
5491 int i, err, auth_mode, sec_level, use_group;
5492
5493 if (!(priv->status & STATUS_RUNNING))
5494 return 0;
5495
5496 if (!batch_mode) {
5497 err = ipw2100_disable_adapter(priv);
5498 if (err)
5499 return err;
5500 }
5501
5502 if (!priv->ieee->sec.enabled) {
5503 err =
5504 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5505 SEC_LEVEL_0, 0, 1);
5506 } else {
5507 auth_mode = IPW_AUTH_OPEN;
5508 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5509 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5510 auth_mode = IPW_AUTH_SHARED;
5511 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5512 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5513 }
5514
5515 sec_level = SEC_LEVEL_0;
5516 if (priv->ieee->sec.flags & SEC_LEVEL)
5517 sec_level = priv->ieee->sec.level;
5518
5519 use_group = 0;
5520 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5521 use_group = priv->ieee->sec.unicast_uses_group;
5522
5523 err =
5524 ipw2100_set_security_information(priv, auth_mode, sec_level,
5525 use_group, 1);
5526 }
5527
5528 if (err)
5529 goto exit;
5530
5531 if (priv->ieee->sec.enabled) {
5532 for (i = 0; i < 4; i++) {
5533 if (!(priv->ieee->sec.flags & (1 << i))) {
5534 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5535 priv->ieee->sec.key_sizes[i] = 0;
5536 } else {
5537 err = ipw2100_set_key(priv, i,
5538 priv->ieee->sec.keys[i],
5539 priv->ieee->sec.
5540 key_sizes[i], 1);
5541 if (err)
5542 goto exit;
5543 }
5544 }
5545
5546 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5547 }
5548
5549 /* Always enable privacy so the Host can filter WEP packets if
5550 * encrypted data is sent up */
5551 err =
5552 ipw2100_set_wep_flags(priv,
5553 priv->ieee->sec.
5554 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5555 if (err)
5556 goto exit;
5557
5558 priv->status &= ~STATUS_SECURITY_UPDATED;
5559
5560 exit:
5561 if (!batch_mode)
5562 ipw2100_enable_adapter(priv);
5563
5564 return err;
5565 }
5566
5567 static void ipw2100_security_work(struct work_struct *work)
5568 {
5569 struct ipw2100_priv *priv =
5570 container_of(work, struct ipw2100_priv, security_work.work);
5571
5572 /* If we happen to have reconnected before we get a chance to
5573 * process this, then update the security settings--which causes
5574 * a disassociation to occur */
5575 if (!(priv->status & STATUS_ASSOCIATED) &&
5576 priv->status & STATUS_SECURITY_UPDATED)
5577 ipw2100_configure_security(priv, 0);
5578 }
5579
5580 static void shim__set_security(struct net_device *dev,
5581 struct libipw_security *sec)
5582 {
5583 struct ipw2100_priv *priv = libipw_priv(dev);
5584 int i, force_update = 0;
5585
5586 mutex_lock(&priv->action_mutex);
5587 if (!(priv->status & STATUS_INITIALIZED))
5588 goto done;
5589
5590 for (i = 0; i < 4; i++) {
5591 if (sec->flags & (1 << i)) {
5592 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5593 if (sec->key_sizes[i] == 0)
5594 priv->ieee->sec.flags &= ~(1 << i);
5595 else
5596 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5597 sec->key_sizes[i]);
5598 if (sec->level == SEC_LEVEL_1) {
5599 priv->ieee->sec.flags |= (1 << i);
5600 priv->status |= STATUS_SECURITY_UPDATED;
5601 } else
5602 priv->ieee->sec.flags &= ~(1 << i);
5603 }
5604 }
5605
5606 if ((sec->flags & SEC_ACTIVE_KEY) &&
5607 priv->ieee->sec.active_key != sec->active_key) {
5608 if (sec->active_key <= 3) {
5609 priv->ieee->sec.active_key = sec->active_key;
5610 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5611 } else
5612 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5613
5614 priv->status |= STATUS_SECURITY_UPDATED;
5615 }
5616
5617 if ((sec->flags & SEC_AUTH_MODE) &&
5618 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5619 priv->ieee->sec.auth_mode = sec->auth_mode;
5620 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5621 priv->status |= STATUS_SECURITY_UPDATED;
5622 }
5623
5624 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5625 priv->ieee->sec.flags |= SEC_ENABLED;
5626 priv->ieee->sec.enabled = sec->enabled;
5627 priv->status |= STATUS_SECURITY_UPDATED;
5628 force_update = 1;
5629 }
5630
5631 if (sec->flags & SEC_ENCRYPT)
5632 priv->ieee->sec.encrypt = sec->encrypt;
5633
5634 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5635 priv->ieee->sec.level = sec->level;
5636 priv->ieee->sec.flags |= SEC_LEVEL;
5637 priv->status |= STATUS_SECURITY_UPDATED;
5638 }
5639
5640 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5641 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5642 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5643 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5644 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5645 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5646 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5647 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5648 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5649 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5650
5651 /* As a temporary work around to enable WPA until we figure out why
5652 * wpa_supplicant toggles the security capability of the driver, which
5653 * forces a disassocation with force_update...
5654 *
5655 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5656 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5657 ipw2100_configure_security(priv, 0);
5658 done:
5659 mutex_unlock(&priv->action_mutex);
5660 }
5661
5662 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5663 {
5664 int err;
5665 int batch_mode = 1;
5666 u8 *bssid;
5667
5668 IPW_DEBUG_INFO("enter\n");
5669
5670 err = ipw2100_disable_adapter(priv);
5671 if (err)
5672 return err;
5673 #ifdef CONFIG_IPW2100_MONITOR
5674 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5675 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5676 if (err)
5677 return err;
5678
5679 IPW_DEBUG_INFO("exit\n");
5680
5681 return 0;
5682 }
5683 #endif /* CONFIG_IPW2100_MONITOR */
5684
5685 err = ipw2100_read_mac_address(priv);
5686 if (err)
5687 return -EIO;
5688
5689 err = ipw2100_set_mac_address(priv, batch_mode);
5690 if (err)
5691 return err;
5692
5693 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5694 if (err)
5695 return err;
5696
5697 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5698 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5699 if (err)
5700 return err;
5701 }
5702
5703 err = ipw2100_system_config(priv, batch_mode);
5704 if (err)
5705 return err;
5706
5707 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5708 if (err)
5709 return err;
5710
5711 /* Default to power mode OFF */
5712 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5713 if (err)
5714 return err;
5715
5716 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5717 if (err)
5718 return err;
5719
5720 if (priv->config & CFG_STATIC_BSSID)
5721 bssid = priv->bssid;
5722 else
5723 bssid = NULL;
5724 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5725 if (err)
5726 return err;
5727
5728 if (priv->config & CFG_STATIC_ESSID)
5729 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5730 batch_mode);
5731 else
5732 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5733 if (err)
5734 return err;
5735
5736 err = ipw2100_configure_security(priv, batch_mode);
5737 if (err)
5738 return err;
5739
5740 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5741 err =
5742 ipw2100_set_ibss_beacon_interval(priv,
5743 priv->beacon_interval,
5744 batch_mode);
5745 if (err)
5746 return err;
5747
5748 err = ipw2100_set_tx_power(priv, priv->tx_power);
5749 if (err)
5750 return err;
5751 }
5752
5753 /*
5754 err = ipw2100_set_fragmentation_threshold(
5755 priv, priv->frag_threshold, batch_mode);
5756 if (err)
5757 return err;
5758 */
5759
5760 IPW_DEBUG_INFO("exit\n");
5761
5762 return 0;
5763 }
5764
5765 /*************************************************************************
5766 *
5767 * EXTERNALLY CALLED METHODS
5768 *
5769 *************************************************************************/
5770
5771 /* This method is called by the network layer -- not to be confused with
5772 * ipw2100_set_mac_address() declared above called by this driver (and this
5773 * method as well) to talk to the firmware */
5774 static int ipw2100_set_address(struct net_device *dev, void *p)
5775 {
5776 struct ipw2100_priv *priv = libipw_priv(dev);
5777 struct sockaddr *addr = p;
5778 int err = 0;
5779
5780 if (!is_valid_ether_addr(addr->sa_data))
5781 return -EADDRNOTAVAIL;
5782
5783 mutex_lock(&priv->action_mutex);
5784
5785 priv->config |= CFG_CUSTOM_MAC;
5786 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5787
5788 err = ipw2100_set_mac_address(priv, 0);
5789 if (err)
5790 goto done;
5791
5792 priv->reset_backoff = 0;
5793 mutex_unlock(&priv->action_mutex);
5794 ipw2100_reset_adapter(&priv->reset_work.work);
5795 return 0;
5796
5797 done:
5798 mutex_unlock(&priv->action_mutex);
5799 return err;
5800 }
5801
5802 static int ipw2100_open(struct net_device *dev)
5803 {
5804 struct ipw2100_priv *priv = libipw_priv(dev);
5805 unsigned long flags;
5806 IPW_DEBUG_INFO("dev->open\n");
5807
5808 spin_lock_irqsave(&priv->low_lock, flags);
5809 if (priv->status & STATUS_ASSOCIATED) {
5810 netif_carrier_on(dev);
5811 netif_start_queue(dev);
5812 }
5813 spin_unlock_irqrestore(&priv->low_lock, flags);
5814
5815 return 0;
5816 }
5817
5818 static int ipw2100_close(struct net_device *dev)
5819 {
5820 struct ipw2100_priv *priv = libipw_priv(dev);
5821 unsigned long flags;
5822 struct list_head *element;
5823 struct ipw2100_tx_packet *packet;
5824
5825 IPW_DEBUG_INFO("enter\n");
5826
5827 spin_lock_irqsave(&priv->low_lock, flags);
5828
5829 if (priv->status & STATUS_ASSOCIATED)
5830 netif_carrier_off(dev);
5831 netif_stop_queue(dev);
5832
5833 /* Flush the TX queue ... */
5834 while (!list_empty(&priv->tx_pend_list)) {
5835 element = priv->tx_pend_list.next;
5836 packet = list_entry(element, struct ipw2100_tx_packet, list);
5837
5838 list_del(element);
5839 DEC_STAT(&priv->tx_pend_stat);
5840
5841 libipw_txb_free(packet->info.d_struct.txb);
5842 packet->info.d_struct.txb = NULL;
5843
5844 list_add_tail(element, &priv->tx_free_list);
5845 INC_STAT(&priv->tx_free_stat);
5846 }
5847 spin_unlock_irqrestore(&priv->low_lock, flags);
5848
5849 IPW_DEBUG_INFO("exit\n");
5850
5851 return 0;
5852 }
5853
5854 /*
5855 * TODO: Fix this function... its just wrong
5856 */
5857 static void ipw2100_tx_timeout(struct net_device *dev)
5858 {
5859 struct ipw2100_priv *priv = libipw_priv(dev);
5860
5861 dev->stats.tx_errors++;
5862
5863 #ifdef CONFIG_IPW2100_MONITOR
5864 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5865 return;
5866 #endif
5867
5868 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5869 dev->name);
5870 schedule_reset(priv);
5871 }
5872
5873 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5874 {
5875 /* This is called when wpa_supplicant loads and closes the driver
5876 * interface. */
5877 priv->ieee->wpa_enabled = value;
5878 return 0;
5879 }
5880
5881 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5882 {
5883
5884 struct libipw_device *ieee = priv->ieee;
5885 struct libipw_security sec = {
5886 .flags = SEC_AUTH_MODE,
5887 };
5888 int ret = 0;
5889
5890 if (value & IW_AUTH_ALG_SHARED_KEY) {
5891 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5892 ieee->open_wep = 0;
5893 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5894 sec.auth_mode = WLAN_AUTH_OPEN;
5895 ieee->open_wep = 1;
5896 } else if (value & IW_AUTH_ALG_LEAP) {
5897 sec.auth_mode = WLAN_AUTH_LEAP;
5898 ieee->open_wep = 1;
5899 } else
5900 return -EINVAL;
5901
5902 if (ieee->set_security)
5903 ieee->set_security(ieee->dev, &sec);
5904 else
5905 ret = -EOPNOTSUPP;
5906
5907 return ret;
5908 }
5909
5910 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5911 char *wpa_ie, int wpa_ie_len)
5912 {
5913
5914 struct ipw2100_wpa_assoc_frame frame;
5915
5916 frame.fixed_ie_mask = 0;
5917
5918 /* copy WPA IE */
5919 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5920 frame.var_ie_len = wpa_ie_len;
5921
5922 /* make sure WPA is enabled */
5923 ipw2100_wpa_enable(priv, 1);
5924 ipw2100_set_wpa_ie(priv, &frame, 0);
5925 }
5926
5927 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5928 struct ethtool_drvinfo *info)
5929 {
5930 struct ipw2100_priv *priv = libipw_priv(dev);
5931 char fw_ver[64], ucode_ver[64];
5932
5933 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5934 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5935
5936 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5937 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5938
5939 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5940 fw_ver, priv->eeprom_version, ucode_ver);
5941
5942 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5943 sizeof(info->bus_info));
5944 }
5945
5946 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5947 {
5948 struct ipw2100_priv *priv = libipw_priv(dev);
5949 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5950 }
5951
5952 static const struct ethtool_ops ipw2100_ethtool_ops = {
5953 .get_link = ipw2100_ethtool_get_link,
5954 .get_drvinfo = ipw_ethtool_get_drvinfo,
5955 };
5956
5957 static void ipw2100_hang_check(struct work_struct *work)
5958 {
5959 struct ipw2100_priv *priv =
5960 container_of(work, struct ipw2100_priv, hang_check.work);
5961 unsigned long flags;
5962 u32 rtc = 0xa5a5a5a5;
5963 u32 len = sizeof(rtc);
5964 int restart = 0;
5965
5966 spin_lock_irqsave(&priv->low_lock, flags);
5967
5968 if (priv->fatal_error != 0) {
5969 /* If fatal_error is set then we need to restart */
5970 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5971 priv->net_dev->name);
5972
5973 restart = 1;
5974 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5975 (rtc == priv->last_rtc)) {
5976 /* Check if firmware is hung */
5977 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5978 priv->net_dev->name);
5979
5980 restart = 1;
5981 }
5982
5983 if (restart) {
5984 /* Kill timer */
5985 priv->stop_hang_check = 1;
5986 priv->hangs++;
5987
5988 /* Restart the NIC */
5989 schedule_reset(priv);
5990 }
5991
5992 priv->last_rtc = rtc;
5993
5994 if (!priv->stop_hang_check)
5995 schedule_delayed_work(&priv->hang_check, HZ / 2);
5996
5997 spin_unlock_irqrestore(&priv->low_lock, flags);
5998 }
5999
6000 static void ipw2100_rf_kill(struct work_struct *work)
6001 {
6002 struct ipw2100_priv *priv =
6003 container_of(work, struct ipw2100_priv, rf_kill.work);
6004 unsigned long flags;
6005
6006 spin_lock_irqsave(&priv->low_lock, flags);
6007
6008 if (rf_kill_active(priv)) {
6009 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6010 if (!priv->stop_rf_kill)
6011 schedule_delayed_work(&priv->rf_kill,
6012 round_jiffies_relative(HZ));
6013 goto exit_unlock;
6014 }
6015
6016 /* RF Kill is now disabled, so bring the device back up */
6017
6018 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6019 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6020 "device\n");
6021 schedule_reset(priv);
6022 } else
6023 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6024 "enabled\n");
6025
6026 exit_unlock:
6027 spin_unlock_irqrestore(&priv->low_lock, flags);
6028 }
6029
6030 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6031
6032 static const struct net_device_ops ipw2100_netdev_ops = {
6033 .ndo_open = ipw2100_open,
6034 .ndo_stop = ipw2100_close,
6035 .ndo_start_xmit = libipw_xmit,
6036 .ndo_change_mtu = libipw_change_mtu,
6037 .ndo_tx_timeout = ipw2100_tx_timeout,
6038 .ndo_set_mac_address = ipw2100_set_address,
6039 .ndo_validate_addr = eth_validate_addr,
6040 };
6041
6042 /* Look into using netdev destructor to shutdown libipw? */
6043
6044 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6045 void __iomem * ioaddr)
6046 {
6047 struct ipw2100_priv *priv;
6048 struct net_device *dev;
6049
6050 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6051 if (!dev)
6052 return NULL;
6053 priv = libipw_priv(dev);
6054 priv->ieee = netdev_priv(dev);
6055 priv->pci_dev = pci_dev;
6056 priv->net_dev = dev;
6057 priv->ioaddr = ioaddr;
6058
6059 priv->ieee->hard_start_xmit = ipw2100_tx;
6060 priv->ieee->set_security = shim__set_security;
6061
6062 priv->ieee->perfect_rssi = -20;
6063 priv->ieee->worst_rssi = -85;
6064
6065 dev->netdev_ops = &ipw2100_netdev_ops;
6066 dev->ethtool_ops = &ipw2100_ethtool_ops;
6067 dev->wireless_handlers = &ipw2100_wx_handler_def;
6068 priv->wireless_data.libipw = priv->ieee;
6069 dev->wireless_data = &priv->wireless_data;
6070 dev->watchdog_timeo = 3 * HZ;
6071 dev->irq = 0;
6072
6073 /* NOTE: We don't use the wireless_handlers hook
6074 * in dev as the system will start throwing WX requests
6075 * to us before we're actually initialized and it just
6076 * ends up causing problems. So, we just handle
6077 * the WX extensions through the ipw2100_ioctl interface */
6078
6079 /* memset() puts everything to 0, so we only have explicitly set
6080 * those values that need to be something else */
6081
6082 /* If power management is turned on, default to AUTO mode */
6083 priv->power_mode = IPW_POWER_AUTO;
6084
6085 #ifdef CONFIG_IPW2100_MONITOR
6086 priv->config |= CFG_CRC_CHECK;
6087 #endif
6088 priv->ieee->wpa_enabled = 0;
6089 priv->ieee->drop_unencrypted = 0;
6090 priv->ieee->privacy_invoked = 0;
6091 priv->ieee->ieee802_1x = 1;
6092
6093 /* Set module parameters */
6094 switch (network_mode) {
6095 case 1:
6096 priv->ieee->iw_mode = IW_MODE_ADHOC;
6097 break;
6098 #ifdef CONFIG_IPW2100_MONITOR
6099 case 2:
6100 priv->ieee->iw_mode = IW_MODE_MONITOR;
6101 break;
6102 #endif
6103 default:
6104 case 0:
6105 priv->ieee->iw_mode = IW_MODE_INFRA;
6106 break;
6107 }
6108
6109 if (disable == 1)
6110 priv->status |= STATUS_RF_KILL_SW;
6111
6112 if (channel != 0 &&
6113 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6114 priv->config |= CFG_STATIC_CHANNEL;
6115 priv->channel = channel;
6116 }
6117
6118 if (associate)
6119 priv->config |= CFG_ASSOCIATE;
6120
6121 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6122 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6123 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6124 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6125 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6126 priv->tx_power = IPW_TX_POWER_DEFAULT;
6127 priv->tx_rates = DEFAULT_TX_RATES;
6128
6129 strcpy(priv->nick, "ipw2100");
6130
6131 spin_lock_init(&priv->low_lock);
6132 mutex_init(&priv->action_mutex);
6133 mutex_init(&priv->adapter_mutex);
6134
6135 init_waitqueue_head(&priv->wait_command_queue);
6136
6137 netif_carrier_off(dev);
6138
6139 INIT_LIST_HEAD(&priv->msg_free_list);
6140 INIT_LIST_HEAD(&priv->msg_pend_list);
6141 INIT_STAT(&priv->msg_free_stat);
6142 INIT_STAT(&priv->msg_pend_stat);
6143
6144 INIT_LIST_HEAD(&priv->tx_free_list);
6145 INIT_LIST_HEAD(&priv->tx_pend_list);
6146 INIT_STAT(&priv->tx_free_stat);
6147 INIT_STAT(&priv->tx_pend_stat);
6148
6149 INIT_LIST_HEAD(&priv->fw_pend_list);
6150 INIT_STAT(&priv->fw_pend_stat);
6151
6152 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6153 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6154 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6155 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6156 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6157 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6158
6159 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6160 ipw2100_irq_tasklet, (unsigned long)priv);
6161
6162 /* NOTE: We do not start the deferred work for status checks yet */
6163 priv->stop_rf_kill = 1;
6164 priv->stop_hang_check = 1;
6165
6166 return dev;
6167 }
6168
6169 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6170 const struct pci_device_id *ent)
6171 {
6172 void __iomem *ioaddr;
6173 struct net_device *dev = NULL;
6174 struct ipw2100_priv *priv = NULL;
6175 int err = 0;
6176 int registered = 0;
6177 u32 val;
6178
6179 IPW_DEBUG_INFO("enter\n");
6180
6181 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6182 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6183 err = -ENODEV;
6184 goto out;
6185 }
6186
6187 ioaddr = pci_iomap(pci_dev, 0, 0);
6188 if (!ioaddr) {
6189 printk(KERN_WARNING DRV_NAME
6190 "Error calling ioremap_nocache.\n");
6191 err = -EIO;
6192 goto fail;
6193 }
6194
6195 /* allocate and initialize our net_device */
6196 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6197 if (!dev) {
6198 printk(KERN_WARNING DRV_NAME
6199 "Error calling ipw2100_alloc_device.\n");
6200 err = -ENOMEM;
6201 goto fail;
6202 }
6203
6204 /* set up PCI mappings for device */
6205 err = pci_enable_device(pci_dev);
6206 if (err) {
6207 printk(KERN_WARNING DRV_NAME
6208 "Error calling pci_enable_device.\n");
6209 return err;
6210 }
6211
6212 priv = libipw_priv(dev);
6213
6214 pci_set_master(pci_dev);
6215 pci_set_drvdata(pci_dev, priv);
6216
6217 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6218 if (err) {
6219 printk(KERN_WARNING DRV_NAME
6220 "Error calling pci_set_dma_mask.\n");
6221 pci_disable_device(pci_dev);
6222 return err;
6223 }
6224
6225 err = pci_request_regions(pci_dev, DRV_NAME);
6226 if (err) {
6227 printk(KERN_WARNING DRV_NAME
6228 "Error calling pci_request_regions.\n");
6229 pci_disable_device(pci_dev);
6230 return err;
6231 }
6232
6233 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6234 * PCI Tx retries from interfering with C3 CPU state */
6235 pci_read_config_dword(pci_dev, 0x40, &val);
6236 if ((val & 0x0000ff00) != 0)
6237 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6238
6239 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6240 printk(KERN_WARNING DRV_NAME
6241 "Device not found via register read.\n");
6242 err = -ENODEV;
6243 goto fail;
6244 }
6245
6246 SET_NETDEV_DEV(dev, &pci_dev->dev);
6247
6248 /* Force interrupts to be shut off on the device */
6249 priv->status |= STATUS_INT_ENABLED;
6250 ipw2100_disable_interrupts(priv);
6251
6252 /* Allocate and initialize the Tx/Rx queues and lists */
6253 if (ipw2100_queues_allocate(priv)) {
6254 printk(KERN_WARNING DRV_NAME
6255 "Error calling ipw2100_queues_allocate.\n");
6256 err = -ENOMEM;
6257 goto fail;
6258 }
6259 ipw2100_queues_initialize(priv);
6260
6261 err = request_irq(pci_dev->irq,
6262 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6263 if (err) {
6264 printk(KERN_WARNING DRV_NAME
6265 "Error calling request_irq: %d.\n", pci_dev->irq);
6266 goto fail;
6267 }
6268 dev->irq = pci_dev->irq;
6269
6270 IPW_DEBUG_INFO("Attempting to register device...\n");
6271
6272 printk(KERN_INFO DRV_NAME
6273 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6274
6275 err = ipw2100_up(priv, 1);
6276 if (err)
6277 goto fail;
6278
6279 err = ipw2100_wdev_init(dev);
6280 if (err)
6281 goto fail;
6282 registered = 1;
6283
6284 /* Bring up the interface. Pre 0.46, after we registered the
6285 * network device we would call ipw2100_up. This introduced a race
6286 * condition with newer hotplug configurations (network was coming
6287 * up and making calls before the device was initialized).
6288 */
6289 err = register_netdev(dev);
6290 if (err) {
6291 printk(KERN_WARNING DRV_NAME
6292 "Error calling register_netdev.\n");
6293 goto fail;
6294 }
6295 registered = 2;
6296
6297 mutex_lock(&priv->action_mutex);
6298
6299 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6300
6301 /* perform this after register_netdev so that dev->name is set */
6302 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6303 if (err)
6304 goto fail_unlock;
6305
6306 /* If the RF Kill switch is disabled, go ahead and complete the
6307 * startup sequence */
6308 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6309 /* Enable the adapter - sends HOST_COMPLETE */
6310 if (ipw2100_enable_adapter(priv)) {
6311 printk(KERN_WARNING DRV_NAME
6312 ": %s: failed in call to enable adapter.\n",
6313 priv->net_dev->name);
6314 ipw2100_hw_stop_adapter(priv);
6315 err = -EIO;
6316 goto fail_unlock;
6317 }
6318
6319 /* Start a scan . . . */
6320 ipw2100_set_scan_options(priv);
6321 ipw2100_start_scan(priv);
6322 }
6323
6324 IPW_DEBUG_INFO("exit\n");
6325
6326 priv->status |= STATUS_INITIALIZED;
6327
6328 mutex_unlock(&priv->action_mutex);
6329 out:
6330 return err;
6331
6332 fail_unlock:
6333 mutex_unlock(&priv->action_mutex);
6334 fail:
6335 if (dev) {
6336 if (registered >= 2)
6337 unregister_netdev(dev);
6338
6339 if (registered) {
6340 wiphy_unregister(priv->ieee->wdev.wiphy);
6341 kfree(priv->ieee->bg_band.channels);
6342 }
6343
6344 ipw2100_hw_stop_adapter(priv);
6345
6346 ipw2100_disable_interrupts(priv);
6347
6348 if (dev->irq)
6349 free_irq(dev->irq, priv);
6350
6351 ipw2100_kill_works(priv);
6352
6353 /* These are safe to call even if they weren't allocated */
6354 ipw2100_queues_free(priv);
6355 sysfs_remove_group(&pci_dev->dev.kobj,
6356 &ipw2100_attribute_group);
6357
6358 free_libipw(dev, 0);
6359 }
6360
6361 pci_iounmap(pci_dev, ioaddr);
6362
6363 pci_release_regions(pci_dev);
6364 pci_disable_device(pci_dev);
6365 goto out;
6366 }
6367
6368 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6369 {
6370 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6371 struct net_device *dev = priv->net_dev;
6372
6373 mutex_lock(&priv->action_mutex);
6374
6375 priv->status &= ~STATUS_INITIALIZED;
6376
6377 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6378
6379 #ifdef CONFIG_PM
6380 if (ipw2100_firmware.version)
6381 ipw2100_release_firmware(priv, &ipw2100_firmware);
6382 #endif
6383 /* Take down the hardware */
6384 ipw2100_down(priv);
6385
6386 /* Release the mutex so that the network subsystem can
6387 * complete any needed calls into the driver... */
6388 mutex_unlock(&priv->action_mutex);
6389
6390 /* Unregister the device first - this results in close()
6391 * being called if the device is open. If we free storage
6392 * first, then close() will crash.
6393 * FIXME: remove the comment above. */
6394 unregister_netdev(dev);
6395
6396 ipw2100_kill_works(priv);
6397
6398 ipw2100_queues_free(priv);
6399
6400 /* Free potential debugging firmware snapshot */
6401 ipw2100_snapshot_free(priv);
6402
6403 free_irq(dev->irq, priv);
6404
6405 pci_iounmap(pci_dev, priv->ioaddr);
6406
6407 /* wiphy_unregister needs to be here, before free_libipw */
6408 wiphy_unregister(priv->ieee->wdev.wiphy);
6409 kfree(priv->ieee->bg_band.channels);
6410 free_libipw(dev, 0);
6411
6412 pci_release_regions(pci_dev);
6413 pci_disable_device(pci_dev);
6414
6415 IPW_DEBUG_INFO("exit\n");
6416 }
6417
6418 #ifdef CONFIG_PM
6419 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6420 {
6421 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6422 struct net_device *dev = priv->net_dev;
6423
6424 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6425
6426 mutex_lock(&priv->action_mutex);
6427 if (priv->status & STATUS_INITIALIZED) {
6428 /* Take down the device; powers it off, etc. */
6429 ipw2100_down(priv);
6430 }
6431
6432 /* Remove the PRESENT state of the device */
6433 netif_device_detach(dev);
6434
6435 pci_save_state(pci_dev);
6436 pci_disable_device(pci_dev);
6437 pci_set_power_state(pci_dev, PCI_D3hot);
6438
6439 priv->suspend_at = get_seconds();
6440
6441 mutex_unlock(&priv->action_mutex);
6442
6443 return 0;
6444 }
6445
6446 static int ipw2100_resume(struct pci_dev *pci_dev)
6447 {
6448 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6449 struct net_device *dev = priv->net_dev;
6450 int err;
6451 u32 val;
6452
6453 if (IPW2100_PM_DISABLED)
6454 return 0;
6455
6456 mutex_lock(&priv->action_mutex);
6457
6458 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6459
6460 pci_set_power_state(pci_dev, PCI_D0);
6461 err = pci_enable_device(pci_dev);
6462 if (err) {
6463 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6464 dev->name);
6465 mutex_unlock(&priv->action_mutex);
6466 return err;
6467 }
6468 pci_restore_state(pci_dev);
6469
6470 /*
6471 * Suspend/Resume resets the PCI configuration space, so we have to
6472 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6473 * from interfering with C3 CPU state. pci_restore_state won't help
6474 * here since it only restores the first 64 bytes pci config header.
6475 */
6476 pci_read_config_dword(pci_dev, 0x40, &val);
6477 if ((val & 0x0000ff00) != 0)
6478 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6479
6480 /* Set the device back into the PRESENT state; this will also wake
6481 * the queue of needed */
6482 netif_device_attach(dev);
6483
6484 priv->suspend_time = get_seconds() - priv->suspend_at;
6485
6486 /* Bring the device back up */
6487 if (!(priv->status & STATUS_RF_KILL_SW))
6488 ipw2100_up(priv, 0);
6489
6490 mutex_unlock(&priv->action_mutex);
6491
6492 return 0;
6493 }
6494 #endif
6495
6496 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6497 {
6498 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6499
6500 /* Take down the device; powers it off, etc. */
6501 ipw2100_down(priv);
6502
6503 pci_disable_device(pci_dev);
6504 }
6505
6506 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6507
6508 static const struct pci_device_id ipw2100_pci_id_table[] = {
6509 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6510 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6511 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6512 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6513 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6514 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6515 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6516 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6517 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6518 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6519 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6520 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6521 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6522
6523 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6524 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6525 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6526 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6527 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6528
6529 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6530 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6531 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6532 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6533 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6534 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6535 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6536
6537 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6538
6539 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6540 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6541 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6542 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6543 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6544 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6545 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6546
6547 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6548 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6549 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6550 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6551 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6552 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6553
6554 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6555 {0,},
6556 };
6557
6558 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6559
6560 static struct pci_driver ipw2100_pci_driver = {
6561 .name = DRV_NAME,
6562 .id_table = ipw2100_pci_id_table,
6563 .probe = ipw2100_pci_init_one,
6564 .remove = ipw2100_pci_remove_one,
6565 #ifdef CONFIG_PM
6566 .suspend = ipw2100_suspend,
6567 .resume = ipw2100_resume,
6568 #endif
6569 .shutdown = ipw2100_shutdown,
6570 };
6571
6572 /**
6573 * Initialize the ipw2100 driver/module
6574 *
6575 * @returns 0 if ok, < 0 errno node con error.
6576 *
6577 * Note: we cannot init the /proc stuff until the PCI driver is there,
6578 * or we risk an unlikely race condition on someone accessing
6579 * uninitialized data in the PCI dev struct through /proc.
6580 */
6581 static int __init ipw2100_init(void)
6582 {
6583 int ret;
6584
6585 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6586 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6587
6588 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6589 PM_QOS_DEFAULT_VALUE);
6590
6591 ret = pci_register_driver(&ipw2100_pci_driver);
6592 if (ret)
6593 goto out;
6594
6595 #ifdef CONFIG_IPW2100_DEBUG
6596 ipw2100_debug_level = debug;
6597 ret = driver_create_file(&ipw2100_pci_driver.driver,
6598 &driver_attr_debug_level);
6599 #endif
6600
6601 out:
6602 return ret;
6603 }
6604
6605 /**
6606 * Cleanup ipw2100 driver registration
6607 */
6608 static void __exit ipw2100_exit(void)
6609 {
6610 /* FIXME: IPG: check that we have no instances of the devices open */
6611 #ifdef CONFIG_IPW2100_DEBUG
6612 driver_remove_file(&ipw2100_pci_driver.driver,
6613 &driver_attr_debug_level);
6614 #endif
6615 pci_unregister_driver(&ipw2100_pci_driver);
6616 pm_qos_remove_request(&ipw2100_pm_qos_req);
6617 }
6618
6619 module_init(ipw2100_init);
6620 module_exit(ipw2100_exit);
6621
6622 static int ipw2100_wx_get_name(struct net_device *dev,
6623 struct iw_request_info *info,
6624 union iwreq_data *wrqu, char *extra)
6625 {
6626 /*
6627 * This can be called at any time. No action lock required
6628 */
6629
6630 struct ipw2100_priv *priv = libipw_priv(dev);
6631 if (!(priv->status & STATUS_ASSOCIATED))
6632 strcpy(wrqu->name, "unassociated");
6633 else
6634 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6635
6636 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6637 return 0;
6638 }
6639
6640 static int ipw2100_wx_set_freq(struct net_device *dev,
6641 struct iw_request_info *info,
6642 union iwreq_data *wrqu, char *extra)
6643 {
6644 struct ipw2100_priv *priv = libipw_priv(dev);
6645 struct iw_freq *fwrq = &wrqu->freq;
6646 int err = 0;
6647
6648 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6649 return -EOPNOTSUPP;
6650
6651 mutex_lock(&priv->action_mutex);
6652 if (!(priv->status & STATUS_INITIALIZED)) {
6653 err = -EIO;
6654 goto done;
6655 }
6656
6657 /* if setting by freq convert to channel */
6658 if (fwrq->e == 1) {
6659 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6660 int f = fwrq->m / 100000;
6661 int c = 0;
6662
6663 while ((c < REG_MAX_CHANNEL) &&
6664 (f != ipw2100_frequencies[c]))
6665 c++;
6666
6667 /* hack to fall through */
6668 fwrq->e = 0;
6669 fwrq->m = c + 1;
6670 }
6671 }
6672
6673 if (fwrq->e > 0 || fwrq->m > 1000) {
6674 err = -EOPNOTSUPP;
6675 goto done;
6676 } else { /* Set the channel */
6677 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6678 err = ipw2100_set_channel(priv, fwrq->m, 0);
6679 }
6680
6681 done:
6682 mutex_unlock(&priv->action_mutex);
6683 return err;
6684 }
6685
6686 static int ipw2100_wx_get_freq(struct net_device *dev,
6687 struct iw_request_info *info,
6688 union iwreq_data *wrqu, char *extra)
6689 {
6690 /*
6691 * This can be called at any time. No action lock required
6692 */
6693
6694 struct ipw2100_priv *priv = libipw_priv(dev);
6695
6696 wrqu->freq.e = 0;
6697
6698 /* If we are associated, trying to associate, or have a statically
6699 * configured CHANNEL then return that; otherwise return ANY */
6700 if (priv->config & CFG_STATIC_CHANNEL ||
6701 priv->status & STATUS_ASSOCIATED)
6702 wrqu->freq.m = priv->channel;
6703 else
6704 wrqu->freq.m = 0;
6705
6706 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6707 return 0;
6708
6709 }
6710
6711 static int ipw2100_wx_set_mode(struct net_device *dev,
6712 struct iw_request_info *info,
6713 union iwreq_data *wrqu, char *extra)
6714 {
6715 struct ipw2100_priv *priv = libipw_priv(dev);
6716 int err = 0;
6717
6718 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6719
6720 if (wrqu->mode == priv->ieee->iw_mode)
6721 return 0;
6722
6723 mutex_lock(&priv->action_mutex);
6724 if (!(priv->status & STATUS_INITIALIZED)) {
6725 err = -EIO;
6726 goto done;
6727 }
6728
6729 switch (wrqu->mode) {
6730 #ifdef CONFIG_IPW2100_MONITOR
6731 case IW_MODE_MONITOR:
6732 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6733 break;
6734 #endif /* CONFIG_IPW2100_MONITOR */
6735 case IW_MODE_ADHOC:
6736 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6737 break;
6738 case IW_MODE_INFRA:
6739 case IW_MODE_AUTO:
6740 default:
6741 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6742 break;
6743 }
6744
6745 done:
6746 mutex_unlock(&priv->action_mutex);
6747 return err;
6748 }
6749
6750 static int ipw2100_wx_get_mode(struct net_device *dev,
6751 struct iw_request_info *info,
6752 union iwreq_data *wrqu, char *extra)
6753 {
6754 /*
6755 * This can be called at any time. No action lock required
6756 */
6757
6758 struct ipw2100_priv *priv = libipw_priv(dev);
6759
6760 wrqu->mode = priv->ieee->iw_mode;
6761 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6762
6763 return 0;
6764 }
6765
6766 #define POWER_MODES 5
6767
6768 /* Values are in microsecond */
6769 static const s32 timeout_duration[POWER_MODES] = {
6770 350000,
6771 250000,
6772 75000,
6773 37000,
6774 25000,
6775 };
6776
6777 static const s32 period_duration[POWER_MODES] = {
6778 400000,
6779 700000,
6780 1000000,
6781 1000000,
6782 1000000
6783 };
6784
6785 static int ipw2100_wx_get_range(struct net_device *dev,
6786 struct iw_request_info *info,
6787 union iwreq_data *wrqu, char *extra)
6788 {
6789 /*
6790 * This can be called at any time. No action lock required
6791 */
6792
6793 struct ipw2100_priv *priv = libipw_priv(dev);
6794 struct iw_range *range = (struct iw_range *)extra;
6795 u16 val;
6796 int i, level;
6797
6798 wrqu->data.length = sizeof(*range);
6799 memset(range, 0, sizeof(*range));
6800
6801 /* Let's try to keep this struct in the same order as in
6802 * linux/include/wireless.h
6803 */
6804
6805 /* TODO: See what values we can set, and remove the ones we can't
6806 * set, or fill them with some default data.
6807 */
6808
6809 /* ~5 Mb/s real (802.11b) */
6810 range->throughput = 5 * 1000 * 1000;
6811
6812 // range->sensitivity; /* signal level threshold range */
6813
6814 range->max_qual.qual = 100;
6815 /* TODO: Find real max RSSI and stick here */
6816 range->max_qual.level = 0;
6817 range->max_qual.noise = 0;
6818 range->max_qual.updated = 7; /* Updated all three */
6819
6820 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6821 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6822 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6823 range->avg_qual.noise = 0;
6824 range->avg_qual.updated = 7; /* Updated all three */
6825
6826 range->num_bitrates = RATE_COUNT;
6827
6828 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6829 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6830 }
6831
6832 range->min_rts = MIN_RTS_THRESHOLD;
6833 range->max_rts = MAX_RTS_THRESHOLD;
6834 range->min_frag = MIN_FRAG_THRESHOLD;
6835 range->max_frag = MAX_FRAG_THRESHOLD;
6836
6837 range->min_pmp = period_duration[0]; /* Minimal PM period */
6838 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6839 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6840 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6841
6842 /* How to decode max/min PM period */
6843 range->pmp_flags = IW_POWER_PERIOD;
6844 /* How to decode max/min PM period */
6845 range->pmt_flags = IW_POWER_TIMEOUT;
6846 /* What PM options are supported */
6847 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6848
6849 range->encoding_size[0] = 5;
6850 range->encoding_size[1] = 13; /* Different token sizes */
6851 range->num_encoding_sizes = 2; /* Number of entry in the list */
6852 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6853 // range->encoding_login_index; /* token index for login token */
6854
6855 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6856 range->txpower_capa = IW_TXPOW_DBM;
6857 range->num_txpower = IW_MAX_TXPOWER;
6858 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6859 i < IW_MAX_TXPOWER;
6860 i++, level -=
6861 ((IPW_TX_POWER_MAX_DBM -
6862 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6863 range->txpower[i] = level / 16;
6864 } else {
6865 range->txpower_capa = 0;
6866 range->num_txpower = 0;
6867 }
6868
6869 /* Set the Wireless Extension versions */
6870 range->we_version_compiled = WIRELESS_EXT;
6871 range->we_version_source = 18;
6872
6873 // range->retry_capa; /* What retry options are supported */
6874 // range->retry_flags; /* How to decode max/min retry limit */
6875 // range->r_time_flags; /* How to decode max/min retry life */
6876 // range->min_retry; /* Minimal number of retries */
6877 // range->max_retry; /* Maximal number of retries */
6878 // range->min_r_time; /* Minimal retry lifetime */
6879 // range->max_r_time; /* Maximal retry lifetime */
6880
6881 range->num_channels = FREQ_COUNT;
6882
6883 val = 0;
6884 for (i = 0; i < FREQ_COUNT; i++) {
6885 // TODO: Include only legal frequencies for some countries
6886 // if (local->channel_mask & (1 << i)) {
6887 range->freq[val].i = i + 1;
6888 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6889 range->freq[val].e = 1;
6890 val++;
6891 // }
6892 if (val == IW_MAX_FREQUENCIES)
6893 break;
6894 }
6895 range->num_frequency = val;
6896
6897 /* Event capability (kernel + driver) */
6898 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6899 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6900 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6901
6902 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6903 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6904
6905 IPW_DEBUG_WX("GET Range\n");
6906
6907 return 0;
6908 }
6909
6910 static int ipw2100_wx_set_wap(struct net_device *dev,
6911 struct iw_request_info *info,
6912 union iwreq_data *wrqu, char *extra)
6913 {
6914 struct ipw2100_priv *priv = libipw_priv(dev);
6915 int err = 0;
6916
6917 // sanity checks
6918 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6919 return -EINVAL;
6920
6921 mutex_lock(&priv->action_mutex);
6922 if (!(priv->status & STATUS_INITIALIZED)) {
6923 err = -EIO;
6924 goto done;
6925 }
6926
6927 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6928 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6929 /* we disable mandatory BSSID association */
6930 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6931 priv->config &= ~CFG_STATIC_BSSID;
6932 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6933 goto done;
6934 }
6935
6936 priv->config |= CFG_STATIC_BSSID;
6937 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6938
6939 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6940
6941 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6942
6943 done:
6944 mutex_unlock(&priv->action_mutex);
6945 return err;
6946 }
6947
6948 static int ipw2100_wx_get_wap(struct net_device *dev,
6949 struct iw_request_info *info,
6950 union iwreq_data *wrqu, char *extra)
6951 {
6952 /*
6953 * This can be called at any time. No action lock required
6954 */
6955
6956 struct ipw2100_priv *priv = libipw_priv(dev);
6957
6958 /* If we are associated, trying to associate, or have a statically
6959 * configured BSSID then return that; otherwise return ANY */
6960 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6961 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6962 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6963 } else
6964 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6965
6966 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6967 return 0;
6968 }
6969
6970 static int ipw2100_wx_set_essid(struct net_device *dev,
6971 struct iw_request_info *info,
6972 union iwreq_data *wrqu, char *extra)
6973 {
6974 struct ipw2100_priv *priv = libipw_priv(dev);
6975 char *essid = ""; /* ANY */
6976 int length = 0;
6977 int err = 0;
6978 DECLARE_SSID_BUF(ssid);
6979
6980 mutex_lock(&priv->action_mutex);
6981 if (!(priv->status & STATUS_INITIALIZED)) {
6982 err = -EIO;
6983 goto done;
6984 }
6985
6986 if (wrqu->essid.flags && wrqu->essid.length) {
6987 length = wrqu->essid.length;
6988 essid = extra;
6989 }
6990
6991 if (length == 0) {
6992 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6993 priv->config &= ~CFG_STATIC_ESSID;
6994 err = ipw2100_set_essid(priv, NULL, 0, 0);
6995 goto done;
6996 }
6997
6998 length = min(length, IW_ESSID_MAX_SIZE);
6999
7000 priv->config |= CFG_STATIC_ESSID;
7001
7002 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7003 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7004 err = 0;
7005 goto done;
7006 }
7007
7008 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7009 print_ssid(ssid, essid, length), length);
7010
7011 priv->essid_len = length;
7012 memcpy(priv->essid, essid, priv->essid_len);
7013
7014 err = ipw2100_set_essid(priv, essid, length, 0);
7015
7016 done:
7017 mutex_unlock(&priv->action_mutex);
7018 return err;
7019 }
7020
7021 static int ipw2100_wx_get_essid(struct net_device *dev,
7022 struct iw_request_info *info,
7023 union iwreq_data *wrqu, char *extra)
7024 {
7025 /*
7026 * This can be called at any time. No action lock required
7027 */
7028
7029 struct ipw2100_priv *priv = libipw_priv(dev);
7030 DECLARE_SSID_BUF(ssid);
7031
7032 /* If we are associated, trying to associate, or have a statically
7033 * configured ESSID then return that; otherwise return ANY */
7034 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7035 IPW_DEBUG_WX("Getting essid: '%s'\n",
7036 print_ssid(ssid, priv->essid, priv->essid_len));
7037 memcpy(extra, priv->essid, priv->essid_len);
7038 wrqu->essid.length = priv->essid_len;
7039 wrqu->essid.flags = 1; /* active */
7040 } else {
7041 IPW_DEBUG_WX("Getting essid: ANY\n");
7042 wrqu->essid.length = 0;
7043 wrqu->essid.flags = 0; /* active */
7044 }
7045
7046 return 0;
7047 }
7048
7049 static int ipw2100_wx_set_nick(struct net_device *dev,
7050 struct iw_request_info *info,
7051 union iwreq_data *wrqu, char *extra)
7052 {
7053 /*
7054 * This can be called at any time. No action lock required
7055 */
7056
7057 struct ipw2100_priv *priv = libipw_priv(dev);
7058
7059 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7060 return -E2BIG;
7061
7062 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7063 memset(priv->nick, 0, sizeof(priv->nick));
7064 memcpy(priv->nick, extra, wrqu->data.length);
7065
7066 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7067
7068 return 0;
7069 }
7070
7071 static int ipw2100_wx_get_nick(struct net_device *dev,
7072 struct iw_request_info *info,
7073 union iwreq_data *wrqu, char *extra)
7074 {
7075 /*
7076 * This can be called at any time. No action lock required
7077 */
7078
7079 struct ipw2100_priv *priv = libipw_priv(dev);
7080
7081 wrqu->data.length = strlen(priv->nick);
7082 memcpy(extra, priv->nick, wrqu->data.length);
7083 wrqu->data.flags = 1; /* active */
7084
7085 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7086
7087 return 0;
7088 }
7089
7090 static int ipw2100_wx_set_rate(struct net_device *dev,
7091 struct iw_request_info *info,
7092 union iwreq_data *wrqu, char *extra)
7093 {
7094 struct ipw2100_priv *priv = libipw_priv(dev);
7095 u32 target_rate = wrqu->bitrate.value;
7096 u32 rate;
7097 int err = 0;
7098
7099 mutex_lock(&priv->action_mutex);
7100 if (!(priv->status & STATUS_INITIALIZED)) {
7101 err = -EIO;
7102 goto done;
7103 }
7104
7105 rate = 0;
7106
7107 if (target_rate == 1000000 ||
7108 (!wrqu->bitrate.fixed && target_rate > 1000000))
7109 rate |= TX_RATE_1_MBIT;
7110 if (target_rate == 2000000 ||
7111 (!wrqu->bitrate.fixed && target_rate > 2000000))
7112 rate |= TX_RATE_2_MBIT;
7113 if (target_rate == 5500000 ||
7114 (!wrqu->bitrate.fixed && target_rate > 5500000))
7115 rate |= TX_RATE_5_5_MBIT;
7116 if (target_rate == 11000000 ||
7117 (!wrqu->bitrate.fixed && target_rate > 11000000))
7118 rate |= TX_RATE_11_MBIT;
7119 if (rate == 0)
7120 rate = DEFAULT_TX_RATES;
7121
7122 err = ipw2100_set_tx_rates(priv, rate, 0);
7123
7124 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7125 done:
7126 mutex_unlock(&priv->action_mutex);
7127 return err;
7128 }
7129
7130 static int ipw2100_wx_get_rate(struct net_device *dev,
7131 struct iw_request_info *info,
7132 union iwreq_data *wrqu, char *extra)
7133 {
7134 struct ipw2100_priv *priv = libipw_priv(dev);
7135 int val;
7136 unsigned int len = sizeof(val);
7137 int err = 0;
7138
7139 if (!(priv->status & STATUS_ENABLED) ||
7140 priv->status & STATUS_RF_KILL_MASK ||
7141 !(priv->status & STATUS_ASSOCIATED)) {
7142 wrqu->bitrate.value = 0;
7143 return 0;
7144 }
7145
7146 mutex_lock(&priv->action_mutex);
7147 if (!(priv->status & STATUS_INITIALIZED)) {
7148 err = -EIO;
7149 goto done;
7150 }
7151
7152 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7153 if (err) {
7154 IPW_DEBUG_WX("failed querying ordinals.\n");
7155 goto done;
7156 }
7157
7158 switch (val & TX_RATE_MASK) {
7159 case TX_RATE_1_MBIT:
7160 wrqu->bitrate.value = 1000000;
7161 break;
7162 case TX_RATE_2_MBIT:
7163 wrqu->bitrate.value = 2000000;
7164 break;
7165 case TX_RATE_5_5_MBIT:
7166 wrqu->bitrate.value = 5500000;
7167 break;
7168 case TX_RATE_11_MBIT:
7169 wrqu->bitrate.value = 11000000;
7170 break;
7171 default:
7172 wrqu->bitrate.value = 0;
7173 }
7174
7175 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7176
7177 done:
7178 mutex_unlock(&priv->action_mutex);
7179 return err;
7180 }
7181
7182 static int ipw2100_wx_set_rts(struct net_device *dev,
7183 struct iw_request_info *info,
7184 union iwreq_data *wrqu, char *extra)
7185 {
7186 struct ipw2100_priv *priv = libipw_priv(dev);
7187 int value, err;
7188
7189 /* Auto RTS not yet supported */
7190 if (wrqu->rts.fixed == 0)
7191 return -EINVAL;
7192
7193 mutex_lock(&priv->action_mutex);
7194 if (!(priv->status & STATUS_INITIALIZED)) {
7195 err = -EIO;
7196 goto done;
7197 }
7198
7199 if (wrqu->rts.disabled)
7200 value = priv->rts_threshold | RTS_DISABLED;
7201 else {
7202 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7203 err = -EINVAL;
7204 goto done;
7205 }
7206 value = wrqu->rts.value;
7207 }
7208
7209 err = ipw2100_set_rts_threshold(priv, value);
7210
7211 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7212 done:
7213 mutex_unlock(&priv->action_mutex);
7214 return err;
7215 }
7216
7217 static int ipw2100_wx_get_rts(struct net_device *dev,
7218 struct iw_request_info *info,
7219 union iwreq_data *wrqu, char *extra)
7220 {
7221 /*
7222 * This can be called at any time. No action lock required
7223 */
7224
7225 struct ipw2100_priv *priv = libipw_priv(dev);
7226
7227 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7228 wrqu->rts.fixed = 1; /* no auto select */
7229
7230 /* If RTS is set to the default value, then it is disabled */
7231 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7232
7233 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7234
7235 return 0;
7236 }
7237
7238 static int ipw2100_wx_set_txpow(struct net_device *dev,
7239 struct iw_request_info *info,
7240 union iwreq_data *wrqu, char *extra)
7241 {
7242 struct ipw2100_priv *priv = libipw_priv(dev);
7243 int err = 0, value;
7244
7245 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7246 return -EINPROGRESS;
7247
7248 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7249 return 0;
7250
7251 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7252 return -EINVAL;
7253
7254 if (wrqu->txpower.fixed == 0)
7255 value = IPW_TX_POWER_DEFAULT;
7256 else {
7257 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7258 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7259 return -EINVAL;
7260
7261 value = wrqu->txpower.value;
7262 }
7263
7264 mutex_lock(&priv->action_mutex);
7265 if (!(priv->status & STATUS_INITIALIZED)) {
7266 err = -EIO;
7267 goto done;
7268 }
7269
7270 err = ipw2100_set_tx_power(priv, value);
7271
7272 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7273
7274 done:
7275 mutex_unlock(&priv->action_mutex);
7276 return err;
7277 }
7278
7279 static int ipw2100_wx_get_txpow(struct net_device *dev,
7280 struct iw_request_info *info,
7281 union iwreq_data *wrqu, char *extra)
7282 {
7283 /*
7284 * This can be called at any time. No action lock required
7285 */
7286
7287 struct ipw2100_priv *priv = libipw_priv(dev);
7288
7289 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7290
7291 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7292 wrqu->txpower.fixed = 0;
7293 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7294 } else {
7295 wrqu->txpower.fixed = 1;
7296 wrqu->txpower.value = priv->tx_power;
7297 }
7298
7299 wrqu->txpower.flags = IW_TXPOW_DBM;
7300
7301 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7302
7303 return 0;
7304 }
7305
7306 static int ipw2100_wx_set_frag(struct net_device *dev,
7307 struct iw_request_info *info,
7308 union iwreq_data *wrqu, char *extra)
7309 {
7310 /*
7311 * This can be called at any time. No action lock required
7312 */
7313
7314 struct ipw2100_priv *priv = libipw_priv(dev);
7315
7316 if (!wrqu->frag.fixed)
7317 return -EINVAL;
7318
7319 if (wrqu->frag.disabled) {
7320 priv->frag_threshold |= FRAG_DISABLED;
7321 priv->ieee->fts = DEFAULT_FTS;
7322 } else {
7323 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7324 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7325 return -EINVAL;
7326
7327 priv->ieee->fts = wrqu->frag.value & ~0x1;
7328 priv->frag_threshold = priv->ieee->fts;
7329 }
7330
7331 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7332
7333 return 0;
7334 }
7335
7336 static int ipw2100_wx_get_frag(struct net_device *dev,
7337 struct iw_request_info *info,
7338 union iwreq_data *wrqu, char *extra)
7339 {
7340 /*
7341 * This can be called at any time. No action lock required
7342 */
7343
7344 struct ipw2100_priv *priv = libipw_priv(dev);
7345 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7346 wrqu->frag.fixed = 0; /* no auto select */
7347 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7348
7349 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7350
7351 return 0;
7352 }
7353
7354 static int ipw2100_wx_set_retry(struct net_device *dev,
7355 struct iw_request_info *info,
7356 union iwreq_data *wrqu, char *extra)
7357 {
7358 struct ipw2100_priv *priv = libipw_priv(dev);
7359 int err = 0;
7360
7361 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7362 return -EINVAL;
7363
7364 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7365 return 0;
7366
7367 mutex_lock(&priv->action_mutex);
7368 if (!(priv->status & STATUS_INITIALIZED)) {
7369 err = -EIO;
7370 goto done;
7371 }
7372
7373 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7374 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7375 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7376 wrqu->retry.value);
7377 goto done;
7378 }
7379
7380 if (wrqu->retry.flags & IW_RETRY_LONG) {
7381 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7382 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7383 wrqu->retry.value);
7384 goto done;
7385 }
7386
7387 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7388 if (!err)
7389 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7390
7391 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7392
7393 done:
7394 mutex_unlock(&priv->action_mutex);
7395 return err;
7396 }
7397
7398 static int ipw2100_wx_get_retry(struct net_device *dev,
7399 struct iw_request_info *info,
7400 union iwreq_data *wrqu, char *extra)
7401 {
7402 /*
7403 * This can be called at any time. No action lock required
7404 */
7405
7406 struct ipw2100_priv *priv = libipw_priv(dev);
7407
7408 wrqu->retry.disabled = 0; /* can't be disabled */
7409
7410 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7411 return -EINVAL;
7412
7413 if (wrqu->retry.flags & IW_RETRY_LONG) {
7414 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7415 wrqu->retry.value = priv->long_retry_limit;
7416 } else {
7417 wrqu->retry.flags =
7418 (priv->short_retry_limit !=
7419 priv->long_retry_limit) ?
7420 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7421
7422 wrqu->retry.value = priv->short_retry_limit;
7423 }
7424
7425 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7426
7427 return 0;
7428 }
7429
7430 static int ipw2100_wx_set_scan(struct net_device *dev,
7431 struct iw_request_info *info,
7432 union iwreq_data *wrqu, char *extra)
7433 {
7434 struct ipw2100_priv *priv = libipw_priv(dev);
7435 int err = 0;
7436
7437 mutex_lock(&priv->action_mutex);
7438 if (!(priv->status & STATUS_INITIALIZED)) {
7439 err = -EIO;
7440 goto done;
7441 }
7442
7443 IPW_DEBUG_WX("Initiating scan...\n");
7444
7445 priv->user_requested_scan = 1;
7446 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7447 IPW_DEBUG_WX("Start scan failed.\n");
7448
7449 /* TODO: Mark a scan as pending so when hardware initialized
7450 * a scan starts */
7451 }
7452
7453 done:
7454 mutex_unlock(&priv->action_mutex);
7455 return err;
7456 }
7457
7458 static int ipw2100_wx_get_scan(struct net_device *dev,
7459 struct iw_request_info *info,
7460 union iwreq_data *wrqu, char *extra)
7461 {
7462 /*
7463 * This can be called at any time. No action lock required
7464 */
7465
7466 struct ipw2100_priv *priv = libipw_priv(dev);
7467 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7468 }
7469
7470 /*
7471 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7472 */
7473 static int ipw2100_wx_set_encode(struct net_device *dev,
7474 struct iw_request_info *info,
7475 union iwreq_data *wrqu, char *key)
7476 {
7477 /*
7478 * No check of STATUS_INITIALIZED required
7479 */
7480
7481 struct ipw2100_priv *priv = libipw_priv(dev);
7482 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7483 }
7484
7485 static int ipw2100_wx_get_encode(struct net_device *dev,
7486 struct iw_request_info *info,
7487 union iwreq_data *wrqu, char *key)
7488 {
7489 /*
7490 * This can be called at any time. No action lock required
7491 */
7492
7493 struct ipw2100_priv *priv = libipw_priv(dev);
7494 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7495 }
7496
7497 static int ipw2100_wx_set_power(struct net_device *dev,
7498 struct iw_request_info *info,
7499 union iwreq_data *wrqu, char *extra)
7500 {
7501 struct ipw2100_priv *priv = libipw_priv(dev);
7502 int err = 0;
7503
7504 mutex_lock(&priv->action_mutex);
7505 if (!(priv->status & STATUS_INITIALIZED)) {
7506 err = -EIO;
7507 goto done;
7508 }
7509
7510 if (wrqu->power.disabled) {
7511 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7512 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7513 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7514 goto done;
7515 }
7516
7517 switch (wrqu->power.flags & IW_POWER_MODE) {
7518 case IW_POWER_ON: /* If not specified */
7519 case IW_POWER_MODE: /* If set all mask */
7520 case IW_POWER_ALL_R: /* If explicitly state all */
7521 break;
7522 default: /* Otherwise we don't support it */
7523 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7524 wrqu->power.flags);
7525 err = -EOPNOTSUPP;
7526 goto done;
7527 }
7528
7529 /* If the user hasn't specified a power management mode yet, default
7530 * to BATTERY */
7531 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7532 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7533
7534 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7535
7536 done:
7537 mutex_unlock(&priv->action_mutex);
7538 return err;
7539
7540 }
7541
7542 static int ipw2100_wx_get_power(struct net_device *dev,
7543 struct iw_request_info *info,
7544 union iwreq_data *wrqu, char *extra)
7545 {
7546 /*
7547 * This can be called at any time. No action lock required
7548 */
7549
7550 struct ipw2100_priv *priv = libipw_priv(dev);
7551
7552 if (!(priv->power_mode & IPW_POWER_ENABLED))
7553 wrqu->power.disabled = 1;
7554 else {
7555 wrqu->power.disabled = 0;
7556 wrqu->power.flags = 0;
7557 }
7558
7559 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7560
7561 return 0;
7562 }
7563
7564 /*
7565 * WE-18 WPA support
7566 */
7567
7568 /* SIOCSIWGENIE */
7569 static int ipw2100_wx_set_genie(struct net_device *dev,
7570 struct iw_request_info *info,
7571 union iwreq_data *wrqu, char *extra)
7572 {
7573
7574 struct ipw2100_priv *priv = libipw_priv(dev);
7575 struct libipw_device *ieee = priv->ieee;
7576 u8 *buf;
7577
7578 if (!ieee->wpa_enabled)
7579 return -EOPNOTSUPP;
7580
7581 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7582 (wrqu->data.length && extra == NULL))
7583 return -EINVAL;
7584
7585 if (wrqu->data.length) {
7586 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7587 if (buf == NULL)
7588 return -ENOMEM;
7589
7590 kfree(ieee->wpa_ie);
7591 ieee->wpa_ie = buf;
7592 ieee->wpa_ie_len = wrqu->data.length;
7593 } else {
7594 kfree(ieee->wpa_ie);
7595 ieee->wpa_ie = NULL;
7596 ieee->wpa_ie_len = 0;
7597 }
7598
7599 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7600
7601 return 0;
7602 }
7603
7604 /* SIOCGIWGENIE */
7605 static int ipw2100_wx_get_genie(struct net_device *dev,
7606 struct iw_request_info *info,
7607 union iwreq_data *wrqu, char *extra)
7608 {
7609 struct ipw2100_priv *priv = libipw_priv(dev);
7610 struct libipw_device *ieee = priv->ieee;
7611
7612 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7613 wrqu->data.length = 0;
7614 return 0;
7615 }
7616
7617 if (wrqu->data.length < ieee->wpa_ie_len)
7618 return -E2BIG;
7619
7620 wrqu->data.length = ieee->wpa_ie_len;
7621 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7622
7623 return 0;
7624 }
7625
7626 /* SIOCSIWAUTH */
7627 static int ipw2100_wx_set_auth(struct net_device *dev,
7628 struct iw_request_info *info,
7629 union iwreq_data *wrqu, char *extra)
7630 {
7631 struct ipw2100_priv *priv = libipw_priv(dev);
7632 struct libipw_device *ieee = priv->ieee;
7633 struct iw_param *param = &wrqu->param;
7634 struct lib80211_crypt_data *crypt;
7635 unsigned long flags;
7636 int ret = 0;
7637
7638 switch (param->flags & IW_AUTH_INDEX) {
7639 case IW_AUTH_WPA_VERSION:
7640 case IW_AUTH_CIPHER_PAIRWISE:
7641 case IW_AUTH_CIPHER_GROUP:
7642 case IW_AUTH_KEY_MGMT:
7643 /*
7644 * ipw2200 does not use these parameters
7645 */
7646 break;
7647
7648 case IW_AUTH_TKIP_COUNTERMEASURES:
7649 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7650 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7651 break;
7652
7653 flags = crypt->ops->get_flags(crypt->priv);
7654
7655 if (param->value)
7656 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7657 else
7658 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7659
7660 crypt->ops->set_flags(flags, crypt->priv);
7661
7662 break;
7663
7664 case IW_AUTH_DROP_UNENCRYPTED:{
7665 /* HACK:
7666 *
7667 * wpa_supplicant calls set_wpa_enabled when the driver
7668 * is loaded and unloaded, regardless of if WPA is being
7669 * used. No other calls are made which can be used to
7670 * determine if encryption will be used or not prior to
7671 * association being expected. If encryption is not being
7672 * used, drop_unencrypted is set to false, else true -- we
7673 * can use this to determine if the CAP_PRIVACY_ON bit should
7674 * be set.
7675 */
7676 struct libipw_security sec = {
7677 .flags = SEC_ENABLED,
7678 .enabled = param->value,
7679 };
7680 priv->ieee->drop_unencrypted = param->value;
7681 /* We only change SEC_LEVEL for open mode. Others
7682 * are set by ipw_wpa_set_encryption.
7683 */
7684 if (!param->value) {
7685 sec.flags |= SEC_LEVEL;
7686 sec.level = SEC_LEVEL_0;
7687 } else {
7688 sec.flags |= SEC_LEVEL;
7689 sec.level = SEC_LEVEL_1;
7690 }
7691 if (priv->ieee->set_security)
7692 priv->ieee->set_security(priv->ieee->dev, &sec);
7693 break;
7694 }
7695
7696 case IW_AUTH_80211_AUTH_ALG:
7697 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7698 break;
7699
7700 case IW_AUTH_WPA_ENABLED:
7701 ret = ipw2100_wpa_enable(priv, param->value);
7702 break;
7703
7704 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7705 ieee->ieee802_1x = param->value;
7706 break;
7707
7708 //case IW_AUTH_ROAMING_CONTROL:
7709 case IW_AUTH_PRIVACY_INVOKED:
7710 ieee->privacy_invoked = param->value;
7711 break;
7712
7713 default:
7714 return -EOPNOTSUPP;
7715 }
7716 return ret;
7717 }
7718
7719 /* SIOCGIWAUTH */
7720 static int ipw2100_wx_get_auth(struct net_device *dev,
7721 struct iw_request_info *info,
7722 union iwreq_data *wrqu, char *extra)
7723 {
7724 struct ipw2100_priv *priv = libipw_priv(dev);
7725 struct libipw_device *ieee = priv->ieee;
7726 struct lib80211_crypt_data *crypt;
7727 struct iw_param *param = &wrqu->param;
7728 int ret = 0;
7729
7730 switch (param->flags & IW_AUTH_INDEX) {
7731 case IW_AUTH_WPA_VERSION:
7732 case IW_AUTH_CIPHER_PAIRWISE:
7733 case IW_AUTH_CIPHER_GROUP:
7734 case IW_AUTH_KEY_MGMT:
7735 /*
7736 * wpa_supplicant will control these internally
7737 */
7738 ret = -EOPNOTSUPP;
7739 break;
7740
7741 case IW_AUTH_TKIP_COUNTERMEASURES:
7742 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7743 if (!crypt || !crypt->ops->get_flags) {
7744 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7745 "crypt not set!\n");
7746 break;
7747 }
7748
7749 param->value = (crypt->ops->get_flags(crypt->priv) &
7750 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7751
7752 break;
7753
7754 case IW_AUTH_DROP_UNENCRYPTED:
7755 param->value = ieee->drop_unencrypted;
7756 break;
7757
7758 case IW_AUTH_80211_AUTH_ALG:
7759 param->value = priv->ieee->sec.auth_mode;
7760 break;
7761
7762 case IW_AUTH_WPA_ENABLED:
7763 param->value = ieee->wpa_enabled;
7764 break;
7765
7766 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7767 param->value = ieee->ieee802_1x;
7768 break;
7769
7770 case IW_AUTH_ROAMING_CONTROL:
7771 case IW_AUTH_PRIVACY_INVOKED:
7772 param->value = ieee->privacy_invoked;
7773 break;
7774
7775 default:
7776 return -EOPNOTSUPP;
7777 }
7778 return 0;
7779 }
7780
7781 /* SIOCSIWENCODEEXT */
7782 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7783 struct iw_request_info *info,
7784 union iwreq_data *wrqu, char *extra)
7785 {
7786 struct ipw2100_priv *priv = libipw_priv(dev);
7787 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7788 }
7789
7790 /* SIOCGIWENCODEEXT */
7791 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7792 struct iw_request_info *info,
7793 union iwreq_data *wrqu, char *extra)
7794 {
7795 struct ipw2100_priv *priv = libipw_priv(dev);
7796 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7797 }
7798
7799 /* SIOCSIWMLME */
7800 static int ipw2100_wx_set_mlme(struct net_device *dev,
7801 struct iw_request_info *info,
7802 union iwreq_data *wrqu, char *extra)
7803 {
7804 struct ipw2100_priv *priv = libipw_priv(dev);
7805 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7806 __le16 reason;
7807
7808 reason = cpu_to_le16(mlme->reason_code);
7809
7810 switch (mlme->cmd) {
7811 case IW_MLME_DEAUTH:
7812 // silently ignore
7813 break;
7814
7815 case IW_MLME_DISASSOC:
7816 ipw2100_disassociate_bssid(priv);
7817 break;
7818
7819 default:
7820 return -EOPNOTSUPP;
7821 }
7822 return 0;
7823 }
7824
7825 /*
7826 *
7827 * IWPRIV handlers
7828 *
7829 */
7830 #ifdef CONFIG_IPW2100_MONITOR
7831 static int ipw2100_wx_set_promisc(struct net_device *dev,
7832 struct iw_request_info *info,
7833 union iwreq_data *wrqu, char *extra)
7834 {
7835 struct ipw2100_priv *priv = libipw_priv(dev);
7836 int *parms = (int *)extra;
7837 int enable = (parms[0] > 0);
7838 int err = 0;
7839
7840 mutex_lock(&priv->action_mutex);
7841 if (!(priv->status & STATUS_INITIALIZED)) {
7842 err = -EIO;
7843 goto done;
7844 }
7845
7846 if (enable) {
7847 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7848 err = ipw2100_set_channel(priv, parms[1], 0);
7849 goto done;
7850 }
7851 priv->channel = parms[1];
7852 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7853 } else {
7854 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7855 err = ipw2100_switch_mode(priv, priv->last_mode);
7856 }
7857 done:
7858 mutex_unlock(&priv->action_mutex);
7859 return err;
7860 }
7861
7862 static int ipw2100_wx_reset(struct net_device *dev,
7863 struct iw_request_info *info,
7864 union iwreq_data *wrqu, char *extra)
7865 {
7866 struct ipw2100_priv *priv = libipw_priv(dev);
7867 if (priv->status & STATUS_INITIALIZED)
7868 schedule_reset(priv);
7869 return 0;
7870 }
7871
7872 #endif
7873
7874 static int ipw2100_wx_set_powermode(struct net_device *dev,
7875 struct iw_request_info *info,
7876 union iwreq_data *wrqu, char *extra)
7877 {
7878 struct ipw2100_priv *priv = libipw_priv(dev);
7879 int err = 0, mode = *(int *)extra;
7880
7881 mutex_lock(&priv->action_mutex);
7882 if (!(priv->status & STATUS_INITIALIZED)) {
7883 err = -EIO;
7884 goto done;
7885 }
7886
7887 if ((mode < 0) || (mode > POWER_MODES))
7888 mode = IPW_POWER_AUTO;
7889
7890 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7891 err = ipw2100_set_power_mode(priv, mode);
7892 done:
7893 mutex_unlock(&priv->action_mutex);
7894 return err;
7895 }
7896
7897 #define MAX_POWER_STRING 80
7898 static int ipw2100_wx_get_powermode(struct net_device *dev,
7899 struct iw_request_info *info,
7900 union iwreq_data *wrqu, char *extra)
7901 {
7902 /*
7903 * This can be called at any time. No action lock required
7904 */
7905
7906 struct ipw2100_priv *priv = libipw_priv(dev);
7907 int level = IPW_POWER_LEVEL(priv->power_mode);
7908 s32 timeout, period;
7909
7910 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7911 snprintf(extra, MAX_POWER_STRING,
7912 "Power save level: %d (Off)", level);
7913 } else {
7914 switch (level) {
7915 case IPW_POWER_MODE_CAM:
7916 snprintf(extra, MAX_POWER_STRING,
7917 "Power save level: %d (None)", level);
7918 break;
7919 case IPW_POWER_AUTO:
7920 snprintf(extra, MAX_POWER_STRING,
7921 "Power save level: %d (Auto)", level);
7922 break;
7923 default:
7924 timeout = timeout_duration[level - 1] / 1000;
7925 period = period_duration[level - 1] / 1000;
7926 snprintf(extra, MAX_POWER_STRING,
7927 "Power save level: %d "
7928 "(Timeout %dms, Period %dms)",
7929 level, timeout, period);
7930 }
7931 }
7932
7933 wrqu->data.length = strlen(extra) + 1;
7934
7935 return 0;
7936 }
7937
7938 static int ipw2100_wx_set_preamble(struct net_device *dev,
7939 struct iw_request_info *info,
7940 union iwreq_data *wrqu, char *extra)
7941 {
7942 struct ipw2100_priv *priv = libipw_priv(dev);
7943 int err, mode = *(int *)extra;
7944
7945 mutex_lock(&priv->action_mutex);
7946 if (!(priv->status & STATUS_INITIALIZED)) {
7947 err = -EIO;
7948 goto done;
7949 }
7950
7951 if (mode == 1)
7952 priv->config |= CFG_LONG_PREAMBLE;
7953 else if (mode == 0)
7954 priv->config &= ~CFG_LONG_PREAMBLE;
7955 else {
7956 err = -EINVAL;
7957 goto done;
7958 }
7959
7960 err = ipw2100_system_config(priv, 0);
7961
7962 done:
7963 mutex_unlock(&priv->action_mutex);
7964 return err;
7965 }
7966
7967 static int ipw2100_wx_get_preamble(struct net_device *dev,
7968 struct iw_request_info *info,
7969 union iwreq_data *wrqu, char *extra)
7970 {
7971 /*
7972 * This can be called at any time. No action lock required
7973 */
7974
7975 struct ipw2100_priv *priv = libipw_priv(dev);
7976
7977 if (priv->config & CFG_LONG_PREAMBLE)
7978 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7979 else
7980 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7981
7982 return 0;
7983 }
7984
7985 #ifdef CONFIG_IPW2100_MONITOR
7986 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7987 struct iw_request_info *info,
7988 union iwreq_data *wrqu, char *extra)
7989 {
7990 struct ipw2100_priv *priv = libipw_priv(dev);
7991 int err, mode = *(int *)extra;
7992
7993 mutex_lock(&priv->action_mutex);
7994 if (!(priv->status & STATUS_INITIALIZED)) {
7995 err = -EIO;
7996 goto done;
7997 }
7998
7999 if (mode == 1)
8000 priv->config |= CFG_CRC_CHECK;
8001 else if (mode == 0)
8002 priv->config &= ~CFG_CRC_CHECK;
8003 else {
8004 err = -EINVAL;
8005 goto done;
8006 }
8007 err = 0;
8008
8009 done:
8010 mutex_unlock(&priv->action_mutex);
8011 return err;
8012 }
8013
8014 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8015 struct iw_request_info *info,
8016 union iwreq_data *wrqu, char *extra)
8017 {
8018 /*
8019 * This can be called at any time. No action lock required
8020 */
8021
8022 struct ipw2100_priv *priv = libipw_priv(dev);
8023
8024 if (priv->config & CFG_CRC_CHECK)
8025 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8026 else
8027 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8028
8029 return 0;
8030 }
8031 #endif /* CONFIG_IPW2100_MONITOR */
8032
8033 static iw_handler ipw2100_wx_handlers[] = {
8034 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8035 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8036 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8037 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8038 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8039 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8040 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8041 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8042 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8043 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8044 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8045 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8046 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8047 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8048 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8049 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8050 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8051 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8052 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8053 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8054 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8055 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8056 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8057 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8058 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8059 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8060 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8061 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8062 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8063 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8064 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8065 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8066 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8067 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8068 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8069 };
8070
8071 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8072 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8073 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8074 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8075 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8076 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8077 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8078 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8079
8080 static const struct iw_priv_args ipw2100_private_args[] = {
8081
8082 #ifdef CONFIG_IPW2100_MONITOR
8083 {
8084 IPW2100_PRIV_SET_MONITOR,
8085 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8086 {
8087 IPW2100_PRIV_RESET,
8088 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8089 #endif /* CONFIG_IPW2100_MONITOR */
8090
8091 {
8092 IPW2100_PRIV_SET_POWER,
8093 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8094 {
8095 IPW2100_PRIV_GET_POWER,
8096 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8097 "get_power"},
8098 {
8099 IPW2100_PRIV_SET_LONGPREAMBLE,
8100 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8101 {
8102 IPW2100_PRIV_GET_LONGPREAMBLE,
8103 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8104 #ifdef CONFIG_IPW2100_MONITOR
8105 {
8106 IPW2100_PRIV_SET_CRC_CHECK,
8107 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8108 {
8109 IPW2100_PRIV_GET_CRC_CHECK,
8110 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8111 #endif /* CONFIG_IPW2100_MONITOR */
8112 };
8113
8114 static iw_handler ipw2100_private_handler[] = {
8115 #ifdef CONFIG_IPW2100_MONITOR
8116 ipw2100_wx_set_promisc,
8117 ipw2100_wx_reset,
8118 #else /* CONFIG_IPW2100_MONITOR */
8119 NULL,
8120 NULL,
8121 #endif /* CONFIG_IPW2100_MONITOR */
8122 ipw2100_wx_set_powermode,
8123 ipw2100_wx_get_powermode,
8124 ipw2100_wx_set_preamble,
8125 ipw2100_wx_get_preamble,
8126 #ifdef CONFIG_IPW2100_MONITOR
8127 ipw2100_wx_set_crc_check,
8128 ipw2100_wx_get_crc_check,
8129 #else /* CONFIG_IPW2100_MONITOR */
8130 NULL,
8131 NULL,
8132 #endif /* CONFIG_IPW2100_MONITOR */
8133 };
8134
8135 /*
8136 * Get wireless statistics.
8137 * Called by /proc/net/wireless
8138 * Also called by SIOCGIWSTATS
8139 */
8140 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8141 {
8142 enum {
8143 POOR = 30,
8144 FAIR = 60,
8145 GOOD = 80,
8146 VERY_GOOD = 90,
8147 EXCELLENT = 95,
8148 PERFECT = 100
8149 };
8150 int rssi_qual;
8151 int tx_qual;
8152 int beacon_qual;
8153 int quality;
8154
8155 struct ipw2100_priv *priv = libipw_priv(dev);
8156 struct iw_statistics *wstats;
8157 u32 rssi, tx_retries, missed_beacons, tx_failures;
8158 u32 ord_len = sizeof(u32);
8159
8160 if (!priv)
8161 return (struct iw_statistics *)NULL;
8162
8163 wstats = &priv->wstats;
8164
8165 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8166 * ipw2100_wx_wireless_stats seems to be called before fw is
8167 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8168 * and associated; if not associcated, the values are all meaningless
8169 * anyway, so set them all to NULL and INVALID */
8170 if (!(priv->status & STATUS_ASSOCIATED)) {
8171 wstats->miss.beacon = 0;
8172 wstats->discard.retries = 0;
8173 wstats->qual.qual = 0;
8174 wstats->qual.level = 0;
8175 wstats->qual.noise = 0;
8176 wstats->qual.updated = 7;
8177 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8178 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8179 return wstats;
8180 }
8181
8182 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8183 &missed_beacons, &ord_len))
8184 goto fail_get_ordinal;
8185
8186 /* If we don't have a connection the quality and level is 0 */
8187 if (!(priv->status & STATUS_ASSOCIATED)) {
8188 wstats->qual.qual = 0;
8189 wstats->qual.level = 0;
8190 } else {
8191 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8192 &rssi, &ord_len))
8193 goto fail_get_ordinal;
8194 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8195 if (rssi < 10)
8196 rssi_qual = rssi * POOR / 10;
8197 else if (rssi < 15)
8198 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8199 else if (rssi < 20)
8200 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8201 else if (rssi < 30)
8202 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8203 10 + GOOD;
8204 else
8205 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8206 10 + VERY_GOOD;
8207
8208 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8209 &tx_retries, &ord_len))
8210 goto fail_get_ordinal;
8211
8212 if (tx_retries > 75)
8213 tx_qual = (90 - tx_retries) * POOR / 15;
8214 else if (tx_retries > 70)
8215 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8216 else if (tx_retries > 65)
8217 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8218 else if (tx_retries > 50)
8219 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8220 15 + GOOD;
8221 else
8222 tx_qual = (50 - tx_retries) *
8223 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8224
8225 if (missed_beacons > 50)
8226 beacon_qual = (60 - missed_beacons) * POOR / 10;
8227 else if (missed_beacons > 40)
8228 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8229 10 + POOR;
8230 else if (missed_beacons > 32)
8231 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8232 18 + FAIR;
8233 else if (missed_beacons > 20)
8234 beacon_qual = (32 - missed_beacons) *
8235 (VERY_GOOD - GOOD) / 20 + GOOD;
8236 else
8237 beacon_qual = (20 - missed_beacons) *
8238 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8239
8240 quality = min(tx_qual, rssi_qual);
8241 quality = min(beacon_qual, quality);
8242
8243 #ifdef CONFIG_IPW2100_DEBUG
8244 if (beacon_qual == quality)
8245 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8246 else if (tx_qual == quality)
8247 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8248 else if (quality != 100)
8249 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8250 else
8251 IPW_DEBUG_WX("Quality not clamped.\n");
8252 #endif
8253
8254 wstats->qual.qual = quality;
8255 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8256 }
8257
8258 wstats->qual.noise = 0;
8259 wstats->qual.updated = 7;
8260 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8261
8262 /* FIXME: this is percent and not a # */
8263 wstats->miss.beacon = missed_beacons;
8264
8265 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8266 &tx_failures, &ord_len))
8267 goto fail_get_ordinal;
8268 wstats->discard.retries = tx_failures;
8269
8270 return wstats;
8271
8272 fail_get_ordinal:
8273 IPW_DEBUG_WX("failed querying ordinals.\n");
8274
8275 return (struct iw_statistics *)NULL;
8276 }
8277
8278 static struct iw_handler_def ipw2100_wx_handler_def = {
8279 .standard = ipw2100_wx_handlers,
8280 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8281 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8282 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8283 .private = (iw_handler *) ipw2100_private_handler,
8284 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8285 .get_wireless_stats = ipw2100_wx_wireless_stats,
8286 };
8287
8288 static void ipw2100_wx_event_work(struct work_struct *work)
8289 {
8290 struct ipw2100_priv *priv =
8291 container_of(work, struct ipw2100_priv, wx_event_work.work);
8292 union iwreq_data wrqu;
8293 unsigned int len = ETH_ALEN;
8294
8295 if (priv->status & STATUS_STOPPING)
8296 return;
8297
8298 mutex_lock(&priv->action_mutex);
8299
8300 IPW_DEBUG_WX("enter\n");
8301
8302 mutex_unlock(&priv->action_mutex);
8303
8304 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8305
8306 /* Fetch BSSID from the hardware */
8307 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8308 priv->status & STATUS_RF_KILL_MASK ||
8309 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8310 &priv->bssid, &len)) {
8311 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8312 } else {
8313 /* We now have the BSSID, so can finish setting to the full
8314 * associated state */
8315 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8316 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8317 priv->status &= ~STATUS_ASSOCIATING;
8318 priv->status |= STATUS_ASSOCIATED;
8319 netif_carrier_on(priv->net_dev);
8320 netif_wake_queue(priv->net_dev);
8321 }
8322
8323 if (!(priv->status & STATUS_ASSOCIATED)) {
8324 IPW_DEBUG_WX("Configuring ESSID\n");
8325 mutex_lock(&priv->action_mutex);
8326 /* This is a disassociation event, so kick the firmware to
8327 * look for another AP */
8328 if (priv->config & CFG_STATIC_ESSID)
8329 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8330 0);
8331 else
8332 ipw2100_set_essid(priv, NULL, 0, 0);
8333 mutex_unlock(&priv->action_mutex);
8334 }
8335
8336 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8337 }
8338
8339 #define IPW2100_FW_MAJOR_VERSION 1
8340 #define IPW2100_FW_MINOR_VERSION 3
8341
8342 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8343 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8344
8345 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8346 IPW2100_FW_MAJOR_VERSION)
8347
8348 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8349 "." __stringify(IPW2100_FW_MINOR_VERSION)
8350
8351 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8352
8353 /*
8354
8355 BINARY FIRMWARE HEADER FORMAT
8356
8357 offset length desc
8358 0 2 version
8359 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8360 4 4 fw_len
8361 8 4 uc_len
8362 C fw_len firmware data
8363 12 + fw_len uc_len microcode data
8364
8365 */
8366
8367 struct ipw2100_fw_header {
8368 short version;
8369 short mode;
8370 unsigned int fw_size;
8371 unsigned int uc_size;
8372 } __packed;
8373
8374 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8375 {
8376 struct ipw2100_fw_header *h =
8377 (struct ipw2100_fw_header *)fw->fw_entry->data;
8378
8379 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8380 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8381 "(detected version id of %u). "
8382 "See Documentation/networking/README.ipw2100\n",
8383 h->version);
8384 return 1;
8385 }
8386
8387 fw->version = h->version;
8388 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8389 fw->fw.size = h->fw_size;
8390 fw->uc.data = fw->fw.data + h->fw_size;
8391 fw->uc.size = h->uc_size;
8392
8393 return 0;
8394 }
8395
8396 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8397 struct ipw2100_fw *fw)
8398 {
8399 char *fw_name;
8400 int rc;
8401
8402 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8403 priv->net_dev->name);
8404
8405 switch (priv->ieee->iw_mode) {
8406 case IW_MODE_ADHOC:
8407 fw_name = IPW2100_FW_NAME("-i");
8408 break;
8409 #ifdef CONFIG_IPW2100_MONITOR
8410 case IW_MODE_MONITOR:
8411 fw_name = IPW2100_FW_NAME("-p");
8412 break;
8413 #endif
8414 case IW_MODE_INFRA:
8415 default:
8416 fw_name = IPW2100_FW_NAME("");
8417 break;
8418 }
8419
8420 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8421
8422 if (rc < 0) {
8423 printk(KERN_ERR DRV_NAME ": "
8424 "%s: Firmware '%s' not available or load failed.\n",
8425 priv->net_dev->name, fw_name);
8426 return rc;
8427 }
8428 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8429 fw->fw_entry->size);
8430
8431 ipw2100_mod_firmware_load(fw);
8432
8433 return 0;
8434 }
8435
8436 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8437 #ifdef CONFIG_IPW2100_MONITOR
8438 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8439 #endif
8440 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8441
8442 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8443 struct ipw2100_fw *fw)
8444 {
8445 fw->version = 0;
8446 release_firmware(fw->fw_entry);
8447 fw->fw_entry = NULL;
8448 }
8449
8450 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8451 size_t max)
8452 {
8453 char ver[MAX_FW_VERSION_LEN];
8454 u32 len = MAX_FW_VERSION_LEN;
8455 u32 tmp;
8456 int i;
8457 /* firmware version is an ascii string (max len of 14) */
8458 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8459 return -EIO;
8460 tmp = max;
8461 if (len >= max)
8462 len = max - 1;
8463 for (i = 0; i < len; i++)
8464 buf[i] = ver[i];
8465 buf[i] = '\0';
8466 return tmp;
8467 }
8468
8469 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8470 size_t max)
8471 {
8472 u32 ver;
8473 u32 len = sizeof(ver);
8474 /* microcode version is a 32 bit integer */
8475 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8476 return -EIO;
8477 return snprintf(buf, max, "%08X", ver);
8478 }
8479
8480 /*
8481 * On exit, the firmware will have been freed from the fw list
8482 */
8483 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8484 {
8485 /* firmware is constructed of N contiguous entries, each entry is
8486 * structured as:
8487 *
8488 * offset sie desc
8489 * 0 4 address to write to
8490 * 4 2 length of data run
8491 * 6 length data
8492 */
8493 unsigned int addr;
8494 unsigned short len;
8495
8496 const unsigned char *firmware_data = fw->fw.data;
8497 unsigned int firmware_data_left = fw->fw.size;
8498
8499 while (firmware_data_left > 0) {
8500 addr = *(u32 *) (firmware_data);
8501 firmware_data += 4;
8502 firmware_data_left -= 4;
8503
8504 len = *(u16 *) (firmware_data);
8505 firmware_data += 2;
8506 firmware_data_left -= 2;
8507
8508 if (len > 32) {
8509 printk(KERN_ERR DRV_NAME ": "
8510 "Invalid firmware run-length of %d bytes\n",
8511 len);
8512 return -EINVAL;
8513 }
8514
8515 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8516 firmware_data += len;
8517 firmware_data_left -= len;
8518 }
8519
8520 return 0;
8521 }
8522
8523 struct symbol_alive_response {
8524 u8 cmd_id;
8525 u8 seq_num;
8526 u8 ucode_rev;
8527 u8 eeprom_valid;
8528 u16 valid_flags;
8529 u8 IEEE_addr[6];
8530 u16 flags;
8531 u16 pcb_rev;
8532 u16 clock_settle_time; // 1us LSB
8533 u16 powerup_settle_time; // 1us LSB
8534 u16 hop_settle_time; // 1us LSB
8535 u8 date[3]; // month, day, year
8536 u8 time[2]; // hours, minutes
8537 u8 ucode_valid;
8538 };
8539
8540 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8541 struct ipw2100_fw *fw)
8542 {
8543 struct net_device *dev = priv->net_dev;
8544 const unsigned char *microcode_data = fw->uc.data;
8545 unsigned int microcode_data_left = fw->uc.size;
8546 void __iomem *reg = priv->ioaddr;
8547
8548 struct symbol_alive_response response;
8549 int i, j;
8550 u8 data;
8551
8552 /* Symbol control */
8553 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8554 readl(reg);
8555 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8556 readl(reg);
8557
8558 /* HW config */
8559 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8560 readl(reg);
8561 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8562 readl(reg);
8563
8564 /* EN_CS_ACCESS bit to reset control store pointer */
8565 write_nic_byte(dev, 0x210000, 0x40);
8566 readl(reg);
8567 write_nic_byte(dev, 0x210000, 0x0);
8568 readl(reg);
8569 write_nic_byte(dev, 0x210000, 0x40);
8570 readl(reg);
8571
8572 /* copy microcode from buffer into Symbol */
8573
8574 while (microcode_data_left > 0) {
8575 write_nic_byte(dev, 0x210010, *microcode_data++);
8576 write_nic_byte(dev, 0x210010, *microcode_data++);
8577 microcode_data_left -= 2;
8578 }
8579
8580 /* EN_CS_ACCESS bit to reset the control store pointer */
8581 write_nic_byte(dev, 0x210000, 0x0);
8582 readl(reg);
8583
8584 /* Enable System (Reg 0)
8585 * first enable causes garbage in RX FIFO */
8586 write_nic_byte(dev, 0x210000, 0x0);
8587 readl(reg);
8588 write_nic_byte(dev, 0x210000, 0x80);
8589 readl(reg);
8590
8591 /* Reset External Baseband Reg */
8592 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8593 readl(reg);
8594 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8595 readl(reg);
8596
8597 /* HW Config (Reg 5) */
8598 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8599 readl(reg);
8600 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8601 readl(reg);
8602
8603 /* Enable System (Reg 0)
8604 * second enable should be OK */
8605 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8606 readl(reg);
8607 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8608
8609 /* check Symbol is enabled - upped this from 5 as it wasn't always
8610 * catching the update */
8611 for (i = 0; i < 10; i++) {
8612 udelay(10);
8613
8614 /* check Dino is enabled bit */
8615 read_nic_byte(dev, 0x210000, &data);
8616 if (data & 0x1)
8617 break;
8618 }
8619
8620 if (i == 10) {
8621 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8622 dev->name);
8623 return -EIO;
8624 }
8625
8626 /* Get Symbol alive response */
8627 for (i = 0; i < 30; i++) {
8628 /* Read alive response structure */
8629 for (j = 0;
8630 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8631 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8632
8633 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8634 break;
8635 udelay(10);
8636 }
8637
8638 if (i == 30) {
8639 printk(KERN_ERR DRV_NAME
8640 ": %s: No response from Symbol - hw not alive\n",
8641 dev->name);
8642 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8643 return -EIO;
8644 }
8645
8646 return 0;
8647 }