]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ipw2x00/ipw2200.c
wireless: Remove casts to same type
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 Intel Linux Wireless <ilw@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107 'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116 { .bitrate = 10 },
117 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120 { .bitrate = 60 },
121 { .bitrate = 90 },
122 { .bitrate = 120 },
123 { .bitrate = 180 },
124 { .bitrate = 240 },
125 { .bitrate = 360 },
126 { .bitrate = 480 },
127 { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates 8
132 #define ipw2200_bg_rates (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates 12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136 * There are certianly some conditions that will break this (like feeding it '30')
137 * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139 (((x) <= 14) ? \
140 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141 ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152 QOS_TX3_CW_MIN_OFDM},
153 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154 QOS_TX3_CW_MAX_OFDM},
155 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163 QOS_TX3_CW_MIN_CCK},
164 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165 QOS_TX3_CW_MAX_CCK},
166 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169 QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174 DEF_TX3_CW_MIN_OFDM},
175 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176 DEF_TX3_CW_MAX_OFDM},
177 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185 DEF_TX3_CW_MIN_CCK},
186 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187 DEF_TX3_CW_MAX_CCK},
188 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191 DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204 *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206 *qos_param);
207 #endif /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217 int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235 const u8 * data, u32 len, u32 ofs)
236 {
237 int out, i, j, l;
238 char c;
239
240 out = snprintf(buf, count, "%08X", ofs);
241
242 for (l = 0, i = 0; i < 2; i++) {
243 out += snprintf(buf + out, count - out, " ");
244 for (j = 0; j < 8 && l < len; j++, l++)
245 out += snprintf(buf + out, count - out, "%02X ",
246 data[(i * 8 + j)]);
247 for (; j < 8; j++)
248 out += snprintf(buf + out, count - out, " ");
249 }
250
251 out += snprintf(buf + out, count - out, " ");
252 for (l = 0, i = 0; i < 2; i++) {
253 out += snprintf(buf + out, count - out, " ");
254 for (j = 0; j < 8 && l < len; j++, l++) {
255 c = data[(i * 8 + j)];
256 if (!isascii(c) || !isprint(c))
257 c = '.';
258
259 out += snprintf(buf + out, count - out, "%c", c);
260 }
261
262 for (; j < 8; j++)
263 out += snprintf(buf + out, count - out, " ");
264 }
265
266 return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271 char line[81];
272 u32 ofs = 0;
273 if (!(ipw_debug_level & level))
274 return;
275
276 while (len) {
277 snprint_line(line, sizeof(line), &data[ofs],
278 min(len, 16U), ofs);
279 printk(KERN_DEBUG "%s\n", line);
280 ofs += 16;
281 len -= min(len, 16U);
282 }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287 size_t out = size;
288 u32 ofs = 0;
289 int total = 0;
290
291 while (size && len) {
292 out = snprint_line(output, size, &data[ofs],
293 min_t(size_t, len, 16U), ofs);
294
295 ofs += 16;
296 output += out;
297 size -= out;
298 len -= min_t(size_t, len, 16U);
299 total += out;
300 }
301 return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317 __LINE__, (u32) (b), (u32) (c));
318 _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326 __LINE__, (u32) (b), (u32) (c));
327 _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335 __LINE__, (u32) (b), (u32) (c));
336 _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341 u8 val)
342 {
343 writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349 __LINE__, (u32)(ofs), (u32)(val)); \
350 _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355 u16 val)
356 {
357 writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363 __LINE__, (u32)(ofs), (u32)(val)); \
364 _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369 u32 val)
370 {
371 writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377 __LINE__, (u32)(ofs), (u32)(val)); \
378 _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384 return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390 (u32)(ofs)); \
391 _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397 return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403 (u32)(ofs)); \
404 _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410 return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416 (u32)(ofs)); \
417 _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424 __LINE__, (u32)(b), (u32)(d)); \
425 _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433 __LINE__, (u32)(b), (u32)(d)); \
434 _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
449 u32 dif_len = reg - aligned_addr;
450
451 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
460 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470 u32 word;
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474 return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480 u32 value;
481
482 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487 return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /* for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493 int num)
494 {
495 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
496 u32 dif_len = addr - aligned_addr;
497 u32 i;
498
499 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501 if (num <= 0) {
502 return;
503 }
504
505 /* Read the first dword (or portion) byte by byte */
506 if (unlikely(dif_len)) {
507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 /* Start reading at aligned_addr + dif_len */
509 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511 aligned_addr += 4;
512 }
513
514 /* Read all of the middle dwords as dwords, with auto-increment */
515 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519 /* Read the last dword (or portion) byte by byte */
520 if (unlikely(num)) {
521 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522 for (i = 0; num > 0; i++, num--)
523 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524 }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /* for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530 int num)
531 {
532 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
533 u32 dif_len = addr - aligned_addr;
534 u32 i;
535
536 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538 if (num <= 0) {
539 return;
540 }
541
542 /* Write the first dword (or portion) byte by byte */
543 if (unlikely(dif_len)) {
544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 /* Start writing at aligned_addr + dif_len */
546 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548 aligned_addr += 4;
549 }
550
551 /* Write all of the middle dwords as dwords, with auto-increment */
552 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556 /* Write the last dword (or portion) byte by byte */
557 if (unlikely(num)) {
558 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559 for (i = 0; num > 0; i++, num--, buf++)
560 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561 }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /* for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567 int num)
568 {
569 memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586 if (priv->status & STATUS_INT_ENABLED)
587 return;
588 priv->status |= STATUS_INT_ENABLED;
589 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594 if (!(priv->status & STATUS_INT_ENABLED))
595 return;
596 priv->status &= ~STATUS_INT_ENABLED;
597 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602 unsigned long flags;
603
604 spin_lock_irqsave(&priv->irq_lock, flags);
605 __ipw_enable_interrupts(priv);
606 spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611 unsigned long flags;
612
613 spin_lock_irqsave(&priv->irq_lock, flags);
614 __ipw_disable_interrupts(priv);
615 spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620 switch (val) {
621 case IPW_FW_ERROR_OK:
622 return "ERROR_OK";
623 case IPW_FW_ERROR_FAIL:
624 return "ERROR_FAIL";
625 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626 return "MEMORY_UNDERFLOW";
627 case IPW_FW_ERROR_MEMORY_OVERFLOW:
628 return "MEMORY_OVERFLOW";
629 case IPW_FW_ERROR_BAD_PARAM:
630 return "BAD_PARAM";
631 case IPW_FW_ERROR_BAD_CHECKSUM:
632 return "BAD_CHECKSUM";
633 case IPW_FW_ERROR_NMI_INTERRUPT:
634 return "NMI_INTERRUPT";
635 case IPW_FW_ERROR_BAD_DATABASE:
636 return "BAD_DATABASE";
637 case IPW_FW_ERROR_ALLOC_FAIL:
638 return "ALLOC_FAIL";
639 case IPW_FW_ERROR_DMA_UNDERRUN:
640 return "DMA_UNDERRUN";
641 case IPW_FW_ERROR_DMA_STATUS:
642 return "DMA_STATUS";
643 case IPW_FW_ERROR_DINO_ERROR:
644 return "DINO_ERROR";
645 case IPW_FW_ERROR_EEPROM_ERROR:
646 return "EEPROM_ERROR";
647 case IPW_FW_ERROR_SYSASSERT:
648 return "SYSASSERT";
649 case IPW_FW_ERROR_FATAL_ERROR:
650 return "FATAL_ERROR";
651 default:
652 return "UNKNOWN_ERROR";
653 }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657 struct ipw_fw_error *error)
658 {
659 u32 i;
660
661 if (!error) {
662 IPW_ERROR("Error allocating and capturing error log. "
663 "Nothing to dump.\n");
664 return;
665 }
666
667 IPW_ERROR("Start IPW Error Log Dump:\n");
668 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669 error->status, error->config);
670
671 for (i = 0; i < error->elem_len; i++)
672 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
673 ipw_error_desc(error->elem[i].desc),
674 error->elem[i].time,
675 error->elem[i].blink1,
676 error->elem[i].blink2,
677 error->elem[i].link1,
678 error->elem[i].link2, error->elem[i].data);
679 for (i = 0; i < error->log_len; i++)
680 IPW_ERROR("%i\t0x%08x\t%i\n",
681 error->log[i].time,
682 error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687 return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692 u32 addr, field_info, field_len, field_count, total_len;
693
694 IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696 if (!priv || !val || !len) {
697 IPW_DEBUG_ORD("Invalid argument\n");
698 return -EINVAL;
699 }
700
701 /* verify device ordinal tables have been initialized */
702 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704 return -EINVAL;
705 }
706
707 switch (IPW_ORD_TABLE_ID_MASK & ord) {
708 case IPW_ORD_TABLE_0_MASK:
709 /*
710 * TABLE 0: Direct access to a table of 32 bit values
711 *
712 * This is a very simple table with the data directly
713 * read from the table
714 */
715
716 /* remove the table id from the ordinal */
717 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719 /* boundary check */
720 if (ord > priv->table0_len) {
721 IPW_DEBUG_ORD("ordinal value (%i) longer then "
722 "max (%i)\n", ord, priv->table0_len);
723 return -EINVAL;
724 }
725
726 /* verify we have enough room to store the value */
727 if (*len < sizeof(u32)) {
728 IPW_DEBUG_ORD("ordinal buffer length too small, "
729 "need %zd\n", sizeof(u32));
730 return -EINVAL;
731 }
732
733 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734 ord, priv->table0_addr + (ord << 2));
735
736 *len = sizeof(u32);
737 ord <<= 2;
738 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739 break;
740
741 case IPW_ORD_TABLE_1_MASK:
742 /*
743 * TABLE 1: Indirect access to a table of 32 bit values
744 *
745 * This is a fairly large table of u32 values each
746 * representing starting addr for the data (which is
747 * also a u32)
748 */
749
750 /* remove the table id from the ordinal */
751 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753 /* boundary check */
754 if (ord > priv->table1_len) {
755 IPW_DEBUG_ORD("ordinal value too long\n");
756 return -EINVAL;
757 }
758
759 /* verify we have enough room to store the value */
760 if (*len < sizeof(u32)) {
761 IPW_DEBUG_ORD("ordinal buffer length too small, "
762 "need %zd\n", sizeof(u32));
763 return -EINVAL;
764 }
765
766 *((u32 *) val) =
767 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768 *len = sizeof(u32);
769 break;
770
771 case IPW_ORD_TABLE_2_MASK:
772 /*
773 * TABLE 2: Indirect access to a table of variable sized values
774 *
775 * This table consist of six values, each containing
776 * - dword containing the starting offset of the data
777 * - dword containing the lengh in the first 16bits
778 * and the count in the second 16bits
779 */
780
781 /* remove the table id from the ordinal */
782 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784 /* boundary check */
785 if (ord > priv->table2_len) {
786 IPW_DEBUG_ORD("ordinal value too long\n");
787 return -EINVAL;
788 }
789
790 /* get the address of statistic */
791 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793 /* get the second DW of statistics ;
794 * two 16-bit words - first is length, second is count */
795 field_info =
796 ipw_read_reg32(priv,
797 priv->table2_addr + (ord << 3) +
798 sizeof(u32));
799
800 /* get each entry length */
801 field_len = *((u16 *) & field_info);
802
803 /* get number of entries */
804 field_count = *(((u16 *) & field_info) + 1);
805
806 /* abort if not enough memory */
807 total_len = field_len * field_count;
808 if (total_len > *len) {
809 *len = total_len;
810 return -EINVAL;
811 }
812
813 *len = total_len;
814 if (!total_len)
815 return 0;
816
817 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818 "field_info = 0x%08x\n",
819 addr, total_len, field_info);
820 ipw_read_indirect(priv, addr, val, total_len);
821 break;
822
823 default:
824 IPW_DEBUG_ORD("Invalid ordinal!\n");
825 return -EINVAL;
826
827 }
828
829 return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835 priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838 priv->table0_addr, priv->table0_len);
839
840 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844 priv->table1_addr, priv->table1_len);
845
846 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848 priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851 priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857 reg &= ~IPW_START_STANDBY;
858 if (reg & IPW_GATE_ODMA)
859 reg &= ~IPW_GATE_ODMA;
860 if (reg & IPW_GATE_IDMA)
861 reg &= ~IPW_GATE_IDMA;
862 if (reg & IPW_GATE_ADMA)
863 reg &= ~IPW_GATE_ADMA;
864 return reg;
865 }
866
867 /*
868 * LED behavior:
869 * - On radio ON, turn on any LEDs that require to be on during start
870 * - On initialization, start unassociated blink
871 * - On association, disable unassociated blink
872 * - On disassociation, start unassociated blink
873 * - On radio OFF, turn off any LEDs started during radio on
874 *
875 */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882 unsigned long flags;
883 u32 led;
884
885 /* If configured to not use LEDs, or nic_type is 1,
886 * then we don't toggle a LINK led */
887 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888 return;
889
890 spin_lock_irqsave(&priv->lock, flags);
891
892 if (!(priv->status & STATUS_RF_KILL_MASK) &&
893 !(priv->status & STATUS_LED_LINK_ON)) {
894 IPW_DEBUG_LED("Link LED On\n");
895 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896 led |= priv->led_association_on;
897
898 led = ipw_register_toggle(led);
899
900 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903 priv->status |= STATUS_LED_LINK_ON;
904
905 /* If we aren't associated, schedule turning the LED off */
906 if (!(priv->status & STATUS_ASSOCIATED))
907 schedule_delayed_work(&priv->led_link_off,
908 LD_TIME_LINK_ON);
909 }
910
911 spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916 struct ipw_priv *priv =
917 container_of(work, struct ipw_priv, led_link_on.work);
918 mutex_lock(&priv->mutex);
919 ipw_led_link_on(priv);
920 mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925 unsigned long flags;
926 u32 led;
927
928 /* If configured not to use LEDs, or nic type is 1,
929 * then we don't goggle the LINK led. */
930 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931 return;
932
933 spin_lock_irqsave(&priv->lock, flags);
934
935 if (priv->status & STATUS_LED_LINK_ON) {
936 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937 led &= priv->led_association_off;
938 led = ipw_register_toggle(led);
939
940 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943 IPW_DEBUG_LED("Link LED Off\n");
944
945 priv->status &= ~STATUS_LED_LINK_ON;
946
947 /* If we aren't associated and the radio is on, schedule
948 * turning the LED on (blink while unassociated) */
949 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950 !(priv->status & STATUS_ASSOCIATED))
951 schedule_delayed_work(&priv->led_link_on,
952 LD_TIME_LINK_OFF);
953
954 }
955
956 spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961 struct ipw_priv *priv =
962 container_of(work, struct ipw_priv, led_link_off.work);
963 mutex_lock(&priv->mutex);
964 ipw_led_link_off(priv);
965 mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970 u32 led;
971
972 if (priv->config & CFG_NO_LED)
973 return;
974
975 if (priv->status & STATUS_RF_KILL_MASK)
976 return;
977
978 if (!(priv->status & STATUS_LED_ACT_ON)) {
979 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980 led |= priv->led_activity_on;
981
982 led = ipw_register_toggle(led);
983
984 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987 IPW_DEBUG_LED("Activity LED On\n");
988
989 priv->status |= STATUS_LED_ACT_ON;
990
991 cancel_delayed_work(&priv->led_act_off);
992 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993 } else {
994 /* Reschedule LED off for full time period */
995 cancel_delayed_work(&priv->led_act_off);
996 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997 }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003 unsigned long flags;
1004 spin_lock_irqsave(&priv->lock, flags);
1005 __ipw_led_activity_on(priv);
1006 spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif /* 0 */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012 unsigned long flags;
1013 u32 led;
1014
1015 if (priv->config & CFG_NO_LED)
1016 return;
1017
1018 spin_lock_irqsave(&priv->lock, flags);
1019
1020 if (priv->status & STATUS_LED_ACT_ON) {
1021 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022 led &= priv->led_activity_off;
1023
1024 led = ipw_register_toggle(led);
1025
1026 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031 priv->status &= ~STATUS_LED_ACT_ON;
1032 }
1033
1034 spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039 struct ipw_priv *priv =
1040 container_of(work, struct ipw_priv, led_act_off.work);
1041 mutex_lock(&priv->mutex);
1042 ipw_led_activity_off(priv);
1043 mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048 unsigned long flags;
1049 u32 led;
1050
1051 /* Only nic type 1 supports mode LEDs */
1052 if (priv->config & CFG_NO_LED ||
1053 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054 return;
1055
1056 spin_lock_irqsave(&priv->lock, flags);
1057
1058 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059 if (priv->assoc_network->mode == IEEE_A) {
1060 led |= priv->led_ofdm_on;
1061 led &= priv->led_association_off;
1062 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063 } else if (priv->assoc_network->mode == IEEE_G) {
1064 led |= priv->led_ofdm_on;
1065 led |= priv->led_association_on;
1066 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067 } else {
1068 led &= priv->led_ofdm_off;
1069 led |= priv->led_association_on;
1070 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071 }
1072
1073 led = ipw_register_toggle(led);
1074
1075 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078 spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083 unsigned long flags;
1084 u32 led;
1085
1086 /* Only nic type 1 supports mode LEDs */
1087 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088 return;
1089
1090 spin_lock_irqsave(&priv->lock, flags);
1091
1092 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093 led &= priv->led_ofdm_off;
1094 led &= priv->led_association_off;
1095
1096 led = ipw_register_toggle(led);
1097
1098 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101 spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106 ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111 ipw_led_activity_off(priv);
1112 ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117 /* Set the Link Led on for all nic types */
1118 ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123 ipw_led_activity_off(priv);
1124 ipw_led_link_off(priv);
1125
1126 if (priv->status & STATUS_RF_KILL_MASK)
1127 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134 /* Set the default PINs for the link and activity leds */
1135 priv->led_activity_on = IPW_ACTIVITY_LED;
1136 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138 priv->led_association_on = IPW_ASSOCIATED_LED;
1139 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141 /* Set the default PINs for the OFDM leds */
1142 priv->led_ofdm_on = IPW_OFDM_LED;
1143 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145 switch (priv->nic_type) {
1146 case EEPROM_NIC_TYPE_1:
1147 /* In this NIC type, the LEDs are reversed.... */
1148 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150 priv->led_association_on = IPW_ACTIVITY_LED;
1151 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153 if (!(priv->config & CFG_NO_LED))
1154 ipw_led_band_on(priv);
1155
1156 /* And we don't blink link LEDs for this nic, so
1157 * just return here */
1158 return;
1159
1160 case EEPROM_NIC_TYPE_3:
1161 case EEPROM_NIC_TYPE_2:
1162 case EEPROM_NIC_TYPE_4:
1163 case EEPROM_NIC_TYPE_0:
1164 break;
1165
1166 default:
1167 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168 priv->nic_type);
1169 priv->nic_type = EEPROM_NIC_TYPE_0;
1170 break;
1171 }
1172
1173 if (!(priv->config & CFG_NO_LED)) {
1174 if (priv->status & STATUS_ASSOCIATED)
1175 ipw_led_link_on(priv);
1176 else
1177 ipw_led_link_off(priv);
1178 }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183 ipw_led_activity_off(priv);
1184 ipw_led_link_off(priv);
1185 ipw_led_band_off(priv);
1186 cancel_delayed_work(&priv->led_link_on);
1187 cancel_delayed_work(&priv->led_link_off);
1188 cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192 * The following adds a new attribute to the sysfs representation
1193 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194 * used for controlling the debug level.
1195 *
1196 * See the level definitions in ipw for details.
1197 */
1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199 {
1200 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204 size_t count)
1205 {
1206 char *p = (char *)buf;
1207 u32 val;
1208
1209 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210 p++;
1211 if (p[0] == 'x' || p[0] == 'X')
1212 p++;
1213 val = simple_strtoul(p, &p, 16);
1214 } else
1215 val = simple_strtoul(p, &p, 10);
1216 if (p == buf)
1217 printk(KERN_INFO DRV_NAME
1218 ": %s is not in hex or decimal form.\n", buf);
1219 else
1220 ipw_debug_level = val;
1221
1222 return strnlen(buf, count);
1223 }
1224
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226 show_debug_level, store_debug_level);
1227
1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229 {
1230 /* length = 1st dword in log */
1231 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232 }
1233
1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235 u32 log_len, struct ipw_event *log)
1236 {
1237 u32 base;
1238
1239 if (log_len) {
1240 base = ipw_read32(priv, IPW_EVENT_LOG);
1241 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242 (u8 *) log, sizeof(*log) * log_len);
1243 }
1244 }
1245
1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247 {
1248 struct ipw_fw_error *error;
1249 u32 log_len = ipw_get_event_log_len(priv);
1250 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251 u32 elem_len = ipw_read_reg32(priv, base);
1252
1253 error = kmalloc(sizeof(*error) +
1254 sizeof(*error->elem) * elem_len +
1255 sizeof(*error->log) * log_len, GFP_ATOMIC);
1256 if (!error) {
1257 IPW_ERROR("Memory allocation for firmware error log "
1258 "failed.\n");
1259 return NULL;
1260 }
1261 error->jiffies = jiffies;
1262 error->status = priv->status;
1263 error->config = priv->config;
1264 error->elem_len = elem_len;
1265 error->log_len = log_len;
1266 error->elem = (struct ipw_error_elem *)error->payload;
1267 error->log = (struct ipw_event *)(error->elem + elem_len);
1268
1269 ipw_capture_event_log(priv, log_len, error->log);
1270
1271 if (elem_len)
1272 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273 sizeof(*error->elem) * elem_len);
1274
1275 return error;
1276 }
1277
1278 static ssize_t show_event_log(struct device *d,
1279 struct device_attribute *attr, char *buf)
1280 {
1281 struct ipw_priv *priv = dev_get_drvdata(d);
1282 u32 log_len = ipw_get_event_log_len(priv);
1283 u32 log_size;
1284 struct ipw_event *log;
1285 u32 len = 0, i;
1286
1287 /* not using min() because of its strict type checking */
1288 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289 sizeof(*log) * log_len : PAGE_SIZE;
1290 log = kzalloc(log_size, GFP_KERNEL);
1291 if (!log) {
1292 IPW_ERROR("Unable to allocate memory for log\n");
1293 return 0;
1294 }
1295 log_len = log_size / sizeof(*log);
1296 ipw_capture_event_log(priv, log_len, log);
1297
1298 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299 for (i = 0; i < log_len; i++)
1300 len += snprintf(buf + len, PAGE_SIZE - len,
1301 "\n%08X%08X%08X",
1302 log[i].time, log[i].event, log[i].data);
1303 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304 kfree(log);
1305 return len;
1306 }
1307
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309
1310 static ssize_t show_error(struct device *d,
1311 struct device_attribute *attr, char *buf)
1312 {
1313 struct ipw_priv *priv = dev_get_drvdata(d);
1314 u32 len = 0, i;
1315 if (!priv->error)
1316 return 0;
1317 len += snprintf(buf + len, PAGE_SIZE - len,
1318 "%08lX%08X%08X%08X",
1319 priv->error->jiffies,
1320 priv->error->status,
1321 priv->error->config, priv->error->elem_len);
1322 for (i = 0; i < priv->error->elem_len; i++)
1323 len += snprintf(buf + len, PAGE_SIZE - len,
1324 "\n%08X%08X%08X%08X%08X%08X%08X",
1325 priv->error->elem[i].time,
1326 priv->error->elem[i].desc,
1327 priv->error->elem[i].blink1,
1328 priv->error->elem[i].blink2,
1329 priv->error->elem[i].link1,
1330 priv->error->elem[i].link2,
1331 priv->error->elem[i].data);
1332
1333 len += snprintf(buf + len, PAGE_SIZE - len,
1334 "\n%08X", priv->error->log_len);
1335 for (i = 0; i < priv->error->log_len; i++)
1336 len += snprintf(buf + len, PAGE_SIZE - len,
1337 "\n%08X%08X%08X",
1338 priv->error->log[i].time,
1339 priv->error->log[i].event,
1340 priv->error->log[i].data);
1341 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342 return len;
1343 }
1344
1345 static ssize_t clear_error(struct device *d,
1346 struct device_attribute *attr,
1347 const char *buf, size_t count)
1348 {
1349 struct ipw_priv *priv = dev_get_drvdata(d);
1350
1351 kfree(priv->error);
1352 priv->error = NULL;
1353 return count;
1354 }
1355
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357
1358 static ssize_t show_cmd_log(struct device *d,
1359 struct device_attribute *attr, char *buf)
1360 {
1361 struct ipw_priv *priv = dev_get_drvdata(d);
1362 u32 len = 0, i;
1363 if (!priv->cmdlog)
1364 return 0;
1365 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1367 i = (i + 1) % priv->cmdlog_len) {
1368 len +=
1369 snprintf(buf + len, PAGE_SIZE - len,
1370 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372 priv->cmdlog[i].cmd.len);
1373 len +=
1374 snprintk_buf(buf + len, PAGE_SIZE - len,
1375 (u8 *) priv->cmdlog[i].cmd.param,
1376 priv->cmdlog[i].cmd.len);
1377 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378 }
1379 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380 return len;
1381 }
1382
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
1388 static ssize_t store_rtap_iface(struct device *d,
1389 struct device_attribute *attr,
1390 const char *buf, size_t count)
1391 {
1392 struct ipw_priv *priv = dev_get_drvdata(d);
1393 int rc = 0;
1394
1395 if (count < 1)
1396 return -EINVAL;
1397
1398 switch (buf[0]) {
1399 case '0':
1400 if (!rtap_iface)
1401 return count;
1402
1403 if (netif_running(priv->prom_net_dev)) {
1404 IPW_WARNING("Interface is up. Cannot unregister.\n");
1405 return count;
1406 }
1407
1408 ipw_prom_free(priv);
1409 rtap_iface = 0;
1410 break;
1411
1412 case '1':
1413 if (rtap_iface)
1414 return count;
1415
1416 rc = ipw_prom_alloc(priv);
1417 if (!rc)
1418 rtap_iface = 1;
1419 break;
1420
1421 default:
1422 return -EINVAL;
1423 }
1424
1425 if (rc) {
1426 IPW_ERROR("Failed to register promiscuous network "
1427 "device (error %d).\n", rc);
1428 }
1429
1430 return count;
1431 }
1432
1433 static ssize_t show_rtap_iface(struct device *d,
1434 struct device_attribute *attr,
1435 char *buf)
1436 {
1437 struct ipw_priv *priv = dev_get_drvdata(d);
1438 if (rtap_iface)
1439 return sprintf(buf, "%s", priv->prom_net_dev->name);
1440 else {
1441 buf[0] = '-';
1442 buf[1] = '1';
1443 buf[2] = '\0';
1444 return 3;
1445 }
1446 }
1447
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449 store_rtap_iface);
1450
1451 static ssize_t store_rtap_filter(struct device *d,
1452 struct device_attribute *attr,
1453 const char *buf, size_t count)
1454 {
1455 struct ipw_priv *priv = dev_get_drvdata(d);
1456
1457 if (!priv->prom_priv) {
1458 IPW_ERROR("Attempting to set filter without "
1459 "rtap_iface enabled.\n");
1460 return -EPERM;
1461 }
1462
1463 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464
1465 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466 BIT_ARG16(priv->prom_priv->filter));
1467
1468 return count;
1469 }
1470
1471 static ssize_t show_rtap_filter(struct device *d,
1472 struct device_attribute *attr,
1473 char *buf)
1474 {
1475 struct ipw_priv *priv = dev_get_drvdata(d);
1476 return sprintf(buf, "0x%04X",
1477 priv->prom_priv ? priv->prom_priv->filter : 0);
1478 }
1479
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481 store_rtap_filter);
1482 #endif
1483
1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485 char *buf)
1486 {
1487 struct ipw_priv *priv = dev_get_drvdata(d);
1488 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489 }
1490
1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492 const char *buf, size_t count)
1493 {
1494 struct ipw_priv *priv = dev_get_drvdata(d);
1495 struct net_device *dev = priv->net_dev;
1496 char buffer[] = "00000000";
1497 unsigned long len =
1498 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499 unsigned long val;
1500 char *p = buffer;
1501
1502 IPW_DEBUG_INFO("enter\n");
1503
1504 strncpy(buffer, buf, len);
1505 buffer[len] = 0;
1506
1507 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508 p++;
1509 if (p[0] == 'x' || p[0] == 'X')
1510 p++;
1511 val = simple_strtoul(p, &p, 16);
1512 } else
1513 val = simple_strtoul(p, &p, 10);
1514 if (p == buffer) {
1515 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516 } else {
1517 priv->ieee->scan_age = val;
1518 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519 }
1520
1521 IPW_DEBUG_INFO("exit\n");
1522 return len;
1523 }
1524
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526
1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528 char *buf)
1529 {
1530 struct ipw_priv *priv = dev_get_drvdata(d);
1531 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532 }
1533
1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535 const char *buf, size_t count)
1536 {
1537 struct ipw_priv *priv = dev_get_drvdata(d);
1538
1539 IPW_DEBUG_INFO("enter\n");
1540
1541 if (count == 0)
1542 return 0;
1543
1544 if (*buf == 0) {
1545 IPW_DEBUG_LED("Disabling LED control.\n");
1546 priv->config |= CFG_NO_LED;
1547 ipw_led_shutdown(priv);
1548 } else {
1549 IPW_DEBUG_LED("Enabling LED control.\n");
1550 priv->config &= ~CFG_NO_LED;
1551 ipw_led_init(priv);
1552 }
1553
1554 IPW_DEBUG_INFO("exit\n");
1555 return count;
1556 }
1557
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559
1560 static ssize_t show_status(struct device *d,
1561 struct device_attribute *attr, char *buf)
1562 {
1563 struct ipw_priv *p = dev_get_drvdata(d);
1564 return sprintf(buf, "0x%08x\n", (int)p->status);
1565 }
1566
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568
1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570 char *buf)
1571 {
1572 struct ipw_priv *p = dev_get_drvdata(d);
1573 return sprintf(buf, "0x%08x\n", (int)p->config);
1574 }
1575
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577
1578 static ssize_t show_nic_type(struct device *d,
1579 struct device_attribute *attr, char *buf)
1580 {
1581 struct ipw_priv *priv = dev_get_drvdata(d);
1582 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583 }
1584
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586
1587 static ssize_t show_ucode_version(struct device *d,
1588 struct device_attribute *attr, char *buf)
1589 {
1590 u32 len = sizeof(u32), tmp = 0;
1591 struct ipw_priv *p = dev_get_drvdata(d);
1592
1593 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594 return 0;
1595
1596 return sprintf(buf, "0x%08x\n", tmp);
1597 }
1598
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600
1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602 char *buf)
1603 {
1604 u32 len = sizeof(u32), tmp = 0;
1605 struct ipw_priv *p = dev_get_drvdata(d);
1606
1607 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608 return 0;
1609
1610 return sprintf(buf, "0x%08x\n", tmp);
1611 }
1612
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614
1615 /*
1616 * Add a device attribute to view/control the delay between eeprom
1617 * operations.
1618 */
1619 static ssize_t show_eeprom_delay(struct device *d,
1620 struct device_attribute *attr, char *buf)
1621 {
1622 struct ipw_priv *p = dev_get_drvdata(d);
1623 int n = p->eeprom_delay;
1624 return sprintf(buf, "%i\n", n);
1625 }
1626 static ssize_t store_eeprom_delay(struct device *d,
1627 struct device_attribute *attr,
1628 const char *buf, size_t count)
1629 {
1630 struct ipw_priv *p = dev_get_drvdata(d);
1631 sscanf(buf, "%i", &p->eeprom_delay);
1632 return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636 show_eeprom_delay, store_eeprom_delay);
1637
1638 static ssize_t show_command_event_reg(struct device *d,
1639 struct device_attribute *attr, char *buf)
1640 {
1641 u32 reg = 0;
1642 struct ipw_priv *p = dev_get_drvdata(d);
1643
1644 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645 return sprintf(buf, "0x%08x\n", reg);
1646 }
1647 static ssize_t store_command_event_reg(struct device *d,
1648 struct device_attribute *attr,
1649 const char *buf, size_t count)
1650 {
1651 u32 reg;
1652 struct ipw_priv *p = dev_get_drvdata(d);
1653
1654 sscanf(buf, "%x", &reg);
1655 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656 return strnlen(buf, count);
1657 }
1658
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660 show_command_event_reg, store_command_event_reg);
1661
1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663 struct device_attribute *attr, char *buf)
1664 {
1665 u32 reg = 0;
1666 struct ipw_priv *p = dev_get_drvdata(d);
1667
1668 reg = ipw_read_reg32(p, 0x301100);
1669 return sprintf(buf, "0x%08x\n", reg);
1670 }
1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672 struct device_attribute *attr,
1673 const char *buf, size_t count)
1674 {
1675 u32 reg;
1676 struct ipw_priv *p = dev_get_drvdata(d);
1677
1678 sscanf(buf, "%x", &reg);
1679 ipw_write_reg32(p, 0x301100, reg);
1680 return strnlen(buf, count);
1681 }
1682
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684 show_mem_gpio_reg, store_mem_gpio_reg);
1685
1686 static ssize_t show_indirect_dword(struct device *d,
1687 struct device_attribute *attr, char *buf)
1688 {
1689 u32 reg = 0;
1690 struct ipw_priv *priv = dev_get_drvdata(d);
1691
1692 if (priv->status & STATUS_INDIRECT_DWORD)
1693 reg = ipw_read_reg32(priv, priv->indirect_dword);
1694 else
1695 reg = 0;
1696
1697 return sprintf(buf, "0x%08x\n", reg);
1698 }
1699 static ssize_t store_indirect_dword(struct device *d,
1700 struct device_attribute *attr,
1701 const char *buf, size_t count)
1702 {
1703 struct ipw_priv *priv = dev_get_drvdata(d);
1704
1705 sscanf(buf, "%x", &priv->indirect_dword);
1706 priv->status |= STATUS_INDIRECT_DWORD;
1707 return strnlen(buf, count);
1708 }
1709
1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711 show_indirect_dword, store_indirect_dword);
1712
1713 static ssize_t show_indirect_byte(struct device *d,
1714 struct device_attribute *attr, char *buf)
1715 {
1716 u8 reg = 0;
1717 struct ipw_priv *priv = dev_get_drvdata(d);
1718
1719 if (priv->status & STATUS_INDIRECT_BYTE)
1720 reg = ipw_read_reg8(priv, priv->indirect_byte);
1721 else
1722 reg = 0;
1723
1724 return sprintf(buf, "0x%02x\n", reg);
1725 }
1726 static ssize_t store_indirect_byte(struct device *d,
1727 struct device_attribute *attr,
1728 const char *buf, size_t count)
1729 {
1730 struct ipw_priv *priv = dev_get_drvdata(d);
1731
1732 sscanf(buf, "%x", &priv->indirect_byte);
1733 priv->status |= STATUS_INDIRECT_BYTE;
1734 return strnlen(buf, count);
1735 }
1736
1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738 show_indirect_byte, store_indirect_byte);
1739
1740 static ssize_t show_direct_dword(struct device *d,
1741 struct device_attribute *attr, char *buf)
1742 {
1743 u32 reg = 0;
1744 struct ipw_priv *priv = dev_get_drvdata(d);
1745
1746 if (priv->status & STATUS_DIRECT_DWORD)
1747 reg = ipw_read32(priv, priv->direct_dword);
1748 else
1749 reg = 0;
1750
1751 return sprintf(buf, "0x%08x\n", reg);
1752 }
1753 static ssize_t store_direct_dword(struct device *d,
1754 struct device_attribute *attr,
1755 const char *buf, size_t count)
1756 {
1757 struct ipw_priv *priv = dev_get_drvdata(d);
1758
1759 sscanf(buf, "%x", &priv->direct_dword);
1760 priv->status |= STATUS_DIRECT_DWORD;
1761 return strnlen(buf, count);
1762 }
1763
1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765 show_direct_dword, store_direct_dword);
1766
1767 static int rf_kill_active(struct ipw_priv *priv)
1768 {
1769 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770 priv->status |= STATUS_RF_KILL_HW;
1771 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772 } else {
1773 priv->status &= ~STATUS_RF_KILL_HW;
1774 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775 }
1776
1777 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778 }
1779
1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781 char *buf)
1782 {
1783 /* 0 - RF kill not enabled
1784 1 - SW based RF kill active (sysfs)
1785 2 - HW based RF kill active
1786 3 - Both HW and SW baed RF kill active */
1787 struct ipw_priv *priv = dev_get_drvdata(d);
1788 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789 (rf_kill_active(priv) ? 0x2 : 0x0);
1790 return sprintf(buf, "%i\n", val);
1791 }
1792
1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794 {
1795 if ((disable_radio ? 1 : 0) ==
1796 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797 return 0;
1798
1799 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1800 disable_radio ? "OFF" : "ON");
1801
1802 if (disable_radio) {
1803 priv->status |= STATUS_RF_KILL_SW;
1804
1805 cancel_delayed_work(&priv->request_scan);
1806 cancel_delayed_work(&priv->request_direct_scan);
1807 cancel_delayed_work(&priv->request_passive_scan);
1808 cancel_delayed_work(&priv->scan_event);
1809 schedule_work(&priv->down);
1810 } else {
1811 priv->status &= ~STATUS_RF_KILL_SW;
1812 if (rf_kill_active(priv)) {
1813 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814 "disabled by HW switch\n");
1815 /* Make sure the RF_KILL check timer is running */
1816 cancel_delayed_work(&priv->rf_kill);
1817 schedule_delayed_work(&priv->rf_kill,
1818 round_jiffies_relative(2 * HZ));
1819 } else
1820 schedule_work(&priv->up);
1821 }
1822
1823 return 1;
1824 }
1825
1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827 const char *buf, size_t count)
1828 {
1829 struct ipw_priv *priv = dev_get_drvdata(d);
1830
1831 ipw_radio_kill_sw(priv, buf[0] == '1');
1832
1833 return count;
1834 }
1835
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837
1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839 char *buf)
1840 {
1841 struct ipw_priv *priv = dev_get_drvdata(d);
1842 int pos = 0, len = 0;
1843 if (priv->config & CFG_SPEED_SCAN) {
1844 while (priv->speed_scan[pos] != 0)
1845 len += sprintf(&buf[len], "%d ",
1846 priv->speed_scan[pos++]);
1847 return len + sprintf(&buf[len], "\n");
1848 }
1849
1850 return sprintf(buf, "0\n");
1851 }
1852
1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854 const char *buf, size_t count)
1855 {
1856 struct ipw_priv *priv = dev_get_drvdata(d);
1857 int channel, pos = 0;
1858 const char *p = buf;
1859
1860 /* list of space separated channels to scan, optionally ending with 0 */
1861 while ((channel = simple_strtol(p, NULL, 0))) {
1862 if (pos == MAX_SPEED_SCAN - 1) {
1863 priv->speed_scan[pos] = 0;
1864 break;
1865 }
1866
1867 if (libipw_is_valid_channel(priv->ieee, channel))
1868 priv->speed_scan[pos++] = channel;
1869 else
1870 IPW_WARNING("Skipping invalid channel request: %d\n",
1871 channel);
1872 p = strchr(p, ' ');
1873 if (!p)
1874 break;
1875 while (*p == ' ' || *p == '\t')
1876 p++;
1877 }
1878
1879 if (pos == 0)
1880 priv->config &= ~CFG_SPEED_SCAN;
1881 else {
1882 priv->speed_scan_pos = 0;
1883 priv->config |= CFG_SPEED_SCAN;
1884 }
1885
1886 return count;
1887 }
1888
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890 store_speed_scan);
1891
1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893 char *buf)
1894 {
1895 struct ipw_priv *priv = dev_get_drvdata(d);
1896 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897 }
1898
1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900 const char *buf, size_t count)
1901 {
1902 struct ipw_priv *priv = dev_get_drvdata(d);
1903 if (buf[0] == '1')
1904 priv->config |= CFG_NET_STATS;
1905 else
1906 priv->config &= ~CFG_NET_STATS;
1907
1908 return count;
1909 }
1910
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912 show_net_stats, store_net_stats);
1913
1914 static ssize_t show_channels(struct device *d,
1915 struct device_attribute *attr,
1916 char *buf)
1917 {
1918 struct ipw_priv *priv = dev_get_drvdata(d);
1919 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920 int len = 0, i;
1921
1922 len = sprintf(&buf[len],
1923 "Displaying %d channels in 2.4Ghz band "
1924 "(802.11bg):\n", geo->bg_channels);
1925
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928 geo->bg[i].channel,
1929 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930 " (radar spectrum)" : "",
1931 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933 ? "" : ", IBSS",
1934 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935 "passive only" : "active/passive",
1936 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937 "B" : "B/G");
1938 }
1939
1940 len += sprintf(&buf[len],
1941 "Displaying %d channels in 5.2Ghz band "
1942 "(802.11a):\n", geo->a_channels);
1943 for (i = 0; i < geo->a_channels; i++) {
1944 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945 geo->a[i].channel,
1946 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947 " (radar spectrum)" : "",
1948 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950 ? "" : ", IBSS",
1951 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952 "passive only" : "active/passive");
1953 }
1954
1955 return len;
1956 }
1957
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959
1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1961 {
1962 union iwreq_data wrqu;
1963 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964 if (priv->status & STATUS_ASSOCIATED)
1965 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966 else
1967 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1968 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969 }
1970
1971 static void ipw_irq_tasklet(struct ipw_priv *priv)
1972 {
1973 u32 inta, inta_mask, handled = 0;
1974 unsigned long flags;
1975 int rc = 0;
1976
1977 spin_lock_irqsave(&priv->irq_lock, flags);
1978
1979 inta = ipw_read32(priv, IPW_INTA_RW);
1980 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1981
1982 if (inta == 0xFFFFFFFF) {
1983 /* Hardware disappeared */
1984 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985 /* Only handle the cached INTA values */
1986 inta = 0;
1987 }
1988 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1989
1990 /* Add any cached INTA values that need to be handled */
1991 inta |= priv->isr_inta;
1992
1993 spin_unlock_irqrestore(&priv->irq_lock, flags);
1994
1995 spin_lock_irqsave(&priv->lock, flags);
1996
1997 /* handle all the justifications for the interrupt */
1998 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999 ipw_rx(priv);
2000 handled |= IPW_INTA_BIT_RX_TRANSFER;
2001 }
2002
2003 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004 IPW_DEBUG_HC("Command completed.\n");
2005 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006 priv->status &= ~STATUS_HCMD_ACTIVE;
2007 wake_up_interruptible(&priv->wait_command_queue);
2008 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2009 }
2010
2011 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012 IPW_DEBUG_TX("TX_QUEUE_1\n");
2013 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2015 }
2016
2017 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018 IPW_DEBUG_TX("TX_QUEUE_2\n");
2019 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2021 }
2022
2023 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024 IPW_DEBUG_TX("TX_QUEUE_3\n");
2025 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2027 }
2028
2029 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030 IPW_DEBUG_TX("TX_QUEUE_4\n");
2031 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2033 }
2034
2035 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036 IPW_WARNING("STATUS_CHANGE\n");
2037 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2038 }
2039
2040 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2041 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2043 }
2044
2045 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2046 IPW_WARNING("HOST_CMD_DONE\n");
2047 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2048 }
2049
2050 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2051 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2053 }
2054
2055 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2056 IPW_WARNING("PHY_OFF_DONE\n");
2057 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2058 }
2059
2060 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062 priv->status |= STATUS_RF_KILL_HW;
2063 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2064 wake_up_interruptible(&priv->wait_command_queue);
2065 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066 cancel_delayed_work(&priv->request_scan);
2067 cancel_delayed_work(&priv->request_direct_scan);
2068 cancel_delayed_work(&priv->request_passive_scan);
2069 cancel_delayed_work(&priv->scan_event);
2070 schedule_work(&priv->link_down);
2071 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2073 }
2074
2075 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076 IPW_WARNING("Firmware error detected. Restarting.\n");
2077 if (priv->error) {
2078 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080 struct ipw_fw_error *error =
2081 ipw_alloc_error_log(priv);
2082 ipw_dump_error_log(priv, error);
2083 kfree(error);
2084 }
2085 } else {
2086 priv->error = ipw_alloc_error_log(priv);
2087 if (priv->error)
2088 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089 else
2090 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091 "log.\n");
2092 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093 ipw_dump_error_log(priv, priv->error);
2094 }
2095
2096 /* XXX: If hardware encryption is for WPA/WPA2,
2097 * we have to notify the supplicant. */
2098 if (priv->ieee->sec.encrypt) {
2099 priv->status &= ~STATUS_ASSOCIATED;
2100 notify_wx_assoc_event(priv);
2101 }
2102
2103 /* Keep the restart process from trying to send host
2104 * commands by clearing the INIT status bit */
2105 priv->status &= ~STATUS_INIT;
2106
2107 /* Cancel currently queued command. */
2108 priv->status &= ~STATUS_HCMD_ACTIVE;
2109 wake_up_interruptible(&priv->wait_command_queue);
2110
2111 schedule_work(&priv->adapter_restart);
2112 handled |= IPW_INTA_BIT_FATAL_ERROR;
2113 }
2114
2115 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116 IPW_ERROR("Parity error\n");
2117 handled |= IPW_INTA_BIT_PARITY_ERROR;
2118 }
2119
2120 if (handled != inta) {
2121 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2122 }
2123
2124 spin_unlock_irqrestore(&priv->lock, flags);
2125
2126 /* enable all interrupts */
2127 ipw_enable_interrupts(priv);
2128 }
2129
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131 static char *get_cmd_string(u8 cmd)
2132 {
2133 switch (cmd) {
2134 IPW_CMD(HOST_COMPLETE);
2135 IPW_CMD(POWER_DOWN);
2136 IPW_CMD(SYSTEM_CONFIG);
2137 IPW_CMD(MULTICAST_ADDRESS);
2138 IPW_CMD(SSID);
2139 IPW_CMD(ADAPTER_ADDRESS);
2140 IPW_CMD(PORT_TYPE);
2141 IPW_CMD(RTS_THRESHOLD);
2142 IPW_CMD(FRAG_THRESHOLD);
2143 IPW_CMD(POWER_MODE);
2144 IPW_CMD(WEP_KEY);
2145 IPW_CMD(TGI_TX_KEY);
2146 IPW_CMD(SCAN_REQUEST);
2147 IPW_CMD(SCAN_REQUEST_EXT);
2148 IPW_CMD(ASSOCIATE);
2149 IPW_CMD(SUPPORTED_RATES);
2150 IPW_CMD(SCAN_ABORT);
2151 IPW_CMD(TX_FLUSH);
2152 IPW_CMD(QOS_PARAMETERS);
2153 IPW_CMD(DINO_CONFIG);
2154 IPW_CMD(RSN_CAPABILITIES);
2155 IPW_CMD(RX_KEY);
2156 IPW_CMD(CARD_DISABLE);
2157 IPW_CMD(SEED_NUMBER);
2158 IPW_CMD(TX_POWER);
2159 IPW_CMD(COUNTRY_INFO);
2160 IPW_CMD(AIRONET_INFO);
2161 IPW_CMD(AP_TX_POWER);
2162 IPW_CMD(CCKM_INFO);
2163 IPW_CMD(CCX_VER_INFO);
2164 IPW_CMD(SET_CALIBRATION);
2165 IPW_CMD(SENSITIVITY_CALIB);
2166 IPW_CMD(RETRY_LIMIT);
2167 IPW_CMD(IPW_PRE_POWER_DOWN);
2168 IPW_CMD(VAP_BEACON_TEMPLATE);
2169 IPW_CMD(VAP_DTIM_PERIOD);
2170 IPW_CMD(EXT_SUPPORTED_RATES);
2171 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172 IPW_CMD(VAP_QUIET_INTERVALS);
2173 IPW_CMD(VAP_CHANNEL_SWITCH);
2174 IPW_CMD(VAP_MANDATORY_CHANNELS);
2175 IPW_CMD(VAP_CELL_PWR_LIMIT);
2176 IPW_CMD(VAP_CF_PARAM_SET);
2177 IPW_CMD(VAP_SET_BEACONING_STATE);
2178 IPW_CMD(MEASUREMENT);
2179 IPW_CMD(POWER_CAPABILITY);
2180 IPW_CMD(SUPPORTED_CHANNELS);
2181 IPW_CMD(TPC_REPORT);
2182 IPW_CMD(WME_INFO);
2183 IPW_CMD(PRODUCTION_COMMAND);
2184 default:
2185 return "UNKNOWN";
2186 }
2187 }
2188
2189 #define HOST_COMPLETE_TIMEOUT HZ
2190
2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2192 {
2193 int rc = 0;
2194 unsigned long flags;
2195 unsigned long now, end;
2196
2197 spin_lock_irqsave(&priv->lock, flags);
2198 if (priv->status & STATUS_HCMD_ACTIVE) {
2199 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200 get_cmd_string(cmd->cmd));
2201 spin_unlock_irqrestore(&priv->lock, flags);
2202 return -EAGAIN;
2203 }
2204
2205 priv->status |= STATUS_HCMD_ACTIVE;
2206
2207 if (priv->cmdlog) {
2208 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212 cmd->len);
2213 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2214 }
2215
2216 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218 priv->status);
2219
2220 #ifndef DEBUG_CMD_WEP_KEY
2221 if (cmd->cmd == IPW_CMD_WEP_KEY)
2222 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223 else
2224 #endif
2225 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2226
2227 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228 if (rc) {
2229 priv->status &= ~STATUS_HCMD_ACTIVE;
2230 IPW_ERROR("Failed to send %s: Reason %d\n",
2231 get_cmd_string(cmd->cmd), rc);
2232 spin_unlock_irqrestore(&priv->lock, flags);
2233 goto exit;
2234 }
2235 spin_unlock_irqrestore(&priv->lock, flags);
2236
2237 now = jiffies;
2238 end = now + HOST_COMPLETE_TIMEOUT;
2239 again:
2240 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2241 !(priv->
2242 status & STATUS_HCMD_ACTIVE),
2243 end - now);
2244 if (rc < 0) {
2245 now = jiffies;
2246 if (time_before(now, end))
2247 goto again;
2248 rc = 0;
2249 }
2250
2251 if (rc == 0) {
2252 spin_lock_irqsave(&priv->lock, flags);
2253 if (priv->status & STATUS_HCMD_ACTIVE) {
2254 IPW_ERROR("Failed to send %s: Command timed out.\n",
2255 get_cmd_string(cmd->cmd));
2256 priv->status &= ~STATUS_HCMD_ACTIVE;
2257 spin_unlock_irqrestore(&priv->lock, flags);
2258 rc = -EIO;
2259 goto exit;
2260 }
2261 spin_unlock_irqrestore(&priv->lock, flags);
2262 } else
2263 rc = 0;
2264
2265 if (priv->status & STATUS_RF_KILL_HW) {
2266 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267 get_cmd_string(cmd->cmd));
2268 rc = -EIO;
2269 goto exit;
2270 }
2271
2272 exit:
2273 if (priv->cmdlog) {
2274 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275 priv->cmdlog_pos %= priv->cmdlog_len;
2276 }
2277 return rc;
2278 }
2279
2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2281 {
2282 struct host_cmd cmd = {
2283 .cmd = command,
2284 };
2285
2286 return __ipw_send_cmd(priv, &cmd);
2287 }
2288
2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290 void *data)
2291 {
2292 struct host_cmd cmd = {
2293 .cmd = command,
2294 .len = len,
2295 .param = data,
2296 };
2297
2298 return __ipw_send_cmd(priv, &cmd);
2299 }
2300
2301 static int ipw_send_host_complete(struct ipw_priv *priv)
2302 {
2303 if (!priv) {
2304 IPW_ERROR("Invalid args\n");
2305 return -1;
2306 }
2307
2308 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2309 }
2310
2311 static int ipw_send_system_config(struct ipw_priv *priv)
2312 {
2313 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314 sizeof(priv->sys_config),
2315 &priv->sys_config);
2316 }
2317
2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2319 {
2320 if (!priv || !ssid) {
2321 IPW_ERROR("Invalid args\n");
2322 return -1;
2323 }
2324
2325 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326 ssid);
2327 }
2328
2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2330 {
2331 if (!priv || !mac) {
2332 IPW_ERROR("Invalid args\n");
2333 return -1;
2334 }
2335
2336 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337 priv->net_dev->name, mac);
2338
2339 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2340 }
2341
2342 static void ipw_adapter_restart(void *adapter)
2343 {
2344 struct ipw_priv *priv = adapter;
2345
2346 if (priv->status & STATUS_RF_KILL_MASK)
2347 return;
2348
2349 ipw_down(priv);
2350
2351 if (priv->assoc_network &&
2352 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353 ipw_remove_current_network(priv);
2354
2355 if (ipw_up(priv)) {
2356 IPW_ERROR("Failed to up device\n");
2357 return;
2358 }
2359 }
2360
2361 static void ipw_bg_adapter_restart(struct work_struct *work)
2362 {
2363 struct ipw_priv *priv =
2364 container_of(work, struct ipw_priv, adapter_restart);
2365 mutex_lock(&priv->mutex);
2366 ipw_adapter_restart(priv);
2367 mutex_unlock(&priv->mutex);
2368 }
2369
2370 static void ipw_abort_scan(struct ipw_priv *priv);
2371
2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2373
2374 static void ipw_scan_check(void *data)
2375 {
2376 struct ipw_priv *priv = data;
2377
2378 if (priv->status & STATUS_SCAN_ABORTING) {
2379 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380 "adapter after (%dms).\n",
2381 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2382 schedule_work(&priv->adapter_restart);
2383 } else if (priv->status & STATUS_SCANNING) {
2384 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385 "after (%dms).\n",
2386 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2387 ipw_abort_scan(priv);
2388 schedule_delayed_work(&priv->scan_check, HZ);
2389 }
2390 }
2391
2392 static void ipw_bg_scan_check(struct work_struct *work)
2393 {
2394 struct ipw_priv *priv =
2395 container_of(work, struct ipw_priv, scan_check.work);
2396 mutex_lock(&priv->mutex);
2397 ipw_scan_check(priv);
2398 mutex_unlock(&priv->mutex);
2399 }
2400
2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402 struct ipw_scan_request_ext *request)
2403 {
2404 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405 sizeof(*request), request);
2406 }
2407
2408 static int ipw_send_scan_abort(struct ipw_priv *priv)
2409 {
2410 if (!priv) {
2411 IPW_ERROR("Invalid args\n");
2412 return -1;
2413 }
2414
2415 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2416 }
2417
2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2419 {
2420 struct ipw_sensitivity_calib calib = {
2421 .beacon_rssi_raw = cpu_to_le16(sens),
2422 };
2423
2424 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425 &calib);
2426 }
2427
2428 static int ipw_send_associate(struct ipw_priv *priv,
2429 struct ipw_associate *associate)
2430 {
2431 if (!priv || !associate) {
2432 IPW_ERROR("Invalid args\n");
2433 return -1;
2434 }
2435
2436 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437 associate);
2438 }
2439
2440 static int ipw_send_supported_rates(struct ipw_priv *priv,
2441 struct ipw_supported_rates *rates)
2442 {
2443 if (!priv || !rates) {
2444 IPW_ERROR("Invalid args\n");
2445 return -1;
2446 }
2447
2448 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449 rates);
2450 }
2451
2452 static int ipw_set_random_seed(struct ipw_priv *priv)
2453 {
2454 u32 val;
2455
2456 if (!priv) {
2457 IPW_ERROR("Invalid args\n");
2458 return -1;
2459 }
2460
2461 get_random_bytes(&val, sizeof(val));
2462
2463 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2464 }
2465
2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2467 {
2468 __le32 v = cpu_to_le32(phy_off);
2469 if (!priv) {
2470 IPW_ERROR("Invalid args\n");
2471 return -1;
2472 }
2473
2474 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2475 }
2476
2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2478 {
2479 if (!priv || !power) {
2480 IPW_ERROR("Invalid args\n");
2481 return -1;
2482 }
2483
2484 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2485 }
2486
2487 static int ipw_set_tx_power(struct ipw_priv *priv)
2488 {
2489 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490 struct ipw_tx_power tx_power;
2491 s8 max_power;
2492 int i;
2493
2494 memset(&tx_power, 0, sizeof(tx_power));
2495
2496 /* configure device for 'G' band */
2497 tx_power.ieee_mode = IPW_G_MODE;
2498 tx_power.num_channels = geo->bg_channels;
2499 for (i = 0; i < geo->bg_channels; i++) {
2500 max_power = geo->bg[i].max_power;
2501 tx_power.channels_tx_power[i].channel_number =
2502 geo->bg[i].channel;
2503 tx_power.channels_tx_power[i].tx_power = max_power ?
2504 min(max_power, priv->tx_power) : priv->tx_power;
2505 }
2506 if (ipw_send_tx_power(priv, &tx_power))
2507 return -EIO;
2508
2509 /* configure device to also handle 'B' band */
2510 tx_power.ieee_mode = IPW_B_MODE;
2511 if (ipw_send_tx_power(priv, &tx_power))
2512 return -EIO;
2513
2514 /* configure device to also handle 'A' band */
2515 if (priv->ieee->abg_true) {
2516 tx_power.ieee_mode = IPW_A_MODE;
2517 tx_power.num_channels = geo->a_channels;
2518 for (i = 0; i < tx_power.num_channels; i++) {
2519 max_power = geo->a[i].max_power;
2520 tx_power.channels_tx_power[i].channel_number =
2521 geo->a[i].channel;
2522 tx_power.channels_tx_power[i].tx_power = max_power ?
2523 min(max_power, priv->tx_power) : priv->tx_power;
2524 }
2525 if (ipw_send_tx_power(priv, &tx_power))
2526 return -EIO;
2527 }
2528 return 0;
2529 }
2530
2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2532 {
2533 struct ipw_rts_threshold rts_threshold = {
2534 .rts_threshold = cpu_to_le16(rts),
2535 };
2536
2537 if (!priv) {
2538 IPW_ERROR("Invalid args\n");
2539 return -1;
2540 }
2541
2542 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543 sizeof(rts_threshold), &rts_threshold);
2544 }
2545
2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2547 {
2548 struct ipw_frag_threshold frag_threshold = {
2549 .frag_threshold = cpu_to_le16(frag),
2550 };
2551
2552 if (!priv) {
2553 IPW_ERROR("Invalid args\n");
2554 return -1;
2555 }
2556
2557 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558 sizeof(frag_threshold), &frag_threshold);
2559 }
2560
2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2562 {
2563 __le32 param;
2564
2565 if (!priv) {
2566 IPW_ERROR("Invalid args\n");
2567 return -1;
2568 }
2569
2570 /* If on battery, set to 3, if AC set to CAM, else user
2571 * level */
2572 switch (mode) {
2573 case IPW_POWER_BATTERY:
2574 param = cpu_to_le32(IPW_POWER_INDEX_3);
2575 break;
2576 case IPW_POWER_AC:
2577 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2578 break;
2579 default:
2580 param = cpu_to_le32(mode);
2581 break;
2582 }
2583
2584 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585 &param);
2586 }
2587
2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2589 {
2590 struct ipw_retry_limit retry_limit = {
2591 .short_retry_limit = slimit,
2592 .long_retry_limit = llimit
2593 };
2594
2595 if (!priv) {
2596 IPW_ERROR("Invalid args\n");
2597 return -1;
2598 }
2599
2600 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601 &retry_limit);
2602 }
2603
2604 /*
2605 * The IPW device contains a Microwire compatible EEPROM that stores
2606 * various data like the MAC address. Usually the firmware has exclusive
2607 * access to the eeprom, but during device initialization (before the
2608 * device driver has sent the HostComplete command to the firmware) the
2609 * device driver has read access to the EEPROM by way of indirect addressing
2610 * through a couple of memory mapped registers.
2611 *
2612 * The following is a simplified implementation for pulling data out of the
2613 * the eeprom, along with some helper functions to find information in
2614 * the per device private data's copy of the eeprom.
2615 *
2616 * NOTE: To better understand how these functions work (i.e what is a chip
2617 * select and why do have to keep driving the eeprom clock?), read
2618 * just about any data sheet for a Microwire compatible EEPROM.
2619 */
2620
2621 /* write a 32 bit value into the indirect accessor register */
2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2623 {
2624 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2625
2626 /* the eeprom requires some time to complete the operation */
2627 udelay(p->eeprom_delay);
2628 }
2629
2630 /* perform a chip select operation */
2631 static void eeprom_cs(struct ipw_priv *priv)
2632 {
2633 eeprom_write_reg(priv, 0);
2634 eeprom_write_reg(priv, EEPROM_BIT_CS);
2635 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636 eeprom_write_reg(priv, EEPROM_BIT_CS);
2637 }
2638
2639 /* perform a chip select operation */
2640 static void eeprom_disable_cs(struct ipw_priv *priv)
2641 {
2642 eeprom_write_reg(priv, EEPROM_BIT_CS);
2643 eeprom_write_reg(priv, 0);
2644 eeprom_write_reg(priv, EEPROM_BIT_SK);
2645 }
2646
2647 /* push a single bit down to the eeprom */
2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2649 {
2650 int d = (bit ? EEPROM_BIT_DI : 0);
2651 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2653 }
2654
2655 /* push an opcode followed by an address down to the eeprom */
2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2657 {
2658 int i;
2659
2660 eeprom_cs(priv);
2661 eeprom_write_bit(priv, 1);
2662 eeprom_write_bit(priv, op & 2);
2663 eeprom_write_bit(priv, op & 1);
2664 for (i = 7; i >= 0; i--) {
2665 eeprom_write_bit(priv, addr & (1 << i));
2666 }
2667 }
2668
2669 /* pull 16 bits off the eeprom, one bit at a time */
2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2671 {
2672 int i;
2673 u16 r = 0;
2674
2675 /* Send READ Opcode */
2676 eeprom_op(priv, EEPROM_CMD_READ, addr);
2677
2678 /* Send dummy bit */
2679 eeprom_write_reg(priv, EEPROM_BIT_CS);
2680
2681 /* Read the byte off the eeprom one bit at a time */
2682 for (i = 0; i < 16; i++) {
2683 u32 data = 0;
2684 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685 eeprom_write_reg(priv, EEPROM_BIT_CS);
2686 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2687 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2688 }
2689
2690 /* Send another dummy bit */
2691 eeprom_write_reg(priv, 0);
2692 eeprom_disable_cs(priv);
2693
2694 return r;
2695 }
2696
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data */
2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2700 {
2701 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2702 }
2703
2704 /*
2705 * Either the device driver (i.e. the host) or the firmware can
2706 * load eeprom data into the designated region in SRAM. If neither
2707 * happens then the FW will shutdown with a fatal error.
2708 *
2709 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2710 * bit needs region of shared SRAM needs to be non-zero.
2711 */
2712 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2713 {
2714 int i;
2715 __le16 *eeprom = (__le16 *) priv->eeprom;
2716
2717 IPW_DEBUG_TRACE(">>\n");
2718
2719 /* read entire contents of eeprom into private buffer */
2720 for (i = 0; i < 128; i++)
2721 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2722
2723 /*
2724 If the data looks correct, then copy it to our private
2725 copy. Otherwise let the firmware know to perform the operation
2726 on its own.
2727 */
2728 if (priv->eeprom[EEPROM_VERSION] != 0) {
2729 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2730
2731 /* write the eeprom data to sram */
2732 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2733 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2734
2735 /* Do not load eeprom data on fatal error or suspend */
2736 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2737 } else {
2738 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2739
2740 /* Load eeprom data on fatal error or suspend */
2741 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2742 }
2743
2744 IPW_DEBUG_TRACE("<<\n");
2745 }
2746
2747 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2748 {
2749 count >>= 2;
2750 if (!count)
2751 return;
2752 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2753 while (count--)
2754 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2755 }
2756
2757 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2758 {
2759 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2760 CB_NUMBER_OF_ELEMENTS_SMALL *
2761 sizeof(struct command_block));
2762 }
2763
2764 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2765 { /* start dma engine but no transfers yet */
2766
2767 IPW_DEBUG_FW(">> :\n");
2768
2769 /* Start the dma */
2770 ipw_fw_dma_reset_command_blocks(priv);
2771
2772 /* Write CB base address */
2773 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2774
2775 IPW_DEBUG_FW("<< :\n");
2776 return 0;
2777 }
2778
2779 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2780 {
2781 u32 control = 0;
2782
2783 IPW_DEBUG_FW(">> :\n");
2784
2785 /* set the Stop and Abort bit */
2786 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2787 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2788 priv->sram_desc.last_cb_index = 0;
2789
2790 IPW_DEBUG_FW("<<\n");
2791 }
2792
2793 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2794 struct command_block *cb)
2795 {
2796 u32 address =
2797 IPW_SHARED_SRAM_DMA_CONTROL +
2798 (sizeof(struct command_block) * index);
2799 IPW_DEBUG_FW(">> :\n");
2800
2801 ipw_write_indirect(priv, address, (u8 *) cb,
2802 (int)sizeof(struct command_block));
2803
2804 IPW_DEBUG_FW("<< :\n");
2805 return 0;
2806
2807 }
2808
2809 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2810 {
2811 u32 control = 0;
2812 u32 index = 0;
2813
2814 IPW_DEBUG_FW(">> :\n");
2815
2816 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2817 ipw_fw_dma_write_command_block(priv, index,
2818 &priv->sram_desc.cb_list[index]);
2819
2820 /* Enable the DMA in the CSR register */
2821 ipw_clear_bit(priv, IPW_RESET_REG,
2822 IPW_RESET_REG_MASTER_DISABLED |
2823 IPW_RESET_REG_STOP_MASTER);
2824
2825 /* Set the Start bit. */
2826 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2827 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2828
2829 IPW_DEBUG_FW("<< :\n");
2830 return 0;
2831 }
2832
2833 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2834 {
2835 u32 address;
2836 u32 register_value = 0;
2837 u32 cb_fields_address = 0;
2838
2839 IPW_DEBUG_FW(">> :\n");
2840 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2841 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2842
2843 /* Read the DMA Controlor register */
2844 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2845 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2846
2847 /* Print the CB values */
2848 cb_fields_address = address;
2849 register_value = ipw_read_reg32(priv, cb_fields_address);
2850 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2851
2852 cb_fields_address += sizeof(u32);
2853 register_value = ipw_read_reg32(priv, cb_fields_address);
2854 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2855
2856 cb_fields_address += sizeof(u32);
2857 register_value = ipw_read_reg32(priv, cb_fields_address);
2858 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2859 register_value);
2860
2861 cb_fields_address += sizeof(u32);
2862 register_value = ipw_read_reg32(priv, cb_fields_address);
2863 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2864
2865 IPW_DEBUG_FW(">> :\n");
2866 }
2867
2868 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2869 {
2870 u32 current_cb_address = 0;
2871 u32 current_cb_index = 0;
2872
2873 IPW_DEBUG_FW("<< :\n");
2874 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2875
2876 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2877 sizeof(struct command_block);
2878
2879 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2880 current_cb_index, current_cb_address);
2881
2882 IPW_DEBUG_FW(">> :\n");
2883 return current_cb_index;
2884
2885 }
2886
2887 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2888 u32 src_address,
2889 u32 dest_address,
2890 u32 length,
2891 int interrupt_enabled, int is_last)
2892 {
2893
2894 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2895 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2896 CB_DEST_SIZE_LONG;
2897 struct command_block *cb;
2898 u32 last_cb_element = 0;
2899
2900 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2901 src_address, dest_address, length);
2902
2903 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2904 return -1;
2905
2906 last_cb_element = priv->sram_desc.last_cb_index;
2907 cb = &priv->sram_desc.cb_list[last_cb_element];
2908 priv->sram_desc.last_cb_index++;
2909
2910 /* Calculate the new CB control word */
2911 if (interrupt_enabled)
2912 control |= CB_INT_ENABLED;
2913
2914 if (is_last)
2915 control |= CB_LAST_VALID;
2916
2917 control |= length;
2918
2919 /* Calculate the CB Element's checksum value */
2920 cb->status = control ^ src_address ^ dest_address;
2921
2922 /* Copy the Source and Destination addresses */
2923 cb->dest_addr = dest_address;
2924 cb->source_addr = src_address;
2925
2926 /* Copy the Control Word last */
2927 cb->control = control;
2928
2929 return 0;
2930 }
2931
2932 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2933 int nr, u32 dest_address, u32 len)
2934 {
2935 int ret, i;
2936 u32 size;
2937
2938 IPW_DEBUG_FW(">>\n");
2939 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2940 nr, dest_address, len);
2941
2942 for (i = 0; i < nr; i++) {
2943 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2944 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2945 dest_address +
2946 i * CB_MAX_LENGTH, size,
2947 0, 0);
2948 if (ret) {
2949 IPW_DEBUG_FW_INFO(": Failed\n");
2950 return -1;
2951 } else
2952 IPW_DEBUG_FW_INFO(": Added new cb\n");
2953 }
2954
2955 IPW_DEBUG_FW("<<\n");
2956 return 0;
2957 }
2958
2959 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2960 {
2961 u32 current_index = 0, previous_index;
2962 u32 watchdog = 0;
2963
2964 IPW_DEBUG_FW(">> :\n");
2965
2966 current_index = ipw_fw_dma_command_block_index(priv);
2967 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2968 (int)priv->sram_desc.last_cb_index);
2969
2970 while (current_index < priv->sram_desc.last_cb_index) {
2971 udelay(50);
2972 previous_index = current_index;
2973 current_index = ipw_fw_dma_command_block_index(priv);
2974
2975 if (previous_index < current_index) {
2976 watchdog = 0;
2977 continue;
2978 }
2979 if (++watchdog > 400) {
2980 IPW_DEBUG_FW_INFO("Timeout\n");
2981 ipw_fw_dma_dump_command_block(priv);
2982 ipw_fw_dma_abort(priv);
2983 return -1;
2984 }
2985 }
2986
2987 ipw_fw_dma_abort(priv);
2988
2989 /*Disable the DMA in the CSR register */
2990 ipw_set_bit(priv, IPW_RESET_REG,
2991 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2992
2993 IPW_DEBUG_FW("<< dmaWaitSync\n");
2994 return 0;
2995 }
2996
2997 static void ipw_remove_current_network(struct ipw_priv *priv)
2998 {
2999 struct list_head *element, *safe;
3000 struct libipw_network *network = NULL;
3001 unsigned long flags;
3002
3003 spin_lock_irqsave(&priv->ieee->lock, flags);
3004 list_for_each_safe(element, safe, &priv->ieee->network_list) {
3005 network = list_entry(element, struct libipw_network, list);
3006 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
3007 list_del(element);
3008 list_add_tail(&network->list,
3009 &priv->ieee->network_free_list);
3010 }
3011 }
3012 spin_unlock_irqrestore(&priv->ieee->lock, flags);
3013 }
3014
3015 /**
3016 * Check that card is still alive.
3017 * Reads debug register from domain0.
3018 * If card is present, pre-defined value should
3019 * be found there.
3020 *
3021 * @param priv
3022 * @return 1 if card is present, 0 otherwise
3023 */
3024 static inline int ipw_alive(struct ipw_priv *priv)
3025 {
3026 return ipw_read32(priv, 0x90) == 0xd55555d5;
3027 }
3028
3029 /* timeout in msec, attempted in 10-msec quanta */
3030 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3031 int timeout)
3032 {
3033 int i = 0;
3034
3035 do {
3036 if ((ipw_read32(priv, addr) & mask) == mask)
3037 return i;
3038 mdelay(10);
3039 i += 10;
3040 } while (i < timeout);
3041
3042 return -ETIME;
3043 }
3044
3045 /* These functions load the firmware and micro code for the operation of
3046 * the ipw hardware. It assumes the buffer has all the bits for the
3047 * image and the caller is handling the memory allocation and clean up.
3048 */
3049
3050 static int ipw_stop_master(struct ipw_priv *priv)
3051 {
3052 int rc;
3053
3054 IPW_DEBUG_TRACE(">>\n");
3055 /* stop master. typical delay - 0 */
3056 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3057
3058 /* timeout is in msec, polled in 10-msec quanta */
3059 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3060 IPW_RESET_REG_MASTER_DISABLED, 100);
3061 if (rc < 0) {
3062 IPW_ERROR("wait for stop master failed after 100ms\n");
3063 return -1;
3064 }
3065
3066 IPW_DEBUG_INFO("stop master %dms\n", rc);
3067
3068 return rc;
3069 }
3070
3071 static void ipw_arc_release(struct ipw_priv *priv)
3072 {
3073 IPW_DEBUG_TRACE(">>\n");
3074 mdelay(5);
3075
3076 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3077
3078 /* no one knows timing, for safety add some delay */
3079 mdelay(5);
3080 }
3081
3082 struct fw_chunk {
3083 __le32 address;
3084 __le32 length;
3085 };
3086
3087 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3088 {
3089 int rc = 0, i, addr;
3090 u8 cr = 0;
3091 __le16 *image;
3092
3093 image = (__le16 *) data;
3094
3095 IPW_DEBUG_TRACE(">>\n");
3096
3097 rc = ipw_stop_master(priv);
3098
3099 if (rc < 0)
3100 return rc;
3101
3102 for (addr = IPW_SHARED_LOWER_BOUND;
3103 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3104 ipw_write32(priv, addr, 0);
3105 }
3106
3107 /* no ucode (yet) */
3108 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3109 /* destroy DMA queues */
3110 /* reset sequence */
3111
3112 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3113 ipw_arc_release(priv);
3114 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3115 mdelay(1);
3116
3117 /* reset PHY */
3118 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3119 mdelay(1);
3120
3121 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3122 mdelay(1);
3123
3124 /* enable ucode store */
3125 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3126 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3127 mdelay(1);
3128
3129 /* write ucode */
3130 /**
3131 * @bug
3132 * Do NOT set indirect address register once and then
3133 * store data to indirect data register in the loop.
3134 * It seems very reasonable, but in this case DINO do not
3135 * accept ucode. It is essential to set address each time.
3136 */
3137 /* load new ipw uCode */
3138 for (i = 0; i < len / 2; i++)
3139 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3140 le16_to_cpu(image[i]));
3141
3142 /* enable DINO */
3143 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3144 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3145
3146 /* this is where the igx / win driver deveates from the VAP driver. */
3147
3148 /* wait for alive response */
3149 for (i = 0; i < 100; i++) {
3150 /* poll for incoming data */
3151 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3152 if (cr & DINO_RXFIFO_DATA)
3153 break;
3154 mdelay(1);
3155 }
3156
3157 if (cr & DINO_RXFIFO_DATA) {
3158 /* alive_command_responce size is NOT multiple of 4 */
3159 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3160
3161 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3162 response_buffer[i] =
3163 cpu_to_le32(ipw_read_reg32(priv,
3164 IPW_BASEBAND_RX_FIFO_READ));
3165 memcpy(&priv->dino_alive, response_buffer,
3166 sizeof(priv->dino_alive));
3167 if (priv->dino_alive.alive_command == 1
3168 && priv->dino_alive.ucode_valid == 1) {
3169 rc = 0;
3170 IPW_DEBUG_INFO
3171 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3172 "of %02d/%02d/%02d %02d:%02d\n",
3173 priv->dino_alive.software_revision,
3174 priv->dino_alive.software_revision,
3175 priv->dino_alive.device_identifier,
3176 priv->dino_alive.device_identifier,
3177 priv->dino_alive.time_stamp[0],
3178 priv->dino_alive.time_stamp[1],
3179 priv->dino_alive.time_stamp[2],
3180 priv->dino_alive.time_stamp[3],
3181 priv->dino_alive.time_stamp[4]);
3182 } else {
3183 IPW_DEBUG_INFO("Microcode is not alive\n");
3184 rc = -EINVAL;
3185 }
3186 } else {
3187 IPW_DEBUG_INFO("No alive response from DINO\n");
3188 rc = -ETIME;
3189 }
3190
3191 /* disable DINO, otherwise for some reason
3192 firmware have problem getting alive resp. */
3193 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3194
3195 return rc;
3196 }
3197
3198 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3199 {
3200 int ret = -1;
3201 int offset = 0;
3202 struct fw_chunk *chunk;
3203 int total_nr = 0;
3204 int i;
3205 struct pci_pool *pool;
3206 void **virts;
3207 dma_addr_t *phys;
3208
3209 IPW_DEBUG_TRACE("<< :\n");
3210
3211 virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3212 GFP_KERNEL);
3213 if (!virts)
3214 return -ENOMEM;
3215
3216 phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3217 GFP_KERNEL);
3218 if (!phys) {
3219 kfree(virts);
3220 return -ENOMEM;
3221 }
3222 pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3223 if (!pool) {
3224 IPW_ERROR("pci_pool_create failed\n");
3225 kfree(phys);
3226 kfree(virts);
3227 return -ENOMEM;
3228 }
3229
3230 /* Start the Dma */
3231 ret = ipw_fw_dma_enable(priv);
3232
3233 /* the DMA is already ready this would be a bug. */
3234 BUG_ON(priv->sram_desc.last_cb_index > 0);
3235
3236 do {
3237 u32 chunk_len;
3238 u8 *start;
3239 int size;
3240 int nr = 0;
3241
3242 chunk = (struct fw_chunk *)(data + offset);
3243 offset += sizeof(struct fw_chunk);
3244 chunk_len = le32_to_cpu(chunk->length);
3245 start = data + offset;
3246
3247 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3248 for (i = 0; i < nr; i++) {
3249 virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3250 &phys[total_nr]);
3251 if (!virts[total_nr]) {
3252 ret = -ENOMEM;
3253 goto out;
3254 }
3255 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3256 CB_MAX_LENGTH);
3257 memcpy(virts[total_nr], start, size);
3258 start += size;
3259 total_nr++;
3260 /* We don't support fw chunk larger than 64*8K */
3261 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3262 }
3263
3264 /* build DMA packet and queue up for sending */
3265 /* dma to chunk->address, the chunk->length bytes from data +
3266 * offeset*/
3267 /* Dma loading */
3268 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3269 nr, le32_to_cpu(chunk->address),
3270 chunk_len);
3271 if (ret) {
3272 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3273 goto out;
3274 }
3275
3276 offset += chunk_len;
3277 } while (offset < len);
3278
3279 /* Run the DMA and wait for the answer */
3280 ret = ipw_fw_dma_kick(priv);
3281 if (ret) {
3282 IPW_ERROR("dmaKick Failed\n");
3283 goto out;
3284 }
3285
3286 ret = ipw_fw_dma_wait(priv);
3287 if (ret) {
3288 IPW_ERROR("dmaWaitSync Failed\n");
3289 goto out;
3290 }
3291 out:
3292 for (i = 0; i < total_nr; i++)
3293 pci_pool_free(pool, virts[i], phys[i]);
3294
3295 pci_pool_destroy(pool);
3296 kfree(phys);
3297 kfree(virts);
3298
3299 return ret;
3300 }
3301
3302 /* stop nic */
3303 static int ipw_stop_nic(struct ipw_priv *priv)
3304 {
3305 int rc = 0;
3306
3307 /* stop */
3308 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3309
3310 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3311 IPW_RESET_REG_MASTER_DISABLED, 500);
3312 if (rc < 0) {
3313 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3314 return rc;
3315 }
3316
3317 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3318
3319 return rc;
3320 }
3321
3322 static void ipw_start_nic(struct ipw_priv *priv)
3323 {
3324 IPW_DEBUG_TRACE(">>\n");
3325
3326 /* prvHwStartNic release ARC */
3327 ipw_clear_bit(priv, IPW_RESET_REG,
3328 IPW_RESET_REG_MASTER_DISABLED |
3329 IPW_RESET_REG_STOP_MASTER |
3330 CBD_RESET_REG_PRINCETON_RESET);
3331
3332 /* enable power management */
3333 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3334 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3335
3336 IPW_DEBUG_TRACE("<<\n");
3337 }
3338
3339 static int ipw_init_nic(struct ipw_priv *priv)
3340 {
3341 int rc;
3342
3343 IPW_DEBUG_TRACE(">>\n");
3344 /* reset */
3345 /*prvHwInitNic */
3346 /* set "initialization complete" bit to move adapter to D0 state */
3347 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3348
3349 /* low-level PLL activation */
3350 ipw_write32(priv, IPW_READ_INT_REGISTER,
3351 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3352
3353 /* wait for clock stabilization */
3354 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3355 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3356 if (rc < 0)
3357 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3358
3359 /* assert SW reset */
3360 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3361
3362 udelay(10);
3363
3364 /* set "initialization complete" bit to move adapter to D0 state */
3365 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3366
3367 IPW_DEBUG_TRACE(">>\n");
3368 return 0;
3369 }
3370
3371 /* Call this function from process context, it will sleep in request_firmware.
3372 * Probe is an ok place to call this from.
3373 */
3374 static int ipw_reset_nic(struct ipw_priv *priv)
3375 {
3376 int rc = 0;
3377 unsigned long flags;
3378
3379 IPW_DEBUG_TRACE(">>\n");
3380
3381 rc = ipw_init_nic(priv);
3382
3383 spin_lock_irqsave(&priv->lock, flags);
3384 /* Clear the 'host command active' bit... */
3385 priv->status &= ~STATUS_HCMD_ACTIVE;
3386 wake_up_interruptible(&priv->wait_command_queue);
3387 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3388 wake_up_interruptible(&priv->wait_state);
3389 spin_unlock_irqrestore(&priv->lock, flags);
3390
3391 IPW_DEBUG_TRACE("<<\n");
3392 return rc;
3393 }
3394
3395
3396 struct ipw_fw {
3397 __le32 ver;
3398 __le32 boot_size;
3399 __le32 ucode_size;
3400 __le32 fw_size;
3401 u8 data[0];
3402 };
3403
3404 static int ipw_get_fw(struct ipw_priv *priv,
3405 const struct firmware **raw, const char *name)
3406 {
3407 struct ipw_fw *fw;
3408 int rc;
3409
3410 /* ask firmware_class module to get the boot firmware off disk */
3411 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3412 if (rc < 0) {
3413 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3414 return rc;
3415 }
3416
3417 if ((*raw)->size < sizeof(*fw)) {
3418 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3419 return -EINVAL;
3420 }
3421
3422 fw = (void *)(*raw)->data;
3423
3424 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3425 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3426 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3427 name, (*raw)->size);
3428 return -EINVAL;
3429 }
3430
3431 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3432 name,
3433 le32_to_cpu(fw->ver) >> 16,
3434 le32_to_cpu(fw->ver) & 0xff,
3435 (*raw)->size - sizeof(*fw));
3436 return 0;
3437 }
3438
3439 #define IPW_RX_BUF_SIZE (3000)
3440
3441 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3442 struct ipw_rx_queue *rxq)
3443 {
3444 unsigned long flags;
3445 int i;
3446
3447 spin_lock_irqsave(&rxq->lock, flags);
3448
3449 INIT_LIST_HEAD(&rxq->rx_free);
3450 INIT_LIST_HEAD(&rxq->rx_used);
3451
3452 /* Fill the rx_used queue with _all_ of the Rx buffers */
3453 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3454 /* In the reset function, these buffers may have been allocated
3455 * to an SKB, so we need to unmap and free potential storage */
3456 if (rxq->pool[i].skb != NULL) {
3457 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3458 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3459 dev_kfree_skb(rxq->pool[i].skb);
3460 rxq->pool[i].skb = NULL;
3461 }
3462 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3463 }
3464
3465 /* Set us so that we have processed and used all buffers, but have
3466 * not restocked the Rx queue with fresh buffers */
3467 rxq->read = rxq->write = 0;
3468 rxq->free_count = 0;
3469 spin_unlock_irqrestore(&rxq->lock, flags);
3470 }
3471
3472 #ifdef CONFIG_PM
3473 static int fw_loaded = 0;
3474 static const struct firmware *raw = NULL;
3475
3476 static void free_firmware(void)
3477 {
3478 if (fw_loaded) {
3479 release_firmware(raw);
3480 raw = NULL;
3481 fw_loaded = 0;
3482 }
3483 }
3484 #else
3485 #define free_firmware() do {} while (0)
3486 #endif
3487
3488 static int ipw_load(struct ipw_priv *priv)
3489 {
3490 #ifndef CONFIG_PM
3491 const struct firmware *raw = NULL;
3492 #endif
3493 struct ipw_fw *fw;
3494 u8 *boot_img, *ucode_img, *fw_img;
3495 u8 *name = NULL;
3496 int rc = 0, retries = 3;
3497
3498 switch (priv->ieee->iw_mode) {
3499 case IW_MODE_ADHOC:
3500 name = "ipw2200-ibss.fw";
3501 break;
3502 #ifdef CONFIG_IPW2200_MONITOR
3503 case IW_MODE_MONITOR:
3504 name = "ipw2200-sniffer.fw";
3505 break;
3506 #endif
3507 case IW_MODE_INFRA:
3508 name = "ipw2200-bss.fw";
3509 break;
3510 }
3511
3512 if (!name) {
3513 rc = -EINVAL;
3514 goto error;
3515 }
3516
3517 #ifdef CONFIG_PM
3518 if (!fw_loaded) {
3519 #endif
3520 rc = ipw_get_fw(priv, &raw, name);
3521 if (rc < 0)
3522 goto error;
3523 #ifdef CONFIG_PM
3524 }
3525 #endif
3526
3527 fw = (void *)raw->data;
3528 boot_img = &fw->data[0];
3529 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3530 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3531 le32_to_cpu(fw->ucode_size)];
3532
3533 if (rc < 0)
3534 goto error;
3535
3536 if (!priv->rxq)
3537 priv->rxq = ipw_rx_queue_alloc(priv);
3538 else
3539 ipw_rx_queue_reset(priv, priv->rxq);
3540 if (!priv->rxq) {
3541 IPW_ERROR("Unable to initialize Rx queue\n");
3542 goto error;
3543 }
3544
3545 retry:
3546 /* Ensure interrupts are disabled */
3547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3548 priv->status &= ~STATUS_INT_ENABLED;
3549
3550 /* ack pending interrupts */
3551 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3552
3553 ipw_stop_nic(priv);
3554
3555 rc = ipw_reset_nic(priv);
3556 if (rc < 0) {
3557 IPW_ERROR("Unable to reset NIC\n");
3558 goto error;
3559 }
3560
3561 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3562 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3563
3564 /* DMA the initial boot firmware into the device */
3565 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3566 if (rc < 0) {
3567 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3568 goto error;
3569 }
3570
3571 /* kick start the device */
3572 ipw_start_nic(priv);
3573
3574 /* wait for the device to finish its initial startup sequence */
3575 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3576 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3577 if (rc < 0) {
3578 IPW_ERROR("device failed to boot initial fw image\n");
3579 goto error;
3580 }
3581 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3582
3583 /* ack fw init done interrupt */
3584 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3585
3586 /* DMA the ucode into the device */
3587 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3588 if (rc < 0) {
3589 IPW_ERROR("Unable to load ucode: %d\n", rc);
3590 goto error;
3591 }
3592
3593 /* stop nic */
3594 ipw_stop_nic(priv);
3595
3596 /* DMA bss firmware into the device */
3597 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3598 if (rc < 0) {
3599 IPW_ERROR("Unable to load firmware: %d\n", rc);
3600 goto error;
3601 }
3602 #ifdef CONFIG_PM
3603 fw_loaded = 1;
3604 #endif
3605
3606 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3607
3608 rc = ipw_queue_reset(priv);
3609 if (rc < 0) {
3610 IPW_ERROR("Unable to initialize queues\n");
3611 goto error;
3612 }
3613
3614 /* Ensure interrupts are disabled */
3615 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3616 /* ack pending interrupts */
3617 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3618
3619 /* kick start the device */
3620 ipw_start_nic(priv);
3621
3622 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3623 if (retries > 0) {
3624 IPW_WARNING("Parity error. Retrying init.\n");
3625 retries--;
3626 goto retry;
3627 }
3628
3629 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3630 rc = -EIO;
3631 goto error;
3632 }
3633
3634 /* wait for the device */
3635 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3636 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3637 if (rc < 0) {
3638 IPW_ERROR("device failed to start within 500ms\n");
3639 goto error;
3640 }
3641 IPW_DEBUG_INFO("device response after %dms\n", rc);
3642
3643 /* ack fw init done interrupt */
3644 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3645
3646 /* read eeprom data and initialize the eeprom region of sram */
3647 priv->eeprom_delay = 1;
3648 ipw_eeprom_init_sram(priv);
3649
3650 /* enable interrupts */
3651 ipw_enable_interrupts(priv);
3652
3653 /* Ensure our queue has valid packets */
3654 ipw_rx_queue_replenish(priv);
3655
3656 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3657
3658 /* ack pending interrupts */
3659 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3660
3661 #ifndef CONFIG_PM
3662 release_firmware(raw);
3663 #endif
3664 return 0;
3665
3666 error:
3667 if (priv->rxq) {
3668 ipw_rx_queue_free(priv, priv->rxq);
3669 priv->rxq = NULL;
3670 }
3671 ipw_tx_queue_free(priv);
3672 release_firmware(raw);
3673 #ifdef CONFIG_PM
3674 fw_loaded = 0;
3675 raw = NULL;
3676 #endif
3677
3678 return rc;
3679 }
3680
3681 /**
3682 * DMA services
3683 *
3684 * Theory of operation
3685 *
3686 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3687 * 2 empty entries always kept in the buffer to protect from overflow.
3688 *
3689 * For Tx queue, there are low mark and high mark limits. If, after queuing
3690 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3691 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3692 * Tx queue resumed.
3693 *
3694 * The IPW operates with six queues, one receive queue in the device's
3695 * sram, one transmit queue for sending commands to the device firmware,
3696 * and four transmit queues for data.
3697 *
3698 * The four transmit queues allow for performing quality of service (qos)
3699 * transmissions as per the 802.11 protocol. Currently Linux does not
3700 * provide a mechanism to the user for utilizing prioritized queues, so
3701 * we only utilize the first data transmit queue (queue1).
3702 */
3703
3704 /**
3705 * Driver allocates buffers of this size for Rx
3706 */
3707
3708 /**
3709 * ipw_rx_queue_space - Return number of free slots available in queue.
3710 */
3711 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3712 {
3713 int s = q->read - q->write;
3714 if (s <= 0)
3715 s += RX_QUEUE_SIZE;
3716 /* keep some buffer to not confuse full and empty queue */
3717 s -= 2;
3718 if (s < 0)
3719 s = 0;
3720 return s;
3721 }
3722
3723 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3724 {
3725 int s = q->last_used - q->first_empty;
3726 if (s <= 0)
3727 s += q->n_bd;
3728 s -= 2; /* keep some reserve to not confuse empty and full situations */
3729 if (s < 0)
3730 s = 0;
3731 return s;
3732 }
3733
3734 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3735 {
3736 return (++index == n_bd) ? 0 : index;
3737 }
3738
3739 /**
3740 * Initialize common DMA queue structure
3741 *
3742 * @param q queue to init
3743 * @param count Number of BD's to allocate. Should be power of 2
3744 * @param read_register Address for 'read' register
3745 * (not offset within BAR, full address)
3746 * @param write_register Address for 'write' register
3747 * (not offset within BAR, full address)
3748 * @param base_register Address for 'base' register
3749 * (not offset within BAR, full address)
3750 * @param size Address for 'size' register
3751 * (not offset within BAR, full address)
3752 */
3753 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3754 int count, u32 read, u32 write, u32 base, u32 size)
3755 {
3756 q->n_bd = count;
3757
3758 q->low_mark = q->n_bd / 4;
3759 if (q->low_mark < 4)
3760 q->low_mark = 4;
3761
3762 q->high_mark = q->n_bd / 8;
3763 if (q->high_mark < 2)
3764 q->high_mark = 2;
3765
3766 q->first_empty = q->last_used = 0;
3767 q->reg_r = read;
3768 q->reg_w = write;
3769
3770 ipw_write32(priv, base, q->dma_addr);
3771 ipw_write32(priv, size, count);
3772 ipw_write32(priv, read, 0);
3773 ipw_write32(priv, write, 0);
3774
3775 _ipw_read32(priv, 0x90);
3776 }
3777
3778 static int ipw_queue_tx_init(struct ipw_priv *priv,
3779 struct clx2_tx_queue *q,
3780 int count, u32 read, u32 write, u32 base, u32 size)
3781 {
3782 struct pci_dev *dev = priv->pci_dev;
3783
3784 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3785 if (!q->txb) {
3786 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3787 return -ENOMEM;
3788 }
3789
3790 q->bd =
3791 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3792 if (!q->bd) {
3793 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3794 sizeof(q->bd[0]) * count);
3795 kfree(q->txb);
3796 q->txb = NULL;
3797 return -ENOMEM;
3798 }
3799
3800 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3801 return 0;
3802 }
3803
3804 /**
3805 * Free one TFD, those at index [txq->q.last_used].
3806 * Do NOT advance any indexes
3807 *
3808 * @param dev
3809 * @param txq
3810 */
3811 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3812 struct clx2_tx_queue *txq)
3813 {
3814 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3815 struct pci_dev *dev = priv->pci_dev;
3816 int i;
3817
3818 /* classify bd */
3819 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3820 /* nothing to cleanup after for host commands */
3821 return;
3822
3823 /* sanity check */
3824 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3825 IPW_ERROR("Too many chunks: %i\n",
3826 le32_to_cpu(bd->u.data.num_chunks));
3827 /** @todo issue fatal error, it is quite serious situation */
3828 return;
3829 }
3830
3831 /* unmap chunks if any */
3832 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3833 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3834 le16_to_cpu(bd->u.data.chunk_len[i]),
3835 PCI_DMA_TODEVICE);
3836 if (txq->txb[txq->q.last_used]) {
3837 libipw_txb_free(txq->txb[txq->q.last_used]);
3838 txq->txb[txq->q.last_used] = NULL;
3839 }
3840 }
3841 }
3842
3843 /**
3844 * Deallocate DMA queue.
3845 *
3846 * Empty queue by removing and destroying all BD's.
3847 * Free all buffers.
3848 *
3849 * @param dev
3850 * @param q
3851 */
3852 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3853 {
3854 struct clx2_queue *q = &txq->q;
3855 struct pci_dev *dev = priv->pci_dev;
3856
3857 if (q->n_bd == 0)
3858 return;
3859
3860 /* first, empty all BD's */
3861 for (; q->first_empty != q->last_used;
3862 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3863 ipw_queue_tx_free_tfd(priv, txq);
3864 }
3865
3866 /* free buffers belonging to queue itself */
3867 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3868 q->dma_addr);
3869 kfree(txq->txb);
3870
3871 /* 0 fill whole structure */
3872 memset(txq, 0, sizeof(*txq));
3873 }
3874
3875 /**
3876 * Destroy all DMA queues and structures
3877 *
3878 * @param priv
3879 */
3880 static void ipw_tx_queue_free(struct ipw_priv *priv)
3881 {
3882 /* Tx CMD queue */
3883 ipw_queue_tx_free(priv, &priv->txq_cmd);
3884
3885 /* Tx queues */
3886 ipw_queue_tx_free(priv, &priv->txq[0]);
3887 ipw_queue_tx_free(priv, &priv->txq[1]);
3888 ipw_queue_tx_free(priv, &priv->txq[2]);
3889 ipw_queue_tx_free(priv, &priv->txq[3]);
3890 }
3891
3892 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3893 {
3894 /* First 3 bytes are manufacturer */
3895 bssid[0] = priv->mac_addr[0];
3896 bssid[1] = priv->mac_addr[1];
3897 bssid[2] = priv->mac_addr[2];
3898
3899 /* Last bytes are random */
3900 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3901
3902 bssid[0] &= 0xfe; /* clear multicast bit */
3903 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3904 }
3905
3906 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3907 {
3908 struct ipw_station_entry entry;
3909 int i;
3910
3911 for (i = 0; i < priv->num_stations; i++) {
3912 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3913 /* Another node is active in network */
3914 priv->missed_adhoc_beacons = 0;
3915 if (!(priv->config & CFG_STATIC_CHANNEL))
3916 /* when other nodes drop out, we drop out */
3917 priv->config &= ~CFG_ADHOC_PERSIST;
3918
3919 return i;
3920 }
3921 }
3922
3923 if (i == MAX_STATIONS)
3924 return IPW_INVALID_STATION;
3925
3926 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3927
3928 entry.reserved = 0;
3929 entry.support_mode = 0;
3930 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3931 memcpy(priv->stations[i], bssid, ETH_ALEN);
3932 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3933 &entry, sizeof(entry));
3934 priv->num_stations++;
3935
3936 return i;
3937 }
3938
3939 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3940 {
3941 int i;
3942
3943 for (i = 0; i < priv->num_stations; i++)
3944 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3945 return i;
3946
3947 return IPW_INVALID_STATION;
3948 }
3949
3950 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3951 {
3952 int err;
3953
3954 if (priv->status & STATUS_ASSOCIATING) {
3955 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3956 schedule_work(&priv->disassociate);
3957 return;
3958 }
3959
3960 if (!(priv->status & STATUS_ASSOCIATED)) {
3961 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3962 return;
3963 }
3964
3965 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3966 "on channel %d.\n",
3967 priv->assoc_request.bssid,
3968 priv->assoc_request.channel);
3969
3970 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3971 priv->status |= STATUS_DISASSOCIATING;
3972
3973 if (quiet)
3974 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3975 else
3976 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3977
3978 err = ipw_send_associate(priv, &priv->assoc_request);
3979 if (err) {
3980 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3981 "failed.\n");
3982 return;
3983 }
3984
3985 }
3986
3987 static int ipw_disassociate(void *data)
3988 {
3989 struct ipw_priv *priv = data;
3990 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3991 return 0;
3992 ipw_send_disassociate(data, 0);
3993 netif_carrier_off(priv->net_dev);
3994 return 1;
3995 }
3996
3997 static void ipw_bg_disassociate(struct work_struct *work)
3998 {
3999 struct ipw_priv *priv =
4000 container_of(work, struct ipw_priv, disassociate);
4001 mutex_lock(&priv->mutex);
4002 ipw_disassociate(priv);
4003 mutex_unlock(&priv->mutex);
4004 }
4005
4006 static void ipw_system_config(struct work_struct *work)
4007 {
4008 struct ipw_priv *priv =
4009 container_of(work, struct ipw_priv, system_config);
4010
4011 #ifdef CONFIG_IPW2200_PROMISCUOUS
4012 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4013 priv->sys_config.accept_all_data_frames = 1;
4014 priv->sys_config.accept_non_directed_frames = 1;
4015 priv->sys_config.accept_all_mgmt_bcpr = 1;
4016 priv->sys_config.accept_all_mgmt_frames = 1;
4017 }
4018 #endif
4019
4020 ipw_send_system_config(priv);
4021 }
4022
4023 struct ipw_status_code {
4024 u16 status;
4025 const char *reason;
4026 };
4027
4028 static const struct ipw_status_code ipw_status_codes[] = {
4029 {0x00, "Successful"},
4030 {0x01, "Unspecified failure"},
4031 {0x0A, "Cannot support all requested capabilities in the "
4032 "Capability information field"},
4033 {0x0B, "Reassociation denied due to inability to confirm that "
4034 "association exists"},
4035 {0x0C, "Association denied due to reason outside the scope of this "
4036 "standard"},
4037 {0x0D,
4038 "Responding station does not support the specified authentication "
4039 "algorithm"},
4040 {0x0E,
4041 "Received an Authentication frame with authentication sequence "
4042 "transaction sequence number out of expected sequence"},
4043 {0x0F, "Authentication rejected because of challenge failure"},
4044 {0x10, "Authentication rejected due to timeout waiting for next "
4045 "frame in sequence"},
4046 {0x11, "Association denied because AP is unable to handle additional "
4047 "associated stations"},
4048 {0x12,
4049 "Association denied due to requesting station not supporting all "
4050 "of the datarates in the BSSBasicServiceSet Parameter"},
4051 {0x13,
4052 "Association denied due to requesting station not supporting "
4053 "short preamble operation"},
4054 {0x14,
4055 "Association denied due to requesting station not supporting "
4056 "PBCC encoding"},
4057 {0x15,
4058 "Association denied due to requesting station not supporting "
4059 "channel agility"},
4060 {0x19,
4061 "Association denied due to requesting station not supporting "
4062 "short slot operation"},
4063 {0x1A,
4064 "Association denied due to requesting station not supporting "
4065 "DSSS-OFDM operation"},
4066 {0x28, "Invalid Information Element"},
4067 {0x29, "Group Cipher is not valid"},
4068 {0x2A, "Pairwise Cipher is not valid"},
4069 {0x2B, "AKMP is not valid"},
4070 {0x2C, "Unsupported RSN IE version"},
4071 {0x2D, "Invalid RSN IE Capabilities"},
4072 {0x2E, "Cipher suite is rejected per security policy"},
4073 };
4074
4075 static const char *ipw_get_status_code(u16 status)
4076 {
4077 int i;
4078 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4079 if (ipw_status_codes[i].status == (status & 0xff))
4080 return ipw_status_codes[i].reason;
4081 return "Unknown status value.";
4082 }
4083
4084 static void inline average_init(struct average *avg)
4085 {
4086 memset(avg, 0, sizeof(*avg));
4087 }
4088
4089 #define DEPTH_RSSI 8
4090 #define DEPTH_NOISE 16
4091 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4092 {
4093 return ((depth-1)*prev_avg + val)/depth;
4094 }
4095
4096 static void average_add(struct average *avg, s16 val)
4097 {
4098 avg->sum -= avg->entries[avg->pos];
4099 avg->sum += val;
4100 avg->entries[avg->pos++] = val;
4101 if (unlikely(avg->pos == AVG_ENTRIES)) {
4102 avg->init = 1;
4103 avg->pos = 0;
4104 }
4105 }
4106
4107 static s16 average_value(struct average *avg)
4108 {
4109 if (!unlikely(avg->init)) {
4110 if (avg->pos)
4111 return avg->sum / avg->pos;
4112 return 0;
4113 }
4114
4115 return avg->sum / AVG_ENTRIES;
4116 }
4117
4118 static void ipw_reset_stats(struct ipw_priv *priv)
4119 {
4120 u32 len = sizeof(u32);
4121
4122 priv->quality = 0;
4123
4124 average_init(&priv->average_missed_beacons);
4125 priv->exp_avg_rssi = -60;
4126 priv->exp_avg_noise = -85 + 0x100;
4127
4128 priv->last_rate = 0;
4129 priv->last_missed_beacons = 0;
4130 priv->last_rx_packets = 0;
4131 priv->last_tx_packets = 0;
4132 priv->last_tx_failures = 0;
4133
4134 /* Firmware managed, reset only when NIC is restarted, so we have to
4135 * normalize on the current value */
4136 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4137 &priv->last_rx_err, &len);
4138 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4139 &priv->last_tx_failures, &len);
4140
4141 /* Driver managed, reset with each association */
4142 priv->missed_adhoc_beacons = 0;
4143 priv->missed_beacons = 0;
4144 priv->tx_packets = 0;
4145 priv->rx_packets = 0;
4146
4147 }
4148
4149 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4150 {
4151 u32 i = 0x80000000;
4152 u32 mask = priv->rates_mask;
4153 /* If currently associated in B mode, restrict the maximum
4154 * rate match to B rates */
4155 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4156 mask &= LIBIPW_CCK_RATES_MASK;
4157
4158 /* TODO: Verify that the rate is supported by the current rates
4159 * list. */
4160
4161 while (i && !(mask & i))
4162 i >>= 1;
4163 switch (i) {
4164 case LIBIPW_CCK_RATE_1MB_MASK:
4165 return 1000000;
4166 case LIBIPW_CCK_RATE_2MB_MASK:
4167 return 2000000;
4168 case LIBIPW_CCK_RATE_5MB_MASK:
4169 return 5500000;
4170 case LIBIPW_OFDM_RATE_6MB_MASK:
4171 return 6000000;
4172 case LIBIPW_OFDM_RATE_9MB_MASK:
4173 return 9000000;
4174 case LIBIPW_CCK_RATE_11MB_MASK:
4175 return 11000000;
4176 case LIBIPW_OFDM_RATE_12MB_MASK:
4177 return 12000000;
4178 case LIBIPW_OFDM_RATE_18MB_MASK:
4179 return 18000000;
4180 case LIBIPW_OFDM_RATE_24MB_MASK:
4181 return 24000000;
4182 case LIBIPW_OFDM_RATE_36MB_MASK:
4183 return 36000000;
4184 case LIBIPW_OFDM_RATE_48MB_MASK:
4185 return 48000000;
4186 case LIBIPW_OFDM_RATE_54MB_MASK:
4187 return 54000000;
4188 }
4189
4190 if (priv->ieee->mode == IEEE_B)
4191 return 11000000;
4192 else
4193 return 54000000;
4194 }
4195
4196 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4197 {
4198 u32 rate, len = sizeof(rate);
4199 int err;
4200
4201 if (!(priv->status & STATUS_ASSOCIATED))
4202 return 0;
4203
4204 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4205 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4206 &len);
4207 if (err) {
4208 IPW_DEBUG_INFO("failed querying ordinals.\n");
4209 return 0;
4210 }
4211 } else
4212 return ipw_get_max_rate(priv);
4213
4214 switch (rate) {
4215 case IPW_TX_RATE_1MB:
4216 return 1000000;
4217 case IPW_TX_RATE_2MB:
4218 return 2000000;
4219 case IPW_TX_RATE_5MB:
4220 return 5500000;
4221 case IPW_TX_RATE_6MB:
4222 return 6000000;
4223 case IPW_TX_RATE_9MB:
4224 return 9000000;
4225 case IPW_TX_RATE_11MB:
4226 return 11000000;
4227 case IPW_TX_RATE_12MB:
4228 return 12000000;
4229 case IPW_TX_RATE_18MB:
4230 return 18000000;
4231 case IPW_TX_RATE_24MB:
4232 return 24000000;
4233 case IPW_TX_RATE_36MB:
4234 return 36000000;
4235 case IPW_TX_RATE_48MB:
4236 return 48000000;
4237 case IPW_TX_RATE_54MB:
4238 return 54000000;
4239 }
4240
4241 return 0;
4242 }
4243
4244 #define IPW_STATS_INTERVAL (2 * HZ)
4245 static void ipw_gather_stats(struct ipw_priv *priv)
4246 {
4247 u32 rx_err, rx_err_delta, rx_packets_delta;
4248 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4249 u32 missed_beacons_percent, missed_beacons_delta;
4250 u32 quality = 0;
4251 u32 len = sizeof(u32);
4252 s16 rssi;
4253 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4254 rate_quality;
4255 u32 max_rate;
4256
4257 if (!(priv->status & STATUS_ASSOCIATED)) {
4258 priv->quality = 0;
4259 return;
4260 }
4261
4262 /* Update the statistics */
4263 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4264 &priv->missed_beacons, &len);
4265 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4266 priv->last_missed_beacons = priv->missed_beacons;
4267 if (priv->assoc_request.beacon_interval) {
4268 missed_beacons_percent = missed_beacons_delta *
4269 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4270 (IPW_STATS_INTERVAL * 10);
4271 } else {
4272 missed_beacons_percent = 0;
4273 }
4274 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4275
4276 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4277 rx_err_delta = rx_err - priv->last_rx_err;
4278 priv->last_rx_err = rx_err;
4279
4280 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4281 tx_failures_delta = tx_failures - priv->last_tx_failures;
4282 priv->last_tx_failures = tx_failures;
4283
4284 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4285 priv->last_rx_packets = priv->rx_packets;
4286
4287 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4288 priv->last_tx_packets = priv->tx_packets;
4289
4290 /* Calculate quality based on the following:
4291 *
4292 * Missed beacon: 100% = 0, 0% = 70% missed
4293 * Rate: 60% = 1Mbs, 100% = Max
4294 * Rx and Tx errors represent a straight % of total Rx/Tx
4295 * RSSI: 100% = > -50, 0% = < -80
4296 * Rx errors: 100% = 0, 0% = 50% missed
4297 *
4298 * The lowest computed quality is used.
4299 *
4300 */
4301 #define BEACON_THRESHOLD 5
4302 beacon_quality = 100 - missed_beacons_percent;
4303 if (beacon_quality < BEACON_THRESHOLD)
4304 beacon_quality = 0;
4305 else
4306 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4307 (100 - BEACON_THRESHOLD);
4308 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4309 beacon_quality, missed_beacons_percent);
4310
4311 priv->last_rate = ipw_get_current_rate(priv);
4312 max_rate = ipw_get_max_rate(priv);
4313 rate_quality = priv->last_rate * 40 / max_rate + 60;
4314 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4315 rate_quality, priv->last_rate / 1000000);
4316
4317 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4318 rx_quality = 100 - (rx_err_delta * 100) /
4319 (rx_packets_delta + rx_err_delta);
4320 else
4321 rx_quality = 100;
4322 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4323 rx_quality, rx_err_delta, rx_packets_delta);
4324
4325 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4326 tx_quality = 100 - (tx_failures_delta * 100) /
4327 (tx_packets_delta + tx_failures_delta);
4328 else
4329 tx_quality = 100;
4330 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4331 tx_quality, tx_failures_delta, tx_packets_delta);
4332
4333 rssi = priv->exp_avg_rssi;
4334 signal_quality =
4335 (100 *
4336 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4337 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4338 (priv->ieee->perfect_rssi - rssi) *
4339 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4340 62 * (priv->ieee->perfect_rssi - rssi))) /
4341 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4342 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4343 if (signal_quality > 100)
4344 signal_quality = 100;
4345 else if (signal_quality < 1)
4346 signal_quality = 0;
4347
4348 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4349 signal_quality, rssi);
4350
4351 quality = min(rx_quality, signal_quality);
4352 quality = min(tx_quality, quality);
4353 quality = min(rate_quality, quality);
4354 quality = min(beacon_quality, quality);
4355 if (quality == beacon_quality)
4356 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4357 quality);
4358 if (quality == rate_quality)
4359 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4360 quality);
4361 if (quality == tx_quality)
4362 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4363 quality);
4364 if (quality == rx_quality)
4365 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4366 quality);
4367 if (quality == signal_quality)
4368 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4369 quality);
4370
4371 priv->quality = quality;
4372
4373 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4374 }
4375
4376 static void ipw_bg_gather_stats(struct work_struct *work)
4377 {
4378 struct ipw_priv *priv =
4379 container_of(work, struct ipw_priv, gather_stats.work);
4380 mutex_lock(&priv->mutex);
4381 ipw_gather_stats(priv);
4382 mutex_unlock(&priv->mutex);
4383 }
4384
4385 /* Missed beacon behavior:
4386 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4387 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4388 * Above disassociate threshold, give up and stop scanning.
4389 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4390 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4391 int missed_count)
4392 {
4393 priv->notif_missed_beacons = missed_count;
4394
4395 if (missed_count > priv->disassociate_threshold &&
4396 priv->status & STATUS_ASSOCIATED) {
4397 /* If associated and we've hit the missed
4398 * beacon threshold, disassociate, turn
4399 * off roaming, and abort any active scans */
4400 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4401 IPW_DL_STATE | IPW_DL_ASSOC,
4402 "Missed beacon: %d - disassociate\n", missed_count);
4403 priv->status &= ~STATUS_ROAMING;
4404 if (priv->status & STATUS_SCANNING) {
4405 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4406 IPW_DL_STATE,
4407 "Aborting scan with missed beacon.\n");
4408 schedule_work(&priv->abort_scan);
4409 }
4410
4411 schedule_work(&priv->disassociate);
4412 return;
4413 }
4414
4415 if (priv->status & STATUS_ROAMING) {
4416 /* If we are currently roaming, then just
4417 * print a debug statement... */
4418 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4419 "Missed beacon: %d - roam in progress\n",
4420 missed_count);
4421 return;
4422 }
4423
4424 if (roaming &&
4425 (missed_count > priv->roaming_threshold &&
4426 missed_count <= priv->disassociate_threshold)) {
4427 /* If we are not already roaming, set the ROAM
4428 * bit in the status and kick off a scan.
4429 * This can happen several times before we reach
4430 * disassociate_threshold. */
4431 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4432 "Missed beacon: %d - initiate "
4433 "roaming\n", missed_count);
4434 if (!(priv->status & STATUS_ROAMING)) {
4435 priv->status |= STATUS_ROAMING;
4436 if (!(priv->status & STATUS_SCANNING))
4437 schedule_delayed_work(&priv->request_scan, 0);
4438 }
4439 return;
4440 }
4441
4442 if (priv->status & STATUS_SCANNING &&
4443 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4444 /* Stop scan to keep fw from getting
4445 * stuck (only if we aren't roaming --
4446 * otherwise we'll never scan more than 2 or 3
4447 * channels..) */
4448 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4449 "Aborting scan with missed beacon.\n");
4450 schedule_work(&priv->abort_scan);
4451 }
4452
4453 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4454 }
4455
4456 static void ipw_scan_event(struct work_struct *work)
4457 {
4458 union iwreq_data wrqu;
4459
4460 struct ipw_priv *priv =
4461 container_of(work, struct ipw_priv, scan_event.work);
4462
4463 wrqu.data.length = 0;
4464 wrqu.data.flags = 0;
4465 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4466 }
4467
4468 static void handle_scan_event(struct ipw_priv *priv)
4469 {
4470 /* Only userspace-requested scan completion events go out immediately */
4471 if (!priv->user_requested_scan) {
4472 if (!delayed_work_pending(&priv->scan_event))
4473 schedule_delayed_work(&priv->scan_event,
4474 round_jiffies_relative(msecs_to_jiffies(4000)));
4475 } else {
4476 union iwreq_data wrqu;
4477
4478 priv->user_requested_scan = 0;
4479 cancel_delayed_work(&priv->scan_event);
4480
4481 wrqu.data.length = 0;
4482 wrqu.data.flags = 0;
4483 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4484 }
4485 }
4486
4487 /**
4488 * Handle host notification packet.
4489 * Called from interrupt routine
4490 */
4491 static void ipw_rx_notification(struct ipw_priv *priv,
4492 struct ipw_rx_notification *notif)
4493 {
4494 DECLARE_SSID_BUF(ssid);
4495 u16 size = le16_to_cpu(notif->size);
4496
4497 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4498
4499 switch (notif->subtype) {
4500 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4501 struct notif_association *assoc = &notif->u.assoc;
4502
4503 switch (assoc->state) {
4504 case CMAS_ASSOCIATED:{
4505 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4506 IPW_DL_ASSOC,
4507 "associated: '%s' %pM\n",
4508 print_ssid(ssid, priv->essid,
4509 priv->essid_len),
4510 priv->bssid);
4511
4512 switch (priv->ieee->iw_mode) {
4513 case IW_MODE_INFRA:
4514 memcpy(priv->ieee->bssid,
4515 priv->bssid, ETH_ALEN);
4516 break;
4517
4518 case IW_MODE_ADHOC:
4519 memcpy(priv->ieee->bssid,
4520 priv->bssid, ETH_ALEN);
4521
4522 /* clear out the station table */
4523 priv->num_stations = 0;
4524
4525 IPW_DEBUG_ASSOC
4526 ("queueing adhoc check\n");
4527 schedule_delayed_work(
4528 &priv->adhoc_check,
4529 le16_to_cpu(priv->
4530 assoc_request.
4531 beacon_interval));
4532 break;
4533 }
4534
4535 priv->status &= ~STATUS_ASSOCIATING;
4536 priv->status |= STATUS_ASSOCIATED;
4537 schedule_work(&priv->system_config);
4538
4539 #ifdef CONFIG_IPW2200_QOS
4540 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4541 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4542 if ((priv->status & STATUS_AUTH) &&
4543 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4544 == IEEE80211_STYPE_ASSOC_RESP)) {
4545 if ((sizeof
4546 (struct
4547 libipw_assoc_response)
4548 <= size)
4549 && (size <= 2314)) {
4550 struct
4551 libipw_rx_stats
4552 stats = {
4553 .len = size - 1,
4554 };
4555
4556 IPW_DEBUG_QOS
4557 ("QoS Associate "
4558 "size %d\n", size);
4559 libipw_rx_mgt(priv->
4560 ieee,
4561 (struct
4562 libipw_hdr_4addr
4563 *)
4564 &notif->u.raw, &stats);
4565 }
4566 }
4567 #endif
4568
4569 schedule_work(&priv->link_up);
4570
4571 break;
4572 }
4573
4574 case CMAS_AUTHENTICATED:{
4575 if (priv->
4576 status & (STATUS_ASSOCIATED |
4577 STATUS_AUTH)) {
4578 struct notif_authenticate *auth
4579 = &notif->u.auth;
4580 IPW_DEBUG(IPW_DL_NOTIF |
4581 IPW_DL_STATE |
4582 IPW_DL_ASSOC,
4583 "deauthenticated: '%s' "
4584 "%pM"
4585 ": (0x%04X) - %s\n",
4586 print_ssid(ssid,
4587 priv->
4588 essid,
4589 priv->
4590 essid_len),
4591 priv->bssid,
4592 le16_to_cpu(auth->status),
4593 ipw_get_status_code
4594 (le16_to_cpu
4595 (auth->status)));
4596
4597 priv->status &=
4598 ~(STATUS_ASSOCIATING |
4599 STATUS_AUTH |
4600 STATUS_ASSOCIATED);
4601
4602 schedule_work(&priv->link_down);
4603 break;
4604 }
4605
4606 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4607 IPW_DL_ASSOC,
4608 "authenticated: '%s' %pM\n",
4609 print_ssid(ssid, priv->essid,
4610 priv->essid_len),
4611 priv->bssid);
4612 break;
4613 }
4614
4615 case CMAS_INIT:{
4616 if (priv->status & STATUS_AUTH) {
4617 struct
4618 libipw_assoc_response
4619 *resp;
4620 resp =
4621 (struct
4622 libipw_assoc_response
4623 *)&notif->u.raw;
4624 IPW_DEBUG(IPW_DL_NOTIF |
4625 IPW_DL_STATE |
4626 IPW_DL_ASSOC,
4627 "association failed (0x%04X): %s\n",
4628 le16_to_cpu(resp->status),
4629 ipw_get_status_code
4630 (le16_to_cpu
4631 (resp->status)));
4632 }
4633
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC,
4636 "disassociated: '%s' %pM\n",
4637 print_ssid(ssid, priv->essid,
4638 priv->essid_len),
4639 priv->bssid);
4640
4641 priv->status &=
4642 ~(STATUS_DISASSOCIATING |
4643 STATUS_ASSOCIATING |
4644 STATUS_ASSOCIATED | STATUS_AUTH);
4645 if (priv->assoc_network
4646 && (priv->assoc_network->
4647 capability &
4648 WLAN_CAPABILITY_IBSS))
4649 ipw_remove_current_network
4650 (priv);
4651
4652 schedule_work(&priv->link_down);
4653
4654 break;
4655 }
4656
4657 case CMAS_RX_ASSOC_RESP:
4658 break;
4659
4660 default:
4661 IPW_ERROR("assoc: unknown (%d)\n",
4662 assoc->state);
4663 break;
4664 }
4665
4666 break;
4667 }
4668
4669 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4670 struct notif_authenticate *auth = &notif->u.auth;
4671 switch (auth->state) {
4672 case CMAS_AUTHENTICATED:
4673 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4674 "authenticated: '%s' %pM\n",
4675 print_ssid(ssid, priv->essid,
4676 priv->essid_len),
4677 priv->bssid);
4678 priv->status |= STATUS_AUTH;
4679 break;
4680
4681 case CMAS_INIT:
4682 if (priv->status & STATUS_AUTH) {
4683 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4684 IPW_DL_ASSOC,
4685 "authentication failed (0x%04X): %s\n",
4686 le16_to_cpu(auth->status),
4687 ipw_get_status_code(le16_to_cpu
4688 (auth->
4689 status)));
4690 }
4691 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4692 IPW_DL_ASSOC,
4693 "deauthenticated: '%s' %pM\n",
4694 print_ssid(ssid, priv->essid,
4695 priv->essid_len),
4696 priv->bssid);
4697
4698 priv->status &= ~(STATUS_ASSOCIATING |
4699 STATUS_AUTH |
4700 STATUS_ASSOCIATED);
4701
4702 schedule_work(&priv->link_down);
4703 break;
4704
4705 case CMAS_TX_AUTH_SEQ_1:
4706 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4707 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4708 break;
4709 case CMAS_RX_AUTH_SEQ_2:
4710 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4711 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4712 break;
4713 case CMAS_AUTH_SEQ_1_PASS:
4714 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4715 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4716 break;
4717 case CMAS_AUTH_SEQ_1_FAIL:
4718 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4719 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4720 break;
4721 case CMAS_TX_AUTH_SEQ_3:
4722 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4723 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4724 break;
4725 case CMAS_RX_AUTH_SEQ_4:
4726 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4727 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4728 break;
4729 case CMAS_AUTH_SEQ_2_PASS:
4730 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4731 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4732 break;
4733 case CMAS_AUTH_SEQ_2_FAIL:
4734 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4735 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4736 break;
4737 case CMAS_TX_ASSOC:
4738 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4739 IPW_DL_ASSOC, "TX_ASSOC\n");
4740 break;
4741 case CMAS_RX_ASSOC_RESP:
4742 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4743 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4744
4745 break;
4746 case CMAS_ASSOCIATED:
4747 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4748 IPW_DL_ASSOC, "ASSOCIATED\n");
4749 break;
4750 default:
4751 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4752 auth->state);
4753 break;
4754 }
4755 break;
4756 }
4757
4758 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4759 struct notif_channel_result *x =
4760 &notif->u.channel_result;
4761
4762 if (size == sizeof(*x)) {
4763 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4764 x->channel_num);
4765 } else {
4766 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4767 "(should be %zd)\n",
4768 size, sizeof(*x));
4769 }
4770 break;
4771 }
4772
4773 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4774 struct notif_scan_complete *x = &notif->u.scan_complete;
4775 if (size == sizeof(*x)) {
4776 IPW_DEBUG_SCAN
4777 ("Scan completed: type %d, %d channels, "
4778 "%d status\n", x->scan_type,
4779 x->num_channels, x->status);
4780 } else {
4781 IPW_ERROR("Scan completed of wrong size %d "
4782 "(should be %zd)\n",
4783 size, sizeof(*x));
4784 }
4785
4786 priv->status &=
4787 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4788
4789 wake_up_interruptible(&priv->wait_state);
4790 cancel_delayed_work(&priv->scan_check);
4791
4792 if (priv->status & STATUS_EXIT_PENDING)
4793 break;
4794
4795 priv->ieee->scans++;
4796
4797 #ifdef CONFIG_IPW2200_MONITOR
4798 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4799 priv->status |= STATUS_SCAN_FORCED;
4800 schedule_delayed_work(&priv->request_scan, 0);
4801 break;
4802 }
4803 priv->status &= ~STATUS_SCAN_FORCED;
4804 #endif /* CONFIG_IPW2200_MONITOR */
4805
4806 /* Do queued direct scans first */
4807 if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4808 schedule_delayed_work(&priv->request_direct_scan, 0);
4809
4810 if (!(priv->status & (STATUS_ASSOCIATED |
4811 STATUS_ASSOCIATING |
4812 STATUS_ROAMING |
4813 STATUS_DISASSOCIATING)))
4814 schedule_work(&priv->associate);
4815 else if (priv->status & STATUS_ROAMING) {
4816 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4817 /* If a scan completed and we are in roam mode, then
4818 * the scan that completed was the one requested as a
4819 * result of entering roam... so, schedule the
4820 * roam work */
4821 schedule_work(&priv->roam);
4822 else
4823 /* Don't schedule if we aborted the scan */
4824 priv->status &= ~STATUS_ROAMING;
4825 } else if (priv->status & STATUS_SCAN_PENDING)
4826 schedule_delayed_work(&priv->request_scan, 0);
4827 else if (priv->config & CFG_BACKGROUND_SCAN
4828 && priv->status & STATUS_ASSOCIATED)
4829 schedule_delayed_work(&priv->request_scan,
4830 round_jiffies_relative(HZ));
4831
4832 /* Send an empty event to user space.
4833 * We don't send the received data on the event because
4834 * it would require us to do complex transcoding, and
4835 * we want to minimise the work done in the irq handler
4836 * Use a request to extract the data.
4837 * Also, we generate this even for any scan, regardless
4838 * on how the scan was initiated. User space can just
4839 * sync on periodic scan to get fresh data...
4840 * Jean II */
4841 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4842 handle_scan_event(priv);
4843 break;
4844 }
4845
4846 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4847 struct notif_frag_length *x = &notif->u.frag_len;
4848
4849 if (size == sizeof(*x))
4850 IPW_ERROR("Frag length: %d\n",
4851 le16_to_cpu(x->frag_length));
4852 else
4853 IPW_ERROR("Frag length of wrong size %d "
4854 "(should be %zd)\n",
4855 size, sizeof(*x));
4856 break;
4857 }
4858
4859 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4860 struct notif_link_deterioration *x =
4861 &notif->u.link_deterioration;
4862
4863 if (size == sizeof(*x)) {
4864 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4865 "link deterioration: type %d, cnt %d\n",
4866 x->silence_notification_type,
4867 x->silence_count);
4868 memcpy(&priv->last_link_deterioration, x,
4869 sizeof(*x));
4870 } else {
4871 IPW_ERROR("Link Deterioration of wrong size %d "
4872 "(should be %zd)\n",
4873 size, sizeof(*x));
4874 }
4875 break;
4876 }
4877
4878 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4879 IPW_ERROR("Dino config\n");
4880 if (priv->hcmd
4881 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4882 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4883
4884 break;
4885 }
4886
4887 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4888 struct notif_beacon_state *x = &notif->u.beacon_state;
4889 if (size != sizeof(*x)) {
4890 IPW_ERROR
4891 ("Beacon state of wrong size %d (should "
4892 "be %zd)\n", size, sizeof(*x));
4893 break;
4894 }
4895
4896 if (le32_to_cpu(x->state) ==
4897 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4898 ipw_handle_missed_beacon(priv,
4899 le32_to_cpu(x->
4900 number));
4901
4902 break;
4903 }
4904
4905 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4906 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4907 if (size == sizeof(*x)) {
4908 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4909 "0x%02x station %d\n",
4910 x->key_state, x->security_type,
4911 x->station_index);
4912 break;
4913 }
4914
4915 IPW_ERROR
4916 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4917 size, sizeof(*x));
4918 break;
4919 }
4920
4921 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4922 struct notif_calibration *x = &notif->u.calibration;
4923
4924 if (size == sizeof(*x)) {
4925 memcpy(&priv->calib, x, sizeof(*x));
4926 IPW_DEBUG_INFO("TODO: Calibration\n");
4927 break;
4928 }
4929
4930 IPW_ERROR
4931 ("Calibration of wrong size %d (should be %zd)\n",
4932 size, sizeof(*x));
4933 break;
4934 }
4935
4936 case HOST_NOTIFICATION_NOISE_STATS:{
4937 if (size == sizeof(u32)) {
4938 priv->exp_avg_noise =
4939 exponential_average(priv->exp_avg_noise,
4940 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4941 DEPTH_NOISE);
4942 break;
4943 }
4944
4945 IPW_ERROR
4946 ("Noise stat is wrong size %d (should be %zd)\n",
4947 size, sizeof(u32));
4948 break;
4949 }
4950
4951 default:
4952 IPW_DEBUG_NOTIF("Unknown notification: "
4953 "subtype=%d,flags=0x%2x,size=%d\n",
4954 notif->subtype, notif->flags, size);
4955 }
4956 }
4957
4958 /**
4959 * Destroys all DMA structures and initialise them again
4960 *
4961 * @param priv
4962 * @return error code
4963 */
4964 static int ipw_queue_reset(struct ipw_priv *priv)
4965 {
4966 int rc = 0;
4967 /** @todo customize queue sizes */
4968 int nTx = 64, nTxCmd = 8;
4969 ipw_tx_queue_free(priv);
4970 /* Tx CMD queue */
4971 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4972 IPW_TX_CMD_QUEUE_READ_INDEX,
4973 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4974 IPW_TX_CMD_QUEUE_BD_BASE,
4975 IPW_TX_CMD_QUEUE_BD_SIZE);
4976 if (rc) {
4977 IPW_ERROR("Tx Cmd queue init failed\n");
4978 goto error;
4979 }
4980 /* Tx queue(s) */
4981 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4982 IPW_TX_QUEUE_0_READ_INDEX,
4983 IPW_TX_QUEUE_0_WRITE_INDEX,
4984 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4985 if (rc) {
4986 IPW_ERROR("Tx 0 queue init failed\n");
4987 goto error;
4988 }
4989 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4990 IPW_TX_QUEUE_1_READ_INDEX,
4991 IPW_TX_QUEUE_1_WRITE_INDEX,
4992 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4993 if (rc) {
4994 IPW_ERROR("Tx 1 queue init failed\n");
4995 goto error;
4996 }
4997 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4998 IPW_TX_QUEUE_2_READ_INDEX,
4999 IPW_TX_QUEUE_2_WRITE_INDEX,
5000 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
5001 if (rc) {
5002 IPW_ERROR("Tx 2 queue init failed\n");
5003 goto error;
5004 }
5005 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5006 IPW_TX_QUEUE_3_READ_INDEX,
5007 IPW_TX_QUEUE_3_WRITE_INDEX,
5008 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5009 if (rc) {
5010 IPW_ERROR("Tx 3 queue init failed\n");
5011 goto error;
5012 }
5013 /* statistics */
5014 priv->rx_bufs_min = 0;
5015 priv->rx_pend_max = 0;
5016 return rc;
5017
5018 error:
5019 ipw_tx_queue_free(priv);
5020 return rc;
5021 }
5022
5023 /**
5024 * Reclaim Tx queue entries no more used by NIC.
5025 *
5026 * When FW advances 'R' index, all entries between old and
5027 * new 'R' index need to be reclaimed. As result, some free space
5028 * forms. If there is enough free space (> low mark), wake Tx queue.
5029 *
5030 * @note Need to protect against garbage in 'R' index
5031 * @param priv
5032 * @param txq
5033 * @param qindex
5034 * @return Number of used entries remains in the queue
5035 */
5036 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5037 struct clx2_tx_queue *txq, int qindex)
5038 {
5039 u32 hw_tail;
5040 int used;
5041 struct clx2_queue *q = &txq->q;
5042
5043 hw_tail = ipw_read32(priv, q->reg_r);
5044 if (hw_tail >= q->n_bd) {
5045 IPW_ERROR
5046 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5047 hw_tail, q->n_bd);
5048 goto done;
5049 }
5050 for (; q->last_used != hw_tail;
5051 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5052 ipw_queue_tx_free_tfd(priv, txq);
5053 priv->tx_packets++;
5054 }
5055 done:
5056 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5057 (qindex >= 0))
5058 netif_wake_queue(priv->net_dev);
5059 used = q->first_empty - q->last_used;
5060 if (used < 0)
5061 used += q->n_bd;
5062
5063 return used;
5064 }
5065
5066 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5067 int len, int sync)
5068 {
5069 struct clx2_tx_queue *txq = &priv->txq_cmd;
5070 struct clx2_queue *q = &txq->q;
5071 struct tfd_frame *tfd;
5072
5073 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5074 IPW_ERROR("No space for Tx\n");
5075 return -EBUSY;
5076 }
5077
5078 tfd = &txq->bd[q->first_empty];
5079 txq->txb[q->first_empty] = NULL;
5080
5081 memset(tfd, 0, sizeof(*tfd));
5082 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5083 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5084 priv->hcmd_seq++;
5085 tfd->u.cmd.index = hcmd;
5086 tfd->u.cmd.length = len;
5087 memcpy(tfd->u.cmd.payload, buf, len);
5088 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5089 ipw_write32(priv, q->reg_w, q->first_empty);
5090 _ipw_read32(priv, 0x90);
5091
5092 return 0;
5093 }
5094
5095 /*
5096 * Rx theory of operation
5097 *
5098 * The host allocates 32 DMA target addresses and passes the host address
5099 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5100 * 0 to 31
5101 *
5102 * Rx Queue Indexes
5103 * The host/firmware share two index registers for managing the Rx buffers.
5104 *
5105 * The READ index maps to the first position that the firmware may be writing
5106 * to -- the driver can read up to (but not including) this position and get
5107 * good data.
5108 * The READ index is managed by the firmware once the card is enabled.
5109 *
5110 * The WRITE index maps to the last position the driver has read from -- the
5111 * position preceding WRITE is the last slot the firmware can place a packet.
5112 *
5113 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5114 * WRITE = READ.
5115 *
5116 * During initialization the host sets up the READ queue position to the first
5117 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5118 *
5119 * When the firmware places a packet in a buffer it will advance the READ index
5120 * and fire the RX interrupt. The driver can then query the READ index and
5121 * process as many packets as possible, moving the WRITE index forward as it
5122 * resets the Rx queue buffers with new memory.
5123 *
5124 * The management in the driver is as follows:
5125 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5126 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5127 * to replensish the ipw->rxq->rx_free.
5128 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5129 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5130 * 'processed' and 'read' driver indexes as well)
5131 * + A received packet is processed and handed to the kernel network stack,
5132 * detached from the ipw->rxq. The driver 'processed' index is updated.
5133 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5134 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5135 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5136 * were enough free buffers and RX_STALLED is set it is cleared.
5137 *
5138 *
5139 * Driver sequence:
5140 *
5141 * ipw_rx_queue_alloc() Allocates rx_free
5142 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5143 * ipw_rx_queue_restock
5144 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5145 * queue, updates firmware pointers, and updates
5146 * the WRITE index. If insufficient rx_free buffers
5147 * are available, schedules ipw_rx_queue_replenish
5148 *
5149 * -- enable interrupts --
5150 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5151 * READ INDEX, detaching the SKB from the pool.
5152 * Moves the packet buffer from queue to rx_used.
5153 * Calls ipw_rx_queue_restock to refill any empty
5154 * slots.
5155 * ...
5156 *
5157 */
5158
5159 /*
5160 * If there are slots in the RX queue that need to be restocked,
5161 * and we have free pre-allocated buffers, fill the ranks as much
5162 * as we can pulling from rx_free.
5163 *
5164 * This moves the 'write' index forward to catch up with 'processed', and
5165 * also updates the memory address in the firmware to reference the new
5166 * target buffer.
5167 */
5168 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5169 {
5170 struct ipw_rx_queue *rxq = priv->rxq;
5171 struct list_head *element;
5172 struct ipw_rx_mem_buffer *rxb;
5173 unsigned long flags;
5174 int write;
5175
5176 spin_lock_irqsave(&rxq->lock, flags);
5177 write = rxq->write;
5178 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5179 element = rxq->rx_free.next;
5180 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5181 list_del(element);
5182
5183 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5184 rxb->dma_addr);
5185 rxq->queue[rxq->write] = rxb;
5186 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5187 rxq->free_count--;
5188 }
5189 spin_unlock_irqrestore(&rxq->lock, flags);
5190
5191 /* If the pre-allocated buffer pool is dropping low, schedule to
5192 * refill it */
5193 if (rxq->free_count <= RX_LOW_WATERMARK)
5194 schedule_work(&priv->rx_replenish);
5195
5196 /* If we've added more space for the firmware to place data, tell it */
5197 if (write != rxq->write)
5198 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5199 }
5200
5201 /*
5202 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5203 * Also restock the Rx queue via ipw_rx_queue_restock.
5204 *
5205 * This is called as a scheduled work item (except for during intialization)
5206 */
5207 static void ipw_rx_queue_replenish(void *data)
5208 {
5209 struct ipw_priv *priv = data;
5210 struct ipw_rx_queue *rxq = priv->rxq;
5211 struct list_head *element;
5212 struct ipw_rx_mem_buffer *rxb;
5213 unsigned long flags;
5214
5215 spin_lock_irqsave(&rxq->lock, flags);
5216 while (!list_empty(&rxq->rx_used)) {
5217 element = rxq->rx_used.next;
5218 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5219 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5220 if (!rxb->skb) {
5221 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5222 priv->net_dev->name);
5223 /* We don't reschedule replenish work here -- we will
5224 * call the restock method and if it still needs
5225 * more buffers it will schedule replenish */
5226 break;
5227 }
5228 list_del(element);
5229
5230 rxb->dma_addr =
5231 pci_map_single(priv->pci_dev, rxb->skb->data,
5232 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5233
5234 list_add_tail(&rxb->list, &rxq->rx_free);
5235 rxq->free_count++;
5236 }
5237 spin_unlock_irqrestore(&rxq->lock, flags);
5238
5239 ipw_rx_queue_restock(priv);
5240 }
5241
5242 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5243 {
5244 struct ipw_priv *priv =
5245 container_of(work, struct ipw_priv, rx_replenish);
5246 mutex_lock(&priv->mutex);
5247 ipw_rx_queue_replenish(priv);
5248 mutex_unlock(&priv->mutex);
5249 }
5250
5251 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5252 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5253 * This free routine walks the list of POOL entries and if SKB is set to
5254 * non NULL it is unmapped and freed
5255 */
5256 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5257 {
5258 int i;
5259
5260 if (!rxq)
5261 return;
5262
5263 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5264 if (rxq->pool[i].skb != NULL) {
5265 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5266 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5267 dev_kfree_skb(rxq->pool[i].skb);
5268 }
5269 }
5270
5271 kfree(rxq);
5272 }
5273
5274 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5275 {
5276 struct ipw_rx_queue *rxq;
5277 int i;
5278
5279 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5280 if (unlikely(!rxq)) {
5281 IPW_ERROR("memory allocation failed\n");
5282 return NULL;
5283 }
5284 spin_lock_init(&rxq->lock);
5285 INIT_LIST_HEAD(&rxq->rx_free);
5286 INIT_LIST_HEAD(&rxq->rx_used);
5287
5288 /* Fill the rx_used queue with _all_ of the Rx buffers */
5289 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5290 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5291
5292 /* Set us so that we have processed and used all buffers, but have
5293 * not restocked the Rx queue with fresh buffers */
5294 rxq->read = rxq->write = 0;
5295 rxq->free_count = 0;
5296
5297 return rxq;
5298 }
5299
5300 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5301 {
5302 rate &= ~LIBIPW_BASIC_RATE_MASK;
5303 if (ieee_mode == IEEE_A) {
5304 switch (rate) {
5305 case LIBIPW_OFDM_RATE_6MB:
5306 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5307 1 : 0;
5308 case LIBIPW_OFDM_RATE_9MB:
5309 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5310 1 : 0;
5311 case LIBIPW_OFDM_RATE_12MB:
5312 return priv->
5313 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5314 case LIBIPW_OFDM_RATE_18MB:
5315 return priv->
5316 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5317 case LIBIPW_OFDM_RATE_24MB:
5318 return priv->
5319 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5320 case LIBIPW_OFDM_RATE_36MB:
5321 return priv->
5322 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5323 case LIBIPW_OFDM_RATE_48MB:
5324 return priv->
5325 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5326 case LIBIPW_OFDM_RATE_54MB:
5327 return priv->
5328 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5329 default:
5330 return 0;
5331 }
5332 }
5333
5334 /* B and G mixed */
5335 switch (rate) {
5336 case LIBIPW_CCK_RATE_1MB:
5337 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5338 case LIBIPW_CCK_RATE_2MB:
5339 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5340 case LIBIPW_CCK_RATE_5MB:
5341 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5342 case LIBIPW_CCK_RATE_11MB:
5343 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5344 }
5345
5346 /* If we are limited to B modulations, bail at this point */
5347 if (ieee_mode == IEEE_B)
5348 return 0;
5349
5350 /* G */
5351 switch (rate) {
5352 case LIBIPW_OFDM_RATE_6MB:
5353 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5354 case LIBIPW_OFDM_RATE_9MB:
5355 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5356 case LIBIPW_OFDM_RATE_12MB:
5357 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5358 case LIBIPW_OFDM_RATE_18MB:
5359 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5360 case LIBIPW_OFDM_RATE_24MB:
5361 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5362 case LIBIPW_OFDM_RATE_36MB:
5363 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5364 case LIBIPW_OFDM_RATE_48MB:
5365 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5366 case LIBIPW_OFDM_RATE_54MB:
5367 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5368 }
5369
5370 return 0;
5371 }
5372
5373 static int ipw_compatible_rates(struct ipw_priv *priv,
5374 const struct libipw_network *network,
5375 struct ipw_supported_rates *rates)
5376 {
5377 int num_rates, i;
5378
5379 memset(rates, 0, sizeof(*rates));
5380 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5381 rates->num_rates = 0;
5382 for (i = 0; i < num_rates; i++) {
5383 if (!ipw_is_rate_in_mask(priv, network->mode,
5384 network->rates[i])) {
5385
5386 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5387 IPW_DEBUG_SCAN("Adding masked mandatory "
5388 "rate %02X\n",
5389 network->rates[i]);
5390 rates->supported_rates[rates->num_rates++] =
5391 network->rates[i];
5392 continue;
5393 }
5394
5395 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5396 network->rates[i], priv->rates_mask);
5397 continue;
5398 }
5399
5400 rates->supported_rates[rates->num_rates++] = network->rates[i];
5401 }
5402
5403 num_rates = min(network->rates_ex_len,
5404 (u8) (IPW_MAX_RATES - num_rates));
5405 for (i = 0; i < num_rates; i++) {
5406 if (!ipw_is_rate_in_mask(priv, network->mode,
5407 network->rates_ex[i])) {
5408 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5409 IPW_DEBUG_SCAN("Adding masked mandatory "
5410 "rate %02X\n",
5411 network->rates_ex[i]);
5412 rates->supported_rates[rates->num_rates++] =
5413 network->rates[i];
5414 continue;
5415 }
5416
5417 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5418 network->rates_ex[i], priv->rates_mask);
5419 continue;
5420 }
5421
5422 rates->supported_rates[rates->num_rates++] =
5423 network->rates_ex[i];
5424 }
5425
5426 return 1;
5427 }
5428
5429 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5430 const struct ipw_supported_rates *src)
5431 {
5432 u8 i;
5433 for (i = 0; i < src->num_rates; i++)
5434 dest->supported_rates[i] = src->supported_rates[i];
5435 dest->num_rates = src->num_rates;
5436 }
5437
5438 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5439 * mask should ever be used -- right now all callers to add the scan rates are
5440 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5441 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5442 u8 modulation, u32 rate_mask)
5443 {
5444 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5445 LIBIPW_BASIC_RATE_MASK : 0;
5446
5447 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5448 rates->supported_rates[rates->num_rates++] =
5449 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5450
5451 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5452 rates->supported_rates[rates->num_rates++] =
5453 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5454
5455 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5456 rates->supported_rates[rates->num_rates++] = basic_mask |
5457 LIBIPW_CCK_RATE_5MB;
5458
5459 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5460 rates->supported_rates[rates->num_rates++] = basic_mask |
5461 LIBIPW_CCK_RATE_11MB;
5462 }
5463
5464 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5465 u8 modulation, u32 rate_mask)
5466 {
5467 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5468 LIBIPW_BASIC_RATE_MASK : 0;
5469
5470 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5471 rates->supported_rates[rates->num_rates++] = basic_mask |
5472 LIBIPW_OFDM_RATE_6MB;
5473
5474 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5475 rates->supported_rates[rates->num_rates++] =
5476 LIBIPW_OFDM_RATE_9MB;
5477
5478 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5479 rates->supported_rates[rates->num_rates++] = basic_mask |
5480 LIBIPW_OFDM_RATE_12MB;
5481
5482 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5483 rates->supported_rates[rates->num_rates++] =
5484 LIBIPW_OFDM_RATE_18MB;
5485
5486 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5487 rates->supported_rates[rates->num_rates++] = basic_mask |
5488 LIBIPW_OFDM_RATE_24MB;
5489
5490 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5491 rates->supported_rates[rates->num_rates++] =
5492 LIBIPW_OFDM_RATE_36MB;
5493
5494 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5495 rates->supported_rates[rates->num_rates++] =
5496 LIBIPW_OFDM_RATE_48MB;
5497
5498 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5499 rates->supported_rates[rates->num_rates++] =
5500 LIBIPW_OFDM_RATE_54MB;
5501 }
5502
5503 struct ipw_network_match {
5504 struct libipw_network *network;
5505 struct ipw_supported_rates rates;
5506 };
5507
5508 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5509 struct ipw_network_match *match,
5510 struct libipw_network *network,
5511 int roaming)
5512 {
5513 struct ipw_supported_rates rates;
5514 DECLARE_SSID_BUF(ssid);
5515
5516 /* Verify that this network's capability is compatible with the
5517 * current mode (AdHoc or Infrastructure) */
5518 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5519 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5520 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5521 "capability mismatch.\n",
5522 print_ssid(ssid, network->ssid,
5523 network->ssid_len),
5524 network->bssid);
5525 return 0;
5526 }
5527
5528 if (unlikely(roaming)) {
5529 /* If we are roaming, then ensure check if this is a valid
5530 * network to try and roam to */
5531 if ((network->ssid_len != match->network->ssid_len) ||
5532 memcmp(network->ssid, match->network->ssid,
5533 network->ssid_len)) {
5534 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5535 "because of non-network ESSID.\n",
5536 print_ssid(ssid, network->ssid,
5537 network->ssid_len),
5538 network->bssid);
5539 return 0;
5540 }
5541 } else {
5542 /* If an ESSID has been configured then compare the broadcast
5543 * ESSID to ours */
5544 if ((priv->config & CFG_STATIC_ESSID) &&
5545 ((network->ssid_len != priv->essid_len) ||
5546 memcmp(network->ssid, priv->essid,
5547 min(network->ssid_len, priv->essid_len)))) {
5548 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5549
5550 strncpy(escaped,
5551 print_ssid(ssid, network->ssid,
5552 network->ssid_len),
5553 sizeof(escaped));
5554 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5555 "because of ESSID mismatch: '%s'.\n",
5556 escaped, network->bssid,
5557 print_ssid(ssid, priv->essid,
5558 priv->essid_len));
5559 return 0;
5560 }
5561 }
5562
5563 /* If the old network rate is better than this one, don't bother
5564 * testing everything else. */
5565
5566 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5567 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5568 "current network.\n",
5569 print_ssid(ssid, match->network->ssid,
5570 match->network->ssid_len));
5571 return 0;
5572 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5573 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5574 "current network.\n",
5575 print_ssid(ssid, match->network->ssid,
5576 match->network->ssid_len));
5577 return 0;
5578 }
5579
5580 /* Now go through and see if the requested network is valid... */
5581 if (priv->ieee->scan_age != 0 &&
5582 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5583 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5584 "because of age: %ums.\n",
5585 print_ssid(ssid, network->ssid,
5586 network->ssid_len),
5587 network->bssid,
5588 jiffies_to_msecs(jiffies -
5589 network->last_scanned));
5590 return 0;
5591 }
5592
5593 if ((priv->config & CFG_STATIC_CHANNEL) &&
5594 (network->channel != priv->channel)) {
5595 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5596 "because of channel mismatch: %d != %d.\n",
5597 print_ssid(ssid, network->ssid,
5598 network->ssid_len),
5599 network->bssid,
5600 network->channel, priv->channel);
5601 return 0;
5602 }
5603
5604 /* Verify privacy compatibility */
5605 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5606 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5607 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5608 "because of privacy mismatch: %s != %s.\n",
5609 print_ssid(ssid, network->ssid,
5610 network->ssid_len),
5611 network->bssid,
5612 priv->
5613 capability & CAP_PRIVACY_ON ? "on" : "off",
5614 network->
5615 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5616 "off");
5617 return 0;
5618 }
5619
5620 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5621 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5622 "because of the same BSSID match: %pM"
5623 ".\n", print_ssid(ssid, network->ssid,
5624 network->ssid_len),
5625 network->bssid,
5626 priv->bssid);
5627 return 0;
5628 }
5629
5630 /* Filter out any incompatible freq / mode combinations */
5631 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5632 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5633 "because of invalid frequency/mode "
5634 "combination.\n",
5635 print_ssid(ssid, network->ssid,
5636 network->ssid_len),
5637 network->bssid);
5638 return 0;
5639 }
5640
5641 /* Ensure that the rates supported by the driver are compatible with
5642 * this AP, including verification of basic rates (mandatory) */
5643 if (!ipw_compatible_rates(priv, network, &rates)) {
5644 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5645 "because configured rate mask excludes "
5646 "AP mandatory rate.\n",
5647 print_ssid(ssid, network->ssid,
5648 network->ssid_len),
5649 network->bssid);
5650 return 0;
5651 }
5652
5653 if (rates.num_rates == 0) {
5654 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5655 "because of no compatible rates.\n",
5656 print_ssid(ssid, network->ssid,
5657 network->ssid_len),
5658 network->bssid);
5659 return 0;
5660 }
5661
5662 /* TODO: Perform any further minimal comparititive tests. We do not
5663 * want to put too much policy logic here; intelligent scan selection
5664 * should occur within a generic IEEE 802.11 user space tool. */
5665
5666 /* Set up 'new' AP to this network */
5667 ipw_copy_rates(&match->rates, &rates);
5668 match->network = network;
5669 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5670 print_ssid(ssid, network->ssid, network->ssid_len),
5671 network->bssid);
5672
5673 return 1;
5674 }
5675
5676 static void ipw_merge_adhoc_network(struct work_struct *work)
5677 {
5678 DECLARE_SSID_BUF(ssid);
5679 struct ipw_priv *priv =
5680 container_of(work, struct ipw_priv, merge_networks);
5681 struct libipw_network *network = NULL;
5682 struct ipw_network_match match = {
5683 .network = priv->assoc_network
5684 };
5685
5686 if ((priv->status & STATUS_ASSOCIATED) &&
5687 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5688 /* First pass through ROAM process -- look for a better
5689 * network */
5690 unsigned long flags;
5691
5692 spin_lock_irqsave(&priv->ieee->lock, flags);
5693 list_for_each_entry(network, &priv->ieee->network_list, list) {
5694 if (network != priv->assoc_network)
5695 ipw_find_adhoc_network(priv, &match, network,
5696 1);
5697 }
5698 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5699
5700 if (match.network == priv->assoc_network) {
5701 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5702 "merge to.\n");
5703 return;
5704 }
5705
5706 mutex_lock(&priv->mutex);
5707 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5708 IPW_DEBUG_MERGE("remove network %s\n",
5709 print_ssid(ssid, priv->essid,
5710 priv->essid_len));
5711 ipw_remove_current_network(priv);
5712 }
5713
5714 ipw_disassociate(priv);
5715 priv->assoc_network = match.network;
5716 mutex_unlock(&priv->mutex);
5717 return;
5718 }
5719 }
5720
5721 static int ipw_best_network(struct ipw_priv *priv,
5722 struct ipw_network_match *match,
5723 struct libipw_network *network, int roaming)
5724 {
5725 struct ipw_supported_rates rates;
5726 DECLARE_SSID_BUF(ssid);
5727
5728 /* Verify that this network's capability is compatible with the
5729 * current mode (AdHoc or Infrastructure) */
5730 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5731 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5732 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5733 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5734 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5735 "capability mismatch.\n",
5736 print_ssid(ssid, network->ssid,
5737 network->ssid_len),
5738 network->bssid);
5739 return 0;
5740 }
5741
5742 if (unlikely(roaming)) {
5743 /* If we are roaming, then ensure check if this is a valid
5744 * network to try and roam to */
5745 if ((network->ssid_len != match->network->ssid_len) ||
5746 memcmp(network->ssid, match->network->ssid,
5747 network->ssid_len)) {
5748 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5749 "because of non-network ESSID.\n",
5750 print_ssid(ssid, network->ssid,
5751 network->ssid_len),
5752 network->bssid);
5753 return 0;
5754 }
5755 } else {
5756 /* If an ESSID has been configured then compare the broadcast
5757 * ESSID to ours */
5758 if ((priv->config & CFG_STATIC_ESSID) &&
5759 ((network->ssid_len != priv->essid_len) ||
5760 memcmp(network->ssid, priv->essid,
5761 min(network->ssid_len, priv->essid_len)))) {
5762 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5763 strncpy(escaped,
5764 print_ssid(ssid, network->ssid,
5765 network->ssid_len),
5766 sizeof(escaped));
5767 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5768 "because of ESSID mismatch: '%s'.\n",
5769 escaped, network->bssid,
5770 print_ssid(ssid, priv->essid,
5771 priv->essid_len));
5772 return 0;
5773 }
5774 }
5775
5776 /* If the old network rate is better than this one, don't bother
5777 * testing everything else. */
5778 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5779 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5780 strncpy(escaped,
5781 print_ssid(ssid, network->ssid, network->ssid_len),
5782 sizeof(escaped));
5783 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5784 "'%s (%pM)' has a stronger signal.\n",
5785 escaped, network->bssid,
5786 print_ssid(ssid, match->network->ssid,
5787 match->network->ssid_len),
5788 match->network->bssid);
5789 return 0;
5790 }
5791
5792 /* If this network has already had an association attempt within the
5793 * last 3 seconds, do not try and associate again... */
5794 if (network->last_associate &&
5795 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5796 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5797 "because of storming (%ums since last "
5798 "assoc attempt).\n",
5799 print_ssid(ssid, network->ssid,
5800 network->ssid_len),
5801 network->bssid,
5802 jiffies_to_msecs(jiffies -
5803 network->last_associate));
5804 return 0;
5805 }
5806
5807 /* Now go through and see if the requested network is valid... */
5808 if (priv->ieee->scan_age != 0 &&
5809 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5810 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5811 "because of age: %ums.\n",
5812 print_ssid(ssid, network->ssid,
5813 network->ssid_len),
5814 network->bssid,
5815 jiffies_to_msecs(jiffies -
5816 network->last_scanned));
5817 return 0;
5818 }
5819
5820 if ((priv->config & CFG_STATIC_CHANNEL) &&
5821 (network->channel != priv->channel)) {
5822 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5823 "because of channel mismatch: %d != %d.\n",
5824 print_ssid(ssid, network->ssid,
5825 network->ssid_len),
5826 network->bssid,
5827 network->channel, priv->channel);
5828 return 0;
5829 }
5830
5831 /* Verify privacy compatibility */
5832 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5833 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5834 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5835 "because of privacy mismatch: %s != %s.\n",
5836 print_ssid(ssid, network->ssid,
5837 network->ssid_len),
5838 network->bssid,
5839 priv->capability & CAP_PRIVACY_ON ? "on" :
5840 "off",
5841 network->capability &
5842 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5843 return 0;
5844 }
5845
5846 if ((priv->config & CFG_STATIC_BSSID) &&
5847 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5848 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5849 "because of BSSID mismatch: %pM.\n",
5850 print_ssid(ssid, network->ssid,
5851 network->ssid_len),
5852 network->bssid, priv->bssid);
5853 return 0;
5854 }
5855
5856 /* Filter out any incompatible freq / mode combinations */
5857 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5858 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5859 "because of invalid frequency/mode "
5860 "combination.\n",
5861 print_ssid(ssid, network->ssid,
5862 network->ssid_len),
5863 network->bssid);
5864 return 0;
5865 }
5866
5867 /* Filter out invalid channel in current GEO */
5868 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5869 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5870 "because of invalid channel in current GEO\n",
5871 print_ssid(ssid, network->ssid,
5872 network->ssid_len),
5873 network->bssid);
5874 return 0;
5875 }
5876
5877 /* Ensure that the rates supported by the driver are compatible with
5878 * this AP, including verification of basic rates (mandatory) */
5879 if (!ipw_compatible_rates(priv, network, &rates)) {
5880 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5881 "because configured rate mask excludes "
5882 "AP mandatory rate.\n",
5883 print_ssid(ssid, network->ssid,
5884 network->ssid_len),
5885 network->bssid);
5886 return 0;
5887 }
5888
5889 if (rates.num_rates == 0) {
5890 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5891 "because of no compatible rates.\n",
5892 print_ssid(ssid, network->ssid,
5893 network->ssid_len),
5894 network->bssid);
5895 return 0;
5896 }
5897
5898 /* TODO: Perform any further minimal comparititive tests. We do not
5899 * want to put too much policy logic here; intelligent scan selection
5900 * should occur within a generic IEEE 802.11 user space tool. */
5901
5902 /* Set up 'new' AP to this network */
5903 ipw_copy_rates(&match->rates, &rates);
5904 match->network = network;
5905
5906 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5907 print_ssid(ssid, network->ssid, network->ssid_len),
5908 network->bssid);
5909
5910 return 1;
5911 }
5912
5913 static void ipw_adhoc_create(struct ipw_priv *priv,
5914 struct libipw_network *network)
5915 {
5916 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5917 int i;
5918
5919 /*
5920 * For the purposes of scanning, we can set our wireless mode
5921 * to trigger scans across combinations of bands, but when it
5922 * comes to creating a new ad-hoc network, we have tell the FW
5923 * exactly which band to use.
5924 *
5925 * We also have the possibility of an invalid channel for the
5926 * chossen band. Attempting to create a new ad-hoc network
5927 * with an invalid channel for wireless mode will trigger a
5928 * FW fatal error.
5929 *
5930 */
5931 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5932 case LIBIPW_52GHZ_BAND:
5933 network->mode = IEEE_A;
5934 i = libipw_channel_to_index(priv->ieee, priv->channel);
5935 BUG_ON(i == -1);
5936 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5937 IPW_WARNING("Overriding invalid channel\n");
5938 priv->channel = geo->a[0].channel;
5939 }
5940 break;
5941
5942 case LIBIPW_24GHZ_BAND:
5943 if (priv->ieee->mode & IEEE_G)
5944 network->mode = IEEE_G;
5945 else
5946 network->mode = IEEE_B;
5947 i = libipw_channel_to_index(priv->ieee, priv->channel);
5948 BUG_ON(i == -1);
5949 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5950 IPW_WARNING("Overriding invalid channel\n");
5951 priv->channel = geo->bg[0].channel;
5952 }
5953 break;
5954
5955 default:
5956 IPW_WARNING("Overriding invalid channel\n");
5957 if (priv->ieee->mode & IEEE_A) {
5958 network->mode = IEEE_A;
5959 priv->channel = geo->a[0].channel;
5960 } else if (priv->ieee->mode & IEEE_G) {
5961 network->mode = IEEE_G;
5962 priv->channel = geo->bg[0].channel;
5963 } else {
5964 network->mode = IEEE_B;
5965 priv->channel = geo->bg[0].channel;
5966 }
5967 break;
5968 }
5969
5970 network->channel = priv->channel;
5971 priv->config |= CFG_ADHOC_PERSIST;
5972 ipw_create_bssid(priv, network->bssid);
5973 network->ssid_len = priv->essid_len;
5974 memcpy(network->ssid, priv->essid, priv->essid_len);
5975 memset(&network->stats, 0, sizeof(network->stats));
5976 network->capability = WLAN_CAPABILITY_IBSS;
5977 if (!(priv->config & CFG_PREAMBLE_LONG))
5978 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5979 if (priv->capability & CAP_PRIVACY_ON)
5980 network->capability |= WLAN_CAPABILITY_PRIVACY;
5981 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5982 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5983 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5984 memcpy(network->rates_ex,
5985 &priv->rates.supported_rates[network->rates_len],
5986 network->rates_ex_len);
5987 network->last_scanned = 0;
5988 network->flags = 0;
5989 network->last_associate = 0;
5990 network->time_stamp[0] = 0;
5991 network->time_stamp[1] = 0;
5992 network->beacon_interval = 100; /* Default */
5993 network->listen_interval = 10; /* Default */
5994 network->atim_window = 0; /* Default */
5995 network->wpa_ie_len = 0;
5996 network->rsn_ie_len = 0;
5997 }
5998
5999 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
6000 {
6001 struct ipw_tgi_tx_key key;
6002
6003 if (!(priv->ieee->sec.flags & (1 << index)))
6004 return;
6005
6006 key.key_id = index;
6007 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
6008 key.security_type = type;
6009 key.station_index = 0; /* always 0 for BSS */
6010 key.flags = 0;
6011 /* 0 for new key; previous value of counter (after fatal error) */
6012 key.tx_counter[0] = cpu_to_le32(0);
6013 key.tx_counter[1] = cpu_to_le32(0);
6014
6015 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6016 }
6017
6018 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6019 {
6020 struct ipw_wep_key key;
6021 int i;
6022
6023 key.cmd_id = DINO_CMD_WEP_KEY;
6024 key.seq_num = 0;
6025
6026 /* Note: AES keys cannot be set for multiple times.
6027 * Only set it at the first time. */
6028 for (i = 0; i < 4; i++) {
6029 key.key_index = i | type;
6030 if (!(priv->ieee->sec.flags & (1 << i))) {
6031 key.key_size = 0;
6032 continue;
6033 }
6034
6035 key.key_size = priv->ieee->sec.key_sizes[i];
6036 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6037
6038 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6039 }
6040 }
6041
6042 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6043 {
6044 if (priv->ieee->host_encrypt)
6045 return;
6046
6047 switch (level) {
6048 case SEC_LEVEL_3:
6049 priv->sys_config.disable_unicast_decryption = 0;
6050 priv->ieee->host_decrypt = 0;
6051 break;
6052 case SEC_LEVEL_2:
6053 priv->sys_config.disable_unicast_decryption = 1;
6054 priv->ieee->host_decrypt = 1;
6055 break;
6056 case SEC_LEVEL_1:
6057 priv->sys_config.disable_unicast_decryption = 0;
6058 priv->ieee->host_decrypt = 0;
6059 break;
6060 case SEC_LEVEL_0:
6061 priv->sys_config.disable_unicast_decryption = 1;
6062 break;
6063 default:
6064 break;
6065 }
6066 }
6067
6068 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6069 {
6070 if (priv->ieee->host_encrypt)
6071 return;
6072
6073 switch (level) {
6074 case SEC_LEVEL_3:
6075 priv->sys_config.disable_multicast_decryption = 0;
6076 break;
6077 case SEC_LEVEL_2:
6078 priv->sys_config.disable_multicast_decryption = 1;
6079 break;
6080 case SEC_LEVEL_1:
6081 priv->sys_config.disable_multicast_decryption = 0;
6082 break;
6083 case SEC_LEVEL_0:
6084 priv->sys_config.disable_multicast_decryption = 1;
6085 break;
6086 default:
6087 break;
6088 }
6089 }
6090
6091 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6092 {
6093 switch (priv->ieee->sec.level) {
6094 case SEC_LEVEL_3:
6095 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6096 ipw_send_tgi_tx_key(priv,
6097 DCT_FLAG_EXT_SECURITY_CCM,
6098 priv->ieee->sec.active_key);
6099
6100 if (!priv->ieee->host_mc_decrypt)
6101 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6102 break;
6103 case SEC_LEVEL_2:
6104 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6105 ipw_send_tgi_tx_key(priv,
6106 DCT_FLAG_EXT_SECURITY_TKIP,
6107 priv->ieee->sec.active_key);
6108 break;
6109 case SEC_LEVEL_1:
6110 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6111 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6112 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6113 break;
6114 case SEC_LEVEL_0:
6115 default:
6116 break;
6117 }
6118 }
6119
6120 static void ipw_adhoc_check(void *data)
6121 {
6122 struct ipw_priv *priv = data;
6123
6124 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6125 !(priv->config & CFG_ADHOC_PERSIST)) {
6126 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6127 IPW_DL_STATE | IPW_DL_ASSOC,
6128 "Missed beacon: %d - disassociate\n",
6129 priv->missed_adhoc_beacons);
6130 ipw_remove_current_network(priv);
6131 ipw_disassociate(priv);
6132 return;
6133 }
6134
6135 schedule_delayed_work(&priv->adhoc_check,
6136 le16_to_cpu(priv->assoc_request.beacon_interval));
6137 }
6138
6139 static void ipw_bg_adhoc_check(struct work_struct *work)
6140 {
6141 struct ipw_priv *priv =
6142 container_of(work, struct ipw_priv, adhoc_check.work);
6143 mutex_lock(&priv->mutex);
6144 ipw_adhoc_check(priv);
6145 mutex_unlock(&priv->mutex);
6146 }
6147
6148 static void ipw_debug_config(struct ipw_priv *priv)
6149 {
6150 DECLARE_SSID_BUF(ssid);
6151 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6152 "[CFG 0x%08X]\n", priv->config);
6153 if (priv->config & CFG_STATIC_CHANNEL)
6154 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6155 else
6156 IPW_DEBUG_INFO("Channel unlocked.\n");
6157 if (priv->config & CFG_STATIC_ESSID)
6158 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6159 print_ssid(ssid, priv->essid, priv->essid_len));
6160 else
6161 IPW_DEBUG_INFO("ESSID unlocked.\n");
6162 if (priv->config & CFG_STATIC_BSSID)
6163 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6164 else
6165 IPW_DEBUG_INFO("BSSID unlocked.\n");
6166 if (priv->capability & CAP_PRIVACY_ON)
6167 IPW_DEBUG_INFO("PRIVACY on\n");
6168 else
6169 IPW_DEBUG_INFO("PRIVACY off\n");
6170 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6171 }
6172
6173 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6174 {
6175 /* TODO: Verify that this works... */
6176 struct ipw_fixed_rate fr;
6177 u32 reg;
6178 u16 mask = 0;
6179 u16 new_tx_rates = priv->rates_mask;
6180
6181 /* Identify 'current FW band' and match it with the fixed
6182 * Tx rates */
6183
6184 switch (priv->ieee->freq_band) {
6185 case LIBIPW_52GHZ_BAND: /* A only */
6186 /* IEEE_A */
6187 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6188 /* Invalid fixed rate mask */
6189 IPW_DEBUG_WX
6190 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6191 new_tx_rates = 0;
6192 break;
6193 }
6194
6195 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6196 break;
6197
6198 default: /* 2.4Ghz or Mixed */
6199 /* IEEE_B */
6200 if (mode == IEEE_B) {
6201 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6202 /* Invalid fixed rate mask */
6203 IPW_DEBUG_WX
6204 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6205 new_tx_rates = 0;
6206 }
6207 break;
6208 }
6209
6210 /* IEEE_G */
6211 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6212 LIBIPW_OFDM_RATES_MASK)) {
6213 /* Invalid fixed rate mask */
6214 IPW_DEBUG_WX
6215 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6216 new_tx_rates = 0;
6217 break;
6218 }
6219
6220 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6221 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6222 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6223 }
6224
6225 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6226 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6227 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6228 }
6229
6230 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6231 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6232 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6233 }
6234
6235 new_tx_rates |= mask;
6236 break;
6237 }
6238
6239 fr.tx_rates = cpu_to_le16(new_tx_rates);
6240
6241 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6242 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6243 }
6244
6245 static void ipw_abort_scan(struct ipw_priv *priv)
6246 {
6247 int err;
6248
6249 if (priv->status & STATUS_SCAN_ABORTING) {
6250 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6251 return;
6252 }
6253 priv->status |= STATUS_SCAN_ABORTING;
6254
6255 err = ipw_send_scan_abort(priv);
6256 if (err)
6257 IPW_DEBUG_HC("Request to abort scan failed.\n");
6258 }
6259
6260 static void ipw_add_scan_channels(struct ipw_priv *priv,
6261 struct ipw_scan_request_ext *scan,
6262 int scan_type)
6263 {
6264 int channel_index = 0;
6265 const struct libipw_geo *geo;
6266 int i;
6267
6268 geo = libipw_get_geo(priv->ieee);
6269
6270 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6271 int start = channel_index;
6272 for (i = 0; i < geo->a_channels; i++) {
6273 if ((priv->status & STATUS_ASSOCIATED) &&
6274 geo->a[i].channel == priv->channel)
6275 continue;
6276 channel_index++;
6277 scan->channels_list[channel_index] = geo->a[i].channel;
6278 ipw_set_scan_type(scan, channel_index,
6279 geo->a[i].
6280 flags & LIBIPW_CH_PASSIVE_ONLY ?
6281 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6282 scan_type);
6283 }
6284
6285 if (start != channel_index) {
6286 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6287 (channel_index - start);
6288 channel_index++;
6289 }
6290 }
6291
6292 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6293 int start = channel_index;
6294 if (priv->config & CFG_SPEED_SCAN) {
6295 int index;
6296 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6297 /* nop out the list */
6298 [0] = 0
6299 };
6300
6301 u8 channel;
6302 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6303 channel =
6304 priv->speed_scan[priv->speed_scan_pos];
6305 if (channel == 0) {
6306 priv->speed_scan_pos = 0;
6307 channel = priv->speed_scan[0];
6308 }
6309 if ((priv->status & STATUS_ASSOCIATED) &&
6310 channel == priv->channel) {
6311 priv->speed_scan_pos++;
6312 continue;
6313 }
6314
6315 /* If this channel has already been
6316 * added in scan, break from loop
6317 * and this will be the first channel
6318 * in the next scan.
6319 */
6320 if (channels[channel - 1] != 0)
6321 break;
6322
6323 channels[channel - 1] = 1;
6324 priv->speed_scan_pos++;
6325 channel_index++;
6326 scan->channels_list[channel_index] = channel;
6327 index =
6328 libipw_channel_to_index(priv->ieee, channel);
6329 ipw_set_scan_type(scan, channel_index,
6330 geo->bg[index].
6331 flags &
6332 LIBIPW_CH_PASSIVE_ONLY ?
6333 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6334 : scan_type);
6335 }
6336 } else {
6337 for (i = 0; i < geo->bg_channels; i++) {
6338 if ((priv->status & STATUS_ASSOCIATED) &&
6339 geo->bg[i].channel == priv->channel)
6340 continue;
6341 channel_index++;
6342 scan->channels_list[channel_index] =
6343 geo->bg[i].channel;
6344 ipw_set_scan_type(scan, channel_index,
6345 geo->bg[i].
6346 flags &
6347 LIBIPW_CH_PASSIVE_ONLY ?
6348 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6349 : scan_type);
6350 }
6351 }
6352
6353 if (start != channel_index) {
6354 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6355 (channel_index - start);
6356 }
6357 }
6358 }
6359
6360 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6361 {
6362 /* staying on passive channels longer than the DTIM interval during a
6363 * scan, while associated, causes the firmware to cancel the scan
6364 * without notification. Hence, don't stay on passive channels longer
6365 * than the beacon interval.
6366 */
6367 if (priv->status & STATUS_ASSOCIATED
6368 && priv->assoc_network->beacon_interval > 10)
6369 return priv->assoc_network->beacon_interval - 10;
6370 else
6371 return 120;
6372 }
6373
6374 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6375 {
6376 struct ipw_scan_request_ext scan;
6377 int err = 0, scan_type;
6378
6379 if (!(priv->status & STATUS_INIT) ||
6380 (priv->status & STATUS_EXIT_PENDING))
6381 return 0;
6382
6383 mutex_lock(&priv->mutex);
6384
6385 if (direct && (priv->direct_scan_ssid_len == 0)) {
6386 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6387 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6388 goto done;
6389 }
6390
6391 if (priv->status & STATUS_SCANNING) {
6392 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6393 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6394 STATUS_SCAN_PENDING;
6395 goto done;
6396 }
6397
6398 if (!(priv->status & STATUS_SCAN_FORCED) &&
6399 priv->status & STATUS_SCAN_ABORTING) {
6400 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6401 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6402 STATUS_SCAN_PENDING;
6403 goto done;
6404 }
6405
6406 if (priv->status & STATUS_RF_KILL_MASK) {
6407 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6408 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6409 STATUS_SCAN_PENDING;
6410 goto done;
6411 }
6412
6413 memset(&scan, 0, sizeof(scan));
6414 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6415
6416 if (type == IW_SCAN_TYPE_PASSIVE) {
6417 IPW_DEBUG_WX("use passive scanning\n");
6418 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6419 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6420 cpu_to_le16(ipw_passive_dwell_time(priv));
6421 ipw_add_scan_channels(priv, &scan, scan_type);
6422 goto send_request;
6423 }
6424
6425 /* Use active scan by default. */
6426 if (priv->config & CFG_SPEED_SCAN)
6427 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6428 cpu_to_le16(30);
6429 else
6430 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6431 cpu_to_le16(20);
6432
6433 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6434 cpu_to_le16(20);
6435
6436 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6437 cpu_to_le16(ipw_passive_dwell_time(priv));
6438 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6439
6440 #ifdef CONFIG_IPW2200_MONITOR
6441 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6442 u8 channel;
6443 u8 band = 0;
6444
6445 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6446 case LIBIPW_52GHZ_BAND:
6447 band = (u8) (IPW_A_MODE << 6) | 1;
6448 channel = priv->channel;
6449 break;
6450
6451 case LIBIPW_24GHZ_BAND:
6452 band = (u8) (IPW_B_MODE << 6) | 1;
6453 channel = priv->channel;
6454 break;
6455
6456 default:
6457 band = (u8) (IPW_B_MODE << 6) | 1;
6458 channel = 9;
6459 break;
6460 }
6461
6462 scan.channels_list[0] = band;
6463 scan.channels_list[1] = channel;
6464 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6465
6466 /* NOTE: The card will sit on this channel for this time
6467 * period. Scan aborts are timing sensitive and frequently
6468 * result in firmware restarts. As such, it is best to
6469 * set a small dwell_time here and just keep re-issuing
6470 * scans. Otherwise fast channel hopping will not actually
6471 * hop channels.
6472 *
6473 * TODO: Move SPEED SCAN support to all modes and bands */
6474 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6475 cpu_to_le16(2000);
6476 } else {
6477 #endif /* CONFIG_IPW2200_MONITOR */
6478 /* Honor direct scans first, otherwise if we are roaming make
6479 * this a direct scan for the current network. Finally,
6480 * ensure that every other scan is a fast channel hop scan */
6481 if (direct) {
6482 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6483 priv->direct_scan_ssid_len);
6484 if (err) {
6485 IPW_DEBUG_HC("Attempt to send SSID command "
6486 "failed\n");
6487 goto done;
6488 }
6489
6490 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6491 } else if ((priv->status & STATUS_ROAMING)
6492 || (!(priv->status & STATUS_ASSOCIATED)
6493 && (priv->config & CFG_STATIC_ESSID)
6494 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6495 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6496 if (err) {
6497 IPW_DEBUG_HC("Attempt to send SSID command "
6498 "failed.\n");
6499 goto done;
6500 }
6501
6502 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6503 } else
6504 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6505
6506 ipw_add_scan_channels(priv, &scan, scan_type);
6507 #ifdef CONFIG_IPW2200_MONITOR
6508 }
6509 #endif
6510
6511 send_request:
6512 err = ipw_send_scan_request_ext(priv, &scan);
6513 if (err) {
6514 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6515 goto done;
6516 }
6517
6518 priv->status |= STATUS_SCANNING;
6519 if (direct) {
6520 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6521 priv->direct_scan_ssid_len = 0;
6522 } else
6523 priv->status &= ~STATUS_SCAN_PENDING;
6524
6525 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6526 done:
6527 mutex_unlock(&priv->mutex);
6528 return err;
6529 }
6530
6531 static void ipw_request_passive_scan(struct work_struct *work)
6532 {
6533 struct ipw_priv *priv =
6534 container_of(work, struct ipw_priv, request_passive_scan.work);
6535 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6536 }
6537
6538 static void ipw_request_scan(struct work_struct *work)
6539 {
6540 struct ipw_priv *priv =
6541 container_of(work, struct ipw_priv, request_scan.work);
6542 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6543 }
6544
6545 static void ipw_request_direct_scan(struct work_struct *work)
6546 {
6547 struct ipw_priv *priv =
6548 container_of(work, struct ipw_priv, request_direct_scan.work);
6549 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6550 }
6551
6552 static void ipw_bg_abort_scan(struct work_struct *work)
6553 {
6554 struct ipw_priv *priv =
6555 container_of(work, struct ipw_priv, abort_scan);
6556 mutex_lock(&priv->mutex);
6557 ipw_abort_scan(priv);
6558 mutex_unlock(&priv->mutex);
6559 }
6560
6561 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6562 {
6563 /* This is called when wpa_supplicant loads and closes the driver
6564 * interface. */
6565 priv->ieee->wpa_enabled = value;
6566 return 0;
6567 }
6568
6569 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6570 {
6571 struct libipw_device *ieee = priv->ieee;
6572 struct libipw_security sec = {
6573 .flags = SEC_AUTH_MODE,
6574 };
6575 int ret = 0;
6576
6577 if (value & IW_AUTH_ALG_SHARED_KEY) {
6578 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6579 ieee->open_wep = 0;
6580 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6581 sec.auth_mode = WLAN_AUTH_OPEN;
6582 ieee->open_wep = 1;
6583 } else if (value & IW_AUTH_ALG_LEAP) {
6584 sec.auth_mode = WLAN_AUTH_LEAP;
6585 ieee->open_wep = 1;
6586 } else
6587 return -EINVAL;
6588
6589 if (ieee->set_security)
6590 ieee->set_security(ieee->dev, &sec);
6591 else
6592 ret = -EOPNOTSUPP;
6593
6594 return ret;
6595 }
6596
6597 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6598 int wpa_ie_len)
6599 {
6600 /* make sure WPA is enabled */
6601 ipw_wpa_enable(priv, 1);
6602 }
6603
6604 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6605 char *capabilities, int length)
6606 {
6607 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6608
6609 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6610 capabilities);
6611 }
6612
6613 /*
6614 * WE-18 support
6615 */
6616
6617 /* SIOCSIWGENIE */
6618 static int ipw_wx_set_genie(struct net_device *dev,
6619 struct iw_request_info *info,
6620 union iwreq_data *wrqu, char *extra)
6621 {
6622 struct ipw_priv *priv = libipw_priv(dev);
6623 struct libipw_device *ieee = priv->ieee;
6624 u8 *buf;
6625 int err = 0;
6626
6627 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6628 (wrqu->data.length && extra == NULL))
6629 return -EINVAL;
6630
6631 if (wrqu->data.length) {
6632 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6633 if (buf == NULL) {
6634 err = -ENOMEM;
6635 goto out;
6636 }
6637
6638 kfree(ieee->wpa_ie);
6639 ieee->wpa_ie = buf;
6640 ieee->wpa_ie_len = wrqu->data.length;
6641 } else {
6642 kfree(ieee->wpa_ie);
6643 ieee->wpa_ie = NULL;
6644 ieee->wpa_ie_len = 0;
6645 }
6646
6647 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6648 out:
6649 return err;
6650 }
6651
6652 /* SIOCGIWGENIE */
6653 static int ipw_wx_get_genie(struct net_device *dev,
6654 struct iw_request_info *info,
6655 union iwreq_data *wrqu, char *extra)
6656 {
6657 struct ipw_priv *priv = libipw_priv(dev);
6658 struct libipw_device *ieee = priv->ieee;
6659 int err = 0;
6660
6661 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6662 wrqu->data.length = 0;
6663 goto out;
6664 }
6665
6666 if (wrqu->data.length < ieee->wpa_ie_len) {
6667 err = -E2BIG;
6668 goto out;
6669 }
6670
6671 wrqu->data.length = ieee->wpa_ie_len;
6672 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6673
6674 out:
6675 return err;
6676 }
6677
6678 static int wext_cipher2level(int cipher)
6679 {
6680 switch (cipher) {
6681 case IW_AUTH_CIPHER_NONE:
6682 return SEC_LEVEL_0;
6683 case IW_AUTH_CIPHER_WEP40:
6684 case IW_AUTH_CIPHER_WEP104:
6685 return SEC_LEVEL_1;
6686 case IW_AUTH_CIPHER_TKIP:
6687 return SEC_LEVEL_2;
6688 case IW_AUTH_CIPHER_CCMP:
6689 return SEC_LEVEL_3;
6690 default:
6691 return -1;
6692 }
6693 }
6694
6695 /* SIOCSIWAUTH */
6696 static int ipw_wx_set_auth(struct net_device *dev,
6697 struct iw_request_info *info,
6698 union iwreq_data *wrqu, char *extra)
6699 {
6700 struct ipw_priv *priv = libipw_priv(dev);
6701 struct libipw_device *ieee = priv->ieee;
6702 struct iw_param *param = &wrqu->param;
6703 struct lib80211_crypt_data *crypt;
6704 unsigned long flags;
6705 int ret = 0;
6706
6707 switch (param->flags & IW_AUTH_INDEX) {
6708 case IW_AUTH_WPA_VERSION:
6709 break;
6710 case IW_AUTH_CIPHER_PAIRWISE:
6711 ipw_set_hw_decrypt_unicast(priv,
6712 wext_cipher2level(param->value));
6713 break;
6714 case IW_AUTH_CIPHER_GROUP:
6715 ipw_set_hw_decrypt_multicast(priv,
6716 wext_cipher2level(param->value));
6717 break;
6718 case IW_AUTH_KEY_MGMT:
6719 /*
6720 * ipw2200 does not use these parameters
6721 */
6722 break;
6723
6724 case IW_AUTH_TKIP_COUNTERMEASURES:
6725 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6726 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6727 break;
6728
6729 flags = crypt->ops->get_flags(crypt->priv);
6730
6731 if (param->value)
6732 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6733 else
6734 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6735
6736 crypt->ops->set_flags(flags, crypt->priv);
6737
6738 break;
6739
6740 case IW_AUTH_DROP_UNENCRYPTED:{
6741 /* HACK:
6742 *
6743 * wpa_supplicant calls set_wpa_enabled when the driver
6744 * is loaded and unloaded, regardless of if WPA is being
6745 * used. No other calls are made which can be used to
6746 * determine if encryption will be used or not prior to
6747 * association being expected. If encryption is not being
6748 * used, drop_unencrypted is set to false, else true -- we
6749 * can use this to determine if the CAP_PRIVACY_ON bit should
6750 * be set.
6751 */
6752 struct libipw_security sec = {
6753 .flags = SEC_ENABLED,
6754 .enabled = param->value,
6755 };
6756 priv->ieee->drop_unencrypted = param->value;
6757 /* We only change SEC_LEVEL for open mode. Others
6758 * are set by ipw_wpa_set_encryption.
6759 */
6760 if (!param->value) {
6761 sec.flags |= SEC_LEVEL;
6762 sec.level = SEC_LEVEL_0;
6763 } else {
6764 sec.flags |= SEC_LEVEL;
6765 sec.level = SEC_LEVEL_1;
6766 }
6767 if (priv->ieee->set_security)
6768 priv->ieee->set_security(priv->ieee->dev, &sec);
6769 break;
6770 }
6771
6772 case IW_AUTH_80211_AUTH_ALG:
6773 ret = ipw_wpa_set_auth_algs(priv, param->value);
6774 break;
6775
6776 case IW_AUTH_WPA_ENABLED:
6777 ret = ipw_wpa_enable(priv, param->value);
6778 ipw_disassociate(priv);
6779 break;
6780
6781 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6782 ieee->ieee802_1x = param->value;
6783 break;
6784
6785 case IW_AUTH_PRIVACY_INVOKED:
6786 ieee->privacy_invoked = param->value;
6787 break;
6788
6789 default:
6790 return -EOPNOTSUPP;
6791 }
6792 return ret;
6793 }
6794
6795 /* SIOCGIWAUTH */
6796 static int ipw_wx_get_auth(struct net_device *dev,
6797 struct iw_request_info *info,
6798 union iwreq_data *wrqu, char *extra)
6799 {
6800 struct ipw_priv *priv = libipw_priv(dev);
6801 struct libipw_device *ieee = priv->ieee;
6802 struct lib80211_crypt_data *crypt;
6803 struct iw_param *param = &wrqu->param;
6804 int ret = 0;
6805
6806 switch (param->flags & IW_AUTH_INDEX) {
6807 case IW_AUTH_WPA_VERSION:
6808 case IW_AUTH_CIPHER_PAIRWISE:
6809 case IW_AUTH_CIPHER_GROUP:
6810 case IW_AUTH_KEY_MGMT:
6811 /*
6812 * wpa_supplicant will control these internally
6813 */
6814 ret = -EOPNOTSUPP;
6815 break;
6816
6817 case IW_AUTH_TKIP_COUNTERMEASURES:
6818 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6819 if (!crypt || !crypt->ops->get_flags)
6820 break;
6821
6822 param->value = (crypt->ops->get_flags(crypt->priv) &
6823 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6824
6825 break;
6826
6827 case IW_AUTH_DROP_UNENCRYPTED:
6828 param->value = ieee->drop_unencrypted;
6829 break;
6830
6831 case IW_AUTH_80211_AUTH_ALG:
6832 param->value = ieee->sec.auth_mode;
6833 break;
6834
6835 case IW_AUTH_WPA_ENABLED:
6836 param->value = ieee->wpa_enabled;
6837 break;
6838
6839 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6840 param->value = ieee->ieee802_1x;
6841 break;
6842
6843 case IW_AUTH_ROAMING_CONTROL:
6844 case IW_AUTH_PRIVACY_INVOKED:
6845 param->value = ieee->privacy_invoked;
6846 break;
6847
6848 default:
6849 return -EOPNOTSUPP;
6850 }
6851 return 0;
6852 }
6853
6854 /* SIOCSIWENCODEEXT */
6855 static int ipw_wx_set_encodeext(struct net_device *dev,
6856 struct iw_request_info *info,
6857 union iwreq_data *wrqu, char *extra)
6858 {
6859 struct ipw_priv *priv = libipw_priv(dev);
6860 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6861
6862 if (hwcrypto) {
6863 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6864 /* IPW HW can't build TKIP MIC,
6865 host decryption still needed */
6866 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6867 priv->ieee->host_mc_decrypt = 1;
6868 else {
6869 priv->ieee->host_encrypt = 0;
6870 priv->ieee->host_encrypt_msdu = 1;
6871 priv->ieee->host_decrypt = 1;
6872 }
6873 } else {
6874 priv->ieee->host_encrypt = 0;
6875 priv->ieee->host_encrypt_msdu = 0;
6876 priv->ieee->host_decrypt = 0;
6877 priv->ieee->host_mc_decrypt = 0;
6878 }
6879 }
6880
6881 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6882 }
6883
6884 /* SIOCGIWENCODEEXT */
6885 static int ipw_wx_get_encodeext(struct net_device *dev,
6886 struct iw_request_info *info,
6887 union iwreq_data *wrqu, char *extra)
6888 {
6889 struct ipw_priv *priv = libipw_priv(dev);
6890 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6891 }
6892
6893 /* SIOCSIWMLME */
6894 static int ipw_wx_set_mlme(struct net_device *dev,
6895 struct iw_request_info *info,
6896 union iwreq_data *wrqu, char *extra)
6897 {
6898 struct ipw_priv *priv = libipw_priv(dev);
6899 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6900 __le16 reason;
6901
6902 reason = cpu_to_le16(mlme->reason_code);
6903
6904 switch (mlme->cmd) {
6905 case IW_MLME_DEAUTH:
6906 /* silently ignore */
6907 break;
6908
6909 case IW_MLME_DISASSOC:
6910 ipw_disassociate(priv);
6911 break;
6912
6913 default:
6914 return -EOPNOTSUPP;
6915 }
6916 return 0;
6917 }
6918
6919 #ifdef CONFIG_IPW2200_QOS
6920
6921 /* QoS */
6922 /*
6923 * get the modulation type of the current network or
6924 * the card current mode
6925 */
6926 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6927 {
6928 u8 mode = 0;
6929
6930 if (priv->status & STATUS_ASSOCIATED) {
6931 unsigned long flags;
6932
6933 spin_lock_irqsave(&priv->ieee->lock, flags);
6934 mode = priv->assoc_network->mode;
6935 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6936 } else {
6937 mode = priv->ieee->mode;
6938 }
6939 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6940 return mode;
6941 }
6942
6943 /*
6944 * Handle management frame beacon and probe response
6945 */
6946 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6947 int active_network,
6948 struct libipw_network *network)
6949 {
6950 u32 size = sizeof(struct libipw_qos_parameters);
6951
6952 if (network->capability & WLAN_CAPABILITY_IBSS)
6953 network->qos_data.active = network->qos_data.supported;
6954
6955 if (network->flags & NETWORK_HAS_QOS_MASK) {
6956 if (active_network &&
6957 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6958 network->qos_data.active = network->qos_data.supported;
6959
6960 if ((network->qos_data.active == 1) && (active_network == 1) &&
6961 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6962 (network->qos_data.old_param_count !=
6963 network->qos_data.param_count)) {
6964 network->qos_data.old_param_count =
6965 network->qos_data.param_count;
6966 schedule_work(&priv->qos_activate);
6967 IPW_DEBUG_QOS("QoS parameters change call "
6968 "qos_activate\n");
6969 }
6970 } else {
6971 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6972 memcpy(&network->qos_data.parameters,
6973 &def_parameters_CCK, size);
6974 else
6975 memcpy(&network->qos_data.parameters,
6976 &def_parameters_OFDM, size);
6977
6978 if ((network->qos_data.active == 1) && (active_network == 1)) {
6979 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6980 schedule_work(&priv->qos_activate);
6981 }
6982
6983 network->qos_data.active = 0;
6984 network->qos_data.supported = 0;
6985 }
6986 if ((priv->status & STATUS_ASSOCIATED) &&
6987 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6988 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6989 if (network->capability & WLAN_CAPABILITY_IBSS)
6990 if ((network->ssid_len ==
6991 priv->assoc_network->ssid_len) &&
6992 !memcmp(network->ssid,
6993 priv->assoc_network->ssid,
6994 network->ssid_len)) {
6995 schedule_work(&priv->merge_networks);
6996 }
6997 }
6998
6999 return 0;
7000 }
7001
7002 /*
7003 * This function set up the firmware to support QoS. It sends
7004 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7005 */
7006 static int ipw_qos_activate(struct ipw_priv *priv,
7007 struct libipw_qos_data *qos_network_data)
7008 {
7009 int err;
7010 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7011 struct libipw_qos_parameters *active_one = NULL;
7012 u32 size = sizeof(struct libipw_qos_parameters);
7013 u32 burst_duration;
7014 int i;
7015 u8 type;
7016
7017 type = ipw_qos_current_mode(priv);
7018
7019 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7020 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7021 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7022 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7023
7024 if (qos_network_data == NULL) {
7025 if (type == IEEE_B) {
7026 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7027 active_one = &def_parameters_CCK;
7028 } else
7029 active_one = &def_parameters_OFDM;
7030
7031 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7032 burst_duration = ipw_qos_get_burst_duration(priv);
7033 for (i = 0; i < QOS_QUEUE_NUM; i++)
7034 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7035 cpu_to_le16(burst_duration);
7036 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7037 if (type == IEEE_B) {
7038 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
7039 type);
7040 if (priv->qos_data.qos_enable == 0)
7041 active_one = &def_parameters_CCK;
7042 else
7043 active_one = priv->qos_data.def_qos_parm_CCK;
7044 } else {
7045 if (priv->qos_data.qos_enable == 0)
7046 active_one = &def_parameters_OFDM;
7047 else
7048 active_one = priv->qos_data.def_qos_parm_OFDM;
7049 }
7050 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7051 } else {
7052 unsigned long flags;
7053 int active;
7054
7055 spin_lock_irqsave(&priv->ieee->lock, flags);
7056 active_one = &(qos_network_data->parameters);
7057 qos_network_data->old_param_count =
7058 qos_network_data->param_count;
7059 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7060 active = qos_network_data->supported;
7061 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7062
7063 if (active == 0) {
7064 burst_duration = ipw_qos_get_burst_duration(priv);
7065 for (i = 0; i < QOS_QUEUE_NUM; i++)
7066 qos_parameters[QOS_PARAM_SET_ACTIVE].
7067 tx_op_limit[i] = cpu_to_le16(burst_duration);
7068 }
7069 }
7070
7071 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7072 err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
7073 if (err)
7074 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7075
7076 return err;
7077 }
7078
7079 /*
7080 * send IPW_CMD_WME_INFO to the firmware
7081 */
7082 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7083 {
7084 int ret = 0;
7085 struct libipw_qos_information_element qos_info;
7086
7087 if (priv == NULL)
7088 return -1;
7089
7090 qos_info.elementID = QOS_ELEMENT_ID;
7091 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7092
7093 qos_info.version = QOS_VERSION_1;
7094 qos_info.ac_info = 0;
7095
7096 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7097 qos_info.qui_type = QOS_OUI_TYPE;
7098 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7099
7100 ret = ipw_send_qos_info_command(priv, &qos_info);
7101 if (ret != 0) {
7102 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7103 }
7104 return ret;
7105 }
7106
7107 /*
7108 * Set the QoS parameter with the association request structure
7109 */
7110 static int ipw_qos_association(struct ipw_priv *priv,
7111 struct libipw_network *network)
7112 {
7113 int err = 0;
7114 struct libipw_qos_data *qos_data = NULL;
7115 struct libipw_qos_data ibss_data = {
7116 .supported = 1,
7117 .active = 1,
7118 };
7119
7120 switch (priv->ieee->iw_mode) {
7121 case IW_MODE_ADHOC:
7122 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7123
7124 qos_data = &ibss_data;
7125 break;
7126
7127 case IW_MODE_INFRA:
7128 qos_data = &network->qos_data;
7129 break;
7130
7131 default:
7132 BUG();
7133 break;
7134 }
7135
7136 err = ipw_qos_activate(priv, qos_data);
7137 if (err) {
7138 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7139 return err;
7140 }
7141
7142 if (priv->qos_data.qos_enable && qos_data->supported) {
7143 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7144 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7145 return ipw_qos_set_info_element(priv);
7146 }
7147
7148 return 0;
7149 }
7150
7151 /*
7152 * handling the beaconing responses. if we get different QoS setting
7153 * off the network from the associated setting, adjust the QoS
7154 * setting
7155 */
7156 static int ipw_qos_association_resp(struct ipw_priv *priv,
7157 struct libipw_network *network)
7158 {
7159 int ret = 0;
7160 unsigned long flags;
7161 u32 size = sizeof(struct libipw_qos_parameters);
7162 int set_qos_param = 0;
7163
7164 if ((priv == NULL) || (network == NULL) ||
7165 (priv->assoc_network == NULL))
7166 return ret;
7167
7168 if (!(priv->status & STATUS_ASSOCIATED))
7169 return ret;
7170
7171 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7172 return ret;
7173
7174 spin_lock_irqsave(&priv->ieee->lock, flags);
7175 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7176 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7177 sizeof(struct libipw_qos_data));
7178 priv->assoc_network->qos_data.active = 1;
7179 if ((network->qos_data.old_param_count !=
7180 network->qos_data.param_count)) {
7181 set_qos_param = 1;
7182 network->qos_data.old_param_count =
7183 network->qos_data.param_count;
7184 }
7185
7186 } else {
7187 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7188 memcpy(&priv->assoc_network->qos_data.parameters,
7189 &def_parameters_CCK, size);
7190 else
7191 memcpy(&priv->assoc_network->qos_data.parameters,
7192 &def_parameters_OFDM, size);
7193 priv->assoc_network->qos_data.active = 0;
7194 priv->assoc_network->qos_data.supported = 0;
7195 set_qos_param = 1;
7196 }
7197
7198 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7199
7200 if (set_qos_param == 1)
7201 schedule_work(&priv->qos_activate);
7202
7203 return ret;
7204 }
7205
7206 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7207 {
7208 u32 ret = 0;
7209
7210 if ((priv == NULL))
7211 return 0;
7212
7213 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7214 ret = priv->qos_data.burst_duration_CCK;
7215 else
7216 ret = priv->qos_data.burst_duration_OFDM;
7217
7218 return ret;
7219 }
7220
7221 /*
7222 * Initialize the setting of QoS global
7223 */
7224 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7225 int burst_enable, u32 burst_duration_CCK,
7226 u32 burst_duration_OFDM)
7227 {
7228 priv->qos_data.qos_enable = enable;
7229
7230 if (priv->qos_data.qos_enable) {
7231 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7232 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7233 IPW_DEBUG_QOS("QoS is enabled\n");
7234 } else {
7235 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7236 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7237 IPW_DEBUG_QOS("QoS is not enabled\n");
7238 }
7239
7240 priv->qos_data.burst_enable = burst_enable;
7241
7242 if (burst_enable) {
7243 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7244 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7245 } else {
7246 priv->qos_data.burst_duration_CCK = 0;
7247 priv->qos_data.burst_duration_OFDM = 0;
7248 }
7249 }
7250
7251 /*
7252 * map the packet priority to the right TX Queue
7253 */
7254 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7255 {
7256 if (priority > 7 || !priv->qos_data.qos_enable)
7257 priority = 0;
7258
7259 return from_priority_to_tx_queue[priority] - 1;
7260 }
7261
7262 static int ipw_is_qos_active(struct net_device *dev,
7263 struct sk_buff *skb)
7264 {
7265 struct ipw_priv *priv = libipw_priv(dev);
7266 struct libipw_qos_data *qos_data = NULL;
7267 int active, supported;
7268 u8 *daddr = skb->data + ETH_ALEN;
7269 int unicast = !is_multicast_ether_addr(daddr);
7270
7271 if (!(priv->status & STATUS_ASSOCIATED))
7272 return 0;
7273
7274 qos_data = &priv->assoc_network->qos_data;
7275
7276 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7277 if (unicast == 0)
7278 qos_data->active = 0;
7279 else
7280 qos_data->active = qos_data->supported;
7281 }
7282 active = qos_data->active;
7283 supported = qos_data->supported;
7284 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7285 "unicast %d\n",
7286 priv->qos_data.qos_enable, active, supported, unicast);
7287 if (active && priv->qos_data.qos_enable)
7288 return 1;
7289
7290 return 0;
7291
7292 }
7293 /*
7294 * add QoS parameter to the TX command
7295 */
7296 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7297 u16 priority,
7298 struct tfd_data *tfd)
7299 {
7300 int tx_queue_id = 0;
7301
7302
7303 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7304 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7305
7306 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7307 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7308 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7309 }
7310 return 0;
7311 }
7312
7313 /*
7314 * background support to run QoS activate functionality
7315 */
7316 static void ipw_bg_qos_activate(struct work_struct *work)
7317 {
7318 struct ipw_priv *priv =
7319 container_of(work, struct ipw_priv, qos_activate);
7320
7321 mutex_lock(&priv->mutex);
7322
7323 if (priv->status & STATUS_ASSOCIATED)
7324 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7325
7326 mutex_unlock(&priv->mutex);
7327 }
7328
7329 static int ipw_handle_probe_response(struct net_device *dev,
7330 struct libipw_probe_response *resp,
7331 struct libipw_network *network)
7332 {
7333 struct ipw_priv *priv = libipw_priv(dev);
7334 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7335 (network == priv->assoc_network));
7336
7337 ipw_qos_handle_probe_response(priv, active_network, network);
7338
7339 return 0;
7340 }
7341
7342 static int ipw_handle_beacon(struct net_device *dev,
7343 struct libipw_beacon *resp,
7344 struct libipw_network *network)
7345 {
7346 struct ipw_priv *priv = libipw_priv(dev);
7347 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7348 (network == priv->assoc_network));
7349
7350 ipw_qos_handle_probe_response(priv, active_network, network);
7351
7352 return 0;
7353 }
7354
7355 static int ipw_handle_assoc_response(struct net_device *dev,
7356 struct libipw_assoc_response *resp,
7357 struct libipw_network *network)
7358 {
7359 struct ipw_priv *priv = libipw_priv(dev);
7360 ipw_qos_association_resp(priv, network);
7361 return 0;
7362 }
7363
7364 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7365 *qos_param)
7366 {
7367 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7368 sizeof(*qos_param) * 3, qos_param);
7369 }
7370
7371 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7372 *qos_param)
7373 {
7374 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7375 qos_param);
7376 }
7377
7378 #endif /* CONFIG_IPW2200_QOS */
7379
7380 static int ipw_associate_network(struct ipw_priv *priv,
7381 struct libipw_network *network,
7382 struct ipw_supported_rates *rates, int roaming)
7383 {
7384 int err;
7385 DECLARE_SSID_BUF(ssid);
7386
7387 if (priv->config & CFG_FIXED_RATE)
7388 ipw_set_fixed_rate(priv, network->mode);
7389
7390 if (!(priv->config & CFG_STATIC_ESSID)) {
7391 priv->essid_len = min(network->ssid_len,
7392 (u8) IW_ESSID_MAX_SIZE);
7393 memcpy(priv->essid, network->ssid, priv->essid_len);
7394 }
7395
7396 network->last_associate = jiffies;
7397
7398 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7399 priv->assoc_request.channel = network->channel;
7400 priv->assoc_request.auth_key = 0;
7401
7402 if ((priv->capability & CAP_PRIVACY_ON) &&
7403 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7404 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7405 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7406
7407 if (priv->ieee->sec.level == SEC_LEVEL_1)
7408 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7409
7410 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7411 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7412 priv->assoc_request.auth_type = AUTH_LEAP;
7413 else
7414 priv->assoc_request.auth_type = AUTH_OPEN;
7415
7416 if (priv->ieee->wpa_ie_len) {
7417 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7418 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7419 priv->ieee->wpa_ie_len);
7420 }
7421
7422 /*
7423 * It is valid for our ieee device to support multiple modes, but
7424 * when it comes to associating to a given network we have to choose
7425 * just one mode.
7426 */
7427 if (network->mode & priv->ieee->mode & IEEE_A)
7428 priv->assoc_request.ieee_mode = IPW_A_MODE;
7429 else if (network->mode & priv->ieee->mode & IEEE_G)
7430 priv->assoc_request.ieee_mode = IPW_G_MODE;
7431 else if (network->mode & priv->ieee->mode & IEEE_B)
7432 priv->assoc_request.ieee_mode = IPW_B_MODE;
7433
7434 priv->assoc_request.capability = cpu_to_le16(network->capability);
7435 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7436 && !(priv->config & CFG_PREAMBLE_LONG)) {
7437 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7438 } else {
7439 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7440
7441 /* Clear the short preamble if we won't be supporting it */
7442 priv->assoc_request.capability &=
7443 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7444 }
7445
7446 /* Clear capability bits that aren't used in Ad Hoc */
7447 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7448 priv->assoc_request.capability &=
7449 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7450
7451 IPW_DEBUG_ASSOC("%ssociation attempt: '%s', channel %d, "
7452 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7453 roaming ? "Rea" : "A",
7454 print_ssid(ssid, priv->essid, priv->essid_len),
7455 network->channel,
7456 ipw_modes[priv->assoc_request.ieee_mode],
7457 rates->num_rates,
7458 (priv->assoc_request.preamble_length ==
7459 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7460 network->capability &
7461 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7462 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7463 priv->capability & CAP_PRIVACY_ON ?
7464 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7465 "(open)") : "",
7466 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7467 priv->capability & CAP_PRIVACY_ON ?
7468 '1' + priv->ieee->sec.active_key : '.',
7469 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7470
7471 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7472 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7473 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7474 priv->assoc_request.assoc_type = HC_IBSS_START;
7475 priv->assoc_request.assoc_tsf_msw = 0;
7476 priv->assoc_request.assoc_tsf_lsw = 0;
7477 } else {
7478 if (unlikely(roaming))
7479 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7480 else
7481 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7482 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7483 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7484 }
7485
7486 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7487
7488 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7489 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7490 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7491 } else {
7492 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7493 priv->assoc_request.atim_window = 0;
7494 }
7495
7496 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7497
7498 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7499 if (err) {
7500 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7501 return err;
7502 }
7503
7504 rates->ieee_mode = priv->assoc_request.ieee_mode;
7505 rates->purpose = IPW_RATE_CONNECT;
7506 ipw_send_supported_rates(priv, rates);
7507
7508 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7509 priv->sys_config.dot11g_auto_detection = 1;
7510 else
7511 priv->sys_config.dot11g_auto_detection = 0;
7512
7513 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7514 priv->sys_config.answer_broadcast_ssid_probe = 1;
7515 else
7516 priv->sys_config.answer_broadcast_ssid_probe = 0;
7517
7518 err = ipw_send_system_config(priv);
7519 if (err) {
7520 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7521 return err;
7522 }
7523
7524 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7525 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7526 if (err) {
7527 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7528 return err;
7529 }
7530
7531 /*
7532 * If preemption is enabled, it is possible for the association
7533 * to complete before we return from ipw_send_associate. Therefore
7534 * we have to be sure and update our priviate data first.
7535 */
7536 priv->channel = network->channel;
7537 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7538 priv->status |= STATUS_ASSOCIATING;
7539 priv->status &= ~STATUS_SECURITY_UPDATED;
7540
7541 priv->assoc_network = network;
7542
7543 #ifdef CONFIG_IPW2200_QOS
7544 ipw_qos_association(priv, network);
7545 #endif
7546
7547 err = ipw_send_associate(priv, &priv->assoc_request);
7548 if (err) {
7549 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7550 return err;
7551 }
7552
7553 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7554 print_ssid(ssid, priv->essid, priv->essid_len),
7555 priv->bssid);
7556
7557 return 0;
7558 }
7559
7560 static void ipw_roam(void *data)
7561 {
7562 struct ipw_priv *priv = data;
7563 struct libipw_network *network = NULL;
7564 struct ipw_network_match match = {
7565 .network = priv->assoc_network
7566 };
7567
7568 /* The roaming process is as follows:
7569 *
7570 * 1. Missed beacon threshold triggers the roaming process by
7571 * setting the status ROAM bit and requesting a scan.
7572 * 2. When the scan completes, it schedules the ROAM work
7573 * 3. The ROAM work looks at all of the known networks for one that
7574 * is a better network than the currently associated. If none
7575 * found, the ROAM process is over (ROAM bit cleared)
7576 * 4. If a better network is found, a disassociation request is
7577 * sent.
7578 * 5. When the disassociation completes, the roam work is again
7579 * scheduled. The second time through, the driver is no longer
7580 * associated, and the newly selected network is sent an
7581 * association request.
7582 * 6. At this point ,the roaming process is complete and the ROAM
7583 * status bit is cleared.
7584 */
7585
7586 /* If we are no longer associated, and the roaming bit is no longer
7587 * set, then we are not actively roaming, so just return */
7588 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7589 return;
7590
7591 if (priv->status & STATUS_ASSOCIATED) {
7592 /* First pass through ROAM process -- look for a better
7593 * network */
7594 unsigned long flags;
7595 u8 rssi = priv->assoc_network->stats.rssi;
7596 priv->assoc_network->stats.rssi = -128;
7597 spin_lock_irqsave(&priv->ieee->lock, flags);
7598 list_for_each_entry(network, &priv->ieee->network_list, list) {
7599 if (network != priv->assoc_network)
7600 ipw_best_network(priv, &match, network, 1);
7601 }
7602 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7603 priv->assoc_network->stats.rssi = rssi;
7604
7605 if (match.network == priv->assoc_network) {
7606 IPW_DEBUG_ASSOC("No better APs in this network to "
7607 "roam to.\n");
7608 priv->status &= ~STATUS_ROAMING;
7609 ipw_debug_config(priv);
7610 return;
7611 }
7612
7613 ipw_send_disassociate(priv, 1);
7614 priv->assoc_network = match.network;
7615
7616 return;
7617 }
7618
7619 /* Second pass through ROAM process -- request association */
7620 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7621 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7622 priv->status &= ~STATUS_ROAMING;
7623 }
7624
7625 static void ipw_bg_roam(struct work_struct *work)
7626 {
7627 struct ipw_priv *priv =
7628 container_of(work, struct ipw_priv, roam);
7629 mutex_lock(&priv->mutex);
7630 ipw_roam(priv);
7631 mutex_unlock(&priv->mutex);
7632 }
7633
7634 static int ipw_associate(void *data)
7635 {
7636 struct ipw_priv *priv = data;
7637
7638 struct libipw_network *network = NULL;
7639 struct ipw_network_match match = {
7640 .network = NULL
7641 };
7642 struct ipw_supported_rates *rates;
7643 struct list_head *element;
7644 unsigned long flags;
7645 DECLARE_SSID_BUF(ssid);
7646
7647 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7648 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7649 return 0;
7650 }
7651
7652 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7653 IPW_DEBUG_ASSOC("Not attempting association (already in "
7654 "progress)\n");
7655 return 0;
7656 }
7657
7658 if (priv->status & STATUS_DISASSOCIATING) {
7659 IPW_DEBUG_ASSOC("Not attempting association (in "
7660 "disassociating)\n ");
7661 schedule_work(&priv->associate);
7662 return 0;
7663 }
7664
7665 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7666 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7667 "initialized)\n");
7668 return 0;
7669 }
7670
7671 if (!(priv->config & CFG_ASSOCIATE) &&
7672 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7673 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7674 return 0;
7675 }
7676
7677 /* Protect our use of the network_list */
7678 spin_lock_irqsave(&priv->ieee->lock, flags);
7679 list_for_each_entry(network, &priv->ieee->network_list, list)
7680 ipw_best_network(priv, &match, network, 0);
7681
7682 network = match.network;
7683 rates = &match.rates;
7684
7685 if (network == NULL &&
7686 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7687 priv->config & CFG_ADHOC_CREATE &&
7688 priv->config & CFG_STATIC_ESSID &&
7689 priv->config & CFG_STATIC_CHANNEL) {
7690 /* Use oldest network if the free list is empty */
7691 if (list_empty(&priv->ieee->network_free_list)) {
7692 struct libipw_network *oldest = NULL;
7693 struct libipw_network *target;
7694
7695 list_for_each_entry(target, &priv->ieee->network_list, list) {
7696 if ((oldest == NULL) ||
7697 (target->last_scanned < oldest->last_scanned))
7698 oldest = target;
7699 }
7700
7701 /* If there are no more slots, expire the oldest */
7702 list_del(&oldest->list);
7703 target = oldest;
7704 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7705 "network list.\n",
7706 print_ssid(ssid, target->ssid,
7707 target->ssid_len),
7708 target->bssid);
7709 list_add_tail(&target->list,
7710 &priv->ieee->network_free_list);
7711 }
7712
7713 element = priv->ieee->network_free_list.next;
7714 network = list_entry(element, struct libipw_network, list);
7715 ipw_adhoc_create(priv, network);
7716 rates = &priv->rates;
7717 list_del(element);
7718 list_add_tail(&network->list, &priv->ieee->network_list);
7719 }
7720 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7721
7722 /* If we reached the end of the list, then we don't have any valid
7723 * matching APs */
7724 if (!network) {
7725 ipw_debug_config(priv);
7726
7727 if (!(priv->status & STATUS_SCANNING)) {
7728 if (!(priv->config & CFG_SPEED_SCAN))
7729 schedule_delayed_work(&priv->request_scan,
7730 SCAN_INTERVAL);
7731 else
7732 schedule_delayed_work(&priv->request_scan, 0);
7733 }
7734
7735 return 0;
7736 }
7737
7738 ipw_associate_network(priv, network, rates, 0);
7739
7740 return 1;
7741 }
7742
7743 static void ipw_bg_associate(struct work_struct *work)
7744 {
7745 struct ipw_priv *priv =
7746 container_of(work, struct ipw_priv, associate);
7747 mutex_lock(&priv->mutex);
7748 ipw_associate(priv);
7749 mutex_unlock(&priv->mutex);
7750 }
7751
7752 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7753 struct sk_buff *skb)
7754 {
7755 struct ieee80211_hdr *hdr;
7756 u16 fc;
7757
7758 hdr = (struct ieee80211_hdr *)skb->data;
7759 fc = le16_to_cpu(hdr->frame_control);
7760 if (!(fc & IEEE80211_FCTL_PROTECTED))
7761 return;
7762
7763 fc &= ~IEEE80211_FCTL_PROTECTED;
7764 hdr->frame_control = cpu_to_le16(fc);
7765 switch (priv->ieee->sec.level) {
7766 case SEC_LEVEL_3:
7767 /* Remove CCMP HDR */
7768 memmove(skb->data + LIBIPW_3ADDR_LEN,
7769 skb->data + LIBIPW_3ADDR_LEN + 8,
7770 skb->len - LIBIPW_3ADDR_LEN - 8);
7771 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7772 break;
7773 case SEC_LEVEL_2:
7774 break;
7775 case SEC_LEVEL_1:
7776 /* Remove IV */
7777 memmove(skb->data + LIBIPW_3ADDR_LEN,
7778 skb->data + LIBIPW_3ADDR_LEN + 4,
7779 skb->len - LIBIPW_3ADDR_LEN - 4);
7780 skb_trim(skb, skb->len - 8); /* IV + ICV */
7781 break;
7782 case SEC_LEVEL_0:
7783 break;
7784 default:
7785 printk(KERN_ERR "Unknown security level %d\n",
7786 priv->ieee->sec.level);
7787 break;
7788 }
7789 }
7790
7791 static void ipw_handle_data_packet(struct ipw_priv *priv,
7792 struct ipw_rx_mem_buffer *rxb,
7793 struct libipw_rx_stats *stats)
7794 {
7795 struct net_device *dev = priv->net_dev;
7796 struct libipw_hdr_4addr *hdr;
7797 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7798
7799 /* We received data from the HW, so stop the watchdog */
7800 dev->trans_start = jiffies;
7801
7802 /* We only process data packets if the
7803 * interface is open */
7804 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7805 skb_tailroom(rxb->skb))) {
7806 dev->stats.rx_errors++;
7807 priv->wstats.discard.misc++;
7808 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7809 return;
7810 } else if (unlikely(!netif_running(priv->net_dev))) {
7811 dev->stats.rx_dropped++;
7812 priv->wstats.discard.misc++;
7813 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7814 return;
7815 }
7816
7817 /* Advance skb->data to the start of the actual payload */
7818 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7819
7820 /* Set the size of the skb to the size of the frame */
7821 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7822
7823 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7824
7825 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7826 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7827 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7828 (is_multicast_ether_addr(hdr->addr1) ?
7829 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7830 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7831
7832 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7833 dev->stats.rx_errors++;
7834 else { /* libipw_rx succeeded, so it now owns the SKB */
7835 rxb->skb = NULL;
7836 __ipw_led_activity_on(priv);
7837 }
7838 }
7839
7840 #ifdef CONFIG_IPW2200_RADIOTAP
7841 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7842 struct ipw_rx_mem_buffer *rxb,
7843 struct libipw_rx_stats *stats)
7844 {
7845 struct net_device *dev = priv->net_dev;
7846 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7847 struct ipw_rx_frame *frame = &pkt->u.frame;
7848
7849 /* initial pull of some data */
7850 u16 received_channel = frame->received_channel;
7851 u8 antennaAndPhy = frame->antennaAndPhy;
7852 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7853 u16 pktrate = frame->rate;
7854
7855 /* Magic struct that slots into the radiotap header -- no reason
7856 * to build this manually element by element, we can write it much
7857 * more efficiently than we can parse it. ORDER MATTERS HERE */
7858 struct ipw_rt_hdr *ipw_rt;
7859
7860 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7861
7862 /* We received data from the HW, so stop the watchdog */
7863 dev->trans_start = jiffies;
7864
7865 /* We only process data packets if the
7866 * interface is open */
7867 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7868 skb_tailroom(rxb->skb))) {
7869 dev->stats.rx_errors++;
7870 priv->wstats.discard.misc++;
7871 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7872 return;
7873 } else if (unlikely(!netif_running(priv->net_dev))) {
7874 dev->stats.rx_dropped++;
7875 priv->wstats.discard.misc++;
7876 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7877 return;
7878 }
7879
7880 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7881 * that now */
7882 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7883 /* FIXME: Should alloc bigger skb instead */
7884 dev->stats.rx_dropped++;
7885 priv->wstats.discard.misc++;
7886 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7887 return;
7888 }
7889
7890 /* copy the frame itself */
7891 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7892 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7893
7894 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7895
7896 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7897 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7898 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7899
7900 /* Big bitfield of all the fields we provide in radiotap */
7901 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7902 (1 << IEEE80211_RADIOTAP_TSFT) |
7903 (1 << IEEE80211_RADIOTAP_FLAGS) |
7904 (1 << IEEE80211_RADIOTAP_RATE) |
7905 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7906 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7907 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7908 (1 << IEEE80211_RADIOTAP_ANTENNA));
7909
7910 /* Zero the flags, we'll add to them as we go */
7911 ipw_rt->rt_flags = 0;
7912 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7913 frame->parent_tsf[2] << 16 |
7914 frame->parent_tsf[1] << 8 |
7915 frame->parent_tsf[0]);
7916
7917 /* Convert signal to DBM */
7918 ipw_rt->rt_dbmsignal = antsignal;
7919 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7920
7921 /* Convert the channel data and set the flags */
7922 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7923 if (received_channel > 14) { /* 802.11a */
7924 ipw_rt->rt_chbitmask =
7925 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7926 } else if (antennaAndPhy & 32) { /* 802.11b */
7927 ipw_rt->rt_chbitmask =
7928 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7929 } else { /* 802.11g */
7930 ipw_rt->rt_chbitmask =
7931 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7932 }
7933
7934 /* set the rate in multiples of 500k/s */
7935 switch (pktrate) {
7936 case IPW_TX_RATE_1MB:
7937 ipw_rt->rt_rate = 2;
7938 break;
7939 case IPW_TX_RATE_2MB:
7940 ipw_rt->rt_rate = 4;
7941 break;
7942 case IPW_TX_RATE_5MB:
7943 ipw_rt->rt_rate = 10;
7944 break;
7945 case IPW_TX_RATE_6MB:
7946 ipw_rt->rt_rate = 12;
7947 break;
7948 case IPW_TX_RATE_9MB:
7949 ipw_rt->rt_rate = 18;
7950 break;
7951 case IPW_TX_RATE_11MB:
7952 ipw_rt->rt_rate = 22;
7953 break;
7954 case IPW_TX_RATE_12MB:
7955 ipw_rt->rt_rate = 24;
7956 break;
7957 case IPW_TX_RATE_18MB:
7958 ipw_rt->rt_rate = 36;
7959 break;
7960 case IPW_TX_RATE_24MB:
7961 ipw_rt->rt_rate = 48;
7962 break;
7963 case IPW_TX_RATE_36MB:
7964 ipw_rt->rt_rate = 72;
7965 break;
7966 case IPW_TX_RATE_48MB:
7967 ipw_rt->rt_rate = 96;
7968 break;
7969 case IPW_TX_RATE_54MB:
7970 ipw_rt->rt_rate = 108;
7971 break;
7972 default:
7973 ipw_rt->rt_rate = 0;
7974 break;
7975 }
7976
7977 /* antenna number */
7978 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7979
7980 /* set the preamble flag if we have it */
7981 if ((antennaAndPhy & 64))
7982 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7983
7984 /* Set the size of the skb to the size of the frame */
7985 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7986
7987 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7988
7989 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7990 dev->stats.rx_errors++;
7991 else { /* libipw_rx succeeded, so it now owns the SKB */
7992 rxb->skb = NULL;
7993 /* no LED during capture */
7994 }
7995 }
7996 #endif
7997
7998 #ifdef CONFIG_IPW2200_PROMISCUOUS
7999 #define libipw_is_probe_response(fc) \
8000 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8001 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8002
8003 #define libipw_is_management(fc) \
8004 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8005
8006 #define libipw_is_control(fc) \
8007 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8008
8009 #define libipw_is_data(fc) \
8010 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8011
8012 #define libipw_is_assoc_request(fc) \
8013 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8014
8015 #define libipw_is_reassoc_request(fc) \
8016 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8017
8018 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8019 struct ipw_rx_mem_buffer *rxb,
8020 struct libipw_rx_stats *stats)
8021 {
8022 struct net_device *dev = priv->prom_net_dev;
8023 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8024 struct ipw_rx_frame *frame = &pkt->u.frame;
8025 struct ipw_rt_hdr *ipw_rt;
8026
8027 /* First cache any information we need before we overwrite
8028 * the information provided in the skb from the hardware */
8029 struct ieee80211_hdr *hdr;
8030 u16 channel = frame->received_channel;
8031 u8 phy_flags = frame->antennaAndPhy;
8032 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8033 s8 noise = (s8) le16_to_cpu(frame->noise);
8034 u8 rate = frame->rate;
8035 unsigned short len = le16_to_cpu(pkt->u.frame.length);
8036 struct sk_buff *skb;
8037 int hdr_only = 0;
8038 u16 filter = priv->prom_priv->filter;
8039
8040 /* If the filter is set to not include Rx frames then return */
8041 if (filter & IPW_PROM_NO_RX)
8042 return;
8043
8044 /* We received data from the HW, so stop the watchdog */
8045 dev->trans_start = jiffies;
8046
8047 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8048 dev->stats.rx_errors++;
8049 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8050 return;
8051 }
8052
8053 /* We only process data packets if the interface is open */
8054 if (unlikely(!netif_running(dev))) {
8055 dev->stats.rx_dropped++;
8056 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8057 return;
8058 }
8059
8060 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8061 * that now */
8062 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8063 /* FIXME: Should alloc bigger skb instead */
8064 dev->stats.rx_dropped++;
8065 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8066 return;
8067 }
8068
8069 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8070 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8071 if (filter & IPW_PROM_NO_MGMT)
8072 return;
8073 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8074 hdr_only = 1;
8075 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8076 if (filter & IPW_PROM_NO_CTL)
8077 return;
8078 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8079 hdr_only = 1;
8080 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8081 if (filter & IPW_PROM_NO_DATA)
8082 return;
8083 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8084 hdr_only = 1;
8085 }
8086
8087 /* Copy the SKB since this is for the promiscuous side */
8088 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8089 if (skb == NULL) {
8090 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8091 return;
8092 }
8093
8094 /* copy the frame data to write after where the radiotap header goes */
8095 ipw_rt = (void *)skb->data;
8096
8097 if (hdr_only)
8098 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8099
8100 memcpy(ipw_rt->payload, hdr, len);
8101
8102 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8103 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8104 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8105
8106 /* Set the size of the skb to the size of the frame */
8107 skb_put(skb, sizeof(*ipw_rt) + len);
8108
8109 /* Big bitfield of all the fields we provide in radiotap */
8110 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8111 (1 << IEEE80211_RADIOTAP_TSFT) |
8112 (1 << IEEE80211_RADIOTAP_FLAGS) |
8113 (1 << IEEE80211_RADIOTAP_RATE) |
8114 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8115 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8116 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8117 (1 << IEEE80211_RADIOTAP_ANTENNA));
8118
8119 /* Zero the flags, we'll add to them as we go */
8120 ipw_rt->rt_flags = 0;
8121 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8122 frame->parent_tsf[2] << 16 |
8123 frame->parent_tsf[1] << 8 |
8124 frame->parent_tsf[0]);
8125
8126 /* Convert to DBM */
8127 ipw_rt->rt_dbmsignal = signal;
8128 ipw_rt->rt_dbmnoise = noise;
8129
8130 /* Convert the channel data and set the flags */
8131 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8132 if (channel > 14) { /* 802.11a */
8133 ipw_rt->rt_chbitmask =
8134 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8135 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8136 ipw_rt->rt_chbitmask =
8137 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8138 } else { /* 802.11g */
8139 ipw_rt->rt_chbitmask =
8140 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8141 }
8142
8143 /* set the rate in multiples of 500k/s */
8144 switch (rate) {
8145 case IPW_TX_RATE_1MB:
8146 ipw_rt->rt_rate = 2;
8147 break;
8148 case IPW_TX_RATE_2MB:
8149 ipw_rt->rt_rate = 4;
8150 break;
8151 case IPW_TX_RATE_5MB:
8152 ipw_rt->rt_rate = 10;
8153 break;
8154 case IPW_TX_RATE_6MB:
8155 ipw_rt->rt_rate = 12;
8156 break;
8157 case IPW_TX_RATE_9MB:
8158 ipw_rt->rt_rate = 18;
8159 break;
8160 case IPW_TX_RATE_11MB:
8161 ipw_rt->rt_rate = 22;
8162 break;
8163 case IPW_TX_RATE_12MB:
8164 ipw_rt->rt_rate = 24;
8165 break;
8166 case IPW_TX_RATE_18MB:
8167 ipw_rt->rt_rate = 36;
8168 break;
8169 case IPW_TX_RATE_24MB:
8170 ipw_rt->rt_rate = 48;
8171 break;
8172 case IPW_TX_RATE_36MB:
8173 ipw_rt->rt_rate = 72;
8174 break;
8175 case IPW_TX_RATE_48MB:
8176 ipw_rt->rt_rate = 96;
8177 break;
8178 case IPW_TX_RATE_54MB:
8179 ipw_rt->rt_rate = 108;
8180 break;
8181 default:
8182 ipw_rt->rt_rate = 0;
8183 break;
8184 }
8185
8186 /* antenna number */
8187 ipw_rt->rt_antenna = (phy_flags & 3);
8188
8189 /* set the preamble flag if we have it */
8190 if (phy_flags & (1 << 6))
8191 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8192
8193 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8194
8195 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8196 dev->stats.rx_errors++;
8197 dev_kfree_skb_any(skb);
8198 }
8199 }
8200 #endif
8201
8202 static int is_network_packet(struct ipw_priv *priv,
8203 struct libipw_hdr_4addr *header)
8204 {
8205 /* Filter incoming packets to determine if they are targeted toward
8206 * this network, discarding packets coming from ourselves */
8207 switch (priv->ieee->iw_mode) {
8208 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8209 /* packets from our adapter are dropped (echo) */
8210 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8211 return 0;
8212
8213 /* {broad,multi}cast packets to our BSSID go through */
8214 if (is_multicast_ether_addr(header->addr1))
8215 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8216
8217 /* packets to our adapter go through */
8218 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8219 ETH_ALEN);
8220
8221 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8222 /* packets from our adapter are dropped (echo) */
8223 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8224 return 0;
8225
8226 /* {broad,multi}cast packets to our BSS go through */
8227 if (is_multicast_ether_addr(header->addr1))
8228 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8229
8230 /* packets to our adapter go through */
8231 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8232 ETH_ALEN);
8233 }
8234
8235 return 1;
8236 }
8237
8238 #define IPW_PACKET_RETRY_TIME HZ
8239
8240 static int is_duplicate_packet(struct ipw_priv *priv,
8241 struct libipw_hdr_4addr *header)
8242 {
8243 u16 sc = le16_to_cpu(header->seq_ctl);
8244 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8245 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8246 u16 *last_seq, *last_frag;
8247 unsigned long *last_time;
8248
8249 switch (priv->ieee->iw_mode) {
8250 case IW_MODE_ADHOC:
8251 {
8252 struct list_head *p;
8253 struct ipw_ibss_seq *entry = NULL;
8254 u8 *mac = header->addr2;
8255 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8256
8257 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8258 entry =
8259 list_entry(p, struct ipw_ibss_seq, list);
8260 if (!memcmp(entry->mac, mac, ETH_ALEN))
8261 break;
8262 }
8263 if (p == &priv->ibss_mac_hash[index]) {
8264 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8265 if (!entry) {
8266 IPW_ERROR
8267 ("Cannot malloc new mac entry\n");
8268 return 0;
8269 }
8270 memcpy(entry->mac, mac, ETH_ALEN);
8271 entry->seq_num = seq;
8272 entry->frag_num = frag;
8273 entry->packet_time = jiffies;
8274 list_add(&entry->list,
8275 &priv->ibss_mac_hash[index]);
8276 return 0;
8277 }
8278 last_seq = &entry->seq_num;
8279 last_frag = &entry->frag_num;
8280 last_time = &entry->packet_time;
8281 break;
8282 }
8283 case IW_MODE_INFRA:
8284 last_seq = &priv->last_seq_num;
8285 last_frag = &priv->last_frag_num;
8286 last_time = &priv->last_packet_time;
8287 break;
8288 default:
8289 return 0;
8290 }
8291 if ((*last_seq == seq) &&
8292 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8293 if (*last_frag == frag)
8294 goto drop;
8295 if (*last_frag + 1 != frag)
8296 /* out-of-order fragment */
8297 goto drop;
8298 } else
8299 *last_seq = seq;
8300
8301 *last_frag = frag;
8302 *last_time = jiffies;
8303 return 0;
8304
8305 drop:
8306 /* Comment this line now since we observed the card receives
8307 * duplicate packets but the FCTL_RETRY bit is not set in the
8308 * IBSS mode with fragmentation enabled.
8309 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8310 return 1;
8311 }
8312
8313 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8314 struct ipw_rx_mem_buffer *rxb,
8315 struct libipw_rx_stats *stats)
8316 {
8317 struct sk_buff *skb = rxb->skb;
8318 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8319 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8320 (skb->data + IPW_RX_FRAME_SIZE);
8321
8322 libipw_rx_mgt(priv->ieee, header, stats);
8323
8324 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8325 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8326 IEEE80211_STYPE_PROBE_RESP) ||
8327 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8328 IEEE80211_STYPE_BEACON))) {
8329 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8330 ipw_add_station(priv, header->addr2);
8331 }
8332
8333 if (priv->config & CFG_NET_STATS) {
8334 IPW_DEBUG_HC("sending stat packet\n");
8335
8336 /* Set the size of the skb to the size of the full
8337 * ipw header and 802.11 frame */
8338 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8339 IPW_RX_FRAME_SIZE);
8340
8341 /* Advance past the ipw packet header to the 802.11 frame */
8342 skb_pull(skb, IPW_RX_FRAME_SIZE);
8343
8344 /* Push the libipw_rx_stats before the 802.11 frame */
8345 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8346
8347 skb->dev = priv->ieee->dev;
8348
8349 /* Point raw at the libipw_stats */
8350 skb_reset_mac_header(skb);
8351
8352 skb->pkt_type = PACKET_OTHERHOST;
8353 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8354 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8355 netif_rx(skb);
8356 rxb->skb = NULL;
8357 }
8358 }
8359
8360 /*
8361 * Main entry function for receiving a packet with 80211 headers. This
8362 * should be called when ever the FW has notified us that there is a new
8363 * skb in the receive queue.
8364 */
8365 static void ipw_rx(struct ipw_priv *priv)
8366 {
8367 struct ipw_rx_mem_buffer *rxb;
8368 struct ipw_rx_packet *pkt;
8369 struct libipw_hdr_4addr *header;
8370 u32 r, w, i;
8371 u8 network_packet;
8372 u8 fill_rx = 0;
8373
8374 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8375 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8376 i = priv->rxq->read;
8377
8378 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8379 fill_rx = 1;
8380
8381 while (i != r) {
8382 rxb = priv->rxq->queue[i];
8383 if (unlikely(rxb == NULL)) {
8384 printk(KERN_CRIT "Queue not allocated!\n");
8385 break;
8386 }
8387 priv->rxq->queue[i] = NULL;
8388
8389 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8390 IPW_RX_BUF_SIZE,
8391 PCI_DMA_FROMDEVICE);
8392
8393 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8394 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8395 pkt->header.message_type,
8396 pkt->header.rx_seq_num, pkt->header.control_bits);
8397
8398 switch (pkt->header.message_type) {
8399 case RX_FRAME_TYPE: /* 802.11 frame */ {
8400 struct libipw_rx_stats stats = {
8401 .rssi = pkt->u.frame.rssi_dbm -
8402 IPW_RSSI_TO_DBM,
8403 .signal =
8404 pkt->u.frame.rssi_dbm -
8405 IPW_RSSI_TO_DBM + 0x100,
8406 .noise =
8407 le16_to_cpu(pkt->u.frame.noise),
8408 .rate = pkt->u.frame.rate,
8409 .mac_time = jiffies,
8410 .received_channel =
8411 pkt->u.frame.received_channel,
8412 .freq =
8413 (pkt->u.frame.
8414 control & (1 << 0)) ?
8415 LIBIPW_24GHZ_BAND :
8416 LIBIPW_52GHZ_BAND,
8417 .len = le16_to_cpu(pkt->u.frame.length),
8418 };
8419
8420 if (stats.rssi != 0)
8421 stats.mask |= LIBIPW_STATMASK_RSSI;
8422 if (stats.signal != 0)
8423 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8424 if (stats.noise != 0)
8425 stats.mask |= LIBIPW_STATMASK_NOISE;
8426 if (stats.rate != 0)
8427 stats.mask |= LIBIPW_STATMASK_RATE;
8428
8429 priv->rx_packets++;
8430
8431 #ifdef CONFIG_IPW2200_PROMISCUOUS
8432 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8433 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8434 #endif
8435
8436 #ifdef CONFIG_IPW2200_MONITOR
8437 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8438 #ifdef CONFIG_IPW2200_RADIOTAP
8439
8440 ipw_handle_data_packet_monitor(priv,
8441 rxb,
8442 &stats);
8443 #else
8444 ipw_handle_data_packet(priv, rxb,
8445 &stats);
8446 #endif
8447 break;
8448 }
8449 #endif
8450
8451 header =
8452 (struct libipw_hdr_4addr *)(rxb->skb->
8453 data +
8454 IPW_RX_FRAME_SIZE);
8455 /* TODO: Check Ad-Hoc dest/source and make sure
8456 * that we are actually parsing these packets
8457 * correctly -- we should probably use the
8458 * frame control of the packet and disregard
8459 * the current iw_mode */
8460
8461 network_packet =
8462 is_network_packet(priv, header);
8463 if (network_packet && priv->assoc_network) {
8464 priv->assoc_network->stats.rssi =
8465 stats.rssi;
8466 priv->exp_avg_rssi =
8467 exponential_average(priv->exp_avg_rssi,
8468 stats.rssi, DEPTH_RSSI);
8469 }
8470
8471 IPW_DEBUG_RX("Frame: len=%u\n",
8472 le16_to_cpu(pkt->u.frame.length));
8473
8474 if (le16_to_cpu(pkt->u.frame.length) <
8475 libipw_get_hdrlen(le16_to_cpu(
8476 header->frame_ctl))) {
8477 IPW_DEBUG_DROP
8478 ("Received packet is too small. "
8479 "Dropping.\n");
8480 priv->net_dev->stats.rx_errors++;
8481 priv->wstats.discard.misc++;
8482 break;
8483 }
8484
8485 switch (WLAN_FC_GET_TYPE
8486 (le16_to_cpu(header->frame_ctl))) {
8487
8488 case IEEE80211_FTYPE_MGMT:
8489 ipw_handle_mgmt_packet(priv, rxb,
8490 &stats);
8491 break;
8492
8493 case IEEE80211_FTYPE_CTL:
8494 break;
8495
8496 case IEEE80211_FTYPE_DATA:
8497 if (unlikely(!network_packet ||
8498 is_duplicate_packet(priv,
8499 header)))
8500 {
8501 IPW_DEBUG_DROP("Dropping: "
8502 "%pM, "
8503 "%pM, "
8504 "%pM\n",
8505 header->addr1,
8506 header->addr2,
8507 header->addr3);
8508 break;
8509 }
8510
8511 ipw_handle_data_packet(priv, rxb,
8512 &stats);
8513
8514 break;
8515 }
8516 break;
8517 }
8518
8519 case RX_HOST_NOTIFICATION_TYPE:{
8520 IPW_DEBUG_RX
8521 ("Notification: subtype=%02X flags=%02X size=%d\n",
8522 pkt->u.notification.subtype,
8523 pkt->u.notification.flags,
8524 le16_to_cpu(pkt->u.notification.size));
8525 ipw_rx_notification(priv, &pkt->u.notification);
8526 break;
8527 }
8528
8529 default:
8530 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8531 pkt->header.message_type);
8532 break;
8533 }
8534
8535 /* For now we just don't re-use anything. We can tweak this
8536 * later to try and re-use notification packets and SKBs that
8537 * fail to Rx correctly */
8538 if (rxb->skb != NULL) {
8539 dev_kfree_skb_any(rxb->skb);
8540 rxb->skb = NULL;
8541 }
8542
8543 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8544 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8545 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8546
8547 i = (i + 1) % RX_QUEUE_SIZE;
8548
8549 /* If there are a lot of unsued frames, restock the Rx queue
8550 * so the ucode won't assert */
8551 if (fill_rx) {
8552 priv->rxq->read = i;
8553 ipw_rx_queue_replenish(priv);
8554 }
8555 }
8556
8557 /* Backtrack one entry */
8558 priv->rxq->read = i;
8559 ipw_rx_queue_restock(priv);
8560 }
8561
8562 #define DEFAULT_RTS_THRESHOLD 2304U
8563 #define MIN_RTS_THRESHOLD 1U
8564 #define MAX_RTS_THRESHOLD 2304U
8565 #define DEFAULT_BEACON_INTERVAL 100U
8566 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8567 #define DEFAULT_LONG_RETRY_LIMIT 4U
8568
8569 /**
8570 * ipw_sw_reset
8571 * @option: options to control different reset behaviour
8572 * 0 = reset everything except the 'disable' module_param
8573 * 1 = reset everything and print out driver info (for probe only)
8574 * 2 = reset everything
8575 */
8576 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8577 {
8578 int band, modulation;
8579 int old_mode = priv->ieee->iw_mode;
8580
8581 /* Initialize module parameter values here */
8582 priv->config = 0;
8583
8584 /* We default to disabling the LED code as right now it causes
8585 * too many systems to lock up... */
8586 if (!led_support)
8587 priv->config |= CFG_NO_LED;
8588
8589 if (associate)
8590 priv->config |= CFG_ASSOCIATE;
8591 else
8592 IPW_DEBUG_INFO("Auto associate disabled.\n");
8593
8594 if (auto_create)
8595 priv->config |= CFG_ADHOC_CREATE;
8596 else
8597 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8598
8599 priv->config &= ~CFG_STATIC_ESSID;
8600 priv->essid_len = 0;
8601 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8602
8603 if (disable && option) {
8604 priv->status |= STATUS_RF_KILL_SW;
8605 IPW_DEBUG_INFO("Radio disabled.\n");
8606 }
8607
8608 if (default_channel != 0) {
8609 priv->config |= CFG_STATIC_CHANNEL;
8610 priv->channel = default_channel;
8611 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8612 /* TODO: Validate that provided channel is in range */
8613 }
8614 #ifdef CONFIG_IPW2200_QOS
8615 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8616 burst_duration_CCK, burst_duration_OFDM);
8617 #endif /* CONFIG_IPW2200_QOS */
8618
8619 switch (network_mode) {
8620 case 1:
8621 priv->ieee->iw_mode = IW_MODE_ADHOC;
8622 priv->net_dev->type = ARPHRD_ETHER;
8623
8624 break;
8625 #ifdef CONFIG_IPW2200_MONITOR
8626 case 2:
8627 priv->ieee->iw_mode = IW_MODE_MONITOR;
8628 #ifdef CONFIG_IPW2200_RADIOTAP
8629 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8630 #else
8631 priv->net_dev->type = ARPHRD_IEEE80211;
8632 #endif
8633 break;
8634 #endif
8635 default:
8636 case 0:
8637 priv->net_dev->type = ARPHRD_ETHER;
8638 priv->ieee->iw_mode = IW_MODE_INFRA;
8639 break;
8640 }
8641
8642 if (hwcrypto) {
8643 priv->ieee->host_encrypt = 0;
8644 priv->ieee->host_encrypt_msdu = 0;
8645 priv->ieee->host_decrypt = 0;
8646 priv->ieee->host_mc_decrypt = 0;
8647 }
8648 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8649
8650 /* IPW2200/2915 is abled to do hardware fragmentation. */
8651 priv->ieee->host_open_frag = 0;
8652
8653 if ((priv->pci_dev->device == 0x4223) ||
8654 (priv->pci_dev->device == 0x4224)) {
8655 if (option == 1)
8656 printk(KERN_INFO DRV_NAME
8657 ": Detected Intel PRO/Wireless 2915ABG Network "
8658 "Connection\n");
8659 priv->ieee->abg_true = 1;
8660 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8661 modulation = LIBIPW_OFDM_MODULATION |
8662 LIBIPW_CCK_MODULATION;
8663 priv->adapter = IPW_2915ABG;
8664 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8665 } else {
8666 if (option == 1)
8667 printk(KERN_INFO DRV_NAME
8668 ": Detected Intel PRO/Wireless 2200BG Network "
8669 "Connection\n");
8670
8671 priv->ieee->abg_true = 0;
8672 band = LIBIPW_24GHZ_BAND;
8673 modulation = LIBIPW_OFDM_MODULATION |
8674 LIBIPW_CCK_MODULATION;
8675 priv->adapter = IPW_2200BG;
8676 priv->ieee->mode = IEEE_G | IEEE_B;
8677 }
8678
8679 priv->ieee->freq_band = band;
8680 priv->ieee->modulation = modulation;
8681
8682 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8683
8684 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8685 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8686
8687 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8688 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8689 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8690
8691 /* If power management is turned on, default to AC mode */
8692 priv->power_mode = IPW_POWER_AC;
8693 priv->tx_power = IPW_TX_POWER_DEFAULT;
8694
8695 return old_mode == priv->ieee->iw_mode;
8696 }
8697
8698 /*
8699 * This file defines the Wireless Extension handlers. It does not
8700 * define any methods of hardware manipulation and relies on the
8701 * functions defined in ipw_main to provide the HW interaction.
8702 *
8703 * The exception to this is the use of the ipw_get_ordinal()
8704 * function used to poll the hardware vs. making unnecessary calls.
8705 *
8706 */
8707
8708 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8709 {
8710 if (channel == 0) {
8711 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8712 priv->config &= ~CFG_STATIC_CHANNEL;
8713 IPW_DEBUG_ASSOC("Attempting to associate with new "
8714 "parameters.\n");
8715 ipw_associate(priv);
8716 return 0;
8717 }
8718
8719 priv->config |= CFG_STATIC_CHANNEL;
8720
8721 if (priv->channel == channel) {
8722 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8723 channel);
8724 return 0;
8725 }
8726
8727 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8728 priv->channel = channel;
8729
8730 #ifdef CONFIG_IPW2200_MONITOR
8731 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8732 int i;
8733 if (priv->status & STATUS_SCANNING) {
8734 IPW_DEBUG_SCAN("Scan abort triggered due to "
8735 "channel change.\n");
8736 ipw_abort_scan(priv);
8737 }
8738
8739 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8740 udelay(10);
8741
8742 if (priv->status & STATUS_SCANNING)
8743 IPW_DEBUG_SCAN("Still scanning...\n");
8744 else
8745 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8746 1000 - i);
8747
8748 return 0;
8749 }
8750 #endif /* CONFIG_IPW2200_MONITOR */
8751
8752 /* Network configuration changed -- force [re]association */
8753 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8754 if (!ipw_disassociate(priv))
8755 ipw_associate(priv);
8756
8757 return 0;
8758 }
8759
8760 static int ipw_wx_set_freq(struct net_device *dev,
8761 struct iw_request_info *info,
8762 union iwreq_data *wrqu, char *extra)
8763 {
8764 struct ipw_priv *priv = libipw_priv(dev);
8765 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8766 struct iw_freq *fwrq = &wrqu->freq;
8767 int ret = 0, i;
8768 u8 channel, flags;
8769 int band;
8770
8771 if (fwrq->m == 0) {
8772 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8773 mutex_lock(&priv->mutex);
8774 ret = ipw_set_channel(priv, 0);
8775 mutex_unlock(&priv->mutex);
8776 return ret;
8777 }
8778 /* if setting by freq convert to channel */
8779 if (fwrq->e == 1) {
8780 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8781 if (channel == 0)
8782 return -EINVAL;
8783 } else
8784 channel = fwrq->m;
8785
8786 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8787 return -EINVAL;
8788
8789 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8790 i = libipw_channel_to_index(priv->ieee, channel);
8791 if (i == -1)
8792 return -EINVAL;
8793
8794 flags = (band == LIBIPW_24GHZ_BAND) ?
8795 geo->bg[i].flags : geo->a[i].flags;
8796 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8797 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8798 return -EINVAL;
8799 }
8800 }
8801
8802 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8803 mutex_lock(&priv->mutex);
8804 ret = ipw_set_channel(priv, channel);
8805 mutex_unlock(&priv->mutex);
8806 return ret;
8807 }
8808
8809 static int ipw_wx_get_freq(struct net_device *dev,
8810 struct iw_request_info *info,
8811 union iwreq_data *wrqu, char *extra)
8812 {
8813 struct ipw_priv *priv = libipw_priv(dev);
8814
8815 wrqu->freq.e = 0;
8816
8817 /* If we are associated, trying to associate, or have a statically
8818 * configured CHANNEL then return that; otherwise return ANY */
8819 mutex_lock(&priv->mutex);
8820 if (priv->config & CFG_STATIC_CHANNEL ||
8821 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8822 int i;
8823
8824 i = libipw_channel_to_index(priv->ieee, priv->channel);
8825 BUG_ON(i == -1);
8826 wrqu->freq.e = 1;
8827
8828 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8829 case LIBIPW_52GHZ_BAND:
8830 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8831 break;
8832
8833 case LIBIPW_24GHZ_BAND:
8834 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8835 break;
8836
8837 default:
8838 BUG();
8839 }
8840 } else
8841 wrqu->freq.m = 0;
8842
8843 mutex_unlock(&priv->mutex);
8844 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8845 return 0;
8846 }
8847
8848 static int ipw_wx_set_mode(struct net_device *dev,
8849 struct iw_request_info *info,
8850 union iwreq_data *wrqu, char *extra)
8851 {
8852 struct ipw_priv *priv = libipw_priv(dev);
8853 int err = 0;
8854
8855 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8856
8857 switch (wrqu->mode) {
8858 #ifdef CONFIG_IPW2200_MONITOR
8859 case IW_MODE_MONITOR:
8860 #endif
8861 case IW_MODE_ADHOC:
8862 case IW_MODE_INFRA:
8863 break;
8864 case IW_MODE_AUTO:
8865 wrqu->mode = IW_MODE_INFRA;
8866 break;
8867 default:
8868 return -EINVAL;
8869 }
8870 if (wrqu->mode == priv->ieee->iw_mode)
8871 return 0;
8872
8873 mutex_lock(&priv->mutex);
8874
8875 ipw_sw_reset(priv, 0);
8876
8877 #ifdef CONFIG_IPW2200_MONITOR
8878 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8879 priv->net_dev->type = ARPHRD_ETHER;
8880
8881 if (wrqu->mode == IW_MODE_MONITOR)
8882 #ifdef CONFIG_IPW2200_RADIOTAP
8883 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8884 #else
8885 priv->net_dev->type = ARPHRD_IEEE80211;
8886 #endif
8887 #endif /* CONFIG_IPW2200_MONITOR */
8888
8889 /* Free the existing firmware and reset the fw_loaded
8890 * flag so ipw_load() will bring in the new firmware */
8891 free_firmware();
8892
8893 priv->ieee->iw_mode = wrqu->mode;
8894
8895 schedule_work(&priv->adapter_restart);
8896 mutex_unlock(&priv->mutex);
8897 return err;
8898 }
8899
8900 static int ipw_wx_get_mode(struct net_device *dev,
8901 struct iw_request_info *info,
8902 union iwreq_data *wrqu, char *extra)
8903 {
8904 struct ipw_priv *priv = libipw_priv(dev);
8905 mutex_lock(&priv->mutex);
8906 wrqu->mode = priv->ieee->iw_mode;
8907 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8908 mutex_unlock(&priv->mutex);
8909 return 0;
8910 }
8911
8912 /* Values are in microsecond */
8913 static const s32 timeout_duration[] = {
8914 350000,
8915 250000,
8916 75000,
8917 37000,
8918 25000,
8919 };
8920
8921 static const s32 period_duration[] = {
8922 400000,
8923 700000,
8924 1000000,
8925 1000000,
8926 1000000
8927 };
8928
8929 static int ipw_wx_get_range(struct net_device *dev,
8930 struct iw_request_info *info,
8931 union iwreq_data *wrqu, char *extra)
8932 {
8933 struct ipw_priv *priv = libipw_priv(dev);
8934 struct iw_range *range = (struct iw_range *)extra;
8935 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8936 int i = 0, j;
8937
8938 wrqu->data.length = sizeof(*range);
8939 memset(range, 0, sizeof(*range));
8940
8941 /* 54Mbs == ~27 Mb/s real (802.11g) */
8942 range->throughput = 27 * 1000 * 1000;
8943
8944 range->max_qual.qual = 100;
8945 /* TODO: Find real max RSSI and stick here */
8946 range->max_qual.level = 0;
8947 range->max_qual.noise = 0;
8948 range->max_qual.updated = 7; /* Updated all three */
8949
8950 range->avg_qual.qual = 70;
8951 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8952 range->avg_qual.level = 0; /* FIXME to real average level */
8953 range->avg_qual.noise = 0;
8954 range->avg_qual.updated = 7; /* Updated all three */
8955 mutex_lock(&priv->mutex);
8956 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8957
8958 for (i = 0; i < range->num_bitrates; i++)
8959 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8960 500000;
8961
8962 range->max_rts = DEFAULT_RTS_THRESHOLD;
8963 range->min_frag = MIN_FRAG_THRESHOLD;
8964 range->max_frag = MAX_FRAG_THRESHOLD;
8965
8966 range->encoding_size[0] = 5;
8967 range->encoding_size[1] = 13;
8968 range->num_encoding_sizes = 2;
8969 range->max_encoding_tokens = WEP_KEYS;
8970
8971 /* Set the Wireless Extension versions */
8972 range->we_version_compiled = WIRELESS_EXT;
8973 range->we_version_source = 18;
8974
8975 i = 0;
8976 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8977 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8978 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8979 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8980 continue;
8981
8982 range->freq[i].i = geo->bg[j].channel;
8983 range->freq[i].m = geo->bg[j].freq * 100000;
8984 range->freq[i].e = 1;
8985 i++;
8986 }
8987 }
8988
8989 if (priv->ieee->mode & IEEE_A) {
8990 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8991 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8992 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8993 continue;
8994
8995 range->freq[i].i = geo->a[j].channel;
8996 range->freq[i].m = geo->a[j].freq * 100000;
8997 range->freq[i].e = 1;
8998 i++;
8999 }
9000 }
9001
9002 range->num_channels = i;
9003 range->num_frequency = i;
9004
9005 mutex_unlock(&priv->mutex);
9006
9007 /* Event capability (kernel + driver) */
9008 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9009 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9010 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9011 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9012 range->event_capa[1] = IW_EVENT_CAPA_K_1;
9013
9014 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9015 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9016
9017 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9018
9019 IPW_DEBUG_WX("GET Range\n");
9020 return 0;
9021 }
9022
9023 static int ipw_wx_set_wap(struct net_device *dev,
9024 struct iw_request_info *info,
9025 union iwreq_data *wrqu, char *extra)
9026 {
9027 struct ipw_priv *priv = libipw_priv(dev);
9028
9029 static const unsigned char any[] = {
9030 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9031 };
9032 static const unsigned char off[] = {
9033 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9034 };
9035
9036 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9037 return -EINVAL;
9038 mutex_lock(&priv->mutex);
9039 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9040 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9041 /* we disable mandatory BSSID association */
9042 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9043 priv->config &= ~CFG_STATIC_BSSID;
9044 IPW_DEBUG_ASSOC("Attempting to associate with new "
9045 "parameters.\n");
9046 ipw_associate(priv);
9047 mutex_unlock(&priv->mutex);
9048 return 0;
9049 }
9050
9051 priv->config |= CFG_STATIC_BSSID;
9052 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9053 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9054 mutex_unlock(&priv->mutex);
9055 return 0;
9056 }
9057
9058 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9059 wrqu->ap_addr.sa_data);
9060
9061 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9062
9063 /* Network configuration changed -- force [re]association */
9064 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9065 if (!ipw_disassociate(priv))
9066 ipw_associate(priv);
9067
9068 mutex_unlock(&priv->mutex);
9069 return 0;
9070 }
9071
9072 static int ipw_wx_get_wap(struct net_device *dev,
9073 struct iw_request_info *info,
9074 union iwreq_data *wrqu, char *extra)
9075 {
9076 struct ipw_priv *priv = libipw_priv(dev);
9077
9078 /* If we are associated, trying to associate, or have a statically
9079 * configured BSSID then return that; otherwise return ANY */
9080 mutex_lock(&priv->mutex);
9081 if (priv->config & CFG_STATIC_BSSID ||
9082 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9083 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9084 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9085 } else
9086 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9087
9088 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9089 wrqu->ap_addr.sa_data);
9090 mutex_unlock(&priv->mutex);
9091 return 0;
9092 }
9093
9094 static int ipw_wx_set_essid(struct net_device *dev,
9095 struct iw_request_info *info,
9096 union iwreq_data *wrqu, char *extra)
9097 {
9098 struct ipw_priv *priv = libipw_priv(dev);
9099 int length;
9100 DECLARE_SSID_BUF(ssid);
9101
9102 mutex_lock(&priv->mutex);
9103
9104 if (!wrqu->essid.flags)
9105 {
9106 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9107 ipw_disassociate(priv);
9108 priv->config &= ~CFG_STATIC_ESSID;
9109 ipw_associate(priv);
9110 mutex_unlock(&priv->mutex);
9111 return 0;
9112 }
9113
9114 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9115
9116 priv->config |= CFG_STATIC_ESSID;
9117
9118 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9119 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9120 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9121 mutex_unlock(&priv->mutex);
9122 return 0;
9123 }
9124
9125 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9126 print_ssid(ssid, extra, length), length);
9127
9128 priv->essid_len = length;
9129 memcpy(priv->essid, extra, priv->essid_len);
9130
9131 /* Network configuration changed -- force [re]association */
9132 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9133 if (!ipw_disassociate(priv))
9134 ipw_associate(priv);
9135
9136 mutex_unlock(&priv->mutex);
9137 return 0;
9138 }
9139
9140 static int ipw_wx_get_essid(struct net_device *dev,
9141 struct iw_request_info *info,
9142 union iwreq_data *wrqu, char *extra)
9143 {
9144 struct ipw_priv *priv = libipw_priv(dev);
9145 DECLARE_SSID_BUF(ssid);
9146
9147 /* If we are associated, trying to associate, or have a statically
9148 * configured ESSID then return that; otherwise return ANY */
9149 mutex_lock(&priv->mutex);
9150 if (priv->config & CFG_STATIC_ESSID ||
9151 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9152 IPW_DEBUG_WX("Getting essid: '%s'\n",
9153 print_ssid(ssid, priv->essid, priv->essid_len));
9154 memcpy(extra, priv->essid, priv->essid_len);
9155 wrqu->essid.length = priv->essid_len;
9156 wrqu->essid.flags = 1; /* active */
9157 } else {
9158 IPW_DEBUG_WX("Getting essid: ANY\n");
9159 wrqu->essid.length = 0;
9160 wrqu->essid.flags = 0; /* active */
9161 }
9162 mutex_unlock(&priv->mutex);
9163 return 0;
9164 }
9165
9166 static int ipw_wx_set_nick(struct net_device *dev,
9167 struct iw_request_info *info,
9168 union iwreq_data *wrqu, char *extra)
9169 {
9170 struct ipw_priv *priv = libipw_priv(dev);
9171
9172 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9173 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9174 return -E2BIG;
9175 mutex_lock(&priv->mutex);
9176 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9177 memset(priv->nick, 0, sizeof(priv->nick));
9178 memcpy(priv->nick, extra, wrqu->data.length);
9179 IPW_DEBUG_TRACE("<<\n");
9180 mutex_unlock(&priv->mutex);
9181 return 0;
9182
9183 }
9184
9185 static int ipw_wx_get_nick(struct net_device *dev,
9186 struct iw_request_info *info,
9187 union iwreq_data *wrqu, char *extra)
9188 {
9189 struct ipw_priv *priv = libipw_priv(dev);
9190 IPW_DEBUG_WX("Getting nick\n");
9191 mutex_lock(&priv->mutex);
9192 wrqu->data.length = strlen(priv->nick);
9193 memcpy(extra, priv->nick, wrqu->data.length);
9194 wrqu->data.flags = 1; /* active */
9195 mutex_unlock(&priv->mutex);
9196 return 0;
9197 }
9198
9199 static int ipw_wx_set_sens(struct net_device *dev,
9200 struct iw_request_info *info,
9201 union iwreq_data *wrqu, char *extra)
9202 {
9203 struct ipw_priv *priv = libipw_priv(dev);
9204 int err = 0;
9205
9206 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9207 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9208 mutex_lock(&priv->mutex);
9209
9210 if (wrqu->sens.fixed == 0)
9211 {
9212 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9213 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9214 goto out;
9215 }
9216 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9217 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9218 err = -EINVAL;
9219 goto out;
9220 }
9221
9222 priv->roaming_threshold = wrqu->sens.value;
9223 priv->disassociate_threshold = 3*wrqu->sens.value;
9224 out:
9225 mutex_unlock(&priv->mutex);
9226 return err;
9227 }
9228
9229 static int ipw_wx_get_sens(struct net_device *dev,
9230 struct iw_request_info *info,
9231 union iwreq_data *wrqu, char *extra)
9232 {
9233 struct ipw_priv *priv = libipw_priv(dev);
9234 mutex_lock(&priv->mutex);
9235 wrqu->sens.fixed = 1;
9236 wrqu->sens.value = priv->roaming_threshold;
9237 mutex_unlock(&priv->mutex);
9238
9239 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9240 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9241
9242 return 0;
9243 }
9244
9245 static int ipw_wx_set_rate(struct net_device *dev,
9246 struct iw_request_info *info,
9247 union iwreq_data *wrqu, char *extra)
9248 {
9249 /* TODO: We should use semaphores or locks for access to priv */
9250 struct ipw_priv *priv = libipw_priv(dev);
9251 u32 target_rate = wrqu->bitrate.value;
9252 u32 fixed, mask;
9253
9254 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9255 /* value = X, fixed = 1 means only rate X */
9256 /* value = X, fixed = 0 means all rates lower equal X */
9257
9258 if (target_rate == -1) {
9259 fixed = 0;
9260 mask = LIBIPW_DEFAULT_RATES_MASK;
9261 /* Now we should reassociate */
9262 goto apply;
9263 }
9264
9265 mask = 0;
9266 fixed = wrqu->bitrate.fixed;
9267
9268 if (target_rate == 1000000 || !fixed)
9269 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9270 if (target_rate == 1000000)
9271 goto apply;
9272
9273 if (target_rate == 2000000 || !fixed)
9274 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9275 if (target_rate == 2000000)
9276 goto apply;
9277
9278 if (target_rate == 5500000 || !fixed)
9279 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9280 if (target_rate == 5500000)
9281 goto apply;
9282
9283 if (target_rate == 6000000 || !fixed)
9284 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9285 if (target_rate == 6000000)
9286 goto apply;
9287
9288 if (target_rate == 9000000 || !fixed)
9289 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9290 if (target_rate == 9000000)
9291 goto apply;
9292
9293 if (target_rate == 11000000 || !fixed)
9294 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9295 if (target_rate == 11000000)
9296 goto apply;
9297
9298 if (target_rate == 12000000 || !fixed)
9299 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9300 if (target_rate == 12000000)
9301 goto apply;
9302
9303 if (target_rate == 18000000 || !fixed)
9304 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9305 if (target_rate == 18000000)
9306 goto apply;
9307
9308 if (target_rate == 24000000 || !fixed)
9309 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9310 if (target_rate == 24000000)
9311 goto apply;
9312
9313 if (target_rate == 36000000 || !fixed)
9314 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9315 if (target_rate == 36000000)
9316 goto apply;
9317
9318 if (target_rate == 48000000 || !fixed)
9319 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9320 if (target_rate == 48000000)
9321 goto apply;
9322
9323 if (target_rate == 54000000 || !fixed)
9324 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9325 if (target_rate == 54000000)
9326 goto apply;
9327
9328 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9329 return -EINVAL;
9330
9331 apply:
9332 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9333 mask, fixed ? "fixed" : "sub-rates");
9334 mutex_lock(&priv->mutex);
9335 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9336 priv->config &= ~CFG_FIXED_RATE;
9337 ipw_set_fixed_rate(priv, priv->ieee->mode);
9338 } else
9339 priv->config |= CFG_FIXED_RATE;
9340
9341 if (priv->rates_mask == mask) {
9342 IPW_DEBUG_WX("Mask set to current mask.\n");
9343 mutex_unlock(&priv->mutex);
9344 return 0;
9345 }
9346
9347 priv->rates_mask = mask;
9348
9349 /* Network configuration changed -- force [re]association */
9350 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9351 if (!ipw_disassociate(priv))
9352 ipw_associate(priv);
9353
9354 mutex_unlock(&priv->mutex);
9355 return 0;
9356 }
9357
9358 static int ipw_wx_get_rate(struct net_device *dev,
9359 struct iw_request_info *info,
9360 union iwreq_data *wrqu, char *extra)
9361 {
9362 struct ipw_priv *priv = libipw_priv(dev);
9363 mutex_lock(&priv->mutex);
9364 wrqu->bitrate.value = priv->last_rate;
9365 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9366 mutex_unlock(&priv->mutex);
9367 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9368 return 0;
9369 }
9370
9371 static int ipw_wx_set_rts(struct net_device *dev,
9372 struct iw_request_info *info,
9373 union iwreq_data *wrqu, char *extra)
9374 {
9375 struct ipw_priv *priv = libipw_priv(dev);
9376 mutex_lock(&priv->mutex);
9377 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9378 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9379 else {
9380 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9381 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9382 mutex_unlock(&priv->mutex);
9383 return -EINVAL;
9384 }
9385 priv->rts_threshold = wrqu->rts.value;
9386 }
9387
9388 ipw_send_rts_threshold(priv, priv->rts_threshold);
9389 mutex_unlock(&priv->mutex);
9390 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9391 return 0;
9392 }
9393
9394 static int ipw_wx_get_rts(struct net_device *dev,
9395 struct iw_request_info *info,
9396 union iwreq_data *wrqu, char *extra)
9397 {
9398 struct ipw_priv *priv = libipw_priv(dev);
9399 mutex_lock(&priv->mutex);
9400 wrqu->rts.value = priv->rts_threshold;
9401 wrqu->rts.fixed = 0; /* no auto select */
9402 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9403 mutex_unlock(&priv->mutex);
9404 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9405 return 0;
9406 }
9407
9408 static int ipw_wx_set_txpow(struct net_device *dev,
9409 struct iw_request_info *info,
9410 union iwreq_data *wrqu, char *extra)
9411 {
9412 struct ipw_priv *priv = libipw_priv(dev);
9413 int err = 0;
9414
9415 mutex_lock(&priv->mutex);
9416 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9417 err = -EINPROGRESS;
9418 goto out;
9419 }
9420
9421 if (!wrqu->power.fixed)
9422 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9423
9424 if (wrqu->power.flags != IW_TXPOW_DBM) {
9425 err = -EINVAL;
9426 goto out;
9427 }
9428
9429 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9430 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9431 err = -EINVAL;
9432 goto out;
9433 }
9434
9435 priv->tx_power = wrqu->power.value;
9436 err = ipw_set_tx_power(priv);
9437 out:
9438 mutex_unlock(&priv->mutex);
9439 return err;
9440 }
9441
9442 static int ipw_wx_get_txpow(struct net_device *dev,
9443 struct iw_request_info *info,
9444 union iwreq_data *wrqu, char *extra)
9445 {
9446 struct ipw_priv *priv = libipw_priv(dev);
9447 mutex_lock(&priv->mutex);
9448 wrqu->power.value = priv->tx_power;
9449 wrqu->power.fixed = 1;
9450 wrqu->power.flags = IW_TXPOW_DBM;
9451 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9452 mutex_unlock(&priv->mutex);
9453
9454 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9455 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9456
9457 return 0;
9458 }
9459
9460 static int ipw_wx_set_frag(struct net_device *dev,
9461 struct iw_request_info *info,
9462 union iwreq_data *wrqu, char *extra)
9463 {
9464 struct ipw_priv *priv = libipw_priv(dev);
9465 mutex_lock(&priv->mutex);
9466 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9467 priv->ieee->fts = DEFAULT_FTS;
9468 else {
9469 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9470 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9471 mutex_unlock(&priv->mutex);
9472 return -EINVAL;
9473 }
9474
9475 priv->ieee->fts = wrqu->frag.value & ~0x1;
9476 }
9477
9478 ipw_send_frag_threshold(priv, wrqu->frag.value);
9479 mutex_unlock(&priv->mutex);
9480 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9481 return 0;
9482 }
9483
9484 static int ipw_wx_get_frag(struct net_device *dev,
9485 struct iw_request_info *info,
9486 union iwreq_data *wrqu, char *extra)
9487 {
9488 struct ipw_priv *priv = libipw_priv(dev);
9489 mutex_lock(&priv->mutex);
9490 wrqu->frag.value = priv->ieee->fts;
9491 wrqu->frag.fixed = 0; /* no auto select */
9492 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9493 mutex_unlock(&priv->mutex);
9494 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9495
9496 return 0;
9497 }
9498
9499 static int ipw_wx_set_retry(struct net_device *dev,
9500 struct iw_request_info *info,
9501 union iwreq_data *wrqu, char *extra)
9502 {
9503 struct ipw_priv *priv = libipw_priv(dev);
9504
9505 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9506 return -EINVAL;
9507
9508 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9509 return 0;
9510
9511 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9512 return -EINVAL;
9513
9514 mutex_lock(&priv->mutex);
9515 if (wrqu->retry.flags & IW_RETRY_SHORT)
9516 priv->short_retry_limit = (u8) wrqu->retry.value;
9517 else if (wrqu->retry.flags & IW_RETRY_LONG)
9518 priv->long_retry_limit = (u8) wrqu->retry.value;
9519 else {
9520 priv->short_retry_limit = (u8) wrqu->retry.value;
9521 priv->long_retry_limit = (u8) wrqu->retry.value;
9522 }
9523
9524 ipw_send_retry_limit(priv, priv->short_retry_limit,
9525 priv->long_retry_limit);
9526 mutex_unlock(&priv->mutex);
9527 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9528 priv->short_retry_limit, priv->long_retry_limit);
9529 return 0;
9530 }
9531
9532 static int ipw_wx_get_retry(struct net_device *dev,
9533 struct iw_request_info *info,
9534 union iwreq_data *wrqu, char *extra)
9535 {
9536 struct ipw_priv *priv = libipw_priv(dev);
9537
9538 mutex_lock(&priv->mutex);
9539 wrqu->retry.disabled = 0;
9540
9541 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9542 mutex_unlock(&priv->mutex);
9543 return -EINVAL;
9544 }
9545
9546 if (wrqu->retry.flags & IW_RETRY_LONG) {
9547 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9548 wrqu->retry.value = priv->long_retry_limit;
9549 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9550 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9551 wrqu->retry.value = priv->short_retry_limit;
9552 } else {
9553 wrqu->retry.flags = IW_RETRY_LIMIT;
9554 wrqu->retry.value = priv->short_retry_limit;
9555 }
9556 mutex_unlock(&priv->mutex);
9557
9558 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9559
9560 return 0;
9561 }
9562
9563 static int ipw_wx_set_scan(struct net_device *dev,
9564 struct iw_request_info *info,
9565 union iwreq_data *wrqu, char *extra)
9566 {
9567 struct ipw_priv *priv = libipw_priv(dev);
9568 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9569 struct delayed_work *work = NULL;
9570
9571 mutex_lock(&priv->mutex);
9572
9573 priv->user_requested_scan = 1;
9574
9575 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9576 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9577 int len = min((int)req->essid_len,
9578 (int)sizeof(priv->direct_scan_ssid));
9579 memcpy(priv->direct_scan_ssid, req->essid, len);
9580 priv->direct_scan_ssid_len = len;
9581 work = &priv->request_direct_scan;
9582 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9583 work = &priv->request_passive_scan;
9584 }
9585 } else {
9586 /* Normal active broadcast scan */
9587 work = &priv->request_scan;
9588 }
9589
9590 mutex_unlock(&priv->mutex);
9591
9592 IPW_DEBUG_WX("Start scan\n");
9593
9594 schedule_delayed_work(work, 0);
9595
9596 return 0;
9597 }
9598
9599 static int ipw_wx_get_scan(struct net_device *dev,
9600 struct iw_request_info *info,
9601 union iwreq_data *wrqu, char *extra)
9602 {
9603 struct ipw_priv *priv = libipw_priv(dev);
9604 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9605 }
9606
9607 static int ipw_wx_set_encode(struct net_device *dev,
9608 struct iw_request_info *info,
9609 union iwreq_data *wrqu, char *key)
9610 {
9611 struct ipw_priv *priv = libipw_priv(dev);
9612 int ret;
9613 u32 cap = priv->capability;
9614
9615 mutex_lock(&priv->mutex);
9616 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9617
9618 /* In IBSS mode, we need to notify the firmware to update
9619 * the beacon info after we changed the capability. */
9620 if (cap != priv->capability &&
9621 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9622 priv->status & STATUS_ASSOCIATED)
9623 ipw_disassociate(priv);
9624
9625 mutex_unlock(&priv->mutex);
9626 return ret;
9627 }
9628
9629 static int ipw_wx_get_encode(struct net_device *dev,
9630 struct iw_request_info *info,
9631 union iwreq_data *wrqu, char *key)
9632 {
9633 struct ipw_priv *priv = libipw_priv(dev);
9634 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9635 }
9636
9637 static int ipw_wx_set_power(struct net_device *dev,
9638 struct iw_request_info *info,
9639 union iwreq_data *wrqu, char *extra)
9640 {
9641 struct ipw_priv *priv = libipw_priv(dev);
9642 int err;
9643 mutex_lock(&priv->mutex);
9644 if (wrqu->power.disabled) {
9645 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9646 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9647 if (err) {
9648 IPW_DEBUG_WX("failed setting power mode.\n");
9649 mutex_unlock(&priv->mutex);
9650 return err;
9651 }
9652 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9653 mutex_unlock(&priv->mutex);
9654 return 0;
9655 }
9656
9657 switch (wrqu->power.flags & IW_POWER_MODE) {
9658 case IW_POWER_ON: /* If not specified */
9659 case IW_POWER_MODE: /* If set all mask */
9660 case IW_POWER_ALL_R: /* If explicitly state all */
9661 break;
9662 default: /* Otherwise we don't support it */
9663 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9664 wrqu->power.flags);
9665 mutex_unlock(&priv->mutex);
9666 return -EOPNOTSUPP;
9667 }
9668
9669 /* If the user hasn't specified a power management mode yet, default
9670 * to BATTERY */
9671 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9672 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9673 else
9674 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9675
9676 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9677 if (err) {
9678 IPW_DEBUG_WX("failed setting power mode.\n");
9679 mutex_unlock(&priv->mutex);
9680 return err;
9681 }
9682
9683 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9684 mutex_unlock(&priv->mutex);
9685 return 0;
9686 }
9687
9688 static int ipw_wx_get_power(struct net_device *dev,
9689 struct iw_request_info *info,
9690 union iwreq_data *wrqu, char *extra)
9691 {
9692 struct ipw_priv *priv = libipw_priv(dev);
9693 mutex_lock(&priv->mutex);
9694 if (!(priv->power_mode & IPW_POWER_ENABLED))
9695 wrqu->power.disabled = 1;
9696 else
9697 wrqu->power.disabled = 0;
9698
9699 mutex_unlock(&priv->mutex);
9700 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9701
9702 return 0;
9703 }
9704
9705 static int ipw_wx_set_powermode(struct net_device *dev,
9706 struct iw_request_info *info,
9707 union iwreq_data *wrqu, char *extra)
9708 {
9709 struct ipw_priv *priv = libipw_priv(dev);
9710 int mode = *(int *)extra;
9711 int err;
9712
9713 mutex_lock(&priv->mutex);
9714 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9715 mode = IPW_POWER_AC;
9716
9717 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9718 err = ipw_send_power_mode(priv, mode);
9719 if (err) {
9720 IPW_DEBUG_WX("failed setting power mode.\n");
9721 mutex_unlock(&priv->mutex);
9722 return err;
9723 }
9724 priv->power_mode = IPW_POWER_ENABLED | mode;
9725 }
9726 mutex_unlock(&priv->mutex);
9727 return 0;
9728 }
9729
9730 #define MAX_WX_STRING 80
9731 static int ipw_wx_get_powermode(struct net_device *dev,
9732 struct iw_request_info *info,
9733 union iwreq_data *wrqu, char *extra)
9734 {
9735 struct ipw_priv *priv = libipw_priv(dev);
9736 int level = IPW_POWER_LEVEL(priv->power_mode);
9737 char *p = extra;
9738
9739 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9740
9741 switch (level) {
9742 case IPW_POWER_AC:
9743 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9744 break;
9745 case IPW_POWER_BATTERY:
9746 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9747 break;
9748 default:
9749 p += snprintf(p, MAX_WX_STRING - (p - extra),
9750 "(Timeout %dms, Period %dms)",
9751 timeout_duration[level - 1] / 1000,
9752 period_duration[level - 1] / 1000);
9753 }
9754
9755 if (!(priv->power_mode & IPW_POWER_ENABLED))
9756 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9757
9758 wrqu->data.length = p - extra + 1;
9759
9760 return 0;
9761 }
9762
9763 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9764 struct iw_request_info *info,
9765 union iwreq_data *wrqu, char *extra)
9766 {
9767 struct ipw_priv *priv = libipw_priv(dev);
9768 int mode = *(int *)extra;
9769 u8 band = 0, modulation = 0;
9770
9771 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9772 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9773 return -EINVAL;
9774 }
9775 mutex_lock(&priv->mutex);
9776 if (priv->adapter == IPW_2915ABG) {
9777 priv->ieee->abg_true = 1;
9778 if (mode & IEEE_A) {
9779 band |= LIBIPW_52GHZ_BAND;
9780 modulation |= LIBIPW_OFDM_MODULATION;
9781 } else
9782 priv->ieee->abg_true = 0;
9783 } else {
9784 if (mode & IEEE_A) {
9785 IPW_WARNING("Attempt to set 2200BG into "
9786 "802.11a mode\n");
9787 mutex_unlock(&priv->mutex);
9788 return -EINVAL;
9789 }
9790
9791 priv->ieee->abg_true = 0;
9792 }
9793
9794 if (mode & IEEE_B) {
9795 band |= LIBIPW_24GHZ_BAND;
9796 modulation |= LIBIPW_CCK_MODULATION;
9797 } else
9798 priv->ieee->abg_true = 0;
9799
9800 if (mode & IEEE_G) {
9801 band |= LIBIPW_24GHZ_BAND;
9802 modulation |= LIBIPW_OFDM_MODULATION;
9803 } else
9804 priv->ieee->abg_true = 0;
9805
9806 priv->ieee->mode = mode;
9807 priv->ieee->freq_band = band;
9808 priv->ieee->modulation = modulation;
9809 init_supported_rates(priv, &priv->rates);
9810
9811 /* Network configuration changed -- force [re]association */
9812 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9813 if (!ipw_disassociate(priv)) {
9814 ipw_send_supported_rates(priv, &priv->rates);
9815 ipw_associate(priv);
9816 }
9817
9818 /* Update the band LEDs */
9819 ipw_led_band_on(priv);
9820
9821 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9822 mode & IEEE_A ? 'a' : '.',
9823 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9824 mutex_unlock(&priv->mutex);
9825 return 0;
9826 }
9827
9828 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9829 struct iw_request_info *info,
9830 union iwreq_data *wrqu, char *extra)
9831 {
9832 struct ipw_priv *priv = libipw_priv(dev);
9833 mutex_lock(&priv->mutex);
9834 switch (priv->ieee->mode) {
9835 case IEEE_A:
9836 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9837 break;
9838 case IEEE_B:
9839 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9840 break;
9841 case IEEE_A | IEEE_B:
9842 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9843 break;
9844 case IEEE_G:
9845 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9846 break;
9847 case IEEE_A | IEEE_G:
9848 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9849 break;
9850 case IEEE_B | IEEE_G:
9851 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9852 break;
9853 case IEEE_A | IEEE_B | IEEE_G:
9854 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9855 break;
9856 default:
9857 strncpy(extra, "unknown", MAX_WX_STRING);
9858 break;
9859 }
9860
9861 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9862
9863 wrqu->data.length = strlen(extra) + 1;
9864 mutex_unlock(&priv->mutex);
9865
9866 return 0;
9867 }
9868
9869 static int ipw_wx_set_preamble(struct net_device *dev,
9870 struct iw_request_info *info,
9871 union iwreq_data *wrqu, char *extra)
9872 {
9873 struct ipw_priv *priv = libipw_priv(dev);
9874 int mode = *(int *)extra;
9875 mutex_lock(&priv->mutex);
9876 /* Switching from SHORT -> LONG requires a disassociation */
9877 if (mode == 1) {
9878 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9879 priv->config |= CFG_PREAMBLE_LONG;
9880
9881 /* Network configuration changed -- force [re]association */
9882 IPW_DEBUG_ASSOC
9883 ("[re]association triggered due to preamble change.\n");
9884 if (!ipw_disassociate(priv))
9885 ipw_associate(priv);
9886 }
9887 goto done;
9888 }
9889
9890 if (mode == 0) {
9891 priv->config &= ~CFG_PREAMBLE_LONG;
9892 goto done;
9893 }
9894 mutex_unlock(&priv->mutex);
9895 return -EINVAL;
9896
9897 done:
9898 mutex_unlock(&priv->mutex);
9899 return 0;
9900 }
9901
9902 static int ipw_wx_get_preamble(struct net_device *dev,
9903 struct iw_request_info *info,
9904 union iwreq_data *wrqu, char *extra)
9905 {
9906 struct ipw_priv *priv = libipw_priv(dev);
9907 mutex_lock(&priv->mutex);
9908 if (priv->config & CFG_PREAMBLE_LONG)
9909 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9910 else
9911 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9912 mutex_unlock(&priv->mutex);
9913 return 0;
9914 }
9915
9916 #ifdef CONFIG_IPW2200_MONITOR
9917 static int ipw_wx_set_monitor(struct net_device *dev,
9918 struct iw_request_info *info,
9919 union iwreq_data *wrqu, char *extra)
9920 {
9921 struct ipw_priv *priv = libipw_priv(dev);
9922 int *parms = (int *)extra;
9923 int enable = (parms[0] > 0);
9924 mutex_lock(&priv->mutex);
9925 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9926 if (enable) {
9927 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9928 #ifdef CONFIG_IPW2200_RADIOTAP
9929 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9930 #else
9931 priv->net_dev->type = ARPHRD_IEEE80211;
9932 #endif
9933 schedule_work(&priv->adapter_restart);
9934 }
9935
9936 ipw_set_channel(priv, parms[1]);
9937 } else {
9938 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9939 mutex_unlock(&priv->mutex);
9940 return 0;
9941 }
9942 priv->net_dev->type = ARPHRD_ETHER;
9943 schedule_work(&priv->adapter_restart);
9944 }
9945 mutex_unlock(&priv->mutex);
9946 return 0;
9947 }
9948
9949 #endif /* CONFIG_IPW2200_MONITOR */
9950
9951 static int ipw_wx_reset(struct net_device *dev,
9952 struct iw_request_info *info,
9953 union iwreq_data *wrqu, char *extra)
9954 {
9955 struct ipw_priv *priv = libipw_priv(dev);
9956 IPW_DEBUG_WX("RESET\n");
9957 schedule_work(&priv->adapter_restart);
9958 return 0;
9959 }
9960
9961 static int ipw_wx_sw_reset(struct net_device *dev,
9962 struct iw_request_info *info,
9963 union iwreq_data *wrqu, char *extra)
9964 {
9965 struct ipw_priv *priv = libipw_priv(dev);
9966 union iwreq_data wrqu_sec = {
9967 .encoding = {
9968 .flags = IW_ENCODE_DISABLED,
9969 },
9970 };
9971 int ret;
9972
9973 IPW_DEBUG_WX("SW_RESET\n");
9974
9975 mutex_lock(&priv->mutex);
9976
9977 ret = ipw_sw_reset(priv, 2);
9978 if (!ret) {
9979 free_firmware();
9980 ipw_adapter_restart(priv);
9981 }
9982
9983 /* The SW reset bit might have been toggled on by the 'disable'
9984 * module parameter, so take appropriate action */
9985 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9986
9987 mutex_unlock(&priv->mutex);
9988 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9989 mutex_lock(&priv->mutex);
9990
9991 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9992 /* Configuration likely changed -- force [re]association */
9993 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9994 "reset.\n");
9995 if (!ipw_disassociate(priv))
9996 ipw_associate(priv);
9997 }
9998
9999 mutex_unlock(&priv->mutex);
10000
10001 return 0;
10002 }
10003
10004 /* Rebase the WE IOCTLs to zero for the handler array */
10005 static iw_handler ipw_wx_handlers[] = {
10006 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
10007 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10008 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10009 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10010 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10011 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10012 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10013 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10014 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10015 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10016 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10017 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10018 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10019 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10020 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10021 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10022 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10023 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10024 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10025 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10026 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10027 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10028 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10029 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10030 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10031 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10032 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10033 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10034 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10035 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10036 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10037 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10038 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10039 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10040 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10041 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10042 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10043 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10044 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10045 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10046 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10047 };
10048
10049 enum {
10050 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10051 IPW_PRIV_GET_POWER,
10052 IPW_PRIV_SET_MODE,
10053 IPW_PRIV_GET_MODE,
10054 IPW_PRIV_SET_PREAMBLE,
10055 IPW_PRIV_GET_PREAMBLE,
10056 IPW_PRIV_RESET,
10057 IPW_PRIV_SW_RESET,
10058 #ifdef CONFIG_IPW2200_MONITOR
10059 IPW_PRIV_SET_MONITOR,
10060 #endif
10061 };
10062
10063 static struct iw_priv_args ipw_priv_args[] = {
10064 {
10065 .cmd = IPW_PRIV_SET_POWER,
10066 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10067 .name = "set_power"},
10068 {
10069 .cmd = IPW_PRIV_GET_POWER,
10070 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10071 .name = "get_power"},
10072 {
10073 .cmd = IPW_PRIV_SET_MODE,
10074 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10075 .name = "set_mode"},
10076 {
10077 .cmd = IPW_PRIV_GET_MODE,
10078 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10079 .name = "get_mode"},
10080 {
10081 .cmd = IPW_PRIV_SET_PREAMBLE,
10082 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10083 .name = "set_preamble"},
10084 {
10085 .cmd = IPW_PRIV_GET_PREAMBLE,
10086 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10087 .name = "get_preamble"},
10088 {
10089 IPW_PRIV_RESET,
10090 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10091 {
10092 IPW_PRIV_SW_RESET,
10093 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10094 #ifdef CONFIG_IPW2200_MONITOR
10095 {
10096 IPW_PRIV_SET_MONITOR,
10097 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10098 #endif /* CONFIG_IPW2200_MONITOR */
10099 };
10100
10101 static iw_handler ipw_priv_handler[] = {
10102 ipw_wx_set_powermode,
10103 ipw_wx_get_powermode,
10104 ipw_wx_set_wireless_mode,
10105 ipw_wx_get_wireless_mode,
10106 ipw_wx_set_preamble,
10107 ipw_wx_get_preamble,
10108 ipw_wx_reset,
10109 ipw_wx_sw_reset,
10110 #ifdef CONFIG_IPW2200_MONITOR
10111 ipw_wx_set_monitor,
10112 #endif
10113 };
10114
10115 static struct iw_handler_def ipw_wx_handler_def = {
10116 .standard = ipw_wx_handlers,
10117 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10118 .num_private = ARRAY_SIZE(ipw_priv_handler),
10119 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10120 .private = ipw_priv_handler,
10121 .private_args = ipw_priv_args,
10122 .get_wireless_stats = ipw_get_wireless_stats,
10123 };
10124
10125 /*
10126 * Get wireless statistics.
10127 * Called by /proc/net/wireless
10128 * Also called by SIOCGIWSTATS
10129 */
10130 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10131 {
10132 struct ipw_priv *priv = libipw_priv(dev);
10133 struct iw_statistics *wstats;
10134
10135 wstats = &priv->wstats;
10136
10137 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10138 * netdev->get_wireless_stats seems to be called before fw is
10139 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10140 * and associated; if not associcated, the values are all meaningless
10141 * anyway, so set them all to NULL and INVALID */
10142 if (!(priv->status & STATUS_ASSOCIATED)) {
10143 wstats->miss.beacon = 0;
10144 wstats->discard.retries = 0;
10145 wstats->qual.qual = 0;
10146 wstats->qual.level = 0;
10147 wstats->qual.noise = 0;
10148 wstats->qual.updated = 7;
10149 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10150 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10151 return wstats;
10152 }
10153
10154 wstats->qual.qual = priv->quality;
10155 wstats->qual.level = priv->exp_avg_rssi;
10156 wstats->qual.noise = priv->exp_avg_noise;
10157 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10158 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10159
10160 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10161 wstats->discard.retries = priv->last_tx_failures;
10162 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10163
10164 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10165 goto fail_get_ordinal;
10166 wstats->discard.retries += tx_retry; */
10167
10168 return wstats;
10169 }
10170
10171 /* net device stuff */
10172
10173 static void init_sys_config(struct ipw_sys_config *sys_config)
10174 {
10175 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10176 sys_config->bt_coexistence = 0;
10177 sys_config->answer_broadcast_ssid_probe = 0;
10178 sys_config->accept_all_data_frames = 0;
10179 sys_config->accept_non_directed_frames = 1;
10180 sys_config->exclude_unicast_unencrypted = 0;
10181 sys_config->disable_unicast_decryption = 1;
10182 sys_config->exclude_multicast_unencrypted = 0;
10183 sys_config->disable_multicast_decryption = 1;
10184 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10185 antenna = CFG_SYS_ANTENNA_BOTH;
10186 sys_config->antenna_diversity = antenna;
10187 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10188 sys_config->dot11g_auto_detection = 0;
10189 sys_config->enable_cts_to_self = 0;
10190 sys_config->bt_coexist_collision_thr = 0;
10191 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10192 sys_config->silence_threshold = 0x1e;
10193 }
10194
10195 static int ipw_net_open(struct net_device *dev)
10196 {
10197 IPW_DEBUG_INFO("dev->open\n");
10198 netif_start_queue(dev);
10199 return 0;
10200 }
10201
10202 static int ipw_net_stop(struct net_device *dev)
10203 {
10204 IPW_DEBUG_INFO("dev->close\n");
10205 netif_stop_queue(dev);
10206 return 0;
10207 }
10208
10209 /*
10210 todo:
10211
10212 modify to send one tfd per fragment instead of using chunking. otherwise
10213 we need to heavily modify the libipw_skb_to_txb.
10214 */
10215
10216 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10217 int pri)
10218 {
10219 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10220 txb->fragments[0]->data;
10221 int i = 0;
10222 struct tfd_frame *tfd;
10223 #ifdef CONFIG_IPW2200_QOS
10224 int tx_id = ipw_get_tx_queue_number(priv, pri);
10225 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10226 #else
10227 struct clx2_tx_queue *txq = &priv->txq[0];
10228 #endif
10229 struct clx2_queue *q = &txq->q;
10230 u8 id, hdr_len, unicast;
10231 int fc;
10232
10233 if (!(priv->status & STATUS_ASSOCIATED))
10234 goto drop;
10235
10236 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10237 switch (priv->ieee->iw_mode) {
10238 case IW_MODE_ADHOC:
10239 unicast = !is_multicast_ether_addr(hdr->addr1);
10240 id = ipw_find_station(priv, hdr->addr1);
10241 if (id == IPW_INVALID_STATION) {
10242 id = ipw_add_station(priv, hdr->addr1);
10243 if (id == IPW_INVALID_STATION) {
10244 IPW_WARNING("Attempt to send data to "
10245 "invalid cell: %pM\n",
10246 hdr->addr1);
10247 goto drop;
10248 }
10249 }
10250 break;
10251
10252 case IW_MODE_INFRA:
10253 default:
10254 unicast = !is_multicast_ether_addr(hdr->addr3);
10255 id = 0;
10256 break;
10257 }
10258
10259 tfd = &txq->bd[q->first_empty];
10260 txq->txb[q->first_empty] = txb;
10261 memset(tfd, 0, sizeof(*tfd));
10262 tfd->u.data.station_number = id;
10263
10264 tfd->control_flags.message_type = TX_FRAME_TYPE;
10265 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10266
10267 tfd->u.data.cmd_id = DINO_CMD_TX;
10268 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10269
10270 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10271 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10272 else
10273 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10274
10275 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10276 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10277
10278 fc = le16_to_cpu(hdr->frame_ctl);
10279 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10280
10281 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10282
10283 if (likely(unicast))
10284 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10285
10286 if (txb->encrypted && !priv->ieee->host_encrypt) {
10287 switch (priv->ieee->sec.level) {
10288 case SEC_LEVEL_3:
10289 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10290 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10291 /* XXX: ACK flag must be set for CCMP even if it
10292 * is a multicast/broadcast packet, because CCMP
10293 * group communication encrypted by GTK is
10294 * actually done by the AP. */
10295 if (!unicast)
10296 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10297
10298 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10299 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10300 tfd->u.data.key_index = 0;
10301 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10302 break;
10303 case SEC_LEVEL_2:
10304 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10305 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10306 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10307 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10308 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10309 break;
10310 case SEC_LEVEL_1:
10311 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10312 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10313 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10314 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10315 40)
10316 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10317 else
10318 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10319 break;
10320 case SEC_LEVEL_0:
10321 break;
10322 default:
10323 printk(KERN_ERR "Unknown security level %d\n",
10324 priv->ieee->sec.level);
10325 break;
10326 }
10327 } else
10328 /* No hardware encryption */
10329 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10330
10331 #ifdef CONFIG_IPW2200_QOS
10332 if (fc & IEEE80211_STYPE_QOS_DATA)
10333 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10334 #endif /* CONFIG_IPW2200_QOS */
10335
10336 /* payload */
10337 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10338 txb->nr_frags));
10339 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10340 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10341 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10342 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10343 i, le32_to_cpu(tfd->u.data.num_chunks),
10344 txb->fragments[i]->len - hdr_len);
10345 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10346 i, tfd->u.data.num_chunks,
10347 txb->fragments[i]->len - hdr_len);
10348 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10349 txb->fragments[i]->len - hdr_len);
10350
10351 tfd->u.data.chunk_ptr[i] =
10352 cpu_to_le32(pci_map_single
10353 (priv->pci_dev,
10354 txb->fragments[i]->data + hdr_len,
10355 txb->fragments[i]->len - hdr_len,
10356 PCI_DMA_TODEVICE));
10357 tfd->u.data.chunk_len[i] =
10358 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10359 }
10360
10361 if (i != txb->nr_frags) {
10362 struct sk_buff *skb;
10363 u16 remaining_bytes = 0;
10364 int j;
10365
10366 for (j = i; j < txb->nr_frags; j++)
10367 remaining_bytes += txb->fragments[j]->len - hdr_len;
10368
10369 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10370 remaining_bytes);
10371 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10372 if (skb != NULL) {
10373 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10374 for (j = i; j < txb->nr_frags; j++) {
10375 int size = txb->fragments[j]->len - hdr_len;
10376
10377 printk(KERN_INFO "Adding frag %d %d...\n",
10378 j, size);
10379 memcpy(skb_put(skb, size),
10380 txb->fragments[j]->data + hdr_len, size);
10381 }
10382 dev_kfree_skb_any(txb->fragments[i]);
10383 txb->fragments[i] = skb;
10384 tfd->u.data.chunk_ptr[i] =
10385 cpu_to_le32(pci_map_single
10386 (priv->pci_dev, skb->data,
10387 remaining_bytes,
10388 PCI_DMA_TODEVICE));
10389
10390 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10391 }
10392 }
10393
10394 /* kick DMA */
10395 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10396 ipw_write32(priv, q->reg_w, q->first_empty);
10397
10398 if (ipw_tx_queue_space(q) < q->high_mark)
10399 netif_stop_queue(priv->net_dev);
10400
10401 return NETDEV_TX_OK;
10402
10403 drop:
10404 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10405 libipw_txb_free(txb);
10406 return NETDEV_TX_OK;
10407 }
10408
10409 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10410 {
10411 struct ipw_priv *priv = libipw_priv(dev);
10412 #ifdef CONFIG_IPW2200_QOS
10413 int tx_id = ipw_get_tx_queue_number(priv, pri);
10414 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10415 #else
10416 struct clx2_tx_queue *txq = &priv->txq[0];
10417 #endif /* CONFIG_IPW2200_QOS */
10418
10419 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10420 return 1;
10421
10422 return 0;
10423 }
10424
10425 #ifdef CONFIG_IPW2200_PROMISCUOUS
10426 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10427 struct libipw_txb *txb)
10428 {
10429 struct libipw_rx_stats dummystats;
10430 struct ieee80211_hdr *hdr;
10431 u8 n;
10432 u16 filter = priv->prom_priv->filter;
10433 int hdr_only = 0;
10434
10435 if (filter & IPW_PROM_NO_TX)
10436 return;
10437
10438 memset(&dummystats, 0, sizeof(dummystats));
10439
10440 /* Filtering of fragment chains is done against the first fragment */
10441 hdr = (void *)txb->fragments[0]->data;
10442 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10443 if (filter & IPW_PROM_NO_MGMT)
10444 return;
10445 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10446 hdr_only = 1;
10447 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10448 if (filter & IPW_PROM_NO_CTL)
10449 return;
10450 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10451 hdr_only = 1;
10452 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10453 if (filter & IPW_PROM_NO_DATA)
10454 return;
10455 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10456 hdr_only = 1;
10457 }
10458
10459 for(n=0; n<txb->nr_frags; ++n) {
10460 struct sk_buff *src = txb->fragments[n];
10461 struct sk_buff *dst;
10462 struct ieee80211_radiotap_header *rt_hdr;
10463 int len;
10464
10465 if (hdr_only) {
10466 hdr = (void *)src->data;
10467 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10468 } else
10469 len = src->len;
10470
10471 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10472 if (!dst)
10473 continue;
10474
10475 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10476
10477 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10478 rt_hdr->it_pad = 0;
10479 rt_hdr->it_present = 0; /* after all, it's just an idea */
10480 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10481
10482 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10483 ieee80211chan2mhz(priv->channel));
10484 if (priv->channel > 14) /* 802.11a */
10485 *(__le16*)skb_put(dst, sizeof(u16)) =
10486 cpu_to_le16(IEEE80211_CHAN_OFDM |
10487 IEEE80211_CHAN_5GHZ);
10488 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10489 *(__le16*)skb_put(dst, sizeof(u16)) =
10490 cpu_to_le16(IEEE80211_CHAN_CCK |
10491 IEEE80211_CHAN_2GHZ);
10492 else /* 802.11g */
10493 *(__le16*)skb_put(dst, sizeof(u16)) =
10494 cpu_to_le16(IEEE80211_CHAN_OFDM |
10495 IEEE80211_CHAN_2GHZ);
10496
10497 rt_hdr->it_len = cpu_to_le16(dst->len);
10498
10499 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10500
10501 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10502 dev_kfree_skb_any(dst);
10503 }
10504 }
10505 #endif
10506
10507 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10508 struct net_device *dev, int pri)
10509 {
10510 struct ipw_priv *priv = libipw_priv(dev);
10511 unsigned long flags;
10512 netdev_tx_t ret;
10513
10514 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10515 spin_lock_irqsave(&priv->lock, flags);
10516
10517 #ifdef CONFIG_IPW2200_PROMISCUOUS
10518 if (rtap_iface && netif_running(priv->prom_net_dev))
10519 ipw_handle_promiscuous_tx(priv, txb);
10520 #endif
10521
10522 ret = ipw_tx_skb(priv, txb, pri);
10523 if (ret == NETDEV_TX_OK)
10524 __ipw_led_activity_on(priv);
10525 spin_unlock_irqrestore(&priv->lock, flags);
10526
10527 return ret;
10528 }
10529
10530 static void ipw_net_set_multicast_list(struct net_device *dev)
10531 {
10532
10533 }
10534
10535 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10536 {
10537 struct ipw_priv *priv = libipw_priv(dev);
10538 struct sockaddr *addr = p;
10539
10540 if (!is_valid_ether_addr(addr->sa_data))
10541 return -EADDRNOTAVAIL;
10542 mutex_lock(&priv->mutex);
10543 priv->config |= CFG_CUSTOM_MAC;
10544 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10545 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10546 priv->net_dev->name, priv->mac_addr);
10547 schedule_work(&priv->adapter_restart);
10548 mutex_unlock(&priv->mutex);
10549 return 0;
10550 }
10551
10552 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10553 struct ethtool_drvinfo *info)
10554 {
10555 struct ipw_priv *p = libipw_priv(dev);
10556 char vers[64];
10557 char date[32];
10558 u32 len;
10559
10560 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10561 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10562
10563 len = sizeof(vers);
10564 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10565 len = sizeof(date);
10566 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10567
10568 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10569 vers, date);
10570 strlcpy(info->bus_info, pci_name(p->pci_dev),
10571 sizeof(info->bus_info));
10572 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10573 }
10574
10575 static u32 ipw_ethtool_get_link(struct net_device *dev)
10576 {
10577 struct ipw_priv *priv = libipw_priv(dev);
10578 return (priv->status & STATUS_ASSOCIATED) != 0;
10579 }
10580
10581 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10582 {
10583 return IPW_EEPROM_IMAGE_SIZE;
10584 }
10585
10586 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10587 struct ethtool_eeprom *eeprom, u8 * bytes)
10588 {
10589 struct ipw_priv *p = libipw_priv(dev);
10590
10591 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10592 return -EINVAL;
10593 mutex_lock(&p->mutex);
10594 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10595 mutex_unlock(&p->mutex);
10596 return 0;
10597 }
10598
10599 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10600 struct ethtool_eeprom *eeprom, u8 * bytes)
10601 {
10602 struct ipw_priv *p = libipw_priv(dev);
10603 int i;
10604
10605 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10606 return -EINVAL;
10607 mutex_lock(&p->mutex);
10608 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10609 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10610 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10611 mutex_unlock(&p->mutex);
10612 return 0;
10613 }
10614
10615 static const struct ethtool_ops ipw_ethtool_ops = {
10616 .get_link = ipw_ethtool_get_link,
10617 .get_drvinfo = ipw_ethtool_get_drvinfo,
10618 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10619 .get_eeprom = ipw_ethtool_get_eeprom,
10620 .set_eeprom = ipw_ethtool_set_eeprom,
10621 };
10622
10623 static irqreturn_t ipw_isr(int irq, void *data)
10624 {
10625 struct ipw_priv *priv = data;
10626 u32 inta, inta_mask;
10627
10628 if (!priv)
10629 return IRQ_NONE;
10630
10631 spin_lock(&priv->irq_lock);
10632
10633 if (!(priv->status & STATUS_INT_ENABLED)) {
10634 /* IRQ is disabled */
10635 goto none;
10636 }
10637
10638 inta = ipw_read32(priv, IPW_INTA_RW);
10639 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10640
10641 if (inta == 0xFFFFFFFF) {
10642 /* Hardware disappeared */
10643 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10644 goto none;
10645 }
10646
10647 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10648 /* Shared interrupt */
10649 goto none;
10650 }
10651
10652 /* tell the device to stop sending interrupts */
10653 __ipw_disable_interrupts(priv);
10654
10655 /* ack current interrupts */
10656 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10657 ipw_write32(priv, IPW_INTA_RW, inta);
10658
10659 /* Cache INTA value for our tasklet */
10660 priv->isr_inta = inta;
10661
10662 tasklet_schedule(&priv->irq_tasklet);
10663
10664 spin_unlock(&priv->irq_lock);
10665
10666 return IRQ_HANDLED;
10667 none:
10668 spin_unlock(&priv->irq_lock);
10669 return IRQ_NONE;
10670 }
10671
10672 static void ipw_rf_kill(void *adapter)
10673 {
10674 struct ipw_priv *priv = adapter;
10675 unsigned long flags;
10676
10677 spin_lock_irqsave(&priv->lock, flags);
10678
10679 if (rf_kill_active(priv)) {
10680 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10681 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10682 goto exit_unlock;
10683 }
10684
10685 /* RF Kill is now disabled, so bring the device back up */
10686
10687 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10688 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10689 "device\n");
10690
10691 /* we can not do an adapter restart while inside an irq lock */
10692 schedule_work(&priv->adapter_restart);
10693 } else
10694 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10695 "enabled\n");
10696
10697 exit_unlock:
10698 spin_unlock_irqrestore(&priv->lock, flags);
10699 }
10700
10701 static void ipw_bg_rf_kill(struct work_struct *work)
10702 {
10703 struct ipw_priv *priv =
10704 container_of(work, struct ipw_priv, rf_kill.work);
10705 mutex_lock(&priv->mutex);
10706 ipw_rf_kill(priv);
10707 mutex_unlock(&priv->mutex);
10708 }
10709
10710 static void ipw_link_up(struct ipw_priv *priv)
10711 {
10712 priv->last_seq_num = -1;
10713 priv->last_frag_num = -1;
10714 priv->last_packet_time = 0;
10715
10716 netif_carrier_on(priv->net_dev);
10717
10718 cancel_delayed_work(&priv->request_scan);
10719 cancel_delayed_work(&priv->request_direct_scan);
10720 cancel_delayed_work(&priv->request_passive_scan);
10721 cancel_delayed_work(&priv->scan_event);
10722 ipw_reset_stats(priv);
10723 /* Ensure the rate is updated immediately */
10724 priv->last_rate = ipw_get_current_rate(priv);
10725 ipw_gather_stats(priv);
10726 ipw_led_link_up(priv);
10727 notify_wx_assoc_event(priv);
10728
10729 if (priv->config & CFG_BACKGROUND_SCAN)
10730 schedule_delayed_work(&priv->request_scan, HZ);
10731 }
10732
10733 static void ipw_bg_link_up(struct work_struct *work)
10734 {
10735 struct ipw_priv *priv =
10736 container_of(work, struct ipw_priv, link_up);
10737 mutex_lock(&priv->mutex);
10738 ipw_link_up(priv);
10739 mutex_unlock(&priv->mutex);
10740 }
10741
10742 static void ipw_link_down(struct ipw_priv *priv)
10743 {
10744 ipw_led_link_down(priv);
10745 netif_carrier_off(priv->net_dev);
10746 notify_wx_assoc_event(priv);
10747
10748 /* Cancel any queued work ... */
10749 cancel_delayed_work(&priv->request_scan);
10750 cancel_delayed_work(&priv->request_direct_scan);
10751 cancel_delayed_work(&priv->request_passive_scan);
10752 cancel_delayed_work(&priv->adhoc_check);
10753 cancel_delayed_work(&priv->gather_stats);
10754
10755 ipw_reset_stats(priv);
10756
10757 if (!(priv->status & STATUS_EXIT_PENDING)) {
10758 /* Queue up another scan... */
10759 schedule_delayed_work(&priv->request_scan, 0);
10760 } else
10761 cancel_delayed_work(&priv->scan_event);
10762 }
10763
10764 static void ipw_bg_link_down(struct work_struct *work)
10765 {
10766 struct ipw_priv *priv =
10767 container_of(work, struct ipw_priv, link_down);
10768 mutex_lock(&priv->mutex);
10769 ipw_link_down(priv);
10770 mutex_unlock(&priv->mutex);
10771 }
10772
10773 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10774 {
10775 int ret = 0;
10776
10777 init_waitqueue_head(&priv->wait_command_queue);
10778 init_waitqueue_head(&priv->wait_state);
10779
10780 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10781 INIT_WORK(&priv->associate, ipw_bg_associate);
10782 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10783 INIT_WORK(&priv->system_config, ipw_system_config);
10784 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10785 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10786 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10787 INIT_WORK(&priv->up, ipw_bg_up);
10788 INIT_WORK(&priv->down, ipw_bg_down);
10789 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10790 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10791 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10792 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10793 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10794 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10795 INIT_WORK(&priv->roam, ipw_bg_roam);
10796 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10797 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10798 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10799 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10800 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10801 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10802 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10803
10804 #ifdef CONFIG_IPW2200_QOS
10805 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10806 #endif /* CONFIG_IPW2200_QOS */
10807
10808 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10809 ipw_irq_tasklet, (unsigned long)priv);
10810
10811 return ret;
10812 }
10813
10814 static void shim__set_security(struct net_device *dev,
10815 struct libipw_security *sec)
10816 {
10817 struct ipw_priv *priv = libipw_priv(dev);
10818 int i;
10819 for (i = 0; i < 4; i++) {
10820 if (sec->flags & (1 << i)) {
10821 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10822 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10823 if (sec->key_sizes[i] == 0)
10824 priv->ieee->sec.flags &= ~(1 << i);
10825 else {
10826 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10827 sec->key_sizes[i]);
10828 priv->ieee->sec.flags |= (1 << i);
10829 }
10830 priv->status |= STATUS_SECURITY_UPDATED;
10831 } else if (sec->level != SEC_LEVEL_1)
10832 priv->ieee->sec.flags &= ~(1 << i);
10833 }
10834
10835 if (sec->flags & SEC_ACTIVE_KEY) {
10836 if (sec->active_key <= 3) {
10837 priv->ieee->sec.active_key = sec->active_key;
10838 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10839 } else
10840 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10841 priv->status |= STATUS_SECURITY_UPDATED;
10842 } else
10843 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10844
10845 if ((sec->flags & SEC_AUTH_MODE) &&
10846 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10847 priv->ieee->sec.auth_mode = sec->auth_mode;
10848 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10849 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10850 priv->capability |= CAP_SHARED_KEY;
10851 else
10852 priv->capability &= ~CAP_SHARED_KEY;
10853 priv->status |= STATUS_SECURITY_UPDATED;
10854 }
10855
10856 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10857 priv->ieee->sec.flags |= SEC_ENABLED;
10858 priv->ieee->sec.enabled = sec->enabled;
10859 priv->status |= STATUS_SECURITY_UPDATED;
10860 if (sec->enabled)
10861 priv->capability |= CAP_PRIVACY_ON;
10862 else
10863 priv->capability &= ~CAP_PRIVACY_ON;
10864 }
10865
10866 if (sec->flags & SEC_ENCRYPT)
10867 priv->ieee->sec.encrypt = sec->encrypt;
10868
10869 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10870 priv->ieee->sec.level = sec->level;
10871 priv->ieee->sec.flags |= SEC_LEVEL;
10872 priv->status |= STATUS_SECURITY_UPDATED;
10873 }
10874
10875 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10876 ipw_set_hwcrypto_keys(priv);
10877
10878 /* To match current functionality of ipw2100 (which works well w/
10879 * various supplicants, we don't force a disassociate if the
10880 * privacy capability changes ... */
10881 #if 0
10882 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10883 (((priv->assoc_request.capability &
10884 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10885 (!(priv->assoc_request.capability &
10886 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10887 IPW_DEBUG_ASSOC("Disassociating due to capability "
10888 "change.\n");
10889 ipw_disassociate(priv);
10890 }
10891 #endif
10892 }
10893
10894 static int init_supported_rates(struct ipw_priv *priv,
10895 struct ipw_supported_rates *rates)
10896 {
10897 /* TODO: Mask out rates based on priv->rates_mask */
10898
10899 memset(rates, 0, sizeof(*rates));
10900 /* configure supported rates */
10901 switch (priv->ieee->freq_band) {
10902 case LIBIPW_52GHZ_BAND:
10903 rates->ieee_mode = IPW_A_MODE;
10904 rates->purpose = IPW_RATE_CAPABILITIES;
10905 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10906 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10907 break;
10908
10909 default: /* Mixed or 2.4Ghz */
10910 rates->ieee_mode = IPW_G_MODE;
10911 rates->purpose = IPW_RATE_CAPABILITIES;
10912 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10913 LIBIPW_CCK_DEFAULT_RATES_MASK);
10914 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10915 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10916 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10917 }
10918 break;
10919 }
10920
10921 return 0;
10922 }
10923
10924 static int ipw_config(struct ipw_priv *priv)
10925 {
10926 /* This is only called from ipw_up, which resets/reloads the firmware
10927 so, we don't need to first disable the card before we configure
10928 it */
10929 if (ipw_set_tx_power(priv))
10930 goto error;
10931
10932 /* initialize adapter address */
10933 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10934 goto error;
10935
10936 /* set basic system config settings */
10937 init_sys_config(&priv->sys_config);
10938
10939 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10940 * Does not support BT priority yet (don't abort or defer our Tx) */
10941 if (bt_coexist) {
10942 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10943
10944 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10945 priv->sys_config.bt_coexistence
10946 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10947 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10948 priv->sys_config.bt_coexistence
10949 |= CFG_BT_COEXISTENCE_OOB;
10950 }
10951
10952 #ifdef CONFIG_IPW2200_PROMISCUOUS
10953 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10954 priv->sys_config.accept_all_data_frames = 1;
10955 priv->sys_config.accept_non_directed_frames = 1;
10956 priv->sys_config.accept_all_mgmt_bcpr = 1;
10957 priv->sys_config.accept_all_mgmt_frames = 1;
10958 }
10959 #endif
10960
10961 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10962 priv->sys_config.answer_broadcast_ssid_probe = 1;
10963 else
10964 priv->sys_config.answer_broadcast_ssid_probe = 0;
10965
10966 if (ipw_send_system_config(priv))
10967 goto error;
10968
10969 init_supported_rates(priv, &priv->rates);
10970 if (ipw_send_supported_rates(priv, &priv->rates))
10971 goto error;
10972
10973 /* Set request-to-send threshold */
10974 if (priv->rts_threshold) {
10975 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10976 goto error;
10977 }
10978 #ifdef CONFIG_IPW2200_QOS
10979 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10980 ipw_qos_activate(priv, NULL);
10981 #endif /* CONFIG_IPW2200_QOS */
10982
10983 if (ipw_set_random_seed(priv))
10984 goto error;
10985
10986 /* final state transition to the RUN state */
10987 if (ipw_send_host_complete(priv))
10988 goto error;
10989
10990 priv->status |= STATUS_INIT;
10991
10992 ipw_led_init(priv);
10993 ipw_led_radio_on(priv);
10994 priv->notif_missed_beacons = 0;
10995
10996 /* Set hardware WEP key if it is configured. */
10997 if ((priv->capability & CAP_PRIVACY_ON) &&
10998 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10999 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
11000 ipw_set_hwcrypto_keys(priv);
11001
11002 return 0;
11003
11004 error:
11005 return -EIO;
11006 }
11007
11008 /*
11009 * NOTE:
11010 *
11011 * These tables have been tested in conjunction with the
11012 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11013 *
11014 * Altering this values, using it on other hardware, or in geographies
11015 * not intended for resale of the above mentioned Intel adapters has
11016 * not been tested.
11017 *
11018 * Remember to update the table in README.ipw2200 when changing this
11019 * table.
11020 *
11021 */
11022 static const struct libipw_geo ipw_geos[] = {
11023 { /* Restricted */
11024 "---",
11025 .bg_channels = 11,
11026 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11027 {2427, 4}, {2432, 5}, {2437, 6},
11028 {2442, 7}, {2447, 8}, {2452, 9},
11029 {2457, 10}, {2462, 11}},
11030 },
11031
11032 { /* Custom US/Canada */
11033 "ZZF",
11034 .bg_channels = 11,
11035 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11036 {2427, 4}, {2432, 5}, {2437, 6},
11037 {2442, 7}, {2447, 8}, {2452, 9},
11038 {2457, 10}, {2462, 11}},
11039 .a_channels = 8,
11040 .a = {{5180, 36},
11041 {5200, 40},
11042 {5220, 44},
11043 {5240, 48},
11044 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11045 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11046 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11047 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11048 },
11049
11050 { /* Rest of World */
11051 "ZZD",
11052 .bg_channels = 13,
11053 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11054 {2427, 4}, {2432, 5}, {2437, 6},
11055 {2442, 7}, {2447, 8}, {2452, 9},
11056 {2457, 10}, {2462, 11}, {2467, 12},
11057 {2472, 13}},
11058 },
11059
11060 { /* Custom USA & Europe & High */
11061 "ZZA",
11062 .bg_channels = 11,
11063 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11064 {2427, 4}, {2432, 5}, {2437, 6},
11065 {2442, 7}, {2447, 8}, {2452, 9},
11066 {2457, 10}, {2462, 11}},
11067 .a_channels = 13,
11068 .a = {{5180, 36},
11069 {5200, 40},
11070 {5220, 44},
11071 {5240, 48},
11072 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11073 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11074 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11075 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11076 {5745, 149},
11077 {5765, 153},
11078 {5785, 157},
11079 {5805, 161},
11080 {5825, 165}},
11081 },
11082
11083 { /* Custom NA & Europe */
11084 "ZZB",
11085 .bg_channels = 11,
11086 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11087 {2427, 4}, {2432, 5}, {2437, 6},
11088 {2442, 7}, {2447, 8}, {2452, 9},
11089 {2457, 10}, {2462, 11}},
11090 .a_channels = 13,
11091 .a = {{5180, 36},
11092 {5200, 40},
11093 {5220, 44},
11094 {5240, 48},
11095 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11096 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11097 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11098 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11099 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11100 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11101 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11102 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11103 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11104 },
11105
11106 { /* Custom Japan */
11107 "ZZC",
11108 .bg_channels = 11,
11109 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11110 {2427, 4}, {2432, 5}, {2437, 6},
11111 {2442, 7}, {2447, 8}, {2452, 9},
11112 {2457, 10}, {2462, 11}},
11113 .a_channels = 4,
11114 .a = {{5170, 34}, {5190, 38},
11115 {5210, 42}, {5230, 46}},
11116 },
11117
11118 { /* Custom */
11119 "ZZM",
11120 .bg_channels = 11,
11121 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11122 {2427, 4}, {2432, 5}, {2437, 6},
11123 {2442, 7}, {2447, 8}, {2452, 9},
11124 {2457, 10}, {2462, 11}},
11125 },
11126
11127 { /* Europe */
11128 "ZZE",
11129 .bg_channels = 13,
11130 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11131 {2427, 4}, {2432, 5}, {2437, 6},
11132 {2442, 7}, {2447, 8}, {2452, 9},
11133 {2457, 10}, {2462, 11}, {2467, 12},
11134 {2472, 13}},
11135 .a_channels = 19,
11136 .a = {{5180, 36},
11137 {5200, 40},
11138 {5220, 44},
11139 {5240, 48},
11140 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11141 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11142 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11143 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11144 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11145 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11146 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11147 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11148 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11149 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11150 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11151 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11152 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11153 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11154 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11155 },
11156
11157 { /* Custom Japan */
11158 "ZZJ",
11159 .bg_channels = 14,
11160 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11161 {2427, 4}, {2432, 5}, {2437, 6},
11162 {2442, 7}, {2447, 8}, {2452, 9},
11163 {2457, 10}, {2462, 11}, {2467, 12},
11164 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11165 .a_channels = 4,
11166 .a = {{5170, 34}, {5190, 38},
11167 {5210, 42}, {5230, 46}},
11168 },
11169
11170 { /* Rest of World */
11171 "ZZR",
11172 .bg_channels = 14,
11173 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11174 {2427, 4}, {2432, 5}, {2437, 6},
11175 {2442, 7}, {2447, 8}, {2452, 9},
11176 {2457, 10}, {2462, 11}, {2467, 12},
11177 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11178 LIBIPW_CH_PASSIVE_ONLY}},
11179 },
11180
11181 { /* High Band */
11182 "ZZH",
11183 .bg_channels = 13,
11184 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11185 {2427, 4}, {2432, 5}, {2437, 6},
11186 {2442, 7}, {2447, 8}, {2452, 9},
11187 {2457, 10}, {2462, 11},
11188 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11189 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11190 .a_channels = 4,
11191 .a = {{5745, 149}, {5765, 153},
11192 {5785, 157}, {5805, 161}},
11193 },
11194
11195 { /* Custom Europe */
11196 "ZZG",
11197 .bg_channels = 13,
11198 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11199 {2427, 4}, {2432, 5}, {2437, 6},
11200 {2442, 7}, {2447, 8}, {2452, 9},
11201 {2457, 10}, {2462, 11},
11202 {2467, 12}, {2472, 13}},
11203 .a_channels = 4,
11204 .a = {{5180, 36}, {5200, 40},
11205 {5220, 44}, {5240, 48}},
11206 },
11207
11208 { /* Europe */
11209 "ZZK",
11210 .bg_channels = 13,
11211 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11212 {2427, 4}, {2432, 5}, {2437, 6},
11213 {2442, 7}, {2447, 8}, {2452, 9},
11214 {2457, 10}, {2462, 11},
11215 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11216 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11217 .a_channels = 24,
11218 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11219 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11220 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11221 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11222 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11223 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11224 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11225 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11226 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11227 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11228 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11229 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11230 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11231 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11232 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11233 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11234 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11235 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11236 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11237 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11238 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11239 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11240 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11241 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11242 },
11243
11244 { /* Europe */
11245 "ZZL",
11246 .bg_channels = 11,
11247 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11248 {2427, 4}, {2432, 5}, {2437, 6},
11249 {2442, 7}, {2447, 8}, {2452, 9},
11250 {2457, 10}, {2462, 11}},
11251 .a_channels = 13,
11252 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11253 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11254 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11255 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11256 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11257 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11258 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11259 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11260 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11261 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11262 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11263 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11264 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11265 }
11266 };
11267
11268 #define MAX_HW_RESTARTS 5
11269 static int ipw_up(struct ipw_priv *priv)
11270 {
11271 int rc, i, j;
11272
11273 /* Age scan list entries found before suspend */
11274 if (priv->suspend_time) {
11275 libipw_networks_age(priv->ieee, priv->suspend_time);
11276 priv->suspend_time = 0;
11277 }
11278
11279 if (priv->status & STATUS_EXIT_PENDING)
11280 return -EIO;
11281
11282 if (cmdlog && !priv->cmdlog) {
11283 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11284 GFP_KERNEL);
11285 if (priv->cmdlog == NULL) {
11286 IPW_ERROR("Error allocating %d command log entries.\n",
11287 cmdlog);
11288 return -ENOMEM;
11289 } else {
11290 priv->cmdlog_len = cmdlog;
11291 }
11292 }
11293
11294 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11295 /* Load the microcode, firmware, and eeprom.
11296 * Also start the clocks. */
11297 rc = ipw_load(priv);
11298 if (rc) {
11299 IPW_ERROR("Unable to load firmware: %d\n", rc);
11300 return rc;
11301 }
11302
11303 ipw_init_ordinals(priv);
11304 if (!(priv->config & CFG_CUSTOM_MAC))
11305 eeprom_parse_mac(priv, priv->mac_addr);
11306 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11307 memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11308
11309 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11310 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11311 ipw_geos[j].name, 3))
11312 break;
11313 }
11314 if (j == ARRAY_SIZE(ipw_geos)) {
11315 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11316 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11317 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11318 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11319 j = 0;
11320 }
11321 if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11322 IPW_WARNING("Could not set geography.");
11323 return 0;
11324 }
11325
11326 if (priv->status & STATUS_RF_KILL_SW) {
11327 IPW_WARNING("Radio disabled by module parameter.\n");
11328 return 0;
11329 } else if (rf_kill_active(priv)) {
11330 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11331 "Kill switch must be turned off for "
11332 "wireless networking to work.\n");
11333 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11334 return 0;
11335 }
11336
11337 rc = ipw_config(priv);
11338 if (!rc) {
11339 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11340
11341 /* If configure to try and auto-associate, kick
11342 * off a scan. */
11343 schedule_delayed_work(&priv->request_scan, 0);
11344
11345 return 0;
11346 }
11347
11348 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11349 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11350 i, MAX_HW_RESTARTS);
11351
11352 /* We had an error bringing up the hardware, so take it
11353 * all the way back down so we can try again */
11354 ipw_down(priv);
11355 }
11356
11357 /* tried to restart and config the device for as long as our
11358 * patience could withstand */
11359 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11360
11361 return -EIO;
11362 }
11363
11364 static void ipw_bg_up(struct work_struct *work)
11365 {
11366 struct ipw_priv *priv =
11367 container_of(work, struct ipw_priv, up);
11368 mutex_lock(&priv->mutex);
11369 ipw_up(priv);
11370 mutex_unlock(&priv->mutex);
11371 }
11372
11373 static void ipw_deinit(struct ipw_priv *priv)
11374 {
11375 int i;
11376
11377 if (priv->status & STATUS_SCANNING) {
11378 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11379 ipw_abort_scan(priv);
11380 }
11381
11382 if (priv->status & STATUS_ASSOCIATED) {
11383 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11384 ipw_disassociate(priv);
11385 }
11386
11387 ipw_led_shutdown(priv);
11388
11389 /* Wait up to 1s for status to change to not scanning and not
11390 * associated (disassociation can take a while for a ful 802.11
11391 * exchange */
11392 for (i = 1000; i && (priv->status &
11393 (STATUS_DISASSOCIATING |
11394 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11395 udelay(10);
11396
11397 if (priv->status & (STATUS_DISASSOCIATING |
11398 STATUS_ASSOCIATED | STATUS_SCANNING))
11399 IPW_DEBUG_INFO("Still associated or scanning...\n");
11400 else
11401 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11402
11403 /* Attempt to disable the card */
11404 ipw_send_card_disable(priv, 0);
11405
11406 priv->status &= ~STATUS_INIT;
11407 }
11408
11409 static void ipw_down(struct ipw_priv *priv)
11410 {
11411 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11412
11413 priv->status |= STATUS_EXIT_PENDING;
11414
11415 if (ipw_is_init(priv))
11416 ipw_deinit(priv);
11417
11418 /* Wipe out the EXIT_PENDING status bit if we are not actually
11419 * exiting the module */
11420 if (!exit_pending)
11421 priv->status &= ~STATUS_EXIT_PENDING;
11422
11423 /* tell the device to stop sending interrupts */
11424 ipw_disable_interrupts(priv);
11425
11426 /* Clear all bits but the RF Kill */
11427 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11428 netif_carrier_off(priv->net_dev);
11429
11430 ipw_stop_nic(priv);
11431
11432 ipw_led_radio_off(priv);
11433 }
11434
11435 static void ipw_bg_down(struct work_struct *work)
11436 {
11437 struct ipw_priv *priv =
11438 container_of(work, struct ipw_priv, down);
11439 mutex_lock(&priv->mutex);
11440 ipw_down(priv);
11441 mutex_unlock(&priv->mutex);
11442 }
11443
11444 static int ipw_wdev_init(struct net_device *dev)
11445 {
11446 int i, rc = 0;
11447 struct ipw_priv *priv = libipw_priv(dev);
11448 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11449 struct wireless_dev *wdev = &priv->ieee->wdev;
11450
11451 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11452
11453 /* fill-out priv->ieee->bg_band */
11454 if (geo->bg_channels) {
11455 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11456
11457 bg_band->band = IEEE80211_BAND_2GHZ;
11458 bg_band->n_channels = geo->bg_channels;
11459 bg_band->channels = kcalloc(geo->bg_channels,
11460 sizeof(struct ieee80211_channel),
11461 GFP_KERNEL);
11462 if (!bg_band->channels) {
11463 rc = -ENOMEM;
11464 goto out;
11465 }
11466 /* translate geo->bg to bg_band.channels */
11467 for (i = 0; i < geo->bg_channels; i++) {
11468 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11469 bg_band->channels[i].center_freq = geo->bg[i].freq;
11470 bg_band->channels[i].hw_value = geo->bg[i].channel;
11471 bg_band->channels[i].max_power = geo->bg[i].max_power;
11472 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11473 bg_band->channels[i].flags |=
11474 IEEE80211_CHAN_PASSIVE_SCAN;
11475 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11476 bg_band->channels[i].flags |=
11477 IEEE80211_CHAN_NO_IBSS;
11478 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11479 bg_band->channels[i].flags |=
11480 IEEE80211_CHAN_RADAR;
11481 /* No equivalent for LIBIPW_CH_80211H_RULES,
11482 LIBIPW_CH_UNIFORM_SPREADING, or
11483 LIBIPW_CH_B_ONLY... */
11484 }
11485 /* point at bitrate info */
11486 bg_band->bitrates = ipw2200_bg_rates;
11487 bg_band->n_bitrates = ipw2200_num_bg_rates;
11488
11489 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11490 }
11491
11492 /* fill-out priv->ieee->a_band */
11493 if (geo->a_channels) {
11494 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11495
11496 a_band->band = IEEE80211_BAND_5GHZ;
11497 a_band->n_channels = geo->a_channels;
11498 a_band->channels = kcalloc(geo->a_channels,
11499 sizeof(struct ieee80211_channel),
11500 GFP_KERNEL);
11501 if (!a_band->channels) {
11502 rc = -ENOMEM;
11503 goto out;
11504 }
11505 /* translate geo->a to a_band.channels */
11506 for (i = 0; i < geo->a_channels; i++) {
11507 a_band->channels[i].band = IEEE80211_BAND_5GHZ;
11508 a_band->channels[i].center_freq = geo->a[i].freq;
11509 a_band->channels[i].hw_value = geo->a[i].channel;
11510 a_band->channels[i].max_power = geo->a[i].max_power;
11511 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11512 a_band->channels[i].flags |=
11513 IEEE80211_CHAN_PASSIVE_SCAN;
11514 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11515 a_band->channels[i].flags |=
11516 IEEE80211_CHAN_NO_IBSS;
11517 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11518 a_band->channels[i].flags |=
11519 IEEE80211_CHAN_RADAR;
11520 /* No equivalent for LIBIPW_CH_80211H_RULES,
11521 LIBIPW_CH_UNIFORM_SPREADING, or
11522 LIBIPW_CH_B_ONLY... */
11523 }
11524 /* point at bitrate info */
11525 a_band->bitrates = ipw2200_a_rates;
11526 a_band->n_bitrates = ipw2200_num_a_rates;
11527
11528 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11529 }
11530
11531 wdev->wiphy->cipher_suites = ipw_cipher_suites;
11532 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11533
11534 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11535
11536 /* With that information in place, we can now register the wiphy... */
11537 if (wiphy_register(wdev->wiphy))
11538 rc = -EIO;
11539 out:
11540 return rc;
11541 }
11542
11543 /* PCI driver stuff */
11544 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11545 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11546 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11547 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11548 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11549 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11550 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11551 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11552 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11553 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11554 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11555 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11556 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11557 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11558 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11559 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11560 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11561 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11562 {PCI_VDEVICE(INTEL, 0x104f), 0},
11563 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11564 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11565 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11566 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11567
11568 /* required last entry */
11569 {0,}
11570 };
11571
11572 MODULE_DEVICE_TABLE(pci, card_ids);
11573
11574 static struct attribute *ipw_sysfs_entries[] = {
11575 &dev_attr_rf_kill.attr,
11576 &dev_attr_direct_dword.attr,
11577 &dev_attr_indirect_byte.attr,
11578 &dev_attr_indirect_dword.attr,
11579 &dev_attr_mem_gpio_reg.attr,
11580 &dev_attr_command_event_reg.attr,
11581 &dev_attr_nic_type.attr,
11582 &dev_attr_status.attr,
11583 &dev_attr_cfg.attr,
11584 &dev_attr_error.attr,
11585 &dev_attr_event_log.attr,
11586 &dev_attr_cmd_log.attr,
11587 &dev_attr_eeprom_delay.attr,
11588 &dev_attr_ucode_version.attr,
11589 &dev_attr_rtc.attr,
11590 &dev_attr_scan_age.attr,
11591 &dev_attr_led.attr,
11592 &dev_attr_speed_scan.attr,
11593 &dev_attr_net_stats.attr,
11594 &dev_attr_channels.attr,
11595 #ifdef CONFIG_IPW2200_PROMISCUOUS
11596 &dev_attr_rtap_iface.attr,
11597 &dev_attr_rtap_filter.attr,
11598 #endif
11599 NULL
11600 };
11601
11602 static struct attribute_group ipw_attribute_group = {
11603 .name = NULL, /* put in device directory */
11604 .attrs = ipw_sysfs_entries,
11605 };
11606
11607 #ifdef CONFIG_IPW2200_PROMISCUOUS
11608 static int ipw_prom_open(struct net_device *dev)
11609 {
11610 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11611 struct ipw_priv *priv = prom_priv->priv;
11612
11613 IPW_DEBUG_INFO("prom dev->open\n");
11614 netif_carrier_off(dev);
11615
11616 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11617 priv->sys_config.accept_all_data_frames = 1;
11618 priv->sys_config.accept_non_directed_frames = 1;
11619 priv->sys_config.accept_all_mgmt_bcpr = 1;
11620 priv->sys_config.accept_all_mgmt_frames = 1;
11621
11622 ipw_send_system_config(priv);
11623 }
11624
11625 return 0;
11626 }
11627
11628 static int ipw_prom_stop(struct net_device *dev)
11629 {
11630 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11631 struct ipw_priv *priv = prom_priv->priv;
11632
11633 IPW_DEBUG_INFO("prom dev->stop\n");
11634
11635 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11636 priv->sys_config.accept_all_data_frames = 0;
11637 priv->sys_config.accept_non_directed_frames = 0;
11638 priv->sys_config.accept_all_mgmt_bcpr = 0;
11639 priv->sys_config.accept_all_mgmt_frames = 0;
11640
11641 ipw_send_system_config(priv);
11642 }
11643
11644 return 0;
11645 }
11646
11647 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11648 struct net_device *dev)
11649 {
11650 IPW_DEBUG_INFO("prom dev->xmit\n");
11651 dev_kfree_skb(skb);
11652 return NETDEV_TX_OK;
11653 }
11654
11655 static const struct net_device_ops ipw_prom_netdev_ops = {
11656 .ndo_open = ipw_prom_open,
11657 .ndo_stop = ipw_prom_stop,
11658 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11659 .ndo_change_mtu = libipw_change_mtu,
11660 .ndo_set_mac_address = eth_mac_addr,
11661 .ndo_validate_addr = eth_validate_addr,
11662 };
11663
11664 static int ipw_prom_alloc(struct ipw_priv *priv)
11665 {
11666 int rc = 0;
11667
11668 if (priv->prom_net_dev)
11669 return -EPERM;
11670
11671 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11672 if (priv->prom_net_dev == NULL)
11673 return -ENOMEM;
11674
11675 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11676 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11677 priv->prom_priv->priv = priv;
11678
11679 strcpy(priv->prom_net_dev->name, "rtap%d");
11680 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11681
11682 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11683 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11684
11685 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11686 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11687
11688 rc = register_netdev(priv->prom_net_dev);
11689 if (rc) {
11690 free_libipw(priv->prom_net_dev, 1);
11691 priv->prom_net_dev = NULL;
11692 return rc;
11693 }
11694
11695 return 0;
11696 }
11697
11698 static void ipw_prom_free(struct ipw_priv *priv)
11699 {
11700 if (!priv->prom_net_dev)
11701 return;
11702
11703 unregister_netdev(priv->prom_net_dev);
11704 free_libipw(priv->prom_net_dev, 1);
11705
11706 priv->prom_net_dev = NULL;
11707 }
11708
11709 #endif
11710
11711 static const struct net_device_ops ipw_netdev_ops = {
11712 .ndo_open = ipw_net_open,
11713 .ndo_stop = ipw_net_stop,
11714 .ndo_set_rx_mode = ipw_net_set_multicast_list,
11715 .ndo_set_mac_address = ipw_net_set_mac_address,
11716 .ndo_start_xmit = libipw_xmit,
11717 .ndo_change_mtu = libipw_change_mtu,
11718 .ndo_validate_addr = eth_validate_addr,
11719 };
11720
11721 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11722 const struct pci_device_id *ent)
11723 {
11724 int err = 0;
11725 struct net_device *net_dev;
11726 void __iomem *base;
11727 u32 length, val;
11728 struct ipw_priv *priv;
11729 int i;
11730
11731 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11732 if (net_dev == NULL) {
11733 err = -ENOMEM;
11734 goto out;
11735 }
11736
11737 priv = libipw_priv(net_dev);
11738 priv->ieee = netdev_priv(net_dev);
11739
11740 priv->net_dev = net_dev;
11741 priv->pci_dev = pdev;
11742 ipw_debug_level = debug;
11743 spin_lock_init(&priv->irq_lock);
11744 spin_lock_init(&priv->lock);
11745 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11746 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11747
11748 mutex_init(&priv->mutex);
11749 if (pci_enable_device(pdev)) {
11750 err = -ENODEV;
11751 goto out_free_libipw;
11752 }
11753
11754 pci_set_master(pdev);
11755
11756 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11757 if (!err)
11758 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11759 if (err) {
11760 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11761 goto out_pci_disable_device;
11762 }
11763
11764 pci_set_drvdata(pdev, priv);
11765
11766 err = pci_request_regions(pdev, DRV_NAME);
11767 if (err)
11768 goto out_pci_disable_device;
11769
11770 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11771 * PCI Tx retries from interfering with C3 CPU state */
11772 pci_read_config_dword(pdev, 0x40, &val);
11773 if ((val & 0x0000ff00) != 0)
11774 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11775
11776 length = pci_resource_len(pdev, 0);
11777 priv->hw_len = length;
11778
11779 base = pci_ioremap_bar(pdev, 0);
11780 if (!base) {
11781 err = -ENODEV;
11782 goto out_pci_release_regions;
11783 }
11784
11785 priv->hw_base = base;
11786 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11787 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11788
11789 err = ipw_setup_deferred_work(priv);
11790 if (err) {
11791 IPW_ERROR("Unable to setup deferred work\n");
11792 goto out_iounmap;
11793 }
11794
11795 ipw_sw_reset(priv, 1);
11796
11797 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11798 if (err) {
11799 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11800 goto out_iounmap;
11801 }
11802
11803 SET_NETDEV_DEV(net_dev, &pdev->dev);
11804
11805 mutex_lock(&priv->mutex);
11806
11807 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11808 priv->ieee->set_security = shim__set_security;
11809 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11810
11811 #ifdef CONFIG_IPW2200_QOS
11812 priv->ieee->is_qos_active = ipw_is_qos_active;
11813 priv->ieee->handle_probe_response = ipw_handle_beacon;
11814 priv->ieee->handle_beacon = ipw_handle_probe_response;
11815 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11816 #endif /* CONFIG_IPW2200_QOS */
11817
11818 priv->ieee->perfect_rssi = -20;
11819 priv->ieee->worst_rssi = -85;
11820
11821 net_dev->netdev_ops = &ipw_netdev_ops;
11822 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11823 net_dev->wireless_data = &priv->wireless_data;
11824 net_dev->wireless_handlers = &ipw_wx_handler_def;
11825 net_dev->ethtool_ops = &ipw_ethtool_ops;
11826
11827 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11828 if (err) {
11829 IPW_ERROR("failed to create sysfs device attributes\n");
11830 mutex_unlock(&priv->mutex);
11831 goto out_release_irq;
11832 }
11833
11834 if (ipw_up(priv)) {
11835 mutex_unlock(&priv->mutex);
11836 err = -EIO;
11837 goto out_remove_sysfs;
11838 }
11839
11840 mutex_unlock(&priv->mutex);
11841
11842 err = ipw_wdev_init(net_dev);
11843 if (err) {
11844 IPW_ERROR("failed to register wireless device\n");
11845 goto out_remove_sysfs;
11846 }
11847
11848 err = register_netdev(net_dev);
11849 if (err) {
11850 IPW_ERROR("failed to register network device\n");
11851 goto out_unregister_wiphy;
11852 }
11853
11854 #ifdef CONFIG_IPW2200_PROMISCUOUS
11855 if (rtap_iface) {
11856 err = ipw_prom_alloc(priv);
11857 if (err) {
11858 IPW_ERROR("Failed to register promiscuous network "
11859 "device (error %d).\n", err);
11860 unregister_netdev(priv->net_dev);
11861 goto out_unregister_wiphy;
11862 }
11863 }
11864 #endif
11865
11866 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11867 "channels, %d 802.11a channels)\n",
11868 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11869 priv->ieee->geo.a_channels);
11870
11871 return 0;
11872
11873 out_unregister_wiphy:
11874 wiphy_unregister(priv->ieee->wdev.wiphy);
11875 kfree(priv->ieee->a_band.channels);
11876 kfree(priv->ieee->bg_band.channels);
11877 out_remove_sysfs:
11878 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11879 out_release_irq:
11880 free_irq(pdev->irq, priv);
11881 out_iounmap:
11882 iounmap(priv->hw_base);
11883 out_pci_release_regions:
11884 pci_release_regions(pdev);
11885 out_pci_disable_device:
11886 pci_disable_device(pdev);
11887 pci_set_drvdata(pdev, NULL);
11888 out_free_libipw:
11889 free_libipw(priv->net_dev, 0);
11890 out:
11891 return err;
11892 }
11893
11894 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11895 {
11896 struct ipw_priv *priv = pci_get_drvdata(pdev);
11897 struct list_head *p, *q;
11898 int i;
11899
11900 if (!priv)
11901 return;
11902
11903 mutex_lock(&priv->mutex);
11904
11905 priv->status |= STATUS_EXIT_PENDING;
11906 ipw_down(priv);
11907 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11908
11909 mutex_unlock(&priv->mutex);
11910
11911 unregister_netdev(priv->net_dev);
11912
11913 if (priv->rxq) {
11914 ipw_rx_queue_free(priv, priv->rxq);
11915 priv->rxq = NULL;
11916 }
11917 ipw_tx_queue_free(priv);
11918
11919 if (priv->cmdlog) {
11920 kfree(priv->cmdlog);
11921 priv->cmdlog = NULL;
11922 }
11923
11924 /* make sure all works are inactive */
11925 cancel_delayed_work_sync(&priv->adhoc_check);
11926 cancel_work_sync(&priv->associate);
11927 cancel_work_sync(&priv->disassociate);
11928 cancel_work_sync(&priv->system_config);
11929 cancel_work_sync(&priv->rx_replenish);
11930 cancel_work_sync(&priv->adapter_restart);
11931 cancel_delayed_work_sync(&priv->rf_kill);
11932 cancel_work_sync(&priv->up);
11933 cancel_work_sync(&priv->down);
11934 cancel_delayed_work_sync(&priv->request_scan);
11935 cancel_delayed_work_sync(&priv->request_direct_scan);
11936 cancel_delayed_work_sync(&priv->request_passive_scan);
11937 cancel_delayed_work_sync(&priv->scan_event);
11938 cancel_delayed_work_sync(&priv->gather_stats);
11939 cancel_work_sync(&priv->abort_scan);
11940 cancel_work_sync(&priv->roam);
11941 cancel_delayed_work_sync(&priv->scan_check);
11942 cancel_work_sync(&priv->link_up);
11943 cancel_work_sync(&priv->link_down);
11944 cancel_delayed_work_sync(&priv->led_link_on);
11945 cancel_delayed_work_sync(&priv->led_link_off);
11946 cancel_delayed_work_sync(&priv->led_act_off);
11947 cancel_work_sync(&priv->merge_networks);
11948
11949 /* Free MAC hash list for ADHOC */
11950 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11951 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11952 list_del(p);
11953 kfree(list_entry(p, struct ipw_ibss_seq, list));
11954 }
11955 }
11956
11957 kfree(priv->error);
11958 priv->error = NULL;
11959
11960 #ifdef CONFIG_IPW2200_PROMISCUOUS
11961 ipw_prom_free(priv);
11962 #endif
11963
11964 free_irq(pdev->irq, priv);
11965 iounmap(priv->hw_base);
11966 pci_release_regions(pdev);
11967 pci_disable_device(pdev);
11968 pci_set_drvdata(pdev, NULL);
11969 /* wiphy_unregister needs to be here, before free_libipw */
11970 wiphy_unregister(priv->ieee->wdev.wiphy);
11971 kfree(priv->ieee->a_band.channels);
11972 kfree(priv->ieee->bg_band.channels);
11973 free_libipw(priv->net_dev, 0);
11974 free_firmware();
11975 }
11976
11977 #ifdef CONFIG_PM
11978 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11979 {
11980 struct ipw_priv *priv = pci_get_drvdata(pdev);
11981 struct net_device *dev = priv->net_dev;
11982
11983 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11984
11985 /* Take down the device; powers it off, etc. */
11986 ipw_down(priv);
11987
11988 /* Remove the PRESENT state of the device */
11989 netif_device_detach(dev);
11990
11991 pci_save_state(pdev);
11992 pci_disable_device(pdev);
11993 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11994
11995 priv->suspend_at = get_seconds();
11996
11997 return 0;
11998 }
11999
12000 static int ipw_pci_resume(struct pci_dev *pdev)
12001 {
12002 struct ipw_priv *priv = pci_get_drvdata(pdev);
12003 struct net_device *dev = priv->net_dev;
12004 int err;
12005 u32 val;
12006
12007 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
12008
12009 pci_set_power_state(pdev, PCI_D0);
12010 err = pci_enable_device(pdev);
12011 if (err) {
12012 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
12013 dev->name);
12014 return err;
12015 }
12016 pci_restore_state(pdev);
12017
12018 /*
12019 * Suspend/Resume resets the PCI configuration space, so we have to
12020 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12021 * from interfering with C3 CPU state. pci_restore_state won't help
12022 * here since it only restores the first 64 bytes pci config header.
12023 */
12024 pci_read_config_dword(pdev, 0x40, &val);
12025 if ((val & 0x0000ff00) != 0)
12026 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12027
12028 /* Set the device back into the PRESENT state; this will also wake
12029 * the queue of needed */
12030 netif_device_attach(dev);
12031
12032 priv->suspend_time = get_seconds() - priv->suspend_at;
12033
12034 /* Bring the device back up */
12035 schedule_work(&priv->up);
12036
12037 return 0;
12038 }
12039 #endif
12040
12041 static void ipw_pci_shutdown(struct pci_dev *pdev)
12042 {
12043 struct ipw_priv *priv = pci_get_drvdata(pdev);
12044
12045 /* Take down the device; powers it off, etc. */
12046 ipw_down(priv);
12047
12048 pci_disable_device(pdev);
12049 }
12050
12051 /* driver initialization stuff */
12052 static struct pci_driver ipw_driver = {
12053 .name = DRV_NAME,
12054 .id_table = card_ids,
12055 .probe = ipw_pci_probe,
12056 .remove = __devexit_p(ipw_pci_remove),
12057 #ifdef CONFIG_PM
12058 .suspend = ipw_pci_suspend,
12059 .resume = ipw_pci_resume,
12060 #endif
12061 .shutdown = ipw_pci_shutdown,
12062 };
12063
12064 static int __init ipw_init(void)
12065 {
12066 int ret;
12067
12068 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12069 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12070
12071 ret = pci_register_driver(&ipw_driver);
12072 if (ret) {
12073 IPW_ERROR("Unable to initialize PCI module\n");
12074 return ret;
12075 }
12076
12077 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12078 if (ret) {
12079 IPW_ERROR("Unable to create driver sysfs file\n");
12080 pci_unregister_driver(&ipw_driver);
12081 return ret;
12082 }
12083
12084 return ret;
12085 }
12086
12087 static void __exit ipw_exit(void)
12088 {
12089 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12090 pci_unregister_driver(&ipw_driver);
12091 }
12092
12093 module_param(disable, int, 0444);
12094 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12095
12096 module_param(associate, int, 0444);
12097 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12098
12099 module_param(auto_create, int, 0444);
12100 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12101
12102 module_param_named(led, led_support, int, 0444);
12103 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12104
12105 module_param(debug, int, 0444);
12106 MODULE_PARM_DESC(debug, "debug output mask");
12107
12108 module_param_named(channel, default_channel, int, 0444);
12109 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12110
12111 #ifdef CONFIG_IPW2200_PROMISCUOUS
12112 module_param(rtap_iface, int, 0444);
12113 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12114 #endif
12115
12116 #ifdef CONFIG_IPW2200_QOS
12117 module_param(qos_enable, int, 0444);
12118 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12119
12120 module_param(qos_burst_enable, int, 0444);
12121 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12122
12123 module_param(qos_no_ack_mask, int, 0444);
12124 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12125
12126 module_param(burst_duration_CCK, int, 0444);
12127 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12128
12129 module_param(burst_duration_OFDM, int, 0444);
12130 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12131 #endif /* CONFIG_IPW2200_QOS */
12132
12133 #ifdef CONFIG_IPW2200_MONITOR
12134 module_param_named(mode, network_mode, int, 0444);
12135 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12136 #else
12137 module_param_named(mode, network_mode, int, 0444);
12138 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12139 #endif
12140
12141 module_param(bt_coexist, int, 0444);
12142 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12143
12144 module_param(hwcrypto, int, 0444);
12145 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12146
12147 module_param(cmdlog, int, 0444);
12148 MODULE_PARM_DESC(cmdlog,
12149 "allocate a ring buffer for logging firmware commands");
12150
12151 module_param(roaming, int, 0444);
12152 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12153
12154 module_param(antenna, int, 0444);
12155 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12156
12157 module_exit(ipw_exit);
12158 module_init(ipw_init);