1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 Intel Linux Wireless <ilw@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
46 #ifdef CONFIG_IPW2200_DEBUG
52 #ifdef CONFIG_IPW2200_MONITOR
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
64 #ifdef CONFIG_IPW2200_RADIOTAP
70 #ifdef CONFIG_IPW2200_QOS
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION IPW2200_VERSION
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
83 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
84 MODULE_VERSION(DRV_VERSION
);
85 MODULE_AUTHOR(DRV_COPYRIGHT
);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
91 MODULE_FIRMWARE("ipw2200-bss.fw");
93 static int cmdlog
= 0;
95 static int default_channel
= 0;
96 static int network_mode
= 0;
98 static u32 ipw_debug_level
;
100 static int auto_create
= 1;
101 static int led_support
= 1;
102 static int disable
= 0;
103 static int bt_coexist
= 0;
104 static int hwcrypto
= 0;
105 static int roaming
= 1;
106 static const char ipw_modes
[] = {
109 static int antenna
= CFG_SYS_ANTENNA_BOTH
;
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface
= 0; /* def: 0 -- do not create rtap interface */
115 static struct ieee80211_rate ipw2200_rates
[] = {
117 { .bitrate
= 20, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
118 { .bitrate
= 55, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
119 { .bitrate
= 110, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
130 #define ipw2200_a_rates (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates 8
132 #define ipw2200_bg_rates (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates 12
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136 * There are certianly some conditions that will break this (like feeding it '30')
137 * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
140 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable
= 0;
145 static int qos_burst_enable
= 0;
146 static int qos_no_ack_mask
= 0;
147 static int burst_duration_CCK
= 0;
148 static int burst_duration_OFDM
= 0;
150 static struct libipw_qos_parameters def_qos_parameters_OFDM
= {
151 {QOS_TX0_CW_MIN_OFDM
, QOS_TX1_CW_MIN_OFDM
, QOS_TX2_CW_MIN_OFDM
,
152 QOS_TX3_CW_MIN_OFDM
},
153 {QOS_TX0_CW_MAX_OFDM
, QOS_TX1_CW_MAX_OFDM
, QOS_TX2_CW_MAX_OFDM
,
154 QOS_TX3_CW_MAX_OFDM
},
155 {QOS_TX0_AIFS
, QOS_TX1_AIFS
, QOS_TX2_AIFS
, QOS_TX3_AIFS
},
156 {QOS_TX0_ACM
, QOS_TX1_ACM
, QOS_TX2_ACM
, QOS_TX3_ACM
},
157 {QOS_TX0_TXOP_LIMIT_OFDM
, QOS_TX1_TXOP_LIMIT_OFDM
,
158 QOS_TX2_TXOP_LIMIT_OFDM
, QOS_TX3_TXOP_LIMIT_OFDM
}
161 static struct libipw_qos_parameters def_qos_parameters_CCK
= {
162 {QOS_TX0_CW_MIN_CCK
, QOS_TX1_CW_MIN_CCK
, QOS_TX2_CW_MIN_CCK
,
164 {QOS_TX0_CW_MAX_CCK
, QOS_TX1_CW_MAX_CCK
, QOS_TX2_CW_MAX_CCK
,
166 {QOS_TX0_AIFS
, QOS_TX1_AIFS
, QOS_TX2_AIFS
, QOS_TX3_AIFS
},
167 {QOS_TX0_ACM
, QOS_TX1_ACM
, QOS_TX2_ACM
, QOS_TX3_ACM
},
168 {QOS_TX0_TXOP_LIMIT_CCK
, QOS_TX1_TXOP_LIMIT_CCK
, QOS_TX2_TXOP_LIMIT_CCK
,
169 QOS_TX3_TXOP_LIMIT_CCK
}
172 static struct libipw_qos_parameters def_parameters_OFDM
= {
173 {DEF_TX0_CW_MIN_OFDM
, DEF_TX1_CW_MIN_OFDM
, DEF_TX2_CW_MIN_OFDM
,
174 DEF_TX3_CW_MIN_OFDM
},
175 {DEF_TX0_CW_MAX_OFDM
, DEF_TX1_CW_MAX_OFDM
, DEF_TX2_CW_MAX_OFDM
,
176 DEF_TX3_CW_MAX_OFDM
},
177 {DEF_TX0_AIFS
, DEF_TX1_AIFS
, DEF_TX2_AIFS
, DEF_TX3_AIFS
},
178 {DEF_TX0_ACM
, DEF_TX1_ACM
, DEF_TX2_ACM
, DEF_TX3_ACM
},
179 {DEF_TX0_TXOP_LIMIT_OFDM
, DEF_TX1_TXOP_LIMIT_OFDM
,
180 DEF_TX2_TXOP_LIMIT_OFDM
, DEF_TX3_TXOP_LIMIT_OFDM
}
183 static struct libipw_qos_parameters def_parameters_CCK
= {
184 {DEF_TX0_CW_MIN_CCK
, DEF_TX1_CW_MIN_CCK
, DEF_TX2_CW_MIN_CCK
,
186 {DEF_TX0_CW_MAX_CCK
, DEF_TX1_CW_MAX_CCK
, DEF_TX2_CW_MAX_CCK
,
188 {DEF_TX0_AIFS
, DEF_TX1_AIFS
, DEF_TX2_AIFS
, DEF_TX3_AIFS
},
189 {DEF_TX0_ACM
, DEF_TX1_ACM
, DEF_TX2_ACM
, DEF_TX3_ACM
},
190 {DEF_TX0_TXOP_LIMIT_CCK
, DEF_TX1_TXOP_LIMIT_CCK
, DEF_TX2_TXOP_LIMIT_CCK
,
191 DEF_TX3_TXOP_LIMIT_CCK
}
194 static u8 qos_oui
[QOS_OUI_LEN
] = { 0x00, 0x50, 0xF2 };
196 static int from_priority_to_tx_queue
[] = {
197 IPW_TX_QUEUE_1
, IPW_TX_QUEUE_2
, IPW_TX_QUEUE_2
, IPW_TX_QUEUE_1
,
198 IPW_TX_QUEUE_3
, IPW_TX_QUEUE_3
, IPW_TX_QUEUE_4
, IPW_TX_QUEUE_4
201 static u32
ipw_qos_get_burst_duration(struct ipw_priv
*priv
);
203 static int ipw_send_qos_params_command(struct ipw_priv
*priv
, struct libipw_qos_parameters
205 static int ipw_send_qos_info_command(struct ipw_priv
*priv
, struct libipw_qos_information_element
207 #endif /* CONFIG_IPW2200_QOS */
209 static struct iw_statistics
*ipw_get_wireless_stats(struct net_device
*dev
);
210 static void ipw_remove_current_network(struct ipw_priv
*priv
);
211 static void ipw_rx(struct ipw_priv
*priv
);
212 static int ipw_queue_tx_reclaim(struct ipw_priv
*priv
,
213 struct clx2_tx_queue
*txq
, int qindex
);
214 static int ipw_queue_reset(struct ipw_priv
*priv
);
216 static int ipw_queue_tx_hcmd(struct ipw_priv
*priv
, int hcmd
, void *buf
,
219 static void ipw_tx_queue_free(struct ipw_priv
*);
221 static struct ipw_rx_queue
*ipw_rx_queue_alloc(struct ipw_priv
*);
222 static void ipw_rx_queue_free(struct ipw_priv
*, struct ipw_rx_queue
*);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv
*);
225 static void ipw_bg_up(struct work_struct
*work
);
226 static void ipw_down(struct ipw_priv
*);
227 static void ipw_bg_down(struct work_struct
*work
);
228 static int ipw_config(struct ipw_priv
*);
229 static int init_supported_rates(struct ipw_priv
*priv
,
230 struct ipw_supported_rates
*prates
);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv
*);
232 static void ipw_send_wep_keys(struct ipw_priv
*, int);
234 static int snprint_line(char *buf
, size_t count
,
235 const u8
* data
, u32 len
, u32 ofs
)
240 out
= snprintf(buf
, count
, "%08X", ofs
);
242 for (l
= 0, i
= 0; i
< 2; i
++) {
243 out
+= snprintf(buf
+ out
, count
- out
, " ");
244 for (j
= 0; j
< 8 && l
< len
; j
++, l
++)
245 out
+= snprintf(buf
+ out
, count
- out
, "%02X ",
248 out
+= snprintf(buf
+ out
, count
- out
, " ");
251 out
+= snprintf(buf
+ out
, count
- out
, " ");
252 for (l
= 0, i
= 0; i
< 2; i
++) {
253 out
+= snprintf(buf
+ out
, count
- out
, " ");
254 for (j
= 0; j
< 8 && l
< len
; j
++, l
++) {
255 c
= data
[(i
* 8 + j
)];
256 if (!isascii(c
) || !isprint(c
))
259 out
+= snprintf(buf
+ out
, count
- out
, "%c", c
);
263 out
+= snprintf(buf
+ out
, count
- out
, " ");
269 static void printk_buf(int level
, const u8
* data
, u32 len
)
273 if (!(ipw_debug_level
& level
))
277 snprint_line(line
, sizeof(line
), &data
[ofs
],
279 printk(KERN_DEBUG
"%s\n", line
);
281 len
-= min(len
, 16U);
285 static int snprintk_buf(u8
* output
, size_t size
, const u8
* data
, size_t len
)
291 while (size
&& len
) {
292 out
= snprint_line(output
, size
, &data
[ofs
],
293 min_t(size_t, len
, 16U), ofs
);
298 len
-= min_t(size_t, len
, 16U);
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32
_ipw_read_reg32(struct ipw_priv
*priv
, u32 reg
);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8
_ipw_read_reg8(struct ipw_priv
*ipw
, u32 reg
);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv
*priv
, u32 reg
, u8 value
);
314 static inline void ipw_write_reg8(struct ipw_priv
*a
, u32 b
, u8 c
)
316 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__
,
317 __LINE__
, (u32
) (b
), (u32
) (c
));
318 _ipw_write_reg8(a
, b
, c
);
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv
*priv
, u32 reg
, u16 value
);
323 static inline void ipw_write_reg16(struct ipw_priv
*a
, u32 b
, u16 c
)
325 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__
,
326 __LINE__
, (u32
) (b
), (u32
) (c
));
327 _ipw_write_reg16(a
, b
, c
);
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv
*priv
, u32 reg
, u32 value
);
332 static inline void ipw_write_reg32(struct ipw_priv
*a
, u32 b
, u32 c
)
334 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__
,
335 __LINE__
, (u32
) (b
), (u32
) (c
));
336 _ipw_write_reg32(a
, b
, c
);
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv
*ipw
, unsigned long ofs
,
343 writeb(val
, ipw
->hw_base
+ ofs
);
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349 __LINE__, (u32)(ofs), (u32)(val)); \
350 _ipw_write8(ipw, ofs, val); \
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv
*ipw
, unsigned long ofs
,
357 writew(val
, ipw
->hw_base
+ ofs
);
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363 __LINE__, (u32)(ofs), (u32)(val)); \
364 _ipw_write16(ipw, ofs, val); \
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv
*ipw
, unsigned long ofs
,
371 writel(val
, ipw
->hw_base
+ ofs
);
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377 __LINE__, (u32)(ofs), (u32)(val)); \
378 _ipw_write32(ipw, ofs, val); \
381 /* 8-bit direct read (low 4K) */
382 static inline u8
_ipw_read8(struct ipw_priv
*ipw
, unsigned long ofs
)
384 return readb(ipw
->hw_base
+ ofs
);
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
391 _ipw_read8(ipw, ofs); \
394 /* 16-bit direct read (low 4K) */
395 static inline u16
_ipw_read16(struct ipw_priv
*ipw
, unsigned long ofs
)
397 return readw(ipw
->hw_base
+ ofs
);
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
404 _ipw_read16(ipw, ofs); \
407 /* 32-bit direct read (low 4K) */
408 static inline u32
_ipw_read32(struct ipw_priv
*ipw
, unsigned long ofs
)
410 return readl(ipw
->hw_base
+ ofs
);
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
417 _ipw_read32(ipw, ofs); \
420 static void _ipw_read_indirect(struct ipw_priv
*, u32
, u8
*, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424 __LINE__, (u32)(b), (u32)(d)); \
425 _ipw_read_indirect(a, b, c, d); \
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* data
,
431 #define ipw_write_indirect(a, b, c, d) do { \
432 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433 __LINE__, (u32)(b), (u32)(d)); \
434 _ipw_write_indirect(a, b, c, d); \
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv
*priv
, u32 reg
, u32 value
)
440 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv
, reg
, value
);
441 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
);
442 _ipw_write32(priv
, IPW_INDIRECT_DATA
, value
);
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv
*priv
, u32 reg
, u8 value
)
448 u32 aligned_addr
= reg
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
449 u32 dif_len
= reg
- aligned_addr
;
451 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg
, value
);
452 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
453 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ dif_len
, value
);
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv
*priv
, u32 reg
, u16 value
)
459 u32 aligned_addr
= reg
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
460 u32 dif_len
= (reg
- aligned_addr
) & (~0x1ul
);
462 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg
, value
);
463 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
464 _ipw_write16(priv
, IPW_INDIRECT_DATA
+ dif_len
, value
);
467 /* 8-bit indirect read (above 4K) */
468 static u8
_ipw_read_reg8(struct ipw_priv
*priv
, u32 reg
)
471 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
& IPW_INDIRECT_ADDR_MASK
);
472 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg
);
473 word
= _ipw_read32(priv
, IPW_INDIRECT_DATA
);
474 return (word
>> ((reg
& 0x3) * 8)) & 0xff;
477 /* 32-bit indirect read (above 4K) */
478 static u32
_ipw_read_reg32(struct ipw_priv
*priv
, u32 reg
)
482 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv
, reg
);
484 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
);
485 value
= _ipw_read32(priv
, IPW_INDIRECT_DATA
);
486 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg
, value
);
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /* for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* buf
,
495 u32 aligned_addr
= addr
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
496 u32 dif_len
= addr
- aligned_addr
;
499 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr
, buf
, num
);
505 /* Read the first dword (or portion) byte by byte */
506 if (unlikely(dif_len
)) {
507 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
508 /* Start reading at aligned_addr + dif_len */
509 for (i
= dif_len
; ((i
< 4) && (num
> 0)); i
++, num
--)
510 *buf
++ = _ipw_read8(priv
, IPW_INDIRECT_DATA
+ i
);
514 /* Read all of the middle dwords as dwords, with auto-increment */
515 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, aligned_addr
);
516 for (; num
>= 4; buf
+= 4, aligned_addr
+= 4, num
-= 4)
517 *(u32
*) buf
= _ipw_read32(priv
, IPW_AUTOINC_DATA
);
519 /* Read the last dword (or portion) byte by byte */
521 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
522 for (i
= 0; num
> 0; i
++, num
--)
523 *buf
++ = ipw_read8(priv
, IPW_INDIRECT_DATA
+ i
);
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /* for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* buf
,
532 u32 aligned_addr
= addr
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
533 u32 dif_len
= addr
- aligned_addr
;
536 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr
, buf
, num
);
542 /* Write the first dword (or portion) byte by byte */
543 if (unlikely(dif_len
)) {
544 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
545 /* Start writing at aligned_addr + dif_len */
546 for (i
= dif_len
; ((i
< 4) && (num
> 0)); i
++, num
--, buf
++)
547 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ i
, *buf
);
551 /* Write all of the middle dwords as dwords, with auto-increment */
552 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, aligned_addr
);
553 for (; num
>= 4; buf
+= 4, aligned_addr
+= 4, num
-= 4)
554 _ipw_write32(priv
, IPW_AUTOINC_DATA
, *(u32
*) buf
);
556 /* Write the last dword (or portion) byte by byte */
558 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
559 for (i
= 0; num
> 0; i
++, num
--, buf
++)
560 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ i
, *buf
);
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /* for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv
*priv
, u32 addr
, void *buf
,
569 memcpy_toio((priv
->hw_base
+ addr
), buf
, num
);
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv
*priv
, u32 reg
, u32 mask
)
575 ipw_write32(priv
, reg
, ipw_read32(priv
, reg
) | mask
);
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv
*priv
, u32 reg
, u32 mask
)
581 ipw_write32(priv
, reg
, ipw_read32(priv
, reg
) & ~mask
);
584 static inline void __ipw_enable_interrupts(struct ipw_priv
*priv
)
586 if (priv
->status
& STATUS_INT_ENABLED
)
588 priv
->status
|= STATUS_INT_ENABLED
;
589 ipw_write32(priv
, IPW_INTA_MASK_R
, IPW_INTA_MASK_ALL
);
592 static inline void __ipw_disable_interrupts(struct ipw_priv
*priv
)
594 if (!(priv
->status
& STATUS_INT_ENABLED
))
596 priv
->status
&= ~STATUS_INT_ENABLED
;
597 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
600 static inline void ipw_enable_interrupts(struct ipw_priv
*priv
)
604 spin_lock_irqsave(&priv
->irq_lock
, flags
);
605 __ipw_enable_interrupts(priv
);
606 spin_unlock_irqrestore(&priv
->irq_lock
, flags
);
609 static inline void ipw_disable_interrupts(struct ipw_priv
*priv
)
613 spin_lock_irqsave(&priv
->irq_lock
, flags
);
614 __ipw_disable_interrupts(priv
);
615 spin_unlock_irqrestore(&priv
->irq_lock
, flags
);
618 static char *ipw_error_desc(u32 val
)
621 case IPW_FW_ERROR_OK
:
623 case IPW_FW_ERROR_FAIL
:
625 case IPW_FW_ERROR_MEMORY_UNDERFLOW
:
626 return "MEMORY_UNDERFLOW";
627 case IPW_FW_ERROR_MEMORY_OVERFLOW
:
628 return "MEMORY_OVERFLOW";
629 case IPW_FW_ERROR_BAD_PARAM
:
631 case IPW_FW_ERROR_BAD_CHECKSUM
:
632 return "BAD_CHECKSUM";
633 case IPW_FW_ERROR_NMI_INTERRUPT
:
634 return "NMI_INTERRUPT";
635 case IPW_FW_ERROR_BAD_DATABASE
:
636 return "BAD_DATABASE";
637 case IPW_FW_ERROR_ALLOC_FAIL
:
639 case IPW_FW_ERROR_DMA_UNDERRUN
:
640 return "DMA_UNDERRUN";
641 case IPW_FW_ERROR_DMA_STATUS
:
643 case IPW_FW_ERROR_DINO_ERROR
:
645 case IPW_FW_ERROR_EEPROM_ERROR
:
646 return "EEPROM_ERROR";
647 case IPW_FW_ERROR_SYSASSERT
:
649 case IPW_FW_ERROR_FATAL_ERROR
:
650 return "FATAL_ERROR";
652 return "UNKNOWN_ERROR";
656 static void ipw_dump_error_log(struct ipw_priv
*priv
,
657 struct ipw_fw_error
*error
)
662 IPW_ERROR("Error allocating and capturing error log. "
663 "Nothing to dump.\n");
667 IPW_ERROR("Start IPW Error Log Dump:\n");
668 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669 error
->status
, error
->config
);
671 for (i
= 0; i
< error
->elem_len
; i
++)
672 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
673 ipw_error_desc(error
->elem
[i
].desc
),
675 error
->elem
[i
].blink1
,
676 error
->elem
[i
].blink2
,
677 error
->elem
[i
].link1
,
678 error
->elem
[i
].link2
, error
->elem
[i
].data
);
679 for (i
= 0; i
< error
->log_len
; i
++)
680 IPW_ERROR("%i\t0x%08x\t%i\n",
682 error
->log
[i
].data
, error
->log
[i
].event
);
685 static inline int ipw_is_init(struct ipw_priv
*priv
)
687 return (priv
->status
& STATUS_INIT
) ? 1 : 0;
690 static int ipw_get_ordinal(struct ipw_priv
*priv
, u32 ord
, void *val
, u32
* len
)
692 u32 addr
, field_info
, field_len
, field_count
, total_len
;
694 IPW_DEBUG_ORD("ordinal = %i\n", ord
);
696 if (!priv
|| !val
|| !len
) {
697 IPW_DEBUG_ORD("Invalid argument\n");
701 /* verify device ordinal tables have been initialized */
702 if (!priv
->table0_addr
|| !priv
->table1_addr
|| !priv
->table2_addr
) {
703 IPW_DEBUG_ORD("Access ordinals before initialization\n");
707 switch (IPW_ORD_TABLE_ID_MASK
& ord
) {
708 case IPW_ORD_TABLE_0_MASK
:
710 * TABLE 0: Direct access to a table of 32 bit values
712 * This is a very simple table with the data directly
713 * read from the table
716 /* remove the table id from the ordinal */
717 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
720 if (ord
> priv
->table0_len
) {
721 IPW_DEBUG_ORD("ordinal value (%i) longer then "
722 "max (%i)\n", ord
, priv
->table0_len
);
726 /* verify we have enough room to store the value */
727 if (*len
< sizeof(u32
)) {
728 IPW_DEBUG_ORD("ordinal buffer length too small, "
729 "need %zd\n", sizeof(u32
));
733 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734 ord
, priv
->table0_addr
+ (ord
<< 2));
738 *((u32
*) val
) = ipw_read32(priv
, priv
->table0_addr
+ ord
);
741 case IPW_ORD_TABLE_1_MASK
:
743 * TABLE 1: Indirect access to a table of 32 bit values
745 * This is a fairly large table of u32 values each
746 * representing starting addr for the data (which is
750 /* remove the table id from the ordinal */
751 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
754 if (ord
> priv
->table1_len
) {
755 IPW_DEBUG_ORD("ordinal value too long\n");
759 /* verify we have enough room to store the value */
760 if (*len
< sizeof(u32
)) {
761 IPW_DEBUG_ORD("ordinal buffer length too small, "
762 "need %zd\n", sizeof(u32
));
767 ipw_read_reg32(priv
, (priv
->table1_addr
+ (ord
<< 2)));
771 case IPW_ORD_TABLE_2_MASK
:
773 * TABLE 2: Indirect access to a table of variable sized values
775 * This table consist of six values, each containing
776 * - dword containing the starting offset of the data
777 * - dword containing the lengh in the first 16bits
778 * and the count in the second 16bits
781 /* remove the table id from the ordinal */
782 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
785 if (ord
> priv
->table2_len
) {
786 IPW_DEBUG_ORD("ordinal value too long\n");
790 /* get the address of statistic */
791 addr
= ipw_read_reg32(priv
, priv
->table2_addr
+ (ord
<< 3));
793 /* get the second DW of statistics ;
794 * two 16-bit words - first is length, second is count */
797 priv
->table2_addr
+ (ord
<< 3) +
800 /* get each entry length */
801 field_len
= *((u16
*) & field_info
);
803 /* get number of entries */
804 field_count
= *(((u16
*) & field_info
) + 1);
806 /* abort if not enough memory */
807 total_len
= field_len
* field_count
;
808 if (total_len
> *len
) {
817 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818 "field_info = 0x%08x\n",
819 addr
, total_len
, field_info
);
820 ipw_read_indirect(priv
, addr
, val
, total_len
);
824 IPW_DEBUG_ORD("Invalid ordinal!\n");
832 static void ipw_init_ordinals(struct ipw_priv
*priv
)
834 priv
->table0_addr
= IPW_ORDINALS_TABLE_LOWER
;
835 priv
->table0_len
= ipw_read32(priv
, priv
->table0_addr
);
837 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838 priv
->table0_addr
, priv
->table0_len
);
840 priv
->table1_addr
= ipw_read32(priv
, IPW_ORDINALS_TABLE_1
);
841 priv
->table1_len
= ipw_read_reg32(priv
, priv
->table1_addr
);
843 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844 priv
->table1_addr
, priv
->table1_len
);
846 priv
->table2_addr
= ipw_read32(priv
, IPW_ORDINALS_TABLE_2
);
847 priv
->table2_len
= ipw_read_reg32(priv
, priv
->table2_addr
);
848 priv
->table2_len
&= 0x0000ffff; /* use first two bytes */
850 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851 priv
->table2_addr
, priv
->table2_len
);
855 static u32
ipw_register_toggle(u32 reg
)
857 reg
&= ~IPW_START_STANDBY
;
858 if (reg
& IPW_GATE_ODMA
)
859 reg
&= ~IPW_GATE_ODMA
;
860 if (reg
& IPW_GATE_IDMA
)
861 reg
&= ~IPW_GATE_IDMA
;
862 if (reg
& IPW_GATE_ADMA
)
863 reg
&= ~IPW_GATE_ADMA
;
869 * - On radio ON, turn on any LEDs that require to be on during start
870 * - On initialization, start unassociated blink
871 * - On association, disable unassociated blink
872 * - On disassociation, start unassociated blink
873 * - On radio OFF, turn off any LEDs started during radio on
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
880 static void ipw_led_link_on(struct ipw_priv
*priv
)
885 /* If configured to not use LEDs, or nic_type is 1,
886 * then we don't toggle a LINK led */
887 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
== EEPROM_NIC_TYPE_1
)
890 spin_lock_irqsave(&priv
->lock
, flags
);
892 if (!(priv
->status
& STATUS_RF_KILL_MASK
) &&
893 !(priv
->status
& STATUS_LED_LINK_ON
)) {
894 IPW_DEBUG_LED("Link LED On\n");
895 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
896 led
|= priv
->led_association_on
;
898 led
= ipw_register_toggle(led
);
900 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
901 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
903 priv
->status
|= STATUS_LED_LINK_ON
;
905 /* If we aren't associated, schedule turning the LED off */
906 if (!(priv
->status
& STATUS_ASSOCIATED
))
907 schedule_delayed_work(&priv
->led_link_off
,
911 spin_unlock_irqrestore(&priv
->lock
, flags
);
914 static void ipw_bg_led_link_on(struct work_struct
*work
)
916 struct ipw_priv
*priv
=
917 container_of(work
, struct ipw_priv
, led_link_on
.work
);
918 mutex_lock(&priv
->mutex
);
919 ipw_led_link_on(priv
);
920 mutex_unlock(&priv
->mutex
);
923 static void ipw_led_link_off(struct ipw_priv
*priv
)
928 /* If configured not to use LEDs, or nic type is 1,
929 * then we don't goggle the LINK led. */
930 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
== EEPROM_NIC_TYPE_1
)
933 spin_lock_irqsave(&priv
->lock
, flags
);
935 if (priv
->status
& STATUS_LED_LINK_ON
) {
936 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
937 led
&= priv
->led_association_off
;
938 led
= ipw_register_toggle(led
);
940 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
941 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
943 IPW_DEBUG_LED("Link LED Off\n");
945 priv
->status
&= ~STATUS_LED_LINK_ON
;
947 /* If we aren't associated and the radio is on, schedule
948 * turning the LED on (blink while unassociated) */
949 if (!(priv
->status
& STATUS_RF_KILL_MASK
) &&
950 !(priv
->status
& STATUS_ASSOCIATED
))
951 schedule_delayed_work(&priv
->led_link_on
,
956 spin_unlock_irqrestore(&priv
->lock
, flags
);
959 static void ipw_bg_led_link_off(struct work_struct
*work
)
961 struct ipw_priv
*priv
=
962 container_of(work
, struct ipw_priv
, led_link_off
.work
);
963 mutex_lock(&priv
->mutex
);
964 ipw_led_link_off(priv
);
965 mutex_unlock(&priv
->mutex
);
968 static void __ipw_led_activity_on(struct ipw_priv
*priv
)
972 if (priv
->config
& CFG_NO_LED
)
975 if (priv
->status
& STATUS_RF_KILL_MASK
)
978 if (!(priv
->status
& STATUS_LED_ACT_ON
)) {
979 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
980 led
|= priv
->led_activity_on
;
982 led
= ipw_register_toggle(led
);
984 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
985 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
987 IPW_DEBUG_LED("Activity LED On\n");
989 priv
->status
|= STATUS_LED_ACT_ON
;
991 cancel_delayed_work(&priv
->led_act_off
);
992 schedule_delayed_work(&priv
->led_act_off
, LD_TIME_ACT_ON
);
994 /* Reschedule LED off for full time period */
995 cancel_delayed_work(&priv
->led_act_off
);
996 schedule_delayed_work(&priv
->led_act_off
, LD_TIME_ACT_ON
);
1001 void ipw_led_activity_on(struct ipw_priv
*priv
)
1003 unsigned long flags
;
1004 spin_lock_irqsave(&priv
->lock
, flags
);
1005 __ipw_led_activity_on(priv
);
1006 spin_unlock_irqrestore(&priv
->lock
, flags
);
1010 static void ipw_led_activity_off(struct ipw_priv
*priv
)
1012 unsigned long flags
;
1015 if (priv
->config
& CFG_NO_LED
)
1018 spin_lock_irqsave(&priv
->lock
, flags
);
1020 if (priv
->status
& STATUS_LED_ACT_ON
) {
1021 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
1022 led
&= priv
->led_activity_off
;
1024 led
= ipw_register_toggle(led
);
1026 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
1027 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
1029 IPW_DEBUG_LED("Activity LED Off\n");
1031 priv
->status
&= ~STATUS_LED_ACT_ON
;
1034 spin_unlock_irqrestore(&priv
->lock
, flags
);
1037 static void ipw_bg_led_activity_off(struct work_struct
*work
)
1039 struct ipw_priv
*priv
=
1040 container_of(work
, struct ipw_priv
, led_act_off
.work
);
1041 mutex_lock(&priv
->mutex
);
1042 ipw_led_activity_off(priv
);
1043 mutex_unlock(&priv
->mutex
);
1046 static void ipw_led_band_on(struct ipw_priv
*priv
)
1048 unsigned long flags
;
1051 /* Only nic type 1 supports mode LEDs */
1052 if (priv
->config
& CFG_NO_LED
||
1053 priv
->nic_type
!= EEPROM_NIC_TYPE_1
|| !priv
->assoc_network
)
1056 spin_lock_irqsave(&priv
->lock
, flags
);
1058 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
1059 if (priv
->assoc_network
->mode
== IEEE_A
) {
1060 led
|= priv
->led_ofdm_on
;
1061 led
&= priv
->led_association_off
;
1062 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063 } else if (priv
->assoc_network
->mode
== IEEE_G
) {
1064 led
|= priv
->led_ofdm_on
;
1065 led
|= priv
->led_association_on
;
1066 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1068 led
&= priv
->led_ofdm_off
;
1069 led
|= priv
->led_association_on
;
1070 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1073 led
= ipw_register_toggle(led
);
1075 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
1076 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
1078 spin_unlock_irqrestore(&priv
->lock
, flags
);
1081 static void ipw_led_band_off(struct ipw_priv
*priv
)
1083 unsigned long flags
;
1086 /* Only nic type 1 supports mode LEDs */
1087 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
!= EEPROM_NIC_TYPE_1
)
1090 spin_lock_irqsave(&priv
->lock
, flags
);
1092 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
1093 led
&= priv
->led_ofdm_off
;
1094 led
&= priv
->led_association_off
;
1096 led
= ipw_register_toggle(led
);
1098 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
1099 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
1101 spin_unlock_irqrestore(&priv
->lock
, flags
);
1104 static void ipw_led_radio_on(struct ipw_priv
*priv
)
1106 ipw_led_link_on(priv
);
1109 static void ipw_led_radio_off(struct ipw_priv
*priv
)
1111 ipw_led_activity_off(priv
);
1112 ipw_led_link_off(priv
);
1115 static void ipw_led_link_up(struct ipw_priv
*priv
)
1117 /* Set the Link Led on for all nic types */
1118 ipw_led_link_on(priv
);
1121 static void ipw_led_link_down(struct ipw_priv
*priv
)
1123 ipw_led_activity_off(priv
);
1124 ipw_led_link_off(priv
);
1126 if (priv
->status
& STATUS_RF_KILL_MASK
)
1127 ipw_led_radio_off(priv
);
1130 static void ipw_led_init(struct ipw_priv
*priv
)
1132 priv
->nic_type
= priv
->eeprom
[EEPROM_NIC_TYPE
];
1134 /* Set the default PINs for the link and activity leds */
1135 priv
->led_activity_on
= IPW_ACTIVITY_LED
;
1136 priv
->led_activity_off
= ~(IPW_ACTIVITY_LED
);
1138 priv
->led_association_on
= IPW_ASSOCIATED_LED
;
1139 priv
->led_association_off
= ~(IPW_ASSOCIATED_LED
);
1141 /* Set the default PINs for the OFDM leds */
1142 priv
->led_ofdm_on
= IPW_OFDM_LED
;
1143 priv
->led_ofdm_off
= ~(IPW_OFDM_LED
);
1145 switch (priv
->nic_type
) {
1146 case EEPROM_NIC_TYPE_1
:
1147 /* In this NIC type, the LEDs are reversed.... */
1148 priv
->led_activity_on
= IPW_ASSOCIATED_LED
;
1149 priv
->led_activity_off
= ~(IPW_ASSOCIATED_LED
);
1150 priv
->led_association_on
= IPW_ACTIVITY_LED
;
1151 priv
->led_association_off
= ~(IPW_ACTIVITY_LED
);
1153 if (!(priv
->config
& CFG_NO_LED
))
1154 ipw_led_band_on(priv
);
1156 /* And we don't blink link LEDs for this nic, so
1157 * just return here */
1160 case EEPROM_NIC_TYPE_3
:
1161 case EEPROM_NIC_TYPE_2
:
1162 case EEPROM_NIC_TYPE_4
:
1163 case EEPROM_NIC_TYPE_0
:
1167 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1169 priv
->nic_type
= EEPROM_NIC_TYPE_0
;
1173 if (!(priv
->config
& CFG_NO_LED
)) {
1174 if (priv
->status
& STATUS_ASSOCIATED
)
1175 ipw_led_link_on(priv
);
1177 ipw_led_link_off(priv
);
1181 static void ipw_led_shutdown(struct ipw_priv
*priv
)
1183 ipw_led_activity_off(priv
);
1184 ipw_led_link_off(priv
);
1185 ipw_led_band_off(priv
);
1186 cancel_delayed_work(&priv
->led_link_on
);
1187 cancel_delayed_work(&priv
->led_link_off
);
1188 cancel_delayed_work(&priv
->led_act_off
);
1192 * The following adds a new attribute to the sysfs representation
1193 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194 * used for controlling the debug level.
1196 * See the level definitions in ipw for details.
1198 static ssize_t
show_debug_level(struct device_driver
*d
, char *buf
)
1200 return sprintf(buf
, "0x%08X\n", ipw_debug_level
);
1203 static ssize_t
store_debug_level(struct device_driver
*d
, const char *buf
,
1206 char *p
= (char *)buf
;
1209 if (p
[1] == 'x' || p
[1] == 'X' || p
[0] == 'x' || p
[0] == 'X') {
1211 if (p
[0] == 'x' || p
[0] == 'X')
1213 val
= simple_strtoul(p
, &p
, 16);
1215 val
= simple_strtoul(p
, &p
, 10);
1217 printk(KERN_INFO DRV_NAME
1218 ": %s is not in hex or decimal form.\n", buf
);
1220 ipw_debug_level
= val
;
1222 return strnlen(buf
, count
);
1225 static DRIVER_ATTR(debug_level
, S_IWUSR
| S_IRUGO
,
1226 show_debug_level
, store_debug_level
);
1228 static inline u32
ipw_get_event_log_len(struct ipw_priv
*priv
)
1230 /* length = 1st dword in log */
1231 return ipw_read_reg32(priv
, ipw_read32(priv
, IPW_EVENT_LOG
));
1234 static void ipw_capture_event_log(struct ipw_priv
*priv
,
1235 u32 log_len
, struct ipw_event
*log
)
1240 base
= ipw_read32(priv
, IPW_EVENT_LOG
);
1241 ipw_read_indirect(priv
, base
+ sizeof(base
) + sizeof(u32
),
1242 (u8
*) log
, sizeof(*log
) * log_len
);
1246 static struct ipw_fw_error
*ipw_alloc_error_log(struct ipw_priv
*priv
)
1248 struct ipw_fw_error
*error
;
1249 u32 log_len
= ipw_get_event_log_len(priv
);
1250 u32 base
= ipw_read32(priv
, IPW_ERROR_LOG
);
1251 u32 elem_len
= ipw_read_reg32(priv
, base
);
1253 error
= kmalloc(sizeof(*error
) +
1254 sizeof(*error
->elem
) * elem_len
+
1255 sizeof(*error
->log
) * log_len
, GFP_ATOMIC
);
1257 IPW_ERROR("Memory allocation for firmware error log "
1261 error
->jiffies
= jiffies
;
1262 error
->status
= priv
->status
;
1263 error
->config
= priv
->config
;
1264 error
->elem_len
= elem_len
;
1265 error
->log_len
= log_len
;
1266 error
->elem
= (struct ipw_error_elem
*)error
->payload
;
1267 error
->log
= (struct ipw_event
*)(error
->elem
+ elem_len
);
1269 ipw_capture_event_log(priv
, log_len
, error
->log
);
1272 ipw_read_indirect(priv
, base
+ sizeof(base
), (u8
*) error
->elem
,
1273 sizeof(*error
->elem
) * elem_len
);
1278 static ssize_t
show_event_log(struct device
*d
,
1279 struct device_attribute
*attr
, char *buf
)
1281 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1282 u32 log_len
= ipw_get_event_log_len(priv
);
1284 struct ipw_event
*log
;
1287 /* not using min() because of its strict type checking */
1288 log_size
= PAGE_SIZE
/ sizeof(*log
) > log_len
?
1289 sizeof(*log
) * log_len
: PAGE_SIZE
;
1290 log
= kzalloc(log_size
, GFP_KERNEL
);
1292 IPW_ERROR("Unable to allocate memory for log\n");
1295 log_len
= log_size
/ sizeof(*log
);
1296 ipw_capture_event_log(priv
, log_len
, log
);
1298 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "%08X", log_len
);
1299 for (i
= 0; i
< log_len
; i
++)
1300 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1302 log
[i
].time
, log
[i
].event
, log
[i
].data
);
1303 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1308 static DEVICE_ATTR(event_log
, S_IRUGO
, show_event_log
, NULL
);
1310 static ssize_t
show_error(struct device
*d
,
1311 struct device_attribute
*attr
, char *buf
)
1313 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1317 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1318 "%08lX%08X%08X%08X",
1319 priv
->error
->jiffies
,
1320 priv
->error
->status
,
1321 priv
->error
->config
, priv
->error
->elem_len
);
1322 for (i
= 0; i
< priv
->error
->elem_len
; i
++)
1323 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1324 "\n%08X%08X%08X%08X%08X%08X%08X",
1325 priv
->error
->elem
[i
].time
,
1326 priv
->error
->elem
[i
].desc
,
1327 priv
->error
->elem
[i
].blink1
,
1328 priv
->error
->elem
[i
].blink2
,
1329 priv
->error
->elem
[i
].link1
,
1330 priv
->error
->elem
[i
].link2
,
1331 priv
->error
->elem
[i
].data
);
1333 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1334 "\n%08X", priv
->error
->log_len
);
1335 for (i
= 0; i
< priv
->error
->log_len
; i
++)
1336 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1338 priv
->error
->log
[i
].time
,
1339 priv
->error
->log
[i
].event
,
1340 priv
->error
->log
[i
].data
);
1341 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1345 static ssize_t
clear_error(struct device
*d
,
1346 struct device_attribute
*attr
,
1347 const char *buf
, size_t count
)
1349 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1356 static DEVICE_ATTR(error
, S_IRUGO
| S_IWUSR
, show_error
, clear_error
);
1358 static ssize_t
show_cmd_log(struct device
*d
,
1359 struct device_attribute
*attr
, char *buf
)
1361 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1365 for (i
= (priv
->cmdlog_pos
+ 1) % priv
->cmdlog_len
;
1366 (i
!= priv
->cmdlog_pos
) && (PAGE_SIZE
- len
);
1367 i
= (i
+ 1) % priv
->cmdlog_len
) {
1369 snprintf(buf
+ len
, PAGE_SIZE
- len
,
1370 "\n%08lX%08X%08X%08X\n", priv
->cmdlog
[i
].jiffies
,
1371 priv
->cmdlog
[i
].retcode
, priv
->cmdlog
[i
].cmd
.cmd
,
1372 priv
->cmdlog
[i
].cmd
.len
);
1374 snprintk_buf(buf
+ len
, PAGE_SIZE
- len
,
1375 (u8
*) priv
->cmdlog
[i
].cmd
.param
,
1376 priv
->cmdlog
[i
].cmd
.len
);
1377 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1379 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1383 static DEVICE_ATTR(cmd_log
, S_IRUGO
, show_cmd_log
, NULL
);
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv
*priv
);
1387 static int ipw_prom_alloc(struct ipw_priv
*priv
);
1388 static ssize_t
store_rtap_iface(struct device
*d
,
1389 struct device_attribute
*attr
,
1390 const char *buf
, size_t count
)
1392 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1403 if (netif_running(priv
->prom_net_dev
)) {
1404 IPW_WARNING("Interface is up. Cannot unregister.\n");
1408 ipw_prom_free(priv
);
1416 rc
= ipw_prom_alloc(priv
);
1426 IPW_ERROR("Failed to register promiscuous network "
1427 "device (error %d).\n", rc
);
1433 static ssize_t
show_rtap_iface(struct device
*d
,
1434 struct device_attribute
*attr
,
1437 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1439 return sprintf(buf
, "%s", priv
->prom_net_dev
->name
);
1448 static DEVICE_ATTR(rtap_iface
, S_IWUSR
| S_IRUSR
, show_rtap_iface
,
1451 static ssize_t
store_rtap_filter(struct device
*d
,
1452 struct device_attribute
*attr
,
1453 const char *buf
, size_t count
)
1455 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1457 if (!priv
->prom_priv
) {
1458 IPW_ERROR("Attempting to set filter without "
1459 "rtap_iface enabled.\n");
1463 priv
->prom_priv
->filter
= simple_strtol(buf
, NULL
, 0);
1465 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16
"\n",
1466 BIT_ARG16(priv
->prom_priv
->filter
));
1471 static ssize_t
show_rtap_filter(struct device
*d
,
1472 struct device_attribute
*attr
,
1475 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1476 return sprintf(buf
, "0x%04X",
1477 priv
->prom_priv
? priv
->prom_priv
->filter
: 0);
1480 static DEVICE_ATTR(rtap_filter
, S_IWUSR
| S_IRUSR
, show_rtap_filter
,
1484 static ssize_t
show_scan_age(struct device
*d
, struct device_attribute
*attr
,
1487 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1488 return sprintf(buf
, "%d\n", priv
->ieee
->scan_age
);
1491 static ssize_t
store_scan_age(struct device
*d
, struct device_attribute
*attr
,
1492 const char *buf
, size_t count
)
1494 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1495 struct net_device
*dev
= priv
->net_dev
;
1496 char buffer
[] = "00000000";
1498 (sizeof(buffer
) - 1) > count
? count
: sizeof(buffer
) - 1;
1502 IPW_DEBUG_INFO("enter\n");
1504 strncpy(buffer
, buf
, len
);
1507 if (p
[1] == 'x' || p
[1] == 'X' || p
[0] == 'x' || p
[0] == 'X') {
1509 if (p
[0] == 'x' || p
[0] == 'X')
1511 val
= simple_strtoul(p
, &p
, 16);
1513 val
= simple_strtoul(p
, &p
, 10);
1515 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev
->name
);
1517 priv
->ieee
->scan_age
= val
;
1518 IPW_DEBUG_INFO("set scan_age = %u\n", priv
->ieee
->scan_age
);
1521 IPW_DEBUG_INFO("exit\n");
1525 static DEVICE_ATTR(scan_age
, S_IWUSR
| S_IRUGO
, show_scan_age
, store_scan_age
);
1527 static ssize_t
show_led(struct device
*d
, struct device_attribute
*attr
,
1530 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1531 return sprintf(buf
, "%d\n", (priv
->config
& CFG_NO_LED
) ? 0 : 1);
1534 static ssize_t
store_led(struct device
*d
, struct device_attribute
*attr
,
1535 const char *buf
, size_t count
)
1537 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1539 IPW_DEBUG_INFO("enter\n");
1545 IPW_DEBUG_LED("Disabling LED control.\n");
1546 priv
->config
|= CFG_NO_LED
;
1547 ipw_led_shutdown(priv
);
1549 IPW_DEBUG_LED("Enabling LED control.\n");
1550 priv
->config
&= ~CFG_NO_LED
;
1554 IPW_DEBUG_INFO("exit\n");
1558 static DEVICE_ATTR(led
, S_IWUSR
| S_IRUGO
, show_led
, store_led
);
1560 static ssize_t
show_status(struct device
*d
,
1561 struct device_attribute
*attr
, char *buf
)
1563 struct ipw_priv
*p
= dev_get_drvdata(d
);
1564 return sprintf(buf
, "0x%08x\n", (int)p
->status
);
1567 static DEVICE_ATTR(status
, S_IRUGO
, show_status
, NULL
);
1569 static ssize_t
show_cfg(struct device
*d
, struct device_attribute
*attr
,
1572 struct ipw_priv
*p
= dev_get_drvdata(d
);
1573 return sprintf(buf
, "0x%08x\n", (int)p
->config
);
1576 static DEVICE_ATTR(cfg
, S_IRUGO
, show_cfg
, NULL
);
1578 static ssize_t
show_nic_type(struct device
*d
,
1579 struct device_attribute
*attr
, char *buf
)
1581 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1582 return sprintf(buf
, "TYPE: %d\n", priv
->nic_type
);
1585 static DEVICE_ATTR(nic_type
, S_IRUGO
, show_nic_type
, NULL
);
1587 static ssize_t
show_ucode_version(struct device
*d
,
1588 struct device_attribute
*attr
, char *buf
)
1590 u32 len
= sizeof(u32
), tmp
= 0;
1591 struct ipw_priv
*p
= dev_get_drvdata(d
);
1593 if (ipw_get_ordinal(p
, IPW_ORD_STAT_UCODE_VERSION
, &tmp
, &len
))
1596 return sprintf(buf
, "0x%08x\n", tmp
);
1599 static DEVICE_ATTR(ucode_version
, S_IWUSR
| S_IRUGO
, show_ucode_version
, NULL
);
1601 static ssize_t
show_rtc(struct device
*d
, struct device_attribute
*attr
,
1604 u32 len
= sizeof(u32
), tmp
= 0;
1605 struct ipw_priv
*p
= dev_get_drvdata(d
);
1607 if (ipw_get_ordinal(p
, IPW_ORD_STAT_RTC
, &tmp
, &len
))
1610 return sprintf(buf
, "0x%08x\n", tmp
);
1613 static DEVICE_ATTR(rtc
, S_IWUSR
| S_IRUGO
, show_rtc
, NULL
);
1616 * Add a device attribute to view/control the delay between eeprom
1619 static ssize_t
show_eeprom_delay(struct device
*d
,
1620 struct device_attribute
*attr
, char *buf
)
1622 struct ipw_priv
*p
= dev_get_drvdata(d
);
1623 int n
= p
->eeprom_delay
;
1624 return sprintf(buf
, "%i\n", n
);
1626 static ssize_t
store_eeprom_delay(struct device
*d
,
1627 struct device_attribute
*attr
,
1628 const char *buf
, size_t count
)
1630 struct ipw_priv
*p
= dev_get_drvdata(d
);
1631 sscanf(buf
, "%i", &p
->eeprom_delay
);
1632 return strnlen(buf
, count
);
1635 static DEVICE_ATTR(eeprom_delay
, S_IWUSR
| S_IRUGO
,
1636 show_eeprom_delay
, store_eeprom_delay
);
1638 static ssize_t
show_command_event_reg(struct device
*d
,
1639 struct device_attribute
*attr
, char *buf
)
1642 struct ipw_priv
*p
= dev_get_drvdata(d
);
1644 reg
= ipw_read_reg32(p
, IPW_INTERNAL_CMD_EVENT
);
1645 return sprintf(buf
, "0x%08x\n", reg
);
1647 static ssize_t
store_command_event_reg(struct device
*d
,
1648 struct device_attribute
*attr
,
1649 const char *buf
, size_t count
)
1652 struct ipw_priv
*p
= dev_get_drvdata(d
);
1654 sscanf(buf
, "%x", ®
);
1655 ipw_write_reg32(p
, IPW_INTERNAL_CMD_EVENT
, reg
);
1656 return strnlen(buf
, count
);
1659 static DEVICE_ATTR(command_event_reg
, S_IWUSR
| S_IRUGO
,
1660 show_command_event_reg
, store_command_event_reg
);
1662 static ssize_t
show_mem_gpio_reg(struct device
*d
,
1663 struct device_attribute
*attr
, char *buf
)
1666 struct ipw_priv
*p
= dev_get_drvdata(d
);
1668 reg
= ipw_read_reg32(p
, 0x301100);
1669 return sprintf(buf
, "0x%08x\n", reg
);
1671 static ssize_t
store_mem_gpio_reg(struct device
*d
,
1672 struct device_attribute
*attr
,
1673 const char *buf
, size_t count
)
1676 struct ipw_priv
*p
= dev_get_drvdata(d
);
1678 sscanf(buf
, "%x", ®
);
1679 ipw_write_reg32(p
, 0x301100, reg
);
1680 return strnlen(buf
, count
);
1683 static DEVICE_ATTR(mem_gpio_reg
, S_IWUSR
| S_IRUGO
,
1684 show_mem_gpio_reg
, store_mem_gpio_reg
);
1686 static ssize_t
show_indirect_dword(struct device
*d
,
1687 struct device_attribute
*attr
, char *buf
)
1690 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1692 if (priv
->status
& STATUS_INDIRECT_DWORD
)
1693 reg
= ipw_read_reg32(priv
, priv
->indirect_dword
);
1697 return sprintf(buf
, "0x%08x\n", reg
);
1699 static ssize_t
store_indirect_dword(struct device
*d
,
1700 struct device_attribute
*attr
,
1701 const char *buf
, size_t count
)
1703 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1705 sscanf(buf
, "%x", &priv
->indirect_dword
);
1706 priv
->status
|= STATUS_INDIRECT_DWORD
;
1707 return strnlen(buf
, count
);
1710 static DEVICE_ATTR(indirect_dword
, S_IWUSR
| S_IRUGO
,
1711 show_indirect_dword
, store_indirect_dword
);
1713 static ssize_t
show_indirect_byte(struct device
*d
,
1714 struct device_attribute
*attr
, char *buf
)
1717 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1719 if (priv
->status
& STATUS_INDIRECT_BYTE
)
1720 reg
= ipw_read_reg8(priv
, priv
->indirect_byte
);
1724 return sprintf(buf
, "0x%02x\n", reg
);
1726 static ssize_t
store_indirect_byte(struct device
*d
,
1727 struct device_attribute
*attr
,
1728 const char *buf
, size_t count
)
1730 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1732 sscanf(buf
, "%x", &priv
->indirect_byte
);
1733 priv
->status
|= STATUS_INDIRECT_BYTE
;
1734 return strnlen(buf
, count
);
1737 static DEVICE_ATTR(indirect_byte
, S_IWUSR
| S_IRUGO
,
1738 show_indirect_byte
, store_indirect_byte
);
1740 static ssize_t
show_direct_dword(struct device
*d
,
1741 struct device_attribute
*attr
, char *buf
)
1744 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1746 if (priv
->status
& STATUS_DIRECT_DWORD
)
1747 reg
= ipw_read32(priv
, priv
->direct_dword
);
1751 return sprintf(buf
, "0x%08x\n", reg
);
1753 static ssize_t
store_direct_dword(struct device
*d
,
1754 struct device_attribute
*attr
,
1755 const char *buf
, size_t count
)
1757 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1759 sscanf(buf
, "%x", &priv
->direct_dword
);
1760 priv
->status
|= STATUS_DIRECT_DWORD
;
1761 return strnlen(buf
, count
);
1764 static DEVICE_ATTR(direct_dword
, S_IWUSR
| S_IRUGO
,
1765 show_direct_dword
, store_direct_dword
);
1767 static int rf_kill_active(struct ipw_priv
*priv
)
1769 if (0 == (ipw_read32(priv
, 0x30) & 0x10000)) {
1770 priv
->status
|= STATUS_RF_KILL_HW
;
1771 wiphy_rfkill_set_hw_state(priv
->ieee
->wdev
.wiphy
, true);
1773 priv
->status
&= ~STATUS_RF_KILL_HW
;
1774 wiphy_rfkill_set_hw_state(priv
->ieee
->wdev
.wiphy
, false);
1777 return (priv
->status
& STATUS_RF_KILL_HW
) ? 1 : 0;
1780 static ssize_t
show_rf_kill(struct device
*d
, struct device_attribute
*attr
,
1783 /* 0 - RF kill not enabled
1784 1 - SW based RF kill active (sysfs)
1785 2 - HW based RF kill active
1786 3 - Both HW and SW baed RF kill active */
1787 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1788 int val
= ((priv
->status
& STATUS_RF_KILL_SW
) ? 0x1 : 0x0) |
1789 (rf_kill_active(priv
) ? 0x2 : 0x0);
1790 return sprintf(buf
, "%i\n", val
);
1793 static int ipw_radio_kill_sw(struct ipw_priv
*priv
, int disable_radio
)
1795 if ((disable_radio
? 1 : 0) ==
1796 ((priv
->status
& STATUS_RF_KILL_SW
) ? 1 : 0))
1799 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1800 disable_radio
? "OFF" : "ON");
1802 if (disable_radio
) {
1803 priv
->status
|= STATUS_RF_KILL_SW
;
1805 cancel_delayed_work(&priv
->request_scan
);
1806 cancel_delayed_work(&priv
->request_direct_scan
);
1807 cancel_delayed_work(&priv
->request_passive_scan
);
1808 cancel_delayed_work(&priv
->scan_event
);
1809 schedule_work(&priv
->down
);
1811 priv
->status
&= ~STATUS_RF_KILL_SW
;
1812 if (rf_kill_active(priv
)) {
1813 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814 "disabled by HW switch\n");
1815 /* Make sure the RF_KILL check timer is running */
1816 cancel_delayed_work(&priv
->rf_kill
);
1817 schedule_delayed_work(&priv
->rf_kill
,
1818 round_jiffies_relative(2 * HZ
));
1820 schedule_work(&priv
->up
);
1826 static ssize_t
store_rf_kill(struct device
*d
, struct device_attribute
*attr
,
1827 const char *buf
, size_t count
)
1829 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1831 ipw_radio_kill_sw(priv
, buf
[0] == '1');
1836 static DEVICE_ATTR(rf_kill
, S_IWUSR
| S_IRUGO
, show_rf_kill
, store_rf_kill
);
1838 static ssize_t
show_speed_scan(struct device
*d
, struct device_attribute
*attr
,
1841 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1842 int pos
= 0, len
= 0;
1843 if (priv
->config
& CFG_SPEED_SCAN
) {
1844 while (priv
->speed_scan
[pos
] != 0)
1845 len
+= sprintf(&buf
[len
], "%d ",
1846 priv
->speed_scan
[pos
++]);
1847 return len
+ sprintf(&buf
[len
], "\n");
1850 return sprintf(buf
, "0\n");
1853 static ssize_t
store_speed_scan(struct device
*d
, struct device_attribute
*attr
,
1854 const char *buf
, size_t count
)
1856 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1857 int channel
, pos
= 0;
1858 const char *p
= buf
;
1860 /* list of space separated channels to scan, optionally ending with 0 */
1861 while ((channel
= simple_strtol(p
, NULL
, 0))) {
1862 if (pos
== MAX_SPEED_SCAN
- 1) {
1863 priv
->speed_scan
[pos
] = 0;
1867 if (libipw_is_valid_channel(priv
->ieee
, channel
))
1868 priv
->speed_scan
[pos
++] = channel
;
1870 IPW_WARNING("Skipping invalid channel request: %d\n",
1875 while (*p
== ' ' || *p
== '\t')
1880 priv
->config
&= ~CFG_SPEED_SCAN
;
1882 priv
->speed_scan_pos
= 0;
1883 priv
->config
|= CFG_SPEED_SCAN
;
1889 static DEVICE_ATTR(speed_scan
, S_IWUSR
| S_IRUGO
, show_speed_scan
,
1892 static ssize_t
show_net_stats(struct device
*d
, struct device_attribute
*attr
,
1895 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1896 return sprintf(buf
, "%c\n", (priv
->config
& CFG_NET_STATS
) ? '1' : '0');
1899 static ssize_t
store_net_stats(struct device
*d
, struct device_attribute
*attr
,
1900 const char *buf
, size_t count
)
1902 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1904 priv
->config
|= CFG_NET_STATS
;
1906 priv
->config
&= ~CFG_NET_STATS
;
1911 static DEVICE_ATTR(net_stats
, S_IWUSR
| S_IRUGO
,
1912 show_net_stats
, store_net_stats
);
1914 static ssize_t
show_channels(struct device
*d
,
1915 struct device_attribute
*attr
,
1918 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1919 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
1922 len
= sprintf(&buf
[len
],
1923 "Displaying %d channels in 2.4Ghz band "
1924 "(802.11bg):\n", geo
->bg_channels
);
1926 for (i
= 0; i
< geo
->bg_channels
; i
++) {
1927 len
+= sprintf(&buf
[len
], "%d: BSS%s%s, %s, Band %s.\n",
1929 geo
->bg
[i
].flags
& LIBIPW_CH_RADAR_DETECT
?
1930 " (radar spectrum)" : "",
1931 ((geo
->bg
[i
].flags
& LIBIPW_CH_NO_IBSS
) ||
1932 (geo
->bg
[i
].flags
& LIBIPW_CH_RADAR_DETECT
))
1934 geo
->bg
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
?
1935 "passive only" : "active/passive",
1936 geo
->bg
[i
].flags
& LIBIPW_CH_B_ONLY
?
1940 len
+= sprintf(&buf
[len
],
1941 "Displaying %d channels in 5.2Ghz band "
1942 "(802.11a):\n", geo
->a_channels
);
1943 for (i
= 0; i
< geo
->a_channels
; i
++) {
1944 len
+= sprintf(&buf
[len
], "%d: BSS%s%s, %s.\n",
1946 geo
->a
[i
].flags
& LIBIPW_CH_RADAR_DETECT
?
1947 " (radar spectrum)" : "",
1948 ((geo
->a
[i
].flags
& LIBIPW_CH_NO_IBSS
) ||
1949 (geo
->a
[i
].flags
& LIBIPW_CH_RADAR_DETECT
))
1951 geo
->a
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
?
1952 "passive only" : "active/passive");
1958 static DEVICE_ATTR(channels
, S_IRUSR
, show_channels
, NULL
);
1960 static void notify_wx_assoc_event(struct ipw_priv
*priv
)
1962 union iwreq_data wrqu
;
1963 wrqu
.ap_addr
.sa_family
= ARPHRD_ETHER
;
1964 if (priv
->status
& STATUS_ASSOCIATED
)
1965 memcpy(wrqu
.ap_addr
.sa_data
, priv
->bssid
, ETH_ALEN
);
1967 memset(wrqu
.ap_addr
.sa_data
, 0, ETH_ALEN
);
1968 wireless_send_event(priv
->net_dev
, SIOCGIWAP
, &wrqu
, NULL
);
1971 static void ipw_irq_tasklet(struct ipw_priv
*priv
)
1973 u32 inta
, inta_mask
, handled
= 0;
1974 unsigned long flags
;
1977 spin_lock_irqsave(&priv
->irq_lock
, flags
);
1979 inta
= ipw_read32(priv
, IPW_INTA_RW
);
1980 inta_mask
= ipw_read32(priv
, IPW_INTA_MASK_R
);
1982 if (inta
== 0xFFFFFFFF) {
1983 /* Hardware disappeared */
1984 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985 /* Only handle the cached INTA values */
1988 inta
&= (IPW_INTA_MASK_ALL
& inta_mask
);
1990 /* Add any cached INTA values that need to be handled */
1991 inta
|= priv
->isr_inta
;
1993 spin_unlock_irqrestore(&priv
->irq_lock
, flags
);
1995 spin_lock_irqsave(&priv
->lock
, flags
);
1997 /* handle all the justifications for the interrupt */
1998 if (inta
& IPW_INTA_BIT_RX_TRANSFER
) {
2000 handled
|= IPW_INTA_BIT_RX_TRANSFER
;
2003 if (inta
& IPW_INTA_BIT_TX_CMD_QUEUE
) {
2004 IPW_DEBUG_HC("Command completed.\n");
2005 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq_cmd
, -1);
2006 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2007 wake_up_interruptible(&priv
->wait_command_queue
);
2008 handled
|= IPW_INTA_BIT_TX_CMD_QUEUE
;
2011 if (inta
& IPW_INTA_BIT_TX_QUEUE_1
) {
2012 IPW_DEBUG_TX("TX_QUEUE_1\n");
2013 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[0], 0);
2014 handled
|= IPW_INTA_BIT_TX_QUEUE_1
;
2017 if (inta
& IPW_INTA_BIT_TX_QUEUE_2
) {
2018 IPW_DEBUG_TX("TX_QUEUE_2\n");
2019 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[1], 1);
2020 handled
|= IPW_INTA_BIT_TX_QUEUE_2
;
2023 if (inta
& IPW_INTA_BIT_TX_QUEUE_3
) {
2024 IPW_DEBUG_TX("TX_QUEUE_3\n");
2025 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[2], 2);
2026 handled
|= IPW_INTA_BIT_TX_QUEUE_3
;
2029 if (inta
& IPW_INTA_BIT_TX_QUEUE_4
) {
2030 IPW_DEBUG_TX("TX_QUEUE_4\n");
2031 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[3], 3);
2032 handled
|= IPW_INTA_BIT_TX_QUEUE_4
;
2035 if (inta
& IPW_INTA_BIT_STATUS_CHANGE
) {
2036 IPW_WARNING("STATUS_CHANGE\n");
2037 handled
|= IPW_INTA_BIT_STATUS_CHANGE
;
2040 if (inta
& IPW_INTA_BIT_BEACON_PERIOD_EXPIRED
) {
2041 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042 handled
|= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED
;
2045 if (inta
& IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE
) {
2046 IPW_WARNING("HOST_CMD_DONE\n");
2047 handled
|= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE
;
2050 if (inta
& IPW_INTA_BIT_FW_INITIALIZATION_DONE
) {
2051 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052 handled
|= IPW_INTA_BIT_FW_INITIALIZATION_DONE
;
2055 if (inta
& IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE
) {
2056 IPW_WARNING("PHY_OFF_DONE\n");
2057 handled
|= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE
;
2060 if (inta
& IPW_INTA_BIT_RF_KILL_DONE
) {
2061 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062 priv
->status
|= STATUS_RF_KILL_HW
;
2063 wiphy_rfkill_set_hw_state(priv
->ieee
->wdev
.wiphy
, true);
2064 wake_up_interruptible(&priv
->wait_command_queue
);
2065 priv
->status
&= ~(STATUS_ASSOCIATED
| STATUS_ASSOCIATING
);
2066 cancel_delayed_work(&priv
->request_scan
);
2067 cancel_delayed_work(&priv
->request_direct_scan
);
2068 cancel_delayed_work(&priv
->request_passive_scan
);
2069 cancel_delayed_work(&priv
->scan_event
);
2070 schedule_work(&priv
->link_down
);
2071 schedule_delayed_work(&priv
->rf_kill
, 2 * HZ
);
2072 handled
|= IPW_INTA_BIT_RF_KILL_DONE
;
2075 if (inta
& IPW_INTA_BIT_FATAL_ERROR
) {
2076 IPW_WARNING("Firmware error detected. Restarting.\n");
2078 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079 if (ipw_debug_level
& IPW_DL_FW_ERRORS
) {
2080 struct ipw_fw_error
*error
=
2081 ipw_alloc_error_log(priv
);
2082 ipw_dump_error_log(priv
, error
);
2086 priv
->error
= ipw_alloc_error_log(priv
);
2088 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2090 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2092 if (ipw_debug_level
& IPW_DL_FW_ERRORS
)
2093 ipw_dump_error_log(priv
, priv
->error
);
2096 /* XXX: If hardware encryption is for WPA/WPA2,
2097 * we have to notify the supplicant. */
2098 if (priv
->ieee
->sec
.encrypt
) {
2099 priv
->status
&= ~STATUS_ASSOCIATED
;
2100 notify_wx_assoc_event(priv
);
2103 /* Keep the restart process from trying to send host
2104 * commands by clearing the INIT status bit */
2105 priv
->status
&= ~STATUS_INIT
;
2107 /* Cancel currently queued command. */
2108 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2109 wake_up_interruptible(&priv
->wait_command_queue
);
2111 schedule_work(&priv
->adapter_restart
);
2112 handled
|= IPW_INTA_BIT_FATAL_ERROR
;
2115 if (inta
& IPW_INTA_BIT_PARITY_ERROR
) {
2116 IPW_ERROR("Parity error\n");
2117 handled
|= IPW_INTA_BIT_PARITY_ERROR
;
2120 if (handled
!= inta
) {
2121 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta
& ~handled
);
2124 spin_unlock_irqrestore(&priv
->lock
, flags
);
2126 /* enable all interrupts */
2127 ipw_enable_interrupts(priv
);
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131 static char *get_cmd_string(u8 cmd
)
2134 IPW_CMD(HOST_COMPLETE
);
2135 IPW_CMD(POWER_DOWN
);
2136 IPW_CMD(SYSTEM_CONFIG
);
2137 IPW_CMD(MULTICAST_ADDRESS
);
2139 IPW_CMD(ADAPTER_ADDRESS
);
2141 IPW_CMD(RTS_THRESHOLD
);
2142 IPW_CMD(FRAG_THRESHOLD
);
2143 IPW_CMD(POWER_MODE
);
2145 IPW_CMD(TGI_TX_KEY
);
2146 IPW_CMD(SCAN_REQUEST
);
2147 IPW_CMD(SCAN_REQUEST_EXT
);
2149 IPW_CMD(SUPPORTED_RATES
);
2150 IPW_CMD(SCAN_ABORT
);
2152 IPW_CMD(QOS_PARAMETERS
);
2153 IPW_CMD(DINO_CONFIG
);
2154 IPW_CMD(RSN_CAPABILITIES
);
2156 IPW_CMD(CARD_DISABLE
);
2157 IPW_CMD(SEED_NUMBER
);
2159 IPW_CMD(COUNTRY_INFO
);
2160 IPW_CMD(AIRONET_INFO
);
2161 IPW_CMD(AP_TX_POWER
);
2163 IPW_CMD(CCX_VER_INFO
);
2164 IPW_CMD(SET_CALIBRATION
);
2165 IPW_CMD(SENSITIVITY_CALIB
);
2166 IPW_CMD(RETRY_LIMIT
);
2167 IPW_CMD(IPW_PRE_POWER_DOWN
);
2168 IPW_CMD(VAP_BEACON_TEMPLATE
);
2169 IPW_CMD(VAP_DTIM_PERIOD
);
2170 IPW_CMD(EXT_SUPPORTED_RATES
);
2171 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT
);
2172 IPW_CMD(VAP_QUIET_INTERVALS
);
2173 IPW_CMD(VAP_CHANNEL_SWITCH
);
2174 IPW_CMD(VAP_MANDATORY_CHANNELS
);
2175 IPW_CMD(VAP_CELL_PWR_LIMIT
);
2176 IPW_CMD(VAP_CF_PARAM_SET
);
2177 IPW_CMD(VAP_SET_BEACONING_STATE
);
2178 IPW_CMD(MEASUREMENT
);
2179 IPW_CMD(POWER_CAPABILITY
);
2180 IPW_CMD(SUPPORTED_CHANNELS
);
2181 IPW_CMD(TPC_REPORT
);
2183 IPW_CMD(PRODUCTION_COMMAND
);
2189 #define HOST_COMPLETE_TIMEOUT HZ
2191 static int __ipw_send_cmd(struct ipw_priv
*priv
, struct host_cmd
*cmd
)
2194 unsigned long flags
;
2195 unsigned long now
, end
;
2197 spin_lock_irqsave(&priv
->lock
, flags
);
2198 if (priv
->status
& STATUS_HCMD_ACTIVE
) {
2199 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200 get_cmd_string(cmd
->cmd
));
2201 spin_unlock_irqrestore(&priv
->lock
, flags
);
2205 priv
->status
|= STATUS_HCMD_ACTIVE
;
2208 priv
->cmdlog
[priv
->cmdlog_pos
].jiffies
= jiffies
;
2209 priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.cmd
= cmd
->cmd
;
2210 priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.len
= cmd
->len
;
2211 memcpy(priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.param
, cmd
->param
,
2213 priv
->cmdlog
[priv
->cmdlog_pos
].retcode
= -1;
2216 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217 get_cmd_string(cmd
->cmd
), cmd
->cmd
, cmd
->len
,
2220 #ifndef DEBUG_CMD_WEP_KEY
2221 if (cmd
->cmd
== IPW_CMD_WEP_KEY
)
2222 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2225 printk_buf(IPW_DL_HOST_COMMAND
, (u8
*) cmd
->param
, cmd
->len
);
2227 rc
= ipw_queue_tx_hcmd(priv
, cmd
->cmd
, cmd
->param
, cmd
->len
, 0);
2229 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2230 IPW_ERROR("Failed to send %s: Reason %d\n",
2231 get_cmd_string(cmd
->cmd
), rc
);
2232 spin_unlock_irqrestore(&priv
->lock
, flags
);
2235 spin_unlock_irqrestore(&priv
->lock
, flags
);
2238 end
= now
+ HOST_COMPLETE_TIMEOUT
;
2240 rc
= wait_event_interruptible_timeout(priv
->wait_command_queue
,
2242 status
& STATUS_HCMD_ACTIVE
),
2246 if (time_before(now
, end
))
2252 spin_lock_irqsave(&priv
->lock
, flags
);
2253 if (priv
->status
& STATUS_HCMD_ACTIVE
) {
2254 IPW_ERROR("Failed to send %s: Command timed out.\n",
2255 get_cmd_string(cmd
->cmd
));
2256 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2257 spin_unlock_irqrestore(&priv
->lock
, flags
);
2261 spin_unlock_irqrestore(&priv
->lock
, flags
);
2265 if (priv
->status
& STATUS_RF_KILL_HW
) {
2266 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267 get_cmd_string(cmd
->cmd
));
2274 priv
->cmdlog
[priv
->cmdlog_pos
++].retcode
= rc
;
2275 priv
->cmdlog_pos
%= priv
->cmdlog_len
;
2280 static int ipw_send_cmd_simple(struct ipw_priv
*priv
, u8 command
)
2282 struct host_cmd cmd
= {
2286 return __ipw_send_cmd(priv
, &cmd
);
2289 static int ipw_send_cmd_pdu(struct ipw_priv
*priv
, u8 command
, u8 len
,
2292 struct host_cmd cmd
= {
2298 return __ipw_send_cmd(priv
, &cmd
);
2301 static int ipw_send_host_complete(struct ipw_priv
*priv
)
2304 IPW_ERROR("Invalid args\n");
2308 return ipw_send_cmd_simple(priv
, IPW_CMD_HOST_COMPLETE
);
2311 static int ipw_send_system_config(struct ipw_priv
*priv
)
2313 return ipw_send_cmd_pdu(priv
, IPW_CMD_SYSTEM_CONFIG
,
2314 sizeof(priv
->sys_config
),
2318 static int ipw_send_ssid(struct ipw_priv
*priv
, u8
* ssid
, int len
)
2320 if (!priv
|| !ssid
) {
2321 IPW_ERROR("Invalid args\n");
2325 return ipw_send_cmd_pdu(priv
, IPW_CMD_SSID
, min(len
, IW_ESSID_MAX_SIZE
),
2329 static int ipw_send_adapter_address(struct ipw_priv
*priv
, u8
* mac
)
2331 if (!priv
|| !mac
) {
2332 IPW_ERROR("Invalid args\n");
2336 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337 priv
->net_dev
->name
, mac
);
2339 return ipw_send_cmd_pdu(priv
, IPW_CMD_ADAPTER_ADDRESS
, ETH_ALEN
, mac
);
2342 static void ipw_adapter_restart(void *adapter
)
2344 struct ipw_priv
*priv
= adapter
;
2346 if (priv
->status
& STATUS_RF_KILL_MASK
)
2351 if (priv
->assoc_network
&&
2352 (priv
->assoc_network
->capability
& WLAN_CAPABILITY_IBSS
))
2353 ipw_remove_current_network(priv
);
2356 IPW_ERROR("Failed to up device\n");
2361 static void ipw_bg_adapter_restart(struct work_struct
*work
)
2363 struct ipw_priv
*priv
=
2364 container_of(work
, struct ipw_priv
, adapter_restart
);
2365 mutex_lock(&priv
->mutex
);
2366 ipw_adapter_restart(priv
);
2367 mutex_unlock(&priv
->mutex
);
2370 static void ipw_abort_scan(struct ipw_priv
*priv
);
2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2374 static void ipw_scan_check(void *data
)
2376 struct ipw_priv
*priv
= data
;
2378 if (priv
->status
& STATUS_SCAN_ABORTING
) {
2379 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380 "adapter after (%dms).\n",
2381 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG
));
2382 schedule_work(&priv
->adapter_restart
);
2383 } else if (priv
->status
& STATUS_SCANNING
) {
2384 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2386 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG
));
2387 ipw_abort_scan(priv
);
2388 schedule_delayed_work(&priv
->scan_check
, HZ
);
2392 static void ipw_bg_scan_check(struct work_struct
*work
)
2394 struct ipw_priv
*priv
=
2395 container_of(work
, struct ipw_priv
, scan_check
.work
);
2396 mutex_lock(&priv
->mutex
);
2397 ipw_scan_check(priv
);
2398 mutex_unlock(&priv
->mutex
);
2401 static int ipw_send_scan_request_ext(struct ipw_priv
*priv
,
2402 struct ipw_scan_request_ext
*request
)
2404 return ipw_send_cmd_pdu(priv
, IPW_CMD_SCAN_REQUEST_EXT
,
2405 sizeof(*request
), request
);
2408 static int ipw_send_scan_abort(struct ipw_priv
*priv
)
2411 IPW_ERROR("Invalid args\n");
2415 return ipw_send_cmd_simple(priv
, IPW_CMD_SCAN_ABORT
);
2418 static int ipw_set_sensitivity(struct ipw_priv
*priv
, u16 sens
)
2420 struct ipw_sensitivity_calib calib
= {
2421 .beacon_rssi_raw
= cpu_to_le16(sens
),
2424 return ipw_send_cmd_pdu(priv
, IPW_CMD_SENSITIVITY_CALIB
, sizeof(calib
),
2428 static int ipw_send_associate(struct ipw_priv
*priv
,
2429 struct ipw_associate
*associate
)
2431 if (!priv
|| !associate
) {
2432 IPW_ERROR("Invalid args\n");
2436 return ipw_send_cmd_pdu(priv
, IPW_CMD_ASSOCIATE
, sizeof(*associate
),
2440 static int ipw_send_supported_rates(struct ipw_priv
*priv
,
2441 struct ipw_supported_rates
*rates
)
2443 if (!priv
|| !rates
) {
2444 IPW_ERROR("Invalid args\n");
2448 return ipw_send_cmd_pdu(priv
, IPW_CMD_SUPPORTED_RATES
, sizeof(*rates
),
2452 static int ipw_set_random_seed(struct ipw_priv
*priv
)
2457 IPW_ERROR("Invalid args\n");
2461 get_random_bytes(&val
, sizeof(val
));
2463 return ipw_send_cmd_pdu(priv
, IPW_CMD_SEED_NUMBER
, sizeof(val
), &val
);
2466 static int ipw_send_card_disable(struct ipw_priv
*priv
, u32 phy_off
)
2468 __le32 v
= cpu_to_le32(phy_off
);
2470 IPW_ERROR("Invalid args\n");
2474 return ipw_send_cmd_pdu(priv
, IPW_CMD_CARD_DISABLE
, sizeof(v
), &v
);
2477 static int ipw_send_tx_power(struct ipw_priv
*priv
, struct ipw_tx_power
*power
)
2479 if (!priv
|| !power
) {
2480 IPW_ERROR("Invalid args\n");
2484 return ipw_send_cmd_pdu(priv
, IPW_CMD_TX_POWER
, sizeof(*power
), power
);
2487 static int ipw_set_tx_power(struct ipw_priv
*priv
)
2489 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
2490 struct ipw_tx_power tx_power
;
2494 memset(&tx_power
, 0, sizeof(tx_power
));
2496 /* configure device for 'G' band */
2497 tx_power
.ieee_mode
= IPW_G_MODE
;
2498 tx_power
.num_channels
= geo
->bg_channels
;
2499 for (i
= 0; i
< geo
->bg_channels
; i
++) {
2500 max_power
= geo
->bg
[i
].max_power
;
2501 tx_power
.channels_tx_power
[i
].channel_number
=
2503 tx_power
.channels_tx_power
[i
].tx_power
= max_power
?
2504 min(max_power
, priv
->tx_power
) : priv
->tx_power
;
2506 if (ipw_send_tx_power(priv
, &tx_power
))
2509 /* configure device to also handle 'B' band */
2510 tx_power
.ieee_mode
= IPW_B_MODE
;
2511 if (ipw_send_tx_power(priv
, &tx_power
))
2514 /* configure device to also handle 'A' band */
2515 if (priv
->ieee
->abg_true
) {
2516 tx_power
.ieee_mode
= IPW_A_MODE
;
2517 tx_power
.num_channels
= geo
->a_channels
;
2518 for (i
= 0; i
< tx_power
.num_channels
; i
++) {
2519 max_power
= geo
->a
[i
].max_power
;
2520 tx_power
.channels_tx_power
[i
].channel_number
=
2522 tx_power
.channels_tx_power
[i
].tx_power
= max_power
?
2523 min(max_power
, priv
->tx_power
) : priv
->tx_power
;
2525 if (ipw_send_tx_power(priv
, &tx_power
))
2531 static int ipw_send_rts_threshold(struct ipw_priv
*priv
, u16 rts
)
2533 struct ipw_rts_threshold rts_threshold
= {
2534 .rts_threshold
= cpu_to_le16(rts
),
2538 IPW_ERROR("Invalid args\n");
2542 return ipw_send_cmd_pdu(priv
, IPW_CMD_RTS_THRESHOLD
,
2543 sizeof(rts_threshold
), &rts_threshold
);
2546 static int ipw_send_frag_threshold(struct ipw_priv
*priv
, u16 frag
)
2548 struct ipw_frag_threshold frag_threshold
= {
2549 .frag_threshold
= cpu_to_le16(frag
),
2553 IPW_ERROR("Invalid args\n");
2557 return ipw_send_cmd_pdu(priv
, IPW_CMD_FRAG_THRESHOLD
,
2558 sizeof(frag_threshold
), &frag_threshold
);
2561 static int ipw_send_power_mode(struct ipw_priv
*priv
, u32 mode
)
2566 IPW_ERROR("Invalid args\n");
2570 /* If on battery, set to 3, if AC set to CAM, else user
2573 case IPW_POWER_BATTERY
:
2574 param
= cpu_to_le32(IPW_POWER_INDEX_3
);
2577 param
= cpu_to_le32(IPW_POWER_MODE_CAM
);
2580 param
= cpu_to_le32(mode
);
2584 return ipw_send_cmd_pdu(priv
, IPW_CMD_POWER_MODE
, sizeof(param
),
2588 static int ipw_send_retry_limit(struct ipw_priv
*priv
, u8 slimit
, u8 llimit
)
2590 struct ipw_retry_limit retry_limit
= {
2591 .short_retry_limit
= slimit
,
2592 .long_retry_limit
= llimit
2596 IPW_ERROR("Invalid args\n");
2600 return ipw_send_cmd_pdu(priv
, IPW_CMD_RETRY_LIMIT
, sizeof(retry_limit
),
2605 * The IPW device contains a Microwire compatible EEPROM that stores
2606 * various data like the MAC address. Usually the firmware has exclusive
2607 * access to the eeprom, but during device initialization (before the
2608 * device driver has sent the HostComplete command to the firmware) the
2609 * device driver has read access to the EEPROM by way of indirect addressing
2610 * through a couple of memory mapped registers.
2612 * The following is a simplified implementation for pulling data out of the
2613 * the eeprom, along with some helper functions to find information in
2614 * the per device private data's copy of the eeprom.
2616 * NOTE: To better understand how these functions work (i.e what is a chip
2617 * select and why do have to keep driving the eeprom clock?), read
2618 * just about any data sheet for a Microwire compatible EEPROM.
2621 /* write a 32 bit value into the indirect accessor register */
2622 static inline void eeprom_write_reg(struct ipw_priv
*p
, u32 data
)
2624 ipw_write_reg32(p
, FW_MEM_REG_EEPROM_ACCESS
, data
);
2626 /* the eeprom requires some time to complete the operation */
2627 udelay(p
->eeprom_delay
);
2630 /* perform a chip select operation */
2631 static void eeprom_cs(struct ipw_priv
*priv
)
2633 eeprom_write_reg(priv
, 0);
2634 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2635 eeprom_write_reg(priv
, EEPROM_BIT_CS
| EEPROM_BIT_SK
);
2636 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2639 /* perform a chip select operation */
2640 static void eeprom_disable_cs(struct ipw_priv
*priv
)
2642 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2643 eeprom_write_reg(priv
, 0);
2644 eeprom_write_reg(priv
, EEPROM_BIT_SK
);
2647 /* push a single bit down to the eeprom */
2648 static inline void eeprom_write_bit(struct ipw_priv
*p
, u8 bit
)
2650 int d
= (bit
? EEPROM_BIT_DI
: 0);
2651 eeprom_write_reg(p
, EEPROM_BIT_CS
| d
);
2652 eeprom_write_reg(p
, EEPROM_BIT_CS
| d
| EEPROM_BIT_SK
);
2655 /* push an opcode followed by an address down to the eeprom */
2656 static void eeprom_op(struct ipw_priv
*priv
, u8 op
, u8 addr
)
2661 eeprom_write_bit(priv
, 1);
2662 eeprom_write_bit(priv
, op
& 2);
2663 eeprom_write_bit(priv
, op
& 1);
2664 for (i
= 7; i
>= 0; i
--) {
2665 eeprom_write_bit(priv
, addr
& (1 << i
));
2669 /* pull 16 bits off the eeprom, one bit at a time */
2670 static u16
eeprom_read_u16(struct ipw_priv
*priv
, u8 addr
)
2675 /* Send READ Opcode */
2676 eeprom_op(priv
, EEPROM_CMD_READ
, addr
);
2678 /* Send dummy bit */
2679 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2681 /* Read the byte off the eeprom one bit at a time */
2682 for (i
= 0; i
< 16; i
++) {
2684 eeprom_write_reg(priv
, EEPROM_BIT_CS
| EEPROM_BIT_SK
);
2685 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2686 data
= ipw_read_reg32(priv
, FW_MEM_REG_EEPROM_ACCESS
);
2687 r
= (r
<< 1) | ((data
& EEPROM_BIT_DO
) ? 1 : 0);
2690 /* Send another dummy bit */
2691 eeprom_write_reg(priv
, 0);
2692 eeprom_disable_cs(priv
);
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data */
2699 static void eeprom_parse_mac(struct ipw_priv
*priv
, u8
* mac
)
2701 memcpy(mac
, &priv
->eeprom
[EEPROM_MAC_ADDRESS
], 6);
2705 * Either the device driver (i.e. the host) or the firmware can
2706 * load eeprom data into the designated region in SRAM. If neither
2707 * happens then the FW will shutdown with a fatal error.
2709 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2710 * bit needs region of shared SRAM needs to be non-zero.
2712 static void ipw_eeprom_init_sram(struct ipw_priv
*priv
)
2715 __le16
*eeprom
= (__le16
*) priv
->eeprom
;
2717 IPW_DEBUG_TRACE(">>\n");
2719 /* read entire contents of eeprom into private buffer */
2720 for (i
= 0; i
< 128; i
++)
2721 eeprom
[i
] = cpu_to_le16(eeprom_read_u16(priv
, (u8
) i
));
2724 If the data looks correct, then copy it to our private
2725 copy. Otherwise let the firmware know to perform the operation
2728 if (priv
->eeprom
[EEPROM_VERSION
] != 0) {
2729 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2731 /* write the eeprom data to sram */
2732 for (i
= 0; i
< IPW_EEPROM_IMAGE_SIZE
; i
++)
2733 ipw_write8(priv
, IPW_EEPROM_DATA
+ i
, priv
->eeprom
[i
]);
2735 /* Do not load eeprom data on fatal error or suspend */
2736 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 0);
2738 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2740 /* Load eeprom data on fatal error or suspend */
2741 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 1);
2744 IPW_DEBUG_TRACE("<<\n");
2747 static void ipw_zero_memory(struct ipw_priv
*priv
, u32 start
, u32 count
)
2752 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, start
);
2754 _ipw_write32(priv
, IPW_AUTOINC_DATA
, 0);
2757 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv
*priv
)
2759 ipw_zero_memory(priv
, IPW_SHARED_SRAM_DMA_CONTROL
,
2760 CB_NUMBER_OF_ELEMENTS_SMALL
*
2761 sizeof(struct command_block
));
2764 static int ipw_fw_dma_enable(struct ipw_priv
*priv
)
2765 { /* start dma engine but no transfers yet */
2767 IPW_DEBUG_FW(">> :\n");
2770 ipw_fw_dma_reset_command_blocks(priv
);
2772 /* Write CB base address */
2773 ipw_write_reg32(priv
, IPW_DMA_I_CB_BASE
, IPW_SHARED_SRAM_DMA_CONTROL
);
2775 IPW_DEBUG_FW("<< :\n");
2779 static void ipw_fw_dma_abort(struct ipw_priv
*priv
)
2783 IPW_DEBUG_FW(">> :\n");
2785 /* set the Stop and Abort bit */
2786 control
= DMA_CONTROL_SMALL_CB_CONST_VALUE
| DMA_CB_STOP_AND_ABORT
;
2787 ipw_write_reg32(priv
, IPW_DMA_I_DMA_CONTROL
, control
);
2788 priv
->sram_desc
.last_cb_index
= 0;
2790 IPW_DEBUG_FW("<<\n");
2793 static int ipw_fw_dma_write_command_block(struct ipw_priv
*priv
, int index
,
2794 struct command_block
*cb
)
2797 IPW_SHARED_SRAM_DMA_CONTROL
+
2798 (sizeof(struct command_block
) * index
);
2799 IPW_DEBUG_FW(">> :\n");
2801 ipw_write_indirect(priv
, address
, (u8
*) cb
,
2802 (int)sizeof(struct command_block
));
2804 IPW_DEBUG_FW("<< :\n");
2809 static int ipw_fw_dma_kick(struct ipw_priv
*priv
)
2814 IPW_DEBUG_FW(">> :\n");
2816 for (index
= 0; index
< priv
->sram_desc
.last_cb_index
; index
++)
2817 ipw_fw_dma_write_command_block(priv
, index
,
2818 &priv
->sram_desc
.cb_list
[index
]);
2820 /* Enable the DMA in the CSR register */
2821 ipw_clear_bit(priv
, IPW_RESET_REG
,
2822 IPW_RESET_REG_MASTER_DISABLED
|
2823 IPW_RESET_REG_STOP_MASTER
);
2825 /* Set the Start bit. */
2826 control
= DMA_CONTROL_SMALL_CB_CONST_VALUE
| DMA_CB_START
;
2827 ipw_write_reg32(priv
, IPW_DMA_I_DMA_CONTROL
, control
);
2829 IPW_DEBUG_FW("<< :\n");
2833 static void ipw_fw_dma_dump_command_block(struct ipw_priv
*priv
)
2836 u32 register_value
= 0;
2837 u32 cb_fields_address
= 0;
2839 IPW_DEBUG_FW(">> :\n");
2840 address
= ipw_read_reg32(priv
, IPW_DMA_I_CURRENT_CB
);
2841 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address
);
2843 /* Read the DMA Controlor register */
2844 register_value
= ipw_read_reg32(priv
, IPW_DMA_I_DMA_CONTROL
);
2845 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value
);
2847 /* Print the CB values */
2848 cb_fields_address
= address
;
2849 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2850 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value
);
2852 cb_fields_address
+= sizeof(u32
);
2853 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2854 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value
);
2856 cb_fields_address
+= sizeof(u32
);
2857 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2858 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2861 cb_fields_address
+= sizeof(u32
);
2862 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2863 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value
);
2865 IPW_DEBUG_FW(">> :\n");
2868 static int ipw_fw_dma_command_block_index(struct ipw_priv
*priv
)
2870 u32 current_cb_address
= 0;
2871 u32 current_cb_index
= 0;
2873 IPW_DEBUG_FW("<< :\n");
2874 current_cb_address
= ipw_read_reg32(priv
, IPW_DMA_I_CURRENT_CB
);
2876 current_cb_index
= (current_cb_address
- IPW_SHARED_SRAM_DMA_CONTROL
) /
2877 sizeof(struct command_block
);
2879 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2880 current_cb_index
, current_cb_address
);
2882 IPW_DEBUG_FW(">> :\n");
2883 return current_cb_index
;
2887 static int ipw_fw_dma_add_command_block(struct ipw_priv
*priv
,
2891 int interrupt_enabled
, int is_last
)
2894 u32 control
= CB_VALID
| CB_SRC_LE
| CB_DEST_LE
| CB_SRC_AUTOINC
|
2895 CB_SRC_IO_GATED
| CB_DEST_AUTOINC
| CB_SRC_SIZE_LONG
|
2897 struct command_block
*cb
;
2898 u32 last_cb_element
= 0;
2900 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2901 src_address
, dest_address
, length
);
2903 if (priv
->sram_desc
.last_cb_index
>= CB_NUMBER_OF_ELEMENTS_SMALL
)
2906 last_cb_element
= priv
->sram_desc
.last_cb_index
;
2907 cb
= &priv
->sram_desc
.cb_list
[last_cb_element
];
2908 priv
->sram_desc
.last_cb_index
++;
2910 /* Calculate the new CB control word */
2911 if (interrupt_enabled
)
2912 control
|= CB_INT_ENABLED
;
2915 control
|= CB_LAST_VALID
;
2919 /* Calculate the CB Element's checksum value */
2920 cb
->status
= control
^ src_address
^ dest_address
;
2922 /* Copy the Source and Destination addresses */
2923 cb
->dest_addr
= dest_address
;
2924 cb
->source_addr
= src_address
;
2926 /* Copy the Control Word last */
2927 cb
->control
= control
;
2932 static int ipw_fw_dma_add_buffer(struct ipw_priv
*priv
, dma_addr_t
*src_address
,
2933 int nr
, u32 dest_address
, u32 len
)
2938 IPW_DEBUG_FW(">>\n");
2939 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2940 nr
, dest_address
, len
);
2942 for (i
= 0; i
< nr
; i
++) {
2943 size
= min_t(u32
, len
- i
* CB_MAX_LENGTH
, CB_MAX_LENGTH
);
2944 ret
= ipw_fw_dma_add_command_block(priv
, src_address
[i
],
2946 i
* CB_MAX_LENGTH
, size
,
2949 IPW_DEBUG_FW_INFO(": Failed\n");
2952 IPW_DEBUG_FW_INFO(": Added new cb\n");
2955 IPW_DEBUG_FW("<<\n");
2959 static int ipw_fw_dma_wait(struct ipw_priv
*priv
)
2961 u32 current_index
= 0, previous_index
;
2964 IPW_DEBUG_FW(">> :\n");
2966 current_index
= ipw_fw_dma_command_block_index(priv
);
2967 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2968 (int)priv
->sram_desc
.last_cb_index
);
2970 while (current_index
< priv
->sram_desc
.last_cb_index
) {
2972 previous_index
= current_index
;
2973 current_index
= ipw_fw_dma_command_block_index(priv
);
2975 if (previous_index
< current_index
) {
2979 if (++watchdog
> 400) {
2980 IPW_DEBUG_FW_INFO("Timeout\n");
2981 ipw_fw_dma_dump_command_block(priv
);
2982 ipw_fw_dma_abort(priv
);
2987 ipw_fw_dma_abort(priv
);
2989 /*Disable the DMA in the CSR register */
2990 ipw_set_bit(priv
, IPW_RESET_REG
,
2991 IPW_RESET_REG_MASTER_DISABLED
| IPW_RESET_REG_STOP_MASTER
);
2993 IPW_DEBUG_FW("<< dmaWaitSync\n");
2997 static void ipw_remove_current_network(struct ipw_priv
*priv
)
2999 struct list_head
*element
, *safe
;
3000 struct libipw_network
*network
= NULL
;
3001 unsigned long flags
;
3003 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
3004 list_for_each_safe(element
, safe
, &priv
->ieee
->network_list
) {
3005 network
= list_entry(element
, struct libipw_network
, list
);
3006 if (!memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
)) {
3008 list_add_tail(&network
->list
,
3009 &priv
->ieee
->network_free_list
);
3012 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
3016 * Check that card is still alive.
3017 * Reads debug register from domain0.
3018 * If card is present, pre-defined value should
3022 * @return 1 if card is present, 0 otherwise
3024 static inline int ipw_alive(struct ipw_priv
*priv
)
3026 return ipw_read32(priv
, 0x90) == 0xd55555d5;
3029 /* timeout in msec, attempted in 10-msec quanta */
3030 static int ipw_poll_bit(struct ipw_priv
*priv
, u32 addr
, u32 mask
,
3036 if ((ipw_read32(priv
, addr
) & mask
) == mask
)
3040 } while (i
< timeout
);
3045 /* These functions load the firmware and micro code for the operation of
3046 * the ipw hardware. It assumes the buffer has all the bits for the
3047 * image and the caller is handling the memory allocation and clean up.
3050 static int ipw_stop_master(struct ipw_priv
*priv
)
3054 IPW_DEBUG_TRACE(">>\n");
3055 /* stop master. typical delay - 0 */
3056 ipw_set_bit(priv
, IPW_RESET_REG
, IPW_RESET_REG_STOP_MASTER
);
3058 /* timeout is in msec, polled in 10-msec quanta */
3059 rc
= ipw_poll_bit(priv
, IPW_RESET_REG
,
3060 IPW_RESET_REG_MASTER_DISABLED
, 100);
3062 IPW_ERROR("wait for stop master failed after 100ms\n");
3066 IPW_DEBUG_INFO("stop master %dms\n", rc
);
3071 static void ipw_arc_release(struct ipw_priv
*priv
)
3073 IPW_DEBUG_TRACE(">>\n");
3076 ipw_clear_bit(priv
, IPW_RESET_REG
, CBD_RESET_REG_PRINCETON_RESET
);
3078 /* no one knows timing, for safety add some delay */
3087 static int ipw_load_ucode(struct ipw_priv
*priv
, u8
* data
, size_t len
)
3089 int rc
= 0, i
, addr
;
3093 image
= (__le16
*) data
;
3095 IPW_DEBUG_TRACE(">>\n");
3097 rc
= ipw_stop_master(priv
);
3102 for (addr
= IPW_SHARED_LOWER_BOUND
;
3103 addr
< IPW_REGISTER_DOMAIN1_END
; addr
+= 4) {
3104 ipw_write32(priv
, addr
, 0);
3107 /* no ucode (yet) */
3108 memset(&priv
->dino_alive
, 0, sizeof(priv
->dino_alive
));
3109 /* destroy DMA queues */
3110 /* reset sequence */
3112 ipw_write_reg32(priv
, IPW_MEM_HALT_AND_RESET
, IPW_BIT_HALT_RESET_ON
);
3113 ipw_arc_release(priv
);
3114 ipw_write_reg32(priv
, IPW_MEM_HALT_AND_RESET
, IPW_BIT_HALT_RESET_OFF
);
3118 ipw_write_reg32(priv
, IPW_INTERNAL_CMD_EVENT
, IPW_BASEBAND_POWER_DOWN
);
3121 ipw_write_reg32(priv
, IPW_INTERNAL_CMD_EVENT
, 0);
3124 /* enable ucode store */
3125 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0x0);
3126 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, DINO_ENABLE_CS
);
3132 * Do NOT set indirect address register once and then
3133 * store data to indirect data register in the loop.
3134 * It seems very reasonable, but in this case DINO do not
3135 * accept ucode. It is essential to set address each time.
3137 /* load new ipw uCode */
3138 for (i
= 0; i
< len
/ 2; i
++)
3139 ipw_write_reg16(priv
, IPW_BASEBAND_CONTROL_STORE
,
3140 le16_to_cpu(image
[i
]));
3143 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0);
3144 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, DINO_ENABLE_SYSTEM
);
3146 /* this is where the igx / win driver deveates from the VAP driver. */
3148 /* wait for alive response */
3149 for (i
= 0; i
< 100; i
++) {
3150 /* poll for incoming data */
3151 cr
= ipw_read_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
);
3152 if (cr
& DINO_RXFIFO_DATA
)
3157 if (cr
& DINO_RXFIFO_DATA
) {
3158 /* alive_command_responce size is NOT multiple of 4 */
3159 __le32 response_buffer
[(sizeof(priv
->dino_alive
) + 3) / 4];
3161 for (i
= 0; i
< ARRAY_SIZE(response_buffer
); i
++)
3162 response_buffer
[i
] =
3163 cpu_to_le32(ipw_read_reg32(priv
,
3164 IPW_BASEBAND_RX_FIFO_READ
));
3165 memcpy(&priv
->dino_alive
, response_buffer
,
3166 sizeof(priv
->dino_alive
));
3167 if (priv
->dino_alive
.alive_command
== 1
3168 && priv
->dino_alive
.ucode_valid
== 1) {
3171 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3172 "of %02d/%02d/%02d %02d:%02d\n",
3173 priv
->dino_alive
.software_revision
,
3174 priv
->dino_alive
.software_revision
,
3175 priv
->dino_alive
.device_identifier
,
3176 priv
->dino_alive
.device_identifier
,
3177 priv
->dino_alive
.time_stamp
[0],
3178 priv
->dino_alive
.time_stamp
[1],
3179 priv
->dino_alive
.time_stamp
[2],
3180 priv
->dino_alive
.time_stamp
[3],
3181 priv
->dino_alive
.time_stamp
[4]);
3183 IPW_DEBUG_INFO("Microcode is not alive\n");
3187 IPW_DEBUG_INFO("No alive response from DINO\n");
3191 /* disable DINO, otherwise for some reason
3192 firmware have problem getting alive resp. */
3193 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0);
3198 static int ipw_load_firmware(struct ipw_priv
*priv
, u8
* data
, size_t len
)
3202 struct fw_chunk
*chunk
;
3205 struct pci_pool
*pool
;
3209 IPW_DEBUG_TRACE("<< :\n");
3211 virts
= kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL
,
3216 phys
= kmalloc(sizeof(dma_addr_t
) * CB_NUMBER_OF_ELEMENTS_SMALL
,
3222 pool
= pci_pool_create("ipw2200", priv
->pci_dev
, CB_MAX_LENGTH
, 0, 0);
3224 IPW_ERROR("pci_pool_create failed\n");
3231 ret
= ipw_fw_dma_enable(priv
);
3233 /* the DMA is already ready this would be a bug. */
3234 BUG_ON(priv
->sram_desc
.last_cb_index
> 0);
3242 chunk
= (struct fw_chunk
*)(data
+ offset
);
3243 offset
+= sizeof(struct fw_chunk
);
3244 chunk_len
= le32_to_cpu(chunk
->length
);
3245 start
= data
+ offset
;
3247 nr
= (chunk_len
+ CB_MAX_LENGTH
- 1) / CB_MAX_LENGTH
;
3248 for (i
= 0; i
< nr
; i
++) {
3249 virts
[total_nr
] = pci_pool_alloc(pool
, GFP_KERNEL
,
3251 if (!virts
[total_nr
]) {
3255 size
= min_t(u32
, chunk_len
- i
* CB_MAX_LENGTH
,
3257 memcpy(virts
[total_nr
], start
, size
);
3260 /* We don't support fw chunk larger than 64*8K */
3261 BUG_ON(total_nr
> CB_NUMBER_OF_ELEMENTS_SMALL
);
3264 /* build DMA packet and queue up for sending */
3265 /* dma to chunk->address, the chunk->length bytes from data +
3268 ret
= ipw_fw_dma_add_buffer(priv
, &phys
[total_nr
- nr
],
3269 nr
, le32_to_cpu(chunk
->address
),
3272 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3276 offset
+= chunk_len
;
3277 } while (offset
< len
);
3279 /* Run the DMA and wait for the answer */
3280 ret
= ipw_fw_dma_kick(priv
);
3282 IPW_ERROR("dmaKick Failed\n");
3286 ret
= ipw_fw_dma_wait(priv
);
3288 IPW_ERROR("dmaWaitSync Failed\n");
3292 for (i
= 0; i
< total_nr
; i
++)
3293 pci_pool_free(pool
, virts
[i
], phys
[i
]);
3295 pci_pool_destroy(pool
);
3303 static int ipw_stop_nic(struct ipw_priv
*priv
)
3308 ipw_write32(priv
, IPW_RESET_REG
, IPW_RESET_REG_STOP_MASTER
);
3310 rc
= ipw_poll_bit(priv
, IPW_RESET_REG
,
3311 IPW_RESET_REG_MASTER_DISABLED
, 500);
3313 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3317 ipw_set_bit(priv
, IPW_RESET_REG
, CBD_RESET_REG_PRINCETON_RESET
);
3322 static void ipw_start_nic(struct ipw_priv
*priv
)
3324 IPW_DEBUG_TRACE(">>\n");
3326 /* prvHwStartNic release ARC */
3327 ipw_clear_bit(priv
, IPW_RESET_REG
,
3328 IPW_RESET_REG_MASTER_DISABLED
|
3329 IPW_RESET_REG_STOP_MASTER
|
3330 CBD_RESET_REG_PRINCETON_RESET
);
3332 /* enable power management */
3333 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
,
3334 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY
);
3336 IPW_DEBUG_TRACE("<<\n");
3339 static int ipw_init_nic(struct ipw_priv
*priv
)
3343 IPW_DEBUG_TRACE(">>\n");
3346 /* set "initialization complete" bit to move adapter to D0 state */
3347 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
, IPW_GP_CNTRL_BIT_INIT_DONE
);
3349 /* low-level PLL activation */
3350 ipw_write32(priv
, IPW_READ_INT_REGISTER
,
3351 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER
);
3353 /* wait for clock stabilization */
3354 rc
= ipw_poll_bit(priv
, IPW_GP_CNTRL_RW
,
3355 IPW_GP_CNTRL_BIT_CLOCK_READY
, 250);
3357 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3359 /* assert SW reset */
3360 ipw_set_bit(priv
, IPW_RESET_REG
, IPW_RESET_REG_SW_RESET
);
3364 /* set "initialization complete" bit to move adapter to D0 state */
3365 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
, IPW_GP_CNTRL_BIT_INIT_DONE
);
3367 IPW_DEBUG_TRACE(">>\n");
3371 /* Call this function from process context, it will sleep in request_firmware.
3372 * Probe is an ok place to call this from.
3374 static int ipw_reset_nic(struct ipw_priv
*priv
)
3377 unsigned long flags
;
3379 IPW_DEBUG_TRACE(">>\n");
3381 rc
= ipw_init_nic(priv
);
3383 spin_lock_irqsave(&priv
->lock
, flags
);
3384 /* Clear the 'host command active' bit... */
3385 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
3386 wake_up_interruptible(&priv
->wait_command_queue
);
3387 priv
->status
&= ~(STATUS_SCANNING
| STATUS_SCAN_ABORTING
);
3388 wake_up_interruptible(&priv
->wait_state
);
3389 spin_unlock_irqrestore(&priv
->lock
, flags
);
3391 IPW_DEBUG_TRACE("<<\n");
3404 static int ipw_get_fw(struct ipw_priv
*priv
,
3405 const struct firmware
**raw
, const char *name
)
3410 /* ask firmware_class module to get the boot firmware off disk */
3411 rc
= request_firmware(raw
, name
, &priv
->pci_dev
->dev
);
3413 IPW_ERROR("%s request_firmware failed: Reason %d\n", name
, rc
);
3417 if ((*raw
)->size
< sizeof(*fw
)) {
3418 IPW_ERROR("%s is too small (%zd)\n", name
, (*raw
)->size
);
3422 fw
= (void *)(*raw
)->data
;
3424 if ((*raw
)->size
< sizeof(*fw
) + le32_to_cpu(fw
->boot_size
) +
3425 le32_to_cpu(fw
->ucode_size
) + le32_to_cpu(fw
->fw_size
)) {
3426 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3427 name
, (*raw
)->size
);
3431 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3433 le32_to_cpu(fw
->ver
) >> 16,
3434 le32_to_cpu(fw
->ver
) & 0xff,
3435 (*raw
)->size
- sizeof(*fw
));
3439 #define IPW_RX_BUF_SIZE (3000)
3441 static void ipw_rx_queue_reset(struct ipw_priv
*priv
,
3442 struct ipw_rx_queue
*rxq
)
3444 unsigned long flags
;
3447 spin_lock_irqsave(&rxq
->lock
, flags
);
3449 INIT_LIST_HEAD(&rxq
->rx_free
);
3450 INIT_LIST_HEAD(&rxq
->rx_used
);
3452 /* Fill the rx_used queue with _all_ of the Rx buffers */
3453 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++) {
3454 /* In the reset function, these buffers may have been allocated
3455 * to an SKB, so we need to unmap and free potential storage */
3456 if (rxq
->pool
[i
].skb
!= NULL
) {
3457 pci_unmap_single(priv
->pci_dev
, rxq
->pool
[i
].dma_addr
,
3458 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
3459 dev_kfree_skb(rxq
->pool
[i
].skb
);
3460 rxq
->pool
[i
].skb
= NULL
;
3462 list_add_tail(&rxq
->pool
[i
].list
, &rxq
->rx_used
);
3465 /* Set us so that we have processed and used all buffers, but have
3466 * not restocked the Rx queue with fresh buffers */
3467 rxq
->read
= rxq
->write
= 0;
3468 rxq
->free_count
= 0;
3469 spin_unlock_irqrestore(&rxq
->lock
, flags
);
3473 static int fw_loaded
= 0;
3474 static const struct firmware
*raw
= NULL
;
3476 static void free_firmware(void)
3479 release_firmware(raw
);
3485 #define free_firmware() do {} while (0)
3488 static int ipw_load(struct ipw_priv
*priv
)
3491 const struct firmware
*raw
= NULL
;
3494 u8
*boot_img
, *ucode_img
, *fw_img
;
3496 int rc
= 0, retries
= 3;
3498 switch (priv
->ieee
->iw_mode
) {
3500 name
= "ipw2200-ibss.fw";
3502 #ifdef CONFIG_IPW2200_MONITOR
3503 case IW_MODE_MONITOR
:
3504 name
= "ipw2200-sniffer.fw";
3508 name
= "ipw2200-bss.fw";
3520 rc
= ipw_get_fw(priv
, &raw
, name
);
3527 fw
= (void *)raw
->data
;
3528 boot_img
= &fw
->data
[0];
3529 ucode_img
= &fw
->data
[le32_to_cpu(fw
->boot_size
)];
3530 fw_img
= &fw
->data
[le32_to_cpu(fw
->boot_size
) +
3531 le32_to_cpu(fw
->ucode_size
)];
3537 priv
->rxq
= ipw_rx_queue_alloc(priv
);
3539 ipw_rx_queue_reset(priv
, priv
->rxq
);
3541 IPW_ERROR("Unable to initialize Rx queue\n");
3546 /* Ensure interrupts are disabled */
3547 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
3548 priv
->status
&= ~STATUS_INT_ENABLED
;
3550 /* ack pending interrupts */
3551 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3555 rc
= ipw_reset_nic(priv
);
3557 IPW_ERROR("Unable to reset NIC\n");
3561 ipw_zero_memory(priv
, IPW_NIC_SRAM_LOWER_BOUND
,
3562 IPW_NIC_SRAM_UPPER_BOUND
- IPW_NIC_SRAM_LOWER_BOUND
);
3564 /* DMA the initial boot firmware into the device */
3565 rc
= ipw_load_firmware(priv
, boot_img
, le32_to_cpu(fw
->boot_size
));
3567 IPW_ERROR("Unable to load boot firmware: %d\n", rc
);
3571 /* kick start the device */
3572 ipw_start_nic(priv
);
3574 /* wait for the device to finish its initial startup sequence */
3575 rc
= ipw_poll_bit(priv
, IPW_INTA_RW
,
3576 IPW_INTA_BIT_FW_INITIALIZATION_DONE
, 500);
3578 IPW_ERROR("device failed to boot initial fw image\n");
3581 IPW_DEBUG_INFO("initial device response after %dms\n", rc
);
3583 /* ack fw init done interrupt */
3584 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_BIT_FW_INITIALIZATION_DONE
);
3586 /* DMA the ucode into the device */
3587 rc
= ipw_load_ucode(priv
, ucode_img
, le32_to_cpu(fw
->ucode_size
));
3589 IPW_ERROR("Unable to load ucode: %d\n", rc
);
3596 /* DMA bss firmware into the device */
3597 rc
= ipw_load_firmware(priv
, fw_img
, le32_to_cpu(fw
->fw_size
));
3599 IPW_ERROR("Unable to load firmware: %d\n", rc
);
3606 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 0);
3608 rc
= ipw_queue_reset(priv
);
3610 IPW_ERROR("Unable to initialize queues\n");
3614 /* Ensure interrupts are disabled */
3615 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
3616 /* ack pending interrupts */
3617 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3619 /* kick start the device */
3620 ipw_start_nic(priv
);
3622 if (ipw_read32(priv
, IPW_INTA_RW
) & IPW_INTA_BIT_PARITY_ERROR
) {
3624 IPW_WARNING("Parity error. Retrying init.\n");
3629 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3634 /* wait for the device */
3635 rc
= ipw_poll_bit(priv
, IPW_INTA_RW
,
3636 IPW_INTA_BIT_FW_INITIALIZATION_DONE
, 500);
3638 IPW_ERROR("device failed to start within 500ms\n");
3641 IPW_DEBUG_INFO("device response after %dms\n", rc
);
3643 /* ack fw init done interrupt */
3644 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_BIT_FW_INITIALIZATION_DONE
);
3646 /* read eeprom data and initialize the eeprom region of sram */
3647 priv
->eeprom_delay
= 1;
3648 ipw_eeprom_init_sram(priv
);
3650 /* enable interrupts */
3651 ipw_enable_interrupts(priv
);
3653 /* Ensure our queue has valid packets */
3654 ipw_rx_queue_replenish(priv
);
3656 ipw_write32(priv
, IPW_RX_READ_INDEX
, priv
->rxq
->read
);
3658 /* ack pending interrupts */
3659 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3662 release_firmware(raw
);
3668 ipw_rx_queue_free(priv
, priv
->rxq
);
3671 ipw_tx_queue_free(priv
);
3672 release_firmware(raw
);
3684 * Theory of operation
3686 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3687 * 2 empty entries always kept in the buffer to protect from overflow.
3689 * For Tx queue, there are low mark and high mark limits. If, after queuing
3690 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3691 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3694 * The IPW operates with six queues, one receive queue in the device's
3695 * sram, one transmit queue for sending commands to the device firmware,
3696 * and four transmit queues for data.
3698 * The four transmit queues allow for performing quality of service (qos)
3699 * transmissions as per the 802.11 protocol. Currently Linux does not
3700 * provide a mechanism to the user for utilizing prioritized queues, so
3701 * we only utilize the first data transmit queue (queue1).
3705 * Driver allocates buffers of this size for Rx
3709 * ipw_rx_queue_space - Return number of free slots available in queue.
3711 static int ipw_rx_queue_space(const struct ipw_rx_queue
*q
)
3713 int s
= q
->read
- q
->write
;
3716 /* keep some buffer to not confuse full and empty queue */
3723 static inline int ipw_tx_queue_space(const struct clx2_queue
*q
)
3725 int s
= q
->last_used
- q
->first_empty
;
3728 s
-= 2; /* keep some reserve to not confuse empty and full situations */
3734 static inline int ipw_queue_inc_wrap(int index
, int n_bd
)
3736 return (++index
== n_bd
) ? 0 : index
;
3740 * Initialize common DMA queue structure
3742 * @param q queue to init
3743 * @param count Number of BD's to allocate. Should be power of 2
3744 * @param read_register Address for 'read' register
3745 * (not offset within BAR, full address)
3746 * @param write_register Address for 'write' register
3747 * (not offset within BAR, full address)
3748 * @param base_register Address for 'base' register
3749 * (not offset within BAR, full address)
3750 * @param size Address for 'size' register
3751 * (not offset within BAR, full address)
3753 static void ipw_queue_init(struct ipw_priv
*priv
, struct clx2_queue
*q
,
3754 int count
, u32 read
, u32 write
, u32 base
, u32 size
)
3758 q
->low_mark
= q
->n_bd
/ 4;
3759 if (q
->low_mark
< 4)
3762 q
->high_mark
= q
->n_bd
/ 8;
3763 if (q
->high_mark
< 2)
3766 q
->first_empty
= q
->last_used
= 0;
3770 ipw_write32(priv
, base
, q
->dma_addr
);
3771 ipw_write32(priv
, size
, count
);
3772 ipw_write32(priv
, read
, 0);
3773 ipw_write32(priv
, write
, 0);
3775 _ipw_read32(priv
, 0x90);
3778 static int ipw_queue_tx_init(struct ipw_priv
*priv
,
3779 struct clx2_tx_queue
*q
,
3780 int count
, u32 read
, u32 write
, u32 base
, u32 size
)
3782 struct pci_dev
*dev
= priv
->pci_dev
;
3784 q
->txb
= kmalloc(sizeof(q
->txb
[0]) * count
, GFP_KERNEL
);
3786 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3791 pci_alloc_consistent(dev
, sizeof(q
->bd
[0]) * count
, &q
->q
.dma_addr
);
3793 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3794 sizeof(q
->bd
[0]) * count
);
3800 ipw_queue_init(priv
, &q
->q
, count
, read
, write
, base
, size
);
3805 * Free one TFD, those at index [txq->q.last_used].
3806 * Do NOT advance any indexes
3811 static void ipw_queue_tx_free_tfd(struct ipw_priv
*priv
,
3812 struct clx2_tx_queue
*txq
)
3814 struct tfd_frame
*bd
= &txq
->bd
[txq
->q
.last_used
];
3815 struct pci_dev
*dev
= priv
->pci_dev
;
3819 if (bd
->control_flags
.message_type
== TX_HOST_COMMAND_TYPE
)
3820 /* nothing to cleanup after for host commands */
3824 if (le32_to_cpu(bd
->u
.data
.num_chunks
) > NUM_TFD_CHUNKS
) {
3825 IPW_ERROR("Too many chunks: %i\n",
3826 le32_to_cpu(bd
->u
.data
.num_chunks
));
3827 /** @todo issue fatal error, it is quite serious situation */
3831 /* unmap chunks if any */
3832 for (i
= 0; i
< le32_to_cpu(bd
->u
.data
.num_chunks
); i
++) {
3833 pci_unmap_single(dev
, le32_to_cpu(bd
->u
.data
.chunk_ptr
[i
]),
3834 le16_to_cpu(bd
->u
.data
.chunk_len
[i
]),
3836 if (txq
->txb
[txq
->q
.last_used
]) {
3837 libipw_txb_free(txq
->txb
[txq
->q
.last_used
]);
3838 txq
->txb
[txq
->q
.last_used
] = NULL
;
3844 * Deallocate DMA queue.
3846 * Empty queue by removing and destroying all BD's.
3852 static void ipw_queue_tx_free(struct ipw_priv
*priv
, struct clx2_tx_queue
*txq
)
3854 struct clx2_queue
*q
= &txq
->q
;
3855 struct pci_dev
*dev
= priv
->pci_dev
;
3860 /* first, empty all BD's */
3861 for (; q
->first_empty
!= q
->last_used
;
3862 q
->last_used
= ipw_queue_inc_wrap(q
->last_used
, q
->n_bd
)) {
3863 ipw_queue_tx_free_tfd(priv
, txq
);
3866 /* free buffers belonging to queue itself */
3867 pci_free_consistent(dev
, sizeof(txq
->bd
[0]) * q
->n_bd
, txq
->bd
,
3871 /* 0 fill whole structure */
3872 memset(txq
, 0, sizeof(*txq
));
3876 * Destroy all DMA queues and structures
3880 static void ipw_tx_queue_free(struct ipw_priv
*priv
)
3883 ipw_queue_tx_free(priv
, &priv
->txq_cmd
);
3886 ipw_queue_tx_free(priv
, &priv
->txq
[0]);
3887 ipw_queue_tx_free(priv
, &priv
->txq
[1]);
3888 ipw_queue_tx_free(priv
, &priv
->txq
[2]);
3889 ipw_queue_tx_free(priv
, &priv
->txq
[3]);
3892 static void ipw_create_bssid(struct ipw_priv
*priv
, u8
* bssid
)
3894 /* First 3 bytes are manufacturer */
3895 bssid
[0] = priv
->mac_addr
[0];
3896 bssid
[1] = priv
->mac_addr
[1];
3897 bssid
[2] = priv
->mac_addr
[2];
3899 /* Last bytes are random */
3900 get_random_bytes(&bssid
[3], ETH_ALEN
- 3);
3902 bssid
[0] &= 0xfe; /* clear multicast bit */
3903 bssid
[0] |= 0x02; /* set local assignment bit (IEEE802) */
3906 static u8
ipw_add_station(struct ipw_priv
*priv
, u8
* bssid
)
3908 struct ipw_station_entry entry
;
3911 for (i
= 0; i
< priv
->num_stations
; i
++) {
3912 if (!memcmp(priv
->stations
[i
], bssid
, ETH_ALEN
)) {
3913 /* Another node is active in network */
3914 priv
->missed_adhoc_beacons
= 0;
3915 if (!(priv
->config
& CFG_STATIC_CHANNEL
))
3916 /* when other nodes drop out, we drop out */
3917 priv
->config
&= ~CFG_ADHOC_PERSIST
;
3923 if (i
== MAX_STATIONS
)
3924 return IPW_INVALID_STATION
;
3926 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid
);
3929 entry
.support_mode
= 0;
3930 memcpy(entry
.mac_addr
, bssid
, ETH_ALEN
);
3931 memcpy(priv
->stations
[i
], bssid
, ETH_ALEN
);
3932 ipw_write_direct(priv
, IPW_STATION_TABLE_LOWER
+ i
* sizeof(entry
),
3933 &entry
, sizeof(entry
));
3934 priv
->num_stations
++;
3939 static u8
ipw_find_station(struct ipw_priv
*priv
, u8
* bssid
)
3943 for (i
= 0; i
< priv
->num_stations
; i
++)
3944 if (!memcmp(priv
->stations
[i
], bssid
, ETH_ALEN
))
3947 return IPW_INVALID_STATION
;
3950 static void ipw_send_disassociate(struct ipw_priv
*priv
, int quiet
)
3954 if (priv
->status
& STATUS_ASSOCIATING
) {
3955 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3956 schedule_work(&priv
->disassociate
);
3960 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
3961 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3965 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3967 priv
->assoc_request
.bssid
,
3968 priv
->assoc_request
.channel
);
3970 priv
->status
&= ~(STATUS_ASSOCIATING
| STATUS_ASSOCIATED
);
3971 priv
->status
|= STATUS_DISASSOCIATING
;
3974 priv
->assoc_request
.assoc_type
= HC_DISASSOC_QUIET
;
3976 priv
->assoc_request
.assoc_type
= HC_DISASSOCIATE
;
3978 err
= ipw_send_associate(priv
, &priv
->assoc_request
);
3980 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3987 static int ipw_disassociate(void *data
)
3989 struct ipw_priv
*priv
= data
;
3990 if (!(priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)))
3992 ipw_send_disassociate(data
, 0);
3993 netif_carrier_off(priv
->net_dev
);
3997 static void ipw_bg_disassociate(struct work_struct
*work
)
3999 struct ipw_priv
*priv
=
4000 container_of(work
, struct ipw_priv
, disassociate
);
4001 mutex_lock(&priv
->mutex
);
4002 ipw_disassociate(priv
);
4003 mutex_unlock(&priv
->mutex
);
4006 static void ipw_system_config(struct work_struct
*work
)
4008 struct ipw_priv
*priv
=
4009 container_of(work
, struct ipw_priv
, system_config
);
4011 #ifdef CONFIG_IPW2200_PROMISCUOUS
4012 if (priv
->prom_net_dev
&& netif_running(priv
->prom_net_dev
)) {
4013 priv
->sys_config
.accept_all_data_frames
= 1;
4014 priv
->sys_config
.accept_non_directed_frames
= 1;
4015 priv
->sys_config
.accept_all_mgmt_bcpr
= 1;
4016 priv
->sys_config
.accept_all_mgmt_frames
= 1;
4020 ipw_send_system_config(priv
);
4023 struct ipw_status_code
{
4028 static const struct ipw_status_code ipw_status_codes
[] = {
4029 {0x00, "Successful"},
4030 {0x01, "Unspecified failure"},
4031 {0x0A, "Cannot support all requested capabilities in the "
4032 "Capability information field"},
4033 {0x0B, "Reassociation denied due to inability to confirm that "
4034 "association exists"},
4035 {0x0C, "Association denied due to reason outside the scope of this "
4038 "Responding station does not support the specified authentication "
4041 "Received an Authentication frame with authentication sequence "
4042 "transaction sequence number out of expected sequence"},
4043 {0x0F, "Authentication rejected because of challenge failure"},
4044 {0x10, "Authentication rejected due to timeout waiting for next "
4045 "frame in sequence"},
4046 {0x11, "Association denied because AP is unable to handle additional "
4047 "associated stations"},
4049 "Association denied due to requesting station not supporting all "
4050 "of the datarates in the BSSBasicServiceSet Parameter"},
4052 "Association denied due to requesting station not supporting "
4053 "short preamble operation"},
4055 "Association denied due to requesting station not supporting "
4058 "Association denied due to requesting station not supporting "
4061 "Association denied due to requesting station not supporting "
4062 "short slot operation"},
4064 "Association denied due to requesting station not supporting "
4065 "DSSS-OFDM operation"},
4066 {0x28, "Invalid Information Element"},
4067 {0x29, "Group Cipher is not valid"},
4068 {0x2A, "Pairwise Cipher is not valid"},
4069 {0x2B, "AKMP is not valid"},
4070 {0x2C, "Unsupported RSN IE version"},
4071 {0x2D, "Invalid RSN IE Capabilities"},
4072 {0x2E, "Cipher suite is rejected per security policy"},
4075 static const char *ipw_get_status_code(u16 status
)
4078 for (i
= 0; i
< ARRAY_SIZE(ipw_status_codes
); i
++)
4079 if (ipw_status_codes
[i
].status
== (status
& 0xff))
4080 return ipw_status_codes
[i
].reason
;
4081 return "Unknown status value.";
4084 static void inline average_init(struct average
*avg
)
4086 memset(avg
, 0, sizeof(*avg
));
4089 #define DEPTH_RSSI 8
4090 #define DEPTH_NOISE 16
4091 static s16
exponential_average(s16 prev_avg
, s16 val
, u8 depth
)
4093 return ((depth
-1)*prev_avg
+ val
)/depth
;
4096 static void average_add(struct average
*avg
, s16 val
)
4098 avg
->sum
-= avg
->entries
[avg
->pos
];
4100 avg
->entries
[avg
->pos
++] = val
;
4101 if (unlikely(avg
->pos
== AVG_ENTRIES
)) {
4107 static s16
average_value(struct average
*avg
)
4109 if (!unlikely(avg
->init
)) {
4111 return avg
->sum
/ avg
->pos
;
4115 return avg
->sum
/ AVG_ENTRIES
;
4118 static void ipw_reset_stats(struct ipw_priv
*priv
)
4120 u32 len
= sizeof(u32
);
4124 average_init(&priv
->average_missed_beacons
);
4125 priv
->exp_avg_rssi
= -60;
4126 priv
->exp_avg_noise
= -85 + 0x100;
4128 priv
->last_rate
= 0;
4129 priv
->last_missed_beacons
= 0;
4130 priv
->last_rx_packets
= 0;
4131 priv
->last_tx_packets
= 0;
4132 priv
->last_tx_failures
= 0;
4134 /* Firmware managed, reset only when NIC is restarted, so we have to
4135 * normalize on the current value */
4136 ipw_get_ordinal(priv
, IPW_ORD_STAT_RX_ERR_CRC
,
4137 &priv
->last_rx_err
, &len
);
4138 ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_FAILURE
,
4139 &priv
->last_tx_failures
, &len
);
4141 /* Driver managed, reset with each association */
4142 priv
->missed_adhoc_beacons
= 0;
4143 priv
->missed_beacons
= 0;
4144 priv
->tx_packets
= 0;
4145 priv
->rx_packets
= 0;
4149 static u32
ipw_get_max_rate(struct ipw_priv
*priv
)
4152 u32 mask
= priv
->rates_mask
;
4153 /* If currently associated in B mode, restrict the maximum
4154 * rate match to B rates */
4155 if (priv
->assoc_request
.ieee_mode
== IPW_B_MODE
)
4156 mask
&= LIBIPW_CCK_RATES_MASK
;
4158 /* TODO: Verify that the rate is supported by the current rates
4161 while (i
&& !(mask
& i
))
4164 case LIBIPW_CCK_RATE_1MB_MASK
:
4166 case LIBIPW_CCK_RATE_2MB_MASK
:
4168 case LIBIPW_CCK_RATE_5MB_MASK
:
4170 case LIBIPW_OFDM_RATE_6MB_MASK
:
4172 case LIBIPW_OFDM_RATE_9MB_MASK
:
4174 case LIBIPW_CCK_RATE_11MB_MASK
:
4176 case LIBIPW_OFDM_RATE_12MB_MASK
:
4178 case LIBIPW_OFDM_RATE_18MB_MASK
:
4180 case LIBIPW_OFDM_RATE_24MB_MASK
:
4182 case LIBIPW_OFDM_RATE_36MB_MASK
:
4184 case LIBIPW_OFDM_RATE_48MB_MASK
:
4186 case LIBIPW_OFDM_RATE_54MB_MASK
:
4190 if (priv
->ieee
->mode
== IEEE_B
)
4196 static u32
ipw_get_current_rate(struct ipw_priv
*priv
)
4198 u32 rate
, len
= sizeof(rate
);
4201 if (!(priv
->status
& STATUS_ASSOCIATED
))
4204 if (priv
->tx_packets
> IPW_REAL_RATE_RX_PACKET_THRESHOLD
) {
4205 err
= ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_CURR_RATE
, &rate
,
4208 IPW_DEBUG_INFO("failed querying ordinals.\n");
4212 return ipw_get_max_rate(priv
);
4215 case IPW_TX_RATE_1MB
:
4217 case IPW_TX_RATE_2MB
:
4219 case IPW_TX_RATE_5MB
:
4221 case IPW_TX_RATE_6MB
:
4223 case IPW_TX_RATE_9MB
:
4225 case IPW_TX_RATE_11MB
:
4227 case IPW_TX_RATE_12MB
:
4229 case IPW_TX_RATE_18MB
:
4231 case IPW_TX_RATE_24MB
:
4233 case IPW_TX_RATE_36MB
:
4235 case IPW_TX_RATE_48MB
:
4237 case IPW_TX_RATE_54MB
:
4244 #define IPW_STATS_INTERVAL (2 * HZ)
4245 static void ipw_gather_stats(struct ipw_priv
*priv
)
4247 u32 rx_err
, rx_err_delta
, rx_packets_delta
;
4248 u32 tx_failures
, tx_failures_delta
, tx_packets_delta
;
4249 u32 missed_beacons_percent
, missed_beacons_delta
;
4251 u32 len
= sizeof(u32
);
4253 u32 beacon_quality
, signal_quality
, tx_quality
, rx_quality
,
4257 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
4262 /* Update the statistics */
4263 ipw_get_ordinal(priv
, IPW_ORD_STAT_MISSED_BEACONS
,
4264 &priv
->missed_beacons
, &len
);
4265 missed_beacons_delta
= priv
->missed_beacons
- priv
->last_missed_beacons
;
4266 priv
->last_missed_beacons
= priv
->missed_beacons
;
4267 if (priv
->assoc_request
.beacon_interval
) {
4268 missed_beacons_percent
= missed_beacons_delta
*
4269 (HZ
* le16_to_cpu(priv
->assoc_request
.beacon_interval
)) /
4270 (IPW_STATS_INTERVAL
* 10);
4272 missed_beacons_percent
= 0;
4274 average_add(&priv
->average_missed_beacons
, missed_beacons_percent
);
4276 ipw_get_ordinal(priv
, IPW_ORD_STAT_RX_ERR_CRC
, &rx_err
, &len
);
4277 rx_err_delta
= rx_err
- priv
->last_rx_err
;
4278 priv
->last_rx_err
= rx_err
;
4280 ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_FAILURE
, &tx_failures
, &len
);
4281 tx_failures_delta
= tx_failures
- priv
->last_tx_failures
;
4282 priv
->last_tx_failures
= tx_failures
;
4284 rx_packets_delta
= priv
->rx_packets
- priv
->last_rx_packets
;
4285 priv
->last_rx_packets
= priv
->rx_packets
;
4287 tx_packets_delta
= priv
->tx_packets
- priv
->last_tx_packets
;
4288 priv
->last_tx_packets
= priv
->tx_packets
;
4290 /* Calculate quality based on the following:
4292 * Missed beacon: 100% = 0, 0% = 70% missed
4293 * Rate: 60% = 1Mbs, 100% = Max
4294 * Rx and Tx errors represent a straight % of total Rx/Tx
4295 * RSSI: 100% = > -50, 0% = < -80
4296 * Rx errors: 100% = 0, 0% = 50% missed
4298 * The lowest computed quality is used.
4301 #define BEACON_THRESHOLD 5
4302 beacon_quality
= 100 - missed_beacons_percent
;
4303 if (beacon_quality
< BEACON_THRESHOLD
)
4306 beacon_quality
= (beacon_quality
- BEACON_THRESHOLD
) * 100 /
4307 (100 - BEACON_THRESHOLD
);
4308 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4309 beacon_quality
, missed_beacons_percent
);
4311 priv
->last_rate
= ipw_get_current_rate(priv
);
4312 max_rate
= ipw_get_max_rate(priv
);
4313 rate_quality
= priv
->last_rate
* 40 / max_rate
+ 60;
4314 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4315 rate_quality
, priv
->last_rate
/ 1000000);
4317 if (rx_packets_delta
> 100 && rx_packets_delta
+ rx_err_delta
)
4318 rx_quality
= 100 - (rx_err_delta
* 100) /
4319 (rx_packets_delta
+ rx_err_delta
);
4322 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4323 rx_quality
, rx_err_delta
, rx_packets_delta
);
4325 if (tx_packets_delta
> 100 && tx_packets_delta
+ tx_failures_delta
)
4326 tx_quality
= 100 - (tx_failures_delta
* 100) /
4327 (tx_packets_delta
+ tx_failures_delta
);
4330 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4331 tx_quality
, tx_failures_delta
, tx_packets_delta
);
4333 rssi
= priv
->exp_avg_rssi
;
4336 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) *
4337 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) -
4338 (priv
->ieee
->perfect_rssi
- rssi
) *
4339 (15 * (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) +
4340 62 * (priv
->ieee
->perfect_rssi
- rssi
))) /
4341 ((priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) *
4342 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
));
4343 if (signal_quality
> 100)
4344 signal_quality
= 100;
4345 else if (signal_quality
< 1)
4348 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4349 signal_quality
, rssi
);
4351 quality
= min(rx_quality
, signal_quality
);
4352 quality
= min(tx_quality
, quality
);
4353 quality
= min(rate_quality
, quality
);
4354 quality
= min(beacon_quality
, quality
);
4355 if (quality
== beacon_quality
)
4356 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4358 if (quality
== rate_quality
)
4359 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4361 if (quality
== tx_quality
)
4362 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4364 if (quality
== rx_quality
)
4365 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4367 if (quality
== signal_quality
)
4368 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4371 priv
->quality
= quality
;
4373 schedule_delayed_work(&priv
->gather_stats
, IPW_STATS_INTERVAL
);
4376 static void ipw_bg_gather_stats(struct work_struct
*work
)
4378 struct ipw_priv
*priv
=
4379 container_of(work
, struct ipw_priv
, gather_stats
.work
);
4380 mutex_lock(&priv
->mutex
);
4381 ipw_gather_stats(priv
);
4382 mutex_unlock(&priv
->mutex
);
4385 /* Missed beacon behavior:
4386 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4387 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4388 * Above disassociate threshold, give up and stop scanning.
4389 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4390 static void ipw_handle_missed_beacon(struct ipw_priv
*priv
,
4393 priv
->notif_missed_beacons
= missed_count
;
4395 if (missed_count
> priv
->disassociate_threshold
&&
4396 priv
->status
& STATUS_ASSOCIATED
) {
4397 /* If associated and we've hit the missed
4398 * beacon threshold, disassociate, turn
4399 * off roaming, and abort any active scans */
4400 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
4401 IPW_DL_STATE
| IPW_DL_ASSOC
,
4402 "Missed beacon: %d - disassociate\n", missed_count
);
4403 priv
->status
&= ~STATUS_ROAMING
;
4404 if (priv
->status
& STATUS_SCANNING
) {
4405 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
4407 "Aborting scan with missed beacon.\n");
4408 schedule_work(&priv
->abort_scan
);
4411 schedule_work(&priv
->disassociate
);
4415 if (priv
->status
& STATUS_ROAMING
) {
4416 /* If we are currently roaming, then just
4417 * print a debug statement... */
4418 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4419 "Missed beacon: %d - roam in progress\n",
4425 (missed_count
> priv
->roaming_threshold
&&
4426 missed_count
<= priv
->disassociate_threshold
)) {
4427 /* If we are not already roaming, set the ROAM
4428 * bit in the status and kick off a scan.
4429 * This can happen several times before we reach
4430 * disassociate_threshold. */
4431 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4432 "Missed beacon: %d - initiate "
4433 "roaming\n", missed_count
);
4434 if (!(priv
->status
& STATUS_ROAMING
)) {
4435 priv
->status
|= STATUS_ROAMING
;
4436 if (!(priv
->status
& STATUS_SCANNING
))
4437 schedule_delayed_work(&priv
->request_scan
, 0);
4442 if (priv
->status
& STATUS_SCANNING
&&
4443 missed_count
> IPW_MB_SCAN_CANCEL_THRESHOLD
) {
4444 /* Stop scan to keep fw from getting
4445 * stuck (only if we aren't roaming --
4446 * otherwise we'll never scan more than 2 or 3
4448 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
| IPW_DL_STATE
,
4449 "Aborting scan with missed beacon.\n");
4450 schedule_work(&priv
->abort_scan
);
4453 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count
);
4456 static void ipw_scan_event(struct work_struct
*work
)
4458 union iwreq_data wrqu
;
4460 struct ipw_priv
*priv
=
4461 container_of(work
, struct ipw_priv
, scan_event
.work
);
4463 wrqu
.data
.length
= 0;
4464 wrqu
.data
.flags
= 0;
4465 wireless_send_event(priv
->net_dev
, SIOCGIWSCAN
, &wrqu
, NULL
);
4468 static void handle_scan_event(struct ipw_priv
*priv
)
4470 /* Only userspace-requested scan completion events go out immediately */
4471 if (!priv
->user_requested_scan
) {
4472 if (!delayed_work_pending(&priv
->scan_event
))
4473 schedule_delayed_work(&priv
->scan_event
,
4474 round_jiffies_relative(msecs_to_jiffies(4000)));
4476 union iwreq_data wrqu
;
4478 priv
->user_requested_scan
= 0;
4479 cancel_delayed_work(&priv
->scan_event
);
4481 wrqu
.data
.length
= 0;
4482 wrqu
.data
.flags
= 0;
4483 wireless_send_event(priv
->net_dev
, SIOCGIWSCAN
, &wrqu
, NULL
);
4488 * Handle host notification packet.
4489 * Called from interrupt routine
4491 static void ipw_rx_notification(struct ipw_priv
*priv
,
4492 struct ipw_rx_notification
*notif
)
4494 DECLARE_SSID_BUF(ssid
);
4495 u16 size
= le16_to_cpu(notif
->size
);
4497 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif
->subtype
, size
);
4499 switch (notif
->subtype
) {
4500 case HOST_NOTIFICATION_STATUS_ASSOCIATED
:{
4501 struct notif_association
*assoc
= ¬if
->u
.assoc
;
4503 switch (assoc
->state
) {
4504 case CMAS_ASSOCIATED
:{
4505 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4507 "associated: '%s' %pM\n",
4508 print_ssid(ssid
, priv
->essid
,
4512 switch (priv
->ieee
->iw_mode
) {
4514 memcpy(priv
->ieee
->bssid
,
4515 priv
->bssid
, ETH_ALEN
);
4519 memcpy(priv
->ieee
->bssid
,
4520 priv
->bssid
, ETH_ALEN
);
4522 /* clear out the station table */
4523 priv
->num_stations
= 0;
4526 ("queueing adhoc check\n");
4527 schedule_delayed_work(
4535 priv
->status
&= ~STATUS_ASSOCIATING
;
4536 priv
->status
|= STATUS_ASSOCIATED
;
4537 schedule_work(&priv
->system_config
);
4539 #ifdef CONFIG_IPW2200_QOS
4540 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4541 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4542 if ((priv
->status
& STATUS_AUTH
) &&
4543 (IPW_GET_PACKET_STYPE(¬if
->u
.raw
)
4544 == IEEE80211_STYPE_ASSOC_RESP
)) {
4547 libipw_assoc_response
)
4549 && (size
<= 2314)) {
4559 libipw_rx_mgt(priv
->
4564 ¬if
->u
.raw
, &stats
);
4569 schedule_work(&priv
->link_up
);
4574 case CMAS_AUTHENTICATED
:{
4576 status
& (STATUS_ASSOCIATED
|
4578 struct notif_authenticate
*auth
4580 IPW_DEBUG(IPW_DL_NOTIF
|
4583 "deauthenticated: '%s' "
4585 ": (0x%04X) - %s\n",
4592 le16_to_cpu(auth
->status
),
4598 ~(STATUS_ASSOCIATING
|
4602 schedule_work(&priv
->link_down
);
4606 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4608 "authenticated: '%s' %pM\n",
4609 print_ssid(ssid
, priv
->essid
,
4616 if (priv
->status
& STATUS_AUTH
) {
4618 libipw_assoc_response
4622 libipw_assoc_response
4624 IPW_DEBUG(IPW_DL_NOTIF
|
4627 "association failed (0x%04X): %s\n",
4628 le16_to_cpu(resp
->status
),
4634 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4636 "disassociated: '%s' %pM\n",
4637 print_ssid(ssid
, priv
->essid
,
4642 ~(STATUS_DISASSOCIATING
|
4643 STATUS_ASSOCIATING
|
4644 STATUS_ASSOCIATED
| STATUS_AUTH
);
4645 if (priv
->assoc_network
4646 && (priv
->assoc_network
->
4648 WLAN_CAPABILITY_IBSS
))
4649 ipw_remove_current_network
4652 schedule_work(&priv
->link_down
);
4657 case CMAS_RX_ASSOC_RESP
:
4661 IPW_ERROR("assoc: unknown (%d)\n",
4669 case HOST_NOTIFICATION_STATUS_AUTHENTICATE
:{
4670 struct notif_authenticate
*auth
= ¬if
->u
.auth
;
4671 switch (auth
->state
) {
4672 case CMAS_AUTHENTICATED
:
4673 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4674 "authenticated: '%s' %pM\n",
4675 print_ssid(ssid
, priv
->essid
,
4678 priv
->status
|= STATUS_AUTH
;
4682 if (priv
->status
& STATUS_AUTH
) {
4683 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4685 "authentication failed (0x%04X): %s\n",
4686 le16_to_cpu(auth
->status
),
4687 ipw_get_status_code(le16_to_cpu
4691 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4693 "deauthenticated: '%s' %pM\n",
4694 print_ssid(ssid
, priv
->essid
,
4698 priv
->status
&= ~(STATUS_ASSOCIATING
|
4702 schedule_work(&priv
->link_down
);
4705 case CMAS_TX_AUTH_SEQ_1
:
4706 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4707 IPW_DL_ASSOC
, "AUTH_SEQ_1\n");
4709 case CMAS_RX_AUTH_SEQ_2
:
4710 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4711 IPW_DL_ASSOC
, "AUTH_SEQ_2\n");
4713 case CMAS_AUTH_SEQ_1_PASS
:
4714 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4715 IPW_DL_ASSOC
, "AUTH_SEQ_1_PASS\n");
4717 case CMAS_AUTH_SEQ_1_FAIL
:
4718 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4719 IPW_DL_ASSOC
, "AUTH_SEQ_1_FAIL\n");
4721 case CMAS_TX_AUTH_SEQ_3
:
4722 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4723 IPW_DL_ASSOC
, "AUTH_SEQ_3\n");
4725 case CMAS_RX_AUTH_SEQ_4
:
4726 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4727 IPW_DL_ASSOC
, "RX_AUTH_SEQ_4\n");
4729 case CMAS_AUTH_SEQ_2_PASS
:
4730 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4731 IPW_DL_ASSOC
, "AUTH_SEQ_2_PASS\n");
4733 case CMAS_AUTH_SEQ_2_FAIL
:
4734 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4735 IPW_DL_ASSOC
, "AUT_SEQ_2_FAIL\n");
4738 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4739 IPW_DL_ASSOC
, "TX_ASSOC\n");
4741 case CMAS_RX_ASSOC_RESP
:
4742 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4743 IPW_DL_ASSOC
, "RX_ASSOC_RESP\n");
4746 case CMAS_ASSOCIATED
:
4747 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4748 IPW_DL_ASSOC
, "ASSOCIATED\n");
4751 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4758 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT
:{
4759 struct notif_channel_result
*x
=
4760 ¬if
->u
.channel_result
;
4762 if (size
== sizeof(*x
)) {
4763 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4766 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4767 "(should be %zd)\n",
4773 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED
:{
4774 struct notif_scan_complete
*x
= ¬if
->u
.scan_complete
;
4775 if (size
== sizeof(*x
)) {
4777 ("Scan completed: type %d, %d channels, "
4778 "%d status\n", x
->scan_type
,
4779 x
->num_channels
, x
->status
);
4781 IPW_ERROR("Scan completed of wrong size %d "
4782 "(should be %zd)\n",
4787 ~(STATUS_SCANNING
| STATUS_SCAN_ABORTING
);
4789 wake_up_interruptible(&priv
->wait_state
);
4790 cancel_delayed_work(&priv
->scan_check
);
4792 if (priv
->status
& STATUS_EXIT_PENDING
)
4795 priv
->ieee
->scans
++;
4797 #ifdef CONFIG_IPW2200_MONITOR
4798 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
4799 priv
->status
|= STATUS_SCAN_FORCED
;
4800 schedule_delayed_work(&priv
->request_scan
, 0);
4803 priv
->status
&= ~STATUS_SCAN_FORCED
;
4804 #endif /* CONFIG_IPW2200_MONITOR */
4806 /* Do queued direct scans first */
4807 if (priv
->status
& STATUS_DIRECT_SCAN_PENDING
)
4808 schedule_delayed_work(&priv
->request_direct_scan
, 0);
4810 if (!(priv
->status
& (STATUS_ASSOCIATED
|
4811 STATUS_ASSOCIATING
|
4813 STATUS_DISASSOCIATING
)))
4814 schedule_work(&priv
->associate
);
4815 else if (priv
->status
& STATUS_ROAMING
) {
4816 if (x
->status
== SCAN_COMPLETED_STATUS_COMPLETE
)
4817 /* If a scan completed and we are in roam mode, then
4818 * the scan that completed was the one requested as a
4819 * result of entering roam... so, schedule the
4821 schedule_work(&priv
->roam
);
4823 /* Don't schedule if we aborted the scan */
4824 priv
->status
&= ~STATUS_ROAMING
;
4825 } else if (priv
->status
& STATUS_SCAN_PENDING
)
4826 schedule_delayed_work(&priv
->request_scan
, 0);
4827 else if (priv
->config
& CFG_BACKGROUND_SCAN
4828 && priv
->status
& STATUS_ASSOCIATED
)
4829 schedule_delayed_work(&priv
->request_scan
,
4830 round_jiffies_relative(HZ
));
4832 /* Send an empty event to user space.
4833 * We don't send the received data on the event because
4834 * it would require us to do complex transcoding, and
4835 * we want to minimise the work done in the irq handler
4836 * Use a request to extract the data.
4837 * Also, we generate this even for any scan, regardless
4838 * on how the scan was initiated. User space can just
4839 * sync on periodic scan to get fresh data...
4841 if (x
->status
== SCAN_COMPLETED_STATUS_COMPLETE
)
4842 handle_scan_event(priv
);
4846 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH
:{
4847 struct notif_frag_length
*x
= ¬if
->u
.frag_len
;
4849 if (size
== sizeof(*x
))
4850 IPW_ERROR("Frag length: %d\n",
4851 le16_to_cpu(x
->frag_length
));
4853 IPW_ERROR("Frag length of wrong size %d "
4854 "(should be %zd)\n",
4859 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION
:{
4860 struct notif_link_deterioration
*x
=
4861 ¬if
->u
.link_deterioration
;
4863 if (size
== sizeof(*x
)) {
4864 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4865 "link deterioration: type %d, cnt %d\n",
4866 x
->silence_notification_type
,
4868 memcpy(&priv
->last_link_deterioration
, x
,
4871 IPW_ERROR("Link Deterioration of wrong size %d "
4872 "(should be %zd)\n",
4878 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE
:{
4879 IPW_ERROR("Dino config\n");
4881 && priv
->hcmd
->cmd
!= HOST_CMD_DINO_CONFIG
)
4882 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4887 case HOST_NOTIFICATION_STATUS_BEACON_STATE
:{
4888 struct notif_beacon_state
*x
= ¬if
->u
.beacon_state
;
4889 if (size
!= sizeof(*x
)) {
4891 ("Beacon state of wrong size %d (should "
4892 "be %zd)\n", size
, sizeof(*x
));
4896 if (le32_to_cpu(x
->state
) ==
4897 HOST_NOTIFICATION_STATUS_BEACON_MISSING
)
4898 ipw_handle_missed_beacon(priv
,
4905 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY
:{
4906 struct notif_tgi_tx_key
*x
= ¬if
->u
.tgi_tx_key
;
4907 if (size
== sizeof(*x
)) {
4908 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4909 "0x%02x station %d\n",
4910 x
->key_state
, x
->security_type
,
4916 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4921 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS
:{
4922 struct notif_calibration
*x
= ¬if
->u
.calibration
;
4924 if (size
== sizeof(*x
)) {
4925 memcpy(&priv
->calib
, x
, sizeof(*x
));
4926 IPW_DEBUG_INFO("TODO: Calibration\n");
4931 ("Calibration of wrong size %d (should be %zd)\n",
4936 case HOST_NOTIFICATION_NOISE_STATS
:{
4937 if (size
== sizeof(u32
)) {
4938 priv
->exp_avg_noise
=
4939 exponential_average(priv
->exp_avg_noise
,
4940 (u8
) (le32_to_cpu(notif
->u
.noise
.value
) & 0xff),
4946 ("Noise stat is wrong size %d (should be %zd)\n",
4952 IPW_DEBUG_NOTIF("Unknown notification: "
4953 "subtype=%d,flags=0x%2x,size=%d\n",
4954 notif
->subtype
, notif
->flags
, size
);
4959 * Destroys all DMA structures and initialise them again
4962 * @return error code
4964 static int ipw_queue_reset(struct ipw_priv
*priv
)
4967 /** @todo customize queue sizes */
4968 int nTx
= 64, nTxCmd
= 8;
4969 ipw_tx_queue_free(priv
);
4971 rc
= ipw_queue_tx_init(priv
, &priv
->txq_cmd
, nTxCmd
,
4972 IPW_TX_CMD_QUEUE_READ_INDEX
,
4973 IPW_TX_CMD_QUEUE_WRITE_INDEX
,
4974 IPW_TX_CMD_QUEUE_BD_BASE
,
4975 IPW_TX_CMD_QUEUE_BD_SIZE
);
4977 IPW_ERROR("Tx Cmd queue init failed\n");
4981 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[0], nTx
,
4982 IPW_TX_QUEUE_0_READ_INDEX
,
4983 IPW_TX_QUEUE_0_WRITE_INDEX
,
4984 IPW_TX_QUEUE_0_BD_BASE
, IPW_TX_QUEUE_0_BD_SIZE
);
4986 IPW_ERROR("Tx 0 queue init failed\n");
4989 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[1], nTx
,
4990 IPW_TX_QUEUE_1_READ_INDEX
,
4991 IPW_TX_QUEUE_1_WRITE_INDEX
,
4992 IPW_TX_QUEUE_1_BD_BASE
, IPW_TX_QUEUE_1_BD_SIZE
);
4994 IPW_ERROR("Tx 1 queue init failed\n");
4997 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[2], nTx
,
4998 IPW_TX_QUEUE_2_READ_INDEX
,
4999 IPW_TX_QUEUE_2_WRITE_INDEX
,
5000 IPW_TX_QUEUE_2_BD_BASE
, IPW_TX_QUEUE_2_BD_SIZE
);
5002 IPW_ERROR("Tx 2 queue init failed\n");
5005 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[3], nTx
,
5006 IPW_TX_QUEUE_3_READ_INDEX
,
5007 IPW_TX_QUEUE_3_WRITE_INDEX
,
5008 IPW_TX_QUEUE_3_BD_BASE
, IPW_TX_QUEUE_3_BD_SIZE
);
5010 IPW_ERROR("Tx 3 queue init failed\n");
5014 priv
->rx_bufs_min
= 0;
5015 priv
->rx_pend_max
= 0;
5019 ipw_tx_queue_free(priv
);
5024 * Reclaim Tx queue entries no more used by NIC.
5026 * When FW advances 'R' index, all entries between old and
5027 * new 'R' index need to be reclaimed. As result, some free space
5028 * forms. If there is enough free space (> low mark), wake Tx queue.
5030 * @note Need to protect against garbage in 'R' index
5034 * @return Number of used entries remains in the queue
5036 static int ipw_queue_tx_reclaim(struct ipw_priv
*priv
,
5037 struct clx2_tx_queue
*txq
, int qindex
)
5041 struct clx2_queue
*q
= &txq
->q
;
5043 hw_tail
= ipw_read32(priv
, q
->reg_r
);
5044 if (hw_tail
>= q
->n_bd
) {
5046 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5050 for (; q
->last_used
!= hw_tail
;
5051 q
->last_used
= ipw_queue_inc_wrap(q
->last_used
, q
->n_bd
)) {
5052 ipw_queue_tx_free_tfd(priv
, txq
);
5056 if ((ipw_tx_queue_space(q
) > q
->low_mark
) &&
5058 netif_wake_queue(priv
->net_dev
);
5059 used
= q
->first_empty
- q
->last_used
;
5066 static int ipw_queue_tx_hcmd(struct ipw_priv
*priv
, int hcmd
, void *buf
,
5069 struct clx2_tx_queue
*txq
= &priv
->txq_cmd
;
5070 struct clx2_queue
*q
= &txq
->q
;
5071 struct tfd_frame
*tfd
;
5073 if (ipw_tx_queue_space(q
) < (sync
? 1 : 2)) {
5074 IPW_ERROR("No space for Tx\n");
5078 tfd
= &txq
->bd
[q
->first_empty
];
5079 txq
->txb
[q
->first_empty
] = NULL
;
5081 memset(tfd
, 0, sizeof(*tfd
));
5082 tfd
->control_flags
.message_type
= TX_HOST_COMMAND_TYPE
;
5083 tfd
->control_flags
.control_bits
= TFD_NEED_IRQ_MASK
;
5085 tfd
->u
.cmd
.index
= hcmd
;
5086 tfd
->u
.cmd
.length
= len
;
5087 memcpy(tfd
->u
.cmd
.payload
, buf
, len
);
5088 q
->first_empty
= ipw_queue_inc_wrap(q
->first_empty
, q
->n_bd
);
5089 ipw_write32(priv
, q
->reg_w
, q
->first_empty
);
5090 _ipw_read32(priv
, 0x90);
5096 * Rx theory of operation
5098 * The host allocates 32 DMA target addresses and passes the host address
5099 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5103 * The host/firmware share two index registers for managing the Rx buffers.
5105 * The READ index maps to the first position that the firmware may be writing
5106 * to -- the driver can read up to (but not including) this position and get
5108 * The READ index is managed by the firmware once the card is enabled.
5110 * The WRITE index maps to the last position the driver has read from -- the
5111 * position preceding WRITE is the last slot the firmware can place a packet.
5113 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5116 * During initialization the host sets up the READ queue position to the first
5117 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5119 * When the firmware places a packet in a buffer it will advance the READ index
5120 * and fire the RX interrupt. The driver can then query the READ index and
5121 * process as many packets as possible, moving the WRITE index forward as it
5122 * resets the Rx queue buffers with new memory.
5124 * The management in the driver is as follows:
5125 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5126 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5127 * to replensish the ipw->rxq->rx_free.
5128 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5129 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5130 * 'processed' and 'read' driver indexes as well)
5131 * + A received packet is processed and handed to the kernel network stack,
5132 * detached from the ipw->rxq. The driver 'processed' index is updated.
5133 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5134 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5135 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5136 * were enough free buffers and RX_STALLED is set it is cleared.
5141 * ipw_rx_queue_alloc() Allocates rx_free
5142 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5143 * ipw_rx_queue_restock
5144 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5145 * queue, updates firmware pointers, and updates
5146 * the WRITE index. If insufficient rx_free buffers
5147 * are available, schedules ipw_rx_queue_replenish
5149 * -- enable interrupts --
5150 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5151 * READ INDEX, detaching the SKB from the pool.
5152 * Moves the packet buffer from queue to rx_used.
5153 * Calls ipw_rx_queue_restock to refill any empty
5160 * If there are slots in the RX queue that need to be restocked,
5161 * and we have free pre-allocated buffers, fill the ranks as much
5162 * as we can pulling from rx_free.
5164 * This moves the 'write' index forward to catch up with 'processed', and
5165 * also updates the memory address in the firmware to reference the new
5168 static void ipw_rx_queue_restock(struct ipw_priv
*priv
)
5170 struct ipw_rx_queue
*rxq
= priv
->rxq
;
5171 struct list_head
*element
;
5172 struct ipw_rx_mem_buffer
*rxb
;
5173 unsigned long flags
;
5176 spin_lock_irqsave(&rxq
->lock
, flags
);
5178 while ((ipw_rx_queue_space(rxq
) > 0) && (rxq
->free_count
)) {
5179 element
= rxq
->rx_free
.next
;
5180 rxb
= list_entry(element
, struct ipw_rx_mem_buffer
, list
);
5183 ipw_write32(priv
, IPW_RFDS_TABLE_LOWER
+ rxq
->write
* RFD_SIZE
,
5185 rxq
->queue
[rxq
->write
] = rxb
;
5186 rxq
->write
= (rxq
->write
+ 1) % RX_QUEUE_SIZE
;
5189 spin_unlock_irqrestore(&rxq
->lock
, flags
);
5191 /* If the pre-allocated buffer pool is dropping low, schedule to
5193 if (rxq
->free_count
<= RX_LOW_WATERMARK
)
5194 schedule_work(&priv
->rx_replenish
);
5196 /* If we've added more space for the firmware to place data, tell it */
5197 if (write
!= rxq
->write
)
5198 ipw_write32(priv
, IPW_RX_WRITE_INDEX
, rxq
->write
);
5202 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5203 * Also restock the Rx queue via ipw_rx_queue_restock.
5205 * This is called as a scheduled work item (except for during intialization)
5207 static void ipw_rx_queue_replenish(void *data
)
5209 struct ipw_priv
*priv
= data
;
5210 struct ipw_rx_queue
*rxq
= priv
->rxq
;
5211 struct list_head
*element
;
5212 struct ipw_rx_mem_buffer
*rxb
;
5213 unsigned long flags
;
5215 spin_lock_irqsave(&rxq
->lock
, flags
);
5216 while (!list_empty(&rxq
->rx_used
)) {
5217 element
= rxq
->rx_used
.next
;
5218 rxb
= list_entry(element
, struct ipw_rx_mem_buffer
, list
);
5219 rxb
->skb
= alloc_skb(IPW_RX_BUF_SIZE
, GFP_ATOMIC
);
5221 printk(KERN_CRIT
"%s: Can not allocate SKB buffers.\n",
5222 priv
->net_dev
->name
);
5223 /* We don't reschedule replenish work here -- we will
5224 * call the restock method and if it still needs
5225 * more buffers it will schedule replenish */
5231 pci_map_single(priv
->pci_dev
, rxb
->skb
->data
,
5232 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
5234 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
5237 spin_unlock_irqrestore(&rxq
->lock
, flags
);
5239 ipw_rx_queue_restock(priv
);
5242 static void ipw_bg_rx_queue_replenish(struct work_struct
*work
)
5244 struct ipw_priv
*priv
=
5245 container_of(work
, struct ipw_priv
, rx_replenish
);
5246 mutex_lock(&priv
->mutex
);
5247 ipw_rx_queue_replenish(priv
);
5248 mutex_unlock(&priv
->mutex
);
5251 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5252 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5253 * This free routine walks the list of POOL entries and if SKB is set to
5254 * non NULL it is unmapped and freed
5256 static void ipw_rx_queue_free(struct ipw_priv
*priv
, struct ipw_rx_queue
*rxq
)
5263 for (i
= 0; i
< RX_QUEUE_SIZE
+ RX_FREE_BUFFERS
; i
++) {
5264 if (rxq
->pool
[i
].skb
!= NULL
) {
5265 pci_unmap_single(priv
->pci_dev
, rxq
->pool
[i
].dma_addr
,
5266 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
5267 dev_kfree_skb(rxq
->pool
[i
].skb
);
5274 static struct ipw_rx_queue
*ipw_rx_queue_alloc(struct ipw_priv
*priv
)
5276 struct ipw_rx_queue
*rxq
;
5279 rxq
= kzalloc(sizeof(*rxq
), GFP_KERNEL
);
5280 if (unlikely(!rxq
)) {
5281 IPW_ERROR("memory allocation failed\n");
5284 spin_lock_init(&rxq
->lock
);
5285 INIT_LIST_HEAD(&rxq
->rx_free
);
5286 INIT_LIST_HEAD(&rxq
->rx_used
);
5288 /* Fill the rx_used queue with _all_ of the Rx buffers */
5289 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++)
5290 list_add_tail(&rxq
->pool
[i
].list
, &rxq
->rx_used
);
5292 /* Set us so that we have processed and used all buffers, but have
5293 * not restocked the Rx queue with fresh buffers */
5294 rxq
->read
= rxq
->write
= 0;
5295 rxq
->free_count
= 0;
5300 static int ipw_is_rate_in_mask(struct ipw_priv
*priv
, int ieee_mode
, u8 rate
)
5302 rate
&= ~LIBIPW_BASIC_RATE_MASK
;
5303 if (ieee_mode
== IEEE_A
) {
5305 case LIBIPW_OFDM_RATE_6MB
:
5306 return priv
->rates_mask
& LIBIPW_OFDM_RATE_6MB_MASK
?
5308 case LIBIPW_OFDM_RATE_9MB
:
5309 return priv
->rates_mask
& LIBIPW_OFDM_RATE_9MB_MASK
?
5311 case LIBIPW_OFDM_RATE_12MB
:
5313 rates_mask
& LIBIPW_OFDM_RATE_12MB_MASK
? 1 : 0;
5314 case LIBIPW_OFDM_RATE_18MB
:
5316 rates_mask
& LIBIPW_OFDM_RATE_18MB_MASK
? 1 : 0;
5317 case LIBIPW_OFDM_RATE_24MB
:
5319 rates_mask
& LIBIPW_OFDM_RATE_24MB_MASK
? 1 : 0;
5320 case LIBIPW_OFDM_RATE_36MB
:
5322 rates_mask
& LIBIPW_OFDM_RATE_36MB_MASK
? 1 : 0;
5323 case LIBIPW_OFDM_RATE_48MB
:
5325 rates_mask
& LIBIPW_OFDM_RATE_48MB_MASK
? 1 : 0;
5326 case LIBIPW_OFDM_RATE_54MB
:
5328 rates_mask
& LIBIPW_OFDM_RATE_54MB_MASK
? 1 : 0;
5336 case LIBIPW_CCK_RATE_1MB
:
5337 return priv
->rates_mask
& LIBIPW_CCK_RATE_1MB_MASK
? 1 : 0;
5338 case LIBIPW_CCK_RATE_2MB
:
5339 return priv
->rates_mask
& LIBIPW_CCK_RATE_2MB_MASK
? 1 : 0;
5340 case LIBIPW_CCK_RATE_5MB
:
5341 return priv
->rates_mask
& LIBIPW_CCK_RATE_5MB_MASK
? 1 : 0;
5342 case LIBIPW_CCK_RATE_11MB
:
5343 return priv
->rates_mask
& LIBIPW_CCK_RATE_11MB_MASK
? 1 : 0;
5346 /* If we are limited to B modulations, bail at this point */
5347 if (ieee_mode
== IEEE_B
)
5352 case LIBIPW_OFDM_RATE_6MB
:
5353 return priv
->rates_mask
& LIBIPW_OFDM_RATE_6MB_MASK
? 1 : 0;
5354 case LIBIPW_OFDM_RATE_9MB
:
5355 return priv
->rates_mask
& LIBIPW_OFDM_RATE_9MB_MASK
? 1 : 0;
5356 case LIBIPW_OFDM_RATE_12MB
:
5357 return priv
->rates_mask
& LIBIPW_OFDM_RATE_12MB_MASK
? 1 : 0;
5358 case LIBIPW_OFDM_RATE_18MB
:
5359 return priv
->rates_mask
& LIBIPW_OFDM_RATE_18MB_MASK
? 1 : 0;
5360 case LIBIPW_OFDM_RATE_24MB
:
5361 return priv
->rates_mask
& LIBIPW_OFDM_RATE_24MB_MASK
? 1 : 0;
5362 case LIBIPW_OFDM_RATE_36MB
:
5363 return priv
->rates_mask
& LIBIPW_OFDM_RATE_36MB_MASK
? 1 : 0;
5364 case LIBIPW_OFDM_RATE_48MB
:
5365 return priv
->rates_mask
& LIBIPW_OFDM_RATE_48MB_MASK
? 1 : 0;
5366 case LIBIPW_OFDM_RATE_54MB
:
5367 return priv
->rates_mask
& LIBIPW_OFDM_RATE_54MB_MASK
? 1 : 0;
5373 static int ipw_compatible_rates(struct ipw_priv
*priv
,
5374 const struct libipw_network
*network
,
5375 struct ipw_supported_rates
*rates
)
5379 memset(rates
, 0, sizeof(*rates
));
5380 num_rates
= min(network
->rates_len
, (u8
) IPW_MAX_RATES
);
5381 rates
->num_rates
= 0;
5382 for (i
= 0; i
< num_rates
; i
++) {
5383 if (!ipw_is_rate_in_mask(priv
, network
->mode
,
5384 network
->rates
[i
])) {
5386 if (network
->rates
[i
] & LIBIPW_BASIC_RATE_MASK
) {
5387 IPW_DEBUG_SCAN("Adding masked mandatory "
5390 rates
->supported_rates
[rates
->num_rates
++] =
5395 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5396 network
->rates
[i
], priv
->rates_mask
);
5400 rates
->supported_rates
[rates
->num_rates
++] = network
->rates
[i
];
5403 num_rates
= min(network
->rates_ex_len
,
5404 (u8
) (IPW_MAX_RATES
- num_rates
));
5405 for (i
= 0; i
< num_rates
; i
++) {
5406 if (!ipw_is_rate_in_mask(priv
, network
->mode
,
5407 network
->rates_ex
[i
])) {
5408 if (network
->rates_ex
[i
] & LIBIPW_BASIC_RATE_MASK
) {
5409 IPW_DEBUG_SCAN("Adding masked mandatory "
5411 network
->rates_ex
[i
]);
5412 rates
->supported_rates
[rates
->num_rates
++] =
5417 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5418 network
->rates_ex
[i
], priv
->rates_mask
);
5422 rates
->supported_rates
[rates
->num_rates
++] =
5423 network
->rates_ex
[i
];
5429 static void ipw_copy_rates(struct ipw_supported_rates
*dest
,
5430 const struct ipw_supported_rates
*src
)
5433 for (i
= 0; i
< src
->num_rates
; i
++)
5434 dest
->supported_rates
[i
] = src
->supported_rates
[i
];
5435 dest
->num_rates
= src
->num_rates
;
5438 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5439 * mask should ever be used -- right now all callers to add the scan rates are
5440 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5441 static void ipw_add_cck_scan_rates(struct ipw_supported_rates
*rates
,
5442 u8 modulation
, u32 rate_mask
)
5444 u8 basic_mask
= (LIBIPW_OFDM_MODULATION
== modulation
) ?
5445 LIBIPW_BASIC_RATE_MASK
: 0;
5447 if (rate_mask
& LIBIPW_CCK_RATE_1MB_MASK
)
5448 rates
->supported_rates
[rates
->num_rates
++] =
5449 LIBIPW_BASIC_RATE_MASK
| LIBIPW_CCK_RATE_1MB
;
5451 if (rate_mask
& LIBIPW_CCK_RATE_2MB_MASK
)
5452 rates
->supported_rates
[rates
->num_rates
++] =
5453 LIBIPW_BASIC_RATE_MASK
| LIBIPW_CCK_RATE_2MB
;
5455 if (rate_mask
& LIBIPW_CCK_RATE_5MB_MASK
)
5456 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5457 LIBIPW_CCK_RATE_5MB
;
5459 if (rate_mask
& LIBIPW_CCK_RATE_11MB_MASK
)
5460 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5461 LIBIPW_CCK_RATE_11MB
;
5464 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates
*rates
,
5465 u8 modulation
, u32 rate_mask
)
5467 u8 basic_mask
= (LIBIPW_OFDM_MODULATION
== modulation
) ?
5468 LIBIPW_BASIC_RATE_MASK
: 0;
5470 if (rate_mask
& LIBIPW_OFDM_RATE_6MB_MASK
)
5471 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5472 LIBIPW_OFDM_RATE_6MB
;
5474 if (rate_mask
& LIBIPW_OFDM_RATE_9MB_MASK
)
5475 rates
->supported_rates
[rates
->num_rates
++] =
5476 LIBIPW_OFDM_RATE_9MB
;
5478 if (rate_mask
& LIBIPW_OFDM_RATE_12MB_MASK
)
5479 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5480 LIBIPW_OFDM_RATE_12MB
;
5482 if (rate_mask
& LIBIPW_OFDM_RATE_18MB_MASK
)
5483 rates
->supported_rates
[rates
->num_rates
++] =
5484 LIBIPW_OFDM_RATE_18MB
;
5486 if (rate_mask
& LIBIPW_OFDM_RATE_24MB_MASK
)
5487 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5488 LIBIPW_OFDM_RATE_24MB
;
5490 if (rate_mask
& LIBIPW_OFDM_RATE_36MB_MASK
)
5491 rates
->supported_rates
[rates
->num_rates
++] =
5492 LIBIPW_OFDM_RATE_36MB
;
5494 if (rate_mask
& LIBIPW_OFDM_RATE_48MB_MASK
)
5495 rates
->supported_rates
[rates
->num_rates
++] =
5496 LIBIPW_OFDM_RATE_48MB
;
5498 if (rate_mask
& LIBIPW_OFDM_RATE_54MB_MASK
)
5499 rates
->supported_rates
[rates
->num_rates
++] =
5500 LIBIPW_OFDM_RATE_54MB
;
5503 struct ipw_network_match
{
5504 struct libipw_network
*network
;
5505 struct ipw_supported_rates rates
;
5508 static int ipw_find_adhoc_network(struct ipw_priv
*priv
,
5509 struct ipw_network_match
*match
,
5510 struct libipw_network
*network
,
5513 struct ipw_supported_rates rates
;
5514 DECLARE_SSID_BUF(ssid
);
5516 /* Verify that this network's capability is compatible with the
5517 * current mode (AdHoc or Infrastructure) */
5518 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
5519 !(network
->capability
& WLAN_CAPABILITY_IBSS
))) {
5520 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5521 "capability mismatch.\n",
5522 print_ssid(ssid
, network
->ssid
,
5528 if (unlikely(roaming
)) {
5529 /* If we are roaming, then ensure check if this is a valid
5530 * network to try and roam to */
5531 if ((network
->ssid_len
!= match
->network
->ssid_len
) ||
5532 memcmp(network
->ssid
, match
->network
->ssid
,
5533 network
->ssid_len
)) {
5534 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5535 "because of non-network ESSID.\n",
5536 print_ssid(ssid
, network
->ssid
,
5542 /* If an ESSID has been configured then compare the broadcast
5544 if ((priv
->config
& CFG_STATIC_ESSID
) &&
5545 ((network
->ssid_len
!= priv
->essid_len
) ||
5546 memcmp(network
->ssid
, priv
->essid
,
5547 min(network
->ssid_len
, priv
->essid_len
)))) {
5548 char escaped
[IW_ESSID_MAX_SIZE
* 2 + 1];
5551 print_ssid(ssid
, network
->ssid
,
5554 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5555 "because of ESSID mismatch: '%s'.\n",
5556 escaped
, network
->bssid
,
5557 print_ssid(ssid
, priv
->essid
,
5563 /* If the old network rate is better than this one, don't bother
5564 * testing everything else. */
5566 if (network
->time_stamp
[0] < match
->network
->time_stamp
[0]) {
5567 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5568 "current network.\n",
5569 print_ssid(ssid
, match
->network
->ssid
,
5570 match
->network
->ssid_len
));
5572 } else if (network
->time_stamp
[1] < match
->network
->time_stamp
[1]) {
5573 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5574 "current network.\n",
5575 print_ssid(ssid
, match
->network
->ssid
,
5576 match
->network
->ssid_len
));
5580 /* Now go through and see if the requested network is valid... */
5581 if (priv
->ieee
->scan_age
!= 0 &&
5582 time_after(jiffies
, network
->last_scanned
+ priv
->ieee
->scan_age
)) {
5583 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5584 "because of age: %ums.\n",
5585 print_ssid(ssid
, network
->ssid
,
5588 jiffies_to_msecs(jiffies
-
5589 network
->last_scanned
));
5593 if ((priv
->config
& CFG_STATIC_CHANNEL
) &&
5594 (network
->channel
!= priv
->channel
)) {
5595 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5596 "because of channel mismatch: %d != %d.\n",
5597 print_ssid(ssid
, network
->ssid
,
5600 network
->channel
, priv
->channel
);
5604 /* Verify privacy compatibility */
5605 if (((priv
->capability
& CAP_PRIVACY_ON
) ? 1 : 0) !=
5606 ((network
->capability
& WLAN_CAPABILITY_PRIVACY
) ? 1 : 0)) {
5607 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5608 "because of privacy mismatch: %s != %s.\n",
5609 print_ssid(ssid
, network
->ssid
,
5613 capability
& CAP_PRIVACY_ON
? "on" : "off",
5615 capability
& WLAN_CAPABILITY_PRIVACY
? "on" :
5620 if (!memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
)) {
5621 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5622 "because of the same BSSID match: %pM"
5623 ".\n", print_ssid(ssid
, network
->ssid
,
5630 /* Filter out any incompatible freq / mode combinations */
5631 if (!libipw_is_valid_mode(priv
->ieee
, network
->mode
)) {
5632 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5633 "because of invalid frequency/mode "
5635 print_ssid(ssid
, network
->ssid
,
5641 /* Ensure that the rates supported by the driver are compatible with
5642 * this AP, including verification of basic rates (mandatory) */
5643 if (!ipw_compatible_rates(priv
, network
, &rates
)) {
5644 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5645 "because configured rate mask excludes "
5646 "AP mandatory rate.\n",
5647 print_ssid(ssid
, network
->ssid
,
5653 if (rates
.num_rates
== 0) {
5654 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5655 "because of no compatible rates.\n",
5656 print_ssid(ssid
, network
->ssid
,
5662 /* TODO: Perform any further minimal comparititive tests. We do not
5663 * want to put too much policy logic here; intelligent scan selection
5664 * should occur within a generic IEEE 802.11 user space tool. */
5666 /* Set up 'new' AP to this network */
5667 ipw_copy_rates(&match
->rates
, &rates
);
5668 match
->network
= network
;
5669 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5670 print_ssid(ssid
, network
->ssid
, network
->ssid_len
),
5676 static void ipw_merge_adhoc_network(struct work_struct
*work
)
5678 DECLARE_SSID_BUF(ssid
);
5679 struct ipw_priv
*priv
=
5680 container_of(work
, struct ipw_priv
, merge_networks
);
5681 struct libipw_network
*network
= NULL
;
5682 struct ipw_network_match match
= {
5683 .network
= priv
->assoc_network
5686 if ((priv
->status
& STATUS_ASSOCIATED
) &&
5687 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)) {
5688 /* First pass through ROAM process -- look for a better
5690 unsigned long flags
;
5692 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
5693 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
) {
5694 if (network
!= priv
->assoc_network
)
5695 ipw_find_adhoc_network(priv
, &match
, network
,
5698 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
5700 if (match
.network
== priv
->assoc_network
) {
5701 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5706 mutex_lock(&priv
->mutex
);
5707 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)) {
5708 IPW_DEBUG_MERGE("remove network %s\n",
5709 print_ssid(ssid
, priv
->essid
,
5711 ipw_remove_current_network(priv
);
5714 ipw_disassociate(priv
);
5715 priv
->assoc_network
= match
.network
;
5716 mutex_unlock(&priv
->mutex
);
5721 static int ipw_best_network(struct ipw_priv
*priv
,
5722 struct ipw_network_match
*match
,
5723 struct libipw_network
*network
, int roaming
)
5725 struct ipw_supported_rates rates
;
5726 DECLARE_SSID_BUF(ssid
);
5728 /* Verify that this network's capability is compatible with the
5729 * current mode (AdHoc or Infrastructure) */
5730 if ((priv
->ieee
->iw_mode
== IW_MODE_INFRA
&&
5731 !(network
->capability
& WLAN_CAPABILITY_ESS
)) ||
5732 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
5733 !(network
->capability
& WLAN_CAPABILITY_IBSS
))) {
5734 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5735 "capability mismatch.\n",
5736 print_ssid(ssid
, network
->ssid
,
5742 if (unlikely(roaming
)) {
5743 /* If we are roaming, then ensure check if this is a valid
5744 * network to try and roam to */
5745 if ((network
->ssid_len
!= match
->network
->ssid_len
) ||
5746 memcmp(network
->ssid
, match
->network
->ssid
,
5747 network
->ssid_len
)) {
5748 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5749 "because of non-network ESSID.\n",
5750 print_ssid(ssid
, network
->ssid
,
5756 /* If an ESSID has been configured then compare the broadcast
5758 if ((priv
->config
& CFG_STATIC_ESSID
) &&
5759 ((network
->ssid_len
!= priv
->essid_len
) ||
5760 memcmp(network
->ssid
, priv
->essid
,
5761 min(network
->ssid_len
, priv
->essid_len
)))) {
5762 char escaped
[IW_ESSID_MAX_SIZE
* 2 + 1];
5764 print_ssid(ssid
, network
->ssid
,
5767 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5768 "because of ESSID mismatch: '%s'.\n",
5769 escaped
, network
->bssid
,
5770 print_ssid(ssid
, priv
->essid
,
5776 /* If the old network rate is better than this one, don't bother
5777 * testing everything else. */
5778 if (match
->network
&& match
->network
->stats
.rssi
> network
->stats
.rssi
) {
5779 char escaped
[IW_ESSID_MAX_SIZE
* 2 + 1];
5781 print_ssid(ssid
, network
->ssid
, network
->ssid_len
),
5783 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5784 "'%s (%pM)' has a stronger signal.\n",
5785 escaped
, network
->bssid
,
5786 print_ssid(ssid
, match
->network
->ssid
,
5787 match
->network
->ssid_len
),
5788 match
->network
->bssid
);
5792 /* If this network has already had an association attempt within the
5793 * last 3 seconds, do not try and associate again... */
5794 if (network
->last_associate
&&
5795 time_after(network
->last_associate
+ (HZ
* 3UL), jiffies
)) {
5796 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5797 "because of storming (%ums since last "
5798 "assoc attempt).\n",
5799 print_ssid(ssid
, network
->ssid
,
5802 jiffies_to_msecs(jiffies
-
5803 network
->last_associate
));
5807 /* Now go through and see if the requested network is valid... */
5808 if (priv
->ieee
->scan_age
!= 0 &&
5809 time_after(jiffies
, network
->last_scanned
+ priv
->ieee
->scan_age
)) {
5810 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5811 "because of age: %ums.\n",
5812 print_ssid(ssid
, network
->ssid
,
5815 jiffies_to_msecs(jiffies
-
5816 network
->last_scanned
));
5820 if ((priv
->config
& CFG_STATIC_CHANNEL
) &&
5821 (network
->channel
!= priv
->channel
)) {
5822 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5823 "because of channel mismatch: %d != %d.\n",
5824 print_ssid(ssid
, network
->ssid
,
5827 network
->channel
, priv
->channel
);
5831 /* Verify privacy compatibility */
5832 if (((priv
->capability
& CAP_PRIVACY_ON
) ? 1 : 0) !=
5833 ((network
->capability
& WLAN_CAPABILITY_PRIVACY
) ? 1 : 0)) {
5834 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5835 "because of privacy mismatch: %s != %s.\n",
5836 print_ssid(ssid
, network
->ssid
,
5839 priv
->capability
& CAP_PRIVACY_ON
? "on" :
5841 network
->capability
&
5842 WLAN_CAPABILITY_PRIVACY
? "on" : "off");
5846 if ((priv
->config
& CFG_STATIC_BSSID
) &&
5847 memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
)) {
5848 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5849 "because of BSSID mismatch: %pM.\n",
5850 print_ssid(ssid
, network
->ssid
,
5852 network
->bssid
, priv
->bssid
);
5856 /* Filter out any incompatible freq / mode combinations */
5857 if (!libipw_is_valid_mode(priv
->ieee
, network
->mode
)) {
5858 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5859 "because of invalid frequency/mode "
5861 print_ssid(ssid
, network
->ssid
,
5867 /* Filter out invalid channel in current GEO */
5868 if (!libipw_is_valid_channel(priv
->ieee
, network
->channel
)) {
5869 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5870 "because of invalid channel in current GEO\n",
5871 print_ssid(ssid
, network
->ssid
,
5877 /* Ensure that the rates supported by the driver are compatible with
5878 * this AP, including verification of basic rates (mandatory) */
5879 if (!ipw_compatible_rates(priv
, network
, &rates
)) {
5880 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5881 "because configured rate mask excludes "
5882 "AP mandatory rate.\n",
5883 print_ssid(ssid
, network
->ssid
,
5889 if (rates
.num_rates
== 0) {
5890 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5891 "because of no compatible rates.\n",
5892 print_ssid(ssid
, network
->ssid
,
5898 /* TODO: Perform any further minimal comparititive tests. We do not
5899 * want to put too much policy logic here; intelligent scan selection
5900 * should occur within a generic IEEE 802.11 user space tool. */
5902 /* Set up 'new' AP to this network */
5903 ipw_copy_rates(&match
->rates
, &rates
);
5904 match
->network
= network
;
5906 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5907 print_ssid(ssid
, network
->ssid
, network
->ssid_len
),
5913 static void ipw_adhoc_create(struct ipw_priv
*priv
,
5914 struct libipw_network
*network
)
5916 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
5920 * For the purposes of scanning, we can set our wireless mode
5921 * to trigger scans across combinations of bands, but when it
5922 * comes to creating a new ad-hoc network, we have tell the FW
5923 * exactly which band to use.
5925 * We also have the possibility of an invalid channel for the
5926 * chossen band. Attempting to create a new ad-hoc network
5927 * with an invalid channel for wireless mode will trigger a
5931 switch (libipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
5932 case LIBIPW_52GHZ_BAND
:
5933 network
->mode
= IEEE_A
;
5934 i
= libipw_channel_to_index(priv
->ieee
, priv
->channel
);
5936 if (geo
->a
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
) {
5937 IPW_WARNING("Overriding invalid channel\n");
5938 priv
->channel
= geo
->a
[0].channel
;
5942 case LIBIPW_24GHZ_BAND
:
5943 if (priv
->ieee
->mode
& IEEE_G
)
5944 network
->mode
= IEEE_G
;
5946 network
->mode
= IEEE_B
;
5947 i
= libipw_channel_to_index(priv
->ieee
, priv
->channel
);
5949 if (geo
->bg
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
) {
5950 IPW_WARNING("Overriding invalid channel\n");
5951 priv
->channel
= geo
->bg
[0].channel
;
5956 IPW_WARNING("Overriding invalid channel\n");
5957 if (priv
->ieee
->mode
& IEEE_A
) {
5958 network
->mode
= IEEE_A
;
5959 priv
->channel
= geo
->a
[0].channel
;
5960 } else if (priv
->ieee
->mode
& IEEE_G
) {
5961 network
->mode
= IEEE_G
;
5962 priv
->channel
= geo
->bg
[0].channel
;
5964 network
->mode
= IEEE_B
;
5965 priv
->channel
= geo
->bg
[0].channel
;
5970 network
->channel
= priv
->channel
;
5971 priv
->config
|= CFG_ADHOC_PERSIST
;
5972 ipw_create_bssid(priv
, network
->bssid
);
5973 network
->ssid_len
= priv
->essid_len
;
5974 memcpy(network
->ssid
, priv
->essid
, priv
->essid_len
);
5975 memset(&network
->stats
, 0, sizeof(network
->stats
));
5976 network
->capability
= WLAN_CAPABILITY_IBSS
;
5977 if (!(priv
->config
& CFG_PREAMBLE_LONG
))
5978 network
->capability
|= WLAN_CAPABILITY_SHORT_PREAMBLE
;
5979 if (priv
->capability
& CAP_PRIVACY_ON
)
5980 network
->capability
|= WLAN_CAPABILITY_PRIVACY
;
5981 network
->rates_len
= min(priv
->rates
.num_rates
, MAX_RATES_LENGTH
);
5982 memcpy(network
->rates
, priv
->rates
.supported_rates
, network
->rates_len
);
5983 network
->rates_ex_len
= priv
->rates
.num_rates
- network
->rates_len
;
5984 memcpy(network
->rates_ex
,
5985 &priv
->rates
.supported_rates
[network
->rates_len
],
5986 network
->rates_ex_len
);
5987 network
->last_scanned
= 0;
5989 network
->last_associate
= 0;
5990 network
->time_stamp
[0] = 0;
5991 network
->time_stamp
[1] = 0;
5992 network
->beacon_interval
= 100; /* Default */
5993 network
->listen_interval
= 10; /* Default */
5994 network
->atim_window
= 0; /* Default */
5995 network
->wpa_ie_len
= 0;
5996 network
->rsn_ie_len
= 0;
5999 static void ipw_send_tgi_tx_key(struct ipw_priv
*priv
, int type
, int index
)
6001 struct ipw_tgi_tx_key key
;
6003 if (!(priv
->ieee
->sec
.flags
& (1 << index
)))
6007 memcpy(key
.key
, priv
->ieee
->sec
.keys
[index
], SCM_TEMPORAL_KEY_LENGTH
);
6008 key
.security_type
= type
;
6009 key
.station_index
= 0; /* always 0 for BSS */
6011 /* 0 for new key; previous value of counter (after fatal error) */
6012 key
.tx_counter
[0] = cpu_to_le32(0);
6013 key
.tx_counter
[1] = cpu_to_le32(0);
6015 ipw_send_cmd_pdu(priv
, IPW_CMD_TGI_TX_KEY
, sizeof(key
), &key
);
6018 static void ipw_send_wep_keys(struct ipw_priv
*priv
, int type
)
6020 struct ipw_wep_key key
;
6023 key
.cmd_id
= DINO_CMD_WEP_KEY
;
6026 /* Note: AES keys cannot be set for multiple times.
6027 * Only set it at the first time. */
6028 for (i
= 0; i
< 4; i
++) {
6029 key
.key_index
= i
| type
;
6030 if (!(priv
->ieee
->sec
.flags
& (1 << i
))) {
6035 key
.key_size
= priv
->ieee
->sec
.key_sizes
[i
];
6036 memcpy(key
.key
, priv
->ieee
->sec
.keys
[i
], key
.key_size
);
6038 ipw_send_cmd_pdu(priv
, IPW_CMD_WEP_KEY
, sizeof(key
), &key
);
6042 static void ipw_set_hw_decrypt_unicast(struct ipw_priv
*priv
, int level
)
6044 if (priv
->ieee
->host_encrypt
)
6049 priv
->sys_config
.disable_unicast_decryption
= 0;
6050 priv
->ieee
->host_decrypt
= 0;
6053 priv
->sys_config
.disable_unicast_decryption
= 1;
6054 priv
->ieee
->host_decrypt
= 1;
6057 priv
->sys_config
.disable_unicast_decryption
= 0;
6058 priv
->ieee
->host_decrypt
= 0;
6061 priv
->sys_config
.disable_unicast_decryption
= 1;
6068 static void ipw_set_hw_decrypt_multicast(struct ipw_priv
*priv
, int level
)
6070 if (priv
->ieee
->host_encrypt
)
6075 priv
->sys_config
.disable_multicast_decryption
= 0;
6078 priv
->sys_config
.disable_multicast_decryption
= 1;
6081 priv
->sys_config
.disable_multicast_decryption
= 0;
6084 priv
->sys_config
.disable_multicast_decryption
= 1;
6091 static void ipw_set_hwcrypto_keys(struct ipw_priv
*priv
)
6093 switch (priv
->ieee
->sec
.level
) {
6095 if (priv
->ieee
->sec
.flags
& SEC_ACTIVE_KEY
)
6096 ipw_send_tgi_tx_key(priv
,
6097 DCT_FLAG_EXT_SECURITY_CCM
,
6098 priv
->ieee
->sec
.active_key
);
6100 if (!priv
->ieee
->host_mc_decrypt
)
6101 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_CCM
);
6104 if (priv
->ieee
->sec
.flags
& SEC_ACTIVE_KEY
)
6105 ipw_send_tgi_tx_key(priv
,
6106 DCT_FLAG_EXT_SECURITY_TKIP
,
6107 priv
->ieee
->sec
.active_key
);
6110 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_WEP
);
6111 ipw_set_hw_decrypt_unicast(priv
, priv
->ieee
->sec
.level
);
6112 ipw_set_hw_decrypt_multicast(priv
, priv
->ieee
->sec
.level
);
6120 static void ipw_adhoc_check(void *data
)
6122 struct ipw_priv
*priv
= data
;
6124 if (priv
->missed_adhoc_beacons
++ > priv
->disassociate_threshold
&&
6125 !(priv
->config
& CFG_ADHOC_PERSIST
)) {
6126 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
6127 IPW_DL_STATE
| IPW_DL_ASSOC
,
6128 "Missed beacon: %d - disassociate\n",
6129 priv
->missed_adhoc_beacons
);
6130 ipw_remove_current_network(priv
);
6131 ipw_disassociate(priv
);
6135 schedule_delayed_work(&priv
->adhoc_check
,
6136 le16_to_cpu(priv
->assoc_request
.beacon_interval
));
6139 static void ipw_bg_adhoc_check(struct work_struct
*work
)
6141 struct ipw_priv
*priv
=
6142 container_of(work
, struct ipw_priv
, adhoc_check
.work
);
6143 mutex_lock(&priv
->mutex
);
6144 ipw_adhoc_check(priv
);
6145 mutex_unlock(&priv
->mutex
);
6148 static void ipw_debug_config(struct ipw_priv
*priv
)
6150 DECLARE_SSID_BUF(ssid
);
6151 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6152 "[CFG 0x%08X]\n", priv
->config
);
6153 if (priv
->config
& CFG_STATIC_CHANNEL
)
6154 IPW_DEBUG_INFO("Channel locked to %d\n", priv
->channel
);
6156 IPW_DEBUG_INFO("Channel unlocked.\n");
6157 if (priv
->config
& CFG_STATIC_ESSID
)
6158 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6159 print_ssid(ssid
, priv
->essid
, priv
->essid_len
));
6161 IPW_DEBUG_INFO("ESSID unlocked.\n");
6162 if (priv
->config
& CFG_STATIC_BSSID
)
6163 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv
->bssid
);
6165 IPW_DEBUG_INFO("BSSID unlocked.\n");
6166 if (priv
->capability
& CAP_PRIVACY_ON
)
6167 IPW_DEBUG_INFO("PRIVACY on\n");
6169 IPW_DEBUG_INFO("PRIVACY off\n");
6170 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv
->rates_mask
);
6173 static void ipw_set_fixed_rate(struct ipw_priv
*priv
, int mode
)
6175 /* TODO: Verify that this works... */
6176 struct ipw_fixed_rate fr
;
6179 u16 new_tx_rates
= priv
->rates_mask
;
6181 /* Identify 'current FW band' and match it with the fixed
6184 switch (priv
->ieee
->freq_band
) {
6185 case LIBIPW_52GHZ_BAND
: /* A only */
6187 if (priv
->rates_mask
& ~LIBIPW_OFDM_RATES_MASK
) {
6188 /* Invalid fixed rate mask */
6190 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6195 new_tx_rates
>>= LIBIPW_OFDM_SHIFT_MASK_A
;
6198 default: /* 2.4Ghz or Mixed */
6200 if (mode
== IEEE_B
) {
6201 if (new_tx_rates
& ~LIBIPW_CCK_RATES_MASK
) {
6202 /* Invalid fixed rate mask */
6204 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6211 if (new_tx_rates
& ~(LIBIPW_CCK_RATES_MASK
|
6212 LIBIPW_OFDM_RATES_MASK
)) {
6213 /* Invalid fixed rate mask */
6215 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6220 if (LIBIPW_OFDM_RATE_6MB_MASK
& new_tx_rates
) {
6221 mask
|= (LIBIPW_OFDM_RATE_6MB_MASK
>> 1);
6222 new_tx_rates
&= ~LIBIPW_OFDM_RATE_6MB_MASK
;
6225 if (LIBIPW_OFDM_RATE_9MB_MASK
& new_tx_rates
) {
6226 mask
|= (LIBIPW_OFDM_RATE_9MB_MASK
>> 1);
6227 new_tx_rates
&= ~LIBIPW_OFDM_RATE_9MB_MASK
;
6230 if (LIBIPW_OFDM_RATE_12MB_MASK
& new_tx_rates
) {
6231 mask
|= (LIBIPW_OFDM_RATE_12MB_MASK
>> 1);
6232 new_tx_rates
&= ~LIBIPW_OFDM_RATE_12MB_MASK
;
6235 new_tx_rates
|= mask
;
6239 fr
.tx_rates
= cpu_to_le16(new_tx_rates
);
6241 reg
= ipw_read32(priv
, IPW_MEM_FIXED_OVERRIDE
);
6242 ipw_write_reg32(priv
, reg
, *(u32
*) & fr
);
6245 static void ipw_abort_scan(struct ipw_priv
*priv
)
6249 if (priv
->status
& STATUS_SCAN_ABORTING
) {
6250 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6253 priv
->status
|= STATUS_SCAN_ABORTING
;
6255 err
= ipw_send_scan_abort(priv
);
6257 IPW_DEBUG_HC("Request to abort scan failed.\n");
6260 static void ipw_add_scan_channels(struct ipw_priv
*priv
,
6261 struct ipw_scan_request_ext
*scan
,
6264 int channel_index
= 0;
6265 const struct libipw_geo
*geo
;
6268 geo
= libipw_get_geo(priv
->ieee
);
6270 if (priv
->ieee
->freq_band
& LIBIPW_52GHZ_BAND
) {
6271 int start
= channel_index
;
6272 for (i
= 0; i
< geo
->a_channels
; i
++) {
6273 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6274 geo
->a
[i
].channel
== priv
->channel
)
6277 scan
->channels_list
[channel_index
] = geo
->a
[i
].channel
;
6278 ipw_set_scan_type(scan
, channel_index
,
6280 flags
& LIBIPW_CH_PASSIVE_ONLY
?
6281 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
:
6285 if (start
!= channel_index
) {
6286 scan
->channels_list
[start
] = (u8
) (IPW_A_MODE
<< 6) |
6287 (channel_index
- start
);
6292 if (priv
->ieee
->freq_band
& LIBIPW_24GHZ_BAND
) {
6293 int start
= channel_index
;
6294 if (priv
->config
& CFG_SPEED_SCAN
) {
6296 u8 channels
[LIBIPW_24GHZ_CHANNELS
] = {
6297 /* nop out the list */
6302 while (channel_index
< IPW_SCAN_CHANNELS
- 1) {
6304 priv
->speed_scan
[priv
->speed_scan_pos
];
6306 priv
->speed_scan_pos
= 0;
6307 channel
= priv
->speed_scan
[0];
6309 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6310 channel
== priv
->channel
) {
6311 priv
->speed_scan_pos
++;
6315 /* If this channel has already been
6316 * added in scan, break from loop
6317 * and this will be the first channel
6320 if (channels
[channel
- 1] != 0)
6323 channels
[channel
- 1] = 1;
6324 priv
->speed_scan_pos
++;
6326 scan
->channels_list
[channel_index
] = channel
;
6328 libipw_channel_to_index(priv
->ieee
, channel
);
6329 ipw_set_scan_type(scan
, channel_index
,
6332 LIBIPW_CH_PASSIVE_ONLY
?
6333 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6337 for (i
= 0; i
< geo
->bg_channels
; i
++) {
6338 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6339 geo
->bg
[i
].channel
== priv
->channel
)
6342 scan
->channels_list
[channel_index
] =
6344 ipw_set_scan_type(scan
, channel_index
,
6347 LIBIPW_CH_PASSIVE_ONLY
?
6348 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6353 if (start
!= channel_index
) {
6354 scan
->channels_list
[start
] = (u8
) (IPW_B_MODE
<< 6) |
6355 (channel_index
- start
);
6360 static int ipw_passive_dwell_time(struct ipw_priv
*priv
)
6362 /* staying on passive channels longer than the DTIM interval during a
6363 * scan, while associated, causes the firmware to cancel the scan
6364 * without notification. Hence, don't stay on passive channels longer
6365 * than the beacon interval.
6367 if (priv
->status
& STATUS_ASSOCIATED
6368 && priv
->assoc_network
->beacon_interval
> 10)
6369 return priv
->assoc_network
->beacon_interval
- 10;
6374 static int ipw_request_scan_helper(struct ipw_priv
*priv
, int type
, int direct
)
6376 struct ipw_scan_request_ext scan
;
6377 int err
= 0, scan_type
;
6379 if (!(priv
->status
& STATUS_INIT
) ||
6380 (priv
->status
& STATUS_EXIT_PENDING
))
6383 mutex_lock(&priv
->mutex
);
6385 if (direct
&& (priv
->direct_scan_ssid_len
== 0)) {
6386 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6387 priv
->status
&= ~STATUS_DIRECT_SCAN_PENDING
;
6391 if (priv
->status
& STATUS_SCANNING
) {
6392 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6393 priv
->status
|= direct
? STATUS_DIRECT_SCAN_PENDING
:
6394 STATUS_SCAN_PENDING
;
6398 if (!(priv
->status
& STATUS_SCAN_FORCED
) &&
6399 priv
->status
& STATUS_SCAN_ABORTING
) {
6400 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6401 priv
->status
|= direct
? STATUS_DIRECT_SCAN_PENDING
:
6402 STATUS_SCAN_PENDING
;
6406 if (priv
->status
& STATUS_RF_KILL_MASK
) {
6407 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6408 priv
->status
|= direct
? STATUS_DIRECT_SCAN_PENDING
:
6409 STATUS_SCAN_PENDING
;
6413 memset(&scan
, 0, sizeof(scan
));
6414 scan
.full_scan_index
= cpu_to_le32(libipw_get_scans(priv
->ieee
));
6416 if (type
== IW_SCAN_TYPE_PASSIVE
) {
6417 IPW_DEBUG_WX("use passive scanning\n");
6418 scan_type
= IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
;
6419 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] =
6420 cpu_to_le16(ipw_passive_dwell_time(priv
));
6421 ipw_add_scan_channels(priv
, &scan
, scan_type
);
6425 /* Use active scan by default. */
6426 if (priv
->config
& CFG_SPEED_SCAN
)
6427 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_SCAN
] =
6430 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_SCAN
] =
6433 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
] =
6436 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] =
6437 cpu_to_le16(ipw_passive_dwell_time(priv
));
6438 scan
.dwell_time
[IPW_SCAN_ACTIVE_DIRECT_SCAN
] = cpu_to_le16(20);
6440 #ifdef CONFIG_IPW2200_MONITOR
6441 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
6445 switch (libipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
6446 case LIBIPW_52GHZ_BAND
:
6447 band
= (u8
) (IPW_A_MODE
<< 6) | 1;
6448 channel
= priv
->channel
;
6451 case LIBIPW_24GHZ_BAND
:
6452 band
= (u8
) (IPW_B_MODE
<< 6) | 1;
6453 channel
= priv
->channel
;
6457 band
= (u8
) (IPW_B_MODE
<< 6) | 1;
6462 scan
.channels_list
[0] = band
;
6463 scan
.channels_list
[1] = channel
;
6464 ipw_set_scan_type(&scan
, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
);
6466 /* NOTE: The card will sit on this channel for this time
6467 * period. Scan aborts are timing sensitive and frequently
6468 * result in firmware restarts. As such, it is best to
6469 * set a small dwell_time here and just keep re-issuing
6470 * scans. Otherwise fast channel hopping will not actually
6473 * TODO: Move SPEED SCAN support to all modes and bands */
6474 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] =
6477 #endif /* CONFIG_IPW2200_MONITOR */
6478 /* Honor direct scans first, otherwise if we are roaming make
6479 * this a direct scan for the current network. Finally,
6480 * ensure that every other scan is a fast channel hop scan */
6482 err
= ipw_send_ssid(priv
, priv
->direct_scan_ssid
,
6483 priv
->direct_scan_ssid_len
);
6485 IPW_DEBUG_HC("Attempt to send SSID command "
6490 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
;
6491 } else if ((priv
->status
& STATUS_ROAMING
)
6492 || (!(priv
->status
& STATUS_ASSOCIATED
)
6493 && (priv
->config
& CFG_STATIC_ESSID
)
6494 && (le32_to_cpu(scan
.full_scan_index
) % 2))) {
6495 err
= ipw_send_ssid(priv
, priv
->essid
, priv
->essid_len
);
6497 IPW_DEBUG_HC("Attempt to send SSID command "
6502 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
;
6504 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_SCAN
;
6506 ipw_add_scan_channels(priv
, &scan
, scan_type
);
6507 #ifdef CONFIG_IPW2200_MONITOR
6512 err
= ipw_send_scan_request_ext(priv
, &scan
);
6514 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err
);
6518 priv
->status
|= STATUS_SCANNING
;
6520 priv
->status
&= ~STATUS_DIRECT_SCAN_PENDING
;
6521 priv
->direct_scan_ssid_len
= 0;
6523 priv
->status
&= ~STATUS_SCAN_PENDING
;
6525 schedule_delayed_work(&priv
->scan_check
, IPW_SCAN_CHECK_WATCHDOG
);
6527 mutex_unlock(&priv
->mutex
);
6531 static void ipw_request_passive_scan(struct work_struct
*work
)
6533 struct ipw_priv
*priv
=
6534 container_of(work
, struct ipw_priv
, request_passive_scan
.work
);
6535 ipw_request_scan_helper(priv
, IW_SCAN_TYPE_PASSIVE
, 0);
6538 static void ipw_request_scan(struct work_struct
*work
)
6540 struct ipw_priv
*priv
=
6541 container_of(work
, struct ipw_priv
, request_scan
.work
);
6542 ipw_request_scan_helper(priv
, IW_SCAN_TYPE_ACTIVE
, 0);
6545 static void ipw_request_direct_scan(struct work_struct
*work
)
6547 struct ipw_priv
*priv
=
6548 container_of(work
, struct ipw_priv
, request_direct_scan
.work
);
6549 ipw_request_scan_helper(priv
, IW_SCAN_TYPE_ACTIVE
, 1);
6552 static void ipw_bg_abort_scan(struct work_struct
*work
)
6554 struct ipw_priv
*priv
=
6555 container_of(work
, struct ipw_priv
, abort_scan
);
6556 mutex_lock(&priv
->mutex
);
6557 ipw_abort_scan(priv
);
6558 mutex_unlock(&priv
->mutex
);
6561 static int ipw_wpa_enable(struct ipw_priv
*priv
, int value
)
6563 /* This is called when wpa_supplicant loads and closes the driver
6565 priv
->ieee
->wpa_enabled
= value
;
6569 static int ipw_wpa_set_auth_algs(struct ipw_priv
*priv
, int value
)
6571 struct libipw_device
*ieee
= priv
->ieee
;
6572 struct libipw_security sec
= {
6573 .flags
= SEC_AUTH_MODE
,
6577 if (value
& IW_AUTH_ALG_SHARED_KEY
) {
6578 sec
.auth_mode
= WLAN_AUTH_SHARED_KEY
;
6580 } else if (value
& IW_AUTH_ALG_OPEN_SYSTEM
) {
6581 sec
.auth_mode
= WLAN_AUTH_OPEN
;
6583 } else if (value
& IW_AUTH_ALG_LEAP
) {
6584 sec
.auth_mode
= WLAN_AUTH_LEAP
;
6589 if (ieee
->set_security
)
6590 ieee
->set_security(ieee
->dev
, &sec
);
6597 static void ipw_wpa_assoc_frame(struct ipw_priv
*priv
, char *wpa_ie
,
6600 /* make sure WPA is enabled */
6601 ipw_wpa_enable(priv
, 1);
6604 static int ipw_set_rsn_capa(struct ipw_priv
*priv
,
6605 char *capabilities
, int length
)
6607 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6609 return ipw_send_cmd_pdu(priv
, IPW_CMD_RSN_CAPABILITIES
, length
,
6618 static int ipw_wx_set_genie(struct net_device
*dev
,
6619 struct iw_request_info
*info
,
6620 union iwreq_data
*wrqu
, char *extra
)
6622 struct ipw_priv
*priv
= libipw_priv(dev
);
6623 struct libipw_device
*ieee
= priv
->ieee
;
6627 if (wrqu
->data
.length
> MAX_WPA_IE_LEN
||
6628 (wrqu
->data
.length
&& extra
== NULL
))
6631 if (wrqu
->data
.length
) {
6632 buf
= kmemdup(extra
, wrqu
->data
.length
, GFP_KERNEL
);
6638 kfree(ieee
->wpa_ie
);
6640 ieee
->wpa_ie_len
= wrqu
->data
.length
;
6642 kfree(ieee
->wpa_ie
);
6643 ieee
->wpa_ie
= NULL
;
6644 ieee
->wpa_ie_len
= 0;
6647 ipw_wpa_assoc_frame(priv
, ieee
->wpa_ie
, ieee
->wpa_ie_len
);
6653 static int ipw_wx_get_genie(struct net_device
*dev
,
6654 struct iw_request_info
*info
,
6655 union iwreq_data
*wrqu
, char *extra
)
6657 struct ipw_priv
*priv
= libipw_priv(dev
);
6658 struct libipw_device
*ieee
= priv
->ieee
;
6661 if (ieee
->wpa_ie_len
== 0 || ieee
->wpa_ie
== NULL
) {
6662 wrqu
->data
.length
= 0;
6666 if (wrqu
->data
.length
< ieee
->wpa_ie_len
) {
6671 wrqu
->data
.length
= ieee
->wpa_ie_len
;
6672 memcpy(extra
, ieee
->wpa_ie
, ieee
->wpa_ie_len
);
6678 static int wext_cipher2level(int cipher
)
6681 case IW_AUTH_CIPHER_NONE
:
6683 case IW_AUTH_CIPHER_WEP40
:
6684 case IW_AUTH_CIPHER_WEP104
:
6686 case IW_AUTH_CIPHER_TKIP
:
6688 case IW_AUTH_CIPHER_CCMP
:
6696 static int ipw_wx_set_auth(struct net_device
*dev
,
6697 struct iw_request_info
*info
,
6698 union iwreq_data
*wrqu
, char *extra
)
6700 struct ipw_priv
*priv
= libipw_priv(dev
);
6701 struct libipw_device
*ieee
= priv
->ieee
;
6702 struct iw_param
*param
= &wrqu
->param
;
6703 struct lib80211_crypt_data
*crypt
;
6704 unsigned long flags
;
6707 switch (param
->flags
& IW_AUTH_INDEX
) {
6708 case IW_AUTH_WPA_VERSION
:
6710 case IW_AUTH_CIPHER_PAIRWISE
:
6711 ipw_set_hw_decrypt_unicast(priv
,
6712 wext_cipher2level(param
->value
));
6714 case IW_AUTH_CIPHER_GROUP
:
6715 ipw_set_hw_decrypt_multicast(priv
,
6716 wext_cipher2level(param
->value
));
6718 case IW_AUTH_KEY_MGMT
:
6720 * ipw2200 does not use these parameters
6724 case IW_AUTH_TKIP_COUNTERMEASURES
:
6725 crypt
= priv
->ieee
->crypt_info
.crypt
[priv
->ieee
->crypt_info
.tx_keyidx
];
6726 if (!crypt
|| !crypt
->ops
->set_flags
|| !crypt
->ops
->get_flags
)
6729 flags
= crypt
->ops
->get_flags(crypt
->priv
);
6732 flags
|= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
;
6734 flags
&= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
;
6736 crypt
->ops
->set_flags(flags
, crypt
->priv
);
6740 case IW_AUTH_DROP_UNENCRYPTED
:{
6743 * wpa_supplicant calls set_wpa_enabled when the driver
6744 * is loaded and unloaded, regardless of if WPA is being
6745 * used. No other calls are made which can be used to
6746 * determine if encryption will be used or not prior to
6747 * association being expected. If encryption is not being
6748 * used, drop_unencrypted is set to false, else true -- we
6749 * can use this to determine if the CAP_PRIVACY_ON bit should
6752 struct libipw_security sec
= {
6753 .flags
= SEC_ENABLED
,
6754 .enabled
= param
->value
,
6756 priv
->ieee
->drop_unencrypted
= param
->value
;
6757 /* We only change SEC_LEVEL for open mode. Others
6758 * are set by ipw_wpa_set_encryption.
6760 if (!param
->value
) {
6761 sec
.flags
|= SEC_LEVEL
;
6762 sec
.level
= SEC_LEVEL_0
;
6764 sec
.flags
|= SEC_LEVEL
;
6765 sec
.level
= SEC_LEVEL_1
;
6767 if (priv
->ieee
->set_security
)
6768 priv
->ieee
->set_security(priv
->ieee
->dev
, &sec
);
6772 case IW_AUTH_80211_AUTH_ALG
:
6773 ret
= ipw_wpa_set_auth_algs(priv
, param
->value
);
6776 case IW_AUTH_WPA_ENABLED
:
6777 ret
= ipw_wpa_enable(priv
, param
->value
);
6778 ipw_disassociate(priv
);
6781 case IW_AUTH_RX_UNENCRYPTED_EAPOL
:
6782 ieee
->ieee802_1x
= param
->value
;
6785 case IW_AUTH_PRIVACY_INVOKED
:
6786 ieee
->privacy_invoked
= param
->value
;
6796 static int ipw_wx_get_auth(struct net_device
*dev
,
6797 struct iw_request_info
*info
,
6798 union iwreq_data
*wrqu
, char *extra
)
6800 struct ipw_priv
*priv
= libipw_priv(dev
);
6801 struct libipw_device
*ieee
= priv
->ieee
;
6802 struct lib80211_crypt_data
*crypt
;
6803 struct iw_param
*param
= &wrqu
->param
;
6806 switch (param
->flags
& IW_AUTH_INDEX
) {
6807 case IW_AUTH_WPA_VERSION
:
6808 case IW_AUTH_CIPHER_PAIRWISE
:
6809 case IW_AUTH_CIPHER_GROUP
:
6810 case IW_AUTH_KEY_MGMT
:
6812 * wpa_supplicant will control these internally
6817 case IW_AUTH_TKIP_COUNTERMEASURES
:
6818 crypt
= priv
->ieee
->crypt_info
.crypt
[priv
->ieee
->crypt_info
.tx_keyidx
];
6819 if (!crypt
|| !crypt
->ops
->get_flags
)
6822 param
->value
= (crypt
->ops
->get_flags(crypt
->priv
) &
6823 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
) ? 1 : 0;
6827 case IW_AUTH_DROP_UNENCRYPTED
:
6828 param
->value
= ieee
->drop_unencrypted
;
6831 case IW_AUTH_80211_AUTH_ALG
:
6832 param
->value
= ieee
->sec
.auth_mode
;
6835 case IW_AUTH_WPA_ENABLED
:
6836 param
->value
= ieee
->wpa_enabled
;
6839 case IW_AUTH_RX_UNENCRYPTED_EAPOL
:
6840 param
->value
= ieee
->ieee802_1x
;
6843 case IW_AUTH_ROAMING_CONTROL
:
6844 case IW_AUTH_PRIVACY_INVOKED
:
6845 param
->value
= ieee
->privacy_invoked
;
6854 /* SIOCSIWENCODEEXT */
6855 static int ipw_wx_set_encodeext(struct net_device
*dev
,
6856 struct iw_request_info
*info
,
6857 union iwreq_data
*wrqu
, char *extra
)
6859 struct ipw_priv
*priv
= libipw_priv(dev
);
6860 struct iw_encode_ext
*ext
= (struct iw_encode_ext
*)extra
;
6863 if (ext
->alg
== IW_ENCODE_ALG_TKIP
) {
6864 /* IPW HW can't build TKIP MIC,
6865 host decryption still needed */
6866 if (ext
->ext_flags
& IW_ENCODE_EXT_GROUP_KEY
)
6867 priv
->ieee
->host_mc_decrypt
= 1;
6869 priv
->ieee
->host_encrypt
= 0;
6870 priv
->ieee
->host_encrypt_msdu
= 1;
6871 priv
->ieee
->host_decrypt
= 1;
6874 priv
->ieee
->host_encrypt
= 0;
6875 priv
->ieee
->host_encrypt_msdu
= 0;
6876 priv
->ieee
->host_decrypt
= 0;
6877 priv
->ieee
->host_mc_decrypt
= 0;
6881 return libipw_wx_set_encodeext(priv
->ieee
, info
, wrqu
, extra
);
6884 /* SIOCGIWENCODEEXT */
6885 static int ipw_wx_get_encodeext(struct net_device
*dev
,
6886 struct iw_request_info
*info
,
6887 union iwreq_data
*wrqu
, char *extra
)
6889 struct ipw_priv
*priv
= libipw_priv(dev
);
6890 return libipw_wx_get_encodeext(priv
->ieee
, info
, wrqu
, extra
);
6894 static int ipw_wx_set_mlme(struct net_device
*dev
,
6895 struct iw_request_info
*info
,
6896 union iwreq_data
*wrqu
, char *extra
)
6898 struct ipw_priv
*priv
= libipw_priv(dev
);
6899 struct iw_mlme
*mlme
= (struct iw_mlme
*)extra
;
6902 reason
= cpu_to_le16(mlme
->reason_code
);
6904 switch (mlme
->cmd
) {
6905 case IW_MLME_DEAUTH
:
6906 /* silently ignore */
6909 case IW_MLME_DISASSOC
:
6910 ipw_disassociate(priv
);
6919 #ifdef CONFIG_IPW2200_QOS
6923 * get the modulation type of the current network or
6924 * the card current mode
6926 static u8
ipw_qos_current_mode(struct ipw_priv
* priv
)
6930 if (priv
->status
& STATUS_ASSOCIATED
) {
6931 unsigned long flags
;
6933 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
6934 mode
= priv
->assoc_network
->mode
;
6935 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
6937 mode
= priv
->ieee
->mode
;
6939 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode
);
6944 * Handle management frame beacon and probe response
6946 static int ipw_qos_handle_probe_response(struct ipw_priv
*priv
,
6948 struct libipw_network
*network
)
6950 u32 size
= sizeof(struct libipw_qos_parameters
);
6952 if (network
->capability
& WLAN_CAPABILITY_IBSS
)
6953 network
->qos_data
.active
= network
->qos_data
.supported
;
6955 if (network
->flags
& NETWORK_HAS_QOS_MASK
) {
6956 if (active_network
&&
6957 (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
))
6958 network
->qos_data
.active
= network
->qos_data
.supported
;
6960 if ((network
->qos_data
.active
== 1) && (active_network
== 1) &&
6961 (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
) &&
6962 (network
->qos_data
.old_param_count
!=
6963 network
->qos_data
.param_count
)) {
6964 network
->qos_data
.old_param_count
=
6965 network
->qos_data
.param_count
;
6966 schedule_work(&priv
->qos_activate
);
6967 IPW_DEBUG_QOS("QoS parameters change call "
6971 if ((priv
->ieee
->mode
== IEEE_B
) || (network
->mode
== IEEE_B
))
6972 memcpy(&network
->qos_data
.parameters
,
6973 &def_parameters_CCK
, size
);
6975 memcpy(&network
->qos_data
.parameters
,
6976 &def_parameters_OFDM
, size
);
6978 if ((network
->qos_data
.active
== 1) && (active_network
== 1)) {
6979 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6980 schedule_work(&priv
->qos_activate
);
6983 network
->qos_data
.active
= 0;
6984 network
->qos_data
.supported
= 0;
6986 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6987 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) && (active_network
== 0)) {
6988 if (memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
))
6989 if (network
->capability
& WLAN_CAPABILITY_IBSS
)
6990 if ((network
->ssid_len
==
6991 priv
->assoc_network
->ssid_len
) &&
6992 !memcmp(network
->ssid
,
6993 priv
->assoc_network
->ssid
,
6994 network
->ssid_len
)) {
6995 schedule_work(&priv
->merge_networks
);
7003 * This function set up the firmware to support QoS. It sends
7004 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7006 static int ipw_qos_activate(struct ipw_priv
*priv
,
7007 struct libipw_qos_data
*qos_network_data
)
7010 struct libipw_qos_parameters qos_parameters
[QOS_QOS_SETS
];
7011 struct libipw_qos_parameters
*active_one
= NULL
;
7012 u32 size
= sizeof(struct libipw_qos_parameters
);
7017 type
= ipw_qos_current_mode(priv
);
7019 active_one
= &(qos_parameters
[QOS_PARAM_SET_DEF_CCK
]);
7020 memcpy(active_one
, priv
->qos_data
.def_qos_parm_CCK
, size
);
7021 active_one
= &(qos_parameters
[QOS_PARAM_SET_DEF_OFDM
]);
7022 memcpy(active_one
, priv
->qos_data
.def_qos_parm_OFDM
, size
);
7024 if (qos_network_data
== NULL
) {
7025 if (type
== IEEE_B
) {
7026 IPW_DEBUG_QOS("QoS activate network mode %d\n", type
);
7027 active_one
= &def_parameters_CCK
;
7029 active_one
= &def_parameters_OFDM
;
7031 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
7032 burst_duration
= ipw_qos_get_burst_duration(priv
);
7033 for (i
= 0; i
< QOS_QUEUE_NUM
; i
++)
7034 qos_parameters
[QOS_PARAM_SET_ACTIVE
].tx_op_limit
[i
] =
7035 cpu_to_le16(burst_duration
);
7036 } else if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
7037 if (type
== IEEE_B
) {
7038 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
7040 if (priv
->qos_data
.qos_enable
== 0)
7041 active_one
= &def_parameters_CCK
;
7043 active_one
= priv
->qos_data
.def_qos_parm_CCK
;
7045 if (priv
->qos_data
.qos_enable
== 0)
7046 active_one
= &def_parameters_OFDM
;
7048 active_one
= priv
->qos_data
.def_qos_parm_OFDM
;
7050 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
7052 unsigned long flags
;
7055 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7056 active_one
= &(qos_network_data
->parameters
);
7057 qos_network_data
->old_param_count
=
7058 qos_network_data
->param_count
;
7059 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
7060 active
= qos_network_data
->supported
;
7061 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7064 burst_duration
= ipw_qos_get_burst_duration(priv
);
7065 for (i
= 0; i
< QOS_QUEUE_NUM
; i
++)
7066 qos_parameters
[QOS_PARAM_SET_ACTIVE
].
7067 tx_op_limit
[i
] = cpu_to_le16(burst_duration
);
7071 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7072 err
= ipw_send_qos_params_command(priv
, &qos_parameters
[0]);
7074 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7080 * send IPW_CMD_WME_INFO to the firmware
7082 static int ipw_qos_set_info_element(struct ipw_priv
*priv
)
7085 struct libipw_qos_information_element qos_info
;
7090 qos_info
.elementID
= QOS_ELEMENT_ID
;
7091 qos_info
.length
= sizeof(struct libipw_qos_information_element
) - 2;
7093 qos_info
.version
= QOS_VERSION_1
;
7094 qos_info
.ac_info
= 0;
7096 memcpy(qos_info
.qui
, qos_oui
, QOS_OUI_LEN
);
7097 qos_info
.qui_type
= QOS_OUI_TYPE
;
7098 qos_info
.qui_subtype
= QOS_OUI_INFO_SUB_TYPE
;
7100 ret
= ipw_send_qos_info_command(priv
, &qos_info
);
7102 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7108 * Set the QoS parameter with the association request structure
7110 static int ipw_qos_association(struct ipw_priv
*priv
,
7111 struct libipw_network
*network
)
7114 struct libipw_qos_data
*qos_data
= NULL
;
7115 struct libipw_qos_data ibss_data
= {
7120 switch (priv
->ieee
->iw_mode
) {
7122 BUG_ON(!(network
->capability
& WLAN_CAPABILITY_IBSS
));
7124 qos_data
= &ibss_data
;
7128 qos_data
= &network
->qos_data
;
7136 err
= ipw_qos_activate(priv
, qos_data
);
7138 priv
->assoc_request
.policy_support
&= ~HC_QOS_SUPPORT_ASSOC
;
7142 if (priv
->qos_data
.qos_enable
&& qos_data
->supported
) {
7143 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7144 priv
->assoc_request
.policy_support
|= HC_QOS_SUPPORT_ASSOC
;
7145 return ipw_qos_set_info_element(priv
);
7152 * handling the beaconing responses. if we get different QoS setting
7153 * off the network from the associated setting, adjust the QoS
7156 static int ipw_qos_association_resp(struct ipw_priv
*priv
,
7157 struct libipw_network
*network
)
7160 unsigned long flags
;
7161 u32 size
= sizeof(struct libipw_qos_parameters
);
7162 int set_qos_param
= 0;
7164 if ((priv
== NULL
) || (network
== NULL
) ||
7165 (priv
->assoc_network
== NULL
))
7168 if (!(priv
->status
& STATUS_ASSOCIATED
))
7171 if ((priv
->ieee
->iw_mode
!= IW_MODE_INFRA
))
7174 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7175 if (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
) {
7176 memcpy(&priv
->assoc_network
->qos_data
, &network
->qos_data
,
7177 sizeof(struct libipw_qos_data
));
7178 priv
->assoc_network
->qos_data
.active
= 1;
7179 if ((network
->qos_data
.old_param_count
!=
7180 network
->qos_data
.param_count
)) {
7182 network
->qos_data
.old_param_count
=
7183 network
->qos_data
.param_count
;
7187 if ((network
->mode
== IEEE_B
) || (priv
->ieee
->mode
== IEEE_B
))
7188 memcpy(&priv
->assoc_network
->qos_data
.parameters
,
7189 &def_parameters_CCK
, size
);
7191 memcpy(&priv
->assoc_network
->qos_data
.parameters
,
7192 &def_parameters_OFDM
, size
);
7193 priv
->assoc_network
->qos_data
.active
= 0;
7194 priv
->assoc_network
->qos_data
.supported
= 0;
7198 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7200 if (set_qos_param
== 1)
7201 schedule_work(&priv
->qos_activate
);
7206 static u32
ipw_qos_get_burst_duration(struct ipw_priv
*priv
)
7213 if (!(priv
->ieee
->modulation
& LIBIPW_OFDM_MODULATION
))
7214 ret
= priv
->qos_data
.burst_duration_CCK
;
7216 ret
= priv
->qos_data
.burst_duration_OFDM
;
7222 * Initialize the setting of QoS global
7224 static void ipw_qos_init(struct ipw_priv
*priv
, int enable
,
7225 int burst_enable
, u32 burst_duration_CCK
,
7226 u32 burst_duration_OFDM
)
7228 priv
->qos_data
.qos_enable
= enable
;
7230 if (priv
->qos_data
.qos_enable
) {
7231 priv
->qos_data
.def_qos_parm_CCK
= &def_qos_parameters_CCK
;
7232 priv
->qos_data
.def_qos_parm_OFDM
= &def_qos_parameters_OFDM
;
7233 IPW_DEBUG_QOS("QoS is enabled\n");
7235 priv
->qos_data
.def_qos_parm_CCK
= &def_parameters_CCK
;
7236 priv
->qos_data
.def_qos_parm_OFDM
= &def_parameters_OFDM
;
7237 IPW_DEBUG_QOS("QoS is not enabled\n");
7240 priv
->qos_data
.burst_enable
= burst_enable
;
7243 priv
->qos_data
.burst_duration_CCK
= burst_duration_CCK
;
7244 priv
->qos_data
.burst_duration_OFDM
= burst_duration_OFDM
;
7246 priv
->qos_data
.burst_duration_CCK
= 0;
7247 priv
->qos_data
.burst_duration_OFDM
= 0;
7252 * map the packet priority to the right TX Queue
7254 static int ipw_get_tx_queue_number(struct ipw_priv
*priv
, u16 priority
)
7256 if (priority
> 7 || !priv
->qos_data
.qos_enable
)
7259 return from_priority_to_tx_queue
[priority
] - 1;
7262 static int ipw_is_qos_active(struct net_device
*dev
,
7263 struct sk_buff
*skb
)
7265 struct ipw_priv
*priv
= libipw_priv(dev
);
7266 struct libipw_qos_data
*qos_data
= NULL
;
7267 int active
, supported
;
7268 u8
*daddr
= skb
->data
+ ETH_ALEN
;
7269 int unicast
= !is_multicast_ether_addr(daddr
);
7271 if (!(priv
->status
& STATUS_ASSOCIATED
))
7274 qos_data
= &priv
->assoc_network
->qos_data
;
7276 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
7278 qos_data
->active
= 0;
7280 qos_data
->active
= qos_data
->supported
;
7282 active
= qos_data
->active
;
7283 supported
= qos_data
->supported
;
7284 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7286 priv
->qos_data
.qos_enable
, active
, supported
, unicast
);
7287 if (active
&& priv
->qos_data
.qos_enable
)
7294 * add QoS parameter to the TX command
7296 static int ipw_qos_set_tx_queue_command(struct ipw_priv
*priv
,
7298 struct tfd_data
*tfd
)
7300 int tx_queue_id
= 0;
7303 tx_queue_id
= from_priority_to_tx_queue
[priority
] - 1;
7304 tfd
->tx_flags_ext
|= DCT_FLAG_EXT_QOS_ENABLED
;
7306 if (priv
->qos_data
.qos_no_ack_mask
& (1UL << tx_queue_id
)) {
7307 tfd
->tx_flags
&= ~DCT_FLAG_ACK_REQD
;
7308 tfd
->tfd
.tfd_26
.mchdr
.qos_ctrl
|= cpu_to_le16(CTRL_QOS_NO_ACK
);
7314 * background support to run QoS activate functionality
7316 static void ipw_bg_qos_activate(struct work_struct
*work
)
7318 struct ipw_priv
*priv
=
7319 container_of(work
, struct ipw_priv
, qos_activate
);
7321 mutex_lock(&priv
->mutex
);
7323 if (priv
->status
& STATUS_ASSOCIATED
)
7324 ipw_qos_activate(priv
, &(priv
->assoc_network
->qos_data
));
7326 mutex_unlock(&priv
->mutex
);
7329 static int ipw_handle_probe_response(struct net_device
*dev
,
7330 struct libipw_probe_response
*resp
,
7331 struct libipw_network
*network
)
7333 struct ipw_priv
*priv
= libipw_priv(dev
);
7334 int active_network
= ((priv
->status
& STATUS_ASSOCIATED
) &&
7335 (network
== priv
->assoc_network
));
7337 ipw_qos_handle_probe_response(priv
, active_network
, network
);
7342 static int ipw_handle_beacon(struct net_device
*dev
,
7343 struct libipw_beacon
*resp
,
7344 struct libipw_network
*network
)
7346 struct ipw_priv
*priv
= libipw_priv(dev
);
7347 int active_network
= ((priv
->status
& STATUS_ASSOCIATED
) &&
7348 (network
== priv
->assoc_network
));
7350 ipw_qos_handle_probe_response(priv
, active_network
, network
);
7355 static int ipw_handle_assoc_response(struct net_device
*dev
,
7356 struct libipw_assoc_response
*resp
,
7357 struct libipw_network
*network
)
7359 struct ipw_priv
*priv
= libipw_priv(dev
);
7360 ipw_qos_association_resp(priv
, network
);
7364 static int ipw_send_qos_params_command(struct ipw_priv
*priv
, struct libipw_qos_parameters
7367 return ipw_send_cmd_pdu(priv
, IPW_CMD_QOS_PARAMETERS
,
7368 sizeof(*qos_param
) * 3, qos_param
);
7371 static int ipw_send_qos_info_command(struct ipw_priv
*priv
, struct libipw_qos_information_element
7374 return ipw_send_cmd_pdu(priv
, IPW_CMD_WME_INFO
, sizeof(*qos_param
),
7378 #endif /* CONFIG_IPW2200_QOS */
7380 static int ipw_associate_network(struct ipw_priv
*priv
,
7381 struct libipw_network
*network
,
7382 struct ipw_supported_rates
*rates
, int roaming
)
7385 DECLARE_SSID_BUF(ssid
);
7387 if (priv
->config
& CFG_FIXED_RATE
)
7388 ipw_set_fixed_rate(priv
, network
->mode
);
7390 if (!(priv
->config
& CFG_STATIC_ESSID
)) {
7391 priv
->essid_len
= min(network
->ssid_len
,
7392 (u8
) IW_ESSID_MAX_SIZE
);
7393 memcpy(priv
->essid
, network
->ssid
, priv
->essid_len
);
7396 network
->last_associate
= jiffies
;
7398 memset(&priv
->assoc_request
, 0, sizeof(priv
->assoc_request
));
7399 priv
->assoc_request
.channel
= network
->channel
;
7400 priv
->assoc_request
.auth_key
= 0;
7402 if ((priv
->capability
& CAP_PRIVACY_ON
) &&
7403 (priv
->ieee
->sec
.auth_mode
== WLAN_AUTH_SHARED_KEY
)) {
7404 priv
->assoc_request
.auth_type
= AUTH_SHARED_KEY
;
7405 priv
->assoc_request
.auth_key
= priv
->ieee
->sec
.active_key
;
7407 if (priv
->ieee
->sec
.level
== SEC_LEVEL_1
)
7408 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_WEP
);
7410 } else if ((priv
->capability
& CAP_PRIVACY_ON
) &&
7411 (priv
->ieee
->sec
.auth_mode
== WLAN_AUTH_LEAP
))
7412 priv
->assoc_request
.auth_type
= AUTH_LEAP
;
7414 priv
->assoc_request
.auth_type
= AUTH_OPEN
;
7416 if (priv
->ieee
->wpa_ie_len
) {
7417 priv
->assoc_request
.policy_support
= cpu_to_le16(0x02); /* RSN active */
7418 ipw_set_rsn_capa(priv
, priv
->ieee
->wpa_ie
,
7419 priv
->ieee
->wpa_ie_len
);
7423 * It is valid for our ieee device to support multiple modes, but
7424 * when it comes to associating to a given network we have to choose
7427 if (network
->mode
& priv
->ieee
->mode
& IEEE_A
)
7428 priv
->assoc_request
.ieee_mode
= IPW_A_MODE
;
7429 else if (network
->mode
& priv
->ieee
->mode
& IEEE_G
)
7430 priv
->assoc_request
.ieee_mode
= IPW_G_MODE
;
7431 else if (network
->mode
& priv
->ieee
->mode
& IEEE_B
)
7432 priv
->assoc_request
.ieee_mode
= IPW_B_MODE
;
7434 priv
->assoc_request
.capability
= cpu_to_le16(network
->capability
);
7435 if ((network
->capability
& WLAN_CAPABILITY_SHORT_PREAMBLE
)
7436 && !(priv
->config
& CFG_PREAMBLE_LONG
)) {
7437 priv
->assoc_request
.preamble_length
= DCT_FLAG_SHORT_PREAMBLE
;
7439 priv
->assoc_request
.preamble_length
= DCT_FLAG_LONG_PREAMBLE
;
7441 /* Clear the short preamble if we won't be supporting it */
7442 priv
->assoc_request
.capability
&=
7443 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE
);
7446 /* Clear capability bits that aren't used in Ad Hoc */
7447 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
7448 priv
->assoc_request
.capability
&=
7449 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME
);
7451 IPW_DEBUG_ASSOC("%ssociation attempt: '%s', channel %d, "
7452 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7453 roaming
? "Rea" : "A",
7454 print_ssid(ssid
, priv
->essid
, priv
->essid_len
),
7456 ipw_modes
[priv
->assoc_request
.ieee_mode
],
7458 (priv
->assoc_request
.preamble_length
==
7459 DCT_FLAG_LONG_PREAMBLE
) ? "long" : "short",
7460 network
->capability
&
7461 WLAN_CAPABILITY_SHORT_PREAMBLE
? "short" : "long",
7462 priv
->capability
& CAP_PRIVACY_ON
? "on " : "off",
7463 priv
->capability
& CAP_PRIVACY_ON
?
7464 (priv
->capability
& CAP_SHARED_KEY
? "(shared)" :
7466 priv
->capability
& CAP_PRIVACY_ON
? " key=" : "",
7467 priv
->capability
& CAP_PRIVACY_ON
?
7468 '1' + priv
->ieee
->sec
.active_key
: '.',
7469 priv
->capability
& CAP_PRIVACY_ON
? '.' : ' ');
7471 priv
->assoc_request
.beacon_interval
= cpu_to_le16(network
->beacon_interval
);
7472 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) &&
7473 (network
->time_stamp
[0] == 0) && (network
->time_stamp
[1] == 0)) {
7474 priv
->assoc_request
.assoc_type
= HC_IBSS_START
;
7475 priv
->assoc_request
.assoc_tsf_msw
= 0;
7476 priv
->assoc_request
.assoc_tsf_lsw
= 0;
7478 if (unlikely(roaming
))
7479 priv
->assoc_request
.assoc_type
= HC_REASSOCIATE
;
7481 priv
->assoc_request
.assoc_type
= HC_ASSOCIATE
;
7482 priv
->assoc_request
.assoc_tsf_msw
= cpu_to_le32(network
->time_stamp
[1]);
7483 priv
->assoc_request
.assoc_tsf_lsw
= cpu_to_le32(network
->time_stamp
[0]);
7486 memcpy(priv
->assoc_request
.bssid
, network
->bssid
, ETH_ALEN
);
7488 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
7489 memset(&priv
->assoc_request
.dest
, 0xFF, ETH_ALEN
);
7490 priv
->assoc_request
.atim_window
= cpu_to_le16(network
->atim_window
);
7492 memcpy(priv
->assoc_request
.dest
, network
->bssid
, ETH_ALEN
);
7493 priv
->assoc_request
.atim_window
= 0;
7496 priv
->assoc_request
.listen_interval
= cpu_to_le16(network
->listen_interval
);
7498 err
= ipw_send_ssid(priv
, priv
->essid
, priv
->essid_len
);
7500 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7504 rates
->ieee_mode
= priv
->assoc_request
.ieee_mode
;
7505 rates
->purpose
= IPW_RATE_CONNECT
;
7506 ipw_send_supported_rates(priv
, rates
);
7508 if (priv
->assoc_request
.ieee_mode
== IPW_G_MODE
)
7509 priv
->sys_config
.dot11g_auto_detection
= 1;
7511 priv
->sys_config
.dot11g_auto_detection
= 0;
7513 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
7514 priv
->sys_config
.answer_broadcast_ssid_probe
= 1;
7516 priv
->sys_config
.answer_broadcast_ssid_probe
= 0;
7518 err
= ipw_send_system_config(priv
);
7520 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7524 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network
->stats
.rssi
);
7525 err
= ipw_set_sensitivity(priv
, network
->stats
.rssi
+ IPW_RSSI_TO_DBM
);
7527 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7532 * If preemption is enabled, it is possible for the association
7533 * to complete before we return from ipw_send_associate. Therefore
7534 * we have to be sure and update our priviate data first.
7536 priv
->channel
= network
->channel
;
7537 memcpy(priv
->bssid
, network
->bssid
, ETH_ALEN
);
7538 priv
->status
|= STATUS_ASSOCIATING
;
7539 priv
->status
&= ~STATUS_SECURITY_UPDATED
;
7541 priv
->assoc_network
= network
;
7543 #ifdef CONFIG_IPW2200_QOS
7544 ipw_qos_association(priv
, network
);
7547 err
= ipw_send_associate(priv
, &priv
->assoc_request
);
7549 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7553 IPW_DEBUG(IPW_DL_STATE
, "associating: '%s' %pM\n",
7554 print_ssid(ssid
, priv
->essid
, priv
->essid_len
),
7560 static void ipw_roam(void *data
)
7562 struct ipw_priv
*priv
= data
;
7563 struct libipw_network
*network
= NULL
;
7564 struct ipw_network_match match
= {
7565 .network
= priv
->assoc_network
7568 /* The roaming process is as follows:
7570 * 1. Missed beacon threshold triggers the roaming process by
7571 * setting the status ROAM bit and requesting a scan.
7572 * 2. When the scan completes, it schedules the ROAM work
7573 * 3. The ROAM work looks at all of the known networks for one that
7574 * is a better network than the currently associated. If none
7575 * found, the ROAM process is over (ROAM bit cleared)
7576 * 4. If a better network is found, a disassociation request is
7578 * 5. When the disassociation completes, the roam work is again
7579 * scheduled. The second time through, the driver is no longer
7580 * associated, and the newly selected network is sent an
7581 * association request.
7582 * 6. At this point ,the roaming process is complete and the ROAM
7583 * status bit is cleared.
7586 /* If we are no longer associated, and the roaming bit is no longer
7587 * set, then we are not actively roaming, so just return */
7588 if (!(priv
->status
& (STATUS_ASSOCIATED
| STATUS_ROAMING
)))
7591 if (priv
->status
& STATUS_ASSOCIATED
) {
7592 /* First pass through ROAM process -- look for a better
7594 unsigned long flags
;
7595 u8 rssi
= priv
->assoc_network
->stats
.rssi
;
7596 priv
->assoc_network
->stats
.rssi
= -128;
7597 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7598 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
) {
7599 if (network
!= priv
->assoc_network
)
7600 ipw_best_network(priv
, &match
, network
, 1);
7602 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7603 priv
->assoc_network
->stats
.rssi
= rssi
;
7605 if (match
.network
== priv
->assoc_network
) {
7606 IPW_DEBUG_ASSOC("No better APs in this network to "
7608 priv
->status
&= ~STATUS_ROAMING
;
7609 ipw_debug_config(priv
);
7613 ipw_send_disassociate(priv
, 1);
7614 priv
->assoc_network
= match
.network
;
7619 /* Second pass through ROAM process -- request association */
7620 ipw_compatible_rates(priv
, priv
->assoc_network
, &match
.rates
);
7621 ipw_associate_network(priv
, priv
->assoc_network
, &match
.rates
, 1);
7622 priv
->status
&= ~STATUS_ROAMING
;
7625 static void ipw_bg_roam(struct work_struct
*work
)
7627 struct ipw_priv
*priv
=
7628 container_of(work
, struct ipw_priv
, roam
);
7629 mutex_lock(&priv
->mutex
);
7631 mutex_unlock(&priv
->mutex
);
7634 static int ipw_associate(void *data
)
7636 struct ipw_priv
*priv
= data
;
7638 struct libipw_network
*network
= NULL
;
7639 struct ipw_network_match match
= {
7642 struct ipw_supported_rates
*rates
;
7643 struct list_head
*element
;
7644 unsigned long flags
;
7645 DECLARE_SSID_BUF(ssid
);
7647 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
7648 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7652 if (priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
7653 IPW_DEBUG_ASSOC("Not attempting association (already in "
7658 if (priv
->status
& STATUS_DISASSOCIATING
) {
7659 IPW_DEBUG_ASSOC("Not attempting association (in "
7660 "disassociating)\n ");
7661 schedule_work(&priv
->associate
);
7665 if (!ipw_is_init(priv
) || (priv
->status
& STATUS_SCANNING
)) {
7666 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7671 if (!(priv
->config
& CFG_ASSOCIATE
) &&
7672 !(priv
->config
& (CFG_STATIC_ESSID
| CFG_STATIC_BSSID
))) {
7673 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7677 /* Protect our use of the network_list */
7678 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7679 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
)
7680 ipw_best_network(priv
, &match
, network
, 0);
7682 network
= match
.network
;
7683 rates
= &match
.rates
;
7685 if (network
== NULL
&&
7686 priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
7687 priv
->config
& CFG_ADHOC_CREATE
&&
7688 priv
->config
& CFG_STATIC_ESSID
&&
7689 priv
->config
& CFG_STATIC_CHANNEL
) {
7690 /* Use oldest network if the free list is empty */
7691 if (list_empty(&priv
->ieee
->network_free_list
)) {
7692 struct libipw_network
*oldest
= NULL
;
7693 struct libipw_network
*target
;
7695 list_for_each_entry(target
, &priv
->ieee
->network_list
, list
) {
7696 if ((oldest
== NULL
) ||
7697 (target
->last_scanned
< oldest
->last_scanned
))
7701 /* If there are no more slots, expire the oldest */
7702 list_del(&oldest
->list
);
7704 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7706 print_ssid(ssid
, target
->ssid
,
7709 list_add_tail(&target
->list
,
7710 &priv
->ieee
->network_free_list
);
7713 element
= priv
->ieee
->network_free_list
.next
;
7714 network
= list_entry(element
, struct libipw_network
, list
);
7715 ipw_adhoc_create(priv
, network
);
7716 rates
= &priv
->rates
;
7718 list_add_tail(&network
->list
, &priv
->ieee
->network_list
);
7720 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7722 /* If we reached the end of the list, then we don't have any valid
7725 ipw_debug_config(priv
);
7727 if (!(priv
->status
& STATUS_SCANNING
)) {
7728 if (!(priv
->config
& CFG_SPEED_SCAN
))
7729 schedule_delayed_work(&priv
->request_scan
,
7732 schedule_delayed_work(&priv
->request_scan
, 0);
7738 ipw_associate_network(priv
, network
, rates
, 0);
7743 static void ipw_bg_associate(struct work_struct
*work
)
7745 struct ipw_priv
*priv
=
7746 container_of(work
, struct ipw_priv
, associate
);
7747 mutex_lock(&priv
->mutex
);
7748 ipw_associate(priv
);
7749 mutex_unlock(&priv
->mutex
);
7752 static void ipw_rebuild_decrypted_skb(struct ipw_priv
*priv
,
7753 struct sk_buff
*skb
)
7755 struct ieee80211_hdr
*hdr
;
7758 hdr
= (struct ieee80211_hdr
*)skb
->data
;
7759 fc
= le16_to_cpu(hdr
->frame_control
);
7760 if (!(fc
& IEEE80211_FCTL_PROTECTED
))
7763 fc
&= ~IEEE80211_FCTL_PROTECTED
;
7764 hdr
->frame_control
= cpu_to_le16(fc
);
7765 switch (priv
->ieee
->sec
.level
) {
7767 /* Remove CCMP HDR */
7768 memmove(skb
->data
+ LIBIPW_3ADDR_LEN
,
7769 skb
->data
+ LIBIPW_3ADDR_LEN
+ 8,
7770 skb
->len
- LIBIPW_3ADDR_LEN
- 8);
7771 skb_trim(skb
, skb
->len
- 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7777 memmove(skb
->data
+ LIBIPW_3ADDR_LEN
,
7778 skb
->data
+ LIBIPW_3ADDR_LEN
+ 4,
7779 skb
->len
- LIBIPW_3ADDR_LEN
- 4);
7780 skb_trim(skb
, skb
->len
- 8); /* IV + ICV */
7785 printk(KERN_ERR
"Unknown security level %d\n",
7786 priv
->ieee
->sec
.level
);
7791 static void ipw_handle_data_packet(struct ipw_priv
*priv
,
7792 struct ipw_rx_mem_buffer
*rxb
,
7793 struct libipw_rx_stats
*stats
)
7795 struct net_device
*dev
= priv
->net_dev
;
7796 struct libipw_hdr_4addr
*hdr
;
7797 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
7799 /* We received data from the HW, so stop the watchdog */
7800 dev
->trans_start
= jiffies
;
7802 /* We only process data packets if the
7803 * interface is open */
7804 if (unlikely((le16_to_cpu(pkt
->u
.frame
.length
) + IPW_RX_FRAME_SIZE
) >
7805 skb_tailroom(rxb
->skb
))) {
7806 dev
->stats
.rx_errors
++;
7807 priv
->wstats
.discard
.misc
++;
7808 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7810 } else if (unlikely(!netif_running(priv
->net_dev
))) {
7811 dev
->stats
.rx_dropped
++;
7812 priv
->wstats
.discard
.misc
++;
7813 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7817 /* Advance skb->data to the start of the actual payload */
7818 skb_reserve(rxb
->skb
, offsetof(struct ipw_rx_packet
, u
.frame
.data
));
7820 /* Set the size of the skb to the size of the frame */
7821 skb_put(rxb
->skb
, le16_to_cpu(pkt
->u
.frame
.length
));
7823 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb
->skb
->len
);
7825 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7826 hdr
= (struct libipw_hdr_4addr
*)rxb
->skb
->data
;
7827 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
&&
7828 (is_multicast_ether_addr(hdr
->addr1
) ?
7829 !priv
->ieee
->host_mc_decrypt
: !priv
->ieee
->host_decrypt
))
7830 ipw_rebuild_decrypted_skb(priv
, rxb
->skb
);
7832 if (!libipw_rx(priv
->ieee
, rxb
->skb
, stats
))
7833 dev
->stats
.rx_errors
++;
7834 else { /* libipw_rx succeeded, so it now owns the SKB */
7836 __ipw_led_activity_on(priv
);
7840 #ifdef CONFIG_IPW2200_RADIOTAP
7841 static void ipw_handle_data_packet_monitor(struct ipw_priv
*priv
,
7842 struct ipw_rx_mem_buffer
*rxb
,
7843 struct libipw_rx_stats
*stats
)
7845 struct net_device
*dev
= priv
->net_dev
;
7846 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
7847 struct ipw_rx_frame
*frame
= &pkt
->u
.frame
;
7849 /* initial pull of some data */
7850 u16 received_channel
= frame
->received_channel
;
7851 u8 antennaAndPhy
= frame
->antennaAndPhy
;
7852 s8 antsignal
= frame
->rssi_dbm
- IPW_RSSI_TO_DBM
; /* call it signed anyhow */
7853 u16 pktrate
= frame
->rate
;
7855 /* Magic struct that slots into the radiotap header -- no reason
7856 * to build this manually element by element, we can write it much
7857 * more efficiently than we can parse it. ORDER MATTERS HERE */
7858 struct ipw_rt_hdr
*ipw_rt
;
7860 unsigned short len
= le16_to_cpu(pkt
->u
.frame
.length
);
7862 /* We received data from the HW, so stop the watchdog */
7863 dev
->trans_start
= jiffies
;
7865 /* We only process data packets if the
7866 * interface is open */
7867 if (unlikely((le16_to_cpu(pkt
->u
.frame
.length
) + IPW_RX_FRAME_SIZE
) >
7868 skb_tailroom(rxb
->skb
))) {
7869 dev
->stats
.rx_errors
++;
7870 priv
->wstats
.discard
.misc
++;
7871 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7873 } else if (unlikely(!netif_running(priv
->net_dev
))) {
7874 dev
->stats
.rx_dropped
++;
7875 priv
->wstats
.discard
.misc
++;
7876 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7880 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7882 if (len
> IPW_RX_BUF_SIZE
- sizeof(struct ipw_rt_hdr
)) {
7883 /* FIXME: Should alloc bigger skb instead */
7884 dev
->stats
.rx_dropped
++;
7885 priv
->wstats
.discard
.misc
++;
7886 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7890 /* copy the frame itself */
7891 memmove(rxb
->skb
->data
+ sizeof(struct ipw_rt_hdr
),
7892 rxb
->skb
->data
+ IPW_RX_FRAME_SIZE
, len
);
7894 ipw_rt
= (struct ipw_rt_hdr
*)rxb
->skb
->data
;
7896 ipw_rt
->rt_hdr
.it_version
= PKTHDR_RADIOTAP_VERSION
;
7897 ipw_rt
->rt_hdr
.it_pad
= 0; /* always good to zero */
7898 ipw_rt
->rt_hdr
.it_len
= cpu_to_le16(sizeof(struct ipw_rt_hdr
)); /* total header+data */
7900 /* Big bitfield of all the fields we provide in radiotap */
7901 ipw_rt
->rt_hdr
.it_present
= cpu_to_le32(
7902 (1 << IEEE80211_RADIOTAP_TSFT
) |
7903 (1 << IEEE80211_RADIOTAP_FLAGS
) |
7904 (1 << IEEE80211_RADIOTAP_RATE
) |
7905 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
7906 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
) |
7907 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE
) |
7908 (1 << IEEE80211_RADIOTAP_ANTENNA
));
7910 /* Zero the flags, we'll add to them as we go */
7911 ipw_rt
->rt_flags
= 0;
7912 ipw_rt
->rt_tsf
= (u64
)(frame
->parent_tsf
[3] << 24 |
7913 frame
->parent_tsf
[2] << 16 |
7914 frame
->parent_tsf
[1] << 8 |
7915 frame
->parent_tsf
[0]);
7917 /* Convert signal to DBM */
7918 ipw_rt
->rt_dbmsignal
= antsignal
;
7919 ipw_rt
->rt_dbmnoise
= (s8
) le16_to_cpu(frame
->noise
);
7921 /* Convert the channel data and set the flags */
7922 ipw_rt
->rt_channel
= cpu_to_le16(ieee80211chan2mhz(received_channel
));
7923 if (received_channel
> 14) { /* 802.11a */
7924 ipw_rt
->rt_chbitmask
=
7925 cpu_to_le16((IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
));
7926 } else if (antennaAndPhy
& 32) { /* 802.11b */
7927 ipw_rt
->rt_chbitmask
=
7928 cpu_to_le16((IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
));
7929 } else { /* 802.11g */
7930 ipw_rt
->rt_chbitmask
=
7931 cpu_to_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
);
7934 /* set the rate in multiples of 500k/s */
7936 case IPW_TX_RATE_1MB
:
7937 ipw_rt
->rt_rate
= 2;
7939 case IPW_TX_RATE_2MB
:
7940 ipw_rt
->rt_rate
= 4;
7942 case IPW_TX_RATE_5MB
:
7943 ipw_rt
->rt_rate
= 10;
7945 case IPW_TX_RATE_6MB
:
7946 ipw_rt
->rt_rate
= 12;
7948 case IPW_TX_RATE_9MB
:
7949 ipw_rt
->rt_rate
= 18;
7951 case IPW_TX_RATE_11MB
:
7952 ipw_rt
->rt_rate
= 22;
7954 case IPW_TX_RATE_12MB
:
7955 ipw_rt
->rt_rate
= 24;
7957 case IPW_TX_RATE_18MB
:
7958 ipw_rt
->rt_rate
= 36;
7960 case IPW_TX_RATE_24MB
:
7961 ipw_rt
->rt_rate
= 48;
7963 case IPW_TX_RATE_36MB
:
7964 ipw_rt
->rt_rate
= 72;
7966 case IPW_TX_RATE_48MB
:
7967 ipw_rt
->rt_rate
= 96;
7969 case IPW_TX_RATE_54MB
:
7970 ipw_rt
->rt_rate
= 108;
7973 ipw_rt
->rt_rate
= 0;
7977 /* antenna number */
7978 ipw_rt
->rt_antenna
= (antennaAndPhy
& 3); /* Is this right? */
7980 /* set the preamble flag if we have it */
7981 if ((antennaAndPhy
& 64))
7982 ipw_rt
->rt_flags
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
7984 /* Set the size of the skb to the size of the frame */
7985 skb_put(rxb
->skb
, len
+ sizeof(struct ipw_rt_hdr
));
7987 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb
->skb
->len
);
7989 if (!libipw_rx(priv
->ieee
, rxb
->skb
, stats
))
7990 dev
->stats
.rx_errors
++;
7991 else { /* libipw_rx succeeded, so it now owns the SKB */
7993 /* no LED during capture */
7998 #ifdef CONFIG_IPW2200_PROMISCUOUS
7999 #define libipw_is_probe_response(fc) \
8000 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8001 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8003 #define libipw_is_management(fc) \
8004 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8006 #define libipw_is_control(fc) \
8007 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8009 #define libipw_is_data(fc) \
8010 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8012 #define libipw_is_assoc_request(fc) \
8013 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8015 #define libipw_is_reassoc_request(fc) \
8016 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8018 static void ipw_handle_promiscuous_rx(struct ipw_priv
*priv
,
8019 struct ipw_rx_mem_buffer
*rxb
,
8020 struct libipw_rx_stats
*stats
)
8022 struct net_device
*dev
= priv
->prom_net_dev
;
8023 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
8024 struct ipw_rx_frame
*frame
= &pkt
->u
.frame
;
8025 struct ipw_rt_hdr
*ipw_rt
;
8027 /* First cache any information we need before we overwrite
8028 * the information provided in the skb from the hardware */
8029 struct ieee80211_hdr
*hdr
;
8030 u16 channel
= frame
->received_channel
;
8031 u8 phy_flags
= frame
->antennaAndPhy
;
8032 s8 signal
= frame
->rssi_dbm
- IPW_RSSI_TO_DBM
;
8033 s8 noise
= (s8
) le16_to_cpu(frame
->noise
);
8034 u8 rate
= frame
->rate
;
8035 unsigned short len
= le16_to_cpu(pkt
->u
.frame
.length
);
8036 struct sk_buff
*skb
;
8038 u16 filter
= priv
->prom_priv
->filter
;
8040 /* If the filter is set to not include Rx frames then return */
8041 if (filter
& IPW_PROM_NO_RX
)
8044 /* We received data from the HW, so stop the watchdog */
8045 dev
->trans_start
= jiffies
;
8047 if (unlikely((len
+ IPW_RX_FRAME_SIZE
) > skb_tailroom(rxb
->skb
))) {
8048 dev
->stats
.rx_errors
++;
8049 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8053 /* We only process data packets if the interface is open */
8054 if (unlikely(!netif_running(dev
))) {
8055 dev
->stats
.rx_dropped
++;
8056 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8060 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8062 if (len
> IPW_RX_BUF_SIZE
- sizeof(struct ipw_rt_hdr
)) {
8063 /* FIXME: Should alloc bigger skb instead */
8064 dev
->stats
.rx_dropped
++;
8065 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8069 hdr
= (void *)rxb
->skb
->data
+ IPW_RX_FRAME_SIZE
;
8070 if (libipw_is_management(le16_to_cpu(hdr
->frame_control
))) {
8071 if (filter
& IPW_PROM_NO_MGMT
)
8073 if (filter
& IPW_PROM_MGMT_HEADER_ONLY
)
8075 } else if (libipw_is_control(le16_to_cpu(hdr
->frame_control
))) {
8076 if (filter
& IPW_PROM_NO_CTL
)
8078 if (filter
& IPW_PROM_CTL_HEADER_ONLY
)
8080 } else if (libipw_is_data(le16_to_cpu(hdr
->frame_control
))) {
8081 if (filter
& IPW_PROM_NO_DATA
)
8083 if (filter
& IPW_PROM_DATA_HEADER_ONLY
)
8087 /* Copy the SKB since this is for the promiscuous side */
8088 skb
= skb_copy(rxb
->skb
, GFP_ATOMIC
);
8090 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8094 /* copy the frame data to write after where the radiotap header goes */
8095 ipw_rt
= (void *)skb
->data
;
8098 len
= libipw_get_hdrlen(le16_to_cpu(hdr
->frame_control
));
8100 memcpy(ipw_rt
->payload
, hdr
, len
);
8102 ipw_rt
->rt_hdr
.it_version
= PKTHDR_RADIOTAP_VERSION
;
8103 ipw_rt
->rt_hdr
.it_pad
= 0; /* always good to zero */
8104 ipw_rt
->rt_hdr
.it_len
= cpu_to_le16(sizeof(*ipw_rt
)); /* total header+data */
8106 /* Set the size of the skb to the size of the frame */
8107 skb_put(skb
, sizeof(*ipw_rt
) + len
);
8109 /* Big bitfield of all the fields we provide in radiotap */
8110 ipw_rt
->rt_hdr
.it_present
= cpu_to_le32(
8111 (1 << IEEE80211_RADIOTAP_TSFT
) |
8112 (1 << IEEE80211_RADIOTAP_FLAGS
) |
8113 (1 << IEEE80211_RADIOTAP_RATE
) |
8114 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
8115 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
) |
8116 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE
) |
8117 (1 << IEEE80211_RADIOTAP_ANTENNA
));
8119 /* Zero the flags, we'll add to them as we go */
8120 ipw_rt
->rt_flags
= 0;
8121 ipw_rt
->rt_tsf
= (u64
)(frame
->parent_tsf
[3] << 24 |
8122 frame
->parent_tsf
[2] << 16 |
8123 frame
->parent_tsf
[1] << 8 |
8124 frame
->parent_tsf
[0]);
8126 /* Convert to DBM */
8127 ipw_rt
->rt_dbmsignal
= signal
;
8128 ipw_rt
->rt_dbmnoise
= noise
;
8130 /* Convert the channel data and set the flags */
8131 ipw_rt
->rt_channel
= cpu_to_le16(ieee80211chan2mhz(channel
));
8132 if (channel
> 14) { /* 802.11a */
8133 ipw_rt
->rt_chbitmask
=
8134 cpu_to_le16((IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
));
8135 } else if (phy_flags
& (1 << 5)) { /* 802.11b */
8136 ipw_rt
->rt_chbitmask
=
8137 cpu_to_le16((IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
));
8138 } else { /* 802.11g */
8139 ipw_rt
->rt_chbitmask
=
8140 cpu_to_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
);
8143 /* set the rate in multiples of 500k/s */
8145 case IPW_TX_RATE_1MB
:
8146 ipw_rt
->rt_rate
= 2;
8148 case IPW_TX_RATE_2MB
:
8149 ipw_rt
->rt_rate
= 4;
8151 case IPW_TX_RATE_5MB
:
8152 ipw_rt
->rt_rate
= 10;
8154 case IPW_TX_RATE_6MB
:
8155 ipw_rt
->rt_rate
= 12;
8157 case IPW_TX_RATE_9MB
:
8158 ipw_rt
->rt_rate
= 18;
8160 case IPW_TX_RATE_11MB
:
8161 ipw_rt
->rt_rate
= 22;
8163 case IPW_TX_RATE_12MB
:
8164 ipw_rt
->rt_rate
= 24;
8166 case IPW_TX_RATE_18MB
:
8167 ipw_rt
->rt_rate
= 36;
8169 case IPW_TX_RATE_24MB
:
8170 ipw_rt
->rt_rate
= 48;
8172 case IPW_TX_RATE_36MB
:
8173 ipw_rt
->rt_rate
= 72;
8175 case IPW_TX_RATE_48MB
:
8176 ipw_rt
->rt_rate
= 96;
8178 case IPW_TX_RATE_54MB
:
8179 ipw_rt
->rt_rate
= 108;
8182 ipw_rt
->rt_rate
= 0;
8186 /* antenna number */
8187 ipw_rt
->rt_antenna
= (phy_flags
& 3);
8189 /* set the preamble flag if we have it */
8190 if (phy_flags
& (1 << 6))
8191 ipw_rt
->rt_flags
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
8193 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb
->len
);
8195 if (!libipw_rx(priv
->prom_priv
->ieee
, skb
, stats
)) {
8196 dev
->stats
.rx_errors
++;
8197 dev_kfree_skb_any(skb
);
8202 static int is_network_packet(struct ipw_priv
*priv
,
8203 struct libipw_hdr_4addr
*header
)
8205 /* Filter incoming packets to determine if they are targeted toward
8206 * this network, discarding packets coming from ourselves */
8207 switch (priv
->ieee
->iw_mode
) {
8208 case IW_MODE_ADHOC
: /* Header: Dest. | Source | BSSID */
8209 /* packets from our adapter are dropped (echo) */
8210 if (!memcmp(header
->addr2
, priv
->net_dev
->dev_addr
, ETH_ALEN
))
8213 /* {broad,multi}cast packets to our BSSID go through */
8214 if (is_multicast_ether_addr(header
->addr1
))
8215 return !memcmp(header
->addr3
, priv
->bssid
, ETH_ALEN
);
8217 /* packets to our adapter go through */
8218 return !memcmp(header
->addr1
, priv
->net_dev
->dev_addr
,
8221 case IW_MODE_INFRA
: /* Header: Dest. | BSSID | Source */
8222 /* packets from our adapter are dropped (echo) */
8223 if (!memcmp(header
->addr3
, priv
->net_dev
->dev_addr
, ETH_ALEN
))
8226 /* {broad,multi}cast packets to our BSS go through */
8227 if (is_multicast_ether_addr(header
->addr1
))
8228 return !memcmp(header
->addr2
, priv
->bssid
, ETH_ALEN
);
8230 /* packets to our adapter go through */
8231 return !memcmp(header
->addr1
, priv
->net_dev
->dev_addr
,
8238 #define IPW_PACKET_RETRY_TIME HZ
8240 static int is_duplicate_packet(struct ipw_priv
*priv
,
8241 struct libipw_hdr_4addr
*header
)
8243 u16 sc
= le16_to_cpu(header
->seq_ctl
);
8244 u16 seq
= WLAN_GET_SEQ_SEQ(sc
);
8245 u16 frag
= WLAN_GET_SEQ_FRAG(sc
);
8246 u16
*last_seq
, *last_frag
;
8247 unsigned long *last_time
;
8249 switch (priv
->ieee
->iw_mode
) {
8252 struct list_head
*p
;
8253 struct ipw_ibss_seq
*entry
= NULL
;
8254 u8
*mac
= header
->addr2
;
8255 int index
= mac
[5] % IPW_IBSS_MAC_HASH_SIZE
;
8257 __list_for_each(p
, &priv
->ibss_mac_hash
[index
]) {
8259 list_entry(p
, struct ipw_ibss_seq
, list
);
8260 if (!memcmp(entry
->mac
, mac
, ETH_ALEN
))
8263 if (p
== &priv
->ibss_mac_hash
[index
]) {
8264 entry
= kmalloc(sizeof(*entry
), GFP_ATOMIC
);
8267 ("Cannot malloc new mac entry\n");
8270 memcpy(entry
->mac
, mac
, ETH_ALEN
);
8271 entry
->seq_num
= seq
;
8272 entry
->frag_num
= frag
;
8273 entry
->packet_time
= jiffies
;
8274 list_add(&entry
->list
,
8275 &priv
->ibss_mac_hash
[index
]);
8278 last_seq
= &entry
->seq_num
;
8279 last_frag
= &entry
->frag_num
;
8280 last_time
= &entry
->packet_time
;
8284 last_seq
= &priv
->last_seq_num
;
8285 last_frag
= &priv
->last_frag_num
;
8286 last_time
= &priv
->last_packet_time
;
8291 if ((*last_seq
== seq
) &&
8292 time_after(*last_time
+ IPW_PACKET_RETRY_TIME
, jiffies
)) {
8293 if (*last_frag
== frag
)
8295 if (*last_frag
+ 1 != frag
)
8296 /* out-of-order fragment */
8302 *last_time
= jiffies
;
8306 /* Comment this line now since we observed the card receives
8307 * duplicate packets but the FCTL_RETRY bit is not set in the
8308 * IBSS mode with fragmentation enabled.
8309 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8313 static void ipw_handle_mgmt_packet(struct ipw_priv
*priv
,
8314 struct ipw_rx_mem_buffer
*rxb
,
8315 struct libipw_rx_stats
*stats
)
8317 struct sk_buff
*skb
= rxb
->skb
;
8318 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)skb
->data
;
8319 struct libipw_hdr_4addr
*header
= (struct libipw_hdr_4addr
*)
8320 (skb
->data
+ IPW_RX_FRAME_SIZE
);
8322 libipw_rx_mgt(priv
->ieee
, header
, stats
);
8324 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
8325 ((WLAN_FC_GET_STYPE(le16_to_cpu(header
->frame_ctl
)) ==
8326 IEEE80211_STYPE_PROBE_RESP
) ||
8327 (WLAN_FC_GET_STYPE(le16_to_cpu(header
->frame_ctl
)) ==
8328 IEEE80211_STYPE_BEACON
))) {
8329 if (!memcmp(header
->addr3
, priv
->bssid
, ETH_ALEN
))
8330 ipw_add_station(priv
, header
->addr2
);
8333 if (priv
->config
& CFG_NET_STATS
) {
8334 IPW_DEBUG_HC("sending stat packet\n");
8336 /* Set the size of the skb to the size of the full
8337 * ipw header and 802.11 frame */
8338 skb_put(skb
, le16_to_cpu(pkt
->u
.frame
.length
) +
8341 /* Advance past the ipw packet header to the 802.11 frame */
8342 skb_pull(skb
, IPW_RX_FRAME_SIZE
);
8344 /* Push the libipw_rx_stats before the 802.11 frame */
8345 memcpy(skb_push(skb
, sizeof(*stats
)), stats
, sizeof(*stats
));
8347 skb
->dev
= priv
->ieee
->dev
;
8349 /* Point raw at the libipw_stats */
8350 skb_reset_mac_header(skb
);
8352 skb
->pkt_type
= PACKET_OTHERHOST
;
8353 skb
->protocol
= cpu_to_be16(ETH_P_80211_STATS
);
8354 memset(skb
->cb
, 0, sizeof(rxb
->skb
->cb
));
8361 * Main entry function for receiving a packet with 80211 headers. This
8362 * should be called when ever the FW has notified us that there is a new
8363 * skb in the receive queue.
8365 static void ipw_rx(struct ipw_priv
*priv
)
8367 struct ipw_rx_mem_buffer
*rxb
;
8368 struct ipw_rx_packet
*pkt
;
8369 struct libipw_hdr_4addr
*header
;
8374 r
= ipw_read32(priv
, IPW_RX_READ_INDEX
);
8375 w
= ipw_read32(priv
, IPW_RX_WRITE_INDEX
);
8376 i
= priv
->rxq
->read
;
8378 if (ipw_rx_queue_space (priv
->rxq
) > (RX_QUEUE_SIZE
/ 2))
8382 rxb
= priv
->rxq
->queue
[i
];
8383 if (unlikely(rxb
== NULL
)) {
8384 printk(KERN_CRIT
"Queue not allocated!\n");
8387 priv
->rxq
->queue
[i
] = NULL
;
8389 pci_dma_sync_single_for_cpu(priv
->pci_dev
, rxb
->dma_addr
,
8391 PCI_DMA_FROMDEVICE
);
8393 pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
8394 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8395 pkt
->header
.message_type
,
8396 pkt
->header
.rx_seq_num
, pkt
->header
.control_bits
);
8398 switch (pkt
->header
.message_type
) {
8399 case RX_FRAME_TYPE
: /* 802.11 frame */ {
8400 struct libipw_rx_stats stats
= {
8401 .rssi
= pkt
->u
.frame
.rssi_dbm
-
8404 pkt
->u
.frame
.rssi_dbm
-
8405 IPW_RSSI_TO_DBM
+ 0x100,
8407 le16_to_cpu(pkt
->u
.frame
.noise
),
8408 .rate
= pkt
->u
.frame
.rate
,
8409 .mac_time
= jiffies
,
8411 pkt
->u
.frame
.received_channel
,
8414 control
& (1 << 0)) ?
8417 .len
= le16_to_cpu(pkt
->u
.frame
.length
),
8420 if (stats
.rssi
!= 0)
8421 stats
.mask
|= LIBIPW_STATMASK_RSSI
;
8422 if (stats
.signal
!= 0)
8423 stats
.mask
|= LIBIPW_STATMASK_SIGNAL
;
8424 if (stats
.noise
!= 0)
8425 stats
.mask
|= LIBIPW_STATMASK_NOISE
;
8426 if (stats
.rate
!= 0)
8427 stats
.mask
|= LIBIPW_STATMASK_RATE
;
8431 #ifdef CONFIG_IPW2200_PROMISCUOUS
8432 if (priv
->prom_net_dev
&& netif_running(priv
->prom_net_dev
))
8433 ipw_handle_promiscuous_rx(priv
, rxb
, &stats
);
8436 #ifdef CONFIG_IPW2200_MONITOR
8437 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
8438 #ifdef CONFIG_IPW2200_RADIOTAP
8440 ipw_handle_data_packet_monitor(priv
,
8444 ipw_handle_data_packet(priv
, rxb
,
8452 (struct libipw_hdr_4addr
*)(rxb
->skb
->
8455 /* TODO: Check Ad-Hoc dest/source and make sure
8456 * that we are actually parsing these packets
8457 * correctly -- we should probably use the
8458 * frame control of the packet and disregard
8459 * the current iw_mode */
8462 is_network_packet(priv
, header
);
8463 if (network_packet
&& priv
->assoc_network
) {
8464 priv
->assoc_network
->stats
.rssi
=
8466 priv
->exp_avg_rssi
=
8467 exponential_average(priv
->exp_avg_rssi
,
8468 stats
.rssi
, DEPTH_RSSI
);
8471 IPW_DEBUG_RX("Frame: len=%u\n",
8472 le16_to_cpu(pkt
->u
.frame
.length
));
8474 if (le16_to_cpu(pkt
->u
.frame
.length
) <
8475 libipw_get_hdrlen(le16_to_cpu(
8476 header
->frame_ctl
))) {
8478 ("Received packet is too small. "
8480 priv
->net_dev
->stats
.rx_errors
++;
8481 priv
->wstats
.discard
.misc
++;
8485 switch (WLAN_FC_GET_TYPE
8486 (le16_to_cpu(header
->frame_ctl
))) {
8488 case IEEE80211_FTYPE_MGMT
:
8489 ipw_handle_mgmt_packet(priv
, rxb
,
8493 case IEEE80211_FTYPE_CTL
:
8496 case IEEE80211_FTYPE_DATA
:
8497 if (unlikely(!network_packet
||
8498 is_duplicate_packet(priv
,
8501 IPW_DEBUG_DROP("Dropping: "
8511 ipw_handle_data_packet(priv
, rxb
,
8519 case RX_HOST_NOTIFICATION_TYPE
:{
8521 ("Notification: subtype=%02X flags=%02X size=%d\n",
8522 pkt
->u
.notification
.subtype
,
8523 pkt
->u
.notification
.flags
,
8524 le16_to_cpu(pkt
->u
.notification
.size
));
8525 ipw_rx_notification(priv
, &pkt
->u
.notification
);
8530 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8531 pkt
->header
.message_type
);
8535 /* For now we just don't re-use anything. We can tweak this
8536 * later to try and re-use notification packets and SKBs that
8537 * fail to Rx correctly */
8538 if (rxb
->skb
!= NULL
) {
8539 dev_kfree_skb_any(rxb
->skb
);
8543 pci_unmap_single(priv
->pci_dev
, rxb
->dma_addr
,
8544 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
8545 list_add_tail(&rxb
->list
, &priv
->rxq
->rx_used
);
8547 i
= (i
+ 1) % RX_QUEUE_SIZE
;
8549 /* If there are a lot of unsued frames, restock the Rx queue
8550 * so the ucode won't assert */
8552 priv
->rxq
->read
= i
;
8553 ipw_rx_queue_replenish(priv
);
8557 /* Backtrack one entry */
8558 priv
->rxq
->read
= i
;
8559 ipw_rx_queue_restock(priv
);
8562 #define DEFAULT_RTS_THRESHOLD 2304U
8563 #define MIN_RTS_THRESHOLD 1U
8564 #define MAX_RTS_THRESHOLD 2304U
8565 #define DEFAULT_BEACON_INTERVAL 100U
8566 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8567 #define DEFAULT_LONG_RETRY_LIMIT 4U
8571 * @option: options to control different reset behaviour
8572 * 0 = reset everything except the 'disable' module_param
8573 * 1 = reset everything and print out driver info (for probe only)
8574 * 2 = reset everything
8576 static int ipw_sw_reset(struct ipw_priv
*priv
, int option
)
8578 int band
, modulation
;
8579 int old_mode
= priv
->ieee
->iw_mode
;
8581 /* Initialize module parameter values here */
8584 /* We default to disabling the LED code as right now it causes
8585 * too many systems to lock up... */
8587 priv
->config
|= CFG_NO_LED
;
8590 priv
->config
|= CFG_ASSOCIATE
;
8592 IPW_DEBUG_INFO("Auto associate disabled.\n");
8595 priv
->config
|= CFG_ADHOC_CREATE
;
8597 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8599 priv
->config
&= ~CFG_STATIC_ESSID
;
8600 priv
->essid_len
= 0;
8601 memset(priv
->essid
, 0, IW_ESSID_MAX_SIZE
);
8603 if (disable
&& option
) {
8604 priv
->status
|= STATUS_RF_KILL_SW
;
8605 IPW_DEBUG_INFO("Radio disabled.\n");
8608 if (default_channel
!= 0) {
8609 priv
->config
|= CFG_STATIC_CHANNEL
;
8610 priv
->channel
= default_channel
;
8611 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel
);
8612 /* TODO: Validate that provided channel is in range */
8614 #ifdef CONFIG_IPW2200_QOS
8615 ipw_qos_init(priv
, qos_enable
, qos_burst_enable
,
8616 burst_duration_CCK
, burst_duration_OFDM
);
8617 #endif /* CONFIG_IPW2200_QOS */
8619 switch (network_mode
) {
8621 priv
->ieee
->iw_mode
= IW_MODE_ADHOC
;
8622 priv
->net_dev
->type
= ARPHRD_ETHER
;
8625 #ifdef CONFIG_IPW2200_MONITOR
8627 priv
->ieee
->iw_mode
= IW_MODE_MONITOR
;
8628 #ifdef CONFIG_IPW2200_RADIOTAP
8629 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
8631 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
8637 priv
->net_dev
->type
= ARPHRD_ETHER
;
8638 priv
->ieee
->iw_mode
= IW_MODE_INFRA
;
8643 priv
->ieee
->host_encrypt
= 0;
8644 priv
->ieee
->host_encrypt_msdu
= 0;
8645 priv
->ieee
->host_decrypt
= 0;
8646 priv
->ieee
->host_mc_decrypt
= 0;
8648 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto
? "on" : "off");
8650 /* IPW2200/2915 is abled to do hardware fragmentation. */
8651 priv
->ieee
->host_open_frag
= 0;
8653 if ((priv
->pci_dev
->device
== 0x4223) ||
8654 (priv
->pci_dev
->device
== 0x4224)) {
8656 printk(KERN_INFO DRV_NAME
8657 ": Detected Intel PRO/Wireless 2915ABG Network "
8659 priv
->ieee
->abg_true
= 1;
8660 band
= LIBIPW_52GHZ_BAND
| LIBIPW_24GHZ_BAND
;
8661 modulation
= LIBIPW_OFDM_MODULATION
|
8662 LIBIPW_CCK_MODULATION
;
8663 priv
->adapter
= IPW_2915ABG
;
8664 priv
->ieee
->mode
= IEEE_A
| IEEE_G
| IEEE_B
;
8667 printk(KERN_INFO DRV_NAME
8668 ": Detected Intel PRO/Wireless 2200BG Network "
8671 priv
->ieee
->abg_true
= 0;
8672 band
= LIBIPW_24GHZ_BAND
;
8673 modulation
= LIBIPW_OFDM_MODULATION
|
8674 LIBIPW_CCK_MODULATION
;
8675 priv
->adapter
= IPW_2200BG
;
8676 priv
->ieee
->mode
= IEEE_G
| IEEE_B
;
8679 priv
->ieee
->freq_band
= band
;
8680 priv
->ieee
->modulation
= modulation
;
8682 priv
->rates_mask
= LIBIPW_DEFAULT_RATES_MASK
;
8684 priv
->disassociate_threshold
= IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT
;
8685 priv
->roaming_threshold
= IPW_MB_ROAMING_THRESHOLD_DEFAULT
;
8687 priv
->rts_threshold
= DEFAULT_RTS_THRESHOLD
;
8688 priv
->short_retry_limit
= DEFAULT_SHORT_RETRY_LIMIT
;
8689 priv
->long_retry_limit
= DEFAULT_LONG_RETRY_LIMIT
;
8691 /* If power management is turned on, default to AC mode */
8692 priv
->power_mode
= IPW_POWER_AC
;
8693 priv
->tx_power
= IPW_TX_POWER_DEFAULT
;
8695 return old_mode
== priv
->ieee
->iw_mode
;
8699 * This file defines the Wireless Extension handlers. It does not
8700 * define any methods of hardware manipulation and relies on the
8701 * functions defined in ipw_main to provide the HW interaction.
8703 * The exception to this is the use of the ipw_get_ordinal()
8704 * function used to poll the hardware vs. making unnecessary calls.
8708 static int ipw_set_channel(struct ipw_priv
*priv
, u8 channel
)
8711 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8712 priv
->config
&= ~CFG_STATIC_CHANNEL
;
8713 IPW_DEBUG_ASSOC("Attempting to associate with new "
8715 ipw_associate(priv
);
8719 priv
->config
|= CFG_STATIC_CHANNEL
;
8721 if (priv
->channel
== channel
) {
8722 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8727 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel
);
8728 priv
->channel
= channel
;
8730 #ifdef CONFIG_IPW2200_MONITOR
8731 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
8733 if (priv
->status
& STATUS_SCANNING
) {
8734 IPW_DEBUG_SCAN("Scan abort triggered due to "
8735 "channel change.\n");
8736 ipw_abort_scan(priv
);
8739 for (i
= 1000; i
&& (priv
->status
& STATUS_SCANNING
); i
--)
8742 if (priv
->status
& STATUS_SCANNING
)
8743 IPW_DEBUG_SCAN("Still scanning...\n");
8745 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8750 #endif /* CONFIG_IPW2200_MONITOR */
8752 /* Network configuration changed -- force [re]association */
8753 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8754 if (!ipw_disassociate(priv
))
8755 ipw_associate(priv
);
8760 static int ipw_wx_set_freq(struct net_device
*dev
,
8761 struct iw_request_info
*info
,
8762 union iwreq_data
*wrqu
, char *extra
)
8764 struct ipw_priv
*priv
= libipw_priv(dev
);
8765 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
8766 struct iw_freq
*fwrq
= &wrqu
->freq
;
8772 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8773 mutex_lock(&priv
->mutex
);
8774 ret
= ipw_set_channel(priv
, 0);
8775 mutex_unlock(&priv
->mutex
);
8778 /* if setting by freq convert to channel */
8780 channel
= libipw_freq_to_channel(priv
->ieee
, fwrq
->m
);
8786 if (!(band
= libipw_is_valid_channel(priv
->ieee
, channel
)))
8789 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
8790 i
= libipw_channel_to_index(priv
->ieee
, channel
);
8794 flags
= (band
== LIBIPW_24GHZ_BAND
) ?
8795 geo
->bg
[i
].flags
: geo
->a
[i
].flags
;
8796 if (flags
& LIBIPW_CH_PASSIVE_ONLY
) {
8797 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8802 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq
->m
);
8803 mutex_lock(&priv
->mutex
);
8804 ret
= ipw_set_channel(priv
, channel
);
8805 mutex_unlock(&priv
->mutex
);
8809 static int ipw_wx_get_freq(struct net_device
*dev
,
8810 struct iw_request_info
*info
,
8811 union iwreq_data
*wrqu
, char *extra
)
8813 struct ipw_priv
*priv
= libipw_priv(dev
);
8817 /* If we are associated, trying to associate, or have a statically
8818 * configured CHANNEL then return that; otherwise return ANY */
8819 mutex_lock(&priv
->mutex
);
8820 if (priv
->config
& CFG_STATIC_CHANNEL
||
8821 priv
->status
& (STATUS_ASSOCIATING
| STATUS_ASSOCIATED
)) {
8824 i
= libipw_channel_to_index(priv
->ieee
, priv
->channel
);
8828 switch (libipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
8829 case LIBIPW_52GHZ_BAND
:
8830 wrqu
->freq
.m
= priv
->ieee
->geo
.a
[i
].freq
* 100000;
8833 case LIBIPW_24GHZ_BAND
:
8834 wrqu
->freq
.m
= priv
->ieee
->geo
.bg
[i
].freq
* 100000;
8843 mutex_unlock(&priv
->mutex
);
8844 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv
->channel
);
8848 static int ipw_wx_set_mode(struct net_device
*dev
,
8849 struct iw_request_info
*info
,
8850 union iwreq_data
*wrqu
, char *extra
)
8852 struct ipw_priv
*priv
= libipw_priv(dev
);
8855 IPW_DEBUG_WX("Set MODE: %d\n", wrqu
->mode
);
8857 switch (wrqu
->mode
) {
8858 #ifdef CONFIG_IPW2200_MONITOR
8859 case IW_MODE_MONITOR
:
8865 wrqu
->mode
= IW_MODE_INFRA
;
8870 if (wrqu
->mode
== priv
->ieee
->iw_mode
)
8873 mutex_lock(&priv
->mutex
);
8875 ipw_sw_reset(priv
, 0);
8877 #ifdef CONFIG_IPW2200_MONITOR
8878 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
)
8879 priv
->net_dev
->type
= ARPHRD_ETHER
;
8881 if (wrqu
->mode
== IW_MODE_MONITOR
)
8882 #ifdef CONFIG_IPW2200_RADIOTAP
8883 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
8885 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
8887 #endif /* CONFIG_IPW2200_MONITOR */
8889 /* Free the existing firmware and reset the fw_loaded
8890 * flag so ipw_load() will bring in the new firmware */
8893 priv
->ieee
->iw_mode
= wrqu
->mode
;
8895 schedule_work(&priv
->adapter_restart
);
8896 mutex_unlock(&priv
->mutex
);
8900 static int ipw_wx_get_mode(struct net_device
*dev
,
8901 struct iw_request_info
*info
,
8902 union iwreq_data
*wrqu
, char *extra
)
8904 struct ipw_priv
*priv
= libipw_priv(dev
);
8905 mutex_lock(&priv
->mutex
);
8906 wrqu
->mode
= priv
->ieee
->iw_mode
;
8907 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu
->mode
);
8908 mutex_unlock(&priv
->mutex
);
8912 /* Values are in microsecond */
8913 static const s32 timeout_duration
[] = {
8921 static const s32 period_duration
[] = {
8929 static int ipw_wx_get_range(struct net_device
*dev
,
8930 struct iw_request_info
*info
,
8931 union iwreq_data
*wrqu
, char *extra
)
8933 struct ipw_priv
*priv
= libipw_priv(dev
);
8934 struct iw_range
*range
= (struct iw_range
*)extra
;
8935 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
8938 wrqu
->data
.length
= sizeof(*range
);
8939 memset(range
, 0, sizeof(*range
));
8941 /* 54Mbs == ~27 Mb/s real (802.11g) */
8942 range
->throughput
= 27 * 1000 * 1000;
8944 range
->max_qual
.qual
= 100;
8945 /* TODO: Find real max RSSI and stick here */
8946 range
->max_qual
.level
= 0;
8947 range
->max_qual
.noise
= 0;
8948 range
->max_qual
.updated
= 7; /* Updated all three */
8950 range
->avg_qual
.qual
= 70;
8951 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8952 range
->avg_qual
.level
= 0; /* FIXME to real average level */
8953 range
->avg_qual
.noise
= 0;
8954 range
->avg_qual
.updated
= 7; /* Updated all three */
8955 mutex_lock(&priv
->mutex
);
8956 range
->num_bitrates
= min(priv
->rates
.num_rates
, (u8
) IW_MAX_BITRATES
);
8958 for (i
= 0; i
< range
->num_bitrates
; i
++)
8959 range
->bitrate
[i
] = (priv
->rates
.supported_rates
[i
] & 0x7F) *
8962 range
->max_rts
= DEFAULT_RTS_THRESHOLD
;
8963 range
->min_frag
= MIN_FRAG_THRESHOLD
;
8964 range
->max_frag
= MAX_FRAG_THRESHOLD
;
8966 range
->encoding_size
[0] = 5;
8967 range
->encoding_size
[1] = 13;
8968 range
->num_encoding_sizes
= 2;
8969 range
->max_encoding_tokens
= WEP_KEYS
;
8971 /* Set the Wireless Extension versions */
8972 range
->we_version_compiled
= WIRELESS_EXT
;
8973 range
->we_version_source
= 18;
8976 if (priv
->ieee
->mode
& (IEEE_B
| IEEE_G
)) {
8977 for (j
= 0; j
< geo
->bg_channels
&& i
< IW_MAX_FREQUENCIES
; j
++) {
8978 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) &&
8979 (geo
->bg
[j
].flags
& LIBIPW_CH_PASSIVE_ONLY
))
8982 range
->freq
[i
].i
= geo
->bg
[j
].channel
;
8983 range
->freq
[i
].m
= geo
->bg
[j
].freq
* 100000;
8984 range
->freq
[i
].e
= 1;
8989 if (priv
->ieee
->mode
& IEEE_A
) {
8990 for (j
= 0; j
< geo
->a_channels
&& i
< IW_MAX_FREQUENCIES
; j
++) {
8991 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) &&
8992 (geo
->a
[j
].flags
& LIBIPW_CH_PASSIVE_ONLY
))
8995 range
->freq
[i
].i
= geo
->a
[j
].channel
;
8996 range
->freq
[i
].m
= geo
->a
[j
].freq
* 100000;
8997 range
->freq
[i
].e
= 1;
9002 range
->num_channels
= i
;
9003 range
->num_frequency
= i
;
9005 mutex_unlock(&priv
->mutex
);
9007 /* Event capability (kernel + driver) */
9008 range
->event_capa
[0] = (IW_EVENT_CAPA_K_0
|
9009 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY
) |
9010 IW_EVENT_CAPA_MASK(SIOCGIWAP
) |
9011 IW_EVENT_CAPA_MASK(SIOCGIWSCAN
));
9012 range
->event_capa
[1] = IW_EVENT_CAPA_K_1
;
9014 range
->enc_capa
= IW_ENC_CAPA_WPA
| IW_ENC_CAPA_WPA2
|
9015 IW_ENC_CAPA_CIPHER_TKIP
| IW_ENC_CAPA_CIPHER_CCMP
;
9017 range
->scan_capa
= IW_SCAN_CAPA_ESSID
| IW_SCAN_CAPA_TYPE
;
9019 IPW_DEBUG_WX("GET Range\n");
9023 static int ipw_wx_set_wap(struct net_device
*dev
,
9024 struct iw_request_info
*info
,
9025 union iwreq_data
*wrqu
, char *extra
)
9027 struct ipw_priv
*priv
= libipw_priv(dev
);
9029 static const unsigned char any
[] = {
9030 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9032 static const unsigned char off
[] = {
9033 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9036 if (wrqu
->ap_addr
.sa_family
!= ARPHRD_ETHER
)
9038 mutex_lock(&priv
->mutex
);
9039 if (!memcmp(any
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
) ||
9040 !memcmp(off
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
)) {
9041 /* we disable mandatory BSSID association */
9042 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9043 priv
->config
&= ~CFG_STATIC_BSSID
;
9044 IPW_DEBUG_ASSOC("Attempting to associate with new "
9046 ipw_associate(priv
);
9047 mutex_unlock(&priv
->mutex
);
9051 priv
->config
|= CFG_STATIC_BSSID
;
9052 if (!memcmp(priv
->bssid
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
)) {
9053 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9054 mutex_unlock(&priv
->mutex
);
9058 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9059 wrqu
->ap_addr
.sa_data
);
9061 memcpy(priv
->bssid
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
);
9063 /* Network configuration changed -- force [re]association */
9064 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9065 if (!ipw_disassociate(priv
))
9066 ipw_associate(priv
);
9068 mutex_unlock(&priv
->mutex
);
9072 static int ipw_wx_get_wap(struct net_device
*dev
,
9073 struct iw_request_info
*info
,
9074 union iwreq_data
*wrqu
, char *extra
)
9076 struct ipw_priv
*priv
= libipw_priv(dev
);
9078 /* If we are associated, trying to associate, or have a statically
9079 * configured BSSID then return that; otherwise return ANY */
9080 mutex_lock(&priv
->mutex
);
9081 if (priv
->config
& CFG_STATIC_BSSID
||
9082 priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
9083 wrqu
->ap_addr
.sa_family
= ARPHRD_ETHER
;
9084 memcpy(wrqu
->ap_addr
.sa_data
, priv
->bssid
, ETH_ALEN
);
9086 memset(wrqu
->ap_addr
.sa_data
, 0, ETH_ALEN
);
9088 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9089 wrqu
->ap_addr
.sa_data
);
9090 mutex_unlock(&priv
->mutex
);
9094 static int ipw_wx_set_essid(struct net_device
*dev
,
9095 struct iw_request_info
*info
,
9096 union iwreq_data
*wrqu
, char *extra
)
9098 struct ipw_priv
*priv
= libipw_priv(dev
);
9100 DECLARE_SSID_BUF(ssid
);
9102 mutex_lock(&priv
->mutex
);
9104 if (!wrqu
->essid
.flags
)
9106 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9107 ipw_disassociate(priv
);
9108 priv
->config
&= ~CFG_STATIC_ESSID
;
9109 ipw_associate(priv
);
9110 mutex_unlock(&priv
->mutex
);
9114 length
= min((int)wrqu
->essid
.length
, IW_ESSID_MAX_SIZE
);
9116 priv
->config
|= CFG_STATIC_ESSID
;
9118 if (priv
->essid_len
== length
&& !memcmp(priv
->essid
, extra
, length
)
9119 && (priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
))) {
9120 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9121 mutex_unlock(&priv
->mutex
);
9125 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9126 print_ssid(ssid
, extra
, length
), length
);
9128 priv
->essid_len
= length
;
9129 memcpy(priv
->essid
, extra
, priv
->essid_len
);
9131 /* Network configuration changed -- force [re]association */
9132 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9133 if (!ipw_disassociate(priv
))
9134 ipw_associate(priv
);
9136 mutex_unlock(&priv
->mutex
);
9140 static int ipw_wx_get_essid(struct net_device
*dev
,
9141 struct iw_request_info
*info
,
9142 union iwreq_data
*wrqu
, char *extra
)
9144 struct ipw_priv
*priv
= libipw_priv(dev
);
9145 DECLARE_SSID_BUF(ssid
);
9147 /* If we are associated, trying to associate, or have a statically
9148 * configured ESSID then return that; otherwise return ANY */
9149 mutex_lock(&priv
->mutex
);
9150 if (priv
->config
& CFG_STATIC_ESSID
||
9151 priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
9152 IPW_DEBUG_WX("Getting essid: '%s'\n",
9153 print_ssid(ssid
, priv
->essid
, priv
->essid_len
));
9154 memcpy(extra
, priv
->essid
, priv
->essid_len
);
9155 wrqu
->essid
.length
= priv
->essid_len
;
9156 wrqu
->essid
.flags
= 1; /* active */
9158 IPW_DEBUG_WX("Getting essid: ANY\n");
9159 wrqu
->essid
.length
= 0;
9160 wrqu
->essid
.flags
= 0; /* active */
9162 mutex_unlock(&priv
->mutex
);
9166 static int ipw_wx_set_nick(struct net_device
*dev
,
9167 struct iw_request_info
*info
,
9168 union iwreq_data
*wrqu
, char *extra
)
9170 struct ipw_priv
*priv
= libipw_priv(dev
);
9172 IPW_DEBUG_WX("Setting nick to '%s'\n", extra
);
9173 if (wrqu
->data
.length
> IW_ESSID_MAX_SIZE
)
9175 mutex_lock(&priv
->mutex
);
9176 wrqu
->data
.length
= min((size_t) wrqu
->data
.length
, sizeof(priv
->nick
));
9177 memset(priv
->nick
, 0, sizeof(priv
->nick
));
9178 memcpy(priv
->nick
, extra
, wrqu
->data
.length
);
9179 IPW_DEBUG_TRACE("<<\n");
9180 mutex_unlock(&priv
->mutex
);
9185 static int ipw_wx_get_nick(struct net_device
*dev
,
9186 struct iw_request_info
*info
,
9187 union iwreq_data
*wrqu
, char *extra
)
9189 struct ipw_priv
*priv
= libipw_priv(dev
);
9190 IPW_DEBUG_WX("Getting nick\n");
9191 mutex_lock(&priv
->mutex
);
9192 wrqu
->data
.length
= strlen(priv
->nick
);
9193 memcpy(extra
, priv
->nick
, wrqu
->data
.length
);
9194 wrqu
->data
.flags
= 1; /* active */
9195 mutex_unlock(&priv
->mutex
);
9199 static int ipw_wx_set_sens(struct net_device
*dev
,
9200 struct iw_request_info
*info
,
9201 union iwreq_data
*wrqu
, char *extra
)
9203 struct ipw_priv
*priv
= libipw_priv(dev
);
9206 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu
->sens
.value
);
9207 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu
->sens
.value
);
9208 mutex_lock(&priv
->mutex
);
9210 if (wrqu
->sens
.fixed
== 0)
9212 priv
->roaming_threshold
= IPW_MB_ROAMING_THRESHOLD_DEFAULT
;
9213 priv
->disassociate_threshold
= IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT
;
9216 if ((wrqu
->sens
.value
> IPW_MB_ROAMING_THRESHOLD_MAX
) ||
9217 (wrqu
->sens
.value
< IPW_MB_ROAMING_THRESHOLD_MIN
)) {
9222 priv
->roaming_threshold
= wrqu
->sens
.value
;
9223 priv
->disassociate_threshold
= 3*wrqu
->sens
.value
;
9225 mutex_unlock(&priv
->mutex
);
9229 static int ipw_wx_get_sens(struct net_device
*dev
,
9230 struct iw_request_info
*info
,
9231 union iwreq_data
*wrqu
, char *extra
)
9233 struct ipw_priv
*priv
= libipw_priv(dev
);
9234 mutex_lock(&priv
->mutex
);
9235 wrqu
->sens
.fixed
= 1;
9236 wrqu
->sens
.value
= priv
->roaming_threshold
;
9237 mutex_unlock(&priv
->mutex
);
9239 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9240 wrqu
->power
.disabled
? "OFF" : "ON", wrqu
->power
.value
);
9245 static int ipw_wx_set_rate(struct net_device
*dev
,
9246 struct iw_request_info
*info
,
9247 union iwreq_data
*wrqu
, char *extra
)
9249 /* TODO: We should use semaphores or locks for access to priv */
9250 struct ipw_priv
*priv
= libipw_priv(dev
);
9251 u32 target_rate
= wrqu
->bitrate
.value
;
9254 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9255 /* value = X, fixed = 1 means only rate X */
9256 /* value = X, fixed = 0 means all rates lower equal X */
9258 if (target_rate
== -1) {
9260 mask
= LIBIPW_DEFAULT_RATES_MASK
;
9261 /* Now we should reassociate */
9266 fixed
= wrqu
->bitrate
.fixed
;
9268 if (target_rate
== 1000000 || !fixed
)
9269 mask
|= LIBIPW_CCK_RATE_1MB_MASK
;
9270 if (target_rate
== 1000000)
9273 if (target_rate
== 2000000 || !fixed
)
9274 mask
|= LIBIPW_CCK_RATE_2MB_MASK
;
9275 if (target_rate
== 2000000)
9278 if (target_rate
== 5500000 || !fixed
)
9279 mask
|= LIBIPW_CCK_RATE_5MB_MASK
;
9280 if (target_rate
== 5500000)
9283 if (target_rate
== 6000000 || !fixed
)
9284 mask
|= LIBIPW_OFDM_RATE_6MB_MASK
;
9285 if (target_rate
== 6000000)
9288 if (target_rate
== 9000000 || !fixed
)
9289 mask
|= LIBIPW_OFDM_RATE_9MB_MASK
;
9290 if (target_rate
== 9000000)
9293 if (target_rate
== 11000000 || !fixed
)
9294 mask
|= LIBIPW_CCK_RATE_11MB_MASK
;
9295 if (target_rate
== 11000000)
9298 if (target_rate
== 12000000 || !fixed
)
9299 mask
|= LIBIPW_OFDM_RATE_12MB_MASK
;
9300 if (target_rate
== 12000000)
9303 if (target_rate
== 18000000 || !fixed
)
9304 mask
|= LIBIPW_OFDM_RATE_18MB_MASK
;
9305 if (target_rate
== 18000000)
9308 if (target_rate
== 24000000 || !fixed
)
9309 mask
|= LIBIPW_OFDM_RATE_24MB_MASK
;
9310 if (target_rate
== 24000000)
9313 if (target_rate
== 36000000 || !fixed
)
9314 mask
|= LIBIPW_OFDM_RATE_36MB_MASK
;
9315 if (target_rate
== 36000000)
9318 if (target_rate
== 48000000 || !fixed
)
9319 mask
|= LIBIPW_OFDM_RATE_48MB_MASK
;
9320 if (target_rate
== 48000000)
9323 if (target_rate
== 54000000 || !fixed
)
9324 mask
|= LIBIPW_OFDM_RATE_54MB_MASK
;
9325 if (target_rate
== 54000000)
9328 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9332 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9333 mask
, fixed
? "fixed" : "sub-rates");
9334 mutex_lock(&priv
->mutex
);
9335 if (mask
== LIBIPW_DEFAULT_RATES_MASK
) {
9336 priv
->config
&= ~CFG_FIXED_RATE
;
9337 ipw_set_fixed_rate(priv
, priv
->ieee
->mode
);
9339 priv
->config
|= CFG_FIXED_RATE
;
9341 if (priv
->rates_mask
== mask
) {
9342 IPW_DEBUG_WX("Mask set to current mask.\n");
9343 mutex_unlock(&priv
->mutex
);
9347 priv
->rates_mask
= mask
;
9349 /* Network configuration changed -- force [re]association */
9350 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9351 if (!ipw_disassociate(priv
))
9352 ipw_associate(priv
);
9354 mutex_unlock(&priv
->mutex
);
9358 static int ipw_wx_get_rate(struct net_device
*dev
,
9359 struct iw_request_info
*info
,
9360 union iwreq_data
*wrqu
, char *extra
)
9362 struct ipw_priv
*priv
= libipw_priv(dev
);
9363 mutex_lock(&priv
->mutex
);
9364 wrqu
->bitrate
.value
= priv
->last_rate
;
9365 wrqu
->bitrate
.fixed
= (priv
->config
& CFG_FIXED_RATE
) ? 1 : 0;
9366 mutex_unlock(&priv
->mutex
);
9367 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu
->bitrate
.value
);
9371 static int ipw_wx_set_rts(struct net_device
*dev
,
9372 struct iw_request_info
*info
,
9373 union iwreq_data
*wrqu
, char *extra
)
9375 struct ipw_priv
*priv
= libipw_priv(dev
);
9376 mutex_lock(&priv
->mutex
);
9377 if (wrqu
->rts
.disabled
|| !wrqu
->rts
.fixed
)
9378 priv
->rts_threshold
= DEFAULT_RTS_THRESHOLD
;
9380 if (wrqu
->rts
.value
< MIN_RTS_THRESHOLD
||
9381 wrqu
->rts
.value
> MAX_RTS_THRESHOLD
) {
9382 mutex_unlock(&priv
->mutex
);
9385 priv
->rts_threshold
= wrqu
->rts
.value
;
9388 ipw_send_rts_threshold(priv
, priv
->rts_threshold
);
9389 mutex_unlock(&priv
->mutex
);
9390 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv
->rts_threshold
);
9394 static int ipw_wx_get_rts(struct net_device
*dev
,
9395 struct iw_request_info
*info
,
9396 union iwreq_data
*wrqu
, char *extra
)
9398 struct ipw_priv
*priv
= libipw_priv(dev
);
9399 mutex_lock(&priv
->mutex
);
9400 wrqu
->rts
.value
= priv
->rts_threshold
;
9401 wrqu
->rts
.fixed
= 0; /* no auto select */
9402 wrqu
->rts
.disabled
= (wrqu
->rts
.value
== DEFAULT_RTS_THRESHOLD
);
9403 mutex_unlock(&priv
->mutex
);
9404 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu
->rts
.value
);
9408 static int ipw_wx_set_txpow(struct net_device
*dev
,
9409 struct iw_request_info
*info
,
9410 union iwreq_data
*wrqu
, char *extra
)
9412 struct ipw_priv
*priv
= libipw_priv(dev
);
9415 mutex_lock(&priv
->mutex
);
9416 if (ipw_radio_kill_sw(priv
, wrqu
->power
.disabled
)) {
9421 if (!wrqu
->power
.fixed
)
9422 wrqu
->power
.value
= IPW_TX_POWER_DEFAULT
;
9424 if (wrqu
->power
.flags
!= IW_TXPOW_DBM
) {
9429 if ((wrqu
->power
.value
> IPW_TX_POWER_MAX
) ||
9430 (wrqu
->power
.value
< IPW_TX_POWER_MIN
)) {
9435 priv
->tx_power
= wrqu
->power
.value
;
9436 err
= ipw_set_tx_power(priv
);
9438 mutex_unlock(&priv
->mutex
);
9442 static int ipw_wx_get_txpow(struct net_device
*dev
,
9443 struct iw_request_info
*info
,
9444 union iwreq_data
*wrqu
, char *extra
)
9446 struct ipw_priv
*priv
= libipw_priv(dev
);
9447 mutex_lock(&priv
->mutex
);
9448 wrqu
->power
.value
= priv
->tx_power
;
9449 wrqu
->power
.fixed
= 1;
9450 wrqu
->power
.flags
= IW_TXPOW_DBM
;
9451 wrqu
->power
.disabled
= (priv
->status
& STATUS_RF_KILL_MASK
) ? 1 : 0;
9452 mutex_unlock(&priv
->mutex
);
9454 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9455 wrqu
->power
.disabled
? "OFF" : "ON", wrqu
->power
.value
);
9460 static int ipw_wx_set_frag(struct net_device
*dev
,
9461 struct iw_request_info
*info
,
9462 union iwreq_data
*wrqu
, char *extra
)
9464 struct ipw_priv
*priv
= libipw_priv(dev
);
9465 mutex_lock(&priv
->mutex
);
9466 if (wrqu
->frag
.disabled
|| !wrqu
->frag
.fixed
)
9467 priv
->ieee
->fts
= DEFAULT_FTS
;
9469 if (wrqu
->frag
.value
< MIN_FRAG_THRESHOLD
||
9470 wrqu
->frag
.value
> MAX_FRAG_THRESHOLD
) {
9471 mutex_unlock(&priv
->mutex
);
9475 priv
->ieee
->fts
= wrqu
->frag
.value
& ~0x1;
9478 ipw_send_frag_threshold(priv
, wrqu
->frag
.value
);
9479 mutex_unlock(&priv
->mutex
);
9480 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu
->frag
.value
);
9484 static int ipw_wx_get_frag(struct net_device
*dev
,
9485 struct iw_request_info
*info
,
9486 union iwreq_data
*wrqu
, char *extra
)
9488 struct ipw_priv
*priv
= libipw_priv(dev
);
9489 mutex_lock(&priv
->mutex
);
9490 wrqu
->frag
.value
= priv
->ieee
->fts
;
9491 wrqu
->frag
.fixed
= 0; /* no auto select */
9492 wrqu
->frag
.disabled
= (wrqu
->frag
.value
== DEFAULT_FTS
);
9493 mutex_unlock(&priv
->mutex
);
9494 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu
->frag
.value
);
9499 static int ipw_wx_set_retry(struct net_device
*dev
,
9500 struct iw_request_info
*info
,
9501 union iwreq_data
*wrqu
, char *extra
)
9503 struct ipw_priv
*priv
= libipw_priv(dev
);
9505 if (wrqu
->retry
.flags
& IW_RETRY_LIFETIME
|| wrqu
->retry
.disabled
)
9508 if (!(wrqu
->retry
.flags
& IW_RETRY_LIMIT
))
9511 if (wrqu
->retry
.value
< 0 || wrqu
->retry
.value
>= 255)
9514 mutex_lock(&priv
->mutex
);
9515 if (wrqu
->retry
.flags
& IW_RETRY_SHORT
)
9516 priv
->short_retry_limit
= (u8
) wrqu
->retry
.value
;
9517 else if (wrqu
->retry
.flags
& IW_RETRY_LONG
)
9518 priv
->long_retry_limit
= (u8
) wrqu
->retry
.value
;
9520 priv
->short_retry_limit
= (u8
) wrqu
->retry
.value
;
9521 priv
->long_retry_limit
= (u8
) wrqu
->retry
.value
;
9524 ipw_send_retry_limit(priv
, priv
->short_retry_limit
,
9525 priv
->long_retry_limit
);
9526 mutex_unlock(&priv
->mutex
);
9527 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9528 priv
->short_retry_limit
, priv
->long_retry_limit
);
9532 static int ipw_wx_get_retry(struct net_device
*dev
,
9533 struct iw_request_info
*info
,
9534 union iwreq_data
*wrqu
, char *extra
)
9536 struct ipw_priv
*priv
= libipw_priv(dev
);
9538 mutex_lock(&priv
->mutex
);
9539 wrqu
->retry
.disabled
= 0;
9541 if ((wrqu
->retry
.flags
& IW_RETRY_TYPE
) == IW_RETRY_LIFETIME
) {
9542 mutex_unlock(&priv
->mutex
);
9546 if (wrqu
->retry
.flags
& IW_RETRY_LONG
) {
9547 wrqu
->retry
.flags
= IW_RETRY_LIMIT
| IW_RETRY_LONG
;
9548 wrqu
->retry
.value
= priv
->long_retry_limit
;
9549 } else if (wrqu
->retry
.flags
& IW_RETRY_SHORT
) {
9550 wrqu
->retry
.flags
= IW_RETRY_LIMIT
| IW_RETRY_SHORT
;
9551 wrqu
->retry
.value
= priv
->short_retry_limit
;
9553 wrqu
->retry
.flags
= IW_RETRY_LIMIT
;
9554 wrqu
->retry
.value
= priv
->short_retry_limit
;
9556 mutex_unlock(&priv
->mutex
);
9558 IPW_DEBUG_WX("GET retry -> %d\n", wrqu
->retry
.value
);
9563 static int ipw_wx_set_scan(struct net_device
*dev
,
9564 struct iw_request_info
*info
,
9565 union iwreq_data
*wrqu
, char *extra
)
9567 struct ipw_priv
*priv
= libipw_priv(dev
);
9568 struct iw_scan_req
*req
= (struct iw_scan_req
*)extra
;
9569 struct delayed_work
*work
= NULL
;
9571 mutex_lock(&priv
->mutex
);
9573 priv
->user_requested_scan
= 1;
9575 if (wrqu
->data
.length
== sizeof(struct iw_scan_req
)) {
9576 if (wrqu
->data
.flags
& IW_SCAN_THIS_ESSID
) {
9577 int len
= min((int)req
->essid_len
,
9578 (int)sizeof(priv
->direct_scan_ssid
));
9579 memcpy(priv
->direct_scan_ssid
, req
->essid
, len
);
9580 priv
->direct_scan_ssid_len
= len
;
9581 work
= &priv
->request_direct_scan
;
9582 } else if (req
->scan_type
== IW_SCAN_TYPE_PASSIVE
) {
9583 work
= &priv
->request_passive_scan
;
9586 /* Normal active broadcast scan */
9587 work
= &priv
->request_scan
;
9590 mutex_unlock(&priv
->mutex
);
9592 IPW_DEBUG_WX("Start scan\n");
9594 schedule_delayed_work(work
, 0);
9599 static int ipw_wx_get_scan(struct net_device
*dev
,
9600 struct iw_request_info
*info
,
9601 union iwreq_data
*wrqu
, char *extra
)
9603 struct ipw_priv
*priv
= libipw_priv(dev
);
9604 return libipw_wx_get_scan(priv
->ieee
, info
, wrqu
, extra
);
9607 static int ipw_wx_set_encode(struct net_device
*dev
,
9608 struct iw_request_info
*info
,
9609 union iwreq_data
*wrqu
, char *key
)
9611 struct ipw_priv
*priv
= libipw_priv(dev
);
9613 u32 cap
= priv
->capability
;
9615 mutex_lock(&priv
->mutex
);
9616 ret
= libipw_wx_set_encode(priv
->ieee
, info
, wrqu
, key
);
9618 /* In IBSS mode, we need to notify the firmware to update
9619 * the beacon info after we changed the capability. */
9620 if (cap
!= priv
->capability
&&
9621 priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
9622 priv
->status
& STATUS_ASSOCIATED
)
9623 ipw_disassociate(priv
);
9625 mutex_unlock(&priv
->mutex
);
9629 static int ipw_wx_get_encode(struct net_device
*dev
,
9630 struct iw_request_info
*info
,
9631 union iwreq_data
*wrqu
, char *key
)
9633 struct ipw_priv
*priv
= libipw_priv(dev
);
9634 return libipw_wx_get_encode(priv
->ieee
, info
, wrqu
, key
);
9637 static int ipw_wx_set_power(struct net_device
*dev
,
9638 struct iw_request_info
*info
,
9639 union iwreq_data
*wrqu
, char *extra
)
9641 struct ipw_priv
*priv
= libipw_priv(dev
);
9643 mutex_lock(&priv
->mutex
);
9644 if (wrqu
->power
.disabled
) {
9645 priv
->power_mode
= IPW_POWER_LEVEL(priv
->power_mode
);
9646 err
= ipw_send_power_mode(priv
, IPW_POWER_MODE_CAM
);
9648 IPW_DEBUG_WX("failed setting power mode.\n");
9649 mutex_unlock(&priv
->mutex
);
9652 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9653 mutex_unlock(&priv
->mutex
);
9657 switch (wrqu
->power
.flags
& IW_POWER_MODE
) {
9658 case IW_POWER_ON
: /* If not specified */
9659 case IW_POWER_MODE
: /* If set all mask */
9660 case IW_POWER_ALL_R
: /* If explicitly state all */
9662 default: /* Otherwise we don't support it */
9663 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9665 mutex_unlock(&priv
->mutex
);
9669 /* If the user hasn't specified a power management mode yet, default
9671 if (IPW_POWER_LEVEL(priv
->power_mode
) == IPW_POWER_AC
)
9672 priv
->power_mode
= IPW_POWER_ENABLED
| IPW_POWER_BATTERY
;
9674 priv
->power_mode
= IPW_POWER_ENABLED
| priv
->power_mode
;
9676 err
= ipw_send_power_mode(priv
, IPW_POWER_LEVEL(priv
->power_mode
));
9678 IPW_DEBUG_WX("failed setting power mode.\n");
9679 mutex_unlock(&priv
->mutex
);
9683 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv
->power_mode
);
9684 mutex_unlock(&priv
->mutex
);
9688 static int ipw_wx_get_power(struct net_device
*dev
,
9689 struct iw_request_info
*info
,
9690 union iwreq_data
*wrqu
, char *extra
)
9692 struct ipw_priv
*priv
= libipw_priv(dev
);
9693 mutex_lock(&priv
->mutex
);
9694 if (!(priv
->power_mode
& IPW_POWER_ENABLED
))
9695 wrqu
->power
.disabled
= 1;
9697 wrqu
->power
.disabled
= 0;
9699 mutex_unlock(&priv
->mutex
);
9700 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv
->power_mode
);
9705 static int ipw_wx_set_powermode(struct net_device
*dev
,
9706 struct iw_request_info
*info
,
9707 union iwreq_data
*wrqu
, char *extra
)
9709 struct ipw_priv
*priv
= libipw_priv(dev
);
9710 int mode
= *(int *)extra
;
9713 mutex_lock(&priv
->mutex
);
9714 if ((mode
< 1) || (mode
> IPW_POWER_LIMIT
))
9715 mode
= IPW_POWER_AC
;
9717 if (IPW_POWER_LEVEL(priv
->power_mode
) != mode
) {
9718 err
= ipw_send_power_mode(priv
, mode
);
9720 IPW_DEBUG_WX("failed setting power mode.\n");
9721 mutex_unlock(&priv
->mutex
);
9724 priv
->power_mode
= IPW_POWER_ENABLED
| mode
;
9726 mutex_unlock(&priv
->mutex
);
9730 #define MAX_WX_STRING 80
9731 static int ipw_wx_get_powermode(struct net_device
*dev
,
9732 struct iw_request_info
*info
,
9733 union iwreq_data
*wrqu
, char *extra
)
9735 struct ipw_priv
*priv
= libipw_priv(dev
);
9736 int level
= IPW_POWER_LEVEL(priv
->power_mode
);
9739 p
+= snprintf(p
, MAX_WX_STRING
, "Power save level: %d ", level
);
9743 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), "(AC)");
9745 case IPW_POWER_BATTERY
:
9746 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), "(BATTERY)");
9749 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
),
9750 "(Timeout %dms, Period %dms)",
9751 timeout_duration
[level
- 1] / 1000,
9752 period_duration
[level
- 1] / 1000);
9755 if (!(priv
->power_mode
& IPW_POWER_ENABLED
))
9756 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), " OFF");
9758 wrqu
->data
.length
= p
- extra
+ 1;
9763 static int ipw_wx_set_wireless_mode(struct net_device
*dev
,
9764 struct iw_request_info
*info
,
9765 union iwreq_data
*wrqu
, char *extra
)
9767 struct ipw_priv
*priv
= libipw_priv(dev
);
9768 int mode
= *(int *)extra
;
9769 u8 band
= 0, modulation
= 0;
9771 if (mode
== 0 || mode
& ~IEEE_MODE_MASK
) {
9772 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode
);
9775 mutex_lock(&priv
->mutex
);
9776 if (priv
->adapter
== IPW_2915ABG
) {
9777 priv
->ieee
->abg_true
= 1;
9778 if (mode
& IEEE_A
) {
9779 band
|= LIBIPW_52GHZ_BAND
;
9780 modulation
|= LIBIPW_OFDM_MODULATION
;
9782 priv
->ieee
->abg_true
= 0;
9784 if (mode
& IEEE_A
) {
9785 IPW_WARNING("Attempt to set 2200BG into "
9787 mutex_unlock(&priv
->mutex
);
9791 priv
->ieee
->abg_true
= 0;
9794 if (mode
& IEEE_B
) {
9795 band
|= LIBIPW_24GHZ_BAND
;
9796 modulation
|= LIBIPW_CCK_MODULATION
;
9798 priv
->ieee
->abg_true
= 0;
9800 if (mode
& IEEE_G
) {
9801 band
|= LIBIPW_24GHZ_BAND
;
9802 modulation
|= LIBIPW_OFDM_MODULATION
;
9804 priv
->ieee
->abg_true
= 0;
9806 priv
->ieee
->mode
= mode
;
9807 priv
->ieee
->freq_band
= band
;
9808 priv
->ieee
->modulation
= modulation
;
9809 init_supported_rates(priv
, &priv
->rates
);
9811 /* Network configuration changed -- force [re]association */
9812 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9813 if (!ipw_disassociate(priv
)) {
9814 ipw_send_supported_rates(priv
, &priv
->rates
);
9815 ipw_associate(priv
);
9818 /* Update the band LEDs */
9819 ipw_led_band_on(priv
);
9821 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9822 mode
& IEEE_A
? 'a' : '.',
9823 mode
& IEEE_B
? 'b' : '.', mode
& IEEE_G
? 'g' : '.');
9824 mutex_unlock(&priv
->mutex
);
9828 static int ipw_wx_get_wireless_mode(struct net_device
*dev
,
9829 struct iw_request_info
*info
,
9830 union iwreq_data
*wrqu
, char *extra
)
9832 struct ipw_priv
*priv
= libipw_priv(dev
);
9833 mutex_lock(&priv
->mutex
);
9834 switch (priv
->ieee
->mode
) {
9836 strncpy(extra
, "802.11a (1)", MAX_WX_STRING
);
9839 strncpy(extra
, "802.11b (2)", MAX_WX_STRING
);
9841 case IEEE_A
| IEEE_B
:
9842 strncpy(extra
, "802.11ab (3)", MAX_WX_STRING
);
9845 strncpy(extra
, "802.11g (4)", MAX_WX_STRING
);
9847 case IEEE_A
| IEEE_G
:
9848 strncpy(extra
, "802.11ag (5)", MAX_WX_STRING
);
9850 case IEEE_B
| IEEE_G
:
9851 strncpy(extra
, "802.11bg (6)", MAX_WX_STRING
);
9853 case IEEE_A
| IEEE_B
| IEEE_G
:
9854 strncpy(extra
, "802.11abg (7)", MAX_WX_STRING
);
9857 strncpy(extra
, "unknown", MAX_WX_STRING
);
9861 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra
);
9863 wrqu
->data
.length
= strlen(extra
) + 1;
9864 mutex_unlock(&priv
->mutex
);
9869 static int ipw_wx_set_preamble(struct net_device
*dev
,
9870 struct iw_request_info
*info
,
9871 union iwreq_data
*wrqu
, char *extra
)
9873 struct ipw_priv
*priv
= libipw_priv(dev
);
9874 int mode
= *(int *)extra
;
9875 mutex_lock(&priv
->mutex
);
9876 /* Switching from SHORT -> LONG requires a disassociation */
9878 if (!(priv
->config
& CFG_PREAMBLE_LONG
)) {
9879 priv
->config
|= CFG_PREAMBLE_LONG
;
9881 /* Network configuration changed -- force [re]association */
9883 ("[re]association triggered due to preamble change.\n");
9884 if (!ipw_disassociate(priv
))
9885 ipw_associate(priv
);
9891 priv
->config
&= ~CFG_PREAMBLE_LONG
;
9894 mutex_unlock(&priv
->mutex
);
9898 mutex_unlock(&priv
->mutex
);
9902 static int ipw_wx_get_preamble(struct net_device
*dev
,
9903 struct iw_request_info
*info
,
9904 union iwreq_data
*wrqu
, char *extra
)
9906 struct ipw_priv
*priv
= libipw_priv(dev
);
9907 mutex_lock(&priv
->mutex
);
9908 if (priv
->config
& CFG_PREAMBLE_LONG
)
9909 snprintf(wrqu
->name
, IFNAMSIZ
, "long (1)");
9911 snprintf(wrqu
->name
, IFNAMSIZ
, "auto (0)");
9912 mutex_unlock(&priv
->mutex
);
9916 #ifdef CONFIG_IPW2200_MONITOR
9917 static int ipw_wx_set_monitor(struct net_device
*dev
,
9918 struct iw_request_info
*info
,
9919 union iwreq_data
*wrqu
, char *extra
)
9921 struct ipw_priv
*priv
= libipw_priv(dev
);
9922 int *parms
= (int *)extra
;
9923 int enable
= (parms
[0] > 0);
9924 mutex_lock(&priv
->mutex
);
9925 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable
, parms
[1]);
9927 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
9928 #ifdef CONFIG_IPW2200_RADIOTAP
9929 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
9931 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
9933 schedule_work(&priv
->adapter_restart
);
9936 ipw_set_channel(priv
, parms
[1]);
9938 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
9939 mutex_unlock(&priv
->mutex
);
9942 priv
->net_dev
->type
= ARPHRD_ETHER
;
9943 schedule_work(&priv
->adapter_restart
);
9945 mutex_unlock(&priv
->mutex
);
9949 #endif /* CONFIG_IPW2200_MONITOR */
9951 static int ipw_wx_reset(struct net_device
*dev
,
9952 struct iw_request_info
*info
,
9953 union iwreq_data
*wrqu
, char *extra
)
9955 struct ipw_priv
*priv
= libipw_priv(dev
);
9956 IPW_DEBUG_WX("RESET\n");
9957 schedule_work(&priv
->adapter_restart
);
9961 static int ipw_wx_sw_reset(struct net_device
*dev
,
9962 struct iw_request_info
*info
,
9963 union iwreq_data
*wrqu
, char *extra
)
9965 struct ipw_priv
*priv
= libipw_priv(dev
);
9966 union iwreq_data wrqu_sec
= {
9968 .flags
= IW_ENCODE_DISABLED
,
9973 IPW_DEBUG_WX("SW_RESET\n");
9975 mutex_lock(&priv
->mutex
);
9977 ret
= ipw_sw_reset(priv
, 2);
9980 ipw_adapter_restart(priv
);
9983 /* The SW reset bit might have been toggled on by the 'disable'
9984 * module parameter, so take appropriate action */
9985 ipw_radio_kill_sw(priv
, priv
->status
& STATUS_RF_KILL_SW
);
9987 mutex_unlock(&priv
->mutex
);
9988 libipw_wx_set_encode(priv
->ieee
, info
, &wrqu_sec
, NULL
);
9989 mutex_lock(&priv
->mutex
);
9991 if (!(priv
->status
& STATUS_RF_KILL_MASK
)) {
9992 /* Configuration likely changed -- force [re]association */
9993 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9995 if (!ipw_disassociate(priv
))
9996 ipw_associate(priv
);
9999 mutex_unlock(&priv
->mutex
);
10004 /* Rebase the WE IOCTLs to zero for the handler array */
10005 static iw_handler ipw_wx_handlers
[] = {
10006 IW_HANDLER(SIOCGIWNAME
, (iw_handler
)cfg80211_wext_giwname
),
10007 IW_HANDLER(SIOCSIWFREQ
, ipw_wx_set_freq
),
10008 IW_HANDLER(SIOCGIWFREQ
, ipw_wx_get_freq
),
10009 IW_HANDLER(SIOCSIWMODE
, ipw_wx_set_mode
),
10010 IW_HANDLER(SIOCGIWMODE
, ipw_wx_get_mode
),
10011 IW_HANDLER(SIOCSIWSENS
, ipw_wx_set_sens
),
10012 IW_HANDLER(SIOCGIWSENS
, ipw_wx_get_sens
),
10013 IW_HANDLER(SIOCGIWRANGE
, ipw_wx_get_range
),
10014 IW_HANDLER(SIOCSIWAP
, ipw_wx_set_wap
),
10015 IW_HANDLER(SIOCGIWAP
, ipw_wx_get_wap
),
10016 IW_HANDLER(SIOCSIWSCAN
, ipw_wx_set_scan
),
10017 IW_HANDLER(SIOCGIWSCAN
, ipw_wx_get_scan
),
10018 IW_HANDLER(SIOCSIWESSID
, ipw_wx_set_essid
),
10019 IW_HANDLER(SIOCGIWESSID
, ipw_wx_get_essid
),
10020 IW_HANDLER(SIOCSIWNICKN
, ipw_wx_set_nick
),
10021 IW_HANDLER(SIOCGIWNICKN
, ipw_wx_get_nick
),
10022 IW_HANDLER(SIOCSIWRATE
, ipw_wx_set_rate
),
10023 IW_HANDLER(SIOCGIWRATE
, ipw_wx_get_rate
),
10024 IW_HANDLER(SIOCSIWRTS
, ipw_wx_set_rts
),
10025 IW_HANDLER(SIOCGIWRTS
, ipw_wx_get_rts
),
10026 IW_HANDLER(SIOCSIWFRAG
, ipw_wx_set_frag
),
10027 IW_HANDLER(SIOCGIWFRAG
, ipw_wx_get_frag
),
10028 IW_HANDLER(SIOCSIWTXPOW
, ipw_wx_set_txpow
),
10029 IW_HANDLER(SIOCGIWTXPOW
, ipw_wx_get_txpow
),
10030 IW_HANDLER(SIOCSIWRETRY
, ipw_wx_set_retry
),
10031 IW_HANDLER(SIOCGIWRETRY
, ipw_wx_get_retry
),
10032 IW_HANDLER(SIOCSIWENCODE
, ipw_wx_set_encode
),
10033 IW_HANDLER(SIOCGIWENCODE
, ipw_wx_get_encode
),
10034 IW_HANDLER(SIOCSIWPOWER
, ipw_wx_set_power
),
10035 IW_HANDLER(SIOCGIWPOWER
, ipw_wx_get_power
),
10036 IW_HANDLER(SIOCSIWSPY
, iw_handler_set_spy
),
10037 IW_HANDLER(SIOCGIWSPY
, iw_handler_get_spy
),
10038 IW_HANDLER(SIOCSIWTHRSPY
, iw_handler_set_thrspy
),
10039 IW_HANDLER(SIOCGIWTHRSPY
, iw_handler_get_thrspy
),
10040 IW_HANDLER(SIOCSIWGENIE
, ipw_wx_set_genie
),
10041 IW_HANDLER(SIOCGIWGENIE
, ipw_wx_get_genie
),
10042 IW_HANDLER(SIOCSIWMLME
, ipw_wx_set_mlme
),
10043 IW_HANDLER(SIOCSIWAUTH
, ipw_wx_set_auth
),
10044 IW_HANDLER(SIOCGIWAUTH
, ipw_wx_get_auth
),
10045 IW_HANDLER(SIOCSIWENCODEEXT
, ipw_wx_set_encodeext
),
10046 IW_HANDLER(SIOCGIWENCODEEXT
, ipw_wx_get_encodeext
),
10050 IPW_PRIV_SET_POWER
= SIOCIWFIRSTPRIV
,
10051 IPW_PRIV_GET_POWER
,
10054 IPW_PRIV_SET_PREAMBLE
,
10055 IPW_PRIV_GET_PREAMBLE
,
10058 #ifdef CONFIG_IPW2200_MONITOR
10059 IPW_PRIV_SET_MONITOR
,
10063 static struct iw_priv_args ipw_priv_args
[] = {
10065 .cmd
= IPW_PRIV_SET_POWER
,
10066 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
10067 .name
= "set_power"},
10069 .cmd
= IPW_PRIV_GET_POWER
,
10070 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| MAX_WX_STRING
,
10071 .name
= "get_power"},
10073 .cmd
= IPW_PRIV_SET_MODE
,
10074 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
10075 .name
= "set_mode"},
10077 .cmd
= IPW_PRIV_GET_MODE
,
10078 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| MAX_WX_STRING
,
10079 .name
= "get_mode"},
10081 .cmd
= IPW_PRIV_SET_PREAMBLE
,
10082 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
10083 .name
= "set_preamble"},
10085 .cmd
= IPW_PRIV_GET_PREAMBLE
,
10086 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| IFNAMSIZ
,
10087 .name
= "get_preamble"},
10090 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 0, 0, "reset"},
10093 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 0, 0, "sw_reset"},
10094 #ifdef CONFIG_IPW2200_MONITOR
10096 IPW_PRIV_SET_MONITOR
,
10097 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 2, 0, "monitor"},
10098 #endif /* CONFIG_IPW2200_MONITOR */
10101 static iw_handler ipw_priv_handler
[] = {
10102 ipw_wx_set_powermode
,
10103 ipw_wx_get_powermode
,
10104 ipw_wx_set_wireless_mode
,
10105 ipw_wx_get_wireless_mode
,
10106 ipw_wx_set_preamble
,
10107 ipw_wx_get_preamble
,
10110 #ifdef CONFIG_IPW2200_MONITOR
10111 ipw_wx_set_monitor
,
10115 static struct iw_handler_def ipw_wx_handler_def
= {
10116 .standard
= ipw_wx_handlers
,
10117 .num_standard
= ARRAY_SIZE(ipw_wx_handlers
),
10118 .num_private
= ARRAY_SIZE(ipw_priv_handler
),
10119 .num_private_args
= ARRAY_SIZE(ipw_priv_args
),
10120 .private = ipw_priv_handler
,
10121 .private_args
= ipw_priv_args
,
10122 .get_wireless_stats
= ipw_get_wireless_stats
,
10126 * Get wireless statistics.
10127 * Called by /proc/net/wireless
10128 * Also called by SIOCGIWSTATS
10130 static struct iw_statistics
*ipw_get_wireless_stats(struct net_device
*dev
)
10132 struct ipw_priv
*priv
= libipw_priv(dev
);
10133 struct iw_statistics
*wstats
;
10135 wstats
= &priv
->wstats
;
10137 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10138 * netdev->get_wireless_stats seems to be called before fw is
10139 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10140 * and associated; if not associcated, the values are all meaningless
10141 * anyway, so set them all to NULL and INVALID */
10142 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
10143 wstats
->miss
.beacon
= 0;
10144 wstats
->discard
.retries
= 0;
10145 wstats
->qual
.qual
= 0;
10146 wstats
->qual
.level
= 0;
10147 wstats
->qual
.noise
= 0;
10148 wstats
->qual
.updated
= 7;
10149 wstats
->qual
.updated
|= IW_QUAL_NOISE_INVALID
|
10150 IW_QUAL_QUAL_INVALID
| IW_QUAL_LEVEL_INVALID
;
10154 wstats
->qual
.qual
= priv
->quality
;
10155 wstats
->qual
.level
= priv
->exp_avg_rssi
;
10156 wstats
->qual
.noise
= priv
->exp_avg_noise
;
10157 wstats
->qual
.updated
= IW_QUAL_QUAL_UPDATED
| IW_QUAL_LEVEL_UPDATED
|
10158 IW_QUAL_NOISE_UPDATED
| IW_QUAL_DBM
;
10160 wstats
->miss
.beacon
= average_value(&priv
->average_missed_beacons
);
10161 wstats
->discard
.retries
= priv
->last_tx_failures
;
10162 wstats
->discard
.code
= priv
->ieee
->ieee_stats
.rx_discards_undecryptable
;
10164 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10165 goto fail_get_ordinal;
10166 wstats->discard.retries += tx_retry; */
10171 /* net device stuff */
10173 static void init_sys_config(struct ipw_sys_config
*sys_config
)
10175 memset(sys_config
, 0, sizeof(struct ipw_sys_config
));
10176 sys_config
->bt_coexistence
= 0;
10177 sys_config
->answer_broadcast_ssid_probe
= 0;
10178 sys_config
->accept_all_data_frames
= 0;
10179 sys_config
->accept_non_directed_frames
= 1;
10180 sys_config
->exclude_unicast_unencrypted
= 0;
10181 sys_config
->disable_unicast_decryption
= 1;
10182 sys_config
->exclude_multicast_unencrypted
= 0;
10183 sys_config
->disable_multicast_decryption
= 1;
10184 if (antenna
< CFG_SYS_ANTENNA_BOTH
|| antenna
> CFG_SYS_ANTENNA_B
)
10185 antenna
= CFG_SYS_ANTENNA_BOTH
;
10186 sys_config
->antenna_diversity
= antenna
;
10187 sys_config
->pass_crc_to_host
= 0; /* TODO: See if 1 gives us FCS */
10188 sys_config
->dot11g_auto_detection
= 0;
10189 sys_config
->enable_cts_to_self
= 0;
10190 sys_config
->bt_coexist_collision_thr
= 0;
10191 sys_config
->pass_noise_stats_to_host
= 1; /* 1 -- fix for 256 */
10192 sys_config
->silence_threshold
= 0x1e;
10195 static int ipw_net_open(struct net_device
*dev
)
10197 IPW_DEBUG_INFO("dev->open\n");
10198 netif_start_queue(dev
);
10202 static int ipw_net_stop(struct net_device
*dev
)
10204 IPW_DEBUG_INFO("dev->close\n");
10205 netif_stop_queue(dev
);
10212 modify to send one tfd per fragment instead of using chunking. otherwise
10213 we need to heavily modify the libipw_skb_to_txb.
10216 static int ipw_tx_skb(struct ipw_priv
*priv
, struct libipw_txb
*txb
,
10219 struct libipw_hdr_3addrqos
*hdr
= (struct libipw_hdr_3addrqos
*)
10220 txb
->fragments
[0]->data
;
10222 struct tfd_frame
*tfd
;
10223 #ifdef CONFIG_IPW2200_QOS
10224 int tx_id
= ipw_get_tx_queue_number(priv
, pri
);
10225 struct clx2_tx_queue
*txq
= &priv
->txq
[tx_id
];
10227 struct clx2_tx_queue
*txq
= &priv
->txq
[0];
10229 struct clx2_queue
*q
= &txq
->q
;
10230 u8 id
, hdr_len
, unicast
;
10233 if (!(priv
->status
& STATUS_ASSOCIATED
))
10236 hdr_len
= libipw_get_hdrlen(le16_to_cpu(hdr
->frame_ctl
));
10237 switch (priv
->ieee
->iw_mode
) {
10238 case IW_MODE_ADHOC
:
10239 unicast
= !is_multicast_ether_addr(hdr
->addr1
);
10240 id
= ipw_find_station(priv
, hdr
->addr1
);
10241 if (id
== IPW_INVALID_STATION
) {
10242 id
= ipw_add_station(priv
, hdr
->addr1
);
10243 if (id
== IPW_INVALID_STATION
) {
10244 IPW_WARNING("Attempt to send data to "
10245 "invalid cell: %pM\n",
10252 case IW_MODE_INFRA
:
10254 unicast
= !is_multicast_ether_addr(hdr
->addr3
);
10259 tfd
= &txq
->bd
[q
->first_empty
];
10260 txq
->txb
[q
->first_empty
] = txb
;
10261 memset(tfd
, 0, sizeof(*tfd
));
10262 tfd
->u
.data
.station_number
= id
;
10264 tfd
->control_flags
.message_type
= TX_FRAME_TYPE
;
10265 tfd
->control_flags
.control_bits
= TFD_NEED_IRQ_MASK
;
10267 tfd
->u
.data
.cmd_id
= DINO_CMD_TX
;
10268 tfd
->u
.data
.len
= cpu_to_le16(txb
->payload_size
);
10270 if (priv
->assoc_request
.ieee_mode
== IPW_B_MODE
)
10271 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_MODE_CCK
;
10273 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_MODE_OFDM
;
10275 if (priv
->assoc_request
.preamble_length
== DCT_FLAG_SHORT_PREAMBLE
)
10276 tfd
->u
.data
.tx_flags
|= DCT_FLAG_SHORT_PREAMBLE
;
10278 fc
= le16_to_cpu(hdr
->frame_ctl
);
10279 hdr
->frame_ctl
= cpu_to_le16(fc
& ~IEEE80211_FCTL_MOREFRAGS
);
10281 memcpy(&tfd
->u
.data
.tfd
.tfd_24
.mchdr
, hdr
, hdr_len
);
10283 if (likely(unicast
))
10284 tfd
->u
.data
.tx_flags
|= DCT_FLAG_ACK_REQD
;
10286 if (txb
->encrypted
&& !priv
->ieee
->host_encrypt
) {
10287 switch (priv
->ieee
->sec
.level
) {
10289 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
10290 cpu_to_le16(IEEE80211_FCTL_PROTECTED
);
10291 /* XXX: ACK flag must be set for CCMP even if it
10292 * is a multicast/broadcast packet, because CCMP
10293 * group communication encrypted by GTK is
10294 * actually done by the AP. */
10296 tfd
->u
.data
.tx_flags
|= DCT_FLAG_ACK_REQD
;
10298 tfd
->u
.data
.tx_flags
&= ~DCT_FLAG_NO_WEP
;
10299 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_SECURITY_CCM
;
10300 tfd
->u
.data
.key_index
= 0;
10301 tfd
->u
.data
.key_index
|= DCT_WEP_INDEX_USE_IMMEDIATE
;
10304 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
10305 cpu_to_le16(IEEE80211_FCTL_PROTECTED
);
10306 tfd
->u
.data
.tx_flags
&= ~DCT_FLAG_NO_WEP
;
10307 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_SECURITY_TKIP
;
10308 tfd
->u
.data
.key_index
= DCT_WEP_INDEX_USE_IMMEDIATE
;
10311 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
10312 cpu_to_le16(IEEE80211_FCTL_PROTECTED
);
10313 tfd
->u
.data
.key_index
= priv
->ieee
->crypt_info
.tx_keyidx
;
10314 if (priv
->ieee
->sec
.key_sizes
[priv
->ieee
->crypt_info
.tx_keyidx
] <=
10316 tfd
->u
.data
.key_index
|= DCT_WEP_KEY_64Bit
;
10318 tfd
->u
.data
.key_index
|= DCT_WEP_KEY_128Bit
;
10323 printk(KERN_ERR
"Unknown security level %d\n",
10324 priv
->ieee
->sec
.level
);
10328 /* No hardware encryption */
10329 tfd
->u
.data
.tx_flags
|= DCT_FLAG_NO_WEP
;
10331 #ifdef CONFIG_IPW2200_QOS
10332 if (fc
& IEEE80211_STYPE_QOS_DATA
)
10333 ipw_qos_set_tx_queue_command(priv
, pri
, &(tfd
->u
.data
));
10334 #endif /* CONFIG_IPW2200_QOS */
10337 tfd
->u
.data
.num_chunks
= cpu_to_le32(min((u8
) (NUM_TFD_CHUNKS
- 2),
10339 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10340 txb
->nr_frags
, le32_to_cpu(tfd
->u
.data
.num_chunks
));
10341 for (i
= 0; i
< le32_to_cpu(tfd
->u
.data
.num_chunks
); i
++) {
10342 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10343 i
, le32_to_cpu(tfd
->u
.data
.num_chunks
),
10344 txb
->fragments
[i
]->len
- hdr_len
);
10345 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10346 i
, tfd
->u
.data
.num_chunks
,
10347 txb
->fragments
[i
]->len
- hdr_len
);
10348 printk_buf(IPW_DL_TX
, txb
->fragments
[i
]->data
+ hdr_len
,
10349 txb
->fragments
[i
]->len
- hdr_len
);
10351 tfd
->u
.data
.chunk_ptr
[i
] =
10352 cpu_to_le32(pci_map_single
10354 txb
->fragments
[i
]->data
+ hdr_len
,
10355 txb
->fragments
[i
]->len
- hdr_len
,
10356 PCI_DMA_TODEVICE
));
10357 tfd
->u
.data
.chunk_len
[i
] =
10358 cpu_to_le16(txb
->fragments
[i
]->len
- hdr_len
);
10361 if (i
!= txb
->nr_frags
) {
10362 struct sk_buff
*skb
;
10363 u16 remaining_bytes
= 0;
10366 for (j
= i
; j
< txb
->nr_frags
; j
++)
10367 remaining_bytes
+= txb
->fragments
[j
]->len
- hdr_len
;
10369 printk(KERN_INFO
"Trying to reallocate for %d bytes\n",
10371 skb
= alloc_skb(remaining_bytes
, GFP_ATOMIC
);
10373 tfd
->u
.data
.chunk_len
[i
] = cpu_to_le16(remaining_bytes
);
10374 for (j
= i
; j
< txb
->nr_frags
; j
++) {
10375 int size
= txb
->fragments
[j
]->len
- hdr_len
;
10377 printk(KERN_INFO
"Adding frag %d %d...\n",
10379 memcpy(skb_put(skb
, size
),
10380 txb
->fragments
[j
]->data
+ hdr_len
, size
);
10382 dev_kfree_skb_any(txb
->fragments
[i
]);
10383 txb
->fragments
[i
] = skb
;
10384 tfd
->u
.data
.chunk_ptr
[i
] =
10385 cpu_to_le32(pci_map_single
10386 (priv
->pci_dev
, skb
->data
,
10388 PCI_DMA_TODEVICE
));
10390 le32_add_cpu(&tfd
->u
.data
.num_chunks
, 1);
10395 q
->first_empty
= ipw_queue_inc_wrap(q
->first_empty
, q
->n_bd
);
10396 ipw_write32(priv
, q
->reg_w
, q
->first_empty
);
10398 if (ipw_tx_queue_space(q
) < q
->high_mark
)
10399 netif_stop_queue(priv
->net_dev
);
10401 return NETDEV_TX_OK
;
10404 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10405 libipw_txb_free(txb
);
10406 return NETDEV_TX_OK
;
10409 static int ipw_net_is_queue_full(struct net_device
*dev
, int pri
)
10411 struct ipw_priv
*priv
= libipw_priv(dev
);
10412 #ifdef CONFIG_IPW2200_QOS
10413 int tx_id
= ipw_get_tx_queue_number(priv
, pri
);
10414 struct clx2_tx_queue
*txq
= &priv
->txq
[tx_id
];
10416 struct clx2_tx_queue
*txq
= &priv
->txq
[0];
10417 #endif /* CONFIG_IPW2200_QOS */
10419 if (ipw_tx_queue_space(&txq
->q
) < txq
->q
.high_mark
)
10425 #ifdef CONFIG_IPW2200_PROMISCUOUS
10426 static void ipw_handle_promiscuous_tx(struct ipw_priv
*priv
,
10427 struct libipw_txb
*txb
)
10429 struct libipw_rx_stats dummystats
;
10430 struct ieee80211_hdr
*hdr
;
10432 u16 filter
= priv
->prom_priv
->filter
;
10435 if (filter
& IPW_PROM_NO_TX
)
10438 memset(&dummystats
, 0, sizeof(dummystats
));
10440 /* Filtering of fragment chains is done against the first fragment */
10441 hdr
= (void *)txb
->fragments
[0]->data
;
10442 if (libipw_is_management(le16_to_cpu(hdr
->frame_control
))) {
10443 if (filter
& IPW_PROM_NO_MGMT
)
10445 if (filter
& IPW_PROM_MGMT_HEADER_ONLY
)
10447 } else if (libipw_is_control(le16_to_cpu(hdr
->frame_control
))) {
10448 if (filter
& IPW_PROM_NO_CTL
)
10450 if (filter
& IPW_PROM_CTL_HEADER_ONLY
)
10452 } else if (libipw_is_data(le16_to_cpu(hdr
->frame_control
))) {
10453 if (filter
& IPW_PROM_NO_DATA
)
10455 if (filter
& IPW_PROM_DATA_HEADER_ONLY
)
10459 for(n
=0; n
<txb
->nr_frags
; ++n
) {
10460 struct sk_buff
*src
= txb
->fragments
[n
];
10461 struct sk_buff
*dst
;
10462 struct ieee80211_radiotap_header
*rt_hdr
;
10466 hdr
= (void *)src
->data
;
10467 len
= libipw_get_hdrlen(le16_to_cpu(hdr
->frame_control
));
10471 dst
= alloc_skb(len
+ sizeof(*rt_hdr
), GFP_ATOMIC
);
10475 rt_hdr
= (void *)skb_put(dst
, sizeof(*rt_hdr
));
10477 rt_hdr
->it_version
= PKTHDR_RADIOTAP_VERSION
;
10478 rt_hdr
->it_pad
= 0;
10479 rt_hdr
->it_present
= 0; /* after all, it's just an idea */
10480 rt_hdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL
);
10482 *(__le16
*)skb_put(dst
, sizeof(u16
)) = cpu_to_le16(
10483 ieee80211chan2mhz(priv
->channel
));
10484 if (priv
->channel
> 14) /* 802.11a */
10485 *(__le16
*)skb_put(dst
, sizeof(u16
)) =
10486 cpu_to_le16(IEEE80211_CHAN_OFDM
|
10487 IEEE80211_CHAN_5GHZ
);
10488 else if (priv
->ieee
->mode
== IEEE_B
) /* 802.11b */
10489 *(__le16
*)skb_put(dst
, sizeof(u16
)) =
10490 cpu_to_le16(IEEE80211_CHAN_CCK
|
10491 IEEE80211_CHAN_2GHZ
);
10493 *(__le16
*)skb_put(dst
, sizeof(u16
)) =
10494 cpu_to_le16(IEEE80211_CHAN_OFDM
|
10495 IEEE80211_CHAN_2GHZ
);
10497 rt_hdr
->it_len
= cpu_to_le16(dst
->len
);
10499 skb_copy_from_linear_data(src
, skb_put(dst
, len
), len
);
10501 if (!libipw_rx(priv
->prom_priv
->ieee
, dst
, &dummystats
))
10502 dev_kfree_skb_any(dst
);
10507 static netdev_tx_t
ipw_net_hard_start_xmit(struct libipw_txb
*txb
,
10508 struct net_device
*dev
, int pri
)
10510 struct ipw_priv
*priv
= libipw_priv(dev
);
10511 unsigned long flags
;
10514 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb
->payload_size
);
10515 spin_lock_irqsave(&priv
->lock
, flags
);
10517 #ifdef CONFIG_IPW2200_PROMISCUOUS
10518 if (rtap_iface
&& netif_running(priv
->prom_net_dev
))
10519 ipw_handle_promiscuous_tx(priv
, txb
);
10522 ret
= ipw_tx_skb(priv
, txb
, pri
);
10523 if (ret
== NETDEV_TX_OK
)
10524 __ipw_led_activity_on(priv
);
10525 spin_unlock_irqrestore(&priv
->lock
, flags
);
10530 static void ipw_net_set_multicast_list(struct net_device
*dev
)
10535 static int ipw_net_set_mac_address(struct net_device
*dev
, void *p
)
10537 struct ipw_priv
*priv
= libipw_priv(dev
);
10538 struct sockaddr
*addr
= p
;
10540 if (!is_valid_ether_addr(addr
->sa_data
))
10541 return -EADDRNOTAVAIL
;
10542 mutex_lock(&priv
->mutex
);
10543 priv
->config
|= CFG_CUSTOM_MAC
;
10544 memcpy(priv
->mac_addr
, addr
->sa_data
, ETH_ALEN
);
10545 printk(KERN_INFO
"%s: Setting MAC to %pM\n",
10546 priv
->net_dev
->name
, priv
->mac_addr
);
10547 schedule_work(&priv
->adapter_restart
);
10548 mutex_unlock(&priv
->mutex
);
10552 static void ipw_ethtool_get_drvinfo(struct net_device
*dev
,
10553 struct ethtool_drvinfo
*info
)
10555 struct ipw_priv
*p
= libipw_priv(dev
);
10560 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
10561 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
10563 len
= sizeof(vers
);
10564 ipw_get_ordinal(p
, IPW_ORD_STAT_FW_VERSION
, vers
, &len
);
10565 len
= sizeof(date
);
10566 ipw_get_ordinal(p
, IPW_ORD_STAT_FW_DATE
, date
, &len
);
10568 snprintf(info
->fw_version
, sizeof(info
->fw_version
), "%s (%s)",
10570 strlcpy(info
->bus_info
, pci_name(p
->pci_dev
),
10571 sizeof(info
->bus_info
));
10572 info
->eedump_len
= IPW_EEPROM_IMAGE_SIZE
;
10575 static u32
ipw_ethtool_get_link(struct net_device
*dev
)
10577 struct ipw_priv
*priv
= libipw_priv(dev
);
10578 return (priv
->status
& STATUS_ASSOCIATED
) != 0;
10581 static int ipw_ethtool_get_eeprom_len(struct net_device
*dev
)
10583 return IPW_EEPROM_IMAGE_SIZE
;
10586 static int ipw_ethtool_get_eeprom(struct net_device
*dev
,
10587 struct ethtool_eeprom
*eeprom
, u8
* bytes
)
10589 struct ipw_priv
*p
= libipw_priv(dev
);
10591 if (eeprom
->offset
+ eeprom
->len
> IPW_EEPROM_IMAGE_SIZE
)
10593 mutex_lock(&p
->mutex
);
10594 memcpy(bytes
, &p
->eeprom
[eeprom
->offset
], eeprom
->len
);
10595 mutex_unlock(&p
->mutex
);
10599 static int ipw_ethtool_set_eeprom(struct net_device
*dev
,
10600 struct ethtool_eeprom
*eeprom
, u8
* bytes
)
10602 struct ipw_priv
*p
= libipw_priv(dev
);
10605 if (eeprom
->offset
+ eeprom
->len
> IPW_EEPROM_IMAGE_SIZE
)
10607 mutex_lock(&p
->mutex
);
10608 memcpy(&p
->eeprom
[eeprom
->offset
], bytes
, eeprom
->len
);
10609 for (i
= 0; i
< IPW_EEPROM_IMAGE_SIZE
; i
++)
10610 ipw_write8(p
, i
+ IPW_EEPROM_DATA
, p
->eeprom
[i
]);
10611 mutex_unlock(&p
->mutex
);
10615 static const struct ethtool_ops ipw_ethtool_ops
= {
10616 .get_link
= ipw_ethtool_get_link
,
10617 .get_drvinfo
= ipw_ethtool_get_drvinfo
,
10618 .get_eeprom_len
= ipw_ethtool_get_eeprom_len
,
10619 .get_eeprom
= ipw_ethtool_get_eeprom
,
10620 .set_eeprom
= ipw_ethtool_set_eeprom
,
10623 static irqreturn_t
ipw_isr(int irq
, void *data
)
10625 struct ipw_priv
*priv
= data
;
10626 u32 inta
, inta_mask
;
10631 spin_lock(&priv
->irq_lock
);
10633 if (!(priv
->status
& STATUS_INT_ENABLED
)) {
10634 /* IRQ is disabled */
10638 inta
= ipw_read32(priv
, IPW_INTA_RW
);
10639 inta_mask
= ipw_read32(priv
, IPW_INTA_MASK_R
);
10641 if (inta
== 0xFFFFFFFF) {
10642 /* Hardware disappeared */
10643 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10647 if (!(inta
& (IPW_INTA_MASK_ALL
& inta_mask
))) {
10648 /* Shared interrupt */
10652 /* tell the device to stop sending interrupts */
10653 __ipw_disable_interrupts(priv
);
10655 /* ack current interrupts */
10656 inta
&= (IPW_INTA_MASK_ALL
& inta_mask
);
10657 ipw_write32(priv
, IPW_INTA_RW
, inta
);
10659 /* Cache INTA value for our tasklet */
10660 priv
->isr_inta
= inta
;
10662 tasklet_schedule(&priv
->irq_tasklet
);
10664 spin_unlock(&priv
->irq_lock
);
10666 return IRQ_HANDLED
;
10668 spin_unlock(&priv
->irq_lock
);
10672 static void ipw_rf_kill(void *adapter
)
10674 struct ipw_priv
*priv
= adapter
;
10675 unsigned long flags
;
10677 spin_lock_irqsave(&priv
->lock
, flags
);
10679 if (rf_kill_active(priv
)) {
10680 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10681 schedule_delayed_work(&priv
->rf_kill
, 2 * HZ
);
10685 /* RF Kill is now disabled, so bring the device back up */
10687 if (!(priv
->status
& STATUS_RF_KILL_MASK
)) {
10688 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10691 /* we can not do an adapter restart while inside an irq lock */
10692 schedule_work(&priv
->adapter_restart
);
10694 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10698 spin_unlock_irqrestore(&priv
->lock
, flags
);
10701 static void ipw_bg_rf_kill(struct work_struct
*work
)
10703 struct ipw_priv
*priv
=
10704 container_of(work
, struct ipw_priv
, rf_kill
.work
);
10705 mutex_lock(&priv
->mutex
);
10707 mutex_unlock(&priv
->mutex
);
10710 static void ipw_link_up(struct ipw_priv
*priv
)
10712 priv
->last_seq_num
= -1;
10713 priv
->last_frag_num
= -1;
10714 priv
->last_packet_time
= 0;
10716 netif_carrier_on(priv
->net_dev
);
10718 cancel_delayed_work(&priv
->request_scan
);
10719 cancel_delayed_work(&priv
->request_direct_scan
);
10720 cancel_delayed_work(&priv
->request_passive_scan
);
10721 cancel_delayed_work(&priv
->scan_event
);
10722 ipw_reset_stats(priv
);
10723 /* Ensure the rate is updated immediately */
10724 priv
->last_rate
= ipw_get_current_rate(priv
);
10725 ipw_gather_stats(priv
);
10726 ipw_led_link_up(priv
);
10727 notify_wx_assoc_event(priv
);
10729 if (priv
->config
& CFG_BACKGROUND_SCAN
)
10730 schedule_delayed_work(&priv
->request_scan
, HZ
);
10733 static void ipw_bg_link_up(struct work_struct
*work
)
10735 struct ipw_priv
*priv
=
10736 container_of(work
, struct ipw_priv
, link_up
);
10737 mutex_lock(&priv
->mutex
);
10739 mutex_unlock(&priv
->mutex
);
10742 static void ipw_link_down(struct ipw_priv
*priv
)
10744 ipw_led_link_down(priv
);
10745 netif_carrier_off(priv
->net_dev
);
10746 notify_wx_assoc_event(priv
);
10748 /* Cancel any queued work ... */
10749 cancel_delayed_work(&priv
->request_scan
);
10750 cancel_delayed_work(&priv
->request_direct_scan
);
10751 cancel_delayed_work(&priv
->request_passive_scan
);
10752 cancel_delayed_work(&priv
->adhoc_check
);
10753 cancel_delayed_work(&priv
->gather_stats
);
10755 ipw_reset_stats(priv
);
10757 if (!(priv
->status
& STATUS_EXIT_PENDING
)) {
10758 /* Queue up another scan... */
10759 schedule_delayed_work(&priv
->request_scan
, 0);
10761 cancel_delayed_work(&priv
->scan_event
);
10764 static void ipw_bg_link_down(struct work_struct
*work
)
10766 struct ipw_priv
*priv
=
10767 container_of(work
, struct ipw_priv
, link_down
);
10768 mutex_lock(&priv
->mutex
);
10769 ipw_link_down(priv
);
10770 mutex_unlock(&priv
->mutex
);
10773 static int __devinit
ipw_setup_deferred_work(struct ipw_priv
*priv
)
10777 init_waitqueue_head(&priv
->wait_command_queue
);
10778 init_waitqueue_head(&priv
->wait_state
);
10780 INIT_DELAYED_WORK(&priv
->adhoc_check
, ipw_bg_adhoc_check
);
10781 INIT_WORK(&priv
->associate
, ipw_bg_associate
);
10782 INIT_WORK(&priv
->disassociate
, ipw_bg_disassociate
);
10783 INIT_WORK(&priv
->system_config
, ipw_system_config
);
10784 INIT_WORK(&priv
->rx_replenish
, ipw_bg_rx_queue_replenish
);
10785 INIT_WORK(&priv
->adapter_restart
, ipw_bg_adapter_restart
);
10786 INIT_DELAYED_WORK(&priv
->rf_kill
, ipw_bg_rf_kill
);
10787 INIT_WORK(&priv
->up
, ipw_bg_up
);
10788 INIT_WORK(&priv
->down
, ipw_bg_down
);
10789 INIT_DELAYED_WORK(&priv
->request_scan
, ipw_request_scan
);
10790 INIT_DELAYED_WORK(&priv
->request_direct_scan
, ipw_request_direct_scan
);
10791 INIT_DELAYED_WORK(&priv
->request_passive_scan
, ipw_request_passive_scan
);
10792 INIT_DELAYED_WORK(&priv
->scan_event
, ipw_scan_event
);
10793 INIT_DELAYED_WORK(&priv
->gather_stats
, ipw_bg_gather_stats
);
10794 INIT_WORK(&priv
->abort_scan
, ipw_bg_abort_scan
);
10795 INIT_WORK(&priv
->roam
, ipw_bg_roam
);
10796 INIT_DELAYED_WORK(&priv
->scan_check
, ipw_bg_scan_check
);
10797 INIT_WORK(&priv
->link_up
, ipw_bg_link_up
);
10798 INIT_WORK(&priv
->link_down
, ipw_bg_link_down
);
10799 INIT_DELAYED_WORK(&priv
->led_link_on
, ipw_bg_led_link_on
);
10800 INIT_DELAYED_WORK(&priv
->led_link_off
, ipw_bg_led_link_off
);
10801 INIT_DELAYED_WORK(&priv
->led_act_off
, ipw_bg_led_activity_off
);
10802 INIT_WORK(&priv
->merge_networks
, ipw_merge_adhoc_network
);
10804 #ifdef CONFIG_IPW2200_QOS
10805 INIT_WORK(&priv
->qos_activate
, ipw_bg_qos_activate
);
10806 #endif /* CONFIG_IPW2200_QOS */
10808 tasklet_init(&priv
->irq_tasklet
, (void (*)(unsigned long))
10809 ipw_irq_tasklet
, (unsigned long)priv
);
10814 static void shim__set_security(struct net_device
*dev
,
10815 struct libipw_security
*sec
)
10817 struct ipw_priv
*priv
= libipw_priv(dev
);
10819 for (i
= 0; i
< 4; i
++) {
10820 if (sec
->flags
& (1 << i
)) {
10821 priv
->ieee
->sec
.encode_alg
[i
] = sec
->encode_alg
[i
];
10822 priv
->ieee
->sec
.key_sizes
[i
] = sec
->key_sizes
[i
];
10823 if (sec
->key_sizes
[i
] == 0)
10824 priv
->ieee
->sec
.flags
&= ~(1 << i
);
10826 memcpy(priv
->ieee
->sec
.keys
[i
], sec
->keys
[i
],
10827 sec
->key_sizes
[i
]);
10828 priv
->ieee
->sec
.flags
|= (1 << i
);
10830 priv
->status
|= STATUS_SECURITY_UPDATED
;
10831 } else if (sec
->level
!= SEC_LEVEL_1
)
10832 priv
->ieee
->sec
.flags
&= ~(1 << i
);
10835 if (sec
->flags
& SEC_ACTIVE_KEY
) {
10836 if (sec
->active_key
<= 3) {
10837 priv
->ieee
->sec
.active_key
= sec
->active_key
;
10838 priv
->ieee
->sec
.flags
|= SEC_ACTIVE_KEY
;
10840 priv
->ieee
->sec
.flags
&= ~SEC_ACTIVE_KEY
;
10841 priv
->status
|= STATUS_SECURITY_UPDATED
;
10843 priv
->ieee
->sec
.flags
&= ~SEC_ACTIVE_KEY
;
10845 if ((sec
->flags
& SEC_AUTH_MODE
) &&
10846 (priv
->ieee
->sec
.auth_mode
!= sec
->auth_mode
)) {
10847 priv
->ieee
->sec
.auth_mode
= sec
->auth_mode
;
10848 priv
->ieee
->sec
.flags
|= SEC_AUTH_MODE
;
10849 if (sec
->auth_mode
== WLAN_AUTH_SHARED_KEY
)
10850 priv
->capability
|= CAP_SHARED_KEY
;
10852 priv
->capability
&= ~CAP_SHARED_KEY
;
10853 priv
->status
|= STATUS_SECURITY_UPDATED
;
10856 if (sec
->flags
& SEC_ENABLED
&& priv
->ieee
->sec
.enabled
!= sec
->enabled
) {
10857 priv
->ieee
->sec
.flags
|= SEC_ENABLED
;
10858 priv
->ieee
->sec
.enabled
= sec
->enabled
;
10859 priv
->status
|= STATUS_SECURITY_UPDATED
;
10861 priv
->capability
|= CAP_PRIVACY_ON
;
10863 priv
->capability
&= ~CAP_PRIVACY_ON
;
10866 if (sec
->flags
& SEC_ENCRYPT
)
10867 priv
->ieee
->sec
.encrypt
= sec
->encrypt
;
10869 if (sec
->flags
& SEC_LEVEL
&& priv
->ieee
->sec
.level
!= sec
->level
) {
10870 priv
->ieee
->sec
.level
= sec
->level
;
10871 priv
->ieee
->sec
.flags
|= SEC_LEVEL
;
10872 priv
->status
|= STATUS_SECURITY_UPDATED
;
10875 if (!priv
->ieee
->host_encrypt
&& (sec
->flags
& SEC_ENCRYPT
))
10876 ipw_set_hwcrypto_keys(priv
);
10878 /* To match current functionality of ipw2100 (which works well w/
10879 * various supplicants, we don't force a disassociate if the
10880 * privacy capability changes ... */
10882 if ((priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) &&
10883 (((priv
->assoc_request
.capability
&
10884 cpu_to_le16(WLAN_CAPABILITY_PRIVACY
)) && !sec
->enabled
) ||
10885 (!(priv
->assoc_request
.capability
&
10886 cpu_to_le16(WLAN_CAPABILITY_PRIVACY
)) && sec
->enabled
))) {
10887 IPW_DEBUG_ASSOC("Disassociating due to capability "
10889 ipw_disassociate(priv
);
10894 static int init_supported_rates(struct ipw_priv
*priv
,
10895 struct ipw_supported_rates
*rates
)
10897 /* TODO: Mask out rates based on priv->rates_mask */
10899 memset(rates
, 0, sizeof(*rates
));
10900 /* configure supported rates */
10901 switch (priv
->ieee
->freq_band
) {
10902 case LIBIPW_52GHZ_BAND
:
10903 rates
->ieee_mode
= IPW_A_MODE
;
10904 rates
->purpose
= IPW_RATE_CAPABILITIES
;
10905 ipw_add_ofdm_scan_rates(rates
, LIBIPW_CCK_MODULATION
,
10906 LIBIPW_OFDM_DEFAULT_RATES_MASK
);
10909 default: /* Mixed or 2.4Ghz */
10910 rates
->ieee_mode
= IPW_G_MODE
;
10911 rates
->purpose
= IPW_RATE_CAPABILITIES
;
10912 ipw_add_cck_scan_rates(rates
, LIBIPW_CCK_MODULATION
,
10913 LIBIPW_CCK_DEFAULT_RATES_MASK
);
10914 if (priv
->ieee
->modulation
& LIBIPW_OFDM_MODULATION
) {
10915 ipw_add_ofdm_scan_rates(rates
, LIBIPW_CCK_MODULATION
,
10916 LIBIPW_OFDM_DEFAULT_RATES_MASK
);
10924 static int ipw_config(struct ipw_priv
*priv
)
10926 /* This is only called from ipw_up, which resets/reloads the firmware
10927 so, we don't need to first disable the card before we configure
10929 if (ipw_set_tx_power(priv
))
10932 /* initialize adapter address */
10933 if (ipw_send_adapter_address(priv
, priv
->net_dev
->dev_addr
))
10936 /* set basic system config settings */
10937 init_sys_config(&priv
->sys_config
);
10939 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10940 * Does not support BT priority yet (don't abort or defer our Tx) */
10942 unsigned char bt_caps
= priv
->eeprom
[EEPROM_SKU_CAPABILITY
];
10944 if (bt_caps
& EEPROM_SKU_CAP_BT_CHANNEL_SIG
)
10945 priv
->sys_config
.bt_coexistence
10946 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL
;
10947 if (bt_caps
& EEPROM_SKU_CAP_BT_OOB
)
10948 priv
->sys_config
.bt_coexistence
10949 |= CFG_BT_COEXISTENCE_OOB
;
10952 #ifdef CONFIG_IPW2200_PROMISCUOUS
10953 if (priv
->prom_net_dev
&& netif_running(priv
->prom_net_dev
)) {
10954 priv
->sys_config
.accept_all_data_frames
= 1;
10955 priv
->sys_config
.accept_non_directed_frames
= 1;
10956 priv
->sys_config
.accept_all_mgmt_bcpr
= 1;
10957 priv
->sys_config
.accept_all_mgmt_frames
= 1;
10961 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
10962 priv
->sys_config
.answer_broadcast_ssid_probe
= 1;
10964 priv
->sys_config
.answer_broadcast_ssid_probe
= 0;
10966 if (ipw_send_system_config(priv
))
10969 init_supported_rates(priv
, &priv
->rates
);
10970 if (ipw_send_supported_rates(priv
, &priv
->rates
))
10973 /* Set request-to-send threshold */
10974 if (priv
->rts_threshold
) {
10975 if (ipw_send_rts_threshold(priv
, priv
->rts_threshold
))
10978 #ifdef CONFIG_IPW2200_QOS
10979 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10980 ipw_qos_activate(priv
, NULL
);
10981 #endif /* CONFIG_IPW2200_QOS */
10983 if (ipw_set_random_seed(priv
))
10986 /* final state transition to the RUN state */
10987 if (ipw_send_host_complete(priv
))
10990 priv
->status
|= STATUS_INIT
;
10992 ipw_led_init(priv
);
10993 ipw_led_radio_on(priv
);
10994 priv
->notif_missed_beacons
= 0;
10996 /* Set hardware WEP key if it is configured. */
10997 if ((priv
->capability
& CAP_PRIVACY_ON
) &&
10998 (priv
->ieee
->sec
.level
== SEC_LEVEL_1
) &&
10999 !(priv
->ieee
->host_encrypt
|| priv
->ieee
->host_decrypt
))
11000 ipw_set_hwcrypto_keys(priv
);
11011 * These tables have been tested in conjunction with the
11012 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11014 * Altering this values, using it on other hardware, or in geographies
11015 * not intended for resale of the above mentioned Intel adapters has
11018 * Remember to update the table in README.ipw2200 when changing this
11022 static const struct libipw_geo ipw_geos
[] = {
11026 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11027 {2427, 4}, {2432, 5}, {2437, 6},
11028 {2442, 7}, {2447, 8}, {2452, 9},
11029 {2457, 10}, {2462, 11}},
11032 { /* Custom US/Canada */
11035 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11036 {2427, 4}, {2432, 5}, {2437, 6},
11037 {2442, 7}, {2447, 8}, {2452, 9},
11038 {2457, 10}, {2462, 11}},
11044 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11045 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11046 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11047 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
}},
11050 { /* Rest of World */
11053 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11054 {2427, 4}, {2432, 5}, {2437, 6},
11055 {2442, 7}, {2447, 8}, {2452, 9},
11056 {2457, 10}, {2462, 11}, {2467, 12},
11060 { /* Custom USA & Europe & High */
11063 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11064 {2427, 4}, {2432, 5}, {2437, 6},
11065 {2442, 7}, {2447, 8}, {2452, 9},
11066 {2457, 10}, {2462, 11}},
11072 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11073 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11074 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11075 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11083 { /* Custom NA & Europe */
11086 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11087 {2427, 4}, {2432, 5}, {2437, 6},
11088 {2442, 7}, {2447, 8}, {2452, 9},
11089 {2457, 10}, {2462, 11}},
11095 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11096 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11097 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11098 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11099 {5745, 149, LIBIPW_CH_PASSIVE_ONLY
},
11100 {5765, 153, LIBIPW_CH_PASSIVE_ONLY
},
11101 {5785, 157, LIBIPW_CH_PASSIVE_ONLY
},
11102 {5805, 161, LIBIPW_CH_PASSIVE_ONLY
},
11103 {5825, 165, LIBIPW_CH_PASSIVE_ONLY
}},
11106 { /* Custom Japan */
11109 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11110 {2427, 4}, {2432, 5}, {2437, 6},
11111 {2442, 7}, {2447, 8}, {2452, 9},
11112 {2457, 10}, {2462, 11}},
11114 .a
= {{5170, 34}, {5190, 38},
11115 {5210, 42}, {5230, 46}},
11121 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11122 {2427, 4}, {2432, 5}, {2437, 6},
11123 {2442, 7}, {2447, 8}, {2452, 9},
11124 {2457, 10}, {2462, 11}},
11130 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11131 {2427, 4}, {2432, 5}, {2437, 6},
11132 {2442, 7}, {2447, 8}, {2452, 9},
11133 {2457, 10}, {2462, 11}, {2467, 12},
11140 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11141 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11142 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11143 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11144 {5500, 100, LIBIPW_CH_PASSIVE_ONLY
},
11145 {5520, 104, LIBIPW_CH_PASSIVE_ONLY
},
11146 {5540, 108, LIBIPW_CH_PASSIVE_ONLY
},
11147 {5560, 112, LIBIPW_CH_PASSIVE_ONLY
},
11148 {5580, 116, LIBIPW_CH_PASSIVE_ONLY
},
11149 {5600, 120, LIBIPW_CH_PASSIVE_ONLY
},
11150 {5620, 124, LIBIPW_CH_PASSIVE_ONLY
},
11151 {5640, 128, LIBIPW_CH_PASSIVE_ONLY
},
11152 {5660, 132, LIBIPW_CH_PASSIVE_ONLY
},
11153 {5680, 136, LIBIPW_CH_PASSIVE_ONLY
},
11154 {5700, 140, LIBIPW_CH_PASSIVE_ONLY
}},
11157 { /* Custom Japan */
11160 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11161 {2427, 4}, {2432, 5}, {2437, 6},
11162 {2442, 7}, {2447, 8}, {2452, 9},
11163 {2457, 10}, {2462, 11}, {2467, 12},
11164 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY
}},
11166 .a
= {{5170, 34}, {5190, 38},
11167 {5210, 42}, {5230, 46}},
11170 { /* Rest of World */
11173 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11174 {2427, 4}, {2432, 5}, {2437, 6},
11175 {2442, 7}, {2447, 8}, {2452, 9},
11176 {2457, 10}, {2462, 11}, {2467, 12},
11177 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY
|
11178 LIBIPW_CH_PASSIVE_ONLY
}},
11184 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11185 {2427, 4}, {2432, 5}, {2437, 6},
11186 {2442, 7}, {2447, 8}, {2452, 9},
11187 {2457, 10}, {2462, 11},
11188 {2467, 12, LIBIPW_CH_PASSIVE_ONLY
},
11189 {2472, 13, LIBIPW_CH_PASSIVE_ONLY
}},
11191 .a
= {{5745, 149}, {5765, 153},
11192 {5785, 157}, {5805, 161}},
11195 { /* Custom Europe */
11198 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11199 {2427, 4}, {2432, 5}, {2437, 6},
11200 {2442, 7}, {2447, 8}, {2452, 9},
11201 {2457, 10}, {2462, 11},
11202 {2467, 12}, {2472, 13}},
11204 .a
= {{5180, 36}, {5200, 40},
11205 {5220, 44}, {5240, 48}},
11211 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11212 {2427, 4}, {2432, 5}, {2437, 6},
11213 {2442, 7}, {2447, 8}, {2452, 9},
11214 {2457, 10}, {2462, 11},
11215 {2467, 12, LIBIPW_CH_PASSIVE_ONLY
},
11216 {2472, 13, LIBIPW_CH_PASSIVE_ONLY
}},
11218 .a
= {{5180, 36, LIBIPW_CH_PASSIVE_ONLY
},
11219 {5200, 40, LIBIPW_CH_PASSIVE_ONLY
},
11220 {5220, 44, LIBIPW_CH_PASSIVE_ONLY
},
11221 {5240, 48, LIBIPW_CH_PASSIVE_ONLY
},
11222 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11223 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11224 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11225 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11226 {5500, 100, LIBIPW_CH_PASSIVE_ONLY
},
11227 {5520, 104, LIBIPW_CH_PASSIVE_ONLY
},
11228 {5540, 108, LIBIPW_CH_PASSIVE_ONLY
},
11229 {5560, 112, LIBIPW_CH_PASSIVE_ONLY
},
11230 {5580, 116, LIBIPW_CH_PASSIVE_ONLY
},
11231 {5600, 120, LIBIPW_CH_PASSIVE_ONLY
},
11232 {5620, 124, LIBIPW_CH_PASSIVE_ONLY
},
11233 {5640, 128, LIBIPW_CH_PASSIVE_ONLY
},
11234 {5660, 132, LIBIPW_CH_PASSIVE_ONLY
},
11235 {5680, 136, LIBIPW_CH_PASSIVE_ONLY
},
11236 {5700, 140, LIBIPW_CH_PASSIVE_ONLY
},
11237 {5745, 149, LIBIPW_CH_PASSIVE_ONLY
},
11238 {5765, 153, LIBIPW_CH_PASSIVE_ONLY
},
11239 {5785, 157, LIBIPW_CH_PASSIVE_ONLY
},
11240 {5805, 161, LIBIPW_CH_PASSIVE_ONLY
},
11241 {5825, 165, LIBIPW_CH_PASSIVE_ONLY
}},
11247 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11248 {2427, 4}, {2432, 5}, {2437, 6},
11249 {2442, 7}, {2447, 8}, {2452, 9},
11250 {2457, 10}, {2462, 11}},
11252 .a
= {{5180, 36, LIBIPW_CH_PASSIVE_ONLY
},
11253 {5200, 40, LIBIPW_CH_PASSIVE_ONLY
},
11254 {5220, 44, LIBIPW_CH_PASSIVE_ONLY
},
11255 {5240, 48, LIBIPW_CH_PASSIVE_ONLY
},
11256 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11257 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11258 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11259 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11260 {5745, 149, LIBIPW_CH_PASSIVE_ONLY
},
11261 {5765, 153, LIBIPW_CH_PASSIVE_ONLY
},
11262 {5785, 157, LIBIPW_CH_PASSIVE_ONLY
},
11263 {5805, 161, LIBIPW_CH_PASSIVE_ONLY
},
11264 {5825, 165, LIBIPW_CH_PASSIVE_ONLY
}},
11268 #define MAX_HW_RESTARTS 5
11269 static int ipw_up(struct ipw_priv
*priv
)
11273 /* Age scan list entries found before suspend */
11274 if (priv
->suspend_time
) {
11275 libipw_networks_age(priv
->ieee
, priv
->suspend_time
);
11276 priv
->suspend_time
= 0;
11279 if (priv
->status
& STATUS_EXIT_PENDING
)
11282 if (cmdlog
&& !priv
->cmdlog
) {
11283 priv
->cmdlog
= kcalloc(cmdlog
, sizeof(*priv
->cmdlog
),
11285 if (priv
->cmdlog
== NULL
) {
11286 IPW_ERROR("Error allocating %d command log entries.\n",
11290 priv
->cmdlog_len
= cmdlog
;
11294 for (i
= 0; i
< MAX_HW_RESTARTS
; i
++) {
11295 /* Load the microcode, firmware, and eeprom.
11296 * Also start the clocks. */
11297 rc
= ipw_load(priv
);
11299 IPW_ERROR("Unable to load firmware: %d\n", rc
);
11303 ipw_init_ordinals(priv
);
11304 if (!(priv
->config
& CFG_CUSTOM_MAC
))
11305 eeprom_parse_mac(priv
, priv
->mac_addr
);
11306 memcpy(priv
->net_dev
->dev_addr
, priv
->mac_addr
, ETH_ALEN
);
11307 memcpy(priv
->net_dev
->perm_addr
, priv
->mac_addr
, ETH_ALEN
);
11309 for (j
= 0; j
< ARRAY_SIZE(ipw_geos
); j
++) {
11310 if (!memcmp(&priv
->eeprom
[EEPROM_COUNTRY_CODE
],
11311 ipw_geos
[j
].name
, 3))
11314 if (j
== ARRAY_SIZE(ipw_geos
)) {
11315 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11316 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 0],
11317 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 1],
11318 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 2]);
11321 if (libipw_set_geo(priv
->ieee
, &ipw_geos
[j
])) {
11322 IPW_WARNING("Could not set geography.");
11326 if (priv
->status
& STATUS_RF_KILL_SW
) {
11327 IPW_WARNING("Radio disabled by module parameter.\n");
11329 } else if (rf_kill_active(priv
)) {
11330 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11331 "Kill switch must be turned off for "
11332 "wireless networking to work.\n");
11333 schedule_delayed_work(&priv
->rf_kill
, 2 * HZ
);
11337 rc
= ipw_config(priv
);
11339 IPW_DEBUG_INFO("Configured device on count %i\n", i
);
11341 /* If configure to try and auto-associate, kick
11343 schedule_delayed_work(&priv
->request_scan
, 0);
11348 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc
);
11349 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11350 i
, MAX_HW_RESTARTS
);
11352 /* We had an error bringing up the hardware, so take it
11353 * all the way back down so we can try again */
11357 /* tried to restart and config the device for as long as our
11358 * patience could withstand */
11359 IPW_ERROR("Unable to initialize device after %d attempts.\n", i
);
11364 static void ipw_bg_up(struct work_struct
*work
)
11366 struct ipw_priv
*priv
=
11367 container_of(work
, struct ipw_priv
, up
);
11368 mutex_lock(&priv
->mutex
);
11370 mutex_unlock(&priv
->mutex
);
11373 static void ipw_deinit(struct ipw_priv
*priv
)
11377 if (priv
->status
& STATUS_SCANNING
) {
11378 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11379 ipw_abort_scan(priv
);
11382 if (priv
->status
& STATUS_ASSOCIATED
) {
11383 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11384 ipw_disassociate(priv
);
11387 ipw_led_shutdown(priv
);
11389 /* Wait up to 1s for status to change to not scanning and not
11390 * associated (disassociation can take a while for a ful 802.11
11392 for (i
= 1000; i
&& (priv
->status
&
11393 (STATUS_DISASSOCIATING
|
11394 STATUS_ASSOCIATED
| STATUS_SCANNING
)); i
--)
11397 if (priv
->status
& (STATUS_DISASSOCIATING
|
11398 STATUS_ASSOCIATED
| STATUS_SCANNING
))
11399 IPW_DEBUG_INFO("Still associated or scanning...\n");
11401 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i
);
11403 /* Attempt to disable the card */
11404 ipw_send_card_disable(priv
, 0);
11406 priv
->status
&= ~STATUS_INIT
;
11409 static void ipw_down(struct ipw_priv
*priv
)
11411 int exit_pending
= priv
->status
& STATUS_EXIT_PENDING
;
11413 priv
->status
|= STATUS_EXIT_PENDING
;
11415 if (ipw_is_init(priv
))
11418 /* Wipe out the EXIT_PENDING status bit if we are not actually
11419 * exiting the module */
11421 priv
->status
&= ~STATUS_EXIT_PENDING
;
11423 /* tell the device to stop sending interrupts */
11424 ipw_disable_interrupts(priv
);
11426 /* Clear all bits but the RF Kill */
11427 priv
->status
&= STATUS_RF_KILL_MASK
| STATUS_EXIT_PENDING
;
11428 netif_carrier_off(priv
->net_dev
);
11430 ipw_stop_nic(priv
);
11432 ipw_led_radio_off(priv
);
11435 static void ipw_bg_down(struct work_struct
*work
)
11437 struct ipw_priv
*priv
=
11438 container_of(work
, struct ipw_priv
, down
);
11439 mutex_lock(&priv
->mutex
);
11441 mutex_unlock(&priv
->mutex
);
11444 static int ipw_wdev_init(struct net_device
*dev
)
11447 struct ipw_priv
*priv
= libipw_priv(dev
);
11448 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
11449 struct wireless_dev
*wdev
= &priv
->ieee
->wdev
;
11451 memcpy(wdev
->wiphy
->perm_addr
, priv
->mac_addr
, ETH_ALEN
);
11453 /* fill-out priv->ieee->bg_band */
11454 if (geo
->bg_channels
) {
11455 struct ieee80211_supported_band
*bg_band
= &priv
->ieee
->bg_band
;
11457 bg_band
->band
= IEEE80211_BAND_2GHZ
;
11458 bg_band
->n_channels
= geo
->bg_channels
;
11459 bg_band
->channels
= kcalloc(geo
->bg_channels
,
11460 sizeof(struct ieee80211_channel
),
11462 if (!bg_band
->channels
) {
11466 /* translate geo->bg to bg_band.channels */
11467 for (i
= 0; i
< geo
->bg_channels
; i
++) {
11468 bg_band
->channels
[i
].band
= IEEE80211_BAND_2GHZ
;
11469 bg_band
->channels
[i
].center_freq
= geo
->bg
[i
].freq
;
11470 bg_band
->channels
[i
].hw_value
= geo
->bg
[i
].channel
;
11471 bg_band
->channels
[i
].max_power
= geo
->bg
[i
].max_power
;
11472 if (geo
->bg
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
)
11473 bg_band
->channels
[i
].flags
|=
11474 IEEE80211_CHAN_PASSIVE_SCAN
;
11475 if (geo
->bg
[i
].flags
& LIBIPW_CH_NO_IBSS
)
11476 bg_band
->channels
[i
].flags
|=
11477 IEEE80211_CHAN_NO_IBSS
;
11478 if (geo
->bg
[i
].flags
& LIBIPW_CH_RADAR_DETECT
)
11479 bg_band
->channels
[i
].flags
|=
11480 IEEE80211_CHAN_RADAR
;
11481 /* No equivalent for LIBIPW_CH_80211H_RULES,
11482 LIBIPW_CH_UNIFORM_SPREADING, or
11483 LIBIPW_CH_B_ONLY... */
11485 /* point at bitrate info */
11486 bg_band
->bitrates
= ipw2200_bg_rates
;
11487 bg_band
->n_bitrates
= ipw2200_num_bg_rates
;
11489 wdev
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = bg_band
;
11492 /* fill-out priv->ieee->a_band */
11493 if (geo
->a_channels
) {
11494 struct ieee80211_supported_band
*a_band
= &priv
->ieee
->a_band
;
11496 a_band
->band
= IEEE80211_BAND_5GHZ
;
11497 a_band
->n_channels
= geo
->a_channels
;
11498 a_band
->channels
= kcalloc(geo
->a_channels
,
11499 sizeof(struct ieee80211_channel
),
11501 if (!a_band
->channels
) {
11505 /* translate geo->a to a_band.channels */
11506 for (i
= 0; i
< geo
->a_channels
; i
++) {
11507 a_band
->channels
[i
].band
= IEEE80211_BAND_5GHZ
;
11508 a_band
->channels
[i
].center_freq
= geo
->a
[i
].freq
;
11509 a_band
->channels
[i
].hw_value
= geo
->a
[i
].channel
;
11510 a_band
->channels
[i
].max_power
= geo
->a
[i
].max_power
;
11511 if (geo
->a
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
)
11512 a_band
->channels
[i
].flags
|=
11513 IEEE80211_CHAN_PASSIVE_SCAN
;
11514 if (geo
->a
[i
].flags
& LIBIPW_CH_NO_IBSS
)
11515 a_band
->channels
[i
].flags
|=
11516 IEEE80211_CHAN_NO_IBSS
;
11517 if (geo
->a
[i
].flags
& LIBIPW_CH_RADAR_DETECT
)
11518 a_band
->channels
[i
].flags
|=
11519 IEEE80211_CHAN_RADAR
;
11520 /* No equivalent for LIBIPW_CH_80211H_RULES,
11521 LIBIPW_CH_UNIFORM_SPREADING, or
11522 LIBIPW_CH_B_ONLY... */
11524 /* point at bitrate info */
11525 a_band
->bitrates
= ipw2200_a_rates
;
11526 a_band
->n_bitrates
= ipw2200_num_a_rates
;
11528 wdev
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = a_band
;
11531 wdev
->wiphy
->cipher_suites
= ipw_cipher_suites
;
11532 wdev
->wiphy
->n_cipher_suites
= ARRAY_SIZE(ipw_cipher_suites
);
11534 set_wiphy_dev(wdev
->wiphy
, &priv
->pci_dev
->dev
);
11536 /* With that information in place, we can now register the wiphy... */
11537 if (wiphy_register(wdev
->wiphy
))
11543 /* PCI driver stuff */
11544 static DEFINE_PCI_DEVICE_TABLE(card_ids
) = {
11545 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11546 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11547 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11548 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11549 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11550 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11551 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11552 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11553 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11554 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11555 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11556 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11557 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11558 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11559 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11560 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11561 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11562 {PCI_VDEVICE(INTEL
, 0x104f), 0},
11563 {PCI_VDEVICE(INTEL
, 0x4220), 0}, /* BG */
11564 {PCI_VDEVICE(INTEL
, 0x4221), 0}, /* BG */
11565 {PCI_VDEVICE(INTEL
, 0x4223), 0}, /* ABG */
11566 {PCI_VDEVICE(INTEL
, 0x4224), 0}, /* ABG */
11568 /* required last entry */
11572 MODULE_DEVICE_TABLE(pci
, card_ids
);
11574 static struct attribute
*ipw_sysfs_entries
[] = {
11575 &dev_attr_rf_kill
.attr
,
11576 &dev_attr_direct_dword
.attr
,
11577 &dev_attr_indirect_byte
.attr
,
11578 &dev_attr_indirect_dword
.attr
,
11579 &dev_attr_mem_gpio_reg
.attr
,
11580 &dev_attr_command_event_reg
.attr
,
11581 &dev_attr_nic_type
.attr
,
11582 &dev_attr_status
.attr
,
11583 &dev_attr_cfg
.attr
,
11584 &dev_attr_error
.attr
,
11585 &dev_attr_event_log
.attr
,
11586 &dev_attr_cmd_log
.attr
,
11587 &dev_attr_eeprom_delay
.attr
,
11588 &dev_attr_ucode_version
.attr
,
11589 &dev_attr_rtc
.attr
,
11590 &dev_attr_scan_age
.attr
,
11591 &dev_attr_led
.attr
,
11592 &dev_attr_speed_scan
.attr
,
11593 &dev_attr_net_stats
.attr
,
11594 &dev_attr_channels
.attr
,
11595 #ifdef CONFIG_IPW2200_PROMISCUOUS
11596 &dev_attr_rtap_iface
.attr
,
11597 &dev_attr_rtap_filter
.attr
,
11602 static struct attribute_group ipw_attribute_group
= {
11603 .name
= NULL
, /* put in device directory */
11604 .attrs
= ipw_sysfs_entries
,
11607 #ifdef CONFIG_IPW2200_PROMISCUOUS
11608 static int ipw_prom_open(struct net_device
*dev
)
11610 struct ipw_prom_priv
*prom_priv
= libipw_priv(dev
);
11611 struct ipw_priv
*priv
= prom_priv
->priv
;
11613 IPW_DEBUG_INFO("prom dev->open\n");
11614 netif_carrier_off(dev
);
11616 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
11617 priv
->sys_config
.accept_all_data_frames
= 1;
11618 priv
->sys_config
.accept_non_directed_frames
= 1;
11619 priv
->sys_config
.accept_all_mgmt_bcpr
= 1;
11620 priv
->sys_config
.accept_all_mgmt_frames
= 1;
11622 ipw_send_system_config(priv
);
11628 static int ipw_prom_stop(struct net_device
*dev
)
11630 struct ipw_prom_priv
*prom_priv
= libipw_priv(dev
);
11631 struct ipw_priv
*priv
= prom_priv
->priv
;
11633 IPW_DEBUG_INFO("prom dev->stop\n");
11635 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
11636 priv
->sys_config
.accept_all_data_frames
= 0;
11637 priv
->sys_config
.accept_non_directed_frames
= 0;
11638 priv
->sys_config
.accept_all_mgmt_bcpr
= 0;
11639 priv
->sys_config
.accept_all_mgmt_frames
= 0;
11641 ipw_send_system_config(priv
);
11647 static netdev_tx_t
ipw_prom_hard_start_xmit(struct sk_buff
*skb
,
11648 struct net_device
*dev
)
11650 IPW_DEBUG_INFO("prom dev->xmit\n");
11651 dev_kfree_skb(skb
);
11652 return NETDEV_TX_OK
;
11655 static const struct net_device_ops ipw_prom_netdev_ops
= {
11656 .ndo_open
= ipw_prom_open
,
11657 .ndo_stop
= ipw_prom_stop
,
11658 .ndo_start_xmit
= ipw_prom_hard_start_xmit
,
11659 .ndo_change_mtu
= libipw_change_mtu
,
11660 .ndo_set_mac_address
= eth_mac_addr
,
11661 .ndo_validate_addr
= eth_validate_addr
,
11664 static int ipw_prom_alloc(struct ipw_priv
*priv
)
11668 if (priv
->prom_net_dev
)
11671 priv
->prom_net_dev
= alloc_libipw(sizeof(struct ipw_prom_priv
), 1);
11672 if (priv
->prom_net_dev
== NULL
)
11675 priv
->prom_priv
= libipw_priv(priv
->prom_net_dev
);
11676 priv
->prom_priv
->ieee
= netdev_priv(priv
->prom_net_dev
);
11677 priv
->prom_priv
->priv
= priv
;
11679 strcpy(priv
->prom_net_dev
->name
, "rtap%d");
11680 memcpy(priv
->prom_net_dev
->dev_addr
, priv
->mac_addr
, ETH_ALEN
);
11682 priv
->prom_net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
11683 priv
->prom_net_dev
->netdev_ops
= &ipw_prom_netdev_ops
;
11685 priv
->prom_priv
->ieee
->iw_mode
= IW_MODE_MONITOR
;
11686 SET_NETDEV_DEV(priv
->prom_net_dev
, &priv
->pci_dev
->dev
);
11688 rc
= register_netdev(priv
->prom_net_dev
);
11690 free_libipw(priv
->prom_net_dev
, 1);
11691 priv
->prom_net_dev
= NULL
;
11698 static void ipw_prom_free(struct ipw_priv
*priv
)
11700 if (!priv
->prom_net_dev
)
11703 unregister_netdev(priv
->prom_net_dev
);
11704 free_libipw(priv
->prom_net_dev
, 1);
11706 priv
->prom_net_dev
= NULL
;
11711 static const struct net_device_ops ipw_netdev_ops
= {
11712 .ndo_open
= ipw_net_open
,
11713 .ndo_stop
= ipw_net_stop
,
11714 .ndo_set_rx_mode
= ipw_net_set_multicast_list
,
11715 .ndo_set_mac_address
= ipw_net_set_mac_address
,
11716 .ndo_start_xmit
= libipw_xmit
,
11717 .ndo_change_mtu
= libipw_change_mtu
,
11718 .ndo_validate_addr
= eth_validate_addr
,
11721 static int __devinit
ipw_pci_probe(struct pci_dev
*pdev
,
11722 const struct pci_device_id
*ent
)
11725 struct net_device
*net_dev
;
11726 void __iomem
*base
;
11728 struct ipw_priv
*priv
;
11731 net_dev
= alloc_libipw(sizeof(struct ipw_priv
), 0);
11732 if (net_dev
== NULL
) {
11737 priv
= libipw_priv(net_dev
);
11738 priv
->ieee
= netdev_priv(net_dev
);
11740 priv
->net_dev
= net_dev
;
11741 priv
->pci_dev
= pdev
;
11742 ipw_debug_level
= debug
;
11743 spin_lock_init(&priv
->irq_lock
);
11744 spin_lock_init(&priv
->lock
);
11745 for (i
= 0; i
< IPW_IBSS_MAC_HASH_SIZE
; i
++)
11746 INIT_LIST_HEAD(&priv
->ibss_mac_hash
[i
]);
11748 mutex_init(&priv
->mutex
);
11749 if (pci_enable_device(pdev
)) {
11751 goto out_free_libipw
;
11754 pci_set_master(pdev
);
11756 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
11758 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
11760 printk(KERN_WARNING DRV_NAME
": No suitable DMA available.\n");
11761 goto out_pci_disable_device
;
11764 pci_set_drvdata(pdev
, priv
);
11766 err
= pci_request_regions(pdev
, DRV_NAME
);
11768 goto out_pci_disable_device
;
11770 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11771 * PCI Tx retries from interfering with C3 CPU state */
11772 pci_read_config_dword(pdev
, 0x40, &val
);
11773 if ((val
& 0x0000ff00) != 0)
11774 pci_write_config_dword(pdev
, 0x40, val
& 0xffff00ff);
11776 length
= pci_resource_len(pdev
, 0);
11777 priv
->hw_len
= length
;
11779 base
= pci_ioremap_bar(pdev
, 0);
11782 goto out_pci_release_regions
;
11785 priv
->hw_base
= base
;
11786 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length
);
11787 IPW_DEBUG_INFO("pci_resource_base = %p\n", base
);
11789 err
= ipw_setup_deferred_work(priv
);
11791 IPW_ERROR("Unable to setup deferred work\n");
11795 ipw_sw_reset(priv
, 1);
11797 err
= request_irq(pdev
->irq
, ipw_isr
, IRQF_SHARED
, DRV_NAME
, priv
);
11799 IPW_ERROR("Error allocating IRQ %d\n", pdev
->irq
);
11803 SET_NETDEV_DEV(net_dev
, &pdev
->dev
);
11805 mutex_lock(&priv
->mutex
);
11807 priv
->ieee
->hard_start_xmit
= ipw_net_hard_start_xmit
;
11808 priv
->ieee
->set_security
= shim__set_security
;
11809 priv
->ieee
->is_queue_full
= ipw_net_is_queue_full
;
11811 #ifdef CONFIG_IPW2200_QOS
11812 priv
->ieee
->is_qos_active
= ipw_is_qos_active
;
11813 priv
->ieee
->handle_probe_response
= ipw_handle_beacon
;
11814 priv
->ieee
->handle_beacon
= ipw_handle_probe_response
;
11815 priv
->ieee
->handle_assoc_response
= ipw_handle_assoc_response
;
11816 #endif /* CONFIG_IPW2200_QOS */
11818 priv
->ieee
->perfect_rssi
= -20;
11819 priv
->ieee
->worst_rssi
= -85;
11821 net_dev
->netdev_ops
= &ipw_netdev_ops
;
11822 priv
->wireless_data
.spy_data
= &priv
->ieee
->spy_data
;
11823 net_dev
->wireless_data
= &priv
->wireless_data
;
11824 net_dev
->wireless_handlers
= &ipw_wx_handler_def
;
11825 net_dev
->ethtool_ops
= &ipw_ethtool_ops
;
11827 err
= sysfs_create_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11829 IPW_ERROR("failed to create sysfs device attributes\n");
11830 mutex_unlock(&priv
->mutex
);
11831 goto out_release_irq
;
11834 if (ipw_up(priv
)) {
11835 mutex_unlock(&priv
->mutex
);
11837 goto out_remove_sysfs
;
11840 mutex_unlock(&priv
->mutex
);
11842 err
= ipw_wdev_init(net_dev
);
11844 IPW_ERROR("failed to register wireless device\n");
11845 goto out_remove_sysfs
;
11848 err
= register_netdev(net_dev
);
11850 IPW_ERROR("failed to register network device\n");
11851 goto out_unregister_wiphy
;
11854 #ifdef CONFIG_IPW2200_PROMISCUOUS
11856 err
= ipw_prom_alloc(priv
);
11858 IPW_ERROR("Failed to register promiscuous network "
11859 "device (error %d).\n", err
);
11860 unregister_netdev(priv
->net_dev
);
11861 goto out_unregister_wiphy
;
11866 printk(KERN_INFO DRV_NAME
": Detected geography %s (%d 802.11bg "
11867 "channels, %d 802.11a channels)\n",
11868 priv
->ieee
->geo
.name
, priv
->ieee
->geo
.bg_channels
,
11869 priv
->ieee
->geo
.a_channels
);
11873 out_unregister_wiphy
:
11874 wiphy_unregister(priv
->ieee
->wdev
.wiphy
);
11875 kfree(priv
->ieee
->a_band
.channels
);
11876 kfree(priv
->ieee
->bg_band
.channels
);
11878 sysfs_remove_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11880 free_irq(pdev
->irq
, priv
);
11882 iounmap(priv
->hw_base
);
11883 out_pci_release_regions
:
11884 pci_release_regions(pdev
);
11885 out_pci_disable_device
:
11886 pci_disable_device(pdev
);
11887 pci_set_drvdata(pdev
, NULL
);
11889 free_libipw(priv
->net_dev
, 0);
11894 static void __devexit
ipw_pci_remove(struct pci_dev
*pdev
)
11896 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11897 struct list_head
*p
, *q
;
11903 mutex_lock(&priv
->mutex
);
11905 priv
->status
|= STATUS_EXIT_PENDING
;
11907 sysfs_remove_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11909 mutex_unlock(&priv
->mutex
);
11911 unregister_netdev(priv
->net_dev
);
11914 ipw_rx_queue_free(priv
, priv
->rxq
);
11917 ipw_tx_queue_free(priv
);
11919 if (priv
->cmdlog
) {
11920 kfree(priv
->cmdlog
);
11921 priv
->cmdlog
= NULL
;
11924 /* make sure all works are inactive */
11925 cancel_delayed_work_sync(&priv
->adhoc_check
);
11926 cancel_work_sync(&priv
->associate
);
11927 cancel_work_sync(&priv
->disassociate
);
11928 cancel_work_sync(&priv
->system_config
);
11929 cancel_work_sync(&priv
->rx_replenish
);
11930 cancel_work_sync(&priv
->adapter_restart
);
11931 cancel_delayed_work_sync(&priv
->rf_kill
);
11932 cancel_work_sync(&priv
->up
);
11933 cancel_work_sync(&priv
->down
);
11934 cancel_delayed_work_sync(&priv
->request_scan
);
11935 cancel_delayed_work_sync(&priv
->request_direct_scan
);
11936 cancel_delayed_work_sync(&priv
->request_passive_scan
);
11937 cancel_delayed_work_sync(&priv
->scan_event
);
11938 cancel_delayed_work_sync(&priv
->gather_stats
);
11939 cancel_work_sync(&priv
->abort_scan
);
11940 cancel_work_sync(&priv
->roam
);
11941 cancel_delayed_work_sync(&priv
->scan_check
);
11942 cancel_work_sync(&priv
->link_up
);
11943 cancel_work_sync(&priv
->link_down
);
11944 cancel_delayed_work_sync(&priv
->led_link_on
);
11945 cancel_delayed_work_sync(&priv
->led_link_off
);
11946 cancel_delayed_work_sync(&priv
->led_act_off
);
11947 cancel_work_sync(&priv
->merge_networks
);
11949 /* Free MAC hash list for ADHOC */
11950 for (i
= 0; i
< IPW_IBSS_MAC_HASH_SIZE
; i
++) {
11951 list_for_each_safe(p
, q
, &priv
->ibss_mac_hash
[i
]) {
11953 kfree(list_entry(p
, struct ipw_ibss_seq
, list
));
11957 kfree(priv
->error
);
11958 priv
->error
= NULL
;
11960 #ifdef CONFIG_IPW2200_PROMISCUOUS
11961 ipw_prom_free(priv
);
11964 free_irq(pdev
->irq
, priv
);
11965 iounmap(priv
->hw_base
);
11966 pci_release_regions(pdev
);
11967 pci_disable_device(pdev
);
11968 pci_set_drvdata(pdev
, NULL
);
11969 /* wiphy_unregister needs to be here, before free_libipw */
11970 wiphy_unregister(priv
->ieee
->wdev
.wiphy
);
11971 kfree(priv
->ieee
->a_band
.channels
);
11972 kfree(priv
->ieee
->bg_band
.channels
);
11973 free_libipw(priv
->net_dev
, 0);
11978 static int ipw_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
11980 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11981 struct net_device
*dev
= priv
->net_dev
;
11983 printk(KERN_INFO
"%s: Going into suspend...\n", dev
->name
);
11985 /* Take down the device; powers it off, etc. */
11988 /* Remove the PRESENT state of the device */
11989 netif_device_detach(dev
);
11991 pci_save_state(pdev
);
11992 pci_disable_device(pdev
);
11993 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
11995 priv
->suspend_at
= get_seconds();
12000 static int ipw_pci_resume(struct pci_dev
*pdev
)
12002 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
12003 struct net_device
*dev
= priv
->net_dev
;
12007 printk(KERN_INFO
"%s: Coming out of suspend...\n", dev
->name
);
12009 pci_set_power_state(pdev
, PCI_D0
);
12010 err
= pci_enable_device(pdev
);
12012 printk(KERN_ERR
"%s: pci_enable_device failed on resume\n",
12016 pci_restore_state(pdev
);
12019 * Suspend/Resume resets the PCI configuration space, so we have to
12020 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12021 * from interfering with C3 CPU state. pci_restore_state won't help
12022 * here since it only restores the first 64 bytes pci config header.
12024 pci_read_config_dword(pdev
, 0x40, &val
);
12025 if ((val
& 0x0000ff00) != 0)
12026 pci_write_config_dword(pdev
, 0x40, val
& 0xffff00ff);
12028 /* Set the device back into the PRESENT state; this will also wake
12029 * the queue of needed */
12030 netif_device_attach(dev
);
12032 priv
->suspend_time
= get_seconds() - priv
->suspend_at
;
12034 /* Bring the device back up */
12035 schedule_work(&priv
->up
);
12041 static void ipw_pci_shutdown(struct pci_dev
*pdev
)
12043 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
12045 /* Take down the device; powers it off, etc. */
12048 pci_disable_device(pdev
);
12051 /* driver initialization stuff */
12052 static struct pci_driver ipw_driver
= {
12054 .id_table
= card_ids
,
12055 .probe
= ipw_pci_probe
,
12056 .remove
= __devexit_p(ipw_pci_remove
),
12058 .suspend
= ipw_pci_suspend
,
12059 .resume
= ipw_pci_resume
,
12061 .shutdown
= ipw_pci_shutdown
,
12064 static int __init
ipw_init(void)
12068 printk(KERN_INFO DRV_NAME
": " DRV_DESCRIPTION
", " DRV_VERSION
"\n");
12069 printk(KERN_INFO DRV_NAME
": " DRV_COPYRIGHT
"\n");
12071 ret
= pci_register_driver(&ipw_driver
);
12073 IPW_ERROR("Unable to initialize PCI module\n");
12077 ret
= driver_create_file(&ipw_driver
.driver
, &driver_attr_debug_level
);
12079 IPW_ERROR("Unable to create driver sysfs file\n");
12080 pci_unregister_driver(&ipw_driver
);
12087 static void __exit
ipw_exit(void)
12089 driver_remove_file(&ipw_driver
.driver
, &driver_attr_debug_level
);
12090 pci_unregister_driver(&ipw_driver
);
12093 module_param(disable
, int, 0444);
12094 MODULE_PARM_DESC(disable
, "manually disable the radio (default 0 [radio on])");
12096 module_param(associate
, int, 0444);
12097 MODULE_PARM_DESC(associate
, "auto associate when scanning (default off)");
12099 module_param(auto_create
, int, 0444);
12100 MODULE_PARM_DESC(auto_create
, "auto create adhoc network (default on)");
12102 module_param_named(led
, led_support
, int, 0444);
12103 MODULE_PARM_DESC(led
, "enable led control on some systems (default 1 on)");
12105 module_param(debug
, int, 0444);
12106 MODULE_PARM_DESC(debug
, "debug output mask");
12108 module_param_named(channel
, default_channel
, int, 0444);
12109 MODULE_PARM_DESC(channel
, "channel to limit associate to (default 0 [ANY])");
12111 #ifdef CONFIG_IPW2200_PROMISCUOUS
12112 module_param(rtap_iface
, int, 0444);
12113 MODULE_PARM_DESC(rtap_iface
, "create the rtap interface (1 - create, default 0)");
12116 #ifdef CONFIG_IPW2200_QOS
12117 module_param(qos_enable
, int, 0444);
12118 MODULE_PARM_DESC(qos_enable
, "enable all QoS functionalitis");
12120 module_param(qos_burst_enable
, int, 0444);
12121 MODULE_PARM_DESC(qos_burst_enable
, "enable QoS burst mode");
12123 module_param(qos_no_ack_mask
, int, 0444);
12124 MODULE_PARM_DESC(qos_no_ack_mask
, "mask Tx_Queue to no ack");
12126 module_param(burst_duration_CCK
, int, 0444);
12127 MODULE_PARM_DESC(burst_duration_CCK
, "set CCK burst value");
12129 module_param(burst_duration_OFDM
, int, 0444);
12130 MODULE_PARM_DESC(burst_duration_OFDM
, "set OFDM burst value");
12131 #endif /* CONFIG_IPW2200_QOS */
12133 #ifdef CONFIG_IPW2200_MONITOR
12134 module_param_named(mode
, network_mode
, int, 0444);
12135 MODULE_PARM_DESC(mode
, "network mode (0=BSS,1=IBSS,2=Monitor)");
12137 module_param_named(mode
, network_mode
, int, 0444);
12138 MODULE_PARM_DESC(mode
, "network mode (0=BSS,1=IBSS)");
12141 module_param(bt_coexist
, int, 0444);
12142 MODULE_PARM_DESC(bt_coexist
, "enable bluetooth coexistence (default off)");
12144 module_param(hwcrypto
, int, 0444);
12145 MODULE_PARM_DESC(hwcrypto
, "enable hardware crypto (default off)");
12147 module_param(cmdlog
, int, 0444);
12148 MODULE_PARM_DESC(cmdlog
,
12149 "allocate a ring buffer for logging firmware commands");
12151 module_param(roaming
, int, 0444);
12152 MODULE_PARM_DESC(roaming
, "enable roaming support (default on)");
12154 module_param(antenna
, int, 0444);
12155 MODULE_PARM_DESC(antenna
, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12157 module_exit(ipw_exit
);
12158 module_init(ipw_init
);