]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ipw2x00/ipw2200.c
ipw2x00: Write outside array bounds
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
41
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
47
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
53
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
59
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
65
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
71
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION IPW2200_VERSION
76
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
83
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int channel = 0;
87 static int mode = 0;
88
89 static u32 ipw_debug_level;
90 static int associate;
91 static int auto_create = 1;
92 static int led = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98 'a', 'b', 'g', '?'
99 };
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
104 #endif
105
106
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
113
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123 };
124
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127 QOS_TX3_CW_MIN_CCK},
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129 QOS_TX3_CW_MAX_CCK},
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
134 };
135
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149 DEF_TX3_CW_MIN_CCK},
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151 DEF_TX3_CW_MAX_CCK},
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160 static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163 };
164
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168 *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170 *qos_param);
171 #endif /* CONFIG_IPW2200_QOS */
172
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
179
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181 int len, int sync);
182
183 static void ipw_tx_queue_free(struct ipw_priv *);
184
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198 static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
200 {
201 int out, i, j, l;
202 char c;
203
204 out = snprintf(buf, count, "%08X", ofs);
205
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
210 data[(i * 8 + j)]);
211 for (; j < 8; j++)
212 out += snprintf(buf + out, count - out, " ");
213 }
214
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
221 c = '.';
222
223 out += snprintf(buf + out, count - out, "%c", c);
224 }
225
226 for (; j < 8; j++)
227 out += snprintf(buf + out, count - out, " ");
228 }
229
230 return out;
231 }
232
233 static void printk_buf(int level, const u8 * data, u32 len)
234 {
235 char line[81];
236 u32 ofs = 0;
237 if (!(ipw_debug_level & level))
238 return;
239
240 while (len) {
241 snprint_line(line, sizeof(line), &data[ofs],
242 min(len, 16U), ofs);
243 printk(KERN_DEBUG "%s\n", line);
244 ofs += 16;
245 len -= min(len, 16U);
246 }
247 }
248
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250 {
251 size_t out = size;
252 u32 ofs = 0;
253 int total = 0;
254
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
258
259 ofs += 16;
260 output += out;
261 size -= out;
262 len -= min_t(size_t, len, 16U);
263 total += out;
264 }
265 return total;
266 }
267
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279 {
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
283 }
284
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288 {
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
292 }
293
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297 {
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
301 }
302
303 /* 8-bit direct write (low 4K) */
304 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
305 u8 val)
306 {
307 writeb(val, ipw->hw_base + ofs);
308 }
309
310 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
311 #define ipw_write8(ipw, ofs, val) do { \
312 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
313 __LINE__, (u32)(ofs), (u32)(val)); \
314 _ipw_write8(ipw, ofs, val); \
315 } while (0)
316
317 /* 16-bit direct write (low 4K) */
318 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
319 u16 val)
320 {
321 writew(val, ipw->hw_base + ofs);
322 }
323
324 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write16(ipw, ofs, val) do { \
326 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
327 __LINE__, (u32)(ofs), (u32)(val)); \
328 _ipw_write16(ipw, ofs, val); \
329 } while (0)
330
331 /* 32-bit direct write (low 4K) */
332 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
333 u32 val)
334 {
335 writel(val, ipw->hw_base + ofs);
336 }
337
338 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_write32(ipw, ofs, val) do { \
340 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
341 __LINE__, (u32)(ofs), (u32)(val)); \
342 _ipw_write32(ipw, ofs, val); \
343 } while (0)
344
345 /* 8-bit direct read (low 4K) */
346 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
347 {
348 return readb(ipw->hw_base + ofs);
349 }
350
351 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read8(ipw, ofs) ({ \
353 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
354 (u32)(ofs)); \
355 _ipw_read8(ipw, ofs); \
356 })
357
358 /* 16-bit direct read (low 4K) */
359 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
360 {
361 return readw(ipw->hw_base + ofs);
362 }
363
364 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read16(ipw, ofs) ({ \
366 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
367 (u32)(ofs)); \
368 _ipw_read16(ipw, ofs); \
369 })
370
371 /* 32-bit direct read (low 4K) */
372 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
373 {
374 return readl(ipw->hw_base + ofs);
375 }
376
377 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read32(ipw, ofs) ({ \
379 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
380 (u32)(ofs)); \
381 _ipw_read32(ipw, ofs); \
382 })
383
384 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
385 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
386 #define ipw_read_indirect(a, b, c, d) ({ \
387 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
388 __LINE__, (u32)(b), (u32)(d)); \
389 _ipw_read_indirect(a, b, c, d); \
390 })
391
392 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
393 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
394 int num);
395 #define ipw_write_indirect(a, b, c, d) do { \
396 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
397 __LINE__, (u32)(b), (u32)(d)); \
398 _ipw_write_indirect(a, b, c, d); \
399 } while (0)
400
401 /* 32-bit indirect write (above 4K) */
402 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
403 {
404 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
405 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
406 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
407 }
408
409 /* 8-bit indirect write (above 4K) */
410 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
411 {
412 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
413 u32 dif_len = reg - aligned_addr;
414
415 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
416 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
417 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
418 }
419
420 /* 16-bit indirect write (above 4K) */
421 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
422 {
423 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
424 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
425
426 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
427 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
429 }
430
431 /* 8-bit indirect read (above 4K) */
432 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
433 {
434 u32 word;
435 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
436 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
437 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
438 return (word >> ((reg & 0x3) * 8)) & 0xff;
439 }
440
441 /* 32-bit indirect read (above 4K) */
442 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
443 {
444 u32 value;
445
446 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
447
448 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
449 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
450 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
451 return value;
452 }
453
454 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
455 /* for area above 1st 4K of SRAM/reg space */
456 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
457 int num)
458 {
459 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
460 u32 dif_len = addr - aligned_addr;
461 u32 i;
462
463 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
464
465 if (num <= 0) {
466 return;
467 }
468
469 /* Read the first dword (or portion) byte by byte */
470 if (unlikely(dif_len)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 /* Start reading at aligned_addr + dif_len */
473 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
474 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
475 aligned_addr += 4;
476 }
477
478 /* Read all of the middle dwords as dwords, with auto-increment */
479 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
480 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
481 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
482
483 /* Read the last dword (or portion) byte by byte */
484 if (unlikely(num)) {
485 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
486 for (i = 0; num > 0; i++, num--)
487 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
488 }
489 }
490
491 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
492 /* for area above 1st 4K of SRAM/reg space */
493 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
494 int num)
495 {
496 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
497 u32 dif_len = addr - aligned_addr;
498 u32 i;
499
500 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
501
502 if (num <= 0) {
503 return;
504 }
505
506 /* Write the first dword (or portion) byte by byte */
507 if (unlikely(dif_len)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 /* Start writing at aligned_addr + dif_len */
510 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
511 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
512 aligned_addr += 4;
513 }
514
515 /* Write all of the middle dwords as dwords, with auto-increment */
516 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
517 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
518 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
519
520 /* Write the last dword (or portion) byte by byte */
521 if (unlikely(num)) {
522 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
523 for (i = 0; num > 0; i++, num--, buf++)
524 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
525 }
526 }
527
528 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
529 /* for 1st 4K of SRAM/regs space */
530 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
531 int num)
532 {
533 memcpy_toio((priv->hw_base + addr), buf, num);
534 }
535
536 /* Set bit(s) in low 4K of SRAM/regs */
537 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
538 {
539 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
540 }
541
542 /* Clear bit(s) in low 4K of SRAM/regs */
543 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
544 {
545 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
546 }
547
548 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
549 {
550 if (priv->status & STATUS_INT_ENABLED)
551 return;
552 priv->status |= STATUS_INT_ENABLED;
553 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
554 }
555
556 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
557 {
558 if (!(priv->status & STATUS_INT_ENABLED))
559 return;
560 priv->status &= ~STATUS_INT_ENABLED;
561 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
562 }
563
564 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
565 {
566 unsigned long flags;
567
568 spin_lock_irqsave(&priv->irq_lock, flags);
569 __ipw_enable_interrupts(priv);
570 spin_unlock_irqrestore(&priv->irq_lock, flags);
571 }
572
573 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
574 {
575 unsigned long flags;
576
577 spin_lock_irqsave(&priv->irq_lock, flags);
578 __ipw_disable_interrupts(priv);
579 spin_unlock_irqrestore(&priv->irq_lock, flags);
580 }
581
582 static char *ipw_error_desc(u32 val)
583 {
584 switch (val) {
585 case IPW_FW_ERROR_OK:
586 return "ERROR_OK";
587 case IPW_FW_ERROR_FAIL:
588 return "ERROR_FAIL";
589 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
590 return "MEMORY_UNDERFLOW";
591 case IPW_FW_ERROR_MEMORY_OVERFLOW:
592 return "MEMORY_OVERFLOW";
593 case IPW_FW_ERROR_BAD_PARAM:
594 return "BAD_PARAM";
595 case IPW_FW_ERROR_BAD_CHECKSUM:
596 return "BAD_CHECKSUM";
597 case IPW_FW_ERROR_NMI_INTERRUPT:
598 return "NMI_INTERRUPT";
599 case IPW_FW_ERROR_BAD_DATABASE:
600 return "BAD_DATABASE";
601 case IPW_FW_ERROR_ALLOC_FAIL:
602 return "ALLOC_FAIL";
603 case IPW_FW_ERROR_DMA_UNDERRUN:
604 return "DMA_UNDERRUN";
605 case IPW_FW_ERROR_DMA_STATUS:
606 return "DMA_STATUS";
607 case IPW_FW_ERROR_DINO_ERROR:
608 return "DINO_ERROR";
609 case IPW_FW_ERROR_EEPROM_ERROR:
610 return "EEPROM_ERROR";
611 case IPW_FW_ERROR_SYSASSERT:
612 return "SYSASSERT";
613 case IPW_FW_ERROR_FATAL_ERROR:
614 return "FATAL_ERROR";
615 default:
616 return "UNKNOWN_ERROR";
617 }
618 }
619
620 static void ipw_dump_error_log(struct ipw_priv *priv,
621 struct ipw_fw_error *error)
622 {
623 u32 i;
624
625 if (!error) {
626 IPW_ERROR("Error allocating and capturing error log. "
627 "Nothing to dump.\n");
628 return;
629 }
630
631 IPW_ERROR("Start IPW Error Log Dump:\n");
632 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
633 error->status, error->config);
634
635 for (i = 0; i < error->elem_len; i++)
636 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
637 ipw_error_desc(error->elem[i].desc),
638 error->elem[i].time,
639 error->elem[i].blink1,
640 error->elem[i].blink2,
641 error->elem[i].link1,
642 error->elem[i].link2, error->elem[i].data);
643 for (i = 0; i < error->log_len; i++)
644 IPW_ERROR("%i\t0x%08x\t%i\n",
645 error->log[i].time,
646 error->log[i].data, error->log[i].event);
647 }
648
649 static inline int ipw_is_init(struct ipw_priv *priv)
650 {
651 return (priv->status & STATUS_INIT) ? 1 : 0;
652 }
653
654 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
655 {
656 u32 addr, field_info, field_len, field_count, total_len;
657
658 IPW_DEBUG_ORD("ordinal = %i\n", ord);
659
660 if (!priv || !val || !len) {
661 IPW_DEBUG_ORD("Invalid argument\n");
662 return -EINVAL;
663 }
664
665 /* verify device ordinal tables have been initialized */
666 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
667 IPW_DEBUG_ORD("Access ordinals before initialization\n");
668 return -EINVAL;
669 }
670
671 switch (IPW_ORD_TABLE_ID_MASK & ord) {
672 case IPW_ORD_TABLE_0_MASK:
673 /*
674 * TABLE 0: Direct access to a table of 32 bit values
675 *
676 * This is a very simple table with the data directly
677 * read from the table
678 */
679
680 /* remove the table id from the ordinal */
681 ord &= IPW_ORD_TABLE_VALUE_MASK;
682
683 /* boundary check */
684 if (ord > priv->table0_len) {
685 IPW_DEBUG_ORD("ordinal value (%i) longer then "
686 "max (%i)\n", ord, priv->table0_len);
687 return -EINVAL;
688 }
689
690 /* verify we have enough room to store the value */
691 if (*len < sizeof(u32)) {
692 IPW_DEBUG_ORD("ordinal buffer length too small, "
693 "need %zd\n", sizeof(u32));
694 return -EINVAL;
695 }
696
697 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
698 ord, priv->table0_addr + (ord << 2));
699
700 *len = sizeof(u32);
701 ord <<= 2;
702 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
703 break;
704
705 case IPW_ORD_TABLE_1_MASK:
706 /*
707 * TABLE 1: Indirect access to a table of 32 bit values
708 *
709 * This is a fairly large table of u32 values each
710 * representing starting addr for the data (which is
711 * also a u32)
712 */
713
714 /* remove the table id from the ordinal */
715 ord &= IPW_ORD_TABLE_VALUE_MASK;
716
717 /* boundary check */
718 if (ord > priv->table1_len) {
719 IPW_DEBUG_ORD("ordinal value too long\n");
720 return -EINVAL;
721 }
722
723 /* verify we have enough room to store the value */
724 if (*len < sizeof(u32)) {
725 IPW_DEBUG_ORD("ordinal buffer length too small, "
726 "need %zd\n", sizeof(u32));
727 return -EINVAL;
728 }
729
730 *((u32 *) val) =
731 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
732 *len = sizeof(u32);
733 break;
734
735 case IPW_ORD_TABLE_2_MASK:
736 /*
737 * TABLE 2: Indirect access to a table of variable sized values
738 *
739 * This table consist of six values, each containing
740 * - dword containing the starting offset of the data
741 * - dword containing the lengh in the first 16bits
742 * and the count in the second 16bits
743 */
744
745 /* remove the table id from the ordinal */
746 ord &= IPW_ORD_TABLE_VALUE_MASK;
747
748 /* boundary check */
749 if (ord > priv->table2_len) {
750 IPW_DEBUG_ORD("ordinal value too long\n");
751 return -EINVAL;
752 }
753
754 /* get the address of statistic */
755 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
756
757 /* get the second DW of statistics ;
758 * two 16-bit words - first is length, second is count */
759 field_info =
760 ipw_read_reg32(priv,
761 priv->table2_addr + (ord << 3) +
762 sizeof(u32));
763
764 /* get each entry length */
765 field_len = *((u16 *) & field_info);
766
767 /* get number of entries */
768 field_count = *(((u16 *) & field_info) + 1);
769
770 /* abort if not enought memory */
771 total_len = field_len * field_count;
772 if (total_len > *len) {
773 *len = total_len;
774 return -EINVAL;
775 }
776
777 *len = total_len;
778 if (!total_len)
779 return 0;
780
781 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
782 "field_info = 0x%08x\n",
783 addr, total_len, field_info);
784 ipw_read_indirect(priv, addr, val, total_len);
785 break;
786
787 default:
788 IPW_DEBUG_ORD("Invalid ordinal!\n");
789 return -EINVAL;
790
791 }
792
793 return 0;
794 }
795
796 static void ipw_init_ordinals(struct ipw_priv *priv)
797 {
798 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
799 priv->table0_len = ipw_read32(priv, priv->table0_addr);
800
801 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
802 priv->table0_addr, priv->table0_len);
803
804 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
805 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
806
807 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
808 priv->table1_addr, priv->table1_len);
809
810 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
811 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
812 priv->table2_len &= 0x0000ffff; /* use first two bytes */
813
814 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
815 priv->table2_addr, priv->table2_len);
816
817 }
818
819 static u32 ipw_register_toggle(u32 reg)
820 {
821 reg &= ~IPW_START_STANDBY;
822 if (reg & IPW_GATE_ODMA)
823 reg &= ~IPW_GATE_ODMA;
824 if (reg & IPW_GATE_IDMA)
825 reg &= ~IPW_GATE_IDMA;
826 if (reg & IPW_GATE_ADMA)
827 reg &= ~IPW_GATE_ADMA;
828 return reg;
829 }
830
831 /*
832 * LED behavior:
833 * - On radio ON, turn on any LEDs that require to be on during start
834 * - On initialization, start unassociated blink
835 * - On association, disable unassociated blink
836 * - On disassociation, start unassociated blink
837 * - On radio OFF, turn off any LEDs started during radio on
838 *
839 */
840 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
841 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
842 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
843
844 static void ipw_led_link_on(struct ipw_priv *priv)
845 {
846 unsigned long flags;
847 u32 led;
848
849 /* If configured to not use LEDs, or nic_type is 1,
850 * then we don't toggle a LINK led */
851 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
852 return;
853
854 spin_lock_irqsave(&priv->lock, flags);
855
856 if (!(priv->status & STATUS_RF_KILL_MASK) &&
857 !(priv->status & STATUS_LED_LINK_ON)) {
858 IPW_DEBUG_LED("Link LED On\n");
859 led = ipw_read_reg32(priv, IPW_EVENT_REG);
860 led |= priv->led_association_on;
861
862 led = ipw_register_toggle(led);
863
864 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
865 ipw_write_reg32(priv, IPW_EVENT_REG, led);
866
867 priv->status |= STATUS_LED_LINK_ON;
868
869 /* If we aren't associated, schedule turning the LED off */
870 if (!(priv->status & STATUS_ASSOCIATED))
871 queue_delayed_work(priv->workqueue,
872 &priv->led_link_off,
873 LD_TIME_LINK_ON);
874 }
875
876 spin_unlock_irqrestore(&priv->lock, flags);
877 }
878
879 static void ipw_bg_led_link_on(struct work_struct *work)
880 {
881 struct ipw_priv *priv =
882 container_of(work, struct ipw_priv, led_link_on.work);
883 mutex_lock(&priv->mutex);
884 ipw_led_link_on(priv);
885 mutex_unlock(&priv->mutex);
886 }
887
888 static void ipw_led_link_off(struct ipw_priv *priv)
889 {
890 unsigned long flags;
891 u32 led;
892
893 /* If configured not to use LEDs, or nic type is 1,
894 * then we don't goggle the LINK led. */
895 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
896 return;
897
898 spin_lock_irqsave(&priv->lock, flags);
899
900 if (priv->status & STATUS_LED_LINK_ON) {
901 led = ipw_read_reg32(priv, IPW_EVENT_REG);
902 led &= priv->led_association_off;
903 led = ipw_register_toggle(led);
904
905 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
906 ipw_write_reg32(priv, IPW_EVENT_REG, led);
907
908 IPW_DEBUG_LED("Link LED Off\n");
909
910 priv->status &= ~STATUS_LED_LINK_ON;
911
912 /* If we aren't associated and the radio is on, schedule
913 * turning the LED on (blink while unassociated) */
914 if (!(priv->status & STATUS_RF_KILL_MASK) &&
915 !(priv->status & STATUS_ASSOCIATED))
916 queue_delayed_work(priv->workqueue, &priv->led_link_on,
917 LD_TIME_LINK_OFF);
918
919 }
920
921 spin_unlock_irqrestore(&priv->lock, flags);
922 }
923
924 static void ipw_bg_led_link_off(struct work_struct *work)
925 {
926 struct ipw_priv *priv =
927 container_of(work, struct ipw_priv, led_link_off.work);
928 mutex_lock(&priv->mutex);
929 ipw_led_link_off(priv);
930 mutex_unlock(&priv->mutex);
931 }
932
933 static void __ipw_led_activity_on(struct ipw_priv *priv)
934 {
935 u32 led;
936
937 if (priv->config & CFG_NO_LED)
938 return;
939
940 if (priv->status & STATUS_RF_KILL_MASK)
941 return;
942
943 if (!(priv->status & STATUS_LED_ACT_ON)) {
944 led = ipw_read_reg32(priv, IPW_EVENT_REG);
945 led |= priv->led_activity_on;
946
947 led = ipw_register_toggle(led);
948
949 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
950 ipw_write_reg32(priv, IPW_EVENT_REG, led);
951
952 IPW_DEBUG_LED("Activity LED On\n");
953
954 priv->status |= STATUS_LED_ACT_ON;
955
956 cancel_delayed_work(&priv->led_act_off);
957 queue_delayed_work(priv->workqueue, &priv->led_act_off,
958 LD_TIME_ACT_ON);
959 } else {
960 /* Reschedule LED off for full time period */
961 cancel_delayed_work(&priv->led_act_off);
962 queue_delayed_work(priv->workqueue, &priv->led_act_off,
963 LD_TIME_ACT_ON);
964 }
965 }
966
967 #if 0
968 void ipw_led_activity_on(struct ipw_priv *priv)
969 {
970 unsigned long flags;
971 spin_lock_irqsave(&priv->lock, flags);
972 __ipw_led_activity_on(priv);
973 spin_unlock_irqrestore(&priv->lock, flags);
974 }
975 #endif /* 0 */
976
977 static void ipw_led_activity_off(struct ipw_priv *priv)
978 {
979 unsigned long flags;
980 u32 led;
981
982 if (priv->config & CFG_NO_LED)
983 return;
984
985 spin_lock_irqsave(&priv->lock, flags);
986
987 if (priv->status & STATUS_LED_ACT_ON) {
988 led = ipw_read_reg32(priv, IPW_EVENT_REG);
989 led &= priv->led_activity_off;
990
991 led = ipw_register_toggle(led);
992
993 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
994 ipw_write_reg32(priv, IPW_EVENT_REG, led);
995
996 IPW_DEBUG_LED("Activity LED Off\n");
997
998 priv->status &= ~STATUS_LED_ACT_ON;
999 }
1000
1001 spin_unlock_irqrestore(&priv->lock, flags);
1002 }
1003
1004 static void ipw_bg_led_activity_off(struct work_struct *work)
1005 {
1006 struct ipw_priv *priv =
1007 container_of(work, struct ipw_priv, led_act_off.work);
1008 mutex_lock(&priv->mutex);
1009 ipw_led_activity_off(priv);
1010 mutex_unlock(&priv->mutex);
1011 }
1012
1013 static void ipw_led_band_on(struct ipw_priv *priv)
1014 {
1015 unsigned long flags;
1016 u32 led;
1017
1018 /* Only nic type 1 supports mode LEDs */
1019 if (priv->config & CFG_NO_LED ||
1020 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1021 return;
1022
1023 spin_lock_irqsave(&priv->lock, flags);
1024
1025 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1026 if (priv->assoc_network->mode == IEEE_A) {
1027 led |= priv->led_ofdm_on;
1028 led &= priv->led_association_off;
1029 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1030 } else if (priv->assoc_network->mode == IEEE_G) {
1031 led |= priv->led_ofdm_on;
1032 led |= priv->led_association_on;
1033 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1034 } else {
1035 led &= priv->led_ofdm_off;
1036 led |= priv->led_association_on;
1037 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1038 }
1039
1040 led = ipw_register_toggle(led);
1041
1042 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1043 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1044
1045 spin_unlock_irqrestore(&priv->lock, flags);
1046 }
1047
1048 static void ipw_led_band_off(struct ipw_priv *priv)
1049 {
1050 unsigned long flags;
1051 u32 led;
1052
1053 /* Only nic type 1 supports mode LEDs */
1054 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1055 return;
1056
1057 spin_lock_irqsave(&priv->lock, flags);
1058
1059 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1060 led &= priv->led_ofdm_off;
1061 led &= priv->led_association_off;
1062
1063 led = ipw_register_toggle(led);
1064
1065 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1066 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1067
1068 spin_unlock_irqrestore(&priv->lock, flags);
1069 }
1070
1071 static void ipw_led_radio_on(struct ipw_priv *priv)
1072 {
1073 ipw_led_link_on(priv);
1074 }
1075
1076 static void ipw_led_radio_off(struct ipw_priv *priv)
1077 {
1078 ipw_led_activity_off(priv);
1079 ipw_led_link_off(priv);
1080 }
1081
1082 static void ipw_led_link_up(struct ipw_priv *priv)
1083 {
1084 /* Set the Link Led on for all nic types */
1085 ipw_led_link_on(priv);
1086 }
1087
1088 static void ipw_led_link_down(struct ipw_priv *priv)
1089 {
1090 ipw_led_activity_off(priv);
1091 ipw_led_link_off(priv);
1092
1093 if (priv->status & STATUS_RF_KILL_MASK)
1094 ipw_led_radio_off(priv);
1095 }
1096
1097 static void ipw_led_init(struct ipw_priv *priv)
1098 {
1099 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1100
1101 /* Set the default PINs for the link and activity leds */
1102 priv->led_activity_on = IPW_ACTIVITY_LED;
1103 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1104
1105 priv->led_association_on = IPW_ASSOCIATED_LED;
1106 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1107
1108 /* Set the default PINs for the OFDM leds */
1109 priv->led_ofdm_on = IPW_OFDM_LED;
1110 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1111
1112 switch (priv->nic_type) {
1113 case EEPROM_NIC_TYPE_1:
1114 /* In this NIC type, the LEDs are reversed.... */
1115 priv->led_activity_on = IPW_ASSOCIATED_LED;
1116 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1117 priv->led_association_on = IPW_ACTIVITY_LED;
1118 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1119
1120 if (!(priv->config & CFG_NO_LED))
1121 ipw_led_band_on(priv);
1122
1123 /* And we don't blink link LEDs for this nic, so
1124 * just return here */
1125 return;
1126
1127 case EEPROM_NIC_TYPE_3:
1128 case EEPROM_NIC_TYPE_2:
1129 case EEPROM_NIC_TYPE_4:
1130 case EEPROM_NIC_TYPE_0:
1131 break;
1132
1133 default:
1134 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1135 priv->nic_type);
1136 priv->nic_type = EEPROM_NIC_TYPE_0;
1137 break;
1138 }
1139
1140 if (!(priv->config & CFG_NO_LED)) {
1141 if (priv->status & STATUS_ASSOCIATED)
1142 ipw_led_link_on(priv);
1143 else
1144 ipw_led_link_off(priv);
1145 }
1146 }
1147
1148 static void ipw_led_shutdown(struct ipw_priv *priv)
1149 {
1150 ipw_led_activity_off(priv);
1151 ipw_led_link_off(priv);
1152 ipw_led_band_off(priv);
1153 cancel_delayed_work(&priv->led_link_on);
1154 cancel_delayed_work(&priv->led_link_off);
1155 cancel_delayed_work(&priv->led_act_off);
1156 }
1157
1158 /*
1159 * The following adds a new attribute to the sysfs representation
1160 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1161 * used for controling the debug level.
1162 *
1163 * See the level definitions in ipw for details.
1164 */
1165 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1166 {
1167 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1168 }
1169
1170 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1171 size_t count)
1172 {
1173 char *p = (char *)buf;
1174 u32 val;
1175
1176 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1177 p++;
1178 if (p[0] == 'x' || p[0] == 'X')
1179 p++;
1180 val = simple_strtoul(p, &p, 16);
1181 } else
1182 val = simple_strtoul(p, &p, 10);
1183 if (p == buf)
1184 printk(KERN_INFO DRV_NAME
1185 ": %s is not in hex or decimal form.\n", buf);
1186 else
1187 ipw_debug_level = val;
1188
1189 return strnlen(buf, count);
1190 }
1191
1192 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1193 show_debug_level, store_debug_level);
1194
1195 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1196 {
1197 /* length = 1st dword in log */
1198 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1199 }
1200
1201 static void ipw_capture_event_log(struct ipw_priv *priv,
1202 u32 log_len, struct ipw_event *log)
1203 {
1204 u32 base;
1205
1206 if (log_len) {
1207 base = ipw_read32(priv, IPW_EVENT_LOG);
1208 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1209 (u8 *) log, sizeof(*log) * log_len);
1210 }
1211 }
1212
1213 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1214 {
1215 struct ipw_fw_error *error;
1216 u32 log_len = ipw_get_event_log_len(priv);
1217 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1218 u32 elem_len = ipw_read_reg32(priv, base);
1219
1220 error = kmalloc(sizeof(*error) +
1221 sizeof(*error->elem) * elem_len +
1222 sizeof(*error->log) * log_len, GFP_ATOMIC);
1223 if (!error) {
1224 IPW_ERROR("Memory allocation for firmware error log "
1225 "failed.\n");
1226 return NULL;
1227 }
1228 error->jiffies = jiffies;
1229 error->status = priv->status;
1230 error->config = priv->config;
1231 error->elem_len = elem_len;
1232 error->log_len = log_len;
1233 error->elem = (struct ipw_error_elem *)error->payload;
1234 error->log = (struct ipw_event *)(error->elem + elem_len);
1235
1236 ipw_capture_event_log(priv, log_len, error->log);
1237
1238 if (elem_len)
1239 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240 sizeof(*error->elem) * elem_len);
1241
1242 return error;
1243 }
1244
1245 static ssize_t show_event_log(struct device *d,
1246 struct device_attribute *attr, char *buf)
1247 {
1248 struct ipw_priv *priv = dev_get_drvdata(d);
1249 u32 log_len = ipw_get_event_log_len(priv);
1250 u32 log_size;
1251 struct ipw_event *log;
1252 u32 len = 0, i;
1253
1254 /* not using min() because of its strict type checking */
1255 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256 sizeof(*log) * log_len : PAGE_SIZE;
1257 log = kzalloc(log_size, GFP_KERNEL);
1258 if (!log) {
1259 IPW_ERROR("Unable to allocate memory for log\n");
1260 return 0;
1261 }
1262 log_len = log_size / sizeof(*log);
1263 ipw_capture_event_log(priv, log_len, log);
1264
1265 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266 for (i = 0; i < log_len; i++)
1267 len += snprintf(buf + len, PAGE_SIZE - len,
1268 "\n%08X%08X%08X",
1269 log[i].time, log[i].event, log[i].data);
1270 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1271 kfree(log);
1272 return len;
1273 }
1274
1275 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1276
1277 static ssize_t show_error(struct device *d,
1278 struct device_attribute *attr, char *buf)
1279 {
1280 struct ipw_priv *priv = dev_get_drvdata(d);
1281 u32 len = 0, i;
1282 if (!priv->error)
1283 return 0;
1284 len += snprintf(buf + len, PAGE_SIZE - len,
1285 "%08lX%08X%08X%08X",
1286 priv->error->jiffies,
1287 priv->error->status,
1288 priv->error->config, priv->error->elem_len);
1289 for (i = 0; i < priv->error->elem_len; i++)
1290 len += snprintf(buf + len, PAGE_SIZE - len,
1291 "\n%08X%08X%08X%08X%08X%08X%08X",
1292 priv->error->elem[i].time,
1293 priv->error->elem[i].desc,
1294 priv->error->elem[i].blink1,
1295 priv->error->elem[i].blink2,
1296 priv->error->elem[i].link1,
1297 priv->error->elem[i].link2,
1298 priv->error->elem[i].data);
1299
1300 len += snprintf(buf + len, PAGE_SIZE - len,
1301 "\n%08X", priv->error->log_len);
1302 for (i = 0; i < priv->error->log_len; i++)
1303 len += snprintf(buf + len, PAGE_SIZE - len,
1304 "\n%08X%08X%08X",
1305 priv->error->log[i].time,
1306 priv->error->log[i].event,
1307 priv->error->log[i].data);
1308 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1309 return len;
1310 }
1311
1312 static ssize_t clear_error(struct device *d,
1313 struct device_attribute *attr,
1314 const char *buf, size_t count)
1315 {
1316 struct ipw_priv *priv = dev_get_drvdata(d);
1317
1318 kfree(priv->error);
1319 priv->error = NULL;
1320 return count;
1321 }
1322
1323 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1324
1325 static ssize_t show_cmd_log(struct device *d,
1326 struct device_attribute *attr, char *buf)
1327 {
1328 struct ipw_priv *priv = dev_get_drvdata(d);
1329 u32 len = 0, i;
1330 if (!priv->cmdlog)
1331 return 0;
1332 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1334 i = (i + 1) % priv->cmdlog_len) {
1335 len +=
1336 snprintf(buf + len, PAGE_SIZE - len,
1337 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339 priv->cmdlog[i].cmd.len);
1340 len +=
1341 snprintk_buf(buf + len, PAGE_SIZE - len,
1342 (u8 *) priv->cmdlog[i].cmd.param,
1343 priv->cmdlog[i].cmd.len);
1344 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1345 }
1346 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1347 return len;
1348 }
1349
1350 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1351
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t store_rtap_iface(struct device *d,
1356 struct device_attribute *attr,
1357 const char *buf, size_t count)
1358 {
1359 struct ipw_priv *priv = dev_get_drvdata(d);
1360 int rc = 0;
1361
1362 if (count < 1)
1363 return -EINVAL;
1364
1365 switch (buf[0]) {
1366 case '0':
1367 if (!rtap_iface)
1368 return count;
1369
1370 if (netif_running(priv->prom_net_dev)) {
1371 IPW_WARNING("Interface is up. Cannot unregister.\n");
1372 return count;
1373 }
1374
1375 ipw_prom_free(priv);
1376 rtap_iface = 0;
1377 break;
1378
1379 case '1':
1380 if (rtap_iface)
1381 return count;
1382
1383 rc = ipw_prom_alloc(priv);
1384 if (!rc)
1385 rtap_iface = 1;
1386 break;
1387
1388 default:
1389 return -EINVAL;
1390 }
1391
1392 if (rc) {
1393 IPW_ERROR("Failed to register promiscuous network "
1394 "device (error %d).\n", rc);
1395 }
1396
1397 return count;
1398 }
1399
1400 static ssize_t show_rtap_iface(struct device *d,
1401 struct device_attribute *attr,
1402 char *buf)
1403 {
1404 struct ipw_priv *priv = dev_get_drvdata(d);
1405 if (rtap_iface)
1406 return sprintf(buf, "%s", priv->prom_net_dev->name);
1407 else {
1408 buf[0] = '-';
1409 buf[1] = '1';
1410 buf[2] = '\0';
1411 return 3;
1412 }
1413 }
1414
1415 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1416 store_rtap_iface);
1417
1418 static ssize_t store_rtap_filter(struct device *d,
1419 struct device_attribute *attr,
1420 const char *buf, size_t count)
1421 {
1422 struct ipw_priv *priv = dev_get_drvdata(d);
1423
1424 if (!priv->prom_priv) {
1425 IPW_ERROR("Attempting to set filter without "
1426 "rtap_iface enabled.\n");
1427 return -EPERM;
1428 }
1429
1430 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1431
1432 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1433 BIT_ARG16(priv->prom_priv->filter));
1434
1435 return count;
1436 }
1437
1438 static ssize_t show_rtap_filter(struct device *d,
1439 struct device_attribute *attr,
1440 char *buf)
1441 {
1442 struct ipw_priv *priv = dev_get_drvdata(d);
1443 return sprintf(buf, "0x%04X",
1444 priv->prom_priv ? priv->prom_priv->filter : 0);
1445 }
1446
1447 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1448 store_rtap_filter);
1449 #endif
1450
1451 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1452 char *buf)
1453 {
1454 struct ipw_priv *priv = dev_get_drvdata(d);
1455 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1456 }
1457
1458 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1459 const char *buf, size_t count)
1460 {
1461 struct ipw_priv *priv = dev_get_drvdata(d);
1462 struct net_device *dev = priv->net_dev;
1463 char buffer[] = "00000000";
1464 unsigned long len =
1465 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1466 unsigned long val;
1467 char *p = buffer;
1468
1469 IPW_DEBUG_INFO("enter\n");
1470
1471 strncpy(buffer, buf, len);
1472 buffer[len] = 0;
1473
1474 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1475 p++;
1476 if (p[0] == 'x' || p[0] == 'X')
1477 p++;
1478 val = simple_strtoul(p, &p, 16);
1479 } else
1480 val = simple_strtoul(p, &p, 10);
1481 if (p == buffer) {
1482 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1483 } else {
1484 priv->ieee->scan_age = val;
1485 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1486 }
1487
1488 IPW_DEBUG_INFO("exit\n");
1489 return len;
1490 }
1491
1492 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1493
1494 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1495 char *buf)
1496 {
1497 struct ipw_priv *priv = dev_get_drvdata(d);
1498 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1499 }
1500
1501 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1502 const char *buf, size_t count)
1503 {
1504 struct ipw_priv *priv = dev_get_drvdata(d);
1505
1506 IPW_DEBUG_INFO("enter\n");
1507
1508 if (count == 0)
1509 return 0;
1510
1511 if (*buf == 0) {
1512 IPW_DEBUG_LED("Disabling LED control.\n");
1513 priv->config |= CFG_NO_LED;
1514 ipw_led_shutdown(priv);
1515 } else {
1516 IPW_DEBUG_LED("Enabling LED control.\n");
1517 priv->config &= ~CFG_NO_LED;
1518 ipw_led_init(priv);
1519 }
1520
1521 IPW_DEBUG_INFO("exit\n");
1522 return count;
1523 }
1524
1525 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1526
1527 static ssize_t show_status(struct device *d,
1528 struct device_attribute *attr, char *buf)
1529 {
1530 struct ipw_priv *p = dev_get_drvdata(d);
1531 return sprintf(buf, "0x%08x\n", (int)p->status);
1532 }
1533
1534 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1535
1536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1537 char *buf)
1538 {
1539 struct ipw_priv *p = dev_get_drvdata(d);
1540 return sprintf(buf, "0x%08x\n", (int)p->config);
1541 }
1542
1543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1544
1545 static ssize_t show_nic_type(struct device *d,
1546 struct device_attribute *attr, char *buf)
1547 {
1548 struct ipw_priv *priv = dev_get_drvdata(d);
1549 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1550 }
1551
1552 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1553
1554 static ssize_t show_ucode_version(struct device *d,
1555 struct device_attribute *attr, char *buf)
1556 {
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = dev_get_drvdata(d);
1559
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1561 return 0;
1562
1563 return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1567
1568 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1569 char *buf)
1570 {
1571 u32 len = sizeof(u32), tmp = 0;
1572 struct ipw_priv *p = dev_get_drvdata(d);
1573
1574 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1575 return 0;
1576
1577 return sprintf(buf, "0x%08x\n", tmp);
1578 }
1579
1580 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1581
1582 /*
1583 * Add a device attribute to view/control the delay between eeprom
1584 * operations.
1585 */
1586 static ssize_t show_eeprom_delay(struct device *d,
1587 struct device_attribute *attr, char *buf)
1588 {
1589 struct ipw_priv *p = dev_get_drvdata(d);
1590 int n = p->eeprom_delay;
1591 return sprintf(buf, "%i\n", n);
1592 }
1593 static ssize_t store_eeprom_delay(struct device *d,
1594 struct device_attribute *attr,
1595 const char *buf, size_t count)
1596 {
1597 struct ipw_priv *p = dev_get_drvdata(d);
1598 sscanf(buf, "%i", &p->eeprom_delay);
1599 return strnlen(buf, count);
1600 }
1601
1602 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1603 show_eeprom_delay, store_eeprom_delay);
1604
1605 static ssize_t show_command_event_reg(struct device *d,
1606 struct device_attribute *attr, char *buf)
1607 {
1608 u32 reg = 0;
1609 struct ipw_priv *p = dev_get_drvdata(d);
1610
1611 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1612 return sprintf(buf, "0x%08x\n", reg);
1613 }
1614 static ssize_t store_command_event_reg(struct device *d,
1615 struct device_attribute *attr,
1616 const char *buf, size_t count)
1617 {
1618 u32 reg;
1619 struct ipw_priv *p = dev_get_drvdata(d);
1620
1621 sscanf(buf, "%x", &reg);
1622 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1623 return strnlen(buf, count);
1624 }
1625
1626 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1627 show_command_event_reg, store_command_event_reg);
1628
1629 static ssize_t show_mem_gpio_reg(struct device *d,
1630 struct device_attribute *attr, char *buf)
1631 {
1632 u32 reg = 0;
1633 struct ipw_priv *p = dev_get_drvdata(d);
1634
1635 reg = ipw_read_reg32(p, 0x301100);
1636 return sprintf(buf, "0x%08x\n", reg);
1637 }
1638 static ssize_t store_mem_gpio_reg(struct device *d,
1639 struct device_attribute *attr,
1640 const char *buf, size_t count)
1641 {
1642 u32 reg;
1643 struct ipw_priv *p = dev_get_drvdata(d);
1644
1645 sscanf(buf, "%x", &reg);
1646 ipw_write_reg32(p, 0x301100, reg);
1647 return strnlen(buf, count);
1648 }
1649
1650 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1651 show_mem_gpio_reg, store_mem_gpio_reg);
1652
1653 static ssize_t show_indirect_dword(struct device *d,
1654 struct device_attribute *attr, char *buf)
1655 {
1656 u32 reg = 0;
1657 struct ipw_priv *priv = dev_get_drvdata(d);
1658
1659 if (priv->status & STATUS_INDIRECT_DWORD)
1660 reg = ipw_read_reg32(priv, priv->indirect_dword);
1661 else
1662 reg = 0;
1663
1664 return sprintf(buf, "0x%08x\n", reg);
1665 }
1666 static ssize_t store_indirect_dword(struct device *d,
1667 struct device_attribute *attr,
1668 const char *buf, size_t count)
1669 {
1670 struct ipw_priv *priv = dev_get_drvdata(d);
1671
1672 sscanf(buf, "%x", &priv->indirect_dword);
1673 priv->status |= STATUS_INDIRECT_DWORD;
1674 return strnlen(buf, count);
1675 }
1676
1677 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1678 show_indirect_dword, store_indirect_dword);
1679
1680 static ssize_t show_indirect_byte(struct device *d,
1681 struct device_attribute *attr, char *buf)
1682 {
1683 u8 reg = 0;
1684 struct ipw_priv *priv = dev_get_drvdata(d);
1685
1686 if (priv->status & STATUS_INDIRECT_BYTE)
1687 reg = ipw_read_reg8(priv, priv->indirect_byte);
1688 else
1689 reg = 0;
1690
1691 return sprintf(buf, "0x%02x\n", reg);
1692 }
1693 static ssize_t store_indirect_byte(struct device *d,
1694 struct device_attribute *attr,
1695 const char *buf, size_t count)
1696 {
1697 struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699 sscanf(buf, "%x", &priv->indirect_byte);
1700 priv->status |= STATUS_INDIRECT_BYTE;
1701 return strnlen(buf, count);
1702 }
1703
1704 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1705 show_indirect_byte, store_indirect_byte);
1706
1707 static ssize_t show_direct_dword(struct device *d,
1708 struct device_attribute *attr, char *buf)
1709 {
1710 u32 reg = 0;
1711 struct ipw_priv *priv = dev_get_drvdata(d);
1712
1713 if (priv->status & STATUS_DIRECT_DWORD)
1714 reg = ipw_read32(priv, priv->direct_dword);
1715 else
1716 reg = 0;
1717
1718 return sprintf(buf, "0x%08x\n", reg);
1719 }
1720 static ssize_t store_direct_dword(struct device *d,
1721 struct device_attribute *attr,
1722 const char *buf, size_t count)
1723 {
1724 struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726 sscanf(buf, "%x", &priv->direct_dword);
1727 priv->status |= STATUS_DIRECT_DWORD;
1728 return strnlen(buf, count);
1729 }
1730
1731 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1732 show_direct_dword, store_direct_dword);
1733
1734 static int rf_kill_active(struct ipw_priv *priv)
1735 {
1736 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1737 priv->status |= STATUS_RF_KILL_HW;
1738 else
1739 priv->status &= ~STATUS_RF_KILL_HW;
1740
1741 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1742 }
1743
1744 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1745 char *buf)
1746 {
1747 /* 0 - RF kill not enabled
1748 1 - SW based RF kill active (sysfs)
1749 2 - HW based RF kill active
1750 3 - Both HW and SW baed RF kill active */
1751 struct ipw_priv *priv = dev_get_drvdata(d);
1752 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1753 (rf_kill_active(priv) ? 0x2 : 0x0);
1754 return sprintf(buf, "%i\n", val);
1755 }
1756
1757 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1758 {
1759 if ((disable_radio ? 1 : 0) ==
1760 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1761 return 0;
1762
1763 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1764 disable_radio ? "OFF" : "ON");
1765
1766 if (disable_radio) {
1767 priv->status |= STATUS_RF_KILL_SW;
1768
1769 if (priv->workqueue) {
1770 cancel_delayed_work(&priv->request_scan);
1771 cancel_delayed_work(&priv->request_direct_scan);
1772 cancel_delayed_work(&priv->request_passive_scan);
1773 cancel_delayed_work(&priv->scan_event);
1774 }
1775 queue_work(priv->workqueue, &priv->down);
1776 } else {
1777 priv->status &= ~STATUS_RF_KILL_SW;
1778 if (rf_kill_active(priv)) {
1779 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1780 "disabled by HW switch\n");
1781 /* Make sure the RF_KILL check timer is running */
1782 cancel_delayed_work(&priv->rf_kill);
1783 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1784 round_jiffies_relative(2 * HZ));
1785 } else
1786 queue_work(priv->workqueue, &priv->up);
1787 }
1788
1789 return 1;
1790 }
1791
1792 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1793 const char *buf, size_t count)
1794 {
1795 struct ipw_priv *priv = dev_get_drvdata(d);
1796
1797 ipw_radio_kill_sw(priv, buf[0] == '1');
1798
1799 return count;
1800 }
1801
1802 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1803
1804 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1805 char *buf)
1806 {
1807 struct ipw_priv *priv = dev_get_drvdata(d);
1808 int pos = 0, len = 0;
1809 if (priv->config & CFG_SPEED_SCAN) {
1810 while (priv->speed_scan[pos] != 0)
1811 len += sprintf(&buf[len], "%d ",
1812 priv->speed_scan[pos++]);
1813 return len + sprintf(&buf[len], "\n");
1814 }
1815
1816 return sprintf(buf, "0\n");
1817 }
1818
1819 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1820 const char *buf, size_t count)
1821 {
1822 struct ipw_priv *priv = dev_get_drvdata(d);
1823 int channel, pos = 0;
1824 const char *p = buf;
1825
1826 /* list of space separated channels to scan, optionally ending with 0 */
1827 while ((channel = simple_strtol(p, NULL, 0))) {
1828 if (pos == MAX_SPEED_SCAN - 1) {
1829 priv->speed_scan[pos] = 0;
1830 break;
1831 }
1832
1833 if (ieee80211_is_valid_channel(priv->ieee, channel))
1834 priv->speed_scan[pos++] = channel;
1835 else
1836 IPW_WARNING("Skipping invalid channel request: %d\n",
1837 channel);
1838 p = strchr(p, ' ');
1839 if (!p)
1840 break;
1841 while (*p == ' ' || *p == '\t')
1842 p++;
1843 }
1844
1845 if (pos == 0)
1846 priv->config &= ~CFG_SPEED_SCAN;
1847 else {
1848 priv->speed_scan_pos = 0;
1849 priv->config |= CFG_SPEED_SCAN;
1850 }
1851
1852 return count;
1853 }
1854
1855 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1856 store_speed_scan);
1857
1858 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1859 char *buf)
1860 {
1861 struct ipw_priv *priv = dev_get_drvdata(d);
1862 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1863 }
1864
1865 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1866 const char *buf, size_t count)
1867 {
1868 struct ipw_priv *priv = dev_get_drvdata(d);
1869 if (buf[0] == '1')
1870 priv->config |= CFG_NET_STATS;
1871 else
1872 priv->config &= ~CFG_NET_STATS;
1873
1874 return count;
1875 }
1876
1877 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1878 show_net_stats, store_net_stats);
1879
1880 static ssize_t show_channels(struct device *d,
1881 struct device_attribute *attr,
1882 char *buf)
1883 {
1884 struct ipw_priv *priv = dev_get_drvdata(d);
1885 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1886 int len = 0, i;
1887
1888 len = sprintf(&buf[len],
1889 "Displaying %d channels in 2.4Ghz band "
1890 "(802.11bg):\n", geo->bg_channels);
1891
1892 for (i = 0; i < geo->bg_channels; i++) {
1893 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1894 geo->bg[i].channel,
1895 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896 " (radar spectrum)" : "",
1897 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1898 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1899 ? "" : ", IBSS",
1900 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901 "passive only" : "active/passive",
1902 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1903 "B" : "B/G");
1904 }
1905
1906 len += sprintf(&buf[len],
1907 "Displaying %d channels in 5.2Ghz band "
1908 "(802.11a):\n", geo->a_channels);
1909 for (i = 0; i < geo->a_channels; i++) {
1910 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1911 geo->a[i].channel,
1912 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1913 " (radar spectrum)" : "",
1914 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1915 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1916 ? "" : ", IBSS",
1917 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1918 "passive only" : "active/passive");
1919 }
1920
1921 return len;
1922 }
1923
1924 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1925
1926 static void notify_wx_assoc_event(struct ipw_priv *priv)
1927 {
1928 union iwreq_data wrqu;
1929 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1930 if (priv->status & STATUS_ASSOCIATED)
1931 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1932 else
1933 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1934 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1935 }
1936
1937 static void ipw_irq_tasklet(struct ipw_priv *priv)
1938 {
1939 u32 inta, inta_mask, handled = 0;
1940 unsigned long flags;
1941 int rc = 0;
1942
1943 spin_lock_irqsave(&priv->irq_lock, flags);
1944
1945 inta = ipw_read32(priv, IPW_INTA_RW);
1946 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1947 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1948
1949 /* Add any cached INTA values that need to be handled */
1950 inta |= priv->isr_inta;
1951
1952 spin_unlock_irqrestore(&priv->irq_lock, flags);
1953
1954 spin_lock_irqsave(&priv->lock, flags);
1955
1956 /* handle all the justifications for the interrupt */
1957 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1958 ipw_rx(priv);
1959 handled |= IPW_INTA_BIT_RX_TRANSFER;
1960 }
1961
1962 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1963 IPW_DEBUG_HC("Command completed.\n");
1964 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1965 priv->status &= ~STATUS_HCMD_ACTIVE;
1966 wake_up_interruptible(&priv->wait_command_queue);
1967 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1968 }
1969
1970 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1971 IPW_DEBUG_TX("TX_QUEUE_1\n");
1972 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1973 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1974 }
1975
1976 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1977 IPW_DEBUG_TX("TX_QUEUE_2\n");
1978 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1979 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1980 }
1981
1982 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1983 IPW_DEBUG_TX("TX_QUEUE_3\n");
1984 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1985 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1986 }
1987
1988 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1989 IPW_DEBUG_TX("TX_QUEUE_4\n");
1990 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1991 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1992 }
1993
1994 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1995 IPW_WARNING("STATUS_CHANGE\n");
1996 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1997 }
1998
1999 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2000 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2001 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2002 }
2003
2004 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2005 IPW_WARNING("HOST_CMD_DONE\n");
2006 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2007 }
2008
2009 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2010 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2011 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2012 }
2013
2014 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2015 IPW_WARNING("PHY_OFF_DONE\n");
2016 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2017 }
2018
2019 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2020 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2021 priv->status |= STATUS_RF_KILL_HW;
2022 wake_up_interruptible(&priv->wait_command_queue);
2023 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2024 cancel_delayed_work(&priv->request_scan);
2025 cancel_delayed_work(&priv->request_direct_scan);
2026 cancel_delayed_work(&priv->request_passive_scan);
2027 cancel_delayed_work(&priv->scan_event);
2028 schedule_work(&priv->link_down);
2029 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2030 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2031 }
2032
2033 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2034 IPW_WARNING("Firmware error detected. Restarting.\n");
2035 if (priv->error) {
2036 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2037 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2038 struct ipw_fw_error *error =
2039 ipw_alloc_error_log(priv);
2040 ipw_dump_error_log(priv, error);
2041 kfree(error);
2042 }
2043 } else {
2044 priv->error = ipw_alloc_error_log(priv);
2045 if (priv->error)
2046 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2047 else
2048 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2049 "log.\n");
2050 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2051 ipw_dump_error_log(priv, priv->error);
2052 }
2053
2054 /* XXX: If hardware encryption is for WPA/WPA2,
2055 * we have to notify the supplicant. */
2056 if (priv->ieee->sec.encrypt) {
2057 priv->status &= ~STATUS_ASSOCIATED;
2058 notify_wx_assoc_event(priv);
2059 }
2060
2061 /* Keep the restart process from trying to send host
2062 * commands by clearing the INIT status bit */
2063 priv->status &= ~STATUS_INIT;
2064
2065 /* Cancel currently queued command. */
2066 priv->status &= ~STATUS_HCMD_ACTIVE;
2067 wake_up_interruptible(&priv->wait_command_queue);
2068
2069 queue_work(priv->workqueue, &priv->adapter_restart);
2070 handled |= IPW_INTA_BIT_FATAL_ERROR;
2071 }
2072
2073 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2074 IPW_ERROR("Parity error\n");
2075 handled |= IPW_INTA_BIT_PARITY_ERROR;
2076 }
2077
2078 if (handled != inta) {
2079 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2080 }
2081
2082 spin_unlock_irqrestore(&priv->lock, flags);
2083
2084 /* enable all interrupts */
2085 ipw_enable_interrupts(priv);
2086 }
2087
2088 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2089 static char *get_cmd_string(u8 cmd)
2090 {
2091 switch (cmd) {
2092 IPW_CMD(HOST_COMPLETE);
2093 IPW_CMD(POWER_DOWN);
2094 IPW_CMD(SYSTEM_CONFIG);
2095 IPW_CMD(MULTICAST_ADDRESS);
2096 IPW_CMD(SSID);
2097 IPW_CMD(ADAPTER_ADDRESS);
2098 IPW_CMD(PORT_TYPE);
2099 IPW_CMD(RTS_THRESHOLD);
2100 IPW_CMD(FRAG_THRESHOLD);
2101 IPW_CMD(POWER_MODE);
2102 IPW_CMD(WEP_KEY);
2103 IPW_CMD(TGI_TX_KEY);
2104 IPW_CMD(SCAN_REQUEST);
2105 IPW_CMD(SCAN_REQUEST_EXT);
2106 IPW_CMD(ASSOCIATE);
2107 IPW_CMD(SUPPORTED_RATES);
2108 IPW_CMD(SCAN_ABORT);
2109 IPW_CMD(TX_FLUSH);
2110 IPW_CMD(QOS_PARAMETERS);
2111 IPW_CMD(DINO_CONFIG);
2112 IPW_CMD(RSN_CAPABILITIES);
2113 IPW_CMD(RX_KEY);
2114 IPW_CMD(CARD_DISABLE);
2115 IPW_CMD(SEED_NUMBER);
2116 IPW_CMD(TX_POWER);
2117 IPW_CMD(COUNTRY_INFO);
2118 IPW_CMD(AIRONET_INFO);
2119 IPW_CMD(AP_TX_POWER);
2120 IPW_CMD(CCKM_INFO);
2121 IPW_CMD(CCX_VER_INFO);
2122 IPW_CMD(SET_CALIBRATION);
2123 IPW_CMD(SENSITIVITY_CALIB);
2124 IPW_CMD(RETRY_LIMIT);
2125 IPW_CMD(IPW_PRE_POWER_DOWN);
2126 IPW_CMD(VAP_BEACON_TEMPLATE);
2127 IPW_CMD(VAP_DTIM_PERIOD);
2128 IPW_CMD(EXT_SUPPORTED_RATES);
2129 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2130 IPW_CMD(VAP_QUIET_INTERVALS);
2131 IPW_CMD(VAP_CHANNEL_SWITCH);
2132 IPW_CMD(VAP_MANDATORY_CHANNELS);
2133 IPW_CMD(VAP_CELL_PWR_LIMIT);
2134 IPW_CMD(VAP_CF_PARAM_SET);
2135 IPW_CMD(VAP_SET_BEACONING_STATE);
2136 IPW_CMD(MEASUREMENT);
2137 IPW_CMD(POWER_CAPABILITY);
2138 IPW_CMD(SUPPORTED_CHANNELS);
2139 IPW_CMD(TPC_REPORT);
2140 IPW_CMD(WME_INFO);
2141 IPW_CMD(PRODUCTION_COMMAND);
2142 default:
2143 return "UNKNOWN";
2144 }
2145 }
2146
2147 #define HOST_COMPLETE_TIMEOUT HZ
2148
2149 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2150 {
2151 int rc = 0;
2152 unsigned long flags;
2153
2154 spin_lock_irqsave(&priv->lock, flags);
2155 if (priv->status & STATUS_HCMD_ACTIVE) {
2156 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2157 get_cmd_string(cmd->cmd));
2158 spin_unlock_irqrestore(&priv->lock, flags);
2159 return -EAGAIN;
2160 }
2161
2162 priv->status |= STATUS_HCMD_ACTIVE;
2163
2164 if (priv->cmdlog) {
2165 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2166 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2167 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2168 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2169 cmd->len);
2170 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2171 }
2172
2173 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2174 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2175 priv->status);
2176
2177 #ifndef DEBUG_CMD_WEP_KEY
2178 if (cmd->cmd == IPW_CMD_WEP_KEY)
2179 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2180 else
2181 #endif
2182 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2183
2184 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2185 if (rc) {
2186 priv->status &= ~STATUS_HCMD_ACTIVE;
2187 IPW_ERROR("Failed to send %s: Reason %d\n",
2188 get_cmd_string(cmd->cmd), rc);
2189 spin_unlock_irqrestore(&priv->lock, flags);
2190 goto exit;
2191 }
2192 spin_unlock_irqrestore(&priv->lock, flags);
2193
2194 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2195 !(priv->
2196 status & STATUS_HCMD_ACTIVE),
2197 HOST_COMPLETE_TIMEOUT);
2198 if (rc == 0) {
2199 spin_lock_irqsave(&priv->lock, flags);
2200 if (priv->status & STATUS_HCMD_ACTIVE) {
2201 IPW_ERROR("Failed to send %s: Command timed out.\n",
2202 get_cmd_string(cmd->cmd));
2203 priv->status &= ~STATUS_HCMD_ACTIVE;
2204 spin_unlock_irqrestore(&priv->lock, flags);
2205 rc = -EIO;
2206 goto exit;
2207 }
2208 spin_unlock_irqrestore(&priv->lock, flags);
2209 } else
2210 rc = 0;
2211
2212 if (priv->status & STATUS_RF_KILL_HW) {
2213 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2214 get_cmd_string(cmd->cmd));
2215 rc = -EIO;
2216 goto exit;
2217 }
2218
2219 exit:
2220 if (priv->cmdlog) {
2221 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2222 priv->cmdlog_pos %= priv->cmdlog_len;
2223 }
2224 return rc;
2225 }
2226
2227 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2228 {
2229 struct host_cmd cmd = {
2230 .cmd = command,
2231 };
2232
2233 return __ipw_send_cmd(priv, &cmd);
2234 }
2235
2236 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2237 void *data)
2238 {
2239 struct host_cmd cmd = {
2240 .cmd = command,
2241 .len = len,
2242 .param = data,
2243 };
2244
2245 return __ipw_send_cmd(priv, &cmd);
2246 }
2247
2248 static int ipw_send_host_complete(struct ipw_priv *priv)
2249 {
2250 if (!priv) {
2251 IPW_ERROR("Invalid args\n");
2252 return -1;
2253 }
2254
2255 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2256 }
2257
2258 static int ipw_send_system_config(struct ipw_priv *priv)
2259 {
2260 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2261 sizeof(priv->sys_config),
2262 &priv->sys_config);
2263 }
2264
2265 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2266 {
2267 if (!priv || !ssid) {
2268 IPW_ERROR("Invalid args\n");
2269 return -1;
2270 }
2271
2272 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2273 ssid);
2274 }
2275
2276 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2277 {
2278 if (!priv || !mac) {
2279 IPW_ERROR("Invalid args\n");
2280 return -1;
2281 }
2282
2283 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2284 priv->net_dev->name, mac);
2285
2286 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2287 }
2288
2289 /*
2290 * NOTE: This must be executed from our workqueue as it results in udelay
2291 * being called which may corrupt the keyboard if executed on default
2292 * workqueue
2293 */
2294 static void ipw_adapter_restart(void *adapter)
2295 {
2296 struct ipw_priv *priv = adapter;
2297
2298 if (priv->status & STATUS_RF_KILL_MASK)
2299 return;
2300
2301 ipw_down(priv);
2302
2303 if (priv->assoc_network &&
2304 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2305 ipw_remove_current_network(priv);
2306
2307 if (ipw_up(priv)) {
2308 IPW_ERROR("Failed to up device\n");
2309 return;
2310 }
2311 }
2312
2313 static void ipw_bg_adapter_restart(struct work_struct *work)
2314 {
2315 struct ipw_priv *priv =
2316 container_of(work, struct ipw_priv, adapter_restart);
2317 mutex_lock(&priv->mutex);
2318 ipw_adapter_restart(priv);
2319 mutex_unlock(&priv->mutex);
2320 }
2321
2322 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2323
2324 static void ipw_scan_check(void *data)
2325 {
2326 struct ipw_priv *priv = data;
2327 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2328 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2329 "adapter after (%dms).\n",
2330 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2331 queue_work(priv->workqueue, &priv->adapter_restart);
2332 }
2333 }
2334
2335 static void ipw_bg_scan_check(struct work_struct *work)
2336 {
2337 struct ipw_priv *priv =
2338 container_of(work, struct ipw_priv, scan_check.work);
2339 mutex_lock(&priv->mutex);
2340 ipw_scan_check(priv);
2341 mutex_unlock(&priv->mutex);
2342 }
2343
2344 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2345 struct ipw_scan_request_ext *request)
2346 {
2347 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2348 sizeof(*request), request);
2349 }
2350
2351 static int ipw_send_scan_abort(struct ipw_priv *priv)
2352 {
2353 if (!priv) {
2354 IPW_ERROR("Invalid args\n");
2355 return -1;
2356 }
2357
2358 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2359 }
2360
2361 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2362 {
2363 struct ipw_sensitivity_calib calib = {
2364 .beacon_rssi_raw = cpu_to_le16(sens),
2365 };
2366
2367 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2368 &calib);
2369 }
2370
2371 static int ipw_send_associate(struct ipw_priv *priv,
2372 struct ipw_associate *associate)
2373 {
2374 if (!priv || !associate) {
2375 IPW_ERROR("Invalid args\n");
2376 return -1;
2377 }
2378
2379 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2380 associate);
2381 }
2382
2383 static int ipw_send_supported_rates(struct ipw_priv *priv,
2384 struct ipw_supported_rates *rates)
2385 {
2386 if (!priv || !rates) {
2387 IPW_ERROR("Invalid args\n");
2388 return -1;
2389 }
2390
2391 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2392 rates);
2393 }
2394
2395 static int ipw_set_random_seed(struct ipw_priv *priv)
2396 {
2397 u32 val;
2398
2399 if (!priv) {
2400 IPW_ERROR("Invalid args\n");
2401 return -1;
2402 }
2403
2404 get_random_bytes(&val, sizeof(val));
2405
2406 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2407 }
2408
2409 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2410 {
2411 __le32 v = cpu_to_le32(phy_off);
2412 if (!priv) {
2413 IPW_ERROR("Invalid args\n");
2414 return -1;
2415 }
2416
2417 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2418 }
2419
2420 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2421 {
2422 if (!priv || !power) {
2423 IPW_ERROR("Invalid args\n");
2424 return -1;
2425 }
2426
2427 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2428 }
2429
2430 static int ipw_set_tx_power(struct ipw_priv *priv)
2431 {
2432 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2433 struct ipw_tx_power tx_power;
2434 s8 max_power;
2435 int i;
2436
2437 memset(&tx_power, 0, sizeof(tx_power));
2438
2439 /* configure device for 'G' band */
2440 tx_power.ieee_mode = IPW_G_MODE;
2441 tx_power.num_channels = geo->bg_channels;
2442 for (i = 0; i < geo->bg_channels; i++) {
2443 max_power = geo->bg[i].max_power;
2444 tx_power.channels_tx_power[i].channel_number =
2445 geo->bg[i].channel;
2446 tx_power.channels_tx_power[i].tx_power = max_power ?
2447 min(max_power, priv->tx_power) : priv->tx_power;
2448 }
2449 if (ipw_send_tx_power(priv, &tx_power))
2450 return -EIO;
2451
2452 /* configure device to also handle 'B' band */
2453 tx_power.ieee_mode = IPW_B_MODE;
2454 if (ipw_send_tx_power(priv, &tx_power))
2455 return -EIO;
2456
2457 /* configure device to also handle 'A' band */
2458 if (priv->ieee->abg_true) {
2459 tx_power.ieee_mode = IPW_A_MODE;
2460 tx_power.num_channels = geo->a_channels;
2461 for (i = 0; i < tx_power.num_channels; i++) {
2462 max_power = geo->a[i].max_power;
2463 tx_power.channels_tx_power[i].channel_number =
2464 geo->a[i].channel;
2465 tx_power.channels_tx_power[i].tx_power = max_power ?
2466 min(max_power, priv->tx_power) : priv->tx_power;
2467 }
2468 if (ipw_send_tx_power(priv, &tx_power))
2469 return -EIO;
2470 }
2471 return 0;
2472 }
2473
2474 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2475 {
2476 struct ipw_rts_threshold rts_threshold = {
2477 .rts_threshold = cpu_to_le16(rts),
2478 };
2479
2480 if (!priv) {
2481 IPW_ERROR("Invalid args\n");
2482 return -1;
2483 }
2484
2485 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2486 sizeof(rts_threshold), &rts_threshold);
2487 }
2488
2489 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2490 {
2491 struct ipw_frag_threshold frag_threshold = {
2492 .frag_threshold = cpu_to_le16(frag),
2493 };
2494
2495 if (!priv) {
2496 IPW_ERROR("Invalid args\n");
2497 return -1;
2498 }
2499
2500 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2501 sizeof(frag_threshold), &frag_threshold);
2502 }
2503
2504 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2505 {
2506 __le32 param;
2507
2508 if (!priv) {
2509 IPW_ERROR("Invalid args\n");
2510 return -1;
2511 }
2512
2513 /* If on battery, set to 3, if AC set to CAM, else user
2514 * level */
2515 switch (mode) {
2516 case IPW_POWER_BATTERY:
2517 param = cpu_to_le32(IPW_POWER_INDEX_3);
2518 break;
2519 case IPW_POWER_AC:
2520 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2521 break;
2522 default:
2523 param = cpu_to_le32(mode);
2524 break;
2525 }
2526
2527 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2528 &param);
2529 }
2530
2531 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2532 {
2533 struct ipw_retry_limit retry_limit = {
2534 .short_retry_limit = slimit,
2535 .long_retry_limit = llimit
2536 };
2537
2538 if (!priv) {
2539 IPW_ERROR("Invalid args\n");
2540 return -1;
2541 }
2542
2543 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2544 &retry_limit);
2545 }
2546
2547 /*
2548 * The IPW device contains a Microwire compatible EEPROM that stores
2549 * various data like the MAC address. Usually the firmware has exclusive
2550 * access to the eeprom, but during device initialization (before the
2551 * device driver has sent the HostComplete command to the firmware) the
2552 * device driver has read access to the EEPROM by way of indirect addressing
2553 * through a couple of memory mapped registers.
2554 *
2555 * The following is a simplified implementation for pulling data out of the
2556 * the eeprom, along with some helper functions to find information in
2557 * the per device private data's copy of the eeprom.
2558 *
2559 * NOTE: To better understand how these functions work (i.e what is a chip
2560 * select and why do have to keep driving the eeprom clock?), read
2561 * just about any data sheet for a Microwire compatible EEPROM.
2562 */
2563
2564 /* write a 32 bit value into the indirect accessor register */
2565 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2566 {
2567 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2568
2569 /* the eeprom requires some time to complete the operation */
2570 udelay(p->eeprom_delay);
2571
2572 return;
2573 }
2574
2575 /* perform a chip select operation */
2576 static void eeprom_cs(struct ipw_priv *priv)
2577 {
2578 eeprom_write_reg(priv, 0);
2579 eeprom_write_reg(priv, EEPROM_BIT_CS);
2580 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2581 eeprom_write_reg(priv, EEPROM_BIT_CS);
2582 }
2583
2584 /* perform a chip select operation */
2585 static void eeprom_disable_cs(struct ipw_priv *priv)
2586 {
2587 eeprom_write_reg(priv, EEPROM_BIT_CS);
2588 eeprom_write_reg(priv, 0);
2589 eeprom_write_reg(priv, EEPROM_BIT_SK);
2590 }
2591
2592 /* push a single bit down to the eeprom */
2593 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2594 {
2595 int d = (bit ? EEPROM_BIT_DI : 0);
2596 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2597 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2598 }
2599
2600 /* push an opcode followed by an address down to the eeprom */
2601 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2602 {
2603 int i;
2604
2605 eeprom_cs(priv);
2606 eeprom_write_bit(priv, 1);
2607 eeprom_write_bit(priv, op & 2);
2608 eeprom_write_bit(priv, op & 1);
2609 for (i = 7; i >= 0; i--) {
2610 eeprom_write_bit(priv, addr & (1 << i));
2611 }
2612 }
2613
2614 /* pull 16 bits off the eeprom, one bit at a time */
2615 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2616 {
2617 int i;
2618 u16 r = 0;
2619
2620 /* Send READ Opcode */
2621 eeprom_op(priv, EEPROM_CMD_READ, addr);
2622
2623 /* Send dummy bit */
2624 eeprom_write_reg(priv, EEPROM_BIT_CS);
2625
2626 /* Read the byte off the eeprom one bit at a time */
2627 for (i = 0; i < 16; i++) {
2628 u32 data = 0;
2629 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2630 eeprom_write_reg(priv, EEPROM_BIT_CS);
2631 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2632 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2633 }
2634
2635 /* Send another dummy bit */
2636 eeprom_write_reg(priv, 0);
2637 eeprom_disable_cs(priv);
2638
2639 return r;
2640 }
2641
2642 /* helper function for pulling the mac address out of the private */
2643 /* data's copy of the eeprom data */
2644 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2645 {
2646 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2647 }
2648
2649 /*
2650 * Either the device driver (i.e. the host) or the firmware can
2651 * load eeprom data into the designated region in SRAM. If neither
2652 * happens then the FW will shutdown with a fatal error.
2653 *
2654 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2655 * bit needs region of shared SRAM needs to be non-zero.
2656 */
2657 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2658 {
2659 int i;
2660 __le16 *eeprom = (__le16 *) priv->eeprom;
2661
2662 IPW_DEBUG_TRACE(">>\n");
2663
2664 /* read entire contents of eeprom into private buffer */
2665 for (i = 0; i < 128; i++)
2666 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2667
2668 /*
2669 If the data looks correct, then copy it to our private
2670 copy. Otherwise let the firmware know to perform the operation
2671 on its own.
2672 */
2673 if (priv->eeprom[EEPROM_VERSION] != 0) {
2674 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2675
2676 /* write the eeprom data to sram */
2677 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2678 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2679
2680 /* Do not load eeprom data on fatal error or suspend */
2681 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2682 } else {
2683 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2684
2685 /* Load eeprom data on fatal error or suspend */
2686 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2687 }
2688
2689 IPW_DEBUG_TRACE("<<\n");
2690 }
2691
2692 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2693 {
2694 count >>= 2;
2695 if (!count)
2696 return;
2697 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2698 while (count--)
2699 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2700 }
2701
2702 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2703 {
2704 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2705 CB_NUMBER_OF_ELEMENTS_SMALL *
2706 sizeof(struct command_block));
2707 }
2708
2709 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2710 { /* start dma engine but no transfers yet */
2711
2712 IPW_DEBUG_FW(">> : \n");
2713
2714 /* Start the dma */
2715 ipw_fw_dma_reset_command_blocks(priv);
2716
2717 /* Write CB base address */
2718 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2719
2720 IPW_DEBUG_FW("<< : \n");
2721 return 0;
2722 }
2723
2724 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2725 {
2726 u32 control = 0;
2727
2728 IPW_DEBUG_FW(">> :\n");
2729
2730 /* set the Stop and Abort bit */
2731 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2732 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2733 priv->sram_desc.last_cb_index = 0;
2734
2735 IPW_DEBUG_FW("<< \n");
2736 }
2737
2738 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2739 struct command_block *cb)
2740 {
2741 u32 address =
2742 IPW_SHARED_SRAM_DMA_CONTROL +
2743 (sizeof(struct command_block) * index);
2744 IPW_DEBUG_FW(">> :\n");
2745
2746 ipw_write_indirect(priv, address, (u8 *) cb,
2747 (int)sizeof(struct command_block));
2748
2749 IPW_DEBUG_FW("<< :\n");
2750 return 0;
2751
2752 }
2753
2754 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2755 {
2756 u32 control = 0;
2757 u32 index = 0;
2758
2759 IPW_DEBUG_FW(">> :\n");
2760
2761 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2762 ipw_fw_dma_write_command_block(priv, index,
2763 &priv->sram_desc.cb_list[index]);
2764
2765 /* Enable the DMA in the CSR register */
2766 ipw_clear_bit(priv, IPW_RESET_REG,
2767 IPW_RESET_REG_MASTER_DISABLED |
2768 IPW_RESET_REG_STOP_MASTER);
2769
2770 /* Set the Start bit. */
2771 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2772 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2773
2774 IPW_DEBUG_FW("<< :\n");
2775 return 0;
2776 }
2777
2778 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2779 {
2780 u32 address;
2781 u32 register_value = 0;
2782 u32 cb_fields_address = 0;
2783
2784 IPW_DEBUG_FW(">> :\n");
2785 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2786 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2787
2788 /* Read the DMA Controlor register */
2789 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2790 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2791
2792 /* Print the CB values */
2793 cb_fields_address = address;
2794 register_value = ipw_read_reg32(priv, cb_fields_address);
2795 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2796
2797 cb_fields_address += sizeof(u32);
2798 register_value = ipw_read_reg32(priv, cb_fields_address);
2799 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2800
2801 cb_fields_address += sizeof(u32);
2802 register_value = ipw_read_reg32(priv, cb_fields_address);
2803 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2804 register_value);
2805
2806 cb_fields_address += sizeof(u32);
2807 register_value = ipw_read_reg32(priv, cb_fields_address);
2808 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2809
2810 IPW_DEBUG_FW(">> :\n");
2811 }
2812
2813 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2814 {
2815 u32 current_cb_address = 0;
2816 u32 current_cb_index = 0;
2817
2818 IPW_DEBUG_FW("<< :\n");
2819 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2820
2821 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2822 sizeof(struct command_block);
2823
2824 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2825 current_cb_index, current_cb_address);
2826
2827 IPW_DEBUG_FW(">> :\n");
2828 return current_cb_index;
2829
2830 }
2831
2832 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2833 u32 src_address,
2834 u32 dest_address,
2835 u32 length,
2836 int interrupt_enabled, int is_last)
2837 {
2838
2839 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2840 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2841 CB_DEST_SIZE_LONG;
2842 struct command_block *cb;
2843 u32 last_cb_element = 0;
2844
2845 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2846 src_address, dest_address, length);
2847
2848 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2849 return -1;
2850
2851 last_cb_element = priv->sram_desc.last_cb_index;
2852 cb = &priv->sram_desc.cb_list[last_cb_element];
2853 priv->sram_desc.last_cb_index++;
2854
2855 /* Calculate the new CB control word */
2856 if (interrupt_enabled)
2857 control |= CB_INT_ENABLED;
2858
2859 if (is_last)
2860 control |= CB_LAST_VALID;
2861
2862 control |= length;
2863
2864 /* Calculate the CB Element's checksum value */
2865 cb->status = control ^ src_address ^ dest_address;
2866
2867 /* Copy the Source and Destination addresses */
2868 cb->dest_addr = dest_address;
2869 cb->source_addr = src_address;
2870
2871 /* Copy the Control Word last */
2872 cb->control = control;
2873
2874 return 0;
2875 }
2876
2877 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2878 u32 src_phys, u32 dest_address, u32 length)
2879 {
2880 u32 bytes_left = length;
2881 u32 src_offset = 0;
2882 u32 dest_offset = 0;
2883 int status = 0;
2884 IPW_DEBUG_FW(">> \n");
2885 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2886 src_phys, dest_address, length);
2887 while (bytes_left > CB_MAX_LENGTH) {
2888 status = ipw_fw_dma_add_command_block(priv,
2889 src_phys + src_offset,
2890 dest_address +
2891 dest_offset,
2892 CB_MAX_LENGTH, 0, 0);
2893 if (status) {
2894 IPW_DEBUG_FW_INFO(": Failed\n");
2895 return -1;
2896 } else
2897 IPW_DEBUG_FW_INFO(": Added new cb\n");
2898
2899 src_offset += CB_MAX_LENGTH;
2900 dest_offset += CB_MAX_LENGTH;
2901 bytes_left -= CB_MAX_LENGTH;
2902 }
2903
2904 /* add the buffer tail */
2905 if (bytes_left > 0) {
2906 status =
2907 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2908 dest_address + dest_offset,
2909 bytes_left, 0, 0);
2910 if (status) {
2911 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2912 return -1;
2913 } else
2914 IPW_DEBUG_FW_INFO
2915 (": Adding new cb - the buffer tail\n");
2916 }
2917
2918 IPW_DEBUG_FW("<< \n");
2919 return 0;
2920 }
2921
2922 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2923 {
2924 u32 current_index = 0, previous_index;
2925 u32 watchdog = 0;
2926
2927 IPW_DEBUG_FW(">> : \n");
2928
2929 current_index = ipw_fw_dma_command_block_index(priv);
2930 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2931 (int)priv->sram_desc.last_cb_index);
2932
2933 while (current_index < priv->sram_desc.last_cb_index) {
2934 udelay(50);
2935 previous_index = current_index;
2936 current_index = ipw_fw_dma_command_block_index(priv);
2937
2938 if (previous_index < current_index) {
2939 watchdog = 0;
2940 continue;
2941 }
2942 if (++watchdog > 400) {
2943 IPW_DEBUG_FW_INFO("Timeout\n");
2944 ipw_fw_dma_dump_command_block(priv);
2945 ipw_fw_dma_abort(priv);
2946 return -1;
2947 }
2948 }
2949
2950 ipw_fw_dma_abort(priv);
2951
2952 /*Disable the DMA in the CSR register */
2953 ipw_set_bit(priv, IPW_RESET_REG,
2954 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2955
2956 IPW_DEBUG_FW("<< dmaWaitSync \n");
2957 return 0;
2958 }
2959
2960 static void ipw_remove_current_network(struct ipw_priv *priv)
2961 {
2962 struct list_head *element, *safe;
2963 struct ieee80211_network *network = NULL;
2964 unsigned long flags;
2965
2966 spin_lock_irqsave(&priv->ieee->lock, flags);
2967 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2968 network = list_entry(element, struct ieee80211_network, list);
2969 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2970 list_del(element);
2971 list_add_tail(&network->list,
2972 &priv->ieee->network_free_list);
2973 }
2974 }
2975 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2976 }
2977
2978 /**
2979 * Check that card is still alive.
2980 * Reads debug register from domain0.
2981 * If card is present, pre-defined value should
2982 * be found there.
2983 *
2984 * @param priv
2985 * @return 1 if card is present, 0 otherwise
2986 */
2987 static inline int ipw_alive(struct ipw_priv *priv)
2988 {
2989 return ipw_read32(priv, 0x90) == 0xd55555d5;
2990 }
2991
2992 /* timeout in msec, attempted in 10-msec quanta */
2993 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2994 int timeout)
2995 {
2996 int i = 0;
2997
2998 do {
2999 if ((ipw_read32(priv, addr) & mask) == mask)
3000 return i;
3001 mdelay(10);
3002 i += 10;
3003 } while (i < timeout);
3004
3005 return -ETIME;
3006 }
3007
3008 /* These functions load the firmware and micro code for the operation of
3009 * the ipw hardware. It assumes the buffer has all the bits for the
3010 * image and the caller is handling the memory allocation and clean up.
3011 */
3012
3013 static int ipw_stop_master(struct ipw_priv *priv)
3014 {
3015 int rc;
3016
3017 IPW_DEBUG_TRACE(">> \n");
3018 /* stop master. typical delay - 0 */
3019 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3020
3021 /* timeout is in msec, polled in 10-msec quanta */
3022 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3023 IPW_RESET_REG_MASTER_DISABLED, 100);
3024 if (rc < 0) {
3025 IPW_ERROR("wait for stop master failed after 100ms\n");
3026 return -1;
3027 }
3028
3029 IPW_DEBUG_INFO("stop master %dms\n", rc);
3030
3031 return rc;
3032 }
3033
3034 static void ipw_arc_release(struct ipw_priv *priv)
3035 {
3036 IPW_DEBUG_TRACE(">> \n");
3037 mdelay(5);
3038
3039 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3040
3041 /* no one knows timing, for safety add some delay */
3042 mdelay(5);
3043 }
3044
3045 struct fw_chunk {
3046 __le32 address;
3047 __le32 length;
3048 };
3049
3050 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3051 {
3052 int rc = 0, i, addr;
3053 u8 cr = 0;
3054 __le16 *image;
3055
3056 image = (__le16 *) data;
3057
3058 IPW_DEBUG_TRACE(">> \n");
3059
3060 rc = ipw_stop_master(priv);
3061
3062 if (rc < 0)
3063 return rc;
3064
3065 for (addr = IPW_SHARED_LOWER_BOUND;
3066 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3067 ipw_write32(priv, addr, 0);
3068 }
3069
3070 /* no ucode (yet) */
3071 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3072 /* destroy DMA queues */
3073 /* reset sequence */
3074
3075 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3076 ipw_arc_release(priv);
3077 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3078 mdelay(1);
3079
3080 /* reset PHY */
3081 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3082 mdelay(1);
3083
3084 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3085 mdelay(1);
3086
3087 /* enable ucode store */
3088 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3089 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3090 mdelay(1);
3091
3092 /* write ucode */
3093 /**
3094 * @bug
3095 * Do NOT set indirect address register once and then
3096 * store data to indirect data register in the loop.
3097 * It seems very reasonable, but in this case DINO do not
3098 * accept ucode. It is essential to set address each time.
3099 */
3100 /* load new ipw uCode */
3101 for (i = 0; i < len / 2; i++)
3102 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3103 le16_to_cpu(image[i]));
3104
3105 /* enable DINO */
3106 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3107 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3108
3109 /* this is where the igx / win driver deveates from the VAP driver. */
3110
3111 /* wait for alive response */
3112 for (i = 0; i < 100; i++) {
3113 /* poll for incoming data */
3114 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3115 if (cr & DINO_RXFIFO_DATA)
3116 break;
3117 mdelay(1);
3118 }
3119
3120 if (cr & DINO_RXFIFO_DATA) {
3121 /* alive_command_responce size is NOT multiple of 4 */
3122 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3123
3124 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3125 response_buffer[i] =
3126 cpu_to_le32(ipw_read_reg32(priv,
3127 IPW_BASEBAND_RX_FIFO_READ));
3128 memcpy(&priv->dino_alive, response_buffer,
3129 sizeof(priv->dino_alive));
3130 if (priv->dino_alive.alive_command == 1
3131 && priv->dino_alive.ucode_valid == 1) {
3132 rc = 0;
3133 IPW_DEBUG_INFO
3134 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3135 "of %02d/%02d/%02d %02d:%02d\n",
3136 priv->dino_alive.software_revision,
3137 priv->dino_alive.software_revision,
3138 priv->dino_alive.device_identifier,
3139 priv->dino_alive.device_identifier,
3140 priv->dino_alive.time_stamp[0],
3141 priv->dino_alive.time_stamp[1],
3142 priv->dino_alive.time_stamp[2],
3143 priv->dino_alive.time_stamp[3],
3144 priv->dino_alive.time_stamp[4]);
3145 } else {
3146 IPW_DEBUG_INFO("Microcode is not alive\n");
3147 rc = -EINVAL;
3148 }
3149 } else {
3150 IPW_DEBUG_INFO("No alive response from DINO\n");
3151 rc = -ETIME;
3152 }
3153
3154 /* disable DINO, otherwise for some reason
3155 firmware have problem getting alive resp. */
3156 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3157
3158 return rc;
3159 }
3160
3161 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3162 {
3163 int rc = -1;
3164 int offset = 0;
3165 struct fw_chunk *chunk;
3166 dma_addr_t shared_phys;
3167 u8 *shared_virt;
3168
3169 IPW_DEBUG_TRACE("<< : \n");
3170 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3171
3172 if (!shared_virt)
3173 return -ENOMEM;
3174
3175 memmove(shared_virt, data, len);
3176
3177 /* Start the Dma */
3178 rc = ipw_fw_dma_enable(priv);
3179
3180 /* the DMA is already ready this would be a bug. */
3181 BUG_ON(priv->sram_desc.last_cb_index > 0);
3182
3183 do {
3184 chunk = (struct fw_chunk *)(data + offset);
3185 offset += sizeof(struct fw_chunk);
3186 /* build DMA packet and queue up for sending */
3187 /* dma to chunk->address, the chunk->length bytes from data +
3188 * offeset*/
3189 /* Dma loading */
3190 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3191 le32_to_cpu(chunk->address),
3192 le32_to_cpu(chunk->length));
3193 if (rc) {
3194 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3195 goto out;
3196 }
3197
3198 offset += le32_to_cpu(chunk->length);
3199 } while (offset < len);
3200
3201 /* Run the DMA and wait for the answer */
3202 rc = ipw_fw_dma_kick(priv);
3203 if (rc) {
3204 IPW_ERROR("dmaKick Failed\n");
3205 goto out;
3206 }
3207
3208 rc = ipw_fw_dma_wait(priv);
3209 if (rc) {
3210 IPW_ERROR("dmaWaitSync Failed\n");
3211 goto out;
3212 }
3213 out:
3214 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3215 return rc;
3216 }
3217
3218 /* stop nic */
3219 static int ipw_stop_nic(struct ipw_priv *priv)
3220 {
3221 int rc = 0;
3222
3223 /* stop */
3224 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3225
3226 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3227 IPW_RESET_REG_MASTER_DISABLED, 500);
3228 if (rc < 0) {
3229 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3230 return rc;
3231 }
3232
3233 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3234
3235 return rc;
3236 }
3237
3238 static void ipw_start_nic(struct ipw_priv *priv)
3239 {
3240 IPW_DEBUG_TRACE(">>\n");
3241
3242 /* prvHwStartNic release ARC */
3243 ipw_clear_bit(priv, IPW_RESET_REG,
3244 IPW_RESET_REG_MASTER_DISABLED |
3245 IPW_RESET_REG_STOP_MASTER |
3246 CBD_RESET_REG_PRINCETON_RESET);
3247
3248 /* enable power management */
3249 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3250 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3251
3252 IPW_DEBUG_TRACE("<<\n");
3253 }
3254
3255 static int ipw_init_nic(struct ipw_priv *priv)
3256 {
3257 int rc;
3258
3259 IPW_DEBUG_TRACE(">>\n");
3260 /* reset */
3261 /*prvHwInitNic */
3262 /* set "initialization complete" bit to move adapter to D0 state */
3263 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3264
3265 /* low-level PLL activation */
3266 ipw_write32(priv, IPW_READ_INT_REGISTER,
3267 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3268
3269 /* wait for clock stabilization */
3270 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3271 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3272 if (rc < 0)
3273 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3274
3275 /* assert SW reset */
3276 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3277
3278 udelay(10);
3279
3280 /* set "initialization complete" bit to move adapter to D0 state */
3281 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3282
3283 IPW_DEBUG_TRACE(">>\n");
3284 return 0;
3285 }
3286
3287 /* Call this function from process context, it will sleep in request_firmware.
3288 * Probe is an ok place to call this from.
3289 */
3290 static int ipw_reset_nic(struct ipw_priv *priv)
3291 {
3292 int rc = 0;
3293 unsigned long flags;
3294
3295 IPW_DEBUG_TRACE(">>\n");
3296
3297 rc = ipw_init_nic(priv);
3298
3299 spin_lock_irqsave(&priv->lock, flags);
3300 /* Clear the 'host command active' bit... */
3301 priv->status &= ~STATUS_HCMD_ACTIVE;
3302 wake_up_interruptible(&priv->wait_command_queue);
3303 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3304 wake_up_interruptible(&priv->wait_state);
3305 spin_unlock_irqrestore(&priv->lock, flags);
3306
3307 IPW_DEBUG_TRACE("<<\n");
3308 return rc;
3309 }
3310
3311
3312 struct ipw_fw {
3313 __le32 ver;
3314 __le32 boot_size;
3315 __le32 ucode_size;
3316 __le32 fw_size;
3317 u8 data[0];
3318 };
3319
3320 static int ipw_get_fw(struct ipw_priv *priv,
3321 const struct firmware **raw, const char *name)
3322 {
3323 struct ipw_fw *fw;
3324 int rc;
3325
3326 /* ask firmware_class module to get the boot firmware off disk */
3327 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3328 if (rc < 0) {
3329 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3330 return rc;
3331 }
3332
3333 if ((*raw)->size < sizeof(*fw)) {
3334 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3335 return -EINVAL;
3336 }
3337
3338 fw = (void *)(*raw)->data;
3339
3340 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3341 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3342 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3343 name, (*raw)->size);
3344 return -EINVAL;
3345 }
3346
3347 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3348 name,
3349 le32_to_cpu(fw->ver) >> 16,
3350 le32_to_cpu(fw->ver) & 0xff,
3351 (*raw)->size - sizeof(*fw));
3352 return 0;
3353 }
3354
3355 #define IPW_RX_BUF_SIZE (3000)
3356
3357 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3358 struct ipw_rx_queue *rxq)
3359 {
3360 unsigned long flags;
3361 int i;
3362
3363 spin_lock_irqsave(&rxq->lock, flags);
3364
3365 INIT_LIST_HEAD(&rxq->rx_free);
3366 INIT_LIST_HEAD(&rxq->rx_used);
3367
3368 /* Fill the rx_used queue with _all_ of the Rx buffers */
3369 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3370 /* In the reset function, these buffers may have been allocated
3371 * to an SKB, so we need to unmap and free potential storage */
3372 if (rxq->pool[i].skb != NULL) {
3373 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3374 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3375 dev_kfree_skb(rxq->pool[i].skb);
3376 rxq->pool[i].skb = NULL;
3377 }
3378 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3379 }
3380
3381 /* Set us so that we have processed and used all buffers, but have
3382 * not restocked the Rx queue with fresh buffers */
3383 rxq->read = rxq->write = 0;
3384 rxq->free_count = 0;
3385 spin_unlock_irqrestore(&rxq->lock, flags);
3386 }
3387
3388 #ifdef CONFIG_PM
3389 static int fw_loaded = 0;
3390 static const struct firmware *raw = NULL;
3391
3392 static void free_firmware(void)
3393 {
3394 if (fw_loaded) {
3395 release_firmware(raw);
3396 raw = NULL;
3397 fw_loaded = 0;
3398 }
3399 }
3400 #else
3401 #define free_firmware() do {} while (0)
3402 #endif
3403
3404 static int ipw_load(struct ipw_priv *priv)
3405 {
3406 #ifndef CONFIG_PM
3407 const struct firmware *raw = NULL;
3408 #endif
3409 struct ipw_fw *fw;
3410 u8 *boot_img, *ucode_img, *fw_img;
3411 u8 *name = NULL;
3412 int rc = 0, retries = 3;
3413
3414 switch (priv->ieee->iw_mode) {
3415 case IW_MODE_ADHOC:
3416 name = "ipw2200-ibss.fw";
3417 break;
3418 #ifdef CONFIG_IPW2200_MONITOR
3419 case IW_MODE_MONITOR:
3420 name = "ipw2200-sniffer.fw";
3421 break;
3422 #endif
3423 case IW_MODE_INFRA:
3424 name = "ipw2200-bss.fw";
3425 break;
3426 }
3427
3428 if (!name) {
3429 rc = -EINVAL;
3430 goto error;
3431 }
3432
3433 #ifdef CONFIG_PM
3434 if (!fw_loaded) {
3435 #endif
3436 rc = ipw_get_fw(priv, &raw, name);
3437 if (rc < 0)
3438 goto error;
3439 #ifdef CONFIG_PM
3440 }
3441 #endif
3442
3443 fw = (void *)raw->data;
3444 boot_img = &fw->data[0];
3445 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3446 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3447 le32_to_cpu(fw->ucode_size)];
3448
3449 if (rc < 0)
3450 goto error;
3451
3452 if (!priv->rxq)
3453 priv->rxq = ipw_rx_queue_alloc(priv);
3454 else
3455 ipw_rx_queue_reset(priv, priv->rxq);
3456 if (!priv->rxq) {
3457 IPW_ERROR("Unable to initialize Rx queue\n");
3458 goto error;
3459 }
3460
3461 retry:
3462 /* Ensure interrupts are disabled */
3463 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3464 priv->status &= ~STATUS_INT_ENABLED;
3465
3466 /* ack pending interrupts */
3467 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3468
3469 ipw_stop_nic(priv);
3470
3471 rc = ipw_reset_nic(priv);
3472 if (rc < 0) {
3473 IPW_ERROR("Unable to reset NIC\n");
3474 goto error;
3475 }
3476
3477 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3478 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3479
3480 /* DMA the initial boot firmware into the device */
3481 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3482 if (rc < 0) {
3483 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3484 goto error;
3485 }
3486
3487 /* kick start the device */
3488 ipw_start_nic(priv);
3489
3490 /* wait for the device to finish its initial startup sequence */
3491 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3492 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3493 if (rc < 0) {
3494 IPW_ERROR("device failed to boot initial fw image\n");
3495 goto error;
3496 }
3497 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3498
3499 /* ack fw init done interrupt */
3500 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3501
3502 /* DMA the ucode into the device */
3503 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3504 if (rc < 0) {
3505 IPW_ERROR("Unable to load ucode: %d\n", rc);
3506 goto error;
3507 }
3508
3509 /* stop nic */
3510 ipw_stop_nic(priv);
3511
3512 /* DMA bss firmware into the device */
3513 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3514 if (rc < 0) {
3515 IPW_ERROR("Unable to load firmware: %d\n", rc);
3516 goto error;
3517 }
3518 #ifdef CONFIG_PM
3519 fw_loaded = 1;
3520 #endif
3521
3522 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3523
3524 rc = ipw_queue_reset(priv);
3525 if (rc < 0) {
3526 IPW_ERROR("Unable to initialize queues\n");
3527 goto error;
3528 }
3529
3530 /* Ensure interrupts are disabled */
3531 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3532 /* ack pending interrupts */
3533 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3534
3535 /* kick start the device */
3536 ipw_start_nic(priv);
3537
3538 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3539 if (retries > 0) {
3540 IPW_WARNING("Parity error. Retrying init.\n");
3541 retries--;
3542 goto retry;
3543 }
3544
3545 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3546 rc = -EIO;
3547 goto error;
3548 }
3549
3550 /* wait for the device */
3551 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3552 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3553 if (rc < 0) {
3554 IPW_ERROR("device failed to start within 500ms\n");
3555 goto error;
3556 }
3557 IPW_DEBUG_INFO("device response after %dms\n", rc);
3558
3559 /* ack fw init done interrupt */
3560 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3561
3562 /* read eeprom data and initialize the eeprom region of sram */
3563 priv->eeprom_delay = 1;
3564 ipw_eeprom_init_sram(priv);
3565
3566 /* enable interrupts */
3567 ipw_enable_interrupts(priv);
3568
3569 /* Ensure our queue has valid packets */
3570 ipw_rx_queue_replenish(priv);
3571
3572 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3573
3574 /* ack pending interrupts */
3575 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3576
3577 #ifndef CONFIG_PM
3578 release_firmware(raw);
3579 #endif
3580 return 0;
3581
3582 error:
3583 if (priv->rxq) {
3584 ipw_rx_queue_free(priv, priv->rxq);
3585 priv->rxq = NULL;
3586 }
3587 ipw_tx_queue_free(priv);
3588 if (raw)
3589 release_firmware(raw);
3590 #ifdef CONFIG_PM
3591 fw_loaded = 0;
3592 raw = NULL;
3593 #endif
3594
3595 return rc;
3596 }
3597
3598 /**
3599 * DMA services
3600 *
3601 * Theory of operation
3602 *
3603 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3604 * 2 empty entries always kept in the buffer to protect from overflow.
3605 *
3606 * For Tx queue, there are low mark and high mark limits. If, after queuing
3607 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3608 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3609 * Tx queue resumed.
3610 *
3611 * The IPW operates with six queues, one receive queue in the device's
3612 * sram, one transmit queue for sending commands to the device firmware,
3613 * and four transmit queues for data.
3614 *
3615 * The four transmit queues allow for performing quality of service (qos)
3616 * transmissions as per the 802.11 protocol. Currently Linux does not
3617 * provide a mechanism to the user for utilizing prioritized queues, so
3618 * we only utilize the first data transmit queue (queue1).
3619 */
3620
3621 /**
3622 * Driver allocates buffers of this size for Rx
3623 */
3624
3625 /**
3626 * ipw_rx_queue_space - Return number of free slots available in queue.
3627 */
3628 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3629 {
3630 int s = q->read - q->write;
3631 if (s <= 0)
3632 s += RX_QUEUE_SIZE;
3633 /* keep some buffer to not confuse full and empty queue */
3634 s -= 2;
3635 if (s < 0)
3636 s = 0;
3637 return s;
3638 }
3639
3640 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3641 {
3642 int s = q->last_used - q->first_empty;
3643 if (s <= 0)
3644 s += q->n_bd;
3645 s -= 2; /* keep some reserve to not confuse empty and full situations */
3646 if (s < 0)
3647 s = 0;
3648 return s;
3649 }
3650
3651 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3652 {
3653 return (++index == n_bd) ? 0 : index;
3654 }
3655
3656 /**
3657 * Initialize common DMA queue structure
3658 *
3659 * @param q queue to init
3660 * @param count Number of BD's to allocate. Should be power of 2
3661 * @param read_register Address for 'read' register
3662 * (not offset within BAR, full address)
3663 * @param write_register Address for 'write' register
3664 * (not offset within BAR, full address)
3665 * @param base_register Address for 'base' register
3666 * (not offset within BAR, full address)
3667 * @param size Address for 'size' register
3668 * (not offset within BAR, full address)
3669 */
3670 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3671 int count, u32 read, u32 write, u32 base, u32 size)
3672 {
3673 q->n_bd = count;
3674
3675 q->low_mark = q->n_bd / 4;
3676 if (q->low_mark < 4)
3677 q->low_mark = 4;
3678
3679 q->high_mark = q->n_bd / 8;
3680 if (q->high_mark < 2)
3681 q->high_mark = 2;
3682
3683 q->first_empty = q->last_used = 0;
3684 q->reg_r = read;
3685 q->reg_w = write;
3686
3687 ipw_write32(priv, base, q->dma_addr);
3688 ipw_write32(priv, size, count);
3689 ipw_write32(priv, read, 0);
3690 ipw_write32(priv, write, 0);
3691
3692 _ipw_read32(priv, 0x90);
3693 }
3694
3695 static int ipw_queue_tx_init(struct ipw_priv *priv,
3696 struct clx2_tx_queue *q,
3697 int count, u32 read, u32 write, u32 base, u32 size)
3698 {
3699 struct pci_dev *dev = priv->pci_dev;
3700
3701 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3702 if (!q->txb) {
3703 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3704 return -ENOMEM;
3705 }
3706
3707 q->bd =
3708 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3709 if (!q->bd) {
3710 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3711 sizeof(q->bd[0]) * count);
3712 kfree(q->txb);
3713 q->txb = NULL;
3714 return -ENOMEM;
3715 }
3716
3717 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3718 return 0;
3719 }
3720
3721 /**
3722 * Free one TFD, those at index [txq->q.last_used].
3723 * Do NOT advance any indexes
3724 *
3725 * @param dev
3726 * @param txq
3727 */
3728 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3729 struct clx2_tx_queue *txq)
3730 {
3731 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3732 struct pci_dev *dev = priv->pci_dev;
3733 int i;
3734
3735 /* classify bd */
3736 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3737 /* nothing to cleanup after for host commands */
3738 return;
3739
3740 /* sanity check */
3741 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3742 IPW_ERROR("Too many chunks: %i\n",
3743 le32_to_cpu(bd->u.data.num_chunks));
3744 /** @todo issue fatal error, it is quite serious situation */
3745 return;
3746 }
3747
3748 /* unmap chunks if any */
3749 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3750 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3751 le16_to_cpu(bd->u.data.chunk_len[i]),
3752 PCI_DMA_TODEVICE);
3753 if (txq->txb[txq->q.last_used]) {
3754 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3755 txq->txb[txq->q.last_used] = NULL;
3756 }
3757 }
3758 }
3759
3760 /**
3761 * Deallocate DMA queue.
3762 *
3763 * Empty queue by removing and destroying all BD's.
3764 * Free all buffers.
3765 *
3766 * @param dev
3767 * @param q
3768 */
3769 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3770 {
3771 struct clx2_queue *q = &txq->q;
3772 struct pci_dev *dev = priv->pci_dev;
3773
3774 if (q->n_bd == 0)
3775 return;
3776
3777 /* first, empty all BD's */
3778 for (; q->first_empty != q->last_used;
3779 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3780 ipw_queue_tx_free_tfd(priv, txq);
3781 }
3782
3783 /* free buffers belonging to queue itself */
3784 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3785 q->dma_addr);
3786 kfree(txq->txb);
3787
3788 /* 0 fill whole structure */
3789 memset(txq, 0, sizeof(*txq));
3790 }
3791
3792 /**
3793 * Destroy all DMA queues and structures
3794 *
3795 * @param priv
3796 */
3797 static void ipw_tx_queue_free(struct ipw_priv *priv)
3798 {
3799 /* Tx CMD queue */
3800 ipw_queue_tx_free(priv, &priv->txq_cmd);
3801
3802 /* Tx queues */
3803 ipw_queue_tx_free(priv, &priv->txq[0]);
3804 ipw_queue_tx_free(priv, &priv->txq[1]);
3805 ipw_queue_tx_free(priv, &priv->txq[2]);
3806 ipw_queue_tx_free(priv, &priv->txq[3]);
3807 }
3808
3809 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3810 {
3811 /* First 3 bytes are manufacturer */
3812 bssid[0] = priv->mac_addr[0];
3813 bssid[1] = priv->mac_addr[1];
3814 bssid[2] = priv->mac_addr[2];
3815
3816 /* Last bytes are random */
3817 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3818
3819 bssid[0] &= 0xfe; /* clear multicast bit */
3820 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3821 }
3822
3823 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3824 {
3825 struct ipw_station_entry entry;
3826 int i;
3827
3828 for (i = 0; i < priv->num_stations; i++) {
3829 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3830 /* Another node is active in network */
3831 priv->missed_adhoc_beacons = 0;
3832 if (!(priv->config & CFG_STATIC_CHANNEL))
3833 /* when other nodes drop out, we drop out */
3834 priv->config &= ~CFG_ADHOC_PERSIST;
3835
3836 return i;
3837 }
3838 }
3839
3840 if (i == MAX_STATIONS)
3841 return IPW_INVALID_STATION;
3842
3843 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3844
3845 entry.reserved = 0;
3846 entry.support_mode = 0;
3847 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3848 memcpy(priv->stations[i], bssid, ETH_ALEN);
3849 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3850 &entry, sizeof(entry));
3851 priv->num_stations++;
3852
3853 return i;
3854 }
3855
3856 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3857 {
3858 int i;
3859
3860 for (i = 0; i < priv->num_stations; i++)
3861 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3862 return i;
3863
3864 return IPW_INVALID_STATION;
3865 }
3866
3867 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3868 {
3869 int err;
3870
3871 if (priv->status & STATUS_ASSOCIATING) {
3872 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3873 queue_work(priv->workqueue, &priv->disassociate);
3874 return;
3875 }
3876
3877 if (!(priv->status & STATUS_ASSOCIATED)) {
3878 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3879 return;
3880 }
3881
3882 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3883 "on channel %d.\n",
3884 priv->assoc_request.bssid,
3885 priv->assoc_request.channel);
3886
3887 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3888 priv->status |= STATUS_DISASSOCIATING;
3889
3890 if (quiet)
3891 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3892 else
3893 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3894
3895 err = ipw_send_associate(priv, &priv->assoc_request);
3896 if (err) {
3897 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3898 "failed.\n");
3899 return;
3900 }
3901
3902 }
3903
3904 static int ipw_disassociate(void *data)
3905 {
3906 struct ipw_priv *priv = data;
3907 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3908 return 0;
3909 ipw_send_disassociate(data, 0);
3910 netif_carrier_off(priv->net_dev);
3911 return 1;
3912 }
3913
3914 static void ipw_bg_disassociate(struct work_struct *work)
3915 {
3916 struct ipw_priv *priv =
3917 container_of(work, struct ipw_priv, disassociate);
3918 mutex_lock(&priv->mutex);
3919 ipw_disassociate(priv);
3920 mutex_unlock(&priv->mutex);
3921 }
3922
3923 static void ipw_system_config(struct work_struct *work)
3924 {
3925 struct ipw_priv *priv =
3926 container_of(work, struct ipw_priv, system_config);
3927
3928 #ifdef CONFIG_IPW2200_PROMISCUOUS
3929 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3930 priv->sys_config.accept_all_data_frames = 1;
3931 priv->sys_config.accept_non_directed_frames = 1;
3932 priv->sys_config.accept_all_mgmt_bcpr = 1;
3933 priv->sys_config.accept_all_mgmt_frames = 1;
3934 }
3935 #endif
3936
3937 ipw_send_system_config(priv);
3938 }
3939
3940 struct ipw_status_code {
3941 u16 status;
3942 const char *reason;
3943 };
3944
3945 static const struct ipw_status_code ipw_status_codes[] = {
3946 {0x00, "Successful"},
3947 {0x01, "Unspecified failure"},
3948 {0x0A, "Cannot support all requested capabilities in the "
3949 "Capability information field"},
3950 {0x0B, "Reassociation denied due to inability to confirm that "
3951 "association exists"},
3952 {0x0C, "Association denied due to reason outside the scope of this "
3953 "standard"},
3954 {0x0D,
3955 "Responding station does not support the specified authentication "
3956 "algorithm"},
3957 {0x0E,
3958 "Received an Authentication frame with authentication sequence "
3959 "transaction sequence number out of expected sequence"},
3960 {0x0F, "Authentication rejected because of challenge failure"},
3961 {0x10, "Authentication rejected due to timeout waiting for next "
3962 "frame in sequence"},
3963 {0x11, "Association denied because AP is unable to handle additional "
3964 "associated stations"},
3965 {0x12,
3966 "Association denied due to requesting station not supporting all "
3967 "of the datarates in the BSSBasicServiceSet Parameter"},
3968 {0x13,
3969 "Association denied due to requesting station not supporting "
3970 "short preamble operation"},
3971 {0x14,
3972 "Association denied due to requesting station not supporting "
3973 "PBCC encoding"},
3974 {0x15,
3975 "Association denied due to requesting station not supporting "
3976 "channel agility"},
3977 {0x19,
3978 "Association denied due to requesting station not supporting "
3979 "short slot operation"},
3980 {0x1A,
3981 "Association denied due to requesting station not supporting "
3982 "DSSS-OFDM operation"},
3983 {0x28, "Invalid Information Element"},
3984 {0x29, "Group Cipher is not valid"},
3985 {0x2A, "Pairwise Cipher is not valid"},
3986 {0x2B, "AKMP is not valid"},
3987 {0x2C, "Unsupported RSN IE version"},
3988 {0x2D, "Invalid RSN IE Capabilities"},
3989 {0x2E, "Cipher suite is rejected per security policy"},
3990 };
3991
3992 static const char *ipw_get_status_code(u16 status)
3993 {
3994 int i;
3995 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3996 if (ipw_status_codes[i].status == (status & 0xff))
3997 return ipw_status_codes[i].reason;
3998 return "Unknown status value.";
3999 }
4000
4001 static void inline average_init(struct average *avg)
4002 {
4003 memset(avg, 0, sizeof(*avg));
4004 }
4005
4006 #define DEPTH_RSSI 8
4007 #define DEPTH_NOISE 16
4008 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4009 {
4010 return ((depth-1)*prev_avg + val)/depth;
4011 }
4012
4013 static void average_add(struct average *avg, s16 val)
4014 {
4015 avg->sum -= avg->entries[avg->pos];
4016 avg->sum += val;
4017 avg->entries[avg->pos++] = val;
4018 if (unlikely(avg->pos == AVG_ENTRIES)) {
4019 avg->init = 1;
4020 avg->pos = 0;
4021 }
4022 }
4023
4024 static s16 average_value(struct average *avg)
4025 {
4026 if (!unlikely(avg->init)) {
4027 if (avg->pos)
4028 return avg->sum / avg->pos;
4029 return 0;
4030 }
4031
4032 return avg->sum / AVG_ENTRIES;
4033 }
4034
4035 static void ipw_reset_stats(struct ipw_priv *priv)
4036 {
4037 u32 len = sizeof(u32);
4038
4039 priv->quality = 0;
4040
4041 average_init(&priv->average_missed_beacons);
4042 priv->exp_avg_rssi = -60;
4043 priv->exp_avg_noise = -85 + 0x100;
4044
4045 priv->last_rate = 0;
4046 priv->last_missed_beacons = 0;
4047 priv->last_rx_packets = 0;
4048 priv->last_tx_packets = 0;
4049 priv->last_tx_failures = 0;
4050
4051 /* Firmware managed, reset only when NIC is restarted, so we have to
4052 * normalize on the current value */
4053 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4054 &priv->last_rx_err, &len);
4055 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4056 &priv->last_tx_failures, &len);
4057
4058 /* Driver managed, reset with each association */
4059 priv->missed_adhoc_beacons = 0;
4060 priv->missed_beacons = 0;
4061 priv->tx_packets = 0;
4062 priv->rx_packets = 0;
4063
4064 }
4065
4066 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4067 {
4068 u32 i = 0x80000000;
4069 u32 mask = priv->rates_mask;
4070 /* If currently associated in B mode, restrict the maximum
4071 * rate match to B rates */
4072 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4073 mask &= IEEE80211_CCK_RATES_MASK;
4074
4075 /* TODO: Verify that the rate is supported by the current rates
4076 * list. */
4077
4078 while (i && !(mask & i))
4079 i >>= 1;
4080 switch (i) {
4081 case IEEE80211_CCK_RATE_1MB_MASK:
4082 return 1000000;
4083 case IEEE80211_CCK_RATE_2MB_MASK:
4084 return 2000000;
4085 case IEEE80211_CCK_RATE_5MB_MASK:
4086 return 5500000;
4087 case IEEE80211_OFDM_RATE_6MB_MASK:
4088 return 6000000;
4089 case IEEE80211_OFDM_RATE_9MB_MASK:
4090 return 9000000;
4091 case IEEE80211_CCK_RATE_11MB_MASK:
4092 return 11000000;
4093 case IEEE80211_OFDM_RATE_12MB_MASK:
4094 return 12000000;
4095 case IEEE80211_OFDM_RATE_18MB_MASK:
4096 return 18000000;
4097 case IEEE80211_OFDM_RATE_24MB_MASK:
4098 return 24000000;
4099 case IEEE80211_OFDM_RATE_36MB_MASK:
4100 return 36000000;
4101 case IEEE80211_OFDM_RATE_48MB_MASK:
4102 return 48000000;
4103 case IEEE80211_OFDM_RATE_54MB_MASK:
4104 return 54000000;
4105 }
4106
4107 if (priv->ieee->mode == IEEE_B)
4108 return 11000000;
4109 else
4110 return 54000000;
4111 }
4112
4113 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4114 {
4115 u32 rate, len = sizeof(rate);
4116 int err;
4117
4118 if (!(priv->status & STATUS_ASSOCIATED))
4119 return 0;
4120
4121 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4122 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4123 &len);
4124 if (err) {
4125 IPW_DEBUG_INFO("failed querying ordinals.\n");
4126 return 0;
4127 }
4128 } else
4129 return ipw_get_max_rate(priv);
4130
4131 switch (rate) {
4132 case IPW_TX_RATE_1MB:
4133 return 1000000;
4134 case IPW_TX_RATE_2MB:
4135 return 2000000;
4136 case IPW_TX_RATE_5MB:
4137 return 5500000;
4138 case IPW_TX_RATE_6MB:
4139 return 6000000;
4140 case IPW_TX_RATE_9MB:
4141 return 9000000;
4142 case IPW_TX_RATE_11MB:
4143 return 11000000;
4144 case IPW_TX_RATE_12MB:
4145 return 12000000;
4146 case IPW_TX_RATE_18MB:
4147 return 18000000;
4148 case IPW_TX_RATE_24MB:
4149 return 24000000;
4150 case IPW_TX_RATE_36MB:
4151 return 36000000;
4152 case IPW_TX_RATE_48MB:
4153 return 48000000;
4154 case IPW_TX_RATE_54MB:
4155 return 54000000;
4156 }
4157
4158 return 0;
4159 }
4160
4161 #define IPW_STATS_INTERVAL (2 * HZ)
4162 static void ipw_gather_stats(struct ipw_priv *priv)
4163 {
4164 u32 rx_err, rx_err_delta, rx_packets_delta;
4165 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4166 u32 missed_beacons_percent, missed_beacons_delta;
4167 u32 quality = 0;
4168 u32 len = sizeof(u32);
4169 s16 rssi;
4170 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4171 rate_quality;
4172 u32 max_rate;
4173
4174 if (!(priv->status & STATUS_ASSOCIATED)) {
4175 priv->quality = 0;
4176 return;
4177 }
4178
4179 /* Update the statistics */
4180 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4181 &priv->missed_beacons, &len);
4182 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4183 priv->last_missed_beacons = priv->missed_beacons;
4184 if (priv->assoc_request.beacon_interval) {
4185 missed_beacons_percent = missed_beacons_delta *
4186 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4187 (IPW_STATS_INTERVAL * 10);
4188 } else {
4189 missed_beacons_percent = 0;
4190 }
4191 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4192
4193 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4194 rx_err_delta = rx_err - priv->last_rx_err;
4195 priv->last_rx_err = rx_err;
4196
4197 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4198 tx_failures_delta = tx_failures - priv->last_tx_failures;
4199 priv->last_tx_failures = tx_failures;
4200
4201 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4202 priv->last_rx_packets = priv->rx_packets;
4203
4204 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4205 priv->last_tx_packets = priv->tx_packets;
4206
4207 /* Calculate quality based on the following:
4208 *
4209 * Missed beacon: 100% = 0, 0% = 70% missed
4210 * Rate: 60% = 1Mbs, 100% = Max
4211 * Rx and Tx errors represent a straight % of total Rx/Tx
4212 * RSSI: 100% = > -50, 0% = < -80
4213 * Rx errors: 100% = 0, 0% = 50% missed
4214 *
4215 * The lowest computed quality is used.
4216 *
4217 */
4218 #define BEACON_THRESHOLD 5
4219 beacon_quality = 100 - missed_beacons_percent;
4220 if (beacon_quality < BEACON_THRESHOLD)
4221 beacon_quality = 0;
4222 else
4223 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4224 (100 - BEACON_THRESHOLD);
4225 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4226 beacon_quality, missed_beacons_percent);
4227
4228 priv->last_rate = ipw_get_current_rate(priv);
4229 max_rate = ipw_get_max_rate(priv);
4230 rate_quality = priv->last_rate * 40 / max_rate + 60;
4231 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4232 rate_quality, priv->last_rate / 1000000);
4233
4234 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4235 rx_quality = 100 - (rx_err_delta * 100) /
4236 (rx_packets_delta + rx_err_delta);
4237 else
4238 rx_quality = 100;
4239 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4240 rx_quality, rx_err_delta, rx_packets_delta);
4241
4242 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4243 tx_quality = 100 - (tx_failures_delta * 100) /
4244 (tx_packets_delta + tx_failures_delta);
4245 else
4246 tx_quality = 100;
4247 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4248 tx_quality, tx_failures_delta, tx_packets_delta);
4249
4250 rssi = priv->exp_avg_rssi;
4251 signal_quality =
4252 (100 *
4253 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4254 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4255 (priv->ieee->perfect_rssi - rssi) *
4256 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4257 62 * (priv->ieee->perfect_rssi - rssi))) /
4258 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4259 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4260 if (signal_quality > 100)
4261 signal_quality = 100;
4262 else if (signal_quality < 1)
4263 signal_quality = 0;
4264
4265 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4266 signal_quality, rssi);
4267
4268 quality = min(beacon_quality,
4269 min(rate_quality,
4270 min(tx_quality, min(rx_quality, signal_quality))));
4271 if (quality == beacon_quality)
4272 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4273 quality);
4274 if (quality == rate_quality)
4275 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4276 quality);
4277 if (quality == tx_quality)
4278 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4279 quality);
4280 if (quality == rx_quality)
4281 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4282 quality);
4283 if (quality == signal_quality)
4284 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4285 quality);
4286
4287 priv->quality = quality;
4288
4289 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4290 IPW_STATS_INTERVAL);
4291 }
4292
4293 static void ipw_bg_gather_stats(struct work_struct *work)
4294 {
4295 struct ipw_priv *priv =
4296 container_of(work, struct ipw_priv, gather_stats.work);
4297 mutex_lock(&priv->mutex);
4298 ipw_gather_stats(priv);
4299 mutex_unlock(&priv->mutex);
4300 }
4301
4302 /* Missed beacon behavior:
4303 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4304 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4305 * Above disassociate threshold, give up and stop scanning.
4306 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4307 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4308 int missed_count)
4309 {
4310 priv->notif_missed_beacons = missed_count;
4311
4312 if (missed_count > priv->disassociate_threshold &&
4313 priv->status & STATUS_ASSOCIATED) {
4314 /* If associated and we've hit the missed
4315 * beacon threshold, disassociate, turn
4316 * off roaming, and abort any active scans */
4317 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4318 IPW_DL_STATE | IPW_DL_ASSOC,
4319 "Missed beacon: %d - disassociate\n", missed_count);
4320 priv->status &= ~STATUS_ROAMING;
4321 if (priv->status & STATUS_SCANNING) {
4322 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4323 IPW_DL_STATE,
4324 "Aborting scan with missed beacon.\n");
4325 queue_work(priv->workqueue, &priv->abort_scan);
4326 }
4327
4328 queue_work(priv->workqueue, &priv->disassociate);
4329 return;
4330 }
4331
4332 if (priv->status & STATUS_ROAMING) {
4333 /* If we are currently roaming, then just
4334 * print a debug statement... */
4335 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4336 "Missed beacon: %d - roam in progress\n",
4337 missed_count);
4338 return;
4339 }
4340
4341 if (roaming &&
4342 (missed_count > priv->roaming_threshold &&
4343 missed_count <= priv->disassociate_threshold)) {
4344 /* If we are not already roaming, set the ROAM
4345 * bit in the status and kick off a scan.
4346 * This can happen several times before we reach
4347 * disassociate_threshold. */
4348 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4349 "Missed beacon: %d - initiate "
4350 "roaming\n", missed_count);
4351 if (!(priv->status & STATUS_ROAMING)) {
4352 priv->status |= STATUS_ROAMING;
4353 if (!(priv->status & STATUS_SCANNING))
4354 queue_delayed_work(priv->workqueue,
4355 &priv->request_scan, 0);
4356 }
4357 return;
4358 }
4359
4360 if (priv->status & STATUS_SCANNING &&
4361 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4362 /* Stop scan to keep fw from getting
4363 * stuck (only if we aren't roaming --
4364 * otherwise we'll never scan more than 2 or 3
4365 * channels..) */
4366 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4367 "Aborting scan with missed beacon.\n");
4368 queue_work(priv->workqueue, &priv->abort_scan);
4369 }
4370
4371 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4372 }
4373
4374 static void ipw_scan_event(struct work_struct *work)
4375 {
4376 union iwreq_data wrqu;
4377
4378 struct ipw_priv *priv =
4379 container_of(work, struct ipw_priv, scan_event.work);
4380
4381 wrqu.data.length = 0;
4382 wrqu.data.flags = 0;
4383 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4384 }
4385
4386 static void handle_scan_event(struct ipw_priv *priv)
4387 {
4388 /* Only userspace-requested scan completion events go out immediately */
4389 if (!priv->user_requested_scan) {
4390 if (!delayed_work_pending(&priv->scan_event))
4391 queue_delayed_work(priv->workqueue, &priv->scan_event,
4392 round_jiffies_relative(msecs_to_jiffies(4000)));
4393 } else {
4394 union iwreq_data wrqu;
4395
4396 priv->user_requested_scan = 0;
4397 cancel_delayed_work(&priv->scan_event);
4398
4399 wrqu.data.length = 0;
4400 wrqu.data.flags = 0;
4401 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4402 }
4403 }
4404
4405 /**
4406 * Handle host notification packet.
4407 * Called from interrupt routine
4408 */
4409 static void ipw_rx_notification(struct ipw_priv *priv,
4410 struct ipw_rx_notification *notif)
4411 {
4412 DECLARE_SSID_BUF(ssid);
4413 u16 size = le16_to_cpu(notif->size);
4414 notif->size = le16_to_cpu(notif->size);
4415
4416 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4417
4418 switch (notif->subtype) {
4419 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4420 struct notif_association *assoc = &notif->u.assoc;
4421
4422 switch (assoc->state) {
4423 case CMAS_ASSOCIATED:{
4424 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4425 IPW_DL_ASSOC,
4426 "associated: '%s' %pM \n",
4427 print_ssid(ssid, priv->essid,
4428 priv->essid_len),
4429 priv->bssid);
4430
4431 switch (priv->ieee->iw_mode) {
4432 case IW_MODE_INFRA:
4433 memcpy(priv->ieee->bssid,
4434 priv->bssid, ETH_ALEN);
4435 break;
4436
4437 case IW_MODE_ADHOC:
4438 memcpy(priv->ieee->bssid,
4439 priv->bssid, ETH_ALEN);
4440
4441 /* clear out the station table */
4442 priv->num_stations = 0;
4443
4444 IPW_DEBUG_ASSOC
4445 ("queueing adhoc check\n");
4446 queue_delayed_work(priv->
4447 workqueue,
4448 &priv->
4449 adhoc_check,
4450 le16_to_cpu(priv->
4451 assoc_request.
4452 beacon_interval));
4453 break;
4454 }
4455
4456 priv->status &= ~STATUS_ASSOCIATING;
4457 priv->status |= STATUS_ASSOCIATED;
4458 queue_work(priv->workqueue,
4459 &priv->system_config);
4460
4461 #ifdef CONFIG_IPW2200_QOS
4462 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4463 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4464 if ((priv->status & STATUS_AUTH) &&
4465 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4466 == IEEE80211_STYPE_ASSOC_RESP)) {
4467 if ((sizeof
4468 (struct
4469 ieee80211_assoc_response)
4470 <= size)
4471 && (size <= 2314)) {
4472 struct
4473 ieee80211_rx_stats
4474 stats = {
4475 .len = size - 1,
4476 };
4477
4478 IPW_DEBUG_QOS
4479 ("QoS Associate "
4480 "size %d\n", size);
4481 ieee80211_rx_mgt(priv->
4482 ieee,
4483 (struct
4484 ieee80211_hdr_4addr
4485 *)
4486 &notif->u.raw, &stats);
4487 }
4488 }
4489 #endif
4490
4491 schedule_work(&priv->link_up);
4492
4493 break;
4494 }
4495
4496 case CMAS_AUTHENTICATED:{
4497 if (priv->
4498 status & (STATUS_ASSOCIATED |
4499 STATUS_AUTH)) {
4500 struct notif_authenticate *auth
4501 = &notif->u.auth;
4502 IPW_DEBUG(IPW_DL_NOTIF |
4503 IPW_DL_STATE |
4504 IPW_DL_ASSOC,
4505 "deauthenticated: '%s' "
4506 "%pM"
4507 ": (0x%04X) - %s \n",
4508 print_ssid(ssid,
4509 priv->
4510 essid,
4511 priv->
4512 essid_len),
4513 priv->bssid,
4514 le16_to_cpu(auth->status),
4515 ipw_get_status_code
4516 (le16_to_cpu
4517 (auth->status)));
4518
4519 priv->status &=
4520 ~(STATUS_ASSOCIATING |
4521 STATUS_AUTH |
4522 STATUS_ASSOCIATED);
4523
4524 schedule_work(&priv->link_down);
4525 break;
4526 }
4527
4528 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4529 IPW_DL_ASSOC,
4530 "authenticated: '%s' %pM\n",
4531 print_ssid(ssid, priv->essid,
4532 priv->essid_len),
4533 priv->bssid);
4534 break;
4535 }
4536
4537 case CMAS_INIT:{
4538 if (priv->status & STATUS_AUTH) {
4539 struct
4540 ieee80211_assoc_response
4541 *resp;
4542 resp =
4543 (struct
4544 ieee80211_assoc_response
4545 *)&notif->u.raw;
4546 IPW_DEBUG(IPW_DL_NOTIF |
4547 IPW_DL_STATE |
4548 IPW_DL_ASSOC,
4549 "association failed (0x%04X): %s\n",
4550 le16_to_cpu(resp->status),
4551 ipw_get_status_code
4552 (le16_to_cpu
4553 (resp->status)));
4554 }
4555
4556 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4557 IPW_DL_ASSOC,
4558 "disassociated: '%s' %pM \n",
4559 print_ssid(ssid, priv->essid,
4560 priv->essid_len),
4561 priv->bssid);
4562
4563 priv->status &=
4564 ~(STATUS_DISASSOCIATING |
4565 STATUS_ASSOCIATING |
4566 STATUS_ASSOCIATED | STATUS_AUTH);
4567 if (priv->assoc_network
4568 && (priv->assoc_network->
4569 capability &
4570 WLAN_CAPABILITY_IBSS))
4571 ipw_remove_current_network
4572 (priv);
4573
4574 schedule_work(&priv->link_down);
4575
4576 break;
4577 }
4578
4579 case CMAS_RX_ASSOC_RESP:
4580 break;
4581
4582 default:
4583 IPW_ERROR("assoc: unknown (%d)\n",
4584 assoc->state);
4585 break;
4586 }
4587
4588 break;
4589 }
4590
4591 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4592 struct notif_authenticate *auth = &notif->u.auth;
4593 switch (auth->state) {
4594 case CMAS_AUTHENTICATED:
4595 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4596 "authenticated: '%s' %pM \n",
4597 print_ssid(ssid, priv->essid,
4598 priv->essid_len),
4599 priv->bssid);
4600 priv->status |= STATUS_AUTH;
4601 break;
4602
4603 case CMAS_INIT:
4604 if (priv->status & STATUS_AUTH) {
4605 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4606 IPW_DL_ASSOC,
4607 "authentication failed (0x%04X): %s\n",
4608 le16_to_cpu(auth->status),
4609 ipw_get_status_code(le16_to_cpu
4610 (auth->
4611 status)));
4612 }
4613 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4614 IPW_DL_ASSOC,
4615 "deauthenticated: '%s' %pM\n",
4616 print_ssid(ssid, priv->essid,
4617 priv->essid_len),
4618 priv->bssid);
4619
4620 priv->status &= ~(STATUS_ASSOCIATING |
4621 STATUS_AUTH |
4622 STATUS_ASSOCIATED);
4623
4624 schedule_work(&priv->link_down);
4625 break;
4626
4627 case CMAS_TX_AUTH_SEQ_1:
4628 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4629 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4630 break;
4631 case CMAS_RX_AUTH_SEQ_2:
4632 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4633 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4634 break;
4635 case CMAS_AUTH_SEQ_1_PASS:
4636 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4637 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4638 break;
4639 case CMAS_AUTH_SEQ_1_FAIL:
4640 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4641 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4642 break;
4643 case CMAS_TX_AUTH_SEQ_3:
4644 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4645 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4646 break;
4647 case CMAS_RX_AUTH_SEQ_4:
4648 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4649 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4650 break;
4651 case CMAS_AUTH_SEQ_2_PASS:
4652 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4653 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4654 break;
4655 case CMAS_AUTH_SEQ_2_FAIL:
4656 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4657 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4658 break;
4659 case CMAS_TX_ASSOC:
4660 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4661 IPW_DL_ASSOC, "TX_ASSOC\n");
4662 break;
4663 case CMAS_RX_ASSOC_RESP:
4664 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4665 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4666
4667 break;
4668 case CMAS_ASSOCIATED:
4669 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4670 IPW_DL_ASSOC, "ASSOCIATED\n");
4671 break;
4672 default:
4673 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4674 auth->state);
4675 break;
4676 }
4677 break;
4678 }
4679
4680 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4681 struct notif_channel_result *x =
4682 &notif->u.channel_result;
4683
4684 if (size == sizeof(*x)) {
4685 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4686 x->channel_num);
4687 } else {
4688 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4689 "(should be %zd)\n",
4690 size, sizeof(*x));
4691 }
4692 break;
4693 }
4694
4695 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4696 struct notif_scan_complete *x = &notif->u.scan_complete;
4697 if (size == sizeof(*x)) {
4698 IPW_DEBUG_SCAN
4699 ("Scan completed: type %d, %d channels, "
4700 "%d status\n", x->scan_type,
4701 x->num_channels, x->status);
4702 } else {
4703 IPW_ERROR("Scan completed of wrong size %d "
4704 "(should be %zd)\n",
4705 size, sizeof(*x));
4706 }
4707
4708 priv->status &=
4709 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4710
4711 wake_up_interruptible(&priv->wait_state);
4712 cancel_delayed_work(&priv->scan_check);
4713
4714 if (priv->status & STATUS_EXIT_PENDING)
4715 break;
4716
4717 priv->ieee->scans++;
4718
4719 #ifdef CONFIG_IPW2200_MONITOR
4720 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4721 priv->status |= STATUS_SCAN_FORCED;
4722 queue_delayed_work(priv->workqueue,
4723 &priv->request_scan, 0);
4724 break;
4725 }
4726 priv->status &= ~STATUS_SCAN_FORCED;
4727 #endif /* CONFIG_IPW2200_MONITOR */
4728
4729 /* Do queued direct scans first */
4730 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4731 queue_delayed_work(priv->workqueue,
4732 &priv->request_direct_scan, 0);
4733 }
4734
4735 if (!(priv->status & (STATUS_ASSOCIATED |
4736 STATUS_ASSOCIATING |
4737 STATUS_ROAMING |
4738 STATUS_DISASSOCIATING)))
4739 queue_work(priv->workqueue, &priv->associate);
4740 else if (priv->status & STATUS_ROAMING) {
4741 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4742 /* If a scan completed and we are in roam mode, then
4743 * the scan that completed was the one requested as a
4744 * result of entering roam... so, schedule the
4745 * roam work */
4746 queue_work(priv->workqueue,
4747 &priv->roam);
4748 else
4749 /* Don't schedule if we aborted the scan */
4750 priv->status &= ~STATUS_ROAMING;
4751 } else if (priv->status & STATUS_SCAN_PENDING)
4752 queue_delayed_work(priv->workqueue,
4753 &priv->request_scan, 0);
4754 else if (priv->config & CFG_BACKGROUND_SCAN
4755 && priv->status & STATUS_ASSOCIATED)
4756 queue_delayed_work(priv->workqueue,
4757 &priv->request_scan,
4758 round_jiffies_relative(HZ));
4759
4760 /* Send an empty event to user space.
4761 * We don't send the received data on the event because
4762 * it would require us to do complex transcoding, and
4763 * we want to minimise the work done in the irq handler
4764 * Use a request to extract the data.
4765 * Also, we generate this even for any scan, regardless
4766 * on how the scan was initiated. User space can just
4767 * sync on periodic scan to get fresh data...
4768 * Jean II */
4769 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4770 handle_scan_event(priv);
4771 break;
4772 }
4773
4774 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4775 struct notif_frag_length *x = &notif->u.frag_len;
4776
4777 if (size == sizeof(*x))
4778 IPW_ERROR("Frag length: %d\n",
4779 le16_to_cpu(x->frag_length));
4780 else
4781 IPW_ERROR("Frag length of wrong size %d "
4782 "(should be %zd)\n",
4783 size, sizeof(*x));
4784 break;
4785 }
4786
4787 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4788 struct notif_link_deterioration *x =
4789 &notif->u.link_deterioration;
4790
4791 if (size == sizeof(*x)) {
4792 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4793 "link deterioration: type %d, cnt %d\n",
4794 x->silence_notification_type,
4795 x->silence_count);
4796 memcpy(&priv->last_link_deterioration, x,
4797 sizeof(*x));
4798 } else {
4799 IPW_ERROR("Link Deterioration of wrong size %d "
4800 "(should be %zd)\n",
4801 size, sizeof(*x));
4802 }
4803 break;
4804 }
4805
4806 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4807 IPW_ERROR("Dino config\n");
4808 if (priv->hcmd
4809 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4810 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4811
4812 break;
4813 }
4814
4815 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4816 struct notif_beacon_state *x = &notif->u.beacon_state;
4817 if (size != sizeof(*x)) {
4818 IPW_ERROR
4819 ("Beacon state of wrong size %d (should "
4820 "be %zd)\n", size, sizeof(*x));
4821 break;
4822 }
4823
4824 if (le32_to_cpu(x->state) ==
4825 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4826 ipw_handle_missed_beacon(priv,
4827 le32_to_cpu(x->
4828 number));
4829
4830 break;
4831 }
4832
4833 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4834 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4835 if (size == sizeof(*x)) {
4836 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4837 "0x%02x station %d\n",
4838 x->key_state, x->security_type,
4839 x->station_index);
4840 break;
4841 }
4842
4843 IPW_ERROR
4844 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4845 size, sizeof(*x));
4846 break;
4847 }
4848
4849 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4850 struct notif_calibration *x = &notif->u.calibration;
4851
4852 if (size == sizeof(*x)) {
4853 memcpy(&priv->calib, x, sizeof(*x));
4854 IPW_DEBUG_INFO("TODO: Calibration\n");
4855 break;
4856 }
4857
4858 IPW_ERROR
4859 ("Calibration of wrong size %d (should be %zd)\n",
4860 size, sizeof(*x));
4861 break;
4862 }
4863
4864 case HOST_NOTIFICATION_NOISE_STATS:{
4865 if (size == sizeof(u32)) {
4866 priv->exp_avg_noise =
4867 exponential_average(priv->exp_avg_noise,
4868 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4869 DEPTH_NOISE);
4870 break;
4871 }
4872
4873 IPW_ERROR
4874 ("Noise stat is wrong size %d (should be %zd)\n",
4875 size, sizeof(u32));
4876 break;
4877 }
4878
4879 default:
4880 IPW_DEBUG_NOTIF("Unknown notification: "
4881 "subtype=%d,flags=0x%2x,size=%d\n",
4882 notif->subtype, notif->flags, size);
4883 }
4884 }
4885
4886 /**
4887 * Destroys all DMA structures and initialise them again
4888 *
4889 * @param priv
4890 * @return error code
4891 */
4892 static int ipw_queue_reset(struct ipw_priv *priv)
4893 {
4894 int rc = 0;
4895 /** @todo customize queue sizes */
4896 int nTx = 64, nTxCmd = 8;
4897 ipw_tx_queue_free(priv);
4898 /* Tx CMD queue */
4899 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4900 IPW_TX_CMD_QUEUE_READ_INDEX,
4901 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4902 IPW_TX_CMD_QUEUE_BD_BASE,
4903 IPW_TX_CMD_QUEUE_BD_SIZE);
4904 if (rc) {
4905 IPW_ERROR("Tx Cmd queue init failed\n");
4906 goto error;
4907 }
4908 /* Tx queue(s) */
4909 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4910 IPW_TX_QUEUE_0_READ_INDEX,
4911 IPW_TX_QUEUE_0_WRITE_INDEX,
4912 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4913 if (rc) {
4914 IPW_ERROR("Tx 0 queue init failed\n");
4915 goto error;
4916 }
4917 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4918 IPW_TX_QUEUE_1_READ_INDEX,
4919 IPW_TX_QUEUE_1_WRITE_INDEX,
4920 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4921 if (rc) {
4922 IPW_ERROR("Tx 1 queue init failed\n");
4923 goto error;
4924 }
4925 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4926 IPW_TX_QUEUE_2_READ_INDEX,
4927 IPW_TX_QUEUE_2_WRITE_INDEX,
4928 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4929 if (rc) {
4930 IPW_ERROR("Tx 2 queue init failed\n");
4931 goto error;
4932 }
4933 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4934 IPW_TX_QUEUE_3_READ_INDEX,
4935 IPW_TX_QUEUE_3_WRITE_INDEX,
4936 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4937 if (rc) {
4938 IPW_ERROR("Tx 3 queue init failed\n");
4939 goto error;
4940 }
4941 /* statistics */
4942 priv->rx_bufs_min = 0;
4943 priv->rx_pend_max = 0;
4944 return rc;
4945
4946 error:
4947 ipw_tx_queue_free(priv);
4948 return rc;
4949 }
4950
4951 /**
4952 * Reclaim Tx queue entries no more used by NIC.
4953 *
4954 * When FW advances 'R' index, all entries between old and
4955 * new 'R' index need to be reclaimed. As result, some free space
4956 * forms. If there is enough free space (> low mark), wake Tx queue.
4957 *
4958 * @note Need to protect against garbage in 'R' index
4959 * @param priv
4960 * @param txq
4961 * @param qindex
4962 * @return Number of used entries remains in the queue
4963 */
4964 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4965 struct clx2_tx_queue *txq, int qindex)
4966 {
4967 u32 hw_tail;
4968 int used;
4969 struct clx2_queue *q = &txq->q;
4970
4971 hw_tail = ipw_read32(priv, q->reg_r);
4972 if (hw_tail >= q->n_bd) {
4973 IPW_ERROR
4974 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4975 hw_tail, q->n_bd);
4976 goto done;
4977 }
4978 for (; q->last_used != hw_tail;
4979 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4980 ipw_queue_tx_free_tfd(priv, txq);
4981 priv->tx_packets++;
4982 }
4983 done:
4984 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4985 (qindex >= 0))
4986 netif_wake_queue(priv->net_dev);
4987 used = q->first_empty - q->last_used;
4988 if (used < 0)
4989 used += q->n_bd;
4990
4991 return used;
4992 }
4993
4994 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4995 int len, int sync)
4996 {
4997 struct clx2_tx_queue *txq = &priv->txq_cmd;
4998 struct clx2_queue *q = &txq->q;
4999 struct tfd_frame *tfd;
5000
5001 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5002 IPW_ERROR("No space for Tx\n");
5003 return -EBUSY;
5004 }
5005
5006 tfd = &txq->bd[q->first_empty];
5007 txq->txb[q->first_empty] = NULL;
5008
5009 memset(tfd, 0, sizeof(*tfd));
5010 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5011 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5012 priv->hcmd_seq++;
5013 tfd->u.cmd.index = hcmd;
5014 tfd->u.cmd.length = len;
5015 memcpy(tfd->u.cmd.payload, buf, len);
5016 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5017 ipw_write32(priv, q->reg_w, q->first_empty);
5018 _ipw_read32(priv, 0x90);
5019
5020 return 0;
5021 }
5022
5023 /*
5024 * Rx theory of operation
5025 *
5026 * The host allocates 32 DMA target addresses and passes the host address
5027 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5028 * 0 to 31
5029 *
5030 * Rx Queue Indexes
5031 * The host/firmware share two index registers for managing the Rx buffers.
5032 *
5033 * The READ index maps to the first position that the firmware may be writing
5034 * to -- the driver can read up to (but not including) this position and get
5035 * good data.
5036 * The READ index is managed by the firmware once the card is enabled.
5037 *
5038 * The WRITE index maps to the last position the driver has read from -- the
5039 * position preceding WRITE is the last slot the firmware can place a packet.
5040 *
5041 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5042 * WRITE = READ.
5043 *
5044 * During initialization the host sets up the READ queue position to the first
5045 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5046 *
5047 * When the firmware places a packet in a buffer it will advance the READ index
5048 * and fire the RX interrupt. The driver can then query the READ index and
5049 * process as many packets as possible, moving the WRITE index forward as it
5050 * resets the Rx queue buffers with new memory.
5051 *
5052 * The management in the driver is as follows:
5053 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5054 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5055 * to replensish the ipw->rxq->rx_free.
5056 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5057 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5058 * 'processed' and 'read' driver indexes as well)
5059 * + A received packet is processed and handed to the kernel network stack,
5060 * detached from the ipw->rxq. The driver 'processed' index is updated.
5061 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5062 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5063 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5064 * were enough free buffers and RX_STALLED is set it is cleared.
5065 *
5066 *
5067 * Driver sequence:
5068 *
5069 * ipw_rx_queue_alloc() Allocates rx_free
5070 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5071 * ipw_rx_queue_restock
5072 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5073 * queue, updates firmware pointers, and updates
5074 * the WRITE index. If insufficient rx_free buffers
5075 * are available, schedules ipw_rx_queue_replenish
5076 *
5077 * -- enable interrupts --
5078 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5079 * READ INDEX, detaching the SKB from the pool.
5080 * Moves the packet buffer from queue to rx_used.
5081 * Calls ipw_rx_queue_restock to refill any empty
5082 * slots.
5083 * ...
5084 *
5085 */
5086
5087 /*
5088 * If there are slots in the RX queue that need to be restocked,
5089 * and we have free pre-allocated buffers, fill the ranks as much
5090 * as we can pulling from rx_free.
5091 *
5092 * This moves the 'write' index forward to catch up with 'processed', and
5093 * also updates the memory address in the firmware to reference the new
5094 * target buffer.
5095 */
5096 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5097 {
5098 struct ipw_rx_queue *rxq = priv->rxq;
5099 struct list_head *element;
5100 struct ipw_rx_mem_buffer *rxb;
5101 unsigned long flags;
5102 int write;
5103
5104 spin_lock_irqsave(&rxq->lock, flags);
5105 write = rxq->write;
5106 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5107 element = rxq->rx_free.next;
5108 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5109 list_del(element);
5110
5111 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5112 rxb->dma_addr);
5113 rxq->queue[rxq->write] = rxb;
5114 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5115 rxq->free_count--;
5116 }
5117 spin_unlock_irqrestore(&rxq->lock, flags);
5118
5119 /* If the pre-allocated buffer pool is dropping low, schedule to
5120 * refill it */
5121 if (rxq->free_count <= RX_LOW_WATERMARK)
5122 queue_work(priv->workqueue, &priv->rx_replenish);
5123
5124 /* If we've added more space for the firmware to place data, tell it */
5125 if (write != rxq->write)
5126 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5127 }
5128
5129 /*
5130 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5131 * Also restock the Rx queue via ipw_rx_queue_restock.
5132 *
5133 * This is called as a scheduled work item (except for during intialization)
5134 */
5135 static void ipw_rx_queue_replenish(void *data)
5136 {
5137 struct ipw_priv *priv = data;
5138 struct ipw_rx_queue *rxq = priv->rxq;
5139 struct list_head *element;
5140 struct ipw_rx_mem_buffer *rxb;
5141 unsigned long flags;
5142
5143 spin_lock_irqsave(&rxq->lock, flags);
5144 while (!list_empty(&rxq->rx_used)) {
5145 element = rxq->rx_used.next;
5146 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5147 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5148 if (!rxb->skb) {
5149 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5150 priv->net_dev->name);
5151 /* We don't reschedule replenish work here -- we will
5152 * call the restock method and if it still needs
5153 * more buffers it will schedule replenish */
5154 break;
5155 }
5156 list_del(element);
5157
5158 rxb->dma_addr =
5159 pci_map_single(priv->pci_dev, rxb->skb->data,
5160 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5161
5162 list_add_tail(&rxb->list, &rxq->rx_free);
5163 rxq->free_count++;
5164 }
5165 spin_unlock_irqrestore(&rxq->lock, flags);
5166
5167 ipw_rx_queue_restock(priv);
5168 }
5169
5170 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5171 {
5172 struct ipw_priv *priv =
5173 container_of(work, struct ipw_priv, rx_replenish);
5174 mutex_lock(&priv->mutex);
5175 ipw_rx_queue_replenish(priv);
5176 mutex_unlock(&priv->mutex);
5177 }
5178
5179 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5180 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5181 * This free routine walks the list of POOL entries and if SKB is set to
5182 * non NULL it is unmapped and freed
5183 */
5184 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5185 {
5186 int i;
5187
5188 if (!rxq)
5189 return;
5190
5191 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5192 if (rxq->pool[i].skb != NULL) {
5193 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5194 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5195 dev_kfree_skb(rxq->pool[i].skb);
5196 }
5197 }
5198
5199 kfree(rxq);
5200 }
5201
5202 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5203 {
5204 struct ipw_rx_queue *rxq;
5205 int i;
5206
5207 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5208 if (unlikely(!rxq)) {
5209 IPW_ERROR("memory allocation failed\n");
5210 return NULL;
5211 }
5212 spin_lock_init(&rxq->lock);
5213 INIT_LIST_HEAD(&rxq->rx_free);
5214 INIT_LIST_HEAD(&rxq->rx_used);
5215
5216 /* Fill the rx_used queue with _all_ of the Rx buffers */
5217 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5218 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5219
5220 /* Set us so that we have processed and used all buffers, but have
5221 * not restocked the Rx queue with fresh buffers */
5222 rxq->read = rxq->write = 0;
5223 rxq->free_count = 0;
5224
5225 return rxq;
5226 }
5227
5228 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5229 {
5230 rate &= ~IEEE80211_BASIC_RATE_MASK;
5231 if (ieee_mode == IEEE_A) {
5232 switch (rate) {
5233 case IEEE80211_OFDM_RATE_6MB:
5234 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5235 1 : 0;
5236 case IEEE80211_OFDM_RATE_9MB:
5237 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5238 1 : 0;
5239 case IEEE80211_OFDM_RATE_12MB:
5240 return priv->
5241 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5242 case IEEE80211_OFDM_RATE_18MB:
5243 return priv->
5244 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5245 case IEEE80211_OFDM_RATE_24MB:
5246 return priv->
5247 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5248 case IEEE80211_OFDM_RATE_36MB:
5249 return priv->
5250 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5251 case IEEE80211_OFDM_RATE_48MB:
5252 return priv->
5253 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5254 case IEEE80211_OFDM_RATE_54MB:
5255 return priv->
5256 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5257 default:
5258 return 0;
5259 }
5260 }
5261
5262 /* B and G mixed */
5263 switch (rate) {
5264 case IEEE80211_CCK_RATE_1MB:
5265 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5266 case IEEE80211_CCK_RATE_2MB:
5267 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5268 case IEEE80211_CCK_RATE_5MB:
5269 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5270 case IEEE80211_CCK_RATE_11MB:
5271 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5272 }
5273
5274 /* If we are limited to B modulations, bail at this point */
5275 if (ieee_mode == IEEE_B)
5276 return 0;
5277
5278 /* G */
5279 switch (rate) {
5280 case IEEE80211_OFDM_RATE_6MB:
5281 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5282 case IEEE80211_OFDM_RATE_9MB:
5283 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5284 case IEEE80211_OFDM_RATE_12MB:
5285 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5286 case IEEE80211_OFDM_RATE_18MB:
5287 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5288 case IEEE80211_OFDM_RATE_24MB:
5289 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5290 case IEEE80211_OFDM_RATE_36MB:
5291 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5292 case IEEE80211_OFDM_RATE_48MB:
5293 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5294 case IEEE80211_OFDM_RATE_54MB:
5295 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5296 }
5297
5298 return 0;
5299 }
5300
5301 static int ipw_compatible_rates(struct ipw_priv *priv,
5302 const struct ieee80211_network *network,
5303 struct ipw_supported_rates *rates)
5304 {
5305 int num_rates, i;
5306
5307 memset(rates, 0, sizeof(*rates));
5308 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5309 rates->num_rates = 0;
5310 for (i = 0; i < num_rates; i++) {
5311 if (!ipw_is_rate_in_mask(priv, network->mode,
5312 network->rates[i])) {
5313
5314 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5315 IPW_DEBUG_SCAN("Adding masked mandatory "
5316 "rate %02X\n",
5317 network->rates[i]);
5318 rates->supported_rates[rates->num_rates++] =
5319 network->rates[i];
5320 continue;
5321 }
5322
5323 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5324 network->rates[i], priv->rates_mask);
5325 continue;
5326 }
5327
5328 rates->supported_rates[rates->num_rates++] = network->rates[i];
5329 }
5330
5331 num_rates = min(network->rates_ex_len,
5332 (u8) (IPW_MAX_RATES - num_rates));
5333 for (i = 0; i < num_rates; i++) {
5334 if (!ipw_is_rate_in_mask(priv, network->mode,
5335 network->rates_ex[i])) {
5336 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5337 IPW_DEBUG_SCAN("Adding masked mandatory "
5338 "rate %02X\n",
5339 network->rates_ex[i]);
5340 rates->supported_rates[rates->num_rates++] =
5341 network->rates[i];
5342 continue;
5343 }
5344
5345 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5346 network->rates_ex[i], priv->rates_mask);
5347 continue;
5348 }
5349
5350 rates->supported_rates[rates->num_rates++] =
5351 network->rates_ex[i];
5352 }
5353
5354 return 1;
5355 }
5356
5357 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5358 const struct ipw_supported_rates *src)
5359 {
5360 u8 i;
5361 for (i = 0; i < src->num_rates; i++)
5362 dest->supported_rates[i] = src->supported_rates[i];
5363 dest->num_rates = src->num_rates;
5364 }
5365
5366 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5367 * mask should ever be used -- right now all callers to add the scan rates are
5368 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5369 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5370 u8 modulation, u32 rate_mask)
5371 {
5372 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5373 IEEE80211_BASIC_RATE_MASK : 0;
5374
5375 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5376 rates->supported_rates[rates->num_rates++] =
5377 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5378
5379 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5380 rates->supported_rates[rates->num_rates++] =
5381 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5382
5383 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5384 rates->supported_rates[rates->num_rates++] = basic_mask |
5385 IEEE80211_CCK_RATE_5MB;
5386
5387 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5388 rates->supported_rates[rates->num_rates++] = basic_mask |
5389 IEEE80211_CCK_RATE_11MB;
5390 }
5391
5392 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5393 u8 modulation, u32 rate_mask)
5394 {
5395 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5396 IEEE80211_BASIC_RATE_MASK : 0;
5397
5398 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5399 rates->supported_rates[rates->num_rates++] = basic_mask |
5400 IEEE80211_OFDM_RATE_6MB;
5401
5402 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5403 rates->supported_rates[rates->num_rates++] =
5404 IEEE80211_OFDM_RATE_9MB;
5405
5406 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5407 rates->supported_rates[rates->num_rates++] = basic_mask |
5408 IEEE80211_OFDM_RATE_12MB;
5409
5410 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5411 rates->supported_rates[rates->num_rates++] =
5412 IEEE80211_OFDM_RATE_18MB;
5413
5414 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5415 rates->supported_rates[rates->num_rates++] = basic_mask |
5416 IEEE80211_OFDM_RATE_24MB;
5417
5418 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5419 rates->supported_rates[rates->num_rates++] =
5420 IEEE80211_OFDM_RATE_36MB;
5421
5422 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5423 rates->supported_rates[rates->num_rates++] =
5424 IEEE80211_OFDM_RATE_48MB;
5425
5426 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5427 rates->supported_rates[rates->num_rates++] =
5428 IEEE80211_OFDM_RATE_54MB;
5429 }
5430
5431 struct ipw_network_match {
5432 struct ieee80211_network *network;
5433 struct ipw_supported_rates rates;
5434 };
5435
5436 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5437 struct ipw_network_match *match,
5438 struct ieee80211_network *network,
5439 int roaming)
5440 {
5441 struct ipw_supported_rates rates;
5442 DECLARE_SSID_BUF(ssid);
5443
5444 /* Verify that this network's capability is compatible with the
5445 * current mode (AdHoc or Infrastructure) */
5446 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5447 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5448 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5449 "capability mismatch.\n",
5450 print_ssid(ssid, network->ssid,
5451 network->ssid_len),
5452 network->bssid);
5453 return 0;
5454 }
5455
5456 if (unlikely(roaming)) {
5457 /* If we are roaming, then ensure check if this is a valid
5458 * network to try and roam to */
5459 if ((network->ssid_len != match->network->ssid_len) ||
5460 memcmp(network->ssid, match->network->ssid,
5461 network->ssid_len)) {
5462 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5463 "because of non-network ESSID.\n",
5464 print_ssid(ssid, network->ssid,
5465 network->ssid_len),
5466 network->bssid);
5467 return 0;
5468 }
5469 } else {
5470 /* If an ESSID has been configured then compare the broadcast
5471 * ESSID to ours */
5472 if ((priv->config & CFG_STATIC_ESSID) &&
5473 ((network->ssid_len != priv->essid_len) ||
5474 memcmp(network->ssid, priv->essid,
5475 min(network->ssid_len, priv->essid_len)))) {
5476 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5477
5478 strncpy(escaped,
5479 print_ssid(ssid, network->ssid,
5480 network->ssid_len),
5481 sizeof(escaped));
5482 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5483 "because of ESSID mismatch: '%s'.\n",
5484 escaped, network->bssid,
5485 print_ssid(ssid, priv->essid,
5486 priv->essid_len));
5487 return 0;
5488 }
5489 }
5490
5491 /* If the old network rate is better than this one, don't bother
5492 * testing everything else. */
5493
5494 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5495 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5496 "current network.\n",
5497 print_ssid(ssid, match->network->ssid,
5498 match->network->ssid_len));
5499 return 0;
5500 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5501 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5502 "current network.\n",
5503 print_ssid(ssid, match->network->ssid,
5504 match->network->ssid_len));
5505 return 0;
5506 }
5507
5508 /* Now go through and see if the requested network is valid... */
5509 if (priv->ieee->scan_age != 0 &&
5510 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5511 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5512 "because of age: %ums.\n",
5513 print_ssid(ssid, network->ssid,
5514 network->ssid_len),
5515 network->bssid,
5516 jiffies_to_msecs(jiffies -
5517 network->last_scanned));
5518 return 0;
5519 }
5520
5521 if ((priv->config & CFG_STATIC_CHANNEL) &&
5522 (network->channel != priv->channel)) {
5523 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5524 "because of channel mismatch: %d != %d.\n",
5525 print_ssid(ssid, network->ssid,
5526 network->ssid_len),
5527 network->bssid,
5528 network->channel, priv->channel);
5529 return 0;
5530 }
5531
5532 /* Verify privacy compatability */
5533 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5534 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5535 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5536 "because of privacy mismatch: %s != %s.\n",
5537 print_ssid(ssid, network->ssid,
5538 network->ssid_len),
5539 network->bssid,
5540 priv->
5541 capability & CAP_PRIVACY_ON ? "on" : "off",
5542 network->
5543 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5544 "off");
5545 return 0;
5546 }
5547
5548 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5549 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5550 "because of the same BSSID match: %pM"
5551 ".\n", print_ssid(ssid, network->ssid,
5552 network->ssid_len),
5553 network->bssid,
5554 priv->bssid);
5555 return 0;
5556 }
5557
5558 /* Filter out any incompatible freq / mode combinations */
5559 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5560 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5561 "because of invalid frequency/mode "
5562 "combination.\n",
5563 print_ssid(ssid, network->ssid,
5564 network->ssid_len),
5565 network->bssid);
5566 return 0;
5567 }
5568
5569 /* Ensure that the rates supported by the driver are compatible with
5570 * this AP, including verification of basic rates (mandatory) */
5571 if (!ipw_compatible_rates(priv, network, &rates)) {
5572 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5573 "because configured rate mask excludes "
5574 "AP mandatory rate.\n",
5575 print_ssid(ssid, network->ssid,
5576 network->ssid_len),
5577 network->bssid);
5578 return 0;
5579 }
5580
5581 if (rates.num_rates == 0) {
5582 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5583 "because of no compatible rates.\n",
5584 print_ssid(ssid, network->ssid,
5585 network->ssid_len),
5586 network->bssid);
5587 return 0;
5588 }
5589
5590 /* TODO: Perform any further minimal comparititive tests. We do not
5591 * want to put too much policy logic here; intelligent scan selection
5592 * should occur within a generic IEEE 802.11 user space tool. */
5593
5594 /* Set up 'new' AP to this network */
5595 ipw_copy_rates(&match->rates, &rates);
5596 match->network = network;
5597 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5598 print_ssid(ssid, network->ssid, network->ssid_len),
5599 network->bssid);
5600
5601 return 1;
5602 }
5603
5604 static void ipw_merge_adhoc_network(struct work_struct *work)
5605 {
5606 DECLARE_SSID_BUF(ssid);
5607 struct ipw_priv *priv =
5608 container_of(work, struct ipw_priv, merge_networks);
5609 struct ieee80211_network *network = NULL;
5610 struct ipw_network_match match = {
5611 .network = priv->assoc_network
5612 };
5613
5614 if ((priv->status & STATUS_ASSOCIATED) &&
5615 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5616 /* First pass through ROAM process -- look for a better
5617 * network */
5618 unsigned long flags;
5619
5620 spin_lock_irqsave(&priv->ieee->lock, flags);
5621 list_for_each_entry(network, &priv->ieee->network_list, list) {
5622 if (network != priv->assoc_network)
5623 ipw_find_adhoc_network(priv, &match, network,
5624 1);
5625 }
5626 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5627
5628 if (match.network == priv->assoc_network) {
5629 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5630 "merge to.\n");
5631 return;
5632 }
5633
5634 mutex_lock(&priv->mutex);
5635 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5636 IPW_DEBUG_MERGE("remove network %s\n",
5637 print_ssid(ssid, priv->essid,
5638 priv->essid_len));
5639 ipw_remove_current_network(priv);
5640 }
5641
5642 ipw_disassociate(priv);
5643 priv->assoc_network = match.network;
5644 mutex_unlock(&priv->mutex);
5645 return;
5646 }
5647 }
5648
5649 static int ipw_best_network(struct ipw_priv *priv,
5650 struct ipw_network_match *match,
5651 struct ieee80211_network *network, int roaming)
5652 {
5653 struct ipw_supported_rates rates;
5654 DECLARE_SSID_BUF(ssid);
5655
5656 /* Verify that this network's capability is compatible with the
5657 * current mode (AdHoc or Infrastructure) */
5658 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5659 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5660 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5661 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5662 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5663 "capability mismatch.\n",
5664 print_ssid(ssid, network->ssid,
5665 network->ssid_len),
5666 network->bssid);
5667 return 0;
5668 }
5669
5670 if (unlikely(roaming)) {
5671 /* If we are roaming, then ensure check if this is a valid
5672 * network to try and roam to */
5673 if ((network->ssid_len != match->network->ssid_len) ||
5674 memcmp(network->ssid, match->network->ssid,
5675 network->ssid_len)) {
5676 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5677 "because of non-network ESSID.\n",
5678 print_ssid(ssid, network->ssid,
5679 network->ssid_len),
5680 network->bssid);
5681 return 0;
5682 }
5683 } else {
5684 /* If an ESSID has been configured then compare the broadcast
5685 * ESSID to ours */
5686 if ((priv->config & CFG_STATIC_ESSID) &&
5687 ((network->ssid_len != priv->essid_len) ||
5688 memcmp(network->ssid, priv->essid,
5689 min(network->ssid_len, priv->essid_len)))) {
5690 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5691 strncpy(escaped,
5692 print_ssid(ssid, network->ssid,
5693 network->ssid_len),
5694 sizeof(escaped));
5695 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5696 "because of ESSID mismatch: '%s'.\n",
5697 escaped, network->bssid,
5698 print_ssid(ssid, priv->essid,
5699 priv->essid_len));
5700 return 0;
5701 }
5702 }
5703
5704 /* If the old network rate is better than this one, don't bother
5705 * testing everything else. */
5706 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5707 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5708 strncpy(escaped,
5709 print_ssid(ssid, network->ssid, network->ssid_len),
5710 sizeof(escaped));
5711 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5712 "'%s (%pM)' has a stronger signal.\n",
5713 escaped, network->bssid,
5714 print_ssid(ssid, match->network->ssid,
5715 match->network->ssid_len),
5716 match->network->bssid);
5717 return 0;
5718 }
5719
5720 /* If this network has already had an association attempt within the
5721 * last 3 seconds, do not try and associate again... */
5722 if (network->last_associate &&
5723 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5724 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5725 "because of storming (%ums since last "
5726 "assoc attempt).\n",
5727 print_ssid(ssid, network->ssid,
5728 network->ssid_len),
5729 network->bssid,
5730 jiffies_to_msecs(jiffies -
5731 network->last_associate));
5732 return 0;
5733 }
5734
5735 /* Now go through and see if the requested network is valid... */
5736 if (priv->ieee->scan_age != 0 &&
5737 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5738 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5739 "because of age: %ums.\n",
5740 print_ssid(ssid, network->ssid,
5741 network->ssid_len),
5742 network->bssid,
5743 jiffies_to_msecs(jiffies -
5744 network->last_scanned));
5745 return 0;
5746 }
5747
5748 if ((priv->config & CFG_STATIC_CHANNEL) &&
5749 (network->channel != priv->channel)) {
5750 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5751 "because of channel mismatch: %d != %d.\n",
5752 print_ssid(ssid, network->ssid,
5753 network->ssid_len),
5754 network->bssid,
5755 network->channel, priv->channel);
5756 return 0;
5757 }
5758
5759 /* Verify privacy compatability */
5760 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5761 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5762 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5763 "because of privacy mismatch: %s != %s.\n",
5764 print_ssid(ssid, network->ssid,
5765 network->ssid_len),
5766 network->bssid,
5767 priv->capability & CAP_PRIVACY_ON ? "on" :
5768 "off",
5769 network->capability &
5770 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5771 return 0;
5772 }
5773
5774 if ((priv->config & CFG_STATIC_BSSID) &&
5775 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5776 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5777 "because of BSSID mismatch: %pM.\n",
5778 print_ssid(ssid, network->ssid,
5779 network->ssid_len),
5780 network->bssid, priv->bssid);
5781 return 0;
5782 }
5783
5784 /* Filter out any incompatible freq / mode combinations */
5785 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5786 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5787 "because of invalid frequency/mode "
5788 "combination.\n",
5789 print_ssid(ssid, network->ssid,
5790 network->ssid_len),
5791 network->bssid);
5792 return 0;
5793 }
5794
5795 /* Filter out invalid channel in current GEO */
5796 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5797 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5798 "because of invalid channel in current GEO\n",
5799 print_ssid(ssid, network->ssid,
5800 network->ssid_len),
5801 network->bssid);
5802 return 0;
5803 }
5804
5805 /* Ensure that the rates supported by the driver are compatible with
5806 * this AP, including verification of basic rates (mandatory) */
5807 if (!ipw_compatible_rates(priv, network, &rates)) {
5808 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5809 "because configured rate mask excludes "
5810 "AP mandatory rate.\n",
5811 print_ssid(ssid, network->ssid,
5812 network->ssid_len),
5813 network->bssid);
5814 return 0;
5815 }
5816
5817 if (rates.num_rates == 0) {
5818 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5819 "because of no compatible rates.\n",
5820 print_ssid(ssid, network->ssid,
5821 network->ssid_len),
5822 network->bssid);
5823 return 0;
5824 }
5825
5826 /* TODO: Perform any further minimal comparititive tests. We do not
5827 * want to put too much policy logic here; intelligent scan selection
5828 * should occur within a generic IEEE 802.11 user space tool. */
5829
5830 /* Set up 'new' AP to this network */
5831 ipw_copy_rates(&match->rates, &rates);
5832 match->network = network;
5833
5834 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5835 print_ssid(ssid, network->ssid, network->ssid_len),
5836 network->bssid);
5837
5838 return 1;
5839 }
5840
5841 static void ipw_adhoc_create(struct ipw_priv *priv,
5842 struct ieee80211_network *network)
5843 {
5844 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5845 int i;
5846
5847 /*
5848 * For the purposes of scanning, we can set our wireless mode
5849 * to trigger scans across combinations of bands, but when it
5850 * comes to creating a new ad-hoc network, we have tell the FW
5851 * exactly which band to use.
5852 *
5853 * We also have the possibility of an invalid channel for the
5854 * chossen band. Attempting to create a new ad-hoc network
5855 * with an invalid channel for wireless mode will trigger a
5856 * FW fatal error.
5857 *
5858 */
5859 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5860 case IEEE80211_52GHZ_BAND:
5861 network->mode = IEEE_A;
5862 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5863 BUG_ON(i == -1);
5864 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5865 IPW_WARNING("Overriding invalid channel\n");
5866 priv->channel = geo->a[0].channel;
5867 }
5868 break;
5869
5870 case IEEE80211_24GHZ_BAND:
5871 if (priv->ieee->mode & IEEE_G)
5872 network->mode = IEEE_G;
5873 else
5874 network->mode = IEEE_B;
5875 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5876 BUG_ON(i == -1);
5877 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5878 IPW_WARNING("Overriding invalid channel\n");
5879 priv->channel = geo->bg[0].channel;
5880 }
5881 break;
5882
5883 default:
5884 IPW_WARNING("Overriding invalid channel\n");
5885 if (priv->ieee->mode & IEEE_A) {
5886 network->mode = IEEE_A;
5887 priv->channel = geo->a[0].channel;
5888 } else if (priv->ieee->mode & IEEE_G) {
5889 network->mode = IEEE_G;
5890 priv->channel = geo->bg[0].channel;
5891 } else {
5892 network->mode = IEEE_B;
5893 priv->channel = geo->bg[0].channel;
5894 }
5895 break;
5896 }
5897
5898 network->channel = priv->channel;
5899 priv->config |= CFG_ADHOC_PERSIST;
5900 ipw_create_bssid(priv, network->bssid);
5901 network->ssid_len = priv->essid_len;
5902 memcpy(network->ssid, priv->essid, priv->essid_len);
5903 memset(&network->stats, 0, sizeof(network->stats));
5904 network->capability = WLAN_CAPABILITY_IBSS;
5905 if (!(priv->config & CFG_PREAMBLE_LONG))
5906 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5907 if (priv->capability & CAP_PRIVACY_ON)
5908 network->capability |= WLAN_CAPABILITY_PRIVACY;
5909 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5910 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5911 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5912 memcpy(network->rates_ex,
5913 &priv->rates.supported_rates[network->rates_len],
5914 network->rates_ex_len);
5915 network->last_scanned = 0;
5916 network->flags = 0;
5917 network->last_associate = 0;
5918 network->time_stamp[0] = 0;
5919 network->time_stamp[1] = 0;
5920 network->beacon_interval = 100; /* Default */
5921 network->listen_interval = 10; /* Default */
5922 network->atim_window = 0; /* Default */
5923 network->wpa_ie_len = 0;
5924 network->rsn_ie_len = 0;
5925 }
5926
5927 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5928 {
5929 struct ipw_tgi_tx_key key;
5930
5931 if (!(priv->ieee->sec.flags & (1 << index)))
5932 return;
5933
5934 key.key_id = index;
5935 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5936 key.security_type = type;
5937 key.station_index = 0; /* always 0 for BSS */
5938 key.flags = 0;
5939 /* 0 for new key; previous value of counter (after fatal error) */
5940 key.tx_counter[0] = cpu_to_le32(0);
5941 key.tx_counter[1] = cpu_to_le32(0);
5942
5943 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5944 }
5945
5946 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5947 {
5948 struct ipw_wep_key key;
5949 int i;
5950
5951 key.cmd_id = DINO_CMD_WEP_KEY;
5952 key.seq_num = 0;
5953
5954 /* Note: AES keys cannot be set for multiple times.
5955 * Only set it at the first time. */
5956 for (i = 0; i < 4; i++) {
5957 key.key_index = i | type;
5958 if (!(priv->ieee->sec.flags & (1 << i))) {
5959 key.key_size = 0;
5960 continue;
5961 }
5962
5963 key.key_size = priv->ieee->sec.key_sizes[i];
5964 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5965
5966 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5967 }
5968 }
5969
5970 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5971 {
5972 if (priv->ieee->host_encrypt)
5973 return;
5974
5975 switch (level) {
5976 case SEC_LEVEL_3:
5977 priv->sys_config.disable_unicast_decryption = 0;
5978 priv->ieee->host_decrypt = 0;
5979 break;
5980 case SEC_LEVEL_2:
5981 priv->sys_config.disable_unicast_decryption = 1;
5982 priv->ieee->host_decrypt = 1;
5983 break;
5984 case SEC_LEVEL_1:
5985 priv->sys_config.disable_unicast_decryption = 0;
5986 priv->ieee->host_decrypt = 0;
5987 break;
5988 case SEC_LEVEL_0:
5989 priv->sys_config.disable_unicast_decryption = 1;
5990 break;
5991 default:
5992 break;
5993 }
5994 }
5995
5996 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5997 {
5998 if (priv->ieee->host_encrypt)
5999 return;
6000
6001 switch (level) {
6002 case SEC_LEVEL_3:
6003 priv->sys_config.disable_multicast_decryption = 0;
6004 break;
6005 case SEC_LEVEL_2:
6006 priv->sys_config.disable_multicast_decryption = 1;
6007 break;
6008 case SEC_LEVEL_1:
6009 priv->sys_config.disable_multicast_decryption = 0;
6010 break;
6011 case SEC_LEVEL_0:
6012 priv->sys_config.disable_multicast_decryption = 1;
6013 break;
6014 default:
6015 break;
6016 }
6017 }
6018
6019 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6020 {
6021 switch (priv->ieee->sec.level) {
6022 case SEC_LEVEL_3:
6023 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6024 ipw_send_tgi_tx_key(priv,
6025 DCT_FLAG_EXT_SECURITY_CCM,
6026 priv->ieee->sec.active_key);
6027
6028 if (!priv->ieee->host_mc_decrypt)
6029 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6030 break;
6031 case SEC_LEVEL_2:
6032 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6033 ipw_send_tgi_tx_key(priv,
6034 DCT_FLAG_EXT_SECURITY_TKIP,
6035 priv->ieee->sec.active_key);
6036 break;
6037 case SEC_LEVEL_1:
6038 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6039 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6040 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6041 break;
6042 case SEC_LEVEL_0:
6043 default:
6044 break;
6045 }
6046 }
6047
6048 static void ipw_adhoc_check(void *data)
6049 {
6050 struct ipw_priv *priv = data;
6051
6052 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6053 !(priv->config & CFG_ADHOC_PERSIST)) {
6054 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6055 IPW_DL_STATE | IPW_DL_ASSOC,
6056 "Missed beacon: %d - disassociate\n",
6057 priv->missed_adhoc_beacons);
6058 ipw_remove_current_network(priv);
6059 ipw_disassociate(priv);
6060 return;
6061 }
6062
6063 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6064 le16_to_cpu(priv->assoc_request.beacon_interval));
6065 }
6066
6067 static void ipw_bg_adhoc_check(struct work_struct *work)
6068 {
6069 struct ipw_priv *priv =
6070 container_of(work, struct ipw_priv, adhoc_check.work);
6071 mutex_lock(&priv->mutex);
6072 ipw_adhoc_check(priv);
6073 mutex_unlock(&priv->mutex);
6074 }
6075
6076 static void ipw_debug_config(struct ipw_priv *priv)
6077 {
6078 DECLARE_SSID_BUF(ssid);
6079 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6080 "[CFG 0x%08X]\n", priv->config);
6081 if (priv->config & CFG_STATIC_CHANNEL)
6082 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6083 else
6084 IPW_DEBUG_INFO("Channel unlocked.\n");
6085 if (priv->config & CFG_STATIC_ESSID)
6086 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6087 print_ssid(ssid, priv->essid, priv->essid_len));
6088 else
6089 IPW_DEBUG_INFO("ESSID unlocked.\n");
6090 if (priv->config & CFG_STATIC_BSSID)
6091 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6092 else
6093 IPW_DEBUG_INFO("BSSID unlocked.\n");
6094 if (priv->capability & CAP_PRIVACY_ON)
6095 IPW_DEBUG_INFO("PRIVACY on\n");
6096 else
6097 IPW_DEBUG_INFO("PRIVACY off\n");
6098 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6099 }
6100
6101 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6102 {
6103 /* TODO: Verify that this works... */
6104 struct ipw_fixed_rate fr = {
6105 .tx_rates = priv->rates_mask
6106 };
6107 u32 reg;
6108 u16 mask = 0;
6109
6110 /* Identify 'current FW band' and match it with the fixed
6111 * Tx rates */
6112
6113 switch (priv->ieee->freq_band) {
6114 case IEEE80211_52GHZ_BAND: /* A only */
6115 /* IEEE_A */
6116 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6117 /* Invalid fixed rate mask */
6118 IPW_DEBUG_WX
6119 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6120 fr.tx_rates = 0;
6121 break;
6122 }
6123
6124 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6125 break;
6126
6127 default: /* 2.4Ghz or Mixed */
6128 /* IEEE_B */
6129 if (mode == IEEE_B) {
6130 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6131 /* Invalid fixed rate mask */
6132 IPW_DEBUG_WX
6133 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6134 fr.tx_rates = 0;
6135 }
6136 break;
6137 }
6138
6139 /* IEEE_G */
6140 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6141 IEEE80211_OFDM_RATES_MASK)) {
6142 /* Invalid fixed rate mask */
6143 IPW_DEBUG_WX
6144 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6145 fr.tx_rates = 0;
6146 break;
6147 }
6148
6149 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6150 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6151 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6152 }
6153
6154 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6155 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6156 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6157 }
6158
6159 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6160 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6161 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6162 }
6163
6164 fr.tx_rates |= mask;
6165 break;
6166 }
6167
6168 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6169 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6170 }
6171
6172 static void ipw_abort_scan(struct ipw_priv *priv)
6173 {
6174 int err;
6175
6176 if (priv->status & STATUS_SCAN_ABORTING) {
6177 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6178 return;
6179 }
6180 priv->status |= STATUS_SCAN_ABORTING;
6181
6182 err = ipw_send_scan_abort(priv);
6183 if (err)
6184 IPW_DEBUG_HC("Request to abort scan failed.\n");
6185 }
6186
6187 static void ipw_add_scan_channels(struct ipw_priv *priv,
6188 struct ipw_scan_request_ext *scan,
6189 int scan_type)
6190 {
6191 int channel_index = 0;
6192 const struct ieee80211_geo *geo;
6193 int i;
6194
6195 geo = ieee80211_get_geo(priv->ieee);
6196
6197 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6198 int start = channel_index;
6199 for (i = 0; i < geo->a_channels; i++) {
6200 if ((priv->status & STATUS_ASSOCIATED) &&
6201 geo->a[i].channel == priv->channel)
6202 continue;
6203 channel_index++;
6204 scan->channels_list[channel_index] = geo->a[i].channel;
6205 ipw_set_scan_type(scan, channel_index,
6206 geo->a[i].
6207 flags & IEEE80211_CH_PASSIVE_ONLY ?
6208 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6209 scan_type);
6210 }
6211
6212 if (start != channel_index) {
6213 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6214 (channel_index - start);
6215 channel_index++;
6216 }
6217 }
6218
6219 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6220 int start = channel_index;
6221 if (priv->config & CFG_SPEED_SCAN) {
6222 int index;
6223 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6224 /* nop out the list */
6225 [0] = 0
6226 };
6227
6228 u8 channel;
6229 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6230 channel =
6231 priv->speed_scan[priv->speed_scan_pos];
6232 if (channel == 0) {
6233 priv->speed_scan_pos = 0;
6234 channel = priv->speed_scan[0];
6235 }
6236 if ((priv->status & STATUS_ASSOCIATED) &&
6237 channel == priv->channel) {
6238 priv->speed_scan_pos++;
6239 continue;
6240 }
6241
6242 /* If this channel has already been
6243 * added in scan, break from loop
6244 * and this will be the first channel
6245 * in the next scan.
6246 */
6247 if (channels[channel - 1] != 0)
6248 break;
6249
6250 channels[channel - 1] = 1;
6251 priv->speed_scan_pos++;
6252 channel_index++;
6253 scan->channels_list[channel_index] = channel;
6254 index =
6255 ieee80211_channel_to_index(priv->ieee, channel);
6256 ipw_set_scan_type(scan, channel_index,
6257 geo->bg[index].
6258 flags &
6259 IEEE80211_CH_PASSIVE_ONLY ?
6260 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6261 : scan_type);
6262 }
6263 } else {
6264 for (i = 0; i < geo->bg_channels; i++) {
6265 if ((priv->status & STATUS_ASSOCIATED) &&
6266 geo->bg[i].channel == priv->channel)
6267 continue;
6268 channel_index++;
6269 scan->channels_list[channel_index] =
6270 geo->bg[i].channel;
6271 ipw_set_scan_type(scan, channel_index,
6272 geo->bg[i].
6273 flags &
6274 IEEE80211_CH_PASSIVE_ONLY ?
6275 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6276 : scan_type);
6277 }
6278 }
6279
6280 if (start != channel_index) {
6281 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6282 (channel_index - start);
6283 }
6284 }
6285 }
6286
6287 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6288 {
6289 /* staying on passive channels longer than the DTIM interval during a
6290 * scan, while associated, causes the firmware to cancel the scan
6291 * without notification. Hence, don't stay on passive channels longer
6292 * than the beacon interval.
6293 */
6294 if (priv->status & STATUS_ASSOCIATED
6295 && priv->assoc_network->beacon_interval > 10)
6296 return priv->assoc_network->beacon_interval - 10;
6297 else
6298 return 120;
6299 }
6300
6301 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6302 {
6303 struct ipw_scan_request_ext scan;
6304 int err = 0, scan_type;
6305
6306 if (!(priv->status & STATUS_INIT) ||
6307 (priv->status & STATUS_EXIT_PENDING))
6308 return 0;
6309
6310 mutex_lock(&priv->mutex);
6311
6312 if (direct && (priv->direct_scan_ssid_len == 0)) {
6313 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6314 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6315 goto done;
6316 }
6317
6318 if (priv->status & STATUS_SCANNING) {
6319 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6320 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6321 STATUS_SCAN_PENDING;
6322 goto done;
6323 }
6324
6325 if (!(priv->status & STATUS_SCAN_FORCED) &&
6326 priv->status & STATUS_SCAN_ABORTING) {
6327 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6328 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6329 STATUS_SCAN_PENDING;
6330 goto done;
6331 }
6332
6333 if (priv->status & STATUS_RF_KILL_MASK) {
6334 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6335 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6336 STATUS_SCAN_PENDING;
6337 goto done;
6338 }
6339
6340 memset(&scan, 0, sizeof(scan));
6341 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6342
6343 if (type == IW_SCAN_TYPE_PASSIVE) {
6344 IPW_DEBUG_WX("use passive scanning\n");
6345 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6346 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6347 cpu_to_le16(ipw_passive_dwell_time(priv));
6348 ipw_add_scan_channels(priv, &scan, scan_type);
6349 goto send_request;
6350 }
6351
6352 /* Use active scan by default. */
6353 if (priv->config & CFG_SPEED_SCAN)
6354 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6355 cpu_to_le16(30);
6356 else
6357 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6358 cpu_to_le16(20);
6359
6360 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6361 cpu_to_le16(20);
6362
6363 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6364 cpu_to_le16(ipw_passive_dwell_time(priv));
6365 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6366
6367 #ifdef CONFIG_IPW2200_MONITOR
6368 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6369 u8 channel;
6370 u8 band = 0;
6371
6372 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6373 case IEEE80211_52GHZ_BAND:
6374 band = (u8) (IPW_A_MODE << 6) | 1;
6375 channel = priv->channel;
6376 break;
6377
6378 case IEEE80211_24GHZ_BAND:
6379 band = (u8) (IPW_B_MODE << 6) | 1;
6380 channel = priv->channel;
6381 break;
6382
6383 default:
6384 band = (u8) (IPW_B_MODE << 6) | 1;
6385 channel = 9;
6386 break;
6387 }
6388
6389 scan.channels_list[0] = band;
6390 scan.channels_list[1] = channel;
6391 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6392
6393 /* NOTE: The card will sit on this channel for this time
6394 * period. Scan aborts are timing sensitive and frequently
6395 * result in firmware restarts. As such, it is best to
6396 * set a small dwell_time here and just keep re-issuing
6397 * scans. Otherwise fast channel hopping will not actually
6398 * hop channels.
6399 *
6400 * TODO: Move SPEED SCAN support to all modes and bands */
6401 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6402 cpu_to_le16(2000);
6403 } else {
6404 #endif /* CONFIG_IPW2200_MONITOR */
6405 /* Honor direct scans first, otherwise if we are roaming make
6406 * this a direct scan for the current network. Finally,
6407 * ensure that every other scan is a fast channel hop scan */
6408 if (direct) {
6409 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6410 priv->direct_scan_ssid_len);
6411 if (err) {
6412 IPW_DEBUG_HC("Attempt to send SSID command "
6413 "failed\n");
6414 goto done;
6415 }
6416
6417 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6418 } else if ((priv->status & STATUS_ROAMING)
6419 || (!(priv->status & STATUS_ASSOCIATED)
6420 && (priv->config & CFG_STATIC_ESSID)
6421 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6422 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6423 if (err) {
6424 IPW_DEBUG_HC("Attempt to send SSID command "
6425 "failed.\n");
6426 goto done;
6427 }
6428
6429 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6430 } else
6431 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6432
6433 ipw_add_scan_channels(priv, &scan, scan_type);
6434 #ifdef CONFIG_IPW2200_MONITOR
6435 }
6436 #endif
6437
6438 send_request:
6439 err = ipw_send_scan_request_ext(priv, &scan);
6440 if (err) {
6441 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6442 goto done;
6443 }
6444
6445 priv->status |= STATUS_SCANNING;
6446 if (direct) {
6447 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6448 priv->direct_scan_ssid_len = 0;
6449 } else
6450 priv->status &= ~STATUS_SCAN_PENDING;
6451
6452 queue_delayed_work(priv->workqueue, &priv->scan_check,
6453 IPW_SCAN_CHECK_WATCHDOG);
6454 done:
6455 mutex_unlock(&priv->mutex);
6456 return err;
6457 }
6458
6459 static void ipw_request_passive_scan(struct work_struct *work)
6460 {
6461 struct ipw_priv *priv =
6462 container_of(work, struct ipw_priv, request_passive_scan.work);
6463 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6464 }
6465
6466 static void ipw_request_scan(struct work_struct *work)
6467 {
6468 struct ipw_priv *priv =
6469 container_of(work, struct ipw_priv, request_scan.work);
6470 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6471 }
6472
6473 static void ipw_request_direct_scan(struct work_struct *work)
6474 {
6475 struct ipw_priv *priv =
6476 container_of(work, struct ipw_priv, request_direct_scan.work);
6477 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6478 }
6479
6480 static void ipw_bg_abort_scan(struct work_struct *work)
6481 {
6482 struct ipw_priv *priv =
6483 container_of(work, struct ipw_priv, abort_scan);
6484 mutex_lock(&priv->mutex);
6485 ipw_abort_scan(priv);
6486 mutex_unlock(&priv->mutex);
6487 }
6488
6489 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6490 {
6491 /* This is called when wpa_supplicant loads and closes the driver
6492 * interface. */
6493 priv->ieee->wpa_enabled = value;
6494 return 0;
6495 }
6496
6497 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6498 {
6499 struct ieee80211_device *ieee = priv->ieee;
6500 struct ieee80211_security sec = {
6501 .flags = SEC_AUTH_MODE,
6502 };
6503 int ret = 0;
6504
6505 if (value & IW_AUTH_ALG_SHARED_KEY) {
6506 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6507 ieee->open_wep = 0;
6508 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6509 sec.auth_mode = WLAN_AUTH_OPEN;
6510 ieee->open_wep = 1;
6511 } else if (value & IW_AUTH_ALG_LEAP) {
6512 sec.auth_mode = WLAN_AUTH_LEAP;
6513 ieee->open_wep = 1;
6514 } else
6515 return -EINVAL;
6516
6517 if (ieee->set_security)
6518 ieee->set_security(ieee->dev, &sec);
6519 else
6520 ret = -EOPNOTSUPP;
6521
6522 return ret;
6523 }
6524
6525 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6526 int wpa_ie_len)
6527 {
6528 /* make sure WPA is enabled */
6529 ipw_wpa_enable(priv, 1);
6530 }
6531
6532 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6533 char *capabilities, int length)
6534 {
6535 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6536
6537 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6538 capabilities);
6539 }
6540
6541 /*
6542 * WE-18 support
6543 */
6544
6545 /* SIOCSIWGENIE */
6546 static int ipw_wx_set_genie(struct net_device *dev,
6547 struct iw_request_info *info,
6548 union iwreq_data *wrqu, char *extra)
6549 {
6550 struct ipw_priv *priv = ieee80211_priv(dev);
6551 struct ieee80211_device *ieee = priv->ieee;
6552 u8 *buf;
6553 int err = 0;
6554
6555 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6556 (wrqu->data.length && extra == NULL))
6557 return -EINVAL;
6558
6559 if (wrqu->data.length) {
6560 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6561 if (buf == NULL) {
6562 err = -ENOMEM;
6563 goto out;
6564 }
6565
6566 memcpy(buf, extra, wrqu->data.length);
6567 kfree(ieee->wpa_ie);
6568 ieee->wpa_ie = buf;
6569 ieee->wpa_ie_len = wrqu->data.length;
6570 } else {
6571 kfree(ieee->wpa_ie);
6572 ieee->wpa_ie = NULL;
6573 ieee->wpa_ie_len = 0;
6574 }
6575
6576 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6577 out:
6578 return err;
6579 }
6580
6581 /* SIOCGIWGENIE */
6582 static int ipw_wx_get_genie(struct net_device *dev,
6583 struct iw_request_info *info,
6584 union iwreq_data *wrqu, char *extra)
6585 {
6586 struct ipw_priv *priv = ieee80211_priv(dev);
6587 struct ieee80211_device *ieee = priv->ieee;
6588 int err = 0;
6589
6590 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6591 wrqu->data.length = 0;
6592 goto out;
6593 }
6594
6595 if (wrqu->data.length < ieee->wpa_ie_len) {
6596 err = -E2BIG;
6597 goto out;
6598 }
6599
6600 wrqu->data.length = ieee->wpa_ie_len;
6601 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6602
6603 out:
6604 return err;
6605 }
6606
6607 static int wext_cipher2level(int cipher)
6608 {
6609 switch (cipher) {
6610 case IW_AUTH_CIPHER_NONE:
6611 return SEC_LEVEL_0;
6612 case IW_AUTH_CIPHER_WEP40:
6613 case IW_AUTH_CIPHER_WEP104:
6614 return SEC_LEVEL_1;
6615 case IW_AUTH_CIPHER_TKIP:
6616 return SEC_LEVEL_2;
6617 case IW_AUTH_CIPHER_CCMP:
6618 return SEC_LEVEL_3;
6619 default:
6620 return -1;
6621 }
6622 }
6623
6624 /* SIOCSIWAUTH */
6625 static int ipw_wx_set_auth(struct net_device *dev,
6626 struct iw_request_info *info,
6627 union iwreq_data *wrqu, char *extra)
6628 {
6629 struct ipw_priv *priv = ieee80211_priv(dev);
6630 struct ieee80211_device *ieee = priv->ieee;
6631 struct iw_param *param = &wrqu->param;
6632 struct lib80211_crypt_data *crypt;
6633 unsigned long flags;
6634 int ret = 0;
6635
6636 switch (param->flags & IW_AUTH_INDEX) {
6637 case IW_AUTH_WPA_VERSION:
6638 break;
6639 case IW_AUTH_CIPHER_PAIRWISE:
6640 ipw_set_hw_decrypt_unicast(priv,
6641 wext_cipher2level(param->value));
6642 break;
6643 case IW_AUTH_CIPHER_GROUP:
6644 ipw_set_hw_decrypt_multicast(priv,
6645 wext_cipher2level(param->value));
6646 break;
6647 case IW_AUTH_KEY_MGMT:
6648 /*
6649 * ipw2200 does not use these parameters
6650 */
6651 break;
6652
6653 case IW_AUTH_TKIP_COUNTERMEASURES:
6654 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6655 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6656 break;
6657
6658 flags = crypt->ops->get_flags(crypt->priv);
6659
6660 if (param->value)
6661 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6662 else
6663 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6664
6665 crypt->ops->set_flags(flags, crypt->priv);
6666
6667 break;
6668
6669 case IW_AUTH_DROP_UNENCRYPTED:{
6670 /* HACK:
6671 *
6672 * wpa_supplicant calls set_wpa_enabled when the driver
6673 * is loaded and unloaded, regardless of if WPA is being
6674 * used. No other calls are made which can be used to
6675 * determine if encryption will be used or not prior to
6676 * association being expected. If encryption is not being
6677 * used, drop_unencrypted is set to false, else true -- we
6678 * can use this to determine if the CAP_PRIVACY_ON bit should
6679 * be set.
6680 */
6681 struct ieee80211_security sec = {
6682 .flags = SEC_ENABLED,
6683 .enabled = param->value,
6684 };
6685 priv->ieee->drop_unencrypted = param->value;
6686 /* We only change SEC_LEVEL for open mode. Others
6687 * are set by ipw_wpa_set_encryption.
6688 */
6689 if (!param->value) {
6690 sec.flags |= SEC_LEVEL;
6691 sec.level = SEC_LEVEL_0;
6692 } else {
6693 sec.flags |= SEC_LEVEL;
6694 sec.level = SEC_LEVEL_1;
6695 }
6696 if (priv->ieee->set_security)
6697 priv->ieee->set_security(priv->ieee->dev, &sec);
6698 break;
6699 }
6700
6701 case IW_AUTH_80211_AUTH_ALG:
6702 ret = ipw_wpa_set_auth_algs(priv, param->value);
6703 break;
6704
6705 case IW_AUTH_WPA_ENABLED:
6706 ret = ipw_wpa_enable(priv, param->value);
6707 ipw_disassociate(priv);
6708 break;
6709
6710 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6711 ieee->ieee802_1x = param->value;
6712 break;
6713
6714 case IW_AUTH_PRIVACY_INVOKED:
6715 ieee->privacy_invoked = param->value;
6716 break;
6717
6718 default:
6719 return -EOPNOTSUPP;
6720 }
6721 return ret;
6722 }
6723
6724 /* SIOCGIWAUTH */
6725 static int ipw_wx_get_auth(struct net_device *dev,
6726 struct iw_request_info *info,
6727 union iwreq_data *wrqu, char *extra)
6728 {
6729 struct ipw_priv *priv = ieee80211_priv(dev);
6730 struct ieee80211_device *ieee = priv->ieee;
6731 struct lib80211_crypt_data *crypt;
6732 struct iw_param *param = &wrqu->param;
6733 int ret = 0;
6734
6735 switch (param->flags & IW_AUTH_INDEX) {
6736 case IW_AUTH_WPA_VERSION:
6737 case IW_AUTH_CIPHER_PAIRWISE:
6738 case IW_AUTH_CIPHER_GROUP:
6739 case IW_AUTH_KEY_MGMT:
6740 /*
6741 * wpa_supplicant will control these internally
6742 */
6743 ret = -EOPNOTSUPP;
6744 break;
6745
6746 case IW_AUTH_TKIP_COUNTERMEASURES:
6747 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6748 if (!crypt || !crypt->ops->get_flags)
6749 break;
6750
6751 param->value = (crypt->ops->get_flags(crypt->priv) &
6752 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6753
6754 break;
6755
6756 case IW_AUTH_DROP_UNENCRYPTED:
6757 param->value = ieee->drop_unencrypted;
6758 break;
6759
6760 case IW_AUTH_80211_AUTH_ALG:
6761 param->value = ieee->sec.auth_mode;
6762 break;
6763
6764 case IW_AUTH_WPA_ENABLED:
6765 param->value = ieee->wpa_enabled;
6766 break;
6767
6768 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6769 param->value = ieee->ieee802_1x;
6770 break;
6771
6772 case IW_AUTH_ROAMING_CONTROL:
6773 case IW_AUTH_PRIVACY_INVOKED:
6774 param->value = ieee->privacy_invoked;
6775 break;
6776
6777 default:
6778 return -EOPNOTSUPP;
6779 }
6780 return 0;
6781 }
6782
6783 /* SIOCSIWENCODEEXT */
6784 static int ipw_wx_set_encodeext(struct net_device *dev,
6785 struct iw_request_info *info,
6786 union iwreq_data *wrqu, char *extra)
6787 {
6788 struct ipw_priv *priv = ieee80211_priv(dev);
6789 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6790
6791 if (hwcrypto) {
6792 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6793 /* IPW HW can't build TKIP MIC,
6794 host decryption still needed */
6795 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6796 priv->ieee->host_mc_decrypt = 1;
6797 else {
6798 priv->ieee->host_encrypt = 0;
6799 priv->ieee->host_encrypt_msdu = 1;
6800 priv->ieee->host_decrypt = 1;
6801 }
6802 } else {
6803 priv->ieee->host_encrypt = 0;
6804 priv->ieee->host_encrypt_msdu = 0;
6805 priv->ieee->host_decrypt = 0;
6806 priv->ieee->host_mc_decrypt = 0;
6807 }
6808 }
6809
6810 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6811 }
6812
6813 /* SIOCGIWENCODEEXT */
6814 static int ipw_wx_get_encodeext(struct net_device *dev,
6815 struct iw_request_info *info,
6816 union iwreq_data *wrqu, char *extra)
6817 {
6818 struct ipw_priv *priv = ieee80211_priv(dev);
6819 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6820 }
6821
6822 /* SIOCSIWMLME */
6823 static int ipw_wx_set_mlme(struct net_device *dev,
6824 struct iw_request_info *info,
6825 union iwreq_data *wrqu, char *extra)
6826 {
6827 struct ipw_priv *priv = ieee80211_priv(dev);
6828 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6829 __le16 reason;
6830
6831 reason = cpu_to_le16(mlme->reason_code);
6832
6833 switch (mlme->cmd) {
6834 case IW_MLME_DEAUTH:
6835 /* silently ignore */
6836 break;
6837
6838 case IW_MLME_DISASSOC:
6839 ipw_disassociate(priv);
6840 break;
6841
6842 default:
6843 return -EOPNOTSUPP;
6844 }
6845 return 0;
6846 }
6847
6848 #ifdef CONFIG_IPW2200_QOS
6849
6850 /* QoS */
6851 /*
6852 * get the modulation type of the current network or
6853 * the card current mode
6854 */
6855 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6856 {
6857 u8 mode = 0;
6858
6859 if (priv->status & STATUS_ASSOCIATED) {
6860 unsigned long flags;
6861
6862 spin_lock_irqsave(&priv->ieee->lock, flags);
6863 mode = priv->assoc_network->mode;
6864 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6865 } else {
6866 mode = priv->ieee->mode;
6867 }
6868 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6869 return mode;
6870 }
6871
6872 /*
6873 * Handle management frame beacon and probe response
6874 */
6875 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6876 int active_network,
6877 struct ieee80211_network *network)
6878 {
6879 u32 size = sizeof(struct ieee80211_qos_parameters);
6880
6881 if (network->capability & WLAN_CAPABILITY_IBSS)
6882 network->qos_data.active = network->qos_data.supported;
6883
6884 if (network->flags & NETWORK_HAS_QOS_MASK) {
6885 if (active_network &&
6886 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6887 network->qos_data.active = network->qos_data.supported;
6888
6889 if ((network->qos_data.active == 1) && (active_network == 1) &&
6890 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6891 (network->qos_data.old_param_count !=
6892 network->qos_data.param_count)) {
6893 network->qos_data.old_param_count =
6894 network->qos_data.param_count;
6895 schedule_work(&priv->qos_activate);
6896 IPW_DEBUG_QOS("QoS parameters change call "
6897 "qos_activate\n");
6898 }
6899 } else {
6900 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6901 memcpy(&network->qos_data.parameters,
6902 &def_parameters_CCK, size);
6903 else
6904 memcpy(&network->qos_data.parameters,
6905 &def_parameters_OFDM, size);
6906
6907 if ((network->qos_data.active == 1) && (active_network == 1)) {
6908 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6909 schedule_work(&priv->qos_activate);
6910 }
6911
6912 network->qos_data.active = 0;
6913 network->qos_data.supported = 0;
6914 }
6915 if ((priv->status & STATUS_ASSOCIATED) &&
6916 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6917 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6918 if (network->capability & WLAN_CAPABILITY_IBSS)
6919 if ((network->ssid_len ==
6920 priv->assoc_network->ssid_len) &&
6921 !memcmp(network->ssid,
6922 priv->assoc_network->ssid,
6923 network->ssid_len)) {
6924 queue_work(priv->workqueue,
6925 &priv->merge_networks);
6926 }
6927 }
6928
6929 return 0;
6930 }
6931
6932 /*
6933 * This function set up the firmware to support QoS. It sends
6934 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6935 */
6936 static int ipw_qos_activate(struct ipw_priv *priv,
6937 struct ieee80211_qos_data *qos_network_data)
6938 {
6939 int err;
6940 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6941 struct ieee80211_qos_parameters *active_one = NULL;
6942 u32 size = sizeof(struct ieee80211_qos_parameters);
6943 u32 burst_duration;
6944 int i;
6945 u8 type;
6946
6947 type = ipw_qos_current_mode(priv);
6948
6949 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6950 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6951 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6952 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6953
6954 if (qos_network_data == NULL) {
6955 if (type == IEEE_B) {
6956 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6957 active_one = &def_parameters_CCK;
6958 } else
6959 active_one = &def_parameters_OFDM;
6960
6961 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6962 burst_duration = ipw_qos_get_burst_duration(priv);
6963 for (i = 0; i < QOS_QUEUE_NUM; i++)
6964 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6965 cpu_to_le16(burst_duration);
6966 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6967 if (type == IEEE_B) {
6968 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6969 type);
6970 if (priv->qos_data.qos_enable == 0)
6971 active_one = &def_parameters_CCK;
6972 else
6973 active_one = priv->qos_data.def_qos_parm_CCK;
6974 } else {
6975 if (priv->qos_data.qos_enable == 0)
6976 active_one = &def_parameters_OFDM;
6977 else
6978 active_one = priv->qos_data.def_qos_parm_OFDM;
6979 }
6980 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6981 } else {
6982 unsigned long flags;
6983 int active;
6984
6985 spin_lock_irqsave(&priv->ieee->lock, flags);
6986 active_one = &(qos_network_data->parameters);
6987 qos_network_data->old_param_count =
6988 qos_network_data->param_count;
6989 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6990 active = qos_network_data->supported;
6991 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6992
6993 if (active == 0) {
6994 burst_duration = ipw_qos_get_burst_duration(priv);
6995 for (i = 0; i < QOS_QUEUE_NUM; i++)
6996 qos_parameters[QOS_PARAM_SET_ACTIVE].
6997 tx_op_limit[i] = cpu_to_le16(burst_duration);
6998 }
6999 }
7000
7001 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7002 err = ipw_send_qos_params_command(priv,
7003 (struct ieee80211_qos_parameters *)
7004 &(qos_parameters[0]));
7005 if (err)
7006 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7007
7008 return err;
7009 }
7010
7011 /*
7012 * send IPW_CMD_WME_INFO to the firmware
7013 */
7014 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7015 {
7016 int ret = 0;
7017 struct ieee80211_qos_information_element qos_info;
7018
7019 if (priv == NULL)
7020 return -1;
7021
7022 qos_info.elementID = QOS_ELEMENT_ID;
7023 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7024
7025 qos_info.version = QOS_VERSION_1;
7026 qos_info.ac_info = 0;
7027
7028 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7029 qos_info.qui_type = QOS_OUI_TYPE;
7030 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7031
7032 ret = ipw_send_qos_info_command(priv, &qos_info);
7033 if (ret != 0) {
7034 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7035 }
7036 return ret;
7037 }
7038
7039 /*
7040 * Set the QoS parameter with the association request structure
7041 */
7042 static int ipw_qos_association(struct ipw_priv *priv,
7043 struct ieee80211_network *network)
7044 {
7045 int err = 0;
7046 struct ieee80211_qos_data *qos_data = NULL;
7047 struct ieee80211_qos_data ibss_data = {
7048 .supported = 1,
7049 .active = 1,
7050 };
7051
7052 switch (priv->ieee->iw_mode) {
7053 case IW_MODE_ADHOC:
7054 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7055
7056 qos_data = &ibss_data;
7057 break;
7058
7059 case IW_MODE_INFRA:
7060 qos_data = &network->qos_data;
7061 break;
7062
7063 default:
7064 BUG();
7065 break;
7066 }
7067
7068 err = ipw_qos_activate(priv, qos_data);
7069 if (err) {
7070 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7071 return err;
7072 }
7073
7074 if (priv->qos_data.qos_enable && qos_data->supported) {
7075 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7076 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7077 return ipw_qos_set_info_element(priv);
7078 }
7079
7080 return 0;
7081 }
7082
7083 /*
7084 * handling the beaconing responses. if we get different QoS setting
7085 * off the network from the associated setting, adjust the QoS
7086 * setting
7087 */
7088 static int ipw_qos_association_resp(struct ipw_priv *priv,
7089 struct ieee80211_network *network)
7090 {
7091 int ret = 0;
7092 unsigned long flags;
7093 u32 size = sizeof(struct ieee80211_qos_parameters);
7094 int set_qos_param = 0;
7095
7096 if ((priv == NULL) || (network == NULL) ||
7097 (priv->assoc_network == NULL))
7098 return ret;
7099
7100 if (!(priv->status & STATUS_ASSOCIATED))
7101 return ret;
7102
7103 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7104 return ret;
7105
7106 spin_lock_irqsave(&priv->ieee->lock, flags);
7107 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7108 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7109 sizeof(struct ieee80211_qos_data));
7110 priv->assoc_network->qos_data.active = 1;
7111 if ((network->qos_data.old_param_count !=
7112 network->qos_data.param_count)) {
7113 set_qos_param = 1;
7114 network->qos_data.old_param_count =
7115 network->qos_data.param_count;
7116 }
7117
7118 } else {
7119 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7120 memcpy(&priv->assoc_network->qos_data.parameters,
7121 &def_parameters_CCK, size);
7122 else
7123 memcpy(&priv->assoc_network->qos_data.parameters,
7124 &def_parameters_OFDM, size);
7125 priv->assoc_network->qos_data.active = 0;
7126 priv->assoc_network->qos_data.supported = 0;
7127 set_qos_param = 1;
7128 }
7129
7130 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7131
7132 if (set_qos_param == 1)
7133 schedule_work(&priv->qos_activate);
7134
7135 return ret;
7136 }
7137
7138 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7139 {
7140 u32 ret = 0;
7141
7142 if ((priv == NULL))
7143 return 0;
7144
7145 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7146 ret = priv->qos_data.burst_duration_CCK;
7147 else
7148 ret = priv->qos_data.burst_duration_OFDM;
7149
7150 return ret;
7151 }
7152
7153 /*
7154 * Initialize the setting of QoS global
7155 */
7156 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7157 int burst_enable, u32 burst_duration_CCK,
7158 u32 burst_duration_OFDM)
7159 {
7160 priv->qos_data.qos_enable = enable;
7161
7162 if (priv->qos_data.qos_enable) {
7163 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7164 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7165 IPW_DEBUG_QOS("QoS is enabled\n");
7166 } else {
7167 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7168 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7169 IPW_DEBUG_QOS("QoS is not enabled\n");
7170 }
7171
7172 priv->qos_data.burst_enable = burst_enable;
7173
7174 if (burst_enable) {
7175 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7176 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7177 } else {
7178 priv->qos_data.burst_duration_CCK = 0;
7179 priv->qos_data.burst_duration_OFDM = 0;
7180 }
7181 }
7182
7183 /*
7184 * map the packet priority to the right TX Queue
7185 */
7186 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7187 {
7188 if (priority > 7 || !priv->qos_data.qos_enable)
7189 priority = 0;
7190
7191 return from_priority_to_tx_queue[priority] - 1;
7192 }
7193
7194 static int ipw_is_qos_active(struct net_device *dev,
7195 struct sk_buff *skb)
7196 {
7197 struct ipw_priv *priv = ieee80211_priv(dev);
7198 struct ieee80211_qos_data *qos_data = NULL;
7199 int active, supported;
7200 u8 *daddr = skb->data + ETH_ALEN;
7201 int unicast = !is_multicast_ether_addr(daddr);
7202
7203 if (!(priv->status & STATUS_ASSOCIATED))
7204 return 0;
7205
7206 qos_data = &priv->assoc_network->qos_data;
7207
7208 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7209 if (unicast == 0)
7210 qos_data->active = 0;
7211 else
7212 qos_data->active = qos_data->supported;
7213 }
7214 active = qos_data->active;
7215 supported = qos_data->supported;
7216 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7217 "unicast %d\n",
7218 priv->qos_data.qos_enable, active, supported, unicast);
7219 if (active && priv->qos_data.qos_enable)
7220 return 1;
7221
7222 return 0;
7223
7224 }
7225 /*
7226 * add QoS parameter to the TX command
7227 */
7228 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7229 u16 priority,
7230 struct tfd_data *tfd)
7231 {
7232 int tx_queue_id = 0;
7233
7234
7235 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7236 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7237
7238 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7239 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7240 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7241 }
7242 return 0;
7243 }
7244
7245 /*
7246 * background support to run QoS activate functionality
7247 */
7248 static void ipw_bg_qos_activate(struct work_struct *work)
7249 {
7250 struct ipw_priv *priv =
7251 container_of(work, struct ipw_priv, qos_activate);
7252
7253 if (priv == NULL)
7254 return;
7255
7256 mutex_lock(&priv->mutex);
7257
7258 if (priv->status & STATUS_ASSOCIATED)
7259 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7260
7261 mutex_unlock(&priv->mutex);
7262 }
7263
7264 static int ipw_handle_probe_response(struct net_device *dev,
7265 struct ieee80211_probe_response *resp,
7266 struct ieee80211_network *network)
7267 {
7268 struct ipw_priv *priv = ieee80211_priv(dev);
7269 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7270 (network == priv->assoc_network));
7271
7272 ipw_qos_handle_probe_response(priv, active_network, network);
7273
7274 return 0;
7275 }
7276
7277 static int ipw_handle_beacon(struct net_device *dev,
7278 struct ieee80211_beacon *resp,
7279 struct ieee80211_network *network)
7280 {
7281 struct ipw_priv *priv = ieee80211_priv(dev);
7282 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7283 (network == priv->assoc_network));
7284
7285 ipw_qos_handle_probe_response(priv, active_network, network);
7286
7287 return 0;
7288 }
7289
7290 static int ipw_handle_assoc_response(struct net_device *dev,
7291 struct ieee80211_assoc_response *resp,
7292 struct ieee80211_network *network)
7293 {
7294 struct ipw_priv *priv = ieee80211_priv(dev);
7295 ipw_qos_association_resp(priv, network);
7296 return 0;
7297 }
7298
7299 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7300 *qos_param)
7301 {
7302 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7303 sizeof(*qos_param) * 3, qos_param);
7304 }
7305
7306 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7307 *qos_param)
7308 {
7309 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7310 qos_param);
7311 }
7312
7313 #endif /* CONFIG_IPW2200_QOS */
7314
7315 static int ipw_associate_network(struct ipw_priv *priv,
7316 struct ieee80211_network *network,
7317 struct ipw_supported_rates *rates, int roaming)
7318 {
7319 int err;
7320 DECLARE_SSID_BUF(ssid);
7321
7322 if (priv->config & CFG_FIXED_RATE)
7323 ipw_set_fixed_rate(priv, network->mode);
7324
7325 if (!(priv->config & CFG_STATIC_ESSID)) {
7326 priv->essid_len = min(network->ssid_len,
7327 (u8) IW_ESSID_MAX_SIZE);
7328 memcpy(priv->essid, network->ssid, priv->essid_len);
7329 }
7330
7331 network->last_associate = jiffies;
7332
7333 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7334 priv->assoc_request.channel = network->channel;
7335 priv->assoc_request.auth_key = 0;
7336
7337 if ((priv->capability & CAP_PRIVACY_ON) &&
7338 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7339 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7340 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7341
7342 if (priv->ieee->sec.level == SEC_LEVEL_1)
7343 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7344
7345 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7346 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7347 priv->assoc_request.auth_type = AUTH_LEAP;
7348 else
7349 priv->assoc_request.auth_type = AUTH_OPEN;
7350
7351 if (priv->ieee->wpa_ie_len) {
7352 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7353 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7354 priv->ieee->wpa_ie_len);
7355 }
7356
7357 /*
7358 * It is valid for our ieee device to support multiple modes, but
7359 * when it comes to associating to a given network we have to choose
7360 * just one mode.
7361 */
7362 if (network->mode & priv->ieee->mode & IEEE_A)
7363 priv->assoc_request.ieee_mode = IPW_A_MODE;
7364 else if (network->mode & priv->ieee->mode & IEEE_G)
7365 priv->assoc_request.ieee_mode = IPW_G_MODE;
7366 else if (network->mode & priv->ieee->mode & IEEE_B)
7367 priv->assoc_request.ieee_mode = IPW_B_MODE;
7368
7369 priv->assoc_request.capability = cpu_to_le16(network->capability);
7370 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7371 && !(priv->config & CFG_PREAMBLE_LONG)) {
7372 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7373 } else {
7374 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7375
7376 /* Clear the short preamble if we won't be supporting it */
7377 priv->assoc_request.capability &=
7378 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7379 }
7380
7381 /* Clear capability bits that aren't used in Ad Hoc */
7382 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7383 priv->assoc_request.capability &=
7384 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7385
7386 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7387 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7388 roaming ? "Rea" : "A",
7389 print_ssid(ssid, priv->essid, priv->essid_len),
7390 network->channel,
7391 ipw_modes[priv->assoc_request.ieee_mode],
7392 rates->num_rates,
7393 (priv->assoc_request.preamble_length ==
7394 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7395 network->capability &
7396 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7397 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7398 priv->capability & CAP_PRIVACY_ON ?
7399 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7400 "(open)") : "",
7401 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7402 priv->capability & CAP_PRIVACY_ON ?
7403 '1' + priv->ieee->sec.active_key : '.',
7404 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7405
7406 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7407 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7408 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7409 priv->assoc_request.assoc_type = HC_IBSS_START;
7410 priv->assoc_request.assoc_tsf_msw = 0;
7411 priv->assoc_request.assoc_tsf_lsw = 0;
7412 } else {
7413 if (unlikely(roaming))
7414 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7415 else
7416 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7417 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7418 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7419 }
7420
7421 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7422
7423 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7424 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7425 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7426 } else {
7427 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7428 priv->assoc_request.atim_window = 0;
7429 }
7430
7431 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7432
7433 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7434 if (err) {
7435 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7436 return err;
7437 }
7438
7439 rates->ieee_mode = priv->assoc_request.ieee_mode;
7440 rates->purpose = IPW_RATE_CONNECT;
7441 ipw_send_supported_rates(priv, rates);
7442
7443 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7444 priv->sys_config.dot11g_auto_detection = 1;
7445 else
7446 priv->sys_config.dot11g_auto_detection = 0;
7447
7448 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7449 priv->sys_config.answer_broadcast_ssid_probe = 1;
7450 else
7451 priv->sys_config.answer_broadcast_ssid_probe = 0;
7452
7453 err = ipw_send_system_config(priv);
7454 if (err) {
7455 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7456 return err;
7457 }
7458
7459 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7460 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7461 if (err) {
7462 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7463 return err;
7464 }
7465
7466 /*
7467 * If preemption is enabled, it is possible for the association
7468 * to complete before we return from ipw_send_associate. Therefore
7469 * we have to be sure and update our priviate data first.
7470 */
7471 priv->channel = network->channel;
7472 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7473 priv->status |= STATUS_ASSOCIATING;
7474 priv->status &= ~STATUS_SECURITY_UPDATED;
7475
7476 priv->assoc_network = network;
7477
7478 #ifdef CONFIG_IPW2200_QOS
7479 ipw_qos_association(priv, network);
7480 #endif
7481
7482 err = ipw_send_associate(priv, &priv->assoc_request);
7483 if (err) {
7484 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7485 return err;
7486 }
7487
7488 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7489 print_ssid(ssid, priv->essid, priv->essid_len),
7490 priv->bssid);
7491
7492 return 0;
7493 }
7494
7495 static void ipw_roam(void *data)
7496 {
7497 struct ipw_priv *priv = data;
7498 struct ieee80211_network *network = NULL;
7499 struct ipw_network_match match = {
7500 .network = priv->assoc_network
7501 };
7502
7503 /* The roaming process is as follows:
7504 *
7505 * 1. Missed beacon threshold triggers the roaming process by
7506 * setting the status ROAM bit and requesting a scan.
7507 * 2. When the scan completes, it schedules the ROAM work
7508 * 3. The ROAM work looks at all of the known networks for one that
7509 * is a better network than the currently associated. If none
7510 * found, the ROAM process is over (ROAM bit cleared)
7511 * 4. If a better network is found, a disassociation request is
7512 * sent.
7513 * 5. When the disassociation completes, the roam work is again
7514 * scheduled. The second time through, the driver is no longer
7515 * associated, and the newly selected network is sent an
7516 * association request.
7517 * 6. At this point ,the roaming process is complete and the ROAM
7518 * status bit is cleared.
7519 */
7520
7521 /* If we are no longer associated, and the roaming bit is no longer
7522 * set, then we are not actively roaming, so just return */
7523 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7524 return;
7525
7526 if (priv->status & STATUS_ASSOCIATED) {
7527 /* First pass through ROAM process -- look for a better
7528 * network */
7529 unsigned long flags;
7530 u8 rssi = priv->assoc_network->stats.rssi;
7531 priv->assoc_network->stats.rssi = -128;
7532 spin_lock_irqsave(&priv->ieee->lock, flags);
7533 list_for_each_entry(network, &priv->ieee->network_list, list) {
7534 if (network != priv->assoc_network)
7535 ipw_best_network(priv, &match, network, 1);
7536 }
7537 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7538 priv->assoc_network->stats.rssi = rssi;
7539
7540 if (match.network == priv->assoc_network) {
7541 IPW_DEBUG_ASSOC("No better APs in this network to "
7542 "roam to.\n");
7543 priv->status &= ~STATUS_ROAMING;
7544 ipw_debug_config(priv);
7545 return;
7546 }
7547
7548 ipw_send_disassociate(priv, 1);
7549 priv->assoc_network = match.network;
7550
7551 return;
7552 }
7553
7554 /* Second pass through ROAM process -- request association */
7555 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7556 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7557 priv->status &= ~STATUS_ROAMING;
7558 }
7559
7560 static void ipw_bg_roam(struct work_struct *work)
7561 {
7562 struct ipw_priv *priv =
7563 container_of(work, struct ipw_priv, roam);
7564 mutex_lock(&priv->mutex);
7565 ipw_roam(priv);
7566 mutex_unlock(&priv->mutex);
7567 }
7568
7569 static int ipw_associate(void *data)
7570 {
7571 struct ipw_priv *priv = data;
7572
7573 struct ieee80211_network *network = NULL;
7574 struct ipw_network_match match = {
7575 .network = NULL
7576 };
7577 struct ipw_supported_rates *rates;
7578 struct list_head *element;
7579 unsigned long flags;
7580 DECLARE_SSID_BUF(ssid);
7581
7582 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7583 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7584 return 0;
7585 }
7586
7587 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7588 IPW_DEBUG_ASSOC("Not attempting association (already in "
7589 "progress)\n");
7590 return 0;
7591 }
7592
7593 if (priv->status & STATUS_DISASSOCIATING) {
7594 IPW_DEBUG_ASSOC("Not attempting association (in "
7595 "disassociating)\n ");
7596 queue_work(priv->workqueue, &priv->associate);
7597 return 0;
7598 }
7599
7600 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7601 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7602 "initialized)\n");
7603 return 0;
7604 }
7605
7606 if (!(priv->config & CFG_ASSOCIATE) &&
7607 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7608 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7609 return 0;
7610 }
7611
7612 /* Protect our use of the network_list */
7613 spin_lock_irqsave(&priv->ieee->lock, flags);
7614 list_for_each_entry(network, &priv->ieee->network_list, list)
7615 ipw_best_network(priv, &match, network, 0);
7616
7617 network = match.network;
7618 rates = &match.rates;
7619
7620 if (network == NULL &&
7621 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7622 priv->config & CFG_ADHOC_CREATE &&
7623 priv->config & CFG_STATIC_ESSID &&
7624 priv->config & CFG_STATIC_CHANNEL) {
7625 /* Use oldest network if the free list is empty */
7626 if (list_empty(&priv->ieee->network_free_list)) {
7627 struct ieee80211_network *oldest = NULL;
7628 struct ieee80211_network *target;
7629
7630 list_for_each_entry(target, &priv->ieee->network_list, list) {
7631 if ((oldest == NULL) ||
7632 (target->last_scanned < oldest->last_scanned))
7633 oldest = target;
7634 }
7635
7636 /* If there are no more slots, expire the oldest */
7637 list_del(&oldest->list);
7638 target = oldest;
7639 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7640 "network list.\n",
7641 print_ssid(ssid, target->ssid,
7642 target->ssid_len),
7643 target->bssid);
7644 list_add_tail(&target->list,
7645 &priv->ieee->network_free_list);
7646 }
7647
7648 element = priv->ieee->network_free_list.next;
7649 network = list_entry(element, struct ieee80211_network, list);
7650 ipw_adhoc_create(priv, network);
7651 rates = &priv->rates;
7652 list_del(element);
7653 list_add_tail(&network->list, &priv->ieee->network_list);
7654 }
7655 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7656
7657 /* If we reached the end of the list, then we don't have any valid
7658 * matching APs */
7659 if (!network) {
7660 ipw_debug_config(priv);
7661
7662 if (!(priv->status & STATUS_SCANNING)) {
7663 if (!(priv->config & CFG_SPEED_SCAN))
7664 queue_delayed_work(priv->workqueue,
7665 &priv->request_scan,
7666 SCAN_INTERVAL);
7667 else
7668 queue_delayed_work(priv->workqueue,
7669 &priv->request_scan, 0);
7670 }
7671
7672 return 0;
7673 }
7674
7675 ipw_associate_network(priv, network, rates, 0);
7676
7677 return 1;
7678 }
7679
7680 static void ipw_bg_associate(struct work_struct *work)
7681 {
7682 struct ipw_priv *priv =
7683 container_of(work, struct ipw_priv, associate);
7684 mutex_lock(&priv->mutex);
7685 ipw_associate(priv);
7686 mutex_unlock(&priv->mutex);
7687 }
7688
7689 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7690 struct sk_buff *skb)
7691 {
7692 struct ieee80211_hdr *hdr;
7693 u16 fc;
7694
7695 hdr = (struct ieee80211_hdr *)skb->data;
7696 fc = le16_to_cpu(hdr->frame_control);
7697 if (!(fc & IEEE80211_FCTL_PROTECTED))
7698 return;
7699
7700 fc &= ~IEEE80211_FCTL_PROTECTED;
7701 hdr->frame_control = cpu_to_le16(fc);
7702 switch (priv->ieee->sec.level) {
7703 case SEC_LEVEL_3:
7704 /* Remove CCMP HDR */
7705 memmove(skb->data + IEEE80211_3ADDR_LEN,
7706 skb->data + IEEE80211_3ADDR_LEN + 8,
7707 skb->len - IEEE80211_3ADDR_LEN - 8);
7708 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7709 break;
7710 case SEC_LEVEL_2:
7711 break;
7712 case SEC_LEVEL_1:
7713 /* Remove IV */
7714 memmove(skb->data + IEEE80211_3ADDR_LEN,
7715 skb->data + IEEE80211_3ADDR_LEN + 4,
7716 skb->len - IEEE80211_3ADDR_LEN - 4);
7717 skb_trim(skb, skb->len - 8); /* IV + ICV */
7718 break;
7719 case SEC_LEVEL_0:
7720 break;
7721 default:
7722 printk(KERN_ERR "Unknow security level %d\n",
7723 priv->ieee->sec.level);
7724 break;
7725 }
7726 }
7727
7728 static void ipw_handle_data_packet(struct ipw_priv *priv,
7729 struct ipw_rx_mem_buffer *rxb,
7730 struct ieee80211_rx_stats *stats)
7731 {
7732 struct net_device *dev = priv->net_dev;
7733 struct ieee80211_hdr_4addr *hdr;
7734 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7735
7736 /* We received data from the HW, so stop the watchdog */
7737 dev->trans_start = jiffies;
7738
7739 /* We only process data packets if the
7740 * interface is open */
7741 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7742 skb_tailroom(rxb->skb))) {
7743 dev->stats.rx_errors++;
7744 priv->wstats.discard.misc++;
7745 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7746 return;
7747 } else if (unlikely(!netif_running(priv->net_dev))) {
7748 dev->stats.rx_dropped++;
7749 priv->wstats.discard.misc++;
7750 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7751 return;
7752 }
7753
7754 /* Advance skb->data to the start of the actual payload */
7755 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7756
7757 /* Set the size of the skb to the size of the frame */
7758 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7759
7760 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7761
7762 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7763 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7764 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7765 (is_multicast_ether_addr(hdr->addr1) ?
7766 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7767 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7768
7769 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7770 dev->stats.rx_errors++;
7771 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7772 rxb->skb = NULL;
7773 __ipw_led_activity_on(priv);
7774 }
7775 }
7776
7777 #ifdef CONFIG_IPW2200_RADIOTAP
7778 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7779 struct ipw_rx_mem_buffer *rxb,
7780 struct ieee80211_rx_stats *stats)
7781 {
7782 struct net_device *dev = priv->net_dev;
7783 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7784 struct ipw_rx_frame *frame = &pkt->u.frame;
7785
7786 /* initial pull of some data */
7787 u16 received_channel = frame->received_channel;
7788 u8 antennaAndPhy = frame->antennaAndPhy;
7789 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7790 u16 pktrate = frame->rate;
7791
7792 /* Magic struct that slots into the radiotap header -- no reason
7793 * to build this manually element by element, we can write it much
7794 * more efficiently than we can parse it. ORDER MATTERS HERE */
7795 struct ipw_rt_hdr *ipw_rt;
7796
7797 short len = le16_to_cpu(pkt->u.frame.length);
7798
7799 /* We received data from the HW, so stop the watchdog */
7800 dev->trans_start = jiffies;
7801
7802 /* We only process data packets if the
7803 * interface is open */
7804 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7805 skb_tailroom(rxb->skb))) {
7806 dev->stats.rx_errors++;
7807 priv->wstats.discard.misc++;
7808 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7809 return;
7810 } else if (unlikely(!netif_running(priv->net_dev))) {
7811 dev->stats.rx_dropped++;
7812 priv->wstats.discard.misc++;
7813 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7814 return;
7815 }
7816
7817 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7818 * that now */
7819 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7820 /* FIXME: Should alloc bigger skb instead */
7821 dev->stats.rx_dropped++;
7822 priv->wstats.discard.misc++;
7823 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7824 return;
7825 }
7826
7827 /* copy the frame itself */
7828 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7829 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7830
7831 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7832
7833 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7834 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7835 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7836
7837 /* Big bitfield of all the fields we provide in radiotap */
7838 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7839 (1 << IEEE80211_RADIOTAP_TSFT) |
7840 (1 << IEEE80211_RADIOTAP_FLAGS) |
7841 (1 << IEEE80211_RADIOTAP_RATE) |
7842 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7843 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7844 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7845 (1 << IEEE80211_RADIOTAP_ANTENNA));
7846
7847 /* Zero the flags, we'll add to them as we go */
7848 ipw_rt->rt_flags = 0;
7849 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7850 frame->parent_tsf[2] << 16 |
7851 frame->parent_tsf[1] << 8 |
7852 frame->parent_tsf[0]);
7853
7854 /* Convert signal to DBM */
7855 ipw_rt->rt_dbmsignal = antsignal;
7856 ipw_rt->rt_dbmnoise = frame->noise;
7857
7858 /* Convert the channel data and set the flags */
7859 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7860 if (received_channel > 14) { /* 802.11a */
7861 ipw_rt->rt_chbitmask =
7862 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7863 } else if (antennaAndPhy & 32) { /* 802.11b */
7864 ipw_rt->rt_chbitmask =
7865 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7866 } else { /* 802.11g */
7867 ipw_rt->rt_chbitmask =
7868 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7869 }
7870
7871 /* set the rate in multiples of 500k/s */
7872 switch (pktrate) {
7873 case IPW_TX_RATE_1MB:
7874 ipw_rt->rt_rate = 2;
7875 break;
7876 case IPW_TX_RATE_2MB:
7877 ipw_rt->rt_rate = 4;
7878 break;
7879 case IPW_TX_RATE_5MB:
7880 ipw_rt->rt_rate = 10;
7881 break;
7882 case IPW_TX_RATE_6MB:
7883 ipw_rt->rt_rate = 12;
7884 break;
7885 case IPW_TX_RATE_9MB:
7886 ipw_rt->rt_rate = 18;
7887 break;
7888 case IPW_TX_RATE_11MB:
7889 ipw_rt->rt_rate = 22;
7890 break;
7891 case IPW_TX_RATE_12MB:
7892 ipw_rt->rt_rate = 24;
7893 break;
7894 case IPW_TX_RATE_18MB:
7895 ipw_rt->rt_rate = 36;
7896 break;
7897 case IPW_TX_RATE_24MB:
7898 ipw_rt->rt_rate = 48;
7899 break;
7900 case IPW_TX_RATE_36MB:
7901 ipw_rt->rt_rate = 72;
7902 break;
7903 case IPW_TX_RATE_48MB:
7904 ipw_rt->rt_rate = 96;
7905 break;
7906 case IPW_TX_RATE_54MB:
7907 ipw_rt->rt_rate = 108;
7908 break;
7909 default:
7910 ipw_rt->rt_rate = 0;
7911 break;
7912 }
7913
7914 /* antenna number */
7915 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7916
7917 /* set the preamble flag if we have it */
7918 if ((antennaAndPhy & 64))
7919 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7920
7921 /* Set the size of the skb to the size of the frame */
7922 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7923
7924 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7925
7926 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7927 dev->stats.rx_errors++;
7928 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7929 rxb->skb = NULL;
7930 /* no LED during capture */
7931 }
7932 }
7933 #endif
7934
7935 #ifdef CONFIG_IPW2200_PROMISCUOUS
7936 #define ieee80211_is_probe_response(fc) \
7937 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7938 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7939
7940 #define ieee80211_is_management(fc) \
7941 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7942
7943 #define ieee80211_is_control(fc) \
7944 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7945
7946 #define ieee80211_is_data(fc) \
7947 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7948
7949 #define ieee80211_is_assoc_request(fc) \
7950 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7951
7952 #define ieee80211_is_reassoc_request(fc) \
7953 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7954
7955 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7956 struct ipw_rx_mem_buffer *rxb,
7957 struct ieee80211_rx_stats *stats)
7958 {
7959 struct net_device *dev = priv->prom_net_dev;
7960 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7961 struct ipw_rx_frame *frame = &pkt->u.frame;
7962 struct ipw_rt_hdr *ipw_rt;
7963
7964 /* First cache any information we need before we overwrite
7965 * the information provided in the skb from the hardware */
7966 struct ieee80211_hdr *hdr;
7967 u16 channel = frame->received_channel;
7968 u8 phy_flags = frame->antennaAndPhy;
7969 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7970 s8 noise = frame->noise;
7971 u8 rate = frame->rate;
7972 short len = le16_to_cpu(pkt->u.frame.length);
7973 struct sk_buff *skb;
7974 int hdr_only = 0;
7975 u16 filter = priv->prom_priv->filter;
7976
7977 /* If the filter is set to not include Rx frames then return */
7978 if (filter & IPW_PROM_NO_RX)
7979 return;
7980
7981 /* We received data from the HW, so stop the watchdog */
7982 dev->trans_start = jiffies;
7983
7984 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7985 dev->stats.rx_errors++;
7986 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7987 return;
7988 }
7989
7990 /* We only process data packets if the interface is open */
7991 if (unlikely(!netif_running(dev))) {
7992 dev->stats.rx_dropped++;
7993 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7994 return;
7995 }
7996
7997 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7998 * that now */
7999 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8000 /* FIXME: Should alloc bigger skb instead */
8001 dev->stats.rx_dropped++;
8002 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8003 return;
8004 }
8005
8006 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8007 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
8008 if (filter & IPW_PROM_NO_MGMT)
8009 return;
8010 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8011 hdr_only = 1;
8012 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
8013 if (filter & IPW_PROM_NO_CTL)
8014 return;
8015 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8016 hdr_only = 1;
8017 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8018 if (filter & IPW_PROM_NO_DATA)
8019 return;
8020 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8021 hdr_only = 1;
8022 }
8023
8024 /* Copy the SKB since this is for the promiscuous side */
8025 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8026 if (skb == NULL) {
8027 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8028 return;
8029 }
8030
8031 /* copy the frame data to write after where the radiotap header goes */
8032 ipw_rt = (void *)skb->data;
8033
8034 if (hdr_only)
8035 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8036
8037 memcpy(ipw_rt->payload, hdr, len);
8038
8039 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8040 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8041 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8042
8043 /* Set the size of the skb to the size of the frame */
8044 skb_put(skb, sizeof(*ipw_rt) + len);
8045
8046 /* Big bitfield of all the fields we provide in radiotap */
8047 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8048 (1 << IEEE80211_RADIOTAP_TSFT) |
8049 (1 << IEEE80211_RADIOTAP_FLAGS) |
8050 (1 << IEEE80211_RADIOTAP_RATE) |
8051 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8052 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8053 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8054 (1 << IEEE80211_RADIOTAP_ANTENNA));
8055
8056 /* Zero the flags, we'll add to them as we go */
8057 ipw_rt->rt_flags = 0;
8058 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8059 frame->parent_tsf[2] << 16 |
8060 frame->parent_tsf[1] << 8 |
8061 frame->parent_tsf[0]);
8062
8063 /* Convert to DBM */
8064 ipw_rt->rt_dbmsignal = signal;
8065 ipw_rt->rt_dbmnoise = noise;
8066
8067 /* Convert the channel data and set the flags */
8068 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8069 if (channel > 14) { /* 802.11a */
8070 ipw_rt->rt_chbitmask =
8071 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8072 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8073 ipw_rt->rt_chbitmask =
8074 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8075 } else { /* 802.11g */
8076 ipw_rt->rt_chbitmask =
8077 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8078 }
8079
8080 /* set the rate in multiples of 500k/s */
8081 switch (rate) {
8082 case IPW_TX_RATE_1MB:
8083 ipw_rt->rt_rate = 2;
8084 break;
8085 case IPW_TX_RATE_2MB:
8086 ipw_rt->rt_rate = 4;
8087 break;
8088 case IPW_TX_RATE_5MB:
8089 ipw_rt->rt_rate = 10;
8090 break;
8091 case IPW_TX_RATE_6MB:
8092 ipw_rt->rt_rate = 12;
8093 break;
8094 case IPW_TX_RATE_9MB:
8095 ipw_rt->rt_rate = 18;
8096 break;
8097 case IPW_TX_RATE_11MB:
8098 ipw_rt->rt_rate = 22;
8099 break;
8100 case IPW_TX_RATE_12MB:
8101 ipw_rt->rt_rate = 24;
8102 break;
8103 case IPW_TX_RATE_18MB:
8104 ipw_rt->rt_rate = 36;
8105 break;
8106 case IPW_TX_RATE_24MB:
8107 ipw_rt->rt_rate = 48;
8108 break;
8109 case IPW_TX_RATE_36MB:
8110 ipw_rt->rt_rate = 72;
8111 break;
8112 case IPW_TX_RATE_48MB:
8113 ipw_rt->rt_rate = 96;
8114 break;
8115 case IPW_TX_RATE_54MB:
8116 ipw_rt->rt_rate = 108;
8117 break;
8118 default:
8119 ipw_rt->rt_rate = 0;
8120 break;
8121 }
8122
8123 /* antenna number */
8124 ipw_rt->rt_antenna = (phy_flags & 3);
8125
8126 /* set the preamble flag if we have it */
8127 if (phy_flags & (1 << 6))
8128 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8129
8130 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8131
8132 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8133 dev->stats.rx_errors++;
8134 dev_kfree_skb_any(skb);
8135 }
8136 }
8137 #endif
8138
8139 static int is_network_packet(struct ipw_priv *priv,
8140 struct ieee80211_hdr_4addr *header)
8141 {
8142 /* Filter incoming packets to determine if they are targetted toward
8143 * this network, discarding packets coming from ourselves */
8144 switch (priv->ieee->iw_mode) {
8145 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8146 /* packets from our adapter are dropped (echo) */
8147 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8148 return 0;
8149
8150 /* {broad,multi}cast packets to our BSSID go through */
8151 if (is_multicast_ether_addr(header->addr1))
8152 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8153
8154 /* packets to our adapter go through */
8155 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8156 ETH_ALEN);
8157
8158 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8159 /* packets from our adapter are dropped (echo) */
8160 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8161 return 0;
8162
8163 /* {broad,multi}cast packets to our BSS go through */
8164 if (is_multicast_ether_addr(header->addr1))
8165 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8166
8167 /* packets to our adapter go through */
8168 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8169 ETH_ALEN);
8170 }
8171
8172 return 1;
8173 }
8174
8175 #define IPW_PACKET_RETRY_TIME HZ
8176
8177 static int is_duplicate_packet(struct ipw_priv *priv,
8178 struct ieee80211_hdr_4addr *header)
8179 {
8180 u16 sc = le16_to_cpu(header->seq_ctl);
8181 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8182 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8183 u16 *last_seq, *last_frag;
8184 unsigned long *last_time;
8185
8186 switch (priv->ieee->iw_mode) {
8187 case IW_MODE_ADHOC:
8188 {
8189 struct list_head *p;
8190 struct ipw_ibss_seq *entry = NULL;
8191 u8 *mac = header->addr2;
8192 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8193
8194 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8195 entry =
8196 list_entry(p, struct ipw_ibss_seq, list);
8197 if (!memcmp(entry->mac, mac, ETH_ALEN))
8198 break;
8199 }
8200 if (p == &priv->ibss_mac_hash[index]) {
8201 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8202 if (!entry) {
8203 IPW_ERROR
8204 ("Cannot malloc new mac entry\n");
8205 return 0;
8206 }
8207 memcpy(entry->mac, mac, ETH_ALEN);
8208 entry->seq_num = seq;
8209 entry->frag_num = frag;
8210 entry->packet_time = jiffies;
8211 list_add(&entry->list,
8212 &priv->ibss_mac_hash[index]);
8213 return 0;
8214 }
8215 last_seq = &entry->seq_num;
8216 last_frag = &entry->frag_num;
8217 last_time = &entry->packet_time;
8218 break;
8219 }
8220 case IW_MODE_INFRA:
8221 last_seq = &priv->last_seq_num;
8222 last_frag = &priv->last_frag_num;
8223 last_time = &priv->last_packet_time;
8224 break;
8225 default:
8226 return 0;
8227 }
8228 if ((*last_seq == seq) &&
8229 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8230 if (*last_frag == frag)
8231 goto drop;
8232 if (*last_frag + 1 != frag)
8233 /* out-of-order fragment */
8234 goto drop;
8235 } else
8236 *last_seq = seq;
8237
8238 *last_frag = frag;
8239 *last_time = jiffies;
8240 return 0;
8241
8242 drop:
8243 /* Comment this line now since we observed the card receives
8244 * duplicate packets but the FCTL_RETRY bit is not set in the
8245 * IBSS mode with fragmentation enabled.
8246 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8247 return 1;
8248 }
8249
8250 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8251 struct ipw_rx_mem_buffer *rxb,
8252 struct ieee80211_rx_stats *stats)
8253 {
8254 struct sk_buff *skb = rxb->skb;
8255 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8256 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8257 (skb->data + IPW_RX_FRAME_SIZE);
8258
8259 ieee80211_rx_mgt(priv->ieee, header, stats);
8260
8261 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8262 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8263 IEEE80211_STYPE_PROBE_RESP) ||
8264 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8265 IEEE80211_STYPE_BEACON))) {
8266 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8267 ipw_add_station(priv, header->addr2);
8268 }
8269
8270 if (priv->config & CFG_NET_STATS) {
8271 IPW_DEBUG_HC("sending stat packet\n");
8272
8273 /* Set the size of the skb to the size of the full
8274 * ipw header and 802.11 frame */
8275 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8276 IPW_RX_FRAME_SIZE);
8277
8278 /* Advance past the ipw packet header to the 802.11 frame */
8279 skb_pull(skb, IPW_RX_FRAME_SIZE);
8280
8281 /* Push the ieee80211_rx_stats before the 802.11 frame */
8282 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8283
8284 skb->dev = priv->ieee->dev;
8285
8286 /* Point raw at the ieee80211_stats */
8287 skb_reset_mac_header(skb);
8288
8289 skb->pkt_type = PACKET_OTHERHOST;
8290 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8291 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8292 netif_rx(skb);
8293 rxb->skb = NULL;
8294 }
8295 }
8296
8297 /*
8298 * Main entry function for recieving a packet with 80211 headers. This
8299 * should be called when ever the FW has notified us that there is a new
8300 * skb in the recieve queue.
8301 */
8302 static void ipw_rx(struct ipw_priv *priv)
8303 {
8304 struct ipw_rx_mem_buffer *rxb;
8305 struct ipw_rx_packet *pkt;
8306 struct ieee80211_hdr_4addr *header;
8307 u32 r, w, i;
8308 u8 network_packet;
8309 u8 fill_rx = 0;
8310
8311 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8312 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8313 i = priv->rxq->read;
8314
8315 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8316 fill_rx = 1;
8317
8318 while (i != r) {
8319 rxb = priv->rxq->queue[i];
8320 if (unlikely(rxb == NULL)) {
8321 printk(KERN_CRIT "Queue not allocated!\n");
8322 break;
8323 }
8324 priv->rxq->queue[i] = NULL;
8325
8326 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8327 IPW_RX_BUF_SIZE,
8328 PCI_DMA_FROMDEVICE);
8329
8330 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8331 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8332 pkt->header.message_type,
8333 pkt->header.rx_seq_num, pkt->header.control_bits);
8334
8335 switch (pkt->header.message_type) {
8336 case RX_FRAME_TYPE: /* 802.11 frame */ {
8337 struct ieee80211_rx_stats stats = {
8338 .rssi = pkt->u.frame.rssi_dbm -
8339 IPW_RSSI_TO_DBM,
8340 .signal =
8341 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8342 IPW_RSSI_TO_DBM + 0x100,
8343 .noise =
8344 le16_to_cpu(pkt->u.frame.noise),
8345 .rate = pkt->u.frame.rate,
8346 .mac_time = jiffies,
8347 .received_channel =
8348 pkt->u.frame.received_channel,
8349 .freq =
8350 (pkt->u.frame.
8351 control & (1 << 0)) ?
8352 IEEE80211_24GHZ_BAND :
8353 IEEE80211_52GHZ_BAND,
8354 .len = le16_to_cpu(pkt->u.frame.length),
8355 };
8356
8357 if (stats.rssi != 0)
8358 stats.mask |= IEEE80211_STATMASK_RSSI;
8359 if (stats.signal != 0)
8360 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8361 if (stats.noise != 0)
8362 stats.mask |= IEEE80211_STATMASK_NOISE;
8363 if (stats.rate != 0)
8364 stats.mask |= IEEE80211_STATMASK_RATE;
8365
8366 priv->rx_packets++;
8367
8368 #ifdef CONFIG_IPW2200_PROMISCUOUS
8369 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8370 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8371 #endif
8372
8373 #ifdef CONFIG_IPW2200_MONITOR
8374 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8375 #ifdef CONFIG_IPW2200_RADIOTAP
8376
8377 ipw_handle_data_packet_monitor(priv,
8378 rxb,
8379 &stats);
8380 #else
8381 ipw_handle_data_packet(priv, rxb,
8382 &stats);
8383 #endif
8384 break;
8385 }
8386 #endif
8387
8388 header =
8389 (struct ieee80211_hdr_4addr *)(rxb->skb->
8390 data +
8391 IPW_RX_FRAME_SIZE);
8392 /* TODO: Check Ad-Hoc dest/source and make sure
8393 * that we are actually parsing these packets
8394 * correctly -- we should probably use the
8395 * frame control of the packet and disregard
8396 * the current iw_mode */
8397
8398 network_packet =
8399 is_network_packet(priv, header);
8400 if (network_packet && priv->assoc_network) {
8401 priv->assoc_network->stats.rssi =
8402 stats.rssi;
8403 priv->exp_avg_rssi =
8404 exponential_average(priv->exp_avg_rssi,
8405 stats.rssi, DEPTH_RSSI);
8406 }
8407
8408 IPW_DEBUG_RX("Frame: len=%u\n",
8409 le16_to_cpu(pkt->u.frame.length));
8410
8411 if (le16_to_cpu(pkt->u.frame.length) <
8412 ieee80211_get_hdrlen(le16_to_cpu(
8413 header->frame_ctl))) {
8414 IPW_DEBUG_DROP
8415 ("Received packet is too small. "
8416 "Dropping.\n");
8417 priv->net_dev->stats.rx_errors++;
8418 priv->wstats.discard.misc++;
8419 break;
8420 }
8421
8422 switch (WLAN_FC_GET_TYPE
8423 (le16_to_cpu(header->frame_ctl))) {
8424
8425 case IEEE80211_FTYPE_MGMT:
8426 ipw_handle_mgmt_packet(priv, rxb,
8427 &stats);
8428 break;
8429
8430 case IEEE80211_FTYPE_CTL:
8431 break;
8432
8433 case IEEE80211_FTYPE_DATA:
8434 if (unlikely(!network_packet ||
8435 is_duplicate_packet(priv,
8436 header)))
8437 {
8438 IPW_DEBUG_DROP("Dropping: "
8439 "%pM, "
8440 "%pM, "
8441 "%pM\n",
8442 header->addr1,
8443 header->addr2,
8444 header->addr3);
8445 break;
8446 }
8447
8448 ipw_handle_data_packet(priv, rxb,
8449 &stats);
8450
8451 break;
8452 }
8453 break;
8454 }
8455
8456 case RX_HOST_NOTIFICATION_TYPE:{
8457 IPW_DEBUG_RX
8458 ("Notification: subtype=%02X flags=%02X size=%d\n",
8459 pkt->u.notification.subtype,
8460 pkt->u.notification.flags,
8461 le16_to_cpu(pkt->u.notification.size));
8462 ipw_rx_notification(priv, &pkt->u.notification);
8463 break;
8464 }
8465
8466 default:
8467 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8468 pkt->header.message_type);
8469 break;
8470 }
8471
8472 /* For now we just don't re-use anything. We can tweak this
8473 * later to try and re-use notification packets and SKBs that
8474 * fail to Rx correctly */
8475 if (rxb->skb != NULL) {
8476 dev_kfree_skb_any(rxb->skb);
8477 rxb->skb = NULL;
8478 }
8479
8480 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8481 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8482 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8483
8484 i = (i + 1) % RX_QUEUE_SIZE;
8485
8486 /* If there are a lot of unsued frames, restock the Rx queue
8487 * so the ucode won't assert */
8488 if (fill_rx) {
8489 priv->rxq->read = i;
8490 ipw_rx_queue_replenish(priv);
8491 }
8492 }
8493
8494 /* Backtrack one entry */
8495 priv->rxq->read = i;
8496 ipw_rx_queue_restock(priv);
8497 }
8498
8499 #define DEFAULT_RTS_THRESHOLD 2304U
8500 #define MIN_RTS_THRESHOLD 1U
8501 #define MAX_RTS_THRESHOLD 2304U
8502 #define DEFAULT_BEACON_INTERVAL 100U
8503 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8504 #define DEFAULT_LONG_RETRY_LIMIT 4U
8505
8506 /**
8507 * ipw_sw_reset
8508 * @option: options to control different reset behaviour
8509 * 0 = reset everything except the 'disable' module_param
8510 * 1 = reset everything and print out driver info (for probe only)
8511 * 2 = reset everything
8512 */
8513 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8514 {
8515 int band, modulation;
8516 int old_mode = priv->ieee->iw_mode;
8517
8518 /* Initialize module parameter values here */
8519 priv->config = 0;
8520
8521 /* We default to disabling the LED code as right now it causes
8522 * too many systems to lock up... */
8523 if (!led)
8524 priv->config |= CFG_NO_LED;
8525
8526 if (associate)
8527 priv->config |= CFG_ASSOCIATE;
8528 else
8529 IPW_DEBUG_INFO("Auto associate disabled.\n");
8530
8531 if (auto_create)
8532 priv->config |= CFG_ADHOC_CREATE;
8533 else
8534 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8535
8536 priv->config &= ~CFG_STATIC_ESSID;
8537 priv->essid_len = 0;
8538 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8539
8540 if (disable && option) {
8541 priv->status |= STATUS_RF_KILL_SW;
8542 IPW_DEBUG_INFO("Radio disabled.\n");
8543 }
8544
8545 if (channel != 0) {
8546 priv->config |= CFG_STATIC_CHANNEL;
8547 priv->channel = channel;
8548 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8549 /* TODO: Validate that provided channel is in range */
8550 }
8551 #ifdef CONFIG_IPW2200_QOS
8552 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8553 burst_duration_CCK, burst_duration_OFDM);
8554 #endif /* CONFIG_IPW2200_QOS */
8555
8556 switch (mode) {
8557 case 1:
8558 priv->ieee->iw_mode = IW_MODE_ADHOC;
8559 priv->net_dev->type = ARPHRD_ETHER;
8560
8561 break;
8562 #ifdef CONFIG_IPW2200_MONITOR
8563 case 2:
8564 priv->ieee->iw_mode = IW_MODE_MONITOR;
8565 #ifdef CONFIG_IPW2200_RADIOTAP
8566 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8567 #else
8568 priv->net_dev->type = ARPHRD_IEEE80211;
8569 #endif
8570 break;
8571 #endif
8572 default:
8573 case 0:
8574 priv->net_dev->type = ARPHRD_ETHER;
8575 priv->ieee->iw_mode = IW_MODE_INFRA;
8576 break;
8577 }
8578
8579 if (hwcrypto) {
8580 priv->ieee->host_encrypt = 0;
8581 priv->ieee->host_encrypt_msdu = 0;
8582 priv->ieee->host_decrypt = 0;
8583 priv->ieee->host_mc_decrypt = 0;
8584 }
8585 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8586
8587 /* IPW2200/2915 is abled to do hardware fragmentation. */
8588 priv->ieee->host_open_frag = 0;
8589
8590 if ((priv->pci_dev->device == 0x4223) ||
8591 (priv->pci_dev->device == 0x4224)) {
8592 if (option == 1)
8593 printk(KERN_INFO DRV_NAME
8594 ": Detected Intel PRO/Wireless 2915ABG Network "
8595 "Connection\n");
8596 priv->ieee->abg_true = 1;
8597 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8598 modulation = IEEE80211_OFDM_MODULATION |
8599 IEEE80211_CCK_MODULATION;
8600 priv->adapter = IPW_2915ABG;
8601 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8602 } else {
8603 if (option == 1)
8604 printk(KERN_INFO DRV_NAME
8605 ": Detected Intel PRO/Wireless 2200BG Network "
8606 "Connection\n");
8607
8608 priv->ieee->abg_true = 0;
8609 band = IEEE80211_24GHZ_BAND;
8610 modulation = IEEE80211_OFDM_MODULATION |
8611 IEEE80211_CCK_MODULATION;
8612 priv->adapter = IPW_2200BG;
8613 priv->ieee->mode = IEEE_G | IEEE_B;
8614 }
8615
8616 priv->ieee->freq_band = band;
8617 priv->ieee->modulation = modulation;
8618
8619 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8620
8621 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8622 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8623
8624 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8625 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8626 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8627
8628 /* If power management is turned on, default to AC mode */
8629 priv->power_mode = IPW_POWER_AC;
8630 priv->tx_power = IPW_TX_POWER_DEFAULT;
8631
8632 return old_mode == priv->ieee->iw_mode;
8633 }
8634
8635 /*
8636 * This file defines the Wireless Extension handlers. It does not
8637 * define any methods of hardware manipulation and relies on the
8638 * functions defined in ipw_main to provide the HW interaction.
8639 *
8640 * The exception to this is the use of the ipw_get_ordinal()
8641 * function used to poll the hardware vs. making unecessary calls.
8642 *
8643 */
8644
8645 static int ipw_wx_get_name(struct net_device *dev,
8646 struct iw_request_info *info,
8647 union iwreq_data *wrqu, char *extra)
8648 {
8649 struct ipw_priv *priv = ieee80211_priv(dev);
8650 mutex_lock(&priv->mutex);
8651 if (priv->status & STATUS_RF_KILL_MASK)
8652 strcpy(wrqu->name, "radio off");
8653 else if (!(priv->status & STATUS_ASSOCIATED))
8654 strcpy(wrqu->name, "unassociated");
8655 else
8656 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8657 ipw_modes[priv->assoc_request.ieee_mode]);
8658 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8659 mutex_unlock(&priv->mutex);
8660 return 0;
8661 }
8662
8663 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8664 {
8665 if (channel == 0) {
8666 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8667 priv->config &= ~CFG_STATIC_CHANNEL;
8668 IPW_DEBUG_ASSOC("Attempting to associate with new "
8669 "parameters.\n");
8670 ipw_associate(priv);
8671 return 0;
8672 }
8673
8674 priv->config |= CFG_STATIC_CHANNEL;
8675
8676 if (priv->channel == channel) {
8677 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8678 channel);
8679 return 0;
8680 }
8681
8682 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8683 priv->channel = channel;
8684
8685 #ifdef CONFIG_IPW2200_MONITOR
8686 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8687 int i;
8688 if (priv->status & STATUS_SCANNING) {
8689 IPW_DEBUG_SCAN("Scan abort triggered due to "
8690 "channel change.\n");
8691 ipw_abort_scan(priv);
8692 }
8693
8694 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8695 udelay(10);
8696
8697 if (priv->status & STATUS_SCANNING)
8698 IPW_DEBUG_SCAN("Still scanning...\n");
8699 else
8700 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8701 1000 - i);
8702
8703 return 0;
8704 }
8705 #endif /* CONFIG_IPW2200_MONITOR */
8706
8707 /* Network configuration changed -- force [re]association */
8708 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8709 if (!ipw_disassociate(priv))
8710 ipw_associate(priv);
8711
8712 return 0;
8713 }
8714
8715 static int ipw_wx_set_freq(struct net_device *dev,
8716 struct iw_request_info *info,
8717 union iwreq_data *wrqu, char *extra)
8718 {
8719 struct ipw_priv *priv = ieee80211_priv(dev);
8720 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8721 struct iw_freq *fwrq = &wrqu->freq;
8722 int ret = 0, i;
8723 u8 channel, flags;
8724 int band;
8725
8726 if (fwrq->m == 0) {
8727 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8728 mutex_lock(&priv->mutex);
8729 ret = ipw_set_channel(priv, 0);
8730 mutex_unlock(&priv->mutex);
8731 return ret;
8732 }
8733 /* if setting by freq convert to channel */
8734 if (fwrq->e == 1) {
8735 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8736 if (channel == 0)
8737 return -EINVAL;
8738 } else
8739 channel = fwrq->m;
8740
8741 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8742 return -EINVAL;
8743
8744 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8745 i = ieee80211_channel_to_index(priv->ieee, channel);
8746 if (i == -1)
8747 return -EINVAL;
8748
8749 flags = (band == IEEE80211_24GHZ_BAND) ?
8750 geo->bg[i].flags : geo->a[i].flags;
8751 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8752 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8753 return -EINVAL;
8754 }
8755 }
8756
8757 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8758 mutex_lock(&priv->mutex);
8759 ret = ipw_set_channel(priv, channel);
8760 mutex_unlock(&priv->mutex);
8761 return ret;
8762 }
8763
8764 static int ipw_wx_get_freq(struct net_device *dev,
8765 struct iw_request_info *info,
8766 union iwreq_data *wrqu, char *extra)
8767 {
8768 struct ipw_priv *priv = ieee80211_priv(dev);
8769
8770 wrqu->freq.e = 0;
8771
8772 /* If we are associated, trying to associate, or have a statically
8773 * configured CHANNEL then return that; otherwise return ANY */
8774 mutex_lock(&priv->mutex);
8775 if (priv->config & CFG_STATIC_CHANNEL ||
8776 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8777 int i;
8778
8779 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8780 BUG_ON(i == -1);
8781 wrqu->freq.e = 1;
8782
8783 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8784 case IEEE80211_52GHZ_BAND:
8785 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8786 break;
8787
8788 case IEEE80211_24GHZ_BAND:
8789 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8790 break;
8791
8792 default:
8793 BUG();
8794 }
8795 } else
8796 wrqu->freq.m = 0;
8797
8798 mutex_unlock(&priv->mutex);
8799 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8800 return 0;
8801 }
8802
8803 static int ipw_wx_set_mode(struct net_device *dev,
8804 struct iw_request_info *info,
8805 union iwreq_data *wrqu, char *extra)
8806 {
8807 struct ipw_priv *priv = ieee80211_priv(dev);
8808 int err = 0;
8809
8810 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8811
8812 switch (wrqu->mode) {
8813 #ifdef CONFIG_IPW2200_MONITOR
8814 case IW_MODE_MONITOR:
8815 #endif
8816 case IW_MODE_ADHOC:
8817 case IW_MODE_INFRA:
8818 break;
8819 case IW_MODE_AUTO:
8820 wrqu->mode = IW_MODE_INFRA;
8821 break;
8822 default:
8823 return -EINVAL;
8824 }
8825 if (wrqu->mode == priv->ieee->iw_mode)
8826 return 0;
8827
8828 mutex_lock(&priv->mutex);
8829
8830 ipw_sw_reset(priv, 0);
8831
8832 #ifdef CONFIG_IPW2200_MONITOR
8833 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8834 priv->net_dev->type = ARPHRD_ETHER;
8835
8836 if (wrqu->mode == IW_MODE_MONITOR)
8837 #ifdef CONFIG_IPW2200_RADIOTAP
8838 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8839 #else
8840 priv->net_dev->type = ARPHRD_IEEE80211;
8841 #endif
8842 #endif /* CONFIG_IPW2200_MONITOR */
8843
8844 /* Free the existing firmware and reset the fw_loaded
8845 * flag so ipw_load() will bring in the new firmware */
8846 free_firmware();
8847
8848 priv->ieee->iw_mode = wrqu->mode;
8849
8850 queue_work(priv->workqueue, &priv->adapter_restart);
8851 mutex_unlock(&priv->mutex);
8852 return err;
8853 }
8854
8855 static int ipw_wx_get_mode(struct net_device *dev,
8856 struct iw_request_info *info,
8857 union iwreq_data *wrqu, char *extra)
8858 {
8859 struct ipw_priv *priv = ieee80211_priv(dev);
8860 mutex_lock(&priv->mutex);
8861 wrqu->mode = priv->ieee->iw_mode;
8862 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8863 mutex_unlock(&priv->mutex);
8864 return 0;
8865 }
8866
8867 /* Values are in microsecond */
8868 static const s32 timeout_duration[] = {
8869 350000,
8870 250000,
8871 75000,
8872 37000,
8873 25000,
8874 };
8875
8876 static const s32 period_duration[] = {
8877 400000,
8878 700000,
8879 1000000,
8880 1000000,
8881 1000000
8882 };
8883
8884 static int ipw_wx_get_range(struct net_device *dev,
8885 struct iw_request_info *info,
8886 union iwreq_data *wrqu, char *extra)
8887 {
8888 struct ipw_priv *priv = ieee80211_priv(dev);
8889 struct iw_range *range = (struct iw_range *)extra;
8890 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8891 int i = 0, j;
8892
8893 wrqu->data.length = sizeof(*range);
8894 memset(range, 0, sizeof(*range));
8895
8896 /* 54Mbs == ~27 Mb/s real (802.11g) */
8897 range->throughput = 27 * 1000 * 1000;
8898
8899 range->max_qual.qual = 100;
8900 /* TODO: Find real max RSSI and stick here */
8901 range->max_qual.level = 0;
8902 range->max_qual.noise = 0;
8903 range->max_qual.updated = 7; /* Updated all three */
8904
8905 range->avg_qual.qual = 70;
8906 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8907 range->avg_qual.level = 0; /* FIXME to real average level */
8908 range->avg_qual.noise = 0;
8909 range->avg_qual.updated = 7; /* Updated all three */
8910 mutex_lock(&priv->mutex);
8911 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8912
8913 for (i = 0; i < range->num_bitrates; i++)
8914 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8915 500000;
8916
8917 range->max_rts = DEFAULT_RTS_THRESHOLD;
8918 range->min_frag = MIN_FRAG_THRESHOLD;
8919 range->max_frag = MAX_FRAG_THRESHOLD;
8920
8921 range->encoding_size[0] = 5;
8922 range->encoding_size[1] = 13;
8923 range->num_encoding_sizes = 2;
8924 range->max_encoding_tokens = WEP_KEYS;
8925
8926 /* Set the Wireless Extension versions */
8927 range->we_version_compiled = WIRELESS_EXT;
8928 range->we_version_source = 18;
8929
8930 i = 0;
8931 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8932 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8933 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8934 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8935 continue;
8936
8937 range->freq[i].i = geo->bg[j].channel;
8938 range->freq[i].m = geo->bg[j].freq * 100000;
8939 range->freq[i].e = 1;
8940 i++;
8941 }
8942 }
8943
8944 if (priv->ieee->mode & IEEE_A) {
8945 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8946 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8947 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8948 continue;
8949
8950 range->freq[i].i = geo->a[j].channel;
8951 range->freq[i].m = geo->a[j].freq * 100000;
8952 range->freq[i].e = 1;
8953 i++;
8954 }
8955 }
8956
8957 range->num_channels = i;
8958 range->num_frequency = i;
8959
8960 mutex_unlock(&priv->mutex);
8961
8962 /* Event capability (kernel + driver) */
8963 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8964 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8965 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8966 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8967 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8968
8969 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8970 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8971
8972 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8973
8974 IPW_DEBUG_WX("GET Range\n");
8975 return 0;
8976 }
8977
8978 static int ipw_wx_set_wap(struct net_device *dev,
8979 struct iw_request_info *info,
8980 union iwreq_data *wrqu, char *extra)
8981 {
8982 struct ipw_priv *priv = ieee80211_priv(dev);
8983
8984 static const unsigned char any[] = {
8985 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8986 };
8987 static const unsigned char off[] = {
8988 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8989 };
8990
8991 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8992 return -EINVAL;
8993 mutex_lock(&priv->mutex);
8994 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8995 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8996 /* we disable mandatory BSSID association */
8997 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8998 priv->config &= ~CFG_STATIC_BSSID;
8999 IPW_DEBUG_ASSOC("Attempting to associate with new "
9000 "parameters.\n");
9001 ipw_associate(priv);
9002 mutex_unlock(&priv->mutex);
9003 return 0;
9004 }
9005
9006 priv->config |= CFG_STATIC_BSSID;
9007 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9008 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9009 mutex_unlock(&priv->mutex);
9010 return 0;
9011 }
9012
9013 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9014 wrqu->ap_addr.sa_data);
9015
9016 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9017
9018 /* Network configuration changed -- force [re]association */
9019 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9020 if (!ipw_disassociate(priv))
9021 ipw_associate(priv);
9022
9023 mutex_unlock(&priv->mutex);
9024 return 0;
9025 }
9026
9027 static int ipw_wx_get_wap(struct net_device *dev,
9028 struct iw_request_info *info,
9029 union iwreq_data *wrqu, char *extra)
9030 {
9031 struct ipw_priv *priv = ieee80211_priv(dev);
9032
9033 /* If we are associated, trying to associate, or have a statically
9034 * configured BSSID then return that; otherwise return ANY */
9035 mutex_lock(&priv->mutex);
9036 if (priv->config & CFG_STATIC_BSSID ||
9037 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9038 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9039 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9040 } else
9041 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9042
9043 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9044 wrqu->ap_addr.sa_data);
9045 mutex_unlock(&priv->mutex);
9046 return 0;
9047 }
9048
9049 static int ipw_wx_set_essid(struct net_device *dev,
9050 struct iw_request_info *info,
9051 union iwreq_data *wrqu, char *extra)
9052 {
9053 struct ipw_priv *priv = ieee80211_priv(dev);
9054 int length;
9055 DECLARE_SSID_BUF(ssid);
9056
9057 mutex_lock(&priv->mutex);
9058
9059 if (!wrqu->essid.flags)
9060 {
9061 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9062 ipw_disassociate(priv);
9063 priv->config &= ~CFG_STATIC_ESSID;
9064 ipw_associate(priv);
9065 mutex_unlock(&priv->mutex);
9066 return 0;
9067 }
9068
9069 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9070
9071 priv->config |= CFG_STATIC_ESSID;
9072
9073 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9074 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9075 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9076 mutex_unlock(&priv->mutex);
9077 return 0;
9078 }
9079
9080 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9081 print_ssid(ssid, extra, length), length);
9082
9083 priv->essid_len = length;
9084 memcpy(priv->essid, extra, priv->essid_len);
9085
9086 /* Network configuration changed -- force [re]association */
9087 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9088 if (!ipw_disassociate(priv))
9089 ipw_associate(priv);
9090
9091 mutex_unlock(&priv->mutex);
9092 return 0;
9093 }
9094
9095 static int ipw_wx_get_essid(struct net_device *dev,
9096 struct iw_request_info *info,
9097 union iwreq_data *wrqu, char *extra)
9098 {
9099 struct ipw_priv *priv = ieee80211_priv(dev);
9100 DECLARE_SSID_BUF(ssid);
9101
9102 /* If we are associated, trying to associate, or have a statically
9103 * configured ESSID then return that; otherwise return ANY */
9104 mutex_lock(&priv->mutex);
9105 if (priv->config & CFG_STATIC_ESSID ||
9106 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9107 IPW_DEBUG_WX("Getting essid: '%s'\n",
9108 print_ssid(ssid, priv->essid, priv->essid_len));
9109 memcpy(extra, priv->essid, priv->essid_len);
9110 wrqu->essid.length = priv->essid_len;
9111 wrqu->essid.flags = 1; /* active */
9112 } else {
9113 IPW_DEBUG_WX("Getting essid: ANY\n");
9114 wrqu->essid.length = 0;
9115 wrqu->essid.flags = 0; /* active */
9116 }
9117 mutex_unlock(&priv->mutex);
9118 return 0;
9119 }
9120
9121 static int ipw_wx_set_nick(struct net_device *dev,
9122 struct iw_request_info *info,
9123 union iwreq_data *wrqu, char *extra)
9124 {
9125 struct ipw_priv *priv = ieee80211_priv(dev);
9126
9127 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9128 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9129 return -E2BIG;
9130 mutex_lock(&priv->mutex);
9131 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9132 memset(priv->nick, 0, sizeof(priv->nick));
9133 memcpy(priv->nick, extra, wrqu->data.length);
9134 IPW_DEBUG_TRACE("<<\n");
9135 mutex_unlock(&priv->mutex);
9136 return 0;
9137
9138 }
9139
9140 static int ipw_wx_get_nick(struct net_device *dev,
9141 struct iw_request_info *info,
9142 union iwreq_data *wrqu, char *extra)
9143 {
9144 struct ipw_priv *priv = ieee80211_priv(dev);
9145 IPW_DEBUG_WX("Getting nick\n");
9146 mutex_lock(&priv->mutex);
9147 wrqu->data.length = strlen(priv->nick);
9148 memcpy(extra, priv->nick, wrqu->data.length);
9149 wrqu->data.flags = 1; /* active */
9150 mutex_unlock(&priv->mutex);
9151 return 0;
9152 }
9153
9154 static int ipw_wx_set_sens(struct net_device *dev,
9155 struct iw_request_info *info,
9156 union iwreq_data *wrqu, char *extra)
9157 {
9158 struct ipw_priv *priv = ieee80211_priv(dev);
9159 int err = 0;
9160
9161 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9162 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9163 mutex_lock(&priv->mutex);
9164
9165 if (wrqu->sens.fixed == 0)
9166 {
9167 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9168 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9169 goto out;
9170 }
9171 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9172 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9173 err = -EINVAL;
9174 goto out;
9175 }
9176
9177 priv->roaming_threshold = wrqu->sens.value;
9178 priv->disassociate_threshold = 3*wrqu->sens.value;
9179 out:
9180 mutex_unlock(&priv->mutex);
9181 return err;
9182 }
9183
9184 static int ipw_wx_get_sens(struct net_device *dev,
9185 struct iw_request_info *info,
9186 union iwreq_data *wrqu, char *extra)
9187 {
9188 struct ipw_priv *priv = ieee80211_priv(dev);
9189 mutex_lock(&priv->mutex);
9190 wrqu->sens.fixed = 1;
9191 wrqu->sens.value = priv->roaming_threshold;
9192 mutex_unlock(&priv->mutex);
9193
9194 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9195 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9196
9197 return 0;
9198 }
9199
9200 static int ipw_wx_set_rate(struct net_device *dev,
9201 struct iw_request_info *info,
9202 union iwreq_data *wrqu, char *extra)
9203 {
9204 /* TODO: We should use semaphores or locks for access to priv */
9205 struct ipw_priv *priv = ieee80211_priv(dev);
9206 u32 target_rate = wrqu->bitrate.value;
9207 u32 fixed, mask;
9208
9209 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9210 /* value = X, fixed = 1 means only rate X */
9211 /* value = X, fixed = 0 means all rates lower equal X */
9212
9213 if (target_rate == -1) {
9214 fixed = 0;
9215 mask = IEEE80211_DEFAULT_RATES_MASK;
9216 /* Now we should reassociate */
9217 goto apply;
9218 }
9219
9220 mask = 0;
9221 fixed = wrqu->bitrate.fixed;
9222
9223 if (target_rate == 1000000 || !fixed)
9224 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9225 if (target_rate == 1000000)
9226 goto apply;
9227
9228 if (target_rate == 2000000 || !fixed)
9229 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9230 if (target_rate == 2000000)
9231 goto apply;
9232
9233 if (target_rate == 5500000 || !fixed)
9234 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9235 if (target_rate == 5500000)
9236 goto apply;
9237
9238 if (target_rate == 6000000 || !fixed)
9239 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9240 if (target_rate == 6000000)
9241 goto apply;
9242
9243 if (target_rate == 9000000 || !fixed)
9244 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9245 if (target_rate == 9000000)
9246 goto apply;
9247
9248 if (target_rate == 11000000 || !fixed)
9249 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9250 if (target_rate == 11000000)
9251 goto apply;
9252
9253 if (target_rate == 12000000 || !fixed)
9254 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9255 if (target_rate == 12000000)
9256 goto apply;
9257
9258 if (target_rate == 18000000 || !fixed)
9259 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9260 if (target_rate == 18000000)
9261 goto apply;
9262
9263 if (target_rate == 24000000 || !fixed)
9264 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9265 if (target_rate == 24000000)
9266 goto apply;
9267
9268 if (target_rate == 36000000 || !fixed)
9269 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9270 if (target_rate == 36000000)
9271 goto apply;
9272
9273 if (target_rate == 48000000 || !fixed)
9274 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9275 if (target_rate == 48000000)
9276 goto apply;
9277
9278 if (target_rate == 54000000 || !fixed)
9279 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9280 if (target_rate == 54000000)
9281 goto apply;
9282
9283 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9284 return -EINVAL;
9285
9286 apply:
9287 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9288 mask, fixed ? "fixed" : "sub-rates");
9289 mutex_lock(&priv->mutex);
9290 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9291 priv->config &= ~CFG_FIXED_RATE;
9292 ipw_set_fixed_rate(priv, priv->ieee->mode);
9293 } else
9294 priv->config |= CFG_FIXED_RATE;
9295
9296 if (priv->rates_mask == mask) {
9297 IPW_DEBUG_WX("Mask set to current mask.\n");
9298 mutex_unlock(&priv->mutex);
9299 return 0;
9300 }
9301
9302 priv->rates_mask = mask;
9303
9304 /* Network configuration changed -- force [re]association */
9305 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9306 if (!ipw_disassociate(priv))
9307 ipw_associate(priv);
9308
9309 mutex_unlock(&priv->mutex);
9310 return 0;
9311 }
9312
9313 static int ipw_wx_get_rate(struct net_device *dev,
9314 struct iw_request_info *info,
9315 union iwreq_data *wrqu, char *extra)
9316 {
9317 struct ipw_priv *priv = ieee80211_priv(dev);
9318 mutex_lock(&priv->mutex);
9319 wrqu->bitrate.value = priv->last_rate;
9320 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9321 mutex_unlock(&priv->mutex);
9322 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9323 return 0;
9324 }
9325
9326 static int ipw_wx_set_rts(struct net_device *dev,
9327 struct iw_request_info *info,
9328 union iwreq_data *wrqu, char *extra)
9329 {
9330 struct ipw_priv *priv = ieee80211_priv(dev);
9331 mutex_lock(&priv->mutex);
9332 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9333 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9334 else {
9335 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9336 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9337 mutex_unlock(&priv->mutex);
9338 return -EINVAL;
9339 }
9340 priv->rts_threshold = wrqu->rts.value;
9341 }
9342
9343 ipw_send_rts_threshold(priv, priv->rts_threshold);
9344 mutex_unlock(&priv->mutex);
9345 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9346 return 0;
9347 }
9348
9349 static int ipw_wx_get_rts(struct net_device *dev,
9350 struct iw_request_info *info,
9351 union iwreq_data *wrqu, char *extra)
9352 {
9353 struct ipw_priv *priv = ieee80211_priv(dev);
9354 mutex_lock(&priv->mutex);
9355 wrqu->rts.value = priv->rts_threshold;
9356 wrqu->rts.fixed = 0; /* no auto select */
9357 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9358 mutex_unlock(&priv->mutex);
9359 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9360 return 0;
9361 }
9362
9363 static int ipw_wx_set_txpow(struct net_device *dev,
9364 struct iw_request_info *info,
9365 union iwreq_data *wrqu, char *extra)
9366 {
9367 struct ipw_priv *priv = ieee80211_priv(dev);
9368 int err = 0;
9369
9370 mutex_lock(&priv->mutex);
9371 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9372 err = -EINPROGRESS;
9373 goto out;
9374 }
9375
9376 if (!wrqu->power.fixed)
9377 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9378
9379 if (wrqu->power.flags != IW_TXPOW_DBM) {
9380 err = -EINVAL;
9381 goto out;
9382 }
9383
9384 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9385 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9386 err = -EINVAL;
9387 goto out;
9388 }
9389
9390 priv->tx_power = wrqu->power.value;
9391 err = ipw_set_tx_power(priv);
9392 out:
9393 mutex_unlock(&priv->mutex);
9394 return err;
9395 }
9396
9397 static int ipw_wx_get_txpow(struct net_device *dev,
9398 struct iw_request_info *info,
9399 union iwreq_data *wrqu, char *extra)
9400 {
9401 struct ipw_priv *priv = ieee80211_priv(dev);
9402 mutex_lock(&priv->mutex);
9403 wrqu->power.value = priv->tx_power;
9404 wrqu->power.fixed = 1;
9405 wrqu->power.flags = IW_TXPOW_DBM;
9406 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9407 mutex_unlock(&priv->mutex);
9408
9409 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9410 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9411
9412 return 0;
9413 }
9414
9415 static int ipw_wx_set_frag(struct net_device *dev,
9416 struct iw_request_info *info,
9417 union iwreq_data *wrqu, char *extra)
9418 {
9419 struct ipw_priv *priv = ieee80211_priv(dev);
9420 mutex_lock(&priv->mutex);
9421 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9422 priv->ieee->fts = DEFAULT_FTS;
9423 else {
9424 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9425 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9426 mutex_unlock(&priv->mutex);
9427 return -EINVAL;
9428 }
9429
9430 priv->ieee->fts = wrqu->frag.value & ~0x1;
9431 }
9432
9433 ipw_send_frag_threshold(priv, wrqu->frag.value);
9434 mutex_unlock(&priv->mutex);
9435 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9436 return 0;
9437 }
9438
9439 static int ipw_wx_get_frag(struct net_device *dev,
9440 struct iw_request_info *info,
9441 union iwreq_data *wrqu, char *extra)
9442 {
9443 struct ipw_priv *priv = ieee80211_priv(dev);
9444 mutex_lock(&priv->mutex);
9445 wrqu->frag.value = priv->ieee->fts;
9446 wrqu->frag.fixed = 0; /* no auto select */
9447 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9448 mutex_unlock(&priv->mutex);
9449 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9450
9451 return 0;
9452 }
9453
9454 static int ipw_wx_set_retry(struct net_device *dev,
9455 struct iw_request_info *info,
9456 union iwreq_data *wrqu, char *extra)
9457 {
9458 struct ipw_priv *priv = ieee80211_priv(dev);
9459
9460 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9461 return -EINVAL;
9462
9463 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9464 return 0;
9465
9466 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9467 return -EINVAL;
9468
9469 mutex_lock(&priv->mutex);
9470 if (wrqu->retry.flags & IW_RETRY_SHORT)
9471 priv->short_retry_limit = (u8) wrqu->retry.value;
9472 else if (wrqu->retry.flags & IW_RETRY_LONG)
9473 priv->long_retry_limit = (u8) wrqu->retry.value;
9474 else {
9475 priv->short_retry_limit = (u8) wrqu->retry.value;
9476 priv->long_retry_limit = (u8) wrqu->retry.value;
9477 }
9478
9479 ipw_send_retry_limit(priv, priv->short_retry_limit,
9480 priv->long_retry_limit);
9481 mutex_unlock(&priv->mutex);
9482 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9483 priv->short_retry_limit, priv->long_retry_limit);
9484 return 0;
9485 }
9486
9487 static int ipw_wx_get_retry(struct net_device *dev,
9488 struct iw_request_info *info,
9489 union iwreq_data *wrqu, char *extra)
9490 {
9491 struct ipw_priv *priv = ieee80211_priv(dev);
9492
9493 mutex_lock(&priv->mutex);
9494 wrqu->retry.disabled = 0;
9495
9496 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9497 mutex_unlock(&priv->mutex);
9498 return -EINVAL;
9499 }
9500
9501 if (wrqu->retry.flags & IW_RETRY_LONG) {
9502 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9503 wrqu->retry.value = priv->long_retry_limit;
9504 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9505 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9506 wrqu->retry.value = priv->short_retry_limit;
9507 } else {
9508 wrqu->retry.flags = IW_RETRY_LIMIT;
9509 wrqu->retry.value = priv->short_retry_limit;
9510 }
9511 mutex_unlock(&priv->mutex);
9512
9513 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9514
9515 return 0;
9516 }
9517
9518 static int ipw_wx_set_scan(struct net_device *dev,
9519 struct iw_request_info *info,
9520 union iwreq_data *wrqu, char *extra)
9521 {
9522 struct ipw_priv *priv = ieee80211_priv(dev);
9523 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9524 struct delayed_work *work = NULL;
9525
9526 mutex_lock(&priv->mutex);
9527
9528 priv->user_requested_scan = 1;
9529
9530 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9531 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9532 int len = min((int)req->essid_len,
9533 (int)sizeof(priv->direct_scan_ssid));
9534 memcpy(priv->direct_scan_ssid, req->essid, len);
9535 priv->direct_scan_ssid_len = len;
9536 work = &priv->request_direct_scan;
9537 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9538 work = &priv->request_passive_scan;
9539 }
9540 } else {
9541 /* Normal active broadcast scan */
9542 work = &priv->request_scan;
9543 }
9544
9545 mutex_unlock(&priv->mutex);
9546
9547 IPW_DEBUG_WX("Start scan\n");
9548
9549 queue_delayed_work(priv->workqueue, work, 0);
9550
9551 return 0;
9552 }
9553
9554 static int ipw_wx_get_scan(struct net_device *dev,
9555 struct iw_request_info *info,
9556 union iwreq_data *wrqu, char *extra)
9557 {
9558 struct ipw_priv *priv = ieee80211_priv(dev);
9559 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9560 }
9561
9562 static int ipw_wx_set_encode(struct net_device *dev,
9563 struct iw_request_info *info,
9564 union iwreq_data *wrqu, char *key)
9565 {
9566 struct ipw_priv *priv = ieee80211_priv(dev);
9567 int ret;
9568 u32 cap = priv->capability;
9569
9570 mutex_lock(&priv->mutex);
9571 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9572
9573 /* In IBSS mode, we need to notify the firmware to update
9574 * the beacon info after we changed the capability. */
9575 if (cap != priv->capability &&
9576 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9577 priv->status & STATUS_ASSOCIATED)
9578 ipw_disassociate(priv);
9579
9580 mutex_unlock(&priv->mutex);
9581 return ret;
9582 }
9583
9584 static int ipw_wx_get_encode(struct net_device *dev,
9585 struct iw_request_info *info,
9586 union iwreq_data *wrqu, char *key)
9587 {
9588 struct ipw_priv *priv = ieee80211_priv(dev);
9589 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9590 }
9591
9592 static int ipw_wx_set_power(struct net_device *dev,
9593 struct iw_request_info *info,
9594 union iwreq_data *wrqu, char *extra)
9595 {
9596 struct ipw_priv *priv = ieee80211_priv(dev);
9597 int err;
9598 mutex_lock(&priv->mutex);
9599 if (wrqu->power.disabled) {
9600 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9601 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9602 if (err) {
9603 IPW_DEBUG_WX("failed setting power mode.\n");
9604 mutex_unlock(&priv->mutex);
9605 return err;
9606 }
9607 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9608 mutex_unlock(&priv->mutex);
9609 return 0;
9610 }
9611
9612 switch (wrqu->power.flags & IW_POWER_MODE) {
9613 case IW_POWER_ON: /* If not specified */
9614 case IW_POWER_MODE: /* If set all mask */
9615 case IW_POWER_ALL_R: /* If explicitly state all */
9616 break;
9617 default: /* Otherwise we don't support it */
9618 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9619 wrqu->power.flags);
9620 mutex_unlock(&priv->mutex);
9621 return -EOPNOTSUPP;
9622 }
9623
9624 /* If the user hasn't specified a power management mode yet, default
9625 * to BATTERY */
9626 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9627 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9628 else
9629 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9630
9631 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9632 if (err) {
9633 IPW_DEBUG_WX("failed setting power mode.\n");
9634 mutex_unlock(&priv->mutex);
9635 return err;
9636 }
9637
9638 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9639 mutex_unlock(&priv->mutex);
9640 return 0;
9641 }
9642
9643 static int ipw_wx_get_power(struct net_device *dev,
9644 struct iw_request_info *info,
9645 union iwreq_data *wrqu, char *extra)
9646 {
9647 struct ipw_priv *priv = ieee80211_priv(dev);
9648 mutex_lock(&priv->mutex);
9649 if (!(priv->power_mode & IPW_POWER_ENABLED))
9650 wrqu->power.disabled = 1;
9651 else
9652 wrqu->power.disabled = 0;
9653
9654 mutex_unlock(&priv->mutex);
9655 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9656
9657 return 0;
9658 }
9659
9660 static int ipw_wx_set_powermode(struct net_device *dev,
9661 struct iw_request_info *info,
9662 union iwreq_data *wrqu, char *extra)
9663 {
9664 struct ipw_priv *priv = ieee80211_priv(dev);
9665 int mode = *(int *)extra;
9666 int err;
9667
9668 mutex_lock(&priv->mutex);
9669 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9670 mode = IPW_POWER_AC;
9671
9672 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9673 err = ipw_send_power_mode(priv, mode);
9674 if (err) {
9675 IPW_DEBUG_WX("failed setting power mode.\n");
9676 mutex_unlock(&priv->mutex);
9677 return err;
9678 }
9679 priv->power_mode = IPW_POWER_ENABLED | mode;
9680 }
9681 mutex_unlock(&priv->mutex);
9682 return 0;
9683 }
9684
9685 #define MAX_WX_STRING 80
9686 static int ipw_wx_get_powermode(struct net_device *dev,
9687 struct iw_request_info *info,
9688 union iwreq_data *wrqu, char *extra)
9689 {
9690 struct ipw_priv *priv = ieee80211_priv(dev);
9691 int level = IPW_POWER_LEVEL(priv->power_mode);
9692 char *p = extra;
9693
9694 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9695
9696 switch (level) {
9697 case IPW_POWER_AC:
9698 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9699 break;
9700 case IPW_POWER_BATTERY:
9701 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9702 break;
9703 default:
9704 p += snprintf(p, MAX_WX_STRING - (p - extra),
9705 "(Timeout %dms, Period %dms)",
9706 timeout_duration[level - 1] / 1000,
9707 period_duration[level - 1] / 1000);
9708 }
9709
9710 if (!(priv->power_mode & IPW_POWER_ENABLED))
9711 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9712
9713 wrqu->data.length = p - extra + 1;
9714
9715 return 0;
9716 }
9717
9718 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9719 struct iw_request_info *info,
9720 union iwreq_data *wrqu, char *extra)
9721 {
9722 struct ipw_priv *priv = ieee80211_priv(dev);
9723 int mode = *(int *)extra;
9724 u8 band = 0, modulation = 0;
9725
9726 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9727 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9728 return -EINVAL;
9729 }
9730 mutex_lock(&priv->mutex);
9731 if (priv->adapter == IPW_2915ABG) {
9732 priv->ieee->abg_true = 1;
9733 if (mode & IEEE_A) {
9734 band |= IEEE80211_52GHZ_BAND;
9735 modulation |= IEEE80211_OFDM_MODULATION;
9736 } else
9737 priv->ieee->abg_true = 0;
9738 } else {
9739 if (mode & IEEE_A) {
9740 IPW_WARNING("Attempt to set 2200BG into "
9741 "802.11a mode\n");
9742 mutex_unlock(&priv->mutex);
9743 return -EINVAL;
9744 }
9745
9746 priv->ieee->abg_true = 0;
9747 }
9748
9749 if (mode & IEEE_B) {
9750 band |= IEEE80211_24GHZ_BAND;
9751 modulation |= IEEE80211_CCK_MODULATION;
9752 } else
9753 priv->ieee->abg_true = 0;
9754
9755 if (mode & IEEE_G) {
9756 band |= IEEE80211_24GHZ_BAND;
9757 modulation |= IEEE80211_OFDM_MODULATION;
9758 } else
9759 priv->ieee->abg_true = 0;
9760
9761 priv->ieee->mode = mode;
9762 priv->ieee->freq_band = band;
9763 priv->ieee->modulation = modulation;
9764 init_supported_rates(priv, &priv->rates);
9765
9766 /* Network configuration changed -- force [re]association */
9767 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9768 if (!ipw_disassociate(priv)) {
9769 ipw_send_supported_rates(priv, &priv->rates);
9770 ipw_associate(priv);
9771 }
9772
9773 /* Update the band LEDs */
9774 ipw_led_band_on(priv);
9775
9776 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9777 mode & IEEE_A ? 'a' : '.',
9778 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9779 mutex_unlock(&priv->mutex);
9780 return 0;
9781 }
9782
9783 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9784 struct iw_request_info *info,
9785 union iwreq_data *wrqu, char *extra)
9786 {
9787 struct ipw_priv *priv = ieee80211_priv(dev);
9788 mutex_lock(&priv->mutex);
9789 switch (priv->ieee->mode) {
9790 case IEEE_A:
9791 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9792 break;
9793 case IEEE_B:
9794 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9795 break;
9796 case IEEE_A | IEEE_B:
9797 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9798 break;
9799 case IEEE_G:
9800 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9801 break;
9802 case IEEE_A | IEEE_G:
9803 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9804 break;
9805 case IEEE_B | IEEE_G:
9806 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9807 break;
9808 case IEEE_A | IEEE_B | IEEE_G:
9809 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9810 break;
9811 default:
9812 strncpy(extra, "unknown", MAX_WX_STRING);
9813 break;
9814 }
9815
9816 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9817
9818 wrqu->data.length = strlen(extra) + 1;
9819 mutex_unlock(&priv->mutex);
9820
9821 return 0;
9822 }
9823
9824 static int ipw_wx_set_preamble(struct net_device *dev,
9825 struct iw_request_info *info,
9826 union iwreq_data *wrqu, char *extra)
9827 {
9828 struct ipw_priv *priv = ieee80211_priv(dev);
9829 int mode = *(int *)extra;
9830 mutex_lock(&priv->mutex);
9831 /* Switching from SHORT -> LONG requires a disassociation */
9832 if (mode == 1) {
9833 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9834 priv->config |= CFG_PREAMBLE_LONG;
9835
9836 /* Network configuration changed -- force [re]association */
9837 IPW_DEBUG_ASSOC
9838 ("[re]association triggered due to preamble change.\n");
9839 if (!ipw_disassociate(priv))
9840 ipw_associate(priv);
9841 }
9842 goto done;
9843 }
9844
9845 if (mode == 0) {
9846 priv->config &= ~CFG_PREAMBLE_LONG;
9847 goto done;
9848 }
9849 mutex_unlock(&priv->mutex);
9850 return -EINVAL;
9851
9852 done:
9853 mutex_unlock(&priv->mutex);
9854 return 0;
9855 }
9856
9857 static int ipw_wx_get_preamble(struct net_device *dev,
9858 struct iw_request_info *info,
9859 union iwreq_data *wrqu, char *extra)
9860 {
9861 struct ipw_priv *priv = ieee80211_priv(dev);
9862 mutex_lock(&priv->mutex);
9863 if (priv->config & CFG_PREAMBLE_LONG)
9864 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9865 else
9866 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9867 mutex_unlock(&priv->mutex);
9868 return 0;
9869 }
9870
9871 #ifdef CONFIG_IPW2200_MONITOR
9872 static int ipw_wx_set_monitor(struct net_device *dev,
9873 struct iw_request_info *info,
9874 union iwreq_data *wrqu, char *extra)
9875 {
9876 struct ipw_priv *priv = ieee80211_priv(dev);
9877 int *parms = (int *)extra;
9878 int enable = (parms[0] > 0);
9879 mutex_lock(&priv->mutex);
9880 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9881 if (enable) {
9882 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9883 #ifdef CONFIG_IPW2200_RADIOTAP
9884 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9885 #else
9886 priv->net_dev->type = ARPHRD_IEEE80211;
9887 #endif
9888 queue_work(priv->workqueue, &priv->adapter_restart);
9889 }
9890
9891 ipw_set_channel(priv, parms[1]);
9892 } else {
9893 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9894 mutex_unlock(&priv->mutex);
9895 return 0;
9896 }
9897 priv->net_dev->type = ARPHRD_ETHER;
9898 queue_work(priv->workqueue, &priv->adapter_restart);
9899 }
9900 mutex_unlock(&priv->mutex);
9901 return 0;
9902 }
9903
9904 #endif /* CONFIG_IPW2200_MONITOR */
9905
9906 static int ipw_wx_reset(struct net_device *dev,
9907 struct iw_request_info *info,
9908 union iwreq_data *wrqu, char *extra)
9909 {
9910 struct ipw_priv *priv = ieee80211_priv(dev);
9911 IPW_DEBUG_WX("RESET\n");
9912 queue_work(priv->workqueue, &priv->adapter_restart);
9913 return 0;
9914 }
9915
9916 static int ipw_wx_sw_reset(struct net_device *dev,
9917 struct iw_request_info *info,
9918 union iwreq_data *wrqu, char *extra)
9919 {
9920 struct ipw_priv *priv = ieee80211_priv(dev);
9921 union iwreq_data wrqu_sec = {
9922 .encoding = {
9923 .flags = IW_ENCODE_DISABLED,
9924 },
9925 };
9926 int ret;
9927
9928 IPW_DEBUG_WX("SW_RESET\n");
9929
9930 mutex_lock(&priv->mutex);
9931
9932 ret = ipw_sw_reset(priv, 2);
9933 if (!ret) {
9934 free_firmware();
9935 ipw_adapter_restart(priv);
9936 }
9937
9938 /* The SW reset bit might have been toggled on by the 'disable'
9939 * module parameter, so take appropriate action */
9940 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9941
9942 mutex_unlock(&priv->mutex);
9943 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9944 mutex_lock(&priv->mutex);
9945
9946 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9947 /* Configuration likely changed -- force [re]association */
9948 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9949 "reset.\n");
9950 if (!ipw_disassociate(priv))
9951 ipw_associate(priv);
9952 }
9953
9954 mutex_unlock(&priv->mutex);
9955
9956 return 0;
9957 }
9958
9959 /* Rebase the WE IOCTLs to zero for the handler array */
9960 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9961 static iw_handler ipw_wx_handlers[] = {
9962 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9963 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9964 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9965 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9966 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9967 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9968 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9969 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9970 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9971 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9972 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9973 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9974 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9975 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9976 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9977 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9978 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9979 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9980 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9981 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9982 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9983 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9984 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9985 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9986 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9987 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9988 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9989 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9990 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9991 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9992 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9993 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9994 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9995 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9996 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9997 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9998 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9999 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10000 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10001 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10002 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10003 };
10004
10005 enum {
10006 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10007 IPW_PRIV_GET_POWER,
10008 IPW_PRIV_SET_MODE,
10009 IPW_PRIV_GET_MODE,
10010 IPW_PRIV_SET_PREAMBLE,
10011 IPW_PRIV_GET_PREAMBLE,
10012 IPW_PRIV_RESET,
10013 IPW_PRIV_SW_RESET,
10014 #ifdef CONFIG_IPW2200_MONITOR
10015 IPW_PRIV_SET_MONITOR,
10016 #endif
10017 };
10018
10019 static struct iw_priv_args ipw_priv_args[] = {
10020 {
10021 .cmd = IPW_PRIV_SET_POWER,
10022 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10023 .name = "set_power"},
10024 {
10025 .cmd = IPW_PRIV_GET_POWER,
10026 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10027 .name = "get_power"},
10028 {
10029 .cmd = IPW_PRIV_SET_MODE,
10030 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10031 .name = "set_mode"},
10032 {
10033 .cmd = IPW_PRIV_GET_MODE,
10034 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10035 .name = "get_mode"},
10036 {
10037 .cmd = IPW_PRIV_SET_PREAMBLE,
10038 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10039 .name = "set_preamble"},
10040 {
10041 .cmd = IPW_PRIV_GET_PREAMBLE,
10042 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10043 .name = "get_preamble"},
10044 {
10045 IPW_PRIV_RESET,
10046 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10047 {
10048 IPW_PRIV_SW_RESET,
10049 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10050 #ifdef CONFIG_IPW2200_MONITOR
10051 {
10052 IPW_PRIV_SET_MONITOR,
10053 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10054 #endif /* CONFIG_IPW2200_MONITOR */
10055 };
10056
10057 static iw_handler ipw_priv_handler[] = {
10058 ipw_wx_set_powermode,
10059 ipw_wx_get_powermode,
10060 ipw_wx_set_wireless_mode,
10061 ipw_wx_get_wireless_mode,
10062 ipw_wx_set_preamble,
10063 ipw_wx_get_preamble,
10064 ipw_wx_reset,
10065 ipw_wx_sw_reset,
10066 #ifdef CONFIG_IPW2200_MONITOR
10067 ipw_wx_set_monitor,
10068 #endif
10069 };
10070
10071 static struct iw_handler_def ipw_wx_handler_def = {
10072 .standard = ipw_wx_handlers,
10073 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10074 .num_private = ARRAY_SIZE(ipw_priv_handler),
10075 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10076 .private = ipw_priv_handler,
10077 .private_args = ipw_priv_args,
10078 .get_wireless_stats = ipw_get_wireless_stats,
10079 };
10080
10081 /*
10082 * Get wireless statistics.
10083 * Called by /proc/net/wireless
10084 * Also called by SIOCGIWSTATS
10085 */
10086 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10087 {
10088 struct ipw_priv *priv = ieee80211_priv(dev);
10089 struct iw_statistics *wstats;
10090
10091 wstats = &priv->wstats;
10092
10093 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10094 * netdev->get_wireless_stats seems to be called before fw is
10095 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10096 * and associated; if not associcated, the values are all meaningless
10097 * anyway, so set them all to NULL and INVALID */
10098 if (!(priv->status & STATUS_ASSOCIATED)) {
10099 wstats->miss.beacon = 0;
10100 wstats->discard.retries = 0;
10101 wstats->qual.qual = 0;
10102 wstats->qual.level = 0;
10103 wstats->qual.noise = 0;
10104 wstats->qual.updated = 7;
10105 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10106 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10107 return wstats;
10108 }
10109
10110 wstats->qual.qual = priv->quality;
10111 wstats->qual.level = priv->exp_avg_rssi;
10112 wstats->qual.noise = priv->exp_avg_noise;
10113 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10114 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10115
10116 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10117 wstats->discard.retries = priv->last_tx_failures;
10118 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10119
10120 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10121 goto fail_get_ordinal;
10122 wstats->discard.retries += tx_retry; */
10123
10124 return wstats;
10125 }
10126
10127 /* net device stuff */
10128
10129 static void init_sys_config(struct ipw_sys_config *sys_config)
10130 {
10131 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10132 sys_config->bt_coexistence = 0;
10133 sys_config->answer_broadcast_ssid_probe = 0;
10134 sys_config->accept_all_data_frames = 0;
10135 sys_config->accept_non_directed_frames = 1;
10136 sys_config->exclude_unicast_unencrypted = 0;
10137 sys_config->disable_unicast_decryption = 1;
10138 sys_config->exclude_multicast_unencrypted = 0;
10139 sys_config->disable_multicast_decryption = 1;
10140 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10141 antenna = CFG_SYS_ANTENNA_BOTH;
10142 sys_config->antenna_diversity = antenna;
10143 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10144 sys_config->dot11g_auto_detection = 0;
10145 sys_config->enable_cts_to_self = 0;
10146 sys_config->bt_coexist_collision_thr = 0;
10147 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10148 sys_config->silence_threshold = 0x1e;
10149 }
10150
10151 static int ipw_net_open(struct net_device *dev)
10152 {
10153 IPW_DEBUG_INFO("dev->open\n");
10154 netif_start_queue(dev);
10155 return 0;
10156 }
10157
10158 static int ipw_net_stop(struct net_device *dev)
10159 {
10160 IPW_DEBUG_INFO("dev->close\n");
10161 netif_stop_queue(dev);
10162 return 0;
10163 }
10164
10165 /*
10166 todo:
10167
10168 modify to send one tfd per fragment instead of using chunking. otherwise
10169 we need to heavily modify the ieee80211_skb_to_txb.
10170 */
10171
10172 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10173 int pri)
10174 {
10175 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10176 txb->fragments[0]->data;
10177 int i = 0;
10178 struct tfd_frame *tfd;
10179 #ifdef CONFIG_IPW2200_QOS
10180 int tx_id = ipw_get_tx_queue_number(priv, pri);
10181 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10182 #else
10183 struct clx2_tx_queue *txq = &priv->txq[0];
10184 #endif
10185 struct clx2_queue *q = &txq->q;
10186 u8 id, hdr_len, unicast;
10187 u16 remaining_bytes;
10188 int fc;
10189
10190 if (!(priv->status & STATUS_ASSOCIATED))
10191 goto drop;
10192
10193 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10194 switch (priv->ieee->iw_mode) {
10195 case IW_MODE_ADHOC:
10196 unicast = !is_multicast_ether_addr(hdr->addr1);
10197 id = ipw_find_station(priv, hdr->addr1);
10198 if (id == IPW_INVALID_STATION) {
10199 id = ipw_add_station(priv, hdr->addr1);
10200 if (id == IPW_INVALID_STATION) {
10201 IPW_WARNING("Attempt to send data to "
10202 "invalid cell: %pM\n",
10203 hdr->addr1);
10204 goto drop;
10205 }
10206 }
10207 break;
10208
10209 case IW_MODE_INFRA:
10210 default:
10211 unicast = !is_multicast_ether_addr(hdr->addr3);
10212 id = 0;
10213 break;
10214 }
10215
10216 tfd = &txq->bd[q->first_empty];
10217 txq->txb[q->first_empty] = txb;
10218 memset(tfd, 0, sizeof(*tfd));
10219 tfd->u.data.station_number = id;
10220
10221 tfd->control_flags.message_type = TX_FRAME_TYPE;
10222 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10223
10224 tfd->u.data.cmd_id = DINO_CMD_TX;
10225 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10226 remaining_bytes = txb->payload_size;
10227
10228 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10229 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10230 else
10231 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10232
10233 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10234 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10235
10236 fc = le16_to_cpu(hdr->frame_ctl);
10237 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10238
10239 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10240
10241 if (likely(unicast))
10242 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10243
10244 if (txb->encrypted && !priv->ieee->host_encrypt) {
10245 switch (priv->ieee->sec.level) {
10246 case SEC_LEVEL_3:
10247 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10248 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10249 /* XXX: ACK flag must be set for CCMP even if it
10250 * is a multicast/broadcast packet, because CCMP
10251 * group communication encrypted by GTK is
10252 * actually done by the AP. */
10253 if (!unicast)
10254 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10255
10256 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10257 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10258 tfd->u.data.key_index = 0;
10259 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10260 break;
10261 case SEC_LEVEL_2:
10262 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10263 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10264 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10265 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10266 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10267 break;
10268 case SEC_LEVEL_1:
10269 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10270 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10271 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10272 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10273 40)
10274 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10275 else
10276 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10277 break;
10278 case SEC_LEVEL_0:
10279 break;
10280 default:
10281 printk(KERN_ERR "Unknow security level %d\n",
10282 priv->ieee->sec.level);
10283 break;
10284 }
10285 } else
10286 /* No hardware encryption */
10287 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10288
10289 #ifdef CONFIG_IPW2200_QOS
10290 if (fc & IEEE80211_STYPE_QOS_DATA)
10291 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10292 #endif /* CONFIG_IPW2200_QOS */
10293
10294 /* payload */
10295 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10296 txb->nr_frags));
10297 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10298 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10299 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10300 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10301 i, le32_to_cpu(tfd->u.data.num_chunks),
10302 txb->fragments[i]->len - hdr_len);
10303 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10304 i, tfd->u.data.num_chunks,
10305 txb->fragments[i]->len - hdr_len);
10306 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10307 txb->fragments[i]->len - hdr_len);
10308
10309 tfd->u.data.chunk_ptr[i] =
10310 cpu_to_le32(pci_map_single
10311 (priv->pci_dev,
10312 txb->fragments[i]->data + hdr_len,
10313 txb->fragments[i]->len - hdr_len,
10314 PCI_DMA_TODEVICE));
10315 tfd->u.data.chunk_len[i] =
10316 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10317 }
10318
10319 if (i != txb->nr_frags) {
10320 struct sk_buff *skb;
10321 u16 remaining_bytes = 0;
10322 int j;
10323
10324 for (j = i; j < txb->nr_frags; j++)
10325 remaining_bytes += txb->fragments[j]->len - hdr_len;
10326
10327 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10328 remaining_bytes);
10329 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10330 if (skb != NULL) {
10331 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10332 for (j = i; j < txb->nr_frags; j++) {
10333 int size = txb->fragments[j]->len - hdr_len;
10334
10335 printk(KERN_INFO "Adding frag %d %d...\n",
10336 j, size);
10337 memcpy(skb_put(skb, size),
10338 txb->fragments[j]->data + hdr_len, size);
10339 }
10340 dev_kfree_skb_any(txb->fragments[i]);
10341 txb->fragments[i] = skb;
10342 tfd->u.data.chunk_ptr[i] =
10343 cpu_to_le32(pci_map_single
10344 (priv->pci_dev, skb->data,
10345 remaining_bytes,
10346 PCI_DMA_TODEVICE));
10347
10348 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10349 }
10350 }
10351
10352 /* kick DMA */
10353 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10354 ipw_write32(priv, q->reg_w, q->first_empty);
10355
10356 if (ipw_tx_queue_space(q) < q->high_mark)
10357 netif_stop_queue(priv->net_dev);
10358
10359 return NETDEV_TX_OK;
10360
10361 drop:
10362 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10363 ieee80211_txb_free(txb);
10364 return NETDEV_TX_OK;
10365 }
10366
10367 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10368 {
10369 struct ipw_priv *priv = ieee80211_priv(dev);
10370 #ifdef CONFIG_IPW2200_QOS
10371 int tx_id = ipw_get_tx_queue_number(priv, pri);
10372 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10373 #else
10374 struct clx2_tx_queue *txq = &priv->txq[0];
10375 #endif /* CONFIG_IPW2200_QOS */
10376
10377 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10378 return 1;
10379
10380 return 0;
10381 }
10382
10383 #ifdef CONFIG_IPW2200_PROMISCUOUS
10384 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10385 struct ieee80211_txb *txb)
10386 {
10387 struct ieee80211_rx_stats dummystats;
10388 struct ieee80211_hdr *hdr;
10389 u8 n;
10390 u16 filter = priv->prom_priv->filter;
10391 int hdr_only = 0;
10392
10393 if (filter & IPW_PROM_NO_TX)
10394 return;
10395
10396 memset(&dummystats, 0, sizeof(dummystats));
10397
10398 /* Filtering of fragment chains is done agains the first fragment */
10399 hdr = (void *)txb->fragments[0]->data;
10400 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10401 if (filter & IPW_PROM_NO_MGMT)
10402 return;
10403 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10404 hdr_only = 1;
10405 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10406 if (filter & IPW_PROM_NO_CTL)
10407 return;
10408 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10409 hdr_only = 1;
10410 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10411 if (filter & IPW_PROM_NO_DATA)
10412 return;
10413 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10414 hdr_only = 1;
10415 }
10416
10417 for(n=0; n<txb->nr_frags; ++n) {
10418 struct sk_buff *src = txb->fragments[n];
10419 struct sk_buff *dst;
10420 struct ieee80211_radiotap_header *rt_hdr;
10421 int len;
10422
10423 if (hdr_only) {
10424 hdr = (void *)src->data;
10425 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10426 } else
10427 len = src->len;
10428
10429 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10430 if (!dst)
10431 continue;
10432
10433 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10434
10435 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10436 rt_hdr->it_pad = 0;
10437 rt_hdr->it_present = 0; /* after all, it's just an idea */
10438 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10439
10440 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10441 ieee80211chan2mhz(priv->channel));
10442 if (priv->channel > 14) /* 802.11a */
10443 *(__le16*)skb_put(dst, sizeof(u16)) =
10444 cpu_to_le16(IEEE80211_CHAN_OFDM |
10445 IEEE80211_CHAN_5GHZ);
10446 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10447 *(__le16*)skb_put(dst, sizeof(u16)) =
10448 cpu_to_le16(IEEE80211_CHAN_CCK |
10449 IEEE80211_CHAN_2GHZ);
10450 else /* 802.11g */
10451 *(__le16*)skb_put(dst, sizeof(u16)) =
10452 cpu_to_le16(IEEE80211_CHAN_OFDM |
10453 IEEE80211_CHAN_2GHZ);
10454
10455 rt_hdr->it_len = cpu_to_le16(dst->len);
10456
10457 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10458
10459 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10460 dev_kfree_skb_any(dst);
10461 }
10462 }
10463 #endif
10464
10465 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10466 struct net_device *dev, int pri)
10467 {
10468 struct ipw_priv *priv = ieee80211_priv(dev);
10469 unsigned long flags;
10470 int ret;
10471
10472 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10473 spin_lock_irqsave(&priv->lock, flags);
10474
10475 #ifdef CONFIG_IPW2200_PROMISCUOUS
10476 if (rtap_iface && netif_running(priv->prom_net_dev))
10477 ipw_handle_promiscuous_tx(priv, txb);
10478 #endif
10479
10480 ret = ipw_tx_skb(priv, txb, pri);
10481 if (ret == NETDEV_TX_OK)
10482 __ipw_led_activity_on(priv);
10483 spin_unlock_irqrestore(&priv->lock, flags);
10484
10485 return ret;
10486 }
10487
10488 static void ipw_net_set_multicast_list(struct net_device *dev)
10489 {
10490
10491 }
10492
10493 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10494 {
10495 struct ipw_priv *priv = ieee80211_priv(dev);
10496 struct sockaddr *addr = p;
10497
10498 if (!is_valid_ether_addr(addr->sa_data))
10499 return -EADDRNOTAVAIL;
10500 mutex_lock(&priv->mutex);
10501 priv->config |= CFG_CUSTOM_MAC;
10502 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10503 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10504 priv->net_dev->name, priv->mac_addr);
10505 queue_work(priv->workqueue, &priv->adapter_restart);
10506 mutex_unlock(&priv->mutex);
10507 return 0;
10508 }
10509
10510 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10511 struct ethtool_drvinfo *info)
10512 {
10513 struct ipw_priv *p = ieee80211_priv(dev);
10514 char vers[64];
10515 char date[32];
10516 u32 len;
10517
10518 strcpy(info->driver, DRV_NAME);
10519 strcpy(info->version, DRV_VERSION);
10520
10521 len = sizeof(vers);
10522 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10523 len = sizeof(date);
10524 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10525
10526 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10527 vers, date);
10528 strcpy(info->bus_info, pci_name(p->pci_dev));
10529 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10530 }
10531
10532 static u32 ipw_ethtool_get_link(struct net_device *dev)
10533 {
10534 struct ipw_priv *priv = ieee80211_priv(dev);
10535 return (priv->status & STATUS_ASSOCIATED) != 0;
10536 }
10537
10538 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10539 {
10540 return IPW_EEPROM_IMAGE_SIZE;
10541 }
10542
10543 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10544 struct ethtool_eeprom *eeprom, u8 * bytes)
10545 {
10546 struct ipw_priv *p = ieee80211_priv(dev);
10547
10548 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10549 return -EINVAL;
10550 mutex_lock(&p->mutex);
10551 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10552 mutex_unlock(&p->mutex);
10553 return 0;
10554 }
10555
10556 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10557 struct ethtool_eeprom *eeprom, u8 * bytes)
10558 {
10559 struct ipw_priv *p = ieee80211_priv(dev);
10560 int i;
10561
10562 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10563 return -EINVAL;
10564 mutex_lock(&p->mutex);
10565 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10566 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10567 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10568 mutex_unlock(&p->mutex);
10569 return 0;
10570 }
10571
10572 static const struct ethtool_ops ipw_ethtool_ops = {
10573 .get_link = ipw_ethtool_get_link,
10574 .get_drvinfo = ipw_ethtool_get_drvinfo,
10575 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10576 .get_eeprom = ipw_ethtool_get_eeprom,
10577 .set_eeprom = ipw_ethtool_set_eeprom,
10578 };
10579
10580 static irqreturn_t ipw_isr(int irq, void *data)
10581 {
10582 struct ipw_priv *priv = data;
10583 u32 inta, inta_mask;
10584
10585 if (!priv)
10586 return IRQ_NONE;
10587
10588 spin_lock(&priv->irq_lock);
10589
10590 if (!(priv->status & STATUS_INT_ENABLED)) {
10591 /* IRQ is disabled */
10592 goto none;
10593 }
10594
10595 inta = ipw_read32(priv, IPW_INTA_RW);
10596 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10597
10598 if (inta == 0xFFFFFFFF) {
10599 /* Hardware disappeared */
10600 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10601 goto none;
10602 }
10603
10604 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10605 /* Shared interrupt */
10606 goto none;
10607 }
10608
10609 /* tell the device to stop sending interrupts */
10610 __ipw_disable_interrupts(priv);
10611
10612 /* ack current interrupts */
10613 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10614 ipw_write32(priv, IPW_INTA_RW, inta);
10615
10616 /* Cache INTA value for our tasklet */
10617 priv->isr_inta = inta;
10618
10619 tasklet_schedule(&priv->irq_tasklet);
10620
10621 spin_unlock(&priv->irq_lock);
10622
10623 return IRQ_HANDLED;
10624 none:
10625 spin_unlock(&priv->irq_lock);
10626 return IRQ_NONE;
10627 }
10628
10629 static void ipw_rf_kill(void *adapter)
10630 {
10631 struct ipw_priv *priv = adapter;
10632 unsigned long flags;
10633
10634 spin_lock_irqsave(&priv->lock, flags);
10635
10636 if (rf_kill_active(priv)) {
10637 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10638 if (priv->workqueue)
10639 queue_delayed_work(priv->workqueue,
10640 &priv->rf_kill, 2 * HZ);
10641 goto exit_unlock;
10642 }
10643
10644 /* RF Kill is now disabled, so bring the device back up */
10645
10646 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10647 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10648 "device\n");
10649
10650 /* we can not do an adapter restart while inside an irq lock */
10651 queue_work(priv->workqueue, &priv->adapter_restart);
10652 } else
10653 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10654 "enabled\n");
10655
10656 exit_unlock:
10657 spin_unlock_irqrestore(&priv->lock, flags);
10658 }
10659
10660 static void ipw_bg_rf_kill(struct work_struct *work)
10661 {
10662 struct ipw_priv *priv =
10663 container_of(work, struct ipw_priv, rf_kill.work);
10664 mutex_lock(&priv->mutex);
10665 ipw_rf_kill(priv);
10666 mutex_unlock(&priv->mutex);
10667 }
10668
10669 static void ipw_link_up(struct ipw_priv *priv)
10670 {
10671 priv->last_seq_num = -1;
10672 priv->last_frag_num = -1;
10673 priv->last_packet_time = 0;
10674
10675 netif_carrier_on(priv->net_dev);
10676
10677 cancel_delayed_work(&priv->request_scan);
10678 cancel_delayed_work(&priv->request_direct_scan);
10679 cancel_delayed_work(&priv->request_passive_scan);
10680 cancel_delayed_work(&priv->scan_event);
10681 ipw_reset_stats(priv);
10682 /* Ensure the rate is updated immediately */
10683 priv->last_rate = ipw_get_current_rate(priv);
10684 ipw_gather_stats(priv);
10685 ipw_led_link_up(priv);
10686 notify_wx_assoc_event(priv);
10687
10688 if (priv->config & CFG_BACKGROUND_SCAN)
10689 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10690 }
10691
10692 static void ipw_bg_link_up(struct work_struct *work)
10693 {
10694 struct ipw_priv *priv =
10695 container_of(work, struct ipw_priv, link_up);
10696 mutex_lock(&priv->mutex);
10697 ipw_link_up(priv);
10698 mutex_unlock(&priv->mutex);
10699 }
10700
10701 static void ipw_link_down(struct ipw_priv *priv)
10702 {
10703 ipw_led_link_down(priv);
10704 netif_carrier_off(priv->net_dev);
10705 notify_wx_assoc_event(priv);
10706
10707 /* Cancel any queued work ... */
10708 cancel_delayed_work(&priv->request_scan);
10709 cancel_delayed_work(&priv->request_direct_scan);
10710 cancel_delayed_work(&priv->request_passive_scan);
10711 cancel_delayed_work(&priv->adhoc_check);
10712 cancel_delayed_work(&priv->gather_stats);
10713
10714 ipw_reset_stats(priv);
10715
10716 if (!(priv->status & STATUS_EXIT_PENDING)) {
10717 /* Queue up another scan... */
10718 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10719 } else
10720 cancel_delayed_work(&priv->scan_event);
10721 }
10722
10723 static void ipw_bg_link_down(struct work_struct *work)
10724 {
10725 struct ipw_priv *priv =
10726 container_of(work, struct ipw_priv, link_down);
10727 mutex_lock(&priv->mutex);
10728 ipw_link_down(priv);
10729 mutex_unlock(&priv->mutex);
10730 }
10731
10732 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10733 {
10734 int ret = 0;
10735
10736 priv->workqueue = create_workqueue(DRV_NAME);
10737 init_waitqueue_head(&priv->wait_command_queue);
10738 init_waitqueue_head(&priv->wait_state);
10739
10740 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10741 INIT_WORK(&priv->associate, ipw_bg_associate);
10742 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10743 INIT_WORK(&priv->system_config, ipw_system_config);
10744 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10745 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10746 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10747 INIT_WORK(&priv->up, ipw_bg_up);
10748 INIT_WORK(&priv->down, ipw_bg_down);
10749 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10750 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10751 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10752 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10753 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10754 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10755 INIT_WORK(&priv->roam, ipw_bg_roam);
10756 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10757 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10758 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10759 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10760 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10761 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10762 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10763
10764 #ifdef CONFIG_IPW2200_QOS
10765 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10766 #endif /* CONFIG_IPW2200_QOS */
10767
10768 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10769 ipw_irq_tasklet, (unsigned long)priv);
10770
10771 return ret;
10772 }
10773
10774 static void shim__set_security(struct net_device *dev,
10775 struct ieee80211_security *sec)
10776 {
10777 struct ipw_priv *priv = ieee80211_priv(dev);
10778 int i;
10779 for (i = 0; i < 4; i++) {
10780 if (sec->flags & (1 << i)) {
10781 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10782 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10783 if (sec->key_sizes[i] == 0)
10784 priv->ieee->sec.flags &= ~(1 << i);
10785 else {
10786 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10787 sec->key_sizes[i]);
10788 priv->ieee->sec.flags |= (1 << i);
10789 }
10790 priv->status |= STATUS_SECURITY_UPDATED;
10791 } else if (sec->level != SEC_LEVEL_1)
10792 priv->ieee->sec.flags &= ~(1 << i);
10793 }
10794
10795 if (sec->flags & SEC_ACTIVE_KEY) {
10796 if (sec->active_key <= 3) {
10797 priv->ieee->sec.active_key = sec->active_key;
10798 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10799 } else
10800 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10801 priv->status |= STATUS_SECURITY_UPDATED;
10802 } else
10803 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10804
10805 if ((sec->flags & SEC_AUTH_MODE) &&
10806 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10807 priv->ieee->sec.auth_mode = sec->auth_mode;
10808 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10809 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10810 priv->capability |= CAP_SHARED_KEY;
10811 else
10812 priv->capability &= ~CAP_SHARED_KEY;
10813 priv->status |= STATUS_SECURITY_UPDATED;
10814 }
10815
10816 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10817 priv->ieee->sec.flags |= SEC_ENABLED;
10818 priv->ieee->sec.enabled = sec->enabled;
10819 priv->status |= STATUS_SECURITY_UPDATED;
10820 if (sec->enabled)
10821 priv->capability |= CAP_PRIVACY_ON;
10822 else
10823 priv->capability &= ~CAP_PRIVACY_ON;
10824 }
10825
10826 if (sec->flags & SEC_ENCRYPT)
10827 priv->ieee->sec.encrypt = sec->encrypt;
10828
10829 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10830 priv->ieee->sec.level = sec->level;
10831 priv->ieee->sec.flags |= SEC_LEVEL;
10832 priv->status |= STATUS_SECURITY_UPDATED;
10833 }
10834
10835 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10836 ipw_set_hwcrypto_keys(priv);
10837
10838 /* To match current functionality of ipw2100 (which works well w/
10839 * various supplicants, we don't force a disassociate if the
10840 * privacy capability changes ... */
10841 #if 0
10842 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10843 (((priv->assoc_request.capability &
10844 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10845 (!(priv->assoc_request.capability &
10846 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10847 IPW_DEBUG_ASSOC("Disassociating due to capability "
10848 "change.\n");
10849 ipw_disassociate(priv);
10850 }
10851 #endif
10852 }
10853
10854 static int init_supported_rates(struct ipw_priv *priv,
10855 struct ipw_supported_rates *rates)
10856 {
10857 /* TODO: Mask out rates based on priv->rates_mask */
10858
10859 memset(rates, 0, sizeof(*rates));
10860 /* configure supported rates */
10861 switch (priv->ieee->freq_band) {
10862 case IEEE80211_52GHZ_BAND:
10863 rates->ieee_mode = IPW_A_MODE;
10864 rates->purpose = IPW_RATE_CAPABILITIES;
10865 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10866 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10867 break;
10868
10869 default: /* Mixed or 2.4Ghz */
10870 rates->ieee_mode = IPW_G_MODE;
10871 rates->purpose = IPW_RATE_CAPABILITIES;
10872 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10873 IEEE80211_CCK_DEFAULT_RATES_MASK);
10874 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10875 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10876 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10877 }
10878 break;
10879 }
10880
10881 return 0;
10882 }
10883
10884 static int ipw_config(struct ipw_priv *priv)
10885 {
10886 /* This is only called from ipw_up, which resets/reloads the firmware
10887 so, we don't need to first disable the card before we configure
10888 it */
10889 if (ipw_set_tx_power(priv))
10890 goto error;
10891
10892 /* initialize adapter address */
10893 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10894 goto error;
10895
10896 /* set basic system config settings */
10897 init_sys_config(&priv->sys_config);
10898
10899 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10900 * Does not support BT priority yet (don't abort or defer our Tx) */
10901 if (bt_coexist) {
10902 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10903
10904 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10905 priv->sys_config.bt_coexistence
10906 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10907 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10908 priv->sys_config.bt_coexistence
10909 |= CFG_BT_COEXISTENCE_OOB;
10910 }
10911
10912 #ifdef CONFIG_IPW2200_PROMISCUOUS
10913 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10914 priv->sys_config.accept_all_data_frames = 1;
10915 priv->sys_config.accept_non_directed_frames = 1;
10916 priv->sys_config.accept_all_mgmt_bcpr = 1;
10917 priv->sys_config.accept_all_mgmt_frames = 1;
10918 }
10919 #endif
10920
10921 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10922 priv->sys_config.answer_broadcast_ssid_probe = 1;
10923 else
10924 priv->sys_config.answer_broadcast_ssid_probe = 0;
10925
10926 if (ipw_send_system_config(priv))
10927 goto error;
10928
10929 init_supported_rates(priv, &priv->rates);
10930 if (ipw_send_supported_rates(priv, &priv->rates))
10931 goto error;
10932
10933 /* Set request-to-send threshold */
10934 if (priv->rts_threshold) {
10935 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10936 goto error;
10937 }
10938 #ifdef CONFIG_IPW2200_QOS
10939 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10940 ipw_qos_activate(priv, NULL);
10941 #endif /* CONFIG_IPW2200_QOS */
10942
10943 if (ipw_set_random_seed(priv))
10944 goto error;
10945
10946 /* final state transition to the RUN state */
10947 if (ipw_send_host_complete(priv))
10948 goto error;
10949
10950 priv->status |= STATUS_INIT;
10951
10952 ipw_led_init(priv);
10953 ipw_led_radio_on(priv);
10954 priv->notif_missed_beacons = 0;
10955
10956 /* Set hardware WEP key if it is configured. */
10957 if ((priv->capability & CAP_PRIVACY_ON) &&
10958 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10959 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10960 ipw_set_hwcrypto_keys(priv);
10961
10962 return 0;
10963
10964 error:
10965 return -EIO;
10966 }
10967
10968 /*
10969 * NOTE:
10970 *
10971 * These tables have been tested in conjunction with the
10972 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10973 *
10974 * Altering this values, using it on other hardware, or in geographies
10975 * not intended for resale of the above mentioned Intel adapters has
10976 * not been tested.
10977 *
10978 * Remember to update the table in README.ipw2200 when changing this
10979 * table.
10980 *
10981 */
10982 static const struct ieee80211_geo ipw_geos[] = {
10983 { /* Restricted */
10984 "---",
10985 .bg_channels = 11,
10986 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10987 {2427, 4}, {2432, 5}, {2437, 6},
10988 {2442, 7}, {2447, 8}, {2452, 9},
10989 {2457, 10}, {2462, 11}},
10990 },
10991
10992 { /* Custom US/Canada */
10993 "ZZF",
10994 .bg_channels = 11,
10995 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10996 {2427, 4}, {2432, 5}, {2437, 6},
10997 {2442, 7}, {2447, 8}, {2452, 9},
10998 {2457, 10}, {2462, 11}},
10999 .a_channels = 8,
11000 .a = {{5180, 36},
11001 {5200, 40},
11002 {5220, 44},
11003 {5240, 48},
11004 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11005 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11006 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11007 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11008 },
11009
11010 { /* Rest of World */
11011 "ZZD",
11012 .bg_channels = 13,
11013 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11014 {2427, 4}, {2432, 5}, {2437, 6},
11015 {2442, 7}, {2447, 8}, {2452, 9},
11016 {2457, 10}, {2462, 11}, {2467, 12},
11017 {2472, 13}},
11018 },
11019
11020 { /* Custom USA & Europe & High */
11021 "ZZA",
11022 .bg_channels = 11,
11023 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11024 {2427, 4}, {2432, 5}, {2437, 6},
11025 {2442, 7}, {2447, 8}, {2452, 9},
11026 {2457, 10}, {2462, 11}},
11027 .a_channels = 13,
11028 .a = {{5180, 36},
11029 {5200, 40},
11030 {5220, 44},
11031 {5240, 48},
11032 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11033 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11034 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11035 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11036 {5745, 149},
11037 {5765, 153},
11038 {5785, 157},
11039 {5805, 161},
11040 {5825, 165}},
11041 },
11042
11043 { /* Custom NA & Europe */
11044 "ZZB",
11045 .bg_channels = 11,
11046 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11047 {2427, 4}, {2432, 5}, {2437, 6},
11048 {2442, 7}, {2447, 8}, {2452, 9},
11049 {2457, 10}, {2462, 11}},
11050 .a_channels = 13,
11051 .a = {{5180, 36},
11052 {5200, 40},
11053 {5220, 44},
11054 {5240, 48},
11055 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11056 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11057 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11058 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11059 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11060 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11061 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11062 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11063 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11064 },
11065
11066 { /* Custom Japan */
11067 "ZZC",
11068 .bg_channels = 11,
11069 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11070 {2427, 4}, {2432, 5}, {2437, 6},
11071 {2442, 7}, {2447, 8}, {2452, 9},
11072 {2457, 10}, {2462, 11}},
11073 .a_channels = 4,
11074 .a = {{5170, 34}, {5190, 38},
11075 {5210, 42}, {5230, 46}},
11076 },
11077
11078 { /* Custom */
11079 "ZZM",
11080 .bg_channels = 11,
11081 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11082 {2427, 4}, {2432, 5}, {2437, 6},
11083 {2442, 7}, {2447, 8}, {2452, 9},
11084 {2457, 10}, {2462, 11}},
11085 },
11086
11087 { /* Europe */
11088 "ZZE",
11089 .bg_channels = 13,
11090 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11091 {2427, 4}, {2432, 5}, {2437, 6},
11092 {2442, 7}, {2447, 8}, {2452, 9},
11093 {2457, 10}, {2462, 11}, {2467, 12},
11094 {2472, 13}},
11095 .a_channels = 19,
11096 .a = {{5180, 36},
11097 {5200, 40},
11098 {5220, 44},
11099 {5240, 48},
11100 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11101 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11102 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11103 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11104 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11105 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11106 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11107 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11108 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11109 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11110 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11111 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11112 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11113 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11114 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11115 },
11116
11117 { /* Custom Japan */
11118 "ZZJ",
11119 .bg_channels = 14,
11120 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11121 {2427, 4}, {2432, 5}, {2437, 6},
11122 {2442, 7}, {2447, 8}, {2452, 9},
11123 {2457, 10}, {2462, 11}, {2467, 12},
11124 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11125 .a_channels = 4,
11126 .a = {{5170, 34}, {5190, 38},
11127 {5210, 42}, {5230, 46}},
11128 },
11129
11130 { /* Rest of World */
11131 "ZZR",
11132 .bg_channels = 14,
11133 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11134 {2427, 4}, {2432, 5}, {2437, 6},
11135 {2442, 7}, {2447, 8}, {2452, 9},
11136 {2457, 10}, {2462, 11}, {2467, 12},
11137 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11138 IEEE80211_CH_PASSIVE_ONLY}},
11139 },
11140
11141 { /* High Band */
11142 "ZZH",
11143 .bg_channels = 13,
11144 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11145 {2427, 4}, {2432, 5}, {2437, 6},
11146 {2442, 7}, {2447, 8}, {2452, 9},
11147 {2457, 10}, {2462, 11},
11148 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11149 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11150 .a_channels = 4,
11151 .a = {{5745, 149}, {5765, 153},
11152 {5785, 157}, {5805, 161}},
11153 },
11154
11155 { /* Custom Europe */
11156 "ZZG",
11157 .bg_channels = 13,
11158 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11159 {2427, 4}, {2432, 5}, {2437, 6},
11160 {2442, 7}, {2447, 8}, {2452, 9},
11161 {2457, 10}, {2462, 11},
11162 {2467, 12}, {2472, 13}},
11163 .a_channels = 4,
11164 .a = {{5180, 36}, {5200, 40},
11165 {5220, 44}, {5240, 48}},
11166 },
11167
11168 { /* Europe */
11169 "ZZK",
11170 .bg_channels = 13,
11171 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11172 {2427, 4}, {2432, 5}, {2437, 6},
11173 {2442, 7}, {2447, 8}, {2452, 9},
11174 {2457, 10}, {2462, 11},
11175 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11176 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11177 .a_channels = 24,
11178 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11179 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11180 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11181 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11182 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11183 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11184 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11185 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11186 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11187 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11188 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11189 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11190 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11191 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11192 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11193 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11194 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11195 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11196 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11197 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11198 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11199 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11200 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11201 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11202 },
11203
11204 { /* Europe */
11205 "ZZL",
11206 .bg_channels = 11,
11207 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11208 {2427, 4}, {2432, 5}, {2437, 6},
11209 {2442, 7}, {2447, 8}, {2452, 9},
11210 {2457, 10}, {2462, 11}},
11211 .a_channels = 13,
11212 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11213 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11214 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11215 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11216 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11217 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11218 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11219 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11220 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11221 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11222 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11223 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11224 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11225 }
11226 };
11227
11228 #define MAX_HW_RESTARTS 5
11229 static int ipw_up(struct ipw_priv *priv)
11230 {
11231 int rc, i, j;
11232
11233 /* Age scan list entries found before suspend */
11234 if (priv->suspend_time) {
11235 ieee80211_networks_age(priv->ieee, priv->suspend_time);
11236 priv->suspend_time = 0;
11237 }
11238
11239 if (priv->status & STATUS_EXIT_PENDING)
11240 return -EIO;
11241
11242 if (cmdlog && !priv->cmdlog) {
11243 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11244 GFP_KERNEL);
11245 if (priv->cmdlog == NULL) {
11246 IPW_ERROR("Error allocating %d command log entries.\n",
11247 cmdlog);
11248 return -ENOMEM;
11249 } else {
11250 priv->cmdlog_len = cmdlog;
11251 }
11252 }
11253
11254 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11255 /* Load the microcode, firmware, and eeprom.
11256 * Also start the clocks. */
11257 rc = ipw_load(priv);
11258 if (rc) {
11259 IPW_ERROR("Unable to load firmware: %d\n", rc);
11260 return rc;
11261 }
11262
11263 ipw_init_ordinals(priv);
11264 if (!(priv->config & CFG_CUSTOM_MAC))
11265 eeprom_parse_mac(priv, priv->mac_addr);
11266 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11267
11268 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11269 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11270 ipw_geos[j].name, 3))
11271 break;
11272 }
11273 if (j == ARRAY_SIZE(ipw_geos)) {
11274 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11275 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11276 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11277 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11278 j = 0;
11279 }
11280 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11281 IPW_WARNING("Could not set geography.");
11282 return 0;
11283 }
11284
11285 if (priv->status & STATUS_RF_KILL_SW) {
11286 IPW_WARNING("Radio disabled by module parameter.\n");
11287 return 0;
11288 } else if (rf_kill_active(priv)) {
11289 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11290 "Kill switch must be turned off for "
11291 "wireless networking to work.\n");
11292 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11293 2 * HZ);
11294 return 0;
11295 }
11296
11297 rc = ipw_config(priv);
11298 if (!rc) {
11299 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11300
11301 /* If configure to try and auto-associate, kick
11302 * off a scan. */
11303 queue_delayed_work(priv->workqueue,
11304 &priv->request_scan, 0);
11305
11306 return 0;
11307 }
11308
11309 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11310 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11311 i, MAX_HW_RESTARTS);
11312
11313 /* We had an error bringing up the hardware, so take it
11314 * all the way back down so we can try again */
11315 ipw_down(priv);
11316 }
11317
11318 /* tried to restart and config the device for as long as our
11319 * patience could withstand */
11320 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11321
11322 return -EIO;
11323 }
11324
11325 static void ipw_bg_up(struct work_struct *work)
11326 {
11327 struct ipw_priv *priv =
11328 container_of(work, struct ipw_priv, up);
11329 mutex_lock(&priv->mutex);
11330 ipw_up(priv);
11331 mutex_unlock(&priv->mutex);
11332 }
11333
11334 static void ipw_deinit(struct ipw_priv *priv)
11335 {
11336 int i;
11337
11338 if (priv->status & STATUS_SCANNING) {
11339 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11340 ipw_abort_scan(priv);
11341 }
11342
11343 if (priv->status & STATUS_ASSOCIATED) {
11344 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11345 ipw_disassociate(priv);
11346 }
11347
11348 ipw_led_shutdown(priv);
11349
11350 /* Wait up to 1s for status to change to not scanning and not
11351 * associated (disassociation can take a while for a ful 802.11
11352 * exchange */
11353 for (i = 1000; i && (priv->status &
11354 (STATUS_DISASSOCIATING |
11355 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11356 udelay(10);
11357
11358 if (priv->status & (STATUS_DISASSOCIATING |
11359 STATUS_ASSOCIATED | STATUS_SCANNING))
11360 IPW_DEBUG_INFO("Still associated or scanning...\n");
11361 else
11362 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11363
11364 /* Attempt to disable the card */
11365 ipw_send_card_disable(priv, 0);
11366
11367 priv->status &= ~STATUS_INIT;
11368 }
11369
11370 static void ipw_down(struct ipw_priv *priv)
11371 {
11372 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11373
11374 priv->status |= STATUS_EXIT_PENDING;
11375
11376 if (ipw_is_init(priv))
11377 ipw_deinit(priv);
11378
11379 /* Wipe out the EXIT_PENDING status bit if we are not actually
11380 * exiting the module */
11381 if (!exit_pending)
11382 priv->status &= ~STATUS_EXIT_PENDING;
11383
11384 /* tell the device to stop sending interrupts */
11385 ipw_disable_interrupts(priv);
11386
11387 /* Clear all bits but the RF Kill */
11388 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11389 netif_carrier_off(priv->net_dev);
11390
11391 ipw_stop_nic(priv);
11392
11393 ipw_led_radio_off(priv);
11394 }
11395
11396 static void ipw_bg_down(struct work_struct *work)
11397 {
11398 struct ipw_priv *priv =
11399 container_of(work, struct ipw_priv, down);
11400 mutex_lock(&priv->mutex);
11401 ipw_down(priv);
11402 mutex_unlock(&priv->mutex);
11403 }
11404
11405 /* Called by register_netdev() */
11406 static int ipw_net_init(struct net_device *dev)
11407 {
11408 struct ipw_priv *priv = ieee80211_priv(dev);
11409 mutex_lock(&priv->mutex);
11410
11411 if (ipw_up(priv)) {
11412 mutex_unlock(&priv->mutex);
11413 return -EIO;
11414 }
11415
11416 mutex_unlock(&priv->mutex);
11417 return 0;
11418 }
11419
11420 /* PCI driver stuff */
11421 static struct pci_device_id card_ids[] = {
11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11438 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11439 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11440 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11441 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11442 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11443 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11444
11445 /* required last entry */
11446 {0,}
11447 };
11448
11449 MODULE_DEVICE_TABLE(pci, card_ids);
11450
11451 static struct attribute *ipw_sysfs_entries[] = {
11452 &dev_attr_rf_kill.attr,
11453 &dev_attr_direct_dword.attr,
11454 &dev_attr_indirect_byte.attr,
11455 &dev_attr_indirect_dword.attr,
11456 &dev_attr_mem_gpio_reg.attr,
11457 &dev_attr_command_event_reg.attr,
11458 &dev_attr_nic_type.attr,
11459 &dev_attr_status.attr,
11460 &dev_attr_cfg.attr,
11461 &dev_attr_error.attr,
11462 &dev_attr_event_log.attr,
11463 &dev_attr_cmd_log.attr,
11464 &dev_attr_eeprom_delay.attr,
11465 &dev_attr_ucode_version.attr,
11466 &dev_attr_rtc.attr,
11467 &dev_attr_scan_age.attr,
11468 &dev_attr_led.attr,
11469 &dev_attr_speed_scan.attr,
11470 &dev_attr_net_stats.attr,
11471 &dev_attr_channels.attr,
11472 #ifdef CONFIG_IPW2200_PROMISCUOUS
11473 &dev_attr_rtap_iface.attr,
11474 &dev_attr_rtap_filter.attr,
11475 #endif
11476 NULL
11477 };
11478
11479 static struct attribute_group ipw_attribute_group = {
11480 .name = NULL, /* put in device directory */
11481 .attrs = ipw_sysfs_entries,
11482 };
11483
11484 #ifdef CONFIG_IPW2200_PROMISCUOUS
11485 static int ipw_prom_open(struct net_device *dev)
11486 {
11487 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11488 struct ipw_priv *priv = prom_priv->priv;
11489
11490 IPW_DEBUG_INFO("prom dev->open\n");
11491 netif_carrier_off(dev);
11492
11493 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11494 priv->sys_config.accept_all_data_frames = 1;
11495 priv->sys_config.accept_non_directed_frames = 1;
11496 priv->sys_config.accept_all_mgmt_bcpr = 1;
11497 priv->sys_config.accept_all_mgmt_frames = 1;
11498
11499 ipw_send_system_config(priv);
11500 }
11501
11502 return 0;
11503 }
11504
11505 static int ipw_prom_stop(struct net_device *dev)
11506 {
11507 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11508 struct ipw_priv *priv = prom_priv->priv;
11509
11510 IPW_DEBUG_INFO("prom dev->stop\n");
11511
11512 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11513 priv->sys_config.accept_all_data_frames = 0;
11514 priv->sys_config.accept_non_directed_frames = 0;
11515 priv->sys_config.accept_all_mgmt_bcpr = 0;
11516 priv->sys_config.accept_all_mgmt_frames = 0;
11517
11518 ipw_send_system_config(priv);
11519 }
11520
11521 return 0;
11522 }
11523
11524 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11525 {
11526 IPW_DEBUG_INFO("prom dev->xmit\n");
11527 dev_kfree_skb(skb);
11528 return NETDEV_TX_OK;
11529 }
11530
11531 static const struct net_device_ops ipw_prom_netdev_ops = {
11532 .ndo_open = ipw_prom_open,
11533 .ndo_stop = ipw_prom_stop,
11534 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11535 .ndo_change_mtu = ieee80211_change_mtu,
11536 .ndo_set_mac_address = eth_mac_addr,
11537 .ndo_validate_addr = eth_validate_addr,
11538 };
11539
11540 static int ipw_prom_alloc(struct ipw_priv *priv)
11541 {
11542 int rc = 0;
11543
11544 if (priv->prom_net_dev)
11545 return -EPERM;
11546
11547 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11548 if (priv->prom_net_dev == NULL)
11549 return -ENOMEM;
11550
11551 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11552 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11553 priv->prom_priv->priv = priv;
11554
11555 strcpy(priv->prom_net_dev->name, "rtap%d");
11556 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11557
11558 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11559 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11560
11561 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11562 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11563
11564 rc = register_netdev(priv->prom_net_dev);
11565 if (rc) {
11566 free_ieee80211(priv->prom_net_dev);
11567 priv->prom_net_dev = NULL;
11568 return rc;
11569 }
11570
11571 return 0;
11572 }
11573
11574 static void ipw_prom_free(struct ipw_priv *priv)
11575 {
11576 if (!priv->prom_net_dev)
11577 return;
11578
11579 unregister_netdev(priv->prom_net_dev);
11580 free_ieee80211(priv->prom_net_dev);
11581
11582 priv->prom_net_dev = NULL;
11583 }
11584
11585 #endif
11586
11587 static const struct net_device_ops ipw_netdev_ops = {
11588 .ndo_init = ipw_net_init,
11589 .ndo_open = ipw_net_open,
11590 .ndo_stop = ipw_net_stop,
11591 .ndo_set_multicast_list = ipw_net_set_multicast_list,
11592 .ndo_set_mac_address = ipw_net_set_mac_address,
11593 .ndo_start_xmit = ieee80211_xmit,
11594 .ndo_change_mtu = ieee80211_change_mtu,
11595 .ndo_validate_addr = eth_validate_addr,
11596 };
11597
11598 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11599 const struct pci_device_id *ent)
11600 {
11601 int err = 0;
11602 struct net_device *net_dev;
11603 void __iomem *base;
11604 u32 length, val;
11605 struct ipw_priv *priv;
11606 int i;
11607
11608 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11609 if (net_dev == NULL) {
11610 err = -ENOMEM;
11611 goto out;
11612 }
11613
11614 priv = ieee80211_priv(net_dev);
11615 priv->ieee = netdev_priv(net_dev);
11616
11617 priv->net_dev = net_dev;
11618 priv->pci_dev = pdev;
11619 ipw_debug_level = debug;
11620 spin_lock_init(&priv->irq_lock);
11621 spin_lock_init(&priv->lock);
11622 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11623 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11624
11625 mutex_init(&priv->mutex);
11626 if (pci_enable_device(pdev)) {
11627 err = -ENODEV;
11628 goto out_free_ieee80211;
11629 }
11630
11631 pci_set_master(pdev);
11632
11633 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11634 if (!err)
11635 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11636 if (err) {
11637 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11638 goto out_pci_disable_device;
11639 }
11640
11641 pci_set_drvdata(pdev, priv);
11642
11643 err = pci_request_regions(pdev, DRV_NAME);
11644 if (err)
11645 goto out_pci_disable_device;
11646
11647 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11648 * PCI Tx retries from interfering with C3 CPU state */
11649 pci_read_config_dword(pdev, 0x40, &val);
11650 if ((val & 0x0000ff00) != 0)
11651 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11652
11653 length = pci_resource_len(pdev, 0);
11654 priv->hw_len = length;
11655
11656 base = pci_ioremap_bar(pdev, 0);
11657 if (!base) {
11658 err = -ENODEV;
11659 goto out_pci_release_regions;
11660 }
11661
11662 priv->hw_base = base;
11663 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11664 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11665
11666 err = ipw_setup_deferred_work(priv);
11667 if (err) {
11668 IPW_ERROR("Unable to setup deferred work\n");
11669 goto out_iounmap;
11670 }
11671
11672 ipw_sw_reset(priv, 1);
11673
11674 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11675 if (err) {
11676 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11677 goto out_destroy_workqueue;
11678 }
11679
11680 SET_NETDEV_DEV(net_dev, &pdev->dev);
11681
11682 mutex_lock(&priv->mutex);
11683
11684 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11685 priv->ieee->set_security = shim__set_security;
11686 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11687
11688 #ifdef CONFIG_IPW2200_QOS
11689 priv->ieee->is_qos_active = ipw_is_qos_active;
11690 priv->ieee->handle_probe_response = ipw_handle_beacon;
11691 priv->ieee->handle_beacon = ipw_handle_probe_response;
11692 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11693 #endif /* CONFIG_IPW2200_QOS */
11694
11695 priv->ieee->perfect_rssi = -20;
11696 priv->ieee->worst_rssi = -85;
11697
11698 net_dev->netdev_ops = &ipw_netdev_ops;
11699 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11700 net_dev->wireless_data = &priv->wireless_data;
11701 net_dev->wireless_handlers = &ipw_wx_handler_def;
11702 net_dev->ethtool_ops = &ipw_ethtool_ops;
11703 net_dev->irq = pdev->irq;
11704 net_dev->base_addr = (unsigned long)priv->hw_base;
11705 net_dev->mem_start = pci_resource_start(pdev, 0);
11706 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11707
11708 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11709 if (err) {
11710 IPW_ERROR("failed to create sysfs device attributes\n");
11711 mutex_unlock(&priv->mutex);
11712 goto out_release_irq;
11713 }
11714
11715 mutex_unlock(&priv->mutex);
11716 err = register_netdev(net_dev);
11717 if (err) {
11718 IPW_ERROR("failed to register network device\n");
11719 goto out_remove_sysfs;
11720 }
11721
11722 #ifdef CONFIG_IPW2200_PROMISCUOUS
11723 if (rtap_iface) {
11724 err = ipw_prom_alloc(priv);
11725 if (err) {
11726 IPW_ERROR("Failed to register promiscuous network "
11727 "device (error %d).\n", err);
11728 unregister_netdev(priv->net_dev);
11729 goto out_remove_sysfs;
11730 }
11731 }
11732 #endif
11733
11734 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11735 "channels, %d 802.11a channels)\n",
11736 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11737 priv->ieee->geo.a_channels);
11738
11739 return 0;
11740
11741 out_remove_sysfs:
11742 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11743 out_release_irq:
11744 free_irq(pdev->irq, priv);
11745 out_destroy_workqueue:
11746 destroy_workqueue(priv->workqueue);
11747 priv->workqueue = NULL;
11748 out_iounmap:
11749 iounmap(priv->hw_base);
11750 out_pci_release_regions:
11751 pci_release_regions(pdev);
11752 out_pci_disable_device:
11753 pci_disable_device(pdev);
11754 pci_set_drvdata(pdev, NULL);
11755 out_free_ieee80211:
11756 free_ieee80211(priv->net_dev);
11757 out:
11758 return err;
11759 }
11760
11761 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11762 {
11763 struct ipw_priv *priv = pci_get_drvdata(pdev);
11764 struct list_head *p, *q;
11765 int i;
11766
11767 if (!priv)
11768 return;
11769
11770 mutex_lock(&priv->mutex);
11771
11772 priv->status |= STATUS_EXIT_PENDING;
11773 ipw_down(priv);
11774 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11775
11776 mutex_unlock(&priv->mutex);
11777
11778 unregister_netdev(priv->net_dev);
11779
11780 if (priv->rxq) {
11781 ipw_rx_queue_free(priv, priv->rxq);
11782 priv->rxq = NULL;
11783 }
11784 ipw_tx_queue_free(priv);
11785
11786 if (priv->cmdlog) {
11787 kfree(priv->cmdlog);
11788 priv->cmdlog = NULL;
11789 }
11790 /* ipw_down will ensure that there is no more pending work
11791 * in the workqueue's, so we can safely remove them now. */
11792 cancel_delayed_work(&priv->adhoc_check);
11793 cancel_delayed_work(&priv->gather_stats);
11794 cancel_delayed_work(&priv->request_scan);
11795 cancel_delayed_work(&priv->request_direct_scan);
11796 cancel_delayed_work(&priv->request_passive_scan);
11797 cancel_delayed_work(&priv->scan_event);
11798 cancel_delayed_work(&priv->rf_kill);
11799 cancel_delayed_work(&priv->scan_check);
11800 destroy_workqueue(priv->workqueue);
11801 priv->workqueue = NULL;
11802
11803 /* Free MAC hash list for ADHOC */
11804 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11805 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11806 list_del(p);
11807 kfree(list_entry(p, struct ipw_ibss_seq, list));
11808 }
11809 }
11810
11811 kfree(priv->error);
11812 priv->error = NULL;
11813
11814 #ifdef CONFIG_IPW2200_PROMISCUOUS
11815 ipw_prom_free(priv);
11816 #endif
11817
11818 free_irq(pdev->irq, priv);
11819 iounmap(priv->hw_base);
11820 pci_release_regions(pdev);
11821 pci_disable_device(pdev);
11822 pci_set_drvdata(pdev, NULL);
11823 free_ieee80211(priv->net_dev);
11824 free_firmware();
11825 }
11826
11827 #ifdef CONFIG_PM
11828 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11829 {
11830 struct ipw_priv *priv = pci_get_drvdata(pdev);
11831 struct net_device *dev = priv->net_dev;
11832
11833 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11834
11835 /* Take down the device; powers it off, etc. */
11836 ipw_down(priv);
11837
11838 /* Remove the PRESENT state of the device */
11839 netif_device_detach(dev);
11840
11841 pci_save_state(pdev);
11842 pci_disable_device(pdev);
11843 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11844
11845 priv->suspend_at = get_seconds();
11846
11847 return 0;
11848 }
11849
11850 static int ipw_pci_resume(struct pci_dev *pdev)
11851 {
11852 struct ipw_priv *priv = pci_get_drvdata(pdev);
11853 struct net_device *dev = priv->net_dev;
11854 int err;
11855 u32 val;
11856
11857 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11858
11859 pci_set_power_state(pdev, PCI_D0);
11860 err = pci_enable_device(pdev);
11861 if (err) {
11862 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11863 dev->name);
11864 return err;
11865 }
11866 pci_restore_state(pdev);
11867
11868 /*
11869 * Suspend/Resume resets the PCI configuration space, so we have to
11870 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11871 * from interfering with C3 CPU state. pci_restore_state won't help
11872 * here since it only restores the first 64 bytes pci config header.
11873 */
11874 pci_read_config_dword(pdev, 0x40, &val);
11875 if ((val & 0x0000ff00) != 0)
11876 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11877
11878 /* Set the device back into the PRESENT state; this will also wake
11879 * the queue of needed */
11880 netif_device_attach(dev);
11881
11882 priv->suspend_time = get_seconds() - priv->suspend_at;
11883
11884 /* Bring the device back up */
11885 queue_work(priv->workqueue, &priv->up);
11886
11887 return 0;
11888 }
11889 #endif
11890
11891 static void ipw_pci_shutdown(struct pci_dev *pdev)
11892 {
11893 struct ipw_priv *priv = pci_get_drvdata(pdev);
11894
11895 /* Take down the device; powers it off, etc. */
11896 ipw_down(priv);
11897
11898 pci_disable_device(pdev);
11899 }
11900
11901 /* driver initialization stuff */
11902 static struct pci_driver ipw_driver = {
11903 .name = DRV_NAME,
11904 .id_table = card_ids,
11905 .probe = ipw_pci_probe,
11906 .remove = __devexit_p(ipw_pci_remove),
11907 #ifdef CONFIG_PM
11908 .suspend = ipw_pci_suspend,
11909 .resume = ipw_pci_resume,
11910 #endif
11911 .shutdown = ipw_pci_shutdown,
11912 };
11913
11914 static int __init ipw_init(void)
11915 {
11916 int ret;
11917
11918 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11919 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11920
11921 ret = pci_register_driver(&ipw_driver);
11922 if (ret) {
11923 IPW_ERROR("Unable to initialize PCI module\n");
11924 return ret;
11925 }
11926
11927 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11928 if (ret) {
11929 IPW_ERROR("Unable to create driver sysfs file\n");
11930 pci_unregister_driver(&ipw_driver);
11931 return ret;
11932 }
11933
11934 return ret;
11935 }
11936
11937 static void __exit ipw_exit(void)
11938 {
11939 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11940 pci_unregister_driver(&ipw_driver);
11941 }
11942
11943 module_param(disable, int, 0444);
11944 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11945
11946 module_param(associate, int, 0444);
11947 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11948
11949 module_param(auto_create, int, 0444);
11950 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11951
11952 module_param(led, int, 0444);
11953 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11954
11955 module_param(debug, int, 0444);
11956 MODULE_PARM_DESC(debug, "debug output mask");
11957
11958 module_param(channel, int, 0444);
11959 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11960
11961 #ifdef CONFIG_IPW2200_PROMISCUOUS
11962 module_param(rtap_iface, int, 0444);
11963 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11964 #endif
11965
11966 #ifdef CONFIG_IPW2200_QOS
11967 module_param(qos_enable, int, 0444);
11968 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11969
11970 module_param(qos_burst_enable, int, 0444);
11971 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11972
11973 module_param(qos_no_ack_mask, int, 0444);
11974 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11975
11976 module_param(burst_duration_CCK, int, 0444);
11977 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11978
11979 module_param(burst_duration_OFDM, int, 0444);
11980 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11981 #endif /* CONFIG_IPW2200_QOS */
11982
11983 #ifdef CONFIG_IPW2200_MONITOR
11984 module_param(mode, int, 0444);
11985 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11986 #else
11987 module_param(mode, int, 0444);
11988 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11989 #endif
11990
11991 module_param(bt_coexist, int, 0444);
11992 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11993
11994 module_param(hwcrypto, int, 0444);
11995 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11996
11997 module_param(cmdlog, int, 0444);
11998 MODULE_PARM_DESC(cmdlog,
11999 "allocate a ring buffer for logging firmware commands");
12000
12001 module_param(roaming, int, 0444);
12002 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12003
12004 module_param(antenna, int, 0444);
12005 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12006
12007 module_exit(ipw_exit);
12008 module_init(ipw_init);